EL8188FSZ-T7 [INTERSIL]

Micropower Single Supply Rail-to-Rail Input-Output Precision Op Amp; 微功耗单电源轨至轨输入输出精密运算放大器
EL8188FSZ-T7
型号: EL8188FSZ-T7
厂家: Intersil    Intersil
描述:

Micropower Single Supply Rail-to-Rail Input-Output Precision Op Amp
微功耗单电源轨至轨输入输出精密运算放大器

运算放大器
文件: 总11页 (文件大小:874K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL8188  
®
Data Sheet  
February 22, 2007  
FN7467.3  
PRELIMINARY  
Micropower Single Supply Rail-to-Rail  
Input-Output Precision Op Amp  
Features  
• 50µA supply current  
The EL8188 is a micropower precision op amp optimized for  
single supply operation at 5V and can operate down to 2.4V.  
• 1mV typ offset voltage  
• 2pA input bias current  
The EL8188 draws minimal supply current while meeting  
excellent DC-accuracy, noise, and output drive  
• 266kHz gain-bandwidth product  
• 0.13V/µs slew rate  
specifications. Competing devices seriously degrade these  
parameters to achieve rail-to-rail operation and microamp  
supply current. Offset current, voltage and current noise,  
slew rate, and gain-bandwidth product are all 2X to 10X  
better than on previous micropower rail-to-rail op amps.  
• Single supply operation down to 2.4V  
• Rail-to-rail input and output  
• Output sources and sinks 26mA load current  
• Pb-free plus anneal available (RoHS compliant)  
The EL8188 can be operated from one lithium cell or two  
Ni-Cd batteries. The input range includes both the positive  
and negative rails. The output swings to both rails.  
Applications  
• Battery- or solar-powered systems  
• 4mA to 20mA current loops  
• Handheld consumer products  
• Medical devices  
Ordering Information  
PART  
TAPE & PACKAGE  
PKG.  
DWG. #  
PART NUMBER MARKING  
REEL  
(Pb-Free)  
Coming Soon  
EL8188FWZ-T7  
(Note)  
8178FW  
8178FW  
7”  
6 Ld SOT-23 MDP0038  
(3k pcs)  
• Thermocouple amplifiers  
• Photodiode pre-amps  
• pH probe amplifiers  
Coming Soon  
EL8188FWZ-T7A  
(Note)  
7”  
6 Ld SOT-23 MDP0038  
(250 pcs)  
EL8188FSZ  
(Note)  
8178FSZ  
8178FSZ  
97/Tube 8 Ld SO  
MDP0027  
MDP0027  
Pinouts  
EL8188  
(6 LD SOT-23 - Coming Soon)  
TOP VIEW  
EL8188FSZ-T7  
(Note)  
7”  
8 Ld SO  
(1k pcs)  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free  
material sets; molding compounds/die attach materials and 100%  
matte tin plate termination finish, which are RoHS compliant and  
compatible with both SnPb and Pb-free soldering operations. Intersil  
Pb-free products are MSL classified at Pb-free peak reflow  
temperatures that meet or exceed the Pb-free requirements of  
IPC/JEDEC J STD-020.  
OUT  
VS-  
IN+  
1
2
3
6
5
4
VS+  
ENABLE  
IN-  
+
-
EL8188  
(8 LD SO)  
TOP VIEW  
NC  
IN-  
1
2
3
4
8
7
6
5
ENABLE  
VS+  
-
+
IN+  
VS-  
OUT  
NC  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2004-2007. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
EL8188  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
Supply Voltage (V ) and Pwr-up Ramp Rate . . . . . . . . 5.5V, 1V/µs  
S
Thermal Resistance  
θ
(°C/W)  
JA  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5V  
Current into IN+, IN-, and ENABLE . . . . . . . . . . . . . . . . . . . . . . 5mA  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . V -0.5V to V +0.5V  
S- S+  
ESD tolerance, Human Body Model . . . . . . . . . . . . . . . . . . . TBDkV  
6 Ld SOT Package . . . . . . . . . . . . . . . . . . . . . . . . .  
8 Ld SO Package . . . . . . . . . . . . . . . . . . . . . . . . . .  
230  
110  
Ambient Operating Temperature Range . . . . . . . . -40°C to +125°C  
Storage Temperature Range . . . . . . . . . . . . . . . . . -65°C to +150°C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . +125°C  
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
