EL5164ISZ-T7 [INTERSIL]

600MHz Current Feedback Amplifiers with Enable; 600MHz的电流反馈放大器与启用
EL5164ISZ-T7
型号: EL5164ISZ-T7
厂家: Intersil    Intersil
描述:

600MHz Current Feedback Amplifiers with Enable
600MHz的电流反馈放大器与启用

放大器
文件: 总12页 (文件大小:411K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL5164, EL5165, EL5364  
®
Data Sheet  
June 22, 2004  
FN7389.3  
600MHz Current Feedback Amplifiers with  
Enable  
Features  
• 600MHz -3dB bandwidth  
• 4700V/µs slew rate  
• 5mA supply current  
The EL5164, EL5165, and EL5364 are  
current feedback amplifiers with a very  
high bandwidth of 600MHz. This  
makes these amplifiers ideal for today’s high speed video  
and monitor applications.  
• Single and dual supply operation, from 5V to 12V supply  
span  
With a supply current of just 5mA and the ability to run from  
a single supply voltage from 5V to 12V, the amplifiers are  
also ideal for hand held, portable or battery-powered  
equipment.  
• Fast enable/disable (EL5164 & EL5364 only)  
• Available in SOT-23 packages  
• Dual (EL5264 & EL5265) and triple (EL5362 & EL5363)  
also available  
The EL5164 also incorporates an enable and disable  
function to reduce the supply current to 100µA typical per  
amplifier. Allowing the CE pin to float or applying a low logic  
level will enable the amplifier.  
• High speed, 1GHz product available (EL5166 & EL5167)  
• 300MHz product available (EL5162 family)  
• Pb-free available  
The EL5165 is offered in the 5-pin SOT-23 package, EL5164  
is available in the 6-pin SOT-23 and the industry-standard 8-  
pin SO packages, and the EL5364 in a 16-pin SO and 16-pin  
QSOP packages. All operate over the industrial temperature  
range of -40°C to +85°C.  
Applications  
• Video amplifiers  
• Cable drivers  
• RGB amplifiers  
Ordering Information  
Test equipment  
PART  
TAPE &  
REEL  
PKG.  
NUMBER  
EL5164IS  
PACKAGE  
8-Pin SO  
DWG. #  
• Instrumentation  
• Current to voltage converters  
-
7”  
MDP0027  
MDP0027  
MDP0027  
MDP0038  
MDP0038  
MDP0038  
MDP0038  
P5.049  
EL5164IS-T7  
EL5164IS-T13  
EL5164IW-T7  
EL5164IW-T7A  
EL5165IW-T7  
EL5165IW-T7A  
EL5165IC-T7  
EL5165IC-T7A  
EL5364IS  
8-Pin SO  
8-Pin SO  
13”  
7” (3K pcs)  
7” (250 pcs)  
7” (3K pcs)  
7” (250 pcs)  
7” (3K pcs)  
7” (250 pcs)  
6-Pin SOT-23  
6-Pin SOT-23  
5-Pin SOT-23  
5-Pin SOT-23  
5-Pin SC-70  
5-Pin SC-70  
16-Pin SO (0.150”)  
16-Pin SO (0.150”)  
P5.049  
-
7”  
13”  
-
7”  
13”  
-
MDP0027  
MDP0027  
MDP0027  
MDP0040  
MDP0040  
MDP0040  
MDP0040  
EL5364IS-T7  
EL5364IS-T13 16-Pin SO (0.150”)  
EL5364IU  
EL5364IU-T7  
EL5364IU-T13  
16-Pin QSOP  
16-Pin QSOP  
16-Pin QSOP  
EL5364IUZ  
(See Note)  
16-Pin QSOP  
(Pb-free)  
EL5364IUZ-T7  
(See Note)  
EL5364IUZ-  
T13 (See Note)  
16-Pin QSOP  
(Pb-free)  
16-Pin QSOP  
(Pb-free)  
7”  
MDP0040  
MDP0040  
13”  
NOTE: Intersil Pb-free products employ special Pb-free material sets; molding  
compounds/die attach materials and 100% matte tin plate termination finish,  
which is compatible with both SnPb and Pb-free soldering operations. Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that  
meet or exceed the Pb-free requirements of IPC/JEDEC J Std-020B.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2002-2004. All Rights Reserved. Elantec is a registered trademark of Elantec Semiconductor, Inc.  
