EL5166IS-T7 [INTERSIL]

1.4GHz Current Feedback Amplifiers with Enable; 1.4GHz的电流反馈放大器与启用
EL5166IS-T7
型号: EL5166IS-T7
厂家: Intersil    Intersil
描述:

1.4GHz Current Feedback Amplifiers with Enable
1.4GHz的电流反馈放大器与启用

放大器
文件: 总15页 (文件大小:1113K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL5166, EL5167  
®
Data Sheet  
December 13, 2004  
FN7365.3  
1.4GHz Current Feedback Amplifiers with  
Enable  
Features  
• Gain-of-1 bandwidth = 1.4GHz/gain-of-2  
bandwidth = 800MHz  
The EL5166 and EL5167 amplifiers are of the current  
feedback variety and exhibit a very high bandwidth of  
• 6000V/µs slew rate  
1.4GHz at A = +1 and 800MHz at A = +2. This makes  
V
V
• Single and dual supply operation from 5V to 12V  
• Low noise = 1.5nV/Hz  
these amplifiers ideal for today's high speed video and  
monitor applications, as well as a number of RF and IF  
frequency designs.  
• 8.5mA supply current  
With a supply current of just 8.5mA and the ability to run  
from a single supply voltage from 5V to 12V, these amplifiers  
offer very high performance for little power consumption.  
• Fast enable/disable (EL5166 only)  
• 600MHz family - (EL5164 and EL5165)  
• 400MHz family - (EL5162 and EL5163)  
• 200MHz family - (EL5160 and EL5161)  
• Pb-Free Available (RoHS Compliant)  
The EL5166 also incorporates an enable and disable  
function to reduce the supply current to 13µA typical per  
amplifier. Allowing the CE pin to float or applying a low logic  
level will enable the amplifier.  
The EL5167 is offered in the 5-pin SOT-23 package and the  
EL5166 is available in the 6-pin SOT-23 as well as the  
industry-standard 8-pin SO packages. Both operate over the  
industrial temperature range of -40°C to +85°C.  
Applications  
• Video amplifiers  
• Cable drivers  
• RGB amplifiers  
Ordering Information  
Test equipment  
TAPE &  
• Instrumentation  
• Current to voltage converters  
PART NUMBER  
EL5166IS  
PACKAGE  
8-Pin SO  
8-Pin SO  
8-Pin SO  
REEL  
PKG. DWG. #  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
-
7”  
13”  
-
EL5166IS-T7  
EL5166IS-T13  
Pinouts  
EL5166  
EL5166ISZ  
(See Note)  
8-Pin SO  
(Pb-free)  
(8-PIN SO)  
TOP VIEW  
EL5166ISZ-T7  
(See Note)  
8-Pin SO  
(Pb-free)  
7”  
MDP0027  
MDP0027  
NC  
IN-  
1
2
3
4
8
7
6
5
CE  
EL5166ISZ-T13  
(See Note)  
8-Pin SO  
(Pb-free)  
13”  
VS+  
OUT  
NC  
-
+
IN+  
VS-  
EL5166IW-T7  
EL5167IC-T7  
EL5167IW-T7  
EL5166IW-T7A  
EL5167IC-T7A  
EL5167IW-T7A  
6-Pin SOT-23  
5-Pin SC-70  
5-Pin SOT-23  
6-Pin SOT-23  
5-Pin SC-70  
5-Pin SOT-23  
7”  
7”  
7”  
7”  
7”  
7”  
MDP0038  
P5.049  
MDP0038  
MDP0038  
P5.049  
EL5166  
EL5167  
(6-PIN SOT-23)  
(5-PIN SOT-23, SC-70)  
TOP VIEW  
TOP VIEW  
MDP0038  
NOTE: Intersil Pb-free products employ special Pb-free material sets;  
molding compounds/die attach materials and 100% matte tin plate  
termination finish, which are RoHS compliant and compatible with  
both SnPb and Pb-free soldering operations. Intersil Pb-free products  
are MSL classified at Pb-free peak reflow temperatures that meet or  
exceed the Pb-free requirements of IPC/JEDEC J STD-020C.  
OUT  
VS-  
IN+  
1
2
3
6
5
4
VS+  
CE  
OUT  
VS-  
IN+  
1
2
3
5
4
VS+  
IN-  
+
-
+
-