ESD tolerance, Machine Model . . . . . . . . . . . . . . . . . . . . . . . TBDV  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
J
C
A
Electrical Specifications  
V
= 5V, V = 0V, V  
S-  
= 0.1V, V = 1.4V, T = +25°C unless otherwise specified. Boldface limits apply over  
CM O A  
S+  
the operating temperature range, -40°C to +125°C  
PARAMETER  
DESCRIPTION  
Input Offset Voltage  
TEST CONDITIONS  
MIN  
TYP  
1
MAX  
UNIT  
mV  
V
SOT  
4
OS  
ΔV  
Long Term Input Offset Voltage  
Stability  
1.2  
µV/Mo  
OS  
------------------  
ΔTime  
ΔV  
Input Offset Drift vs Temperature  
1.1  
2
2.1  
µV/°C  
OS  
---------------  
ΔT  
I
Input Bias Current  
-15  
15  
pA  
pA  
B
-600  
600  
e
Input Noise Voltage Peak-to-Peak  
Input Noise Voltage Density  
Input Noise Current Density  
Input Voltage Range  
f = 0.1Hz to 10Hz  
2.8  
48  
µV  
P-P  
N
f
f
= 1kHz  
= 1kHz  
nV/Hz  
pA/Hz  
V
O
O
i
0.15  
N
CMIR  
Guaranteed by CMRR test  
0
5
CMRR  
Common-Mode Rejection Ratio  
V
V
V
= 0V to 5V  
80  
100  
100  
400  
dB  
CM  
75  
dB  
PSRR  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
= 2.4V to 5V  
80  
dB  
S
80  
dB  
A
= 0.5V to 4.5V,  
= 100kΩ to (V + V )/2  
S+ S-  
100  
100  
V/mV  
V/mV  
V/mV  
VOL  
O
R
L
V
R
= 0.5V to 4.5V,  
= 1kΩ to (V + V )/2  
S+ S-  
15  
3
O
L
V
Maximum Output Voltage Swing  
V
R
; Output low,  
= 100kΩ to (V + V )/2  
8
mV  
mV  
mV  
mV  
V
OUT  
OL  
L
S+ S-  
10  
V
R
; Output low,  
130  
200  
300  
OL  
= 1kΩ to (V + V )/2  
L
S+  
S-  
V
R
; Output high,  
= 100kΩ to (V + V )/2  
4.994  
4.992  
4.750  
4.7  
4.997  
4.867  
OH  
L
S+ S-  
V
V
R
; Output high,  
V
OH  
= 1kΩ to (V + V )/2  
L
S+ S-  
V
SR  
Slew Rate  
0.05  
0.13  
266  
0.25  
V/µs  
kHz  
GBWP  
Gain Bandwidth Product  
f = 100kHz  
O
FN7467.3  
February 22, 2007  
2
EL8188  
Electrical Specifications  
V
= 5V, V = 0V, V  
S-  
= 0.1V, V = 1.4V, T = +25°C unless otherwise specified. Boldface limits apply over  
S+  
CM  
O
A
the operating temperature range, -40°C to +125°C (Continued)  
PARAMETER  
DESCRIPTION  
Supply Current, Enabled  
TEST CONDITIONS  
MIN  
35  
TYP  
MAX  
75  
UNIT  
µA  
µA  
µA  
µA  
mA  
mA  
mA  
mA  
V
I
I
I
I
50  
S, ON  
30  
90  
Supply Current, Disabled  
Short Circuit Output Current  
Short Circuit Output Current  
Minimum Supply Voltage  
3
10  
S, OFF  
10  
+
-
R
R
= 10Ω to opposite supply  
= 10Ω to opposite supply  
23  
18  
20  
15  
31  
26  
2.2  
SC  
SC  
L
L
V
2.4  
S
2.4  
V
V
V
Enable Pin High Level  
Enable Pin Low Level  
Enable Pin Input Current  
2
V
INH  
INL  
0.8  
2
V
I
V
V
= 5V  
= 0V  
0.25  
0.25  
-0.5  
-0.5  
0.7  
0
µA  
µA  
µA  
µA  
ENH  
EN  
EN  
2.5  
+0.5  
+0.5  
I
Enable Pin Input Current  
ENL  
FN7467.3  
February 22, 2007  
3
EL8188  
Typical Performance Curves  
V
= ±2.5V, T = +25°C, Unless Otherwise Specified  
S
A
1
80  
R
10kΩ  
L
R
10kΩ  
GAIN = 1k  
L
70  
V
= 0.2V  
OUT  
P-P  
V
= 0.2V  
OUT  
P-P  
GAIN = 500  
GAIN = 200  
GAIN = 100  
60  
50  
40  
30  
20  
10  
0
0
V
= ±1.25  
S
-1  
-2  
-3  
GAIN = 10  
GAIN = 5  
GAIN = 2  
V
= ±2.5V  
S
V
= ±1.0V  
S
-10  
-20  
GAIN = 1  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k 1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 1. UNITY GAIN FREQUENCY RESPONSE at  
VARIOUS SUPPLY VOLTAGES  
FIGURE 2. FREQUENCY RESPONSE at VARIOUS CLOSED  
LOOP GAINS  
60  
50  
40  
30  
20  
10  
0
200  
A
= -1  
= V /2  
V
V
CM  
DD  
100  
0
-100  
-200  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
-0.5  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
SUPPLY VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
FIGURE 3. SUPPLY CURRENT vs SUPPLY VOLTAGE  
FIGURE 4. INPUT OFFSET VOLTAGE vs OUTPUT VOLTAGE  