All other trademarks mentioned are the property of their respective owners.  
EL5164, EL5165, EL5364  
Pinouts  
EL5164  
EL5364  
(16-PIN SO, QSOP)  
TOP VIEW  
(8-PIN SO)  
TOP VIEW  
NC  
IN-  
1
2
3
4
8
7
6
5
CE  
INA+  
CEA  
VS-  
1
2
3
4
5
6
7
8
16 INA-  
-
VS+  
OUT  
NC  
15 OUTA  
14 VS+  
-
+
+
IN+  
VS-  
+
-
CEB  
INB+  
NC  
13 OUTB  
12 INB-  
11 NC  
EL5165  
(5-PIN SOT-23, SC-70)  
+
-
CEC  
INC+  
10 OUTC  
TOP VIEW  
9
INC-  
OUT  
VS-  
IN+  
1
2
3
5
4
VS+  
IN-  
EL5164  
(6-PIN SOT-23)  
TOP VIEW  
+
-
OUT  
VS-  
IN+  
1
2
3
6
5
4
VS+  
CE  
+
-
IN-  
2
EL5164, EL5165, EL5364  
Absolute Maximum Ratings (T = 25°C)  
A
Supply Voltage between V + and V -. . . . . . . . . . . . . . . . . . . 13.2V  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
S
S
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . . 50mA  
Pin Voltages. . . . . . . . . . . . . . . . . . . . . . . . . V - -0.5V to V + +0.5V  
S
S
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . .125°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +5V, V - = -5V, R = 750for A = 1, R = 375for A = 2, R = 150, V  
= V + - 1V,  
S
S
A
S
F
V
F
V
L
ENABLE  
T
= 25°C unless otherwise specified.  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
BW  
-3dB Bandwidth  
A
= +1, R = 500Ω, R = 510Ω  
600  
450  
50  
MHz  
MHz  
MHz  
V/µs  
V
L
F
A
= +2, R = 150Ω, R = 412Ω  
L F  
V
BW1  
SR  
0.1dB Bandwidth  
A = +2, R = 150Ω, R = 412Ω  
V L F  
Slew Rate  
V
= -3V to +3V, A = +2, R = 100Ω  
3500  
3000  
4700  
7000  
6000  
OUT  
(EL5164, EL5165)  
V
L
V
= -3V to +3V, A = +2, R = 100Ω  
4200  
15  
V/µs  
ns  
OUT  
(EL5364)  
V
L
t
0.1% Settling Time  
V
R
= -2.5V to +2.5V, A = +2,  
V
S
OUT  
= R = 1kΩ  
F
G
e
Input Voltage Noise  
f = 1MHz  
2.1  
13  
nV/Hz  
pA/Hz  
pA/Hz  
dBc  
N
i -  
IN- Input Current Noise  
IN+ Input Current Noise  
f = 1MHz  
N
i +  
N
f = 1MHz  
13  
HD2  
HD3  
dG  
5MHz, 2.5V  
5MHz, 2.5V  
-81  
-74  
0.01  
0.01  
P-P  
P-P  
dBc  
Differential Gain Error (Note 1)  
Differential Phase Error (Note 1)  
A
= +2  
= +2  
%
V
dP  
A
°
V
DC PERFORMANCE  
V
Offset Voltage  
-5  
1.5  
6
+5  
mV  
OS  
T V  
Input Offset Voltage Temperature  
Coefficient  
Measured from T  
MIN  
to T  
MAX  
µV/°C  
C
OS  
R
Transimpedance  
1.1  
3
MΩ  
OL  
INPUT CHARACTERISTICS  
CMIR  
Common Mode Input Range  
Guaranteed by CMRR test  
= ±3V  
±3  
50  
±3.3  
62  
0.1  
2
V
dB  
CMRR  
-ICMR  
Common Mode Rejection Ratio  
- Input Current Common Mode Rejection  
+ Input Current  
V
75  
+1  
IN  
-1  
µA/V  
µA  
+I  
-10  
-10  
300  
+10  
+10  
1200  
IN  
-I  
- Input Current  
2
µA  
IN  
R
Input Resistance  
+ Input  
650  
1
kΩ  
IN  
IN  
C
Input Capacitance  
pF  
3
EL5164, EL5165, EL5364  