IN-  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2003-2004. All Rights Reserved. Elantec is a registered trademark of Elantec Semiconductor, Inc.  
All other trademarks mentioned are the property of their respective owners.  
EL5166, EL5167  
Absolute Maximum Ratings (T = 25°C)  
A
Supply Voltage between V + and V -. . . . . . . . . . . . . . . . . . . 12.6V  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
S
S
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . . 50mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±200mA  
Pin Voltages. . . . . . . . . . . . . . . . . . . . . . . . . V - -0.5V to V + +0.5V  
S S  
I
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
Die Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125°C  
OUT  
I into V +, V -, Enable Pins . . . . . . . . . . . . . . . . . . . . . . . . . ±4mA  
IN IN  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +5V, V - = -5V, R = 392for A = 1, R = 250for A = 2, R = 150, T = 25°C  
S
S
F
V
F
V
L
A
Unless Otherwise Specified.  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
BW  
-3dB Bandwidth  
A
= +1  
= +2  
= +2  
1400  
800  
100  
6000  
8
MHz  
MHz  
MHz  
V/µs  
ns  
V
A
V
BW1  
SR  
0.1dB Bandwidth  
A
V
Slew Rate  
V
V
= -2.5V to +2.5V, A = +2  
4000  
O
V
t
0.1% Settling Time  
= -2.5V to +2.5V, A = -1  
OUT V  
S
e
Input Voltage Noise  
1.7  
nV/Hz  
pA/Hz  
pA/Hz  
%
N
i -  
IN- Input Current Noise  
IN+ Input Current Noise  
Differential Gain Error (Note 1)  
Differential Phase Error (Note 1)  
19  
N
i +  
N
50  
dG  
dP  
A
= +2  
0.01  
0.03  
V
A
= +2  
°
V
DC PERFORMANCE  
V
Offset Voltage  
-5  
-0.5  
5
mV  
OS  
T V  
Input Offset Voltage Temperature  
Coefficient  
Measured from T  
MIN  
to T  
MAX  
3.52  
µV/°C  
C
OS  
R
Transimpedance  
0.5  
±3  
1.1  
2.5  
MΩ  
OL  
INPUT CHARACTERISTICS  
CMIR  
Common Mode Input Range  
±3.3  
V
(guaranteed by CMRR test)  
Common Mode Rejection Ratio  
- Input Current Common Mode Rejection  
+ Input Current  
CMRR  
-ICMR  
52  
-1  
57  
0.7  
0.7  
8.5  
130  
1.5  
66  
1
dB  
µA/V  
µA  
+I  
-25  
-25  
50  
25  
25  
250  
IN  
-I  
- Input Current  
µA  
IN  
R
Input Resistance  
kΩ  
IN  
IN  
C
Input Capacitance  
pF  
OUTPUT CHARACTERISTICS  
V
Output Voltage Swing  
Output Current  
R = 150to GND  
±3.6  
±3.8  
±110  
±3.8  
±4.0  
±160  
±4.1  
±4.2  
±200  
V
V
O
L
R = 1kto GND  
L
I
R = 10to GND  
mA  
OUT  
L
FN7365.3  
2
December 13, 2004  
EL5166, EL5167  
Electrical Specifications V + = +5V, V - = -5V, R = 392for A = 1, R = 250for A = 2, R = 150, T = 25°C  
S
S
F
V
F
V
L
A
Unless Otherwise Specified. (Continued)  
PARAMETER  
SUPPLY  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I
I
I
Supply Current - Enabled  
No load, V = 0V  
IN  
7.5  
1
8.5  
4
9.3  
25  
-1  
mA  
µA  
SON  
Supply Current - Disabled  
No load, V = 0V  
IN  
SOFF+  
SOFF-  
Supply Current - Disabled  
No load, V = 0V  
IN  
-25  
70  
-14  
50  
0.2  
µA  
PSRR  
-IPSR  
Power Supply Rejection Ratio  
- Input Current Power Supply Rejection  
DC, V = ±4.75V to ±5.25V  
dB  
S
DC, V = ±4.75V to ±5.25V  
-0.5  
1
µA/V  
S
ENABLE (EL5166 ONLY)  
t
t
I
I
Enable Time  
170  
1.25  
0
ns  
µs  
µA  
µA  
V
EN  
Disable Time  
DIS  
CE Pin Input High Current  