250  
150  
50  
20  
I
OS  
10  
I -  
B
0
-50  
-10  
I +  
B
-150  
-250  
-20  
-0.5  
-0.5  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
COMMON-MODE INPUT VOLTAGE (V)  
COMMON-MODE INPUT VOLTAGE (V)  
FIGURE 5. INPUT OFFSET VOLTAGE vs COMMON-MODE  
INPUT VOLTAGE  
FIGURE 6. INPUT BIAS, OFFSET CURRENT vs COMMON-  
MODE INPUT VOLTAGE  
FN7467.3  
February 22, 2007  
4
EL8188  
Typical Performance Curves (Continued) V = ±2.5V, T = +25°C, Unless Otherwise Specified (Continued)  
S
A
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
80  
60  
40  
20  
0
0
45  
90  
90  
PHASE  
GAIN  
PHASE  
135  
180  
135  
180  
GAIN  
-10  
-20  
10  
10  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 7. OPEN LOOP GAIN AND PHASE vs FREQUENCY  
(R = 1kΩ)  
FIGURE 8. OPEN LOOP GAIN AND PHASE vs FREQUENCY  
(R = 100kΩ)  
L
L
10  
10  
0
ΔV  
= 1V  
P-P  
= 100kΩ  
= +1  
ΔV = 1V  
CM  
S
P-P  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
R
L
R
= 100kΩ  
L
A
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
V
A
= +1  
V
-PSRR  
+PSRR  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 10. PSRR vs FREQUENCY  
FIGURE 9. CMRR vs FREQUENCY  
100  
10  
1
1000  
100  
10  
VOLTAGE  
CURRENT  
2.8µV  
P-P  
0.1  
100k  
1
1
10  
100  
1k  
10k  
TIME (1s/DIV)  
FREQUENCY (Hz)  
FIGURE 12. 0.1Hz TO 10Hz INPUT VOLTAGE NOISE  
FIGURE 11. INPUT VOLTAGE AND CURRENT NOISE vs  
FREQUENCY  
FN7467.3  
February 22, 2007  
5
EL8188  
Typical Performance Curves (Continued) V = ±2.5V, T = +25°C, Unless Otherwise Specified (Continued)  
S
A
400  
300  
200  
100  
0
150  
100  
50  
10 SAMPLES  
0
-100  
-200  
-300  
-400  
-50  
-100  
-150  
35 SOIC SAMPLES  
TYPICAL = 1.1µV/C  
-60 -40 -20  
0
20 40 60 80 100 120  
0
10 20 30 40 50 60 70 80 90 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 14. EL8188 SOIC V  
vs TEMPERATURE (V = 5V)  
S
FIGURE 13. V  
vs TEMPERATURE  
OS  
OS  
800  
35 6 LD SOT-23 SAMPLES  
600 TYPICAL = 1.9µV/C  
400  
200  
0
-200  
-400  
-600  
-800  
-60 -40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
FIGURE 15. EL8188 SOT V  
vs TEMPERATURE (V = 5V)  
S
OS  
20  
15  
10  
5
18  
n = 10  
n = 10  
MAX  
13  
8
MAX  
MEDIAN  
MEDIAN  
3
0
-2  
-7  
-12  
-5  
-10  
-15  
MIN  
MIN  
0
500  
1000  
HOURS  
1500  
1900  
0
500  
1000  
HOURS  
1500  
1900  
FIGURE 16. V  
DRIFT SOT-23 vs TIME  
FIGURE 17. V  
DRIFT SOIC vs TIME  
OS  
OS  
FN7467.3  
February 22, 2007  
6
EL8188  
Pin Descriptions  
SO PIN  
NUMBER  
SOT-23 PIN  
NUMBER  
EQUIVALENT  
CIRCUIT  
PIN NAME  
NC  
DESCRIPTION  
1
2
3
4
5
6
7
8
No internal connection  
Amplifier’s inverting input  
Amplifier’s non-inverting input  
Negative power supply  
No internal connection  
Amplifier’s output  
4
3
2
IN-  
Circuit 1  
Circuit 1  
Circuit 4  
IN+  
VS-  
NC  
1
6
5
OUT  
VS+  
Circuit 3  
Circuit 4  
Circuit 2  
Positive power supply  
ENABLE  
Amplifier’s enable pin with internal pull-down; Logic “1” selects the disabled state;  
Logic “0” selects the enabled state.  
V
V
S+  
S+  
V
S+  
V
S+  
CAPACITIVELY  
COUPLED  
ESD CLAMP  
OUT  
ENABLE  
IN-  
IN+  
V
S-  
V
V
S-  
S-  
V
S-  
CIRCUIT 1  
CIRCUIT 2  
CIRCUIT 3  
CIRCUIT 4  
Rail-to-Rail Output  
Application Information  
A pair of complementary MOSFET devices achieves rail-to-rail  
output swing. The NMOS sinks current to swing the output in  
the negative direction, while the PMOS sources current to  
swing the output in the positive direction. The EL8188 with a  
100kΩ load swings to within 3mV of the supply rails.  
Introduction  
The EL8188 is a rail-to-rail input and output (RRIO), micro-  
power, precision, single supply op amp with an enable  