Electrical Specifications V + = +5V, V - = -5V, R = 750for A = 1, R = 375for A = 2, R = 150, V  
= V + - 1V,  
S
S
A
S
F
V
F
V
L
ENABLE  
T
= 25°C unless otherwise specified. (Continued)  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT CHARACTERISTICS  
V
Output Voltage Swing  
Output Current  
R = 150to GND  
±3.6  
±3.9  
100  
±3.8  
±4.1  
140  
±4.0  
±4.2  
190  
V
V
O
L
R = 1kto GND  
L
I
R =10to GND  
mA  
OUT  
L
SUPPLY  
I
I
I
Supply Current - Enabled  
No load, V = 0V  
IN  
3.2  
0
3.5  
4.2  
+75  
0
mA  
µA  
SON  
Supply Current - Disabled, per Amplifier  
SOFF+  
SOFF-  
Supply Current - Disabled, per Amplifier No load, V = 0V  
IN  
-75  
65  
-1  
-14  
79  
µA  
PSRR  
-IPSR  
Power Supply Rejection Ratio  
DC, V = ±4.75V to ±5.25V  
dB  
S
- Input Current Power Supply Rejection DC, V = ±4.75V to ±5.25V  
0.1  
+1  
µA/V  
S
ENABLE (EL5164 ONLY)  
t
t
I
I
Enable Time  
200  
800  
10  
ns  
ns  
µA  
µA  
V
EN  
Disable Time  
DIS  
CE Pin Input High Current  
CE Pin Input Low Current  
CE Input High Voltage for Power-down  
CE Input Low Voltage for Power-down  
CE = V +  
1
+25  
+1  
IHCE  
ILCE  
S
CE = (V +) -5V  
-1  
0
S
V
V
V + - 1  
S
IHCE  
ILCE  
V + - 3  
V
S
NOTE:  
1. Standard NTSC test, AC signal amplitude = 286mV , f = 3.58MHz  
P-P  
4
EL5164, EL5165, EL5364  
Typical Performance Curves  
5
5
R =1.2K, C =5pF  
F
L
V
, V = ±5V  
= +2  
V
, V = ±5V  
= 2.5pF  
= +5  
CC EE  
4
3
4
3
CC EE  
R =1.2K, C =3.5pF  
A
F
L
C
V
L
A
V
R =1.2K, C =2.5pF  
F
L
R =220, R =55  
F
G
2
2
R =1.2K, C =0.8pF  
F
L
R =160, R =41  
F
G
1
1
0
0
R =1.5K, C =0.8pF  
F
L
-1  
-2  
-3  
-4  
-5  
R =300, R =75  
-1  
-2  
-3  
-4  
F
G
R =1.8K, C =0.8pF  
F
L
R =360, R =87  
F
G
R =2.2K, C =0.8pF  
F
L
R =397, R =97  
F
G
R =412, R =100  
F
G
R =560, R =135  
F
G
-5  
100K  
100K  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FIGURE 1. FREQUENCY RESPONSE FOR VARIOUS  
AND C  
FIGURE 2. FREQUENCY RESPONSE FOR VARIOUS R  
F
R
F
L
6
6
5
V
, V = ±5V  
5
4
V
V
= +5V  
= -5V  
CC EE  
CC  
EE  
C
A
= 2.5pF  
= +1  
L
4
R
= 412Ω  
C
A
= 5pF  
= +2  
F
V
L
3
V
R
= 510Ω  
3
F
R
= 562Ω  
R
= 150Ω  
F
L
2
2
1
R
= 681Ω  
1
F
0
0
R
= 681Ω  
= 866Ω  
= 1.2kΩ  
= 1.5kΩ  
F
-1  
-2  
-3  
-1  
-2  
-3  
R
= 750Ω  
= 909Ω  
= 1201Ω  
R
R
F
F
R
F
F
F
R
R
F
-4  
100K  
-4  
100K  
1M  
10M  
100M  
1G  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FREQUENCY (Hz)  
FIGURE 4. FREQUENCY RESPONSE FOR VARIOUS R  
FIGURE 3. FREQUENCY RESPONSE FOR VARIOUS R  
F
F
5
R
R
R
= 150Ω  
= 422Ω  
= 422Ω  
4
3
L
F
G
2V/DIV  
INPUT  
2
1
0
-1  
-2  
-3  
-4  
-5  
V
, V  
6V  
5V  
CC EE=  
1V/DIV  
OUTPUT  
V
, V = ±5 V  
= +2  
= 150Ω  
4V  
CC EE  
A
V
3V  
R
L
2.5V  
100K  
1M  
10M  
100M  
1G  
ns  
FREQUENCY (Hz)  
FIGURE 5. FREQUENCY RESPONSE FOR VARIOUS POWER  
SUPPLY VOLTAGES  