CE Pin Input Low Current  
CE Input High Voltage for Power-down  
CE Input Low Voltage for Power-down  
CE = V +  
-1  
IHCE  
ILCE  
S
CE = V -  
1
13  
25  
S
V
V
V + -1  
S
IHCE  
ILCE  
V + -3  
V
S
NOTE:  
1. Standard NTSC test, AC signal amplitude = 286mV, f = 3.58MHz.  
FN7365.3  
3
December 13, 2004  
EL5166, EL5167  
Typical Performance Curves  
5
4
3
4
3
2
V
V
=5V  
CC  
=-5V  
EE  
R =150Ω  
L
R =368  
F
R =392  
F
2
1
R
=392  
=93  
R =186  
G
G
R =662  
0
1
0
F
-1  
-2  
-3  
-4  
-5  
-6  
R =511  
F
-1  
-2  
-3  
-4  
-5  
R =608  
F
R
G
V
V
=5V  
CC  
=-5V  
R =698  
F
EE  
R =150Ω  
R =806  
L
F
R
=43  
G
R =392Ω  
F
R =900  
R =1K  
F
F
100K  
10M  
FREQUENCY (Hz)  
100M  
1G  
1M  
100K  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FIGURE 2. FREQUENCY RESPONSE AS THE FUNCTION OF  
THE GAIN  
FIGURE 1. FREQUENCY RESPONSE AS THE FUNCTION OF  
R
F
5
4
V
=+5V  
CC  
C=4.7p  
V
=-5V  
EE  
C=4.7p  
R =150Ω  
L
3
C=2.5p  
C=1.5p  
R =R =392Ω  
F
G
C=2.5p  
C=1.5p  
2
1
0
C=1p  
-1  
-2  
-3  
-4  
-5  
C=1p  
C=0p  
C=0  
100K  
1M  
10M  
100M  
1G  
100K  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 4. NON-INVERTING FREQUENCY RESPONSE FOR  
FIGURE 3. FREQENCY RESPONSE vs C  
IN  
VARIOUS C - (6-PIN SOT-23)  
IN  
V
, V =5V  
CC EE  
R =220  
F
G
R
=220  
R =220  
F
G
R
=100  
1M  
10M  
100M  
1G  
2ns/DIV  
FREQUENCY (Hz)  
FIGURE 6. RISE AND FALL TIME (6-PIN SOT-23)  
FIGURE 5. INVERTING FREQUENCY RESPONSE FOR GAIN  
OF 1 AND 2  
FN7365.3  
December 13, 2004  
4
EL5166, EL5167  
Typical Performance Curves (Continued)  
R =150Ω  
R =150Ω  
L
L
R =220Ω  
2.5V  
3.5V  
R =300Ω  
F
F
R
=220Ω  
R
=300Ω  
G
6.0V  
3.0V  
G
5.0V  
2.5V  
6.0V  
5.0V  
1M  
10M  
100M  
1K  
100K  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 8. INVERTING AMPLIFIER, FREQUENCY  
RESPONSE AS THE FUNCTION OF V , V  
FIGURE 7. FREQUENCY RESPONSE AS THE FUNCTION OF  
THE POWER SUPPLY VOLTAGE  
CC EE  
GAIN - 1  
2.5V  
V
, V =2.5V  
CC EE  
V
, V =5V  
CC EE  
5.0V  
5.0V  
GAIN=2  
6.0V  
0
100K  
90  
10Ω  
1Ω  
10K  
180  
1K  
2.5V  
100mΩ  
270  
100  
10mΩ  
10K  
100K  
1M  
10M  
100M  
100K  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 10. CLOSED LOOP OUTPUT IMPEDANCE vs  
FREQUENCY (6-PIN SOT-23)  
FIGURE9. TRANSIMPEDANCEMAGNITUDE AND PHASEAS  
THE FUNCTION OF THE FREQUENCY  
0
0
V
V
=5V  
CC  
V
V
=5V  
CC  
=-5V  
10  
EE  
=-5V  
EE  
10  
20  
30  
40  
50  
60  
70  
80  
R =150Ω  
R =150Ω  
L
L
20 R =402Ω  
F
R =402Ω  
F
R
=402Ω  
G
R
=402Ω  
G
30  
40  
50  
60  
70  
80  
100  
1K  
10K 100K  
1M  
10M 100M  
100  
10K  
1M  
10M 100M  
1K  
100K  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 12. PSRR -5V  
FIGURE 11. PSRR +5V  
FN7365.3  
December 13, 2004  
5
EL5166, EL5167  
Typical Performance Curves (Continued)  
3
2
R =R =250Ω  
F
G
1
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
V
V
=5V  
CC  
=-5V  
2.5V  
EE  
6.0V 5.0V  
R =150Ω  
L
GAIN=2  
LOAD=150Ω  
INPUT LEVEL=3V  
3.5V  
10M 100M 300M  
P-P  
1K  
10K  
100K  
1M  
100K  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 13. COMMON MODE REJECTION AS THE FUNCTION  
OF THE FREQUENCY AND POWER SUPPLY  
VOLTAGE  
FIGURE 14. LARGE SIGNAL RESPONSE  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