feature. This amplifier is designed to operate from single  
supply (2.4V to 5.0V) or dual supply (±1.2V to ±2.5V) while  
drawing only 50µA of supply current.The device achieves  
rail-to-rail input and output operation while eliminating the  
drawbacks of many conventional RRIO op amps.  
Enable/Disable Feature  
The EL8188 features an active low ENABLE pin that when  
pulled up to at least 2V disables the output, and drops the  
already low I  
to a 3µA trickle. The ENABLE pin has an  
CC  
Rail-to-Rail Input  
internal pull down, so an undriven pin pulls to the negative  
rail, thereby enabling the op amp by default.  
The PFET input stage of the EL8188 has an input common-  
mode voltage range that includes the negative and positive  
supplies without introducing offset errors or degrading  
performance like some existing rail-to-rail input op amps.  
Many rail-to-rail input stages use two differential input pairs:  
a long-tail PNP (or PFET) and an NPN (or NFET). Severe  
penalties result from using this topology. As the input signal  
moves from one supply rail to the other, the op amp switches  
from one input pair to the other causing drastic changes in  
input offset voltage and an undesired change in the input  
offset current’s magnitude and polarity.  
The high impedance output during disable allows for  
connecting multiple EL8188s together to implement a Mux  
Amp. The outputs are connected together and activating the  
appropriate ENABLE pin selects the desired channel. If  
utilizing non-unity gain op amp configurations, then the  
loading effects of the disabled amplifiers’ feedback networks  
must be considered when evaluating the active amplifier’s  
performance in Mux Amp configurations.  
Note that feedthrough from the IN+ to IN- pins occurs on any  
Mux Amp disabled channel where the input differential  
voltage exceeds 0.5V (e.g., active channel V  
disabled channel V = GND), so the mux implementation is  
best suited for small signal applications. If large signals are  
The EL8188 achieves rail-to-rail input performance without  
sacrificing important precision specifications and without  
degrading distortion performance. The EL8188's input offset  
voltage exhibits a smooth behavior throughout the entire  
common-mode input range.  
= 1V, while  
OUT  
IN  
required, use series IN+ resistors, or large value R s, to  
F
keep the feedthrough current low enough to minimize the  
impact on the active channel. See the “Usage Implications”  
on page 8 for more details.  
FN7467.3  
February 22, 2007  
7
EL8188  
the safe operating area. These parameters are related as  
IN+ and IN- Input Protection  
follows:  
In addition to ESD protection diodes to each supply rail, the  
EL8188 has additional back-to-back protection diodes across  
the differential input terminals (see “Circuit 1” on page 7).  
Obviously, one of these diodes conducts if the magnitude of  
(EQ. 1)  
T
= T  
+ (θ × PD  
)
MAX  
JMAX  
MAX  
JA  
where PD  
is calculated using:  
MAX  
the differential input voltage ever exceeds the diode’s V .  
F
V
OUTMAX  
R
L
Usage Implications  
----------------------------  
PD  
= V × I  
+ (V - V ) ×  
OUTMAX  
MAX  
S
SMAX  
S
If the input differential voltage is expected to exceed 0.5V, an  
external current limiting resistor must be used to ensure the  
input current never exceeds 5mA. For noninverting unity gain  
applications the current limiting can be via a series IN+ resistor,  
or via a feedback resistor of appropriate value. For other gain  
configurations, the series IN+ resistor is the best choice, unless  
(EQ. 2)  
where:  
• T  
= Maximum ambient temperature  
MAX  
θ = Thermal resistance of the package  
JA  
the feedback (R ) and gain setting (R ) resistors are both  