FIGURE 6. RISE TIME (ns)  
5
EL5164, EL5165, EL5364  
Typical Performance Curves (Continued)  
0
0
-10  
-20  
V
V
= +5V  
= -5V  
V
V
= +5 V  
= -5 V  
= +1  
CC  
EE  
CC  
EE  
-10  
A
= +1  
A
V
V
OUT  
R
-20  
-30  
-40  
-50  
-60  
-70  
-80  
V
= 2V  
= 100Ω  
P-P  
L
-30  
-40  
-50  
THD  
V
EE  
-60  
V
SECOND HARMONIC  
THIRD HARMONIC  
CC  
-70  
-80  
-90  
0
10  
20  
30  
40  
50  
60  
10K  
100K  
10M  
1G  
1M  
100M  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
FIGURE 8. DISTORTION vs FREQUENCY (A = +1)  
V
FIGURE 7. PSRR  
0
-10  
-20  
-30  
-40  
-50  
V
V
= +5 V  
= -5 V  
= +2  
CC  
EE  
V
V
= +5 V  
= -5 V  
= +2  
CC  
EE  
10  
1
A
V
A
V
OUT  
R
V
= 2V  
= 100Ω  
,
P-P  
L
0.1  
THD  
-60  
-70  
0.01  
-80  
THIRD HARMONIC  
SECOND HARMONIC  
10 20 30  
FREQUENCY (MHz)  
-90  
-100  
10K  
100K  
1M  
100M  
10M  
0
40  
50  
60  
FREQENCY (Hz)  
FIGURE 10. OUTPUT IMPEDANCE  
FIGURE 9. DISTORTION vs FREQUENCY (A = +2)  
V
1M  
V
, V = ±5V  
CC EE  
100K  
10  
1
V
, V =  
±6V  
CC EE  
10K  
1K  
±5V  
±4V  
±3V  
±2.5V  
100  
10  
0
100  
1K  
10K  
1M  
100K  
10K  
100K  
10M  
FREQUENCY (Hz)  
1G  
1M  
100M  
FREQENCY (Hz)  
FIGURE 12. VOLTAGE NOISE  
FIGURE 11. R  
FOR VARIOUS V , V  
CC EE  
OL  
6
EL5164, EL5165, EL5364  
Typical Performance Curves (Continued)  
V
= +5V, V = -5V  
EE  
CC  
= +2  
V
V
= +5V  
= -5V  
CC  
EE  
A
V
R
= 150Ω  
L
100  
10  
1
CH1  
CH2  
100  
1K  
10K  
100K  
FREQUENCY (Hz)  
FIGURE 14. TURN ON DELAY  
FIGURE 13. CURRENT NOISE  
300  
PHASE  
200  
100  
0
0.002  
0.001  
0.00  
MAGNITUDE  
-0.001  
-0.002  
-0.003  
-0.004  
-0.005  
-100  
-200  
-300  
CH1  
V
V
= +5V  
= -5V  
CC  
EE  
V
= +5V, V = -5V  
EE  
CC  
CH2  
A
= +2  
A
= +2  
V
V
TEST FREQUENCY, 3.58MHz  
R
= 150Ω  
L
1V  
0
-1V  
DC INPUT  
FIGURE 15. TURN OFF DELAY  
FIGURE 16. DIFFERENTIAL GAIN/PHASE vs DC INPUT  
VOLTAGE AT 3.58MHz  
-30  
-30  
V
V
= +5V  
= -5V  
V
V
= +5V  
CC  
EE  
CC  
-40  
-50  
-40  
-50  
= -5V  
= 100Ω  
= 860Ω  
= 860Ω  
= 5pF  
EE  
R
R
R
= 100Ω  
= 422Ω  
= 422Ω  
R
R
R
C
L
F
G
L
F
G
L
C
-60  
-60  
C TO B  
-70  
-70  
-80  
-80  
B
-90  
-90  
A
A TO C  
100M  
A TO B  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
10K  
100K  
1M  
10M  
1G  
10K  
100K  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 18. CHANNEL CROSSTALK BETWEEN CHANNELS  
FIGURE 17. FREQUENCY RESPONSE FOR VARIOUS  
CHANNELS  
7
EL5164, EL5165, EL5364  
Typical Performance Curves (Continued)  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1.4  
1.2  
1
1.4  
1.2  
1
1.250W  
SO16 (0.150”)  
θ
=80°C/W  
JA  
909mW  
435mW  
QSOP16  
893mW  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
θ
=112°C/W  
JA  
SO8  
θ
=110°C/W  
JA  
SOT23-5/6  
=230°C/W  
θ
JA  