2
V
, V =5V,  
CC EE  
V
, V  
CC EE =  
R =150Ω, A =2  
L
V
±6V  
1.5  
1
±5V  
±3V  
THD  
SECOND  
±2.5V  
THIRD  
HARMONIC  
HARMONIC  
0.5  
0
1
6
11  
16  
21  
26  
31  
36  
100 200 300 400 500 600 700 800 900 1000  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
FIGURE 15. T  
OUT  
vs FREQUENCY AND V , V  
CC EE  
FIGURE 16. DISTORTION vs FREQUENCY  
10  
-74  
-76  
-78  
-80  
-82  
-84  
-86  
f=5MHz, R =150Ω,  
f=1MHz, R =150Ω,  
L
L
OP-P  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
A =2, V =2V  
A =2, V  
V
=2V  
V
O
P-P  
THD  
HD2  
HD3  
THD  
HD2  
HD3  
7
5
6
8
9
10  
11  
12  
5
6
7
8
9
10  
11  
12  
TOTAL SUPPLY VOLTAGE (V)  
TOTAL SUPPLY VOLTAGE (V)  
FIGURE 17. HARMONIC DISTORTION vs SUPPLY VOLTAGE  
FIGURE 18. HARMONIC DISTORTION vs SUPPLY VOLTAGE  
FN7365.3  
6
December 13, 2004  
EL5166, EL5167  
Typical Performance Curves (Continued)  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-50  
f=20MHz,  
R =150Ω,  
f=10MHz,  
L
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
R =150Ω,  
L
A =2  
V
A =2  
V
O
V
=2V  
P-P  
O
V
=2V  
P-P  
THD  
SECOND  
THD  
SECOND  
HARMONIC  
THIRD  
HARMONIC  
HARMONIC  
THIRD  
HARMONIC  
5
6
7
8
9
10  
11  
12  
5
6
7
8
9
10  
11  
12  
TOTAL SUPPLY VOLTAGE (V)  
TOTAL SUPPLY VOLTAGE (V)  
FIGURE 20. DISTORTION vs POWER SUPPLY VOLTAGE (EL5166)  
FIGURE 19. DISTORTION vs POWER SUPPLY VOLTAGE  
FIGURE 21. TURN ON TIME (EL5166)  
FIGURE 22. TURN OFF TIME (EL5166)  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1.4  
8.5  
8.4  
8.3  
8.2  
8.1  
8
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
909mW  
435mW  
I
S
SO8  
=110°C/W  
θ
JA  
7.9  
7.8  
7.7  
7.6  
7.5  
7.4  
I -  
S
SOT23-5/6  
=230°C/W  
θ
JA  
25  
AMBIENT TEMPERATURE (°C)  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
50  
75 85 100  
125  
150  
SUPPLY VOLTAGE (V)  
FIGURE 23. SUPPLY CURRENT vs SUPPLY VOLTAGE (EL5166)  
FIGURE 24. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FN7365.3  
December 13, 2004  
7
EL5166, EL5167  
Typical Performance Curves (Continued)  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
625mW  
SO8  
=160°C/W  
θ
JA  
391mW  
SOT23-5/6  
=256°C/W  
θ
JA  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
FIGURE 25. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE  
FN7365.3  
8
December 13, 2004  
EL5166, EL5167  
Pin Descriptions  
PIN  
8-PIN SO  
6-PIN SOT-23 5-PIN SOT-23  
NAME  
FUNCTION  
Not connected  
EQUIVALENT CIRCUIT  
1, 5  
2
NC  
V +  
S
4
4
IN-  
Inverting input  
IN+  
IN-  
V -  
S
CIRCUIT 1  
3
4
6
3
2
1
3
2
1
IN+  
VS-  
Non-inverting input  
Negative supply  
Output  
(See circuit 1)  
OUT  
V +  
S
OUT  
V -  
S
CIRCUIT 2  
7
8
6
5
5
VS+  
CE  
Positive supply  
Chip enable  
V +  
S
CE  
V -  
S
CIRCUIT 3  
Power Supply Bypassing and Printed Circuit  
Board Layout  
Applications Information  
Product Description  
As with any high frequency device, good printed circuit  
board layout is necessary for optimum performance. Low  
impedance ground plane construction is essential. Surface  
mount components are recommended, but if leaded  
components are used, lead lengths should be as short as  
possible. The power supply pins must be well bypassed to  