sufficiently large to limit the input current to 5mA.  
F
G
• PD  
= Maximum power dissipation of the amplifier  
MAX  
• V = Supply voltage  
S
Large differential input voltages can arise from several  
sources:  
• I  
= Maximum supply current of the amplifier  
MAX  
• V  
= Maximum output voltage swing of the  
OUTMAX  
application  
1) During open loop (comparator) operation. Used this way,  
the IN+ and IN- voltages don’t track, so differentials arise.  
• R = Load resistance  
L
2) When the amplifier is disabled but an input signal is still  
Proper Layout Maximizes Precision  
present. An R or R to GND keeps the IN- at GND, while  
L
G
the varying IN+ signal creates a differential voltage. Mux  
Amp applications are similar, except that the active channel  
To achieve the optimum levels of high input impedance (i.e.,  
low input currents) and low offset voltage, care should be  
taken in the circuit board layout. The PC board surface must  
remain clean and free of moisture to avoid leakage currents  
between adjacent traces. Surface coating of the circuit board  
will reduce surface moisture and provide a humidity barrier,  
reducing parasitic resistance on the board. When input  
leakage current is a paramount concern, the use of guard  
rings around the amplifier inputs will further reduce leakage  
currents. Figure 18 shows a guard ring example for a unity  
gain amplifier that uses the low impedance amplifier output  
at the same voltage as the high impedance input to eliminate  
surface leakage. The guard ring does not need to be a  
specific width, but it should form a continuous loop around  
both inputs. For further reduction of leakage currents, mount  
components to the PC board using Teflon standoffs.  
V
determines the voltage on the IN- terminal.  
OUT  
3) When the slew rate of the input pulse is considerably  
faster than the op amp’s slew rate. If the V can’t keep up  
OUT  
with the IN+ signal, a differential voltage results, and visible  
distortion occurs on the input and output signals. To avoid  
this issue, keep the input slew rate below 0.2V/µs, or use  
appropriate current limiting resistors.  
Large (>2V) differential input voltages can also cause an  
increase in disabled I  
.
CC  
ENABLE Input Protection  
The ENABLE input has internal ESD protection diodes to both  
the positive and negative supply rails, limiting the input  
voltage range to within one diode beyond the supply rails (see  
“Circuit 2” on page 7). If the input voltage is expected to  
V+  
HIGH IMPEDANCE INPUT  
exceed V or V , then an external series resistor should be  
S+ S-  
added to limit the current to 5mA.  
IN  
Output Current Limiting  
The EL8188 has no internal current-limiting circuitry. If the  
output is shorted, it is possible to exceed the “Absolute  
Maximum Rating” for “operating junction temperature”,  
potentially resulting in the destruction of the device.  
FIGURE 18. GUARD RING EXAMPLE FOR UNITY GAIN  
AMPLIFIER  
Power Dissipation  
It is possible to exceed the +150°C maximum junction  
temperature (T  
) under certain load and power-supply  
JMAX  
conditions. It is therefore important to calculate T  
for all  
JMAX  
applications to determine if power supply voltages, load  
conditions, or package type need to be modified to remain in  
FN7467.3  
February 22, 2007  
8
EL8188  
Typical Applications  
R
V
4
S+  
+
EL8188  
100kΩ  
+
-
GENERAL  
PURPOSE  
V
COAX  
R
R
10kΩ  
10kΩ  
S-  
3V  
3
2
V
S+  
+
COMBINATION  
pH PROBE  
EL8188  
-
410µV/°C  
+
K TYPE  
THERMOCOUPLE  
V
S-  
5V  
FIGURE 19. pH PROBE AMPLIFIER  
R
1
A general-purpose combination pH probe has extremely  
high output impedance typically in the range of 10GΩ to  