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 19. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 20. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1.2  
CONDUCTIVITY TEST BOARD  
1
SO16 (0.150”)  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.136W  
1
θ
=110°C/W  
JA  
0.8  
0.6  
0.4  
0.2  
0
633mW  
SO8  
=160°C/W  
625mW  
391mW  
θ
JA  
QSOP16  
=158°C/W  
SOT23-5/6  
=256°C/W  
θ
JA  
θ
JA  
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 21. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 22. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
8
EL5164, EL5165, EL5364  
Pin Descriptions  
EL5164  
EL5165  
(5-PIN  
EL5164  
(6-PIN  
(8-PIN SO)  
SOT-23)  
SOT-23)  
PIN NAME  
FUNCTION  
Not connected  
EQUIVALENT CIRCUIT  
1, 5  
2
NC  
IN-  
V +  
4
4
Inverting input  
S
IN+  
IN-  
V -  
S
Circuit 1  
3
4
6
3
2
1
3
2
1
IN+  
VS-  
Non-inverting input  
Negative supply  
Output  
(See circuit 1)  
V +  
S
OUT  
OUT  
V -  
S
Circuit 2  
7
8
6
5
5
VS+  
CE  
Positive supply  
Chip enable, allowing the pin to float  
or applying a low logic level will  
enable the amplifier.  
V +  
S
CE  
V -  
S
Circuit 3  
Versions include single, dual, and triple amp packages with  
5-pin SOT-23, 16-pin QSOP, and 8-pin or 16-pin SO  
outlines.  
Applications Information  
Product Description  
The EL5164, EL5165, and EL5364 are current-feedback  
operational amplifiers that offers a wide -3dB bandwidth of  
600MHz and a low supply current of 5mA per amplifier. The  
EL5164, EL5165, and EL5364 work with supply voltages  
ranging from a single 5V to 10V and they are also capable of  
swinging to within 1V of either supply on the output. Because  
of their current-feedback topology, the EL5164, EL5165, and  
EL5364 do not have the normal gain-bandwidth product  
associated with voltage-feedback operational amplifiers.  
Instead, its -3dB bandwidth to remain relatively constant as  
closed-loop gain is increased. This combination of high  
bandwidth and low power, together with aggressive pricing  
make the EL5164, EL5165, and EL5364 ideal choices for  
many low-power/high-bandwidth applications such as  
portable, handheld, or battery-powered equipment.  
Power Supply Bypassing and Printed Circuit  
Board Layout  
As with any high frequency device, good printed circuit  
board layout is necessary for optimum performance. Low  
impedance ground plane construction is essential. Surface  
mount components are recommended, but if leaded  
components are used, lead lengths should be as short as  
possible. The power supply pins must be well bypassed to  
reduce the risk of oscillation. The combination of a 4.7µF  
tantalum capacitor in parallel with a 0.01µF capacitor has  
been shown to work well when placed at each supply pin.  