reduce the risk of oscillation. The combination of a 4.7µF  
tantalum capacitor in parallel with a 0.01µF capacitor has  
been shown to work well when placed at each supply pin.  
The EL5166 and EL5167 are current-feedback operational  
amplifiers that offers a wide -3dB bandwidth of 1.4GHz and a  
low supply current of 8.5mA per amplifier. The EL5166 and  
EL5167 work with supply voltages ranging from a single 5V  
to 10V and they are also capable of swinging to within 1V of  
either supply on the output. Because of their current-  
feedback topology, the EL5166 and EL5167 do not have the  
normal gain-bandwidth product associated with voltage-  
feedback operational amplifiers. Instead, their -3dB  
bandwidth remains relatively constant as closed-loop gain is  
increased. This combination of high bandwidth and low  
power, together with aggressive pricing make the EL5166  
and EL5167 ideal choices for many low-power/high-  
bandwidth applications such as portable, handheld, or  
battery-powered equipment.  
For good AC performance, parasitic capacitance should be  
kept to a minimum, especially at the inverting input. (See the  
Capacitance at the Inverting Input section) Even when  
ground plane construction is used, it should be removed  
from the area near the inverting input to minimize any stray  
capacitance at that node. Carbon or Metal-Film resistors are  
acceptable with the Metal-Film resistors giving slightly less  
peaking and bandwidth because of additional series  
FN7365.3  
9
December 13, 2004  
EL5166, EL5167  
inductance. Use of sockets, particularly for the SO package,  
should be avoided if possible. Sockets add parasitic  
inductance and capacitance which will result in additional  
peaking and overshoot.  
it becomes possible to reduce the value of R below the  
F
specified 250and still retain stability, resulting in only a  
slight loss of bandwidth with increased closed-loop gain.  
Supply Voltage Range and Single-Supply  
Operation  
Disable/Power-Down  
The EL5166 amplifier can be disabled placing its output in a  
high impedance state. When disabled, the amplifier supply  
current is reduced to 13µA. The EL5166 is disabled when its  
CE pin is pulled up to within 1V of the positive supply.  
Similarly, the amplifier is enabled by floating or pulling its CE  
pin to at least 3V below the positive supply. For ±5V supply,  
this means that an EL5166 amplifier will be enabled when  
CE is 2V or less, and disabled when CE is above 4V.  
Although the logic levels are not standard TTL, this choice of  
logic voltages allows the EL5166 to be enabled by tying CE  
to ground, even in 5V single supply applications. The CE pin  
can be driven from CMOS outputs.  
The EL5166 and EL5167 have been designed to operate  
with supply voltages having a span of greater than 5V and  
less than 10V. In practical terms, this means that the EL5166  
and EL5167 will operate on dual supplies ranging from  
±2.5V to ±5V. With single-supply, they will operate from 5V to  
10V.  
As supply voltages continue to decrease, it becomes  
necessary to provide input and output voltage ranges that  
can get as close as possible to the supply voltages. The  
EL5166 and EL5167 have an input range which extends to  