12GΩ. Low loss and expensive Teflon cables are often used  
to connect the pH probe to the meter electronics. Figure 19  
details a low-cost alternative solution using the EL8188 and  
a low-cost coax cable. The EL8188 PMOS high impedance  
input senses the pH probe output signal and buffers it to  
drive the coax cable. Its rail-to-rail input nature also  
eliminates the need for a bias resistor network required by  
other amplifiers in the same application.  
100kΩ  
FIGURE 20. THERMOCOUPLE AMPLIFIER  
Thermocouples are the most popular temperature sensing  
devices because of their low cost, interchangeability, and  
ability to measure a wide range of temperatures. In  
Figure 20, the EL8188 converts the differential thermocouple  
voltage into single-ended signal with 10X gain. The  
EL8188's rail-to-rail input characteristic allows the  
thermocouple to be biased at ground and permits the  
op amp to operate from a single 5V supply.  
FN7467.3  
February 22, 2007  
9
EL8188  
Small Outline Package Family (SO)  
A
D
h X 45°  
(N/2)+1  
N
A
PIN #1  
I.D. MARK  
E1  
E
c
SEE DETAIL “X”  
1
(N/2)  
B
L1  
0.010 M  
C A B  
e
H
C
A2  
A1  
GAUGE  
PLANE  
SEATING  
PLANE  
0.010  
L
4° ±4°  
0.004 C  
b
0.010 M  
C
A
B
DETAIL X  
MDP0027  
SMALL OUTLINE PACKAGE FAMILY (SO)  
INCHES  
SO16  
(0.150”)  
SO16 (0.300”)  
(SOL-16)  
SO20  
SO24  
(SOL-24)  
SO28  
(SOL-28)  
SYMBOL  
SO-8  
0.068  
0.006  
0.057  
0.017  
0.009  
0.193  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
8
SO-14  
0.068  
0.006  
0.057  
0.017  
0.009  
0.341  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
14  
(SOL-20)  
0.104  
0.007  
0.092  
0.017  
0.011  
0.504  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
20  
TOLERANCE  
MAX  
NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.057  
0.017  
0.009  
0.390  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.406  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.606  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
24  
0.104  
0.007  
0.092  
0.017  
0.011  
0.704  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
28  
-
±0.003  
±0.002  
±0.003  
±0.001  
±0.004  
±0.008  
±0.004  
Basic  
-
-
-
c
-
D
1, 3  
E
-
E1  
e
2, 3  
-
L
±0.009  
Basic  
-
L1  
h
-
Reference  
Reference  
-
N
-
Rev. M 2/07  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not included.  
2. Plastic interlead protrusions of 0.010” maximum per side are not included.  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994  
FN7467.3  
February 22, 2007  
10  
EL8188  
SOT-23 Package Family  
MDP0038  
e1  
D
SOT-23 PACKAGE FAMILY  
MILLIMETERS  
SOT23-5  
A
6
4
N
SYMBOL  
SOT23-6  
1.45  
0.10  
1.14  
0.40  
0.14  
2.90  
2.80  
1.60  
0.95  
1.90  
0.45  
0.60  
6
TOLERANCE  
MAX  
A
A1  
A2  
b
1.45  
0.10  
1.14  
0.40  
0.14  
2.90  
2.80  
1.60  
0.95  
1.90  
0.45  
0.60  
5
±0.05  
E1  
E
±0.15  
2
3
±0.05  
0.15  
2X  
C
D
c
±0.06  
1
2
3
0.20  
2X  
C
D
Basic  
5
e
E
Basic  
E1  
e
Basic  
0.20  
C
A-B  
D
M
B
b
NX  
Basic  
e1  
L
Basic  
±0.10  
L1  
N
Reference  
Reference  
Rev. F 2/07  
0.15  
2X  
C
A-B  
1
3
D
NOTES:  
C
1. Plastic or metal protrusions of 0.25mm maximum per side are not  
included.  
A2  
SEATING  
PLANE  
2. Plastic interlead protrusions of 0.25mm maximum per side are not  
included.  
A1  
0.10  
NX  
C
3. This dimension is measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
5. Index area - Pin #1 I.D. will be located within the indicated zone  
(SOT23-6 only).  
6. SOT23-5 version has no center lead (shown as a dashed line).  
(L1)  
H
A
GAUGE  
PLANE  
0.25  
c
+3°  
-0°  
L
0°  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7467.3  
February 22, 2007  
11  