within 1.8V of either supply. So, for example, on ±5V  
supplies, the EL5166 and EL5167 have an input range  
which spans ±3.2V. The output range of the EL5166 and  
EL5167 is also quite large, extending to within 1V of the  
supply rail. On a ±5V supply, the output is therefore capable  
of swinging from -4V to +4V.  
Capacitance at the Inverting Input  
Any manufacturer’s high-speed voltage- or current-feedback  
amplifier can be affected by stray capacitance at the  
inverting input. For inverting gains, this parasitic capacitance  
has little effect because the inverting input is a virtual  
ground. But for non-inverting gains, this capacitance (in  
conjunction with the feedback and gain resistors) creates a  
pole in the feedback path of the amplifier. This pole, if low  
enough in frequency, has the same destabilizing effect as a  
zero in the forward open-loop response. The use of large  
value feedback and gain resistors exacerbates the problem  
by further lowering the pole frequency (increasing the  
possibility of oscillation).  
Video Performance  
For good video performance, an amplifier is required to  
maintain the same output impedance and the same  
frequency response as DC levels are changed at the  
output. This is especially difficult when driving a standard  
video load of 150, because of the change in output  
current with DC level. Previously, good differential gain  
could only be achieved by running high idle currents  
through the output transistors (to reduce variations in  
output impedance.) These currents were typically  
comparable to the entire 8.5mA supply current of each  
EL5166 and EL5167 amplifier. Special circuitry has been  
incorporated in the EL5166 and EL5167 to reduce the  
variation of output impedance with current output. This  
results in dG and dP specifications of 0.01% and 0.03°,  
while driving 150at a gain of 2.  
The EL5166 and EL5167 frequency responses are  
optimized with the resistor values in Figure 3. With the high  
bandwidth of these amplifiers, these resistor values might  
cause stability problems when combined with parasitic  
capacitance, thus ground plane is not recommended around  
the inverting input pin of the amplifier.  
Feedback Resistor Values  
Output Drive Capability  
The EL5166 and EL5167 have been designed and specified  
at a gain of +2 with R approximately 392. This value of  
In spite of their low 8.5mA of supply current, the EL5166 and  
EL5167 are capable of providing a minimum of ±110mA of  
output current. With so much output drive, the EL5166 and  
EL5167 are capable of driving 50loads to both rails,  
making them an excellent choice for driving isolation  
transformers in telecommunications applications.  
F
feedback resistor gives 800MHz of -3dB bandwidth at A = 2  
V
with about 0.5dB of peaking. Since the EL5166 and EL5167  
are current-feedback amplifiers, it is also possible to change  
the value of R to get more bandwidth. As seen in the curve  
F
of Frequency Response for Various R and R , bandwidth  
F
G
and peaking can be easily modified by varying the value of  
the feedback resistor.  
Driving Cables and Capacitive Loads  
When used as a cable driver, double termination is always  
recommended for reflection-free performance. For those  
applications, the back-termination series resistor will  
decouple the EL5166 and EL5167 from the cable and allow  
extensive capacitive drive. However, other applications may  
have high capacitive loads without a back-termination  
resistor. In these applications, a small series resistor (usually  
Because the EL5166 and EL5167 are current-feedback  
amplifiers, their gain-bandwidth product is not a constant for  
different closed-loop gains. This feature actually allows the  
EL5166 and EL5167 to maintain reasonable constant -3dB  
bandwidth for different gains. As gain is increased,  
bandwidth decreases slightly while stability increases. Since  
the loop stability is improving with higher closed-loop gains,  
FN7365.3  
10  
December 13, 2004  
EL5166, EL5167  
between 5and 50) can be placed in series with the  
output to eliminate most peaking. The gain resistor (R ) can  
G
then be chosen to make up for any gain loss which may be  
created by this additional resistor at the output. In many  
cases it is also possible to simply increase the value of the  
feedback resistor (R ) to reduce the peaking.  
F
Current Limiting  
The EL5166 and EL5167 have no internal current-limiting  
circuitry. If the output is shorted, it is possible to exceed the  
Absolute Maximum Rating for output current or power  
dissipation, potentially resulting in the destruction of the  
device.  
Power Dissipation  
With the high output drive capability of the EL5166 and  
EL5167, it is possible to exceed the 125°C Absolute  
Maximum junction temperature under certain very high load  
current conditions. Generally speaking when R falls below  
L
about 25, it is important to calculate the maximum junction  
temperature (T  
) for the application to determine if  
JMAX  
power supply voltages, load conditions, or package type  
need to be modified for the EL5166 and EL5167 to remain in  
the safe operating area. These parameters are calculated as  
follows:  
T
= T  
+ (θ × n × PD  
)
MAX  
JMAX  
MAX  
JA  
where:  
T
= Maximum ambient temperature  
MAX  
= Thermal resistance of the package  
θ
JA  
n = Number of amplifiers in the package  
PD = Maximum power dissipation of each amplifier in  
MAX  
the package  
PD for each amplifier can be calculated as follows:  
MAX  
V
OUTMAX  
R
L
----------------------------  
PD  
= (2 × V × I  
) + (V V ) ×  
OUTMAX  
MAX  
S
SMAX  
S
where:  
V = Supply voltage  
S
I
= Maximum supply current of 1A  
SMAX  
V
= Maximum output voltage (required)  
OUTMAX  
R = Load resistance  
L
FN7365.3  
11  
December 13, 2004  
EL5166, EL5167  
Typical Application Circuits  
0.1µF  
+5V  
250Ω  
250Ω  
IN+  
V +  
S
0.1µF  
OUT  
EL5166  
V -  
+5V  
IN+  
IN-  
S
0.1µF  
V +  
S
OUT  
-5V  
EL5166  
IN-  
250Ω  
5Ω  
5Ω  
V -  
S
0.1µF  
250Ω  
250Ω  
-5V  
0.1µF  
V
OUT  
+5V  
IN+  
0.1µF  
+5V  
IN+  
V +  
S
OUT  
EL5166  
V +  
S
V
IN-  
IN  
OUT  
V -  
V
EL5166  
S
OUT  
IN-  
0.1µF  
V -  
S
-5V  
0.1µF  
250Ω  
250Ω  
-5V  
V
IN  
FIGURE 26. INVERTING 200mA OUTPUT CURRENT  
DISTRIBUTION AMPLIFIER  
FIGURE 27. FAST-SETTLING PRECISION AMPLIFIER  
0.1µF  
+5V  
0.1µF  
+5V  
IN+  
IN+  
V +  
V +  
S
S
OUT  