相关型号:

EL8188FWZ-T7

Micropower Single Supply Rail-to-Rail Input-Output Precision Op Amp
INTERSIL

EL8188FWZ-T7A

Micropower Single Supply Rail-to-Rail Input-Output Precision Op Amp
INTERSIL

EL8188ISZ

Micropower Single Supply Rail-to-Rail Input-Output Precision Op Amp
INTERSIL

EL8188ISZ-T13

Micropower Single Supply Rail-to-Rail Input-Output Precision Op Amp
INTERSIL

EL8188ISZ-T7

Micropower Single Supply Rail-to-Rail Input-Output Precision Op Amp
INTERSIL

EL8188IW-T7

Micropower Single Supply Rail-to-Rail Input-Output Precision Op Amp
INTERSIL

EL8188IW-T7A

Micropower Single Supply Rail-to-Rail Input-Output Precision Op Amp
INTERSIL

EL8188_07

Micropower Single Supply Rail-to-Rail Input-Output Precision Op Amp
INTERSIL

EL819

Photocoupler
EVERLIGHT

EL819(A)

Transistor Output Optocoupler, 1-Element, 5000V Isolation, ROHS COMPLIANT, DIP-4
EVERLIGHT

EL819(B)

Transistor Output Optocoupler, 1-Element, 5000V Isolation, ROHS COMPLIANT, DIP-4
EVERLIGHT

EL819(C)

暂无描述
EVERLIGHT