OUT  
EL5166  
V -  
EL5166  
V -  
IN-  
IN-  
S
S
0.1µF  
0.1µF  
-5V  
-5V  
0.1µF  
250Ω  
120Ω  
120Ω  
250Ω  
250Ω  
V
V
+
OUT  
0.1µF  
1kΩ  
1kΩ  
0.1µF  
+5V  
IN+  
240Ω  
+5V  
IN+  
V +  
0.1µF  
S
OUT  
V +  
S
-
EL5166  
V -  
OUT  
IN-  
OUT  
V
EL5166  
OUT  
S
IN-  
0.1µF  
V -  
S
-5V  
0.1µF  
-5V  
250Ω  
250Ω  
V
IN  
250Ω  
250Ω  
RECEIVER  
TRANSMITTER  
FIGURE 28. DIFFERENTIAL LINE DRIVER/RECEIVER  
FN7365.3  
December 13, 2004  
12  
EL5166, EL5167  
SO Package Outline Drawing  
FN7365.3  
13  
December 13, 2004  
EL5166, EL5167  
SOT-23 Package Outline Drawing  
FN7365.3  
14  
December 13, 2004  
EL5166, EL5167  
SC-70 Package Outline Drawing  
D
P5.049  
VIEW C  
5 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE  
INCHES MILLIMETERS  
MIN  
e1  
SYMBOL  
MAX  
0.043  
0.004  
0.039  
0.012  
0.010  
0.009  
0.009  
0.085  
0.094  
0.053  
MIN  
0.80  
0.00  
0.80  
0.15  
0.15  
0.08  
0.08  
1.85  
1.80  
1.15  
MAX  
1.10  
0.10  
1.00  
0.30  
0.25  
0.22  
0.20  
2.15  
2.40  
1.35  
NOTES  
5
1
4
A
A1  
A2  
b
0.031  
0.000  
0.031  
0.006  
0.006  
0.003  
0.003  
0.073  
0.071  
0.045  
-
-
-
-
E
C
L
C
L
E1  
2
3
b
b1  
c
e
6
6
3
-
C
L
c1  
D
0.20 (0.008) M  
C
C
C
L
E
E1  
e
3
-
SEATING  
PLANE  
0.0256 Ref  
0.0512 Ref  
0.010 0.018  
0.65 Ref  
1.30 Ref  
0.26 0.46  
A2  
A1  
A
e1  
L
-
-C-  
4
-
L1  
L2  
0.017 Ref.  
0.420 Ref.  
0.15 BSC  
0.10 (0.004)  
C
0.006 BSC  
o
o
o
o
0
8
0
8
-
α
N
b
WITH  
5
5
5
PLATING  
b1  
R
0.004  
0.004  
-
0.10  
0.15  
-
R1  
0.010  
0.25  
c
c1  
Rev. 2 9/03  
NOTES:  
BASE METAL  
1. Dimensioning and tolerances per ASME Y14.5M-1994.  
2. Package conforms to EIAJ SC70 and JEDEC MO-203AA.  
4X θ1  
3. Dimensions D and E1 are exclusive of mold flash, protrusions,  
or gate burrs.  
R1  
4. Footlength L measured at reference to gauge plane.  
5. “N” is the number of terminal positions.  
R
6. These Dimensions apply to the flat section of the lead between  
0.08mm and 0.15mm from the lead tip.  
GAUGE PLANE  
SEATING  
PLANE  
7. Controlling dimension: MILLIMETER. Converted inch dimen-  
sions are for reference only.  
L
C
α
L2  
L1  
4X θ1  
VIEW C  
NOTE: The package drawing shown here may not be the latest version. To check the latest revision, please refer to the Intersil website at  
<http://www.intersil.com/design/packages/index.asp>  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7365.3  
15  
December 13, 2004  

相关型号:

EL5166ISZ

1.4GHz Current Feedback Amplifiers with Enable
INTERSIL

EL5166ISZ-T13

1.4GHz Current Feedback Amplifiers with Enable
INTERSIL

EL5166ISZ-T7

1.4GHz Current Feedback Amplifiers with Enable
INTERSIL

EL5166IW

1.4GHz Current Feedback Amplifiers with Enable
INTERSIL

EL5166IW

1 CHANNEL, VIDEO AMPLIFIER, PDSO6, SOT-23, 6 PIN
RENESAS

EL5166IW-T13

1.4GHz Current Feedback Amplifiers with Enable
INTERSIL

EL5166IW-T13

暂无描述
RENESAS

EL5166IW-T7

1.4GHz Current Feedback Amplifiers with Enable
INTERSIL

EL5166IW-T7A

1.4GHz Current Feedback Amplifiers with Enable
INTERSIL

EL5166IWZ

1 CHANNEL, VIDEO AMPLIFIER, PDSO6, SOT-23, 6 PIN
RENESAS

EL5166IWZ-T7

1.4GHz Current Feedback Amplifiers with Enable
INTERSIL

EL5166IWZ-T7A

1.4GHz Current Feedback Amplifiers with Enable
INTERSIL