For good AC performance, parasitic capacitance should be  
kept to a minimum, especially at the inverting input. (See the  
Capacitance at the Inverting Input section.) Even when  
ground plane construction is used, it should be removed  
from the area near the inverting input to minimize any stray  
capacitance at that node. Carbon or Metal-Film resistors are  
For varying bandwidth needs, consider the EL5166 and  
EL5167 with 1GHz on a 8.5mA supply current or the EL5162  
and EL5163 with 300MHz on a 8.5mA supply current.  
9
EL5164, EL5165, EL5364  
acceptable with the Metal-Film resistors giving slightly less  
allows the EL5164, EL5165, and EL5364 to maintain about  
the same -3dB bandwidth. As gain is increased, bandwidth  
decreases slightly while stability increases. Since the loop  
stability is improving with higher closed-loop gains, it  
peaking and bandwidth because of additional series  
inductance. Use of sockets, particularly for the SO package,  
should be avoided if possible. Sockets add parasitic  
inductance and capacitance which will result in additional  
peaking and overshoot.  
becomes possible to reduce the value of R below the  
F
specified TBDand still retain stability, resulting in only a  
slight loss of bandwidth with increased closed-loop gain.  
Disable/Power-Down  
Supply Voltage Range and Single-Supply  
Operation  
The EL5164 amplifier can be disabled placing its output in a  
high impedance state. When disabled, the amplifier supply  
current is reduced to < 150µA. The EL5164 is disabled when  
its CE pin is pulled up to within 1V of the positive supply.  
Similarly, the amplifier is enabled by floating or pulling its CE  
pin to at least 3V below the positive supply. For ±5V supply,  
this means that an EL5164 amplifier will be enabled when  
CE is 2V or less, and disabled when CE is above 4V.  
Although the logic levels are not standard TTL, this choice of  
logic voltages allows the EL5164 to be enabled by tying CE  
to ground, even in 5V single supply applications. The CE pin  
can be driven from CMOS outputs.  
The EL5164, EL5165, and EL5364 have been designed to  
operate with supply voltages having a span of greater than  
5V and less than 10V. In practical terms, this means that  
they will operate on dual supplies ranging from ±2.5V to ±5V.  
With single-supply, the EL5164, EL5165, and EL5364 will  
operate from 5V to 10V.  
As supply voltages continue to decrease, it becomes  
necessary to provide input and output voltage ranges that  
can get as close as possible to the supply voltages. The  
EL5164, EL5165, and EL5364 have an input range which  
extends to within 2V of either supply. So, for example, on  
±5V supplies, the EL5164, EL5165, and EL5364 have an  
input range which spans ±3V. The output range of the  
EL5164, EL5165, and EL5364 is also quite large, extending  
to within 1V of the supply rail. On a ±5V supply, the output is  
therefore capable of swinging from -4V to +4V. Single-supply  
output range is larger because of the increased negative  
swing due to the external pull-down resistor to ground.  
Capacitance at the Inverting Input  
Any manufacturer’s high-speed voltage- or current-feedback  
amplifier can be affected by stray capacitance at the  
inverting input. For inverting gains, this parasitic capacitance  
has little effect because the inverting input is a virtual  
ground, but for non-inverting gains, this capacitance (in  
conjunction with the feedback and gain resistors) creates a  
pole in the feedback path of the amplifier. This pole, if low  
enough in frequency, has the same destabilizing effect as a  
zero in the forward open-loop response. The use of large-  
value feedback and gain resistors exacerbates the problem  
by further lowering the pole frequency (increasing the  
possibility of oscillation.)  
Video Performance  
For good video performance, an amplifier is required to  
maintain the same output impedance and the same  
frequency response as DC levels are changed at the output.  
This is especially difficult when driving a standard video load  
of 150, because of the change in output current with DC  
level. Previously, good differential gain could only be  
achieved by running high idle currents through the output  
transistors (to reduce variations in output impedance.)  
These currents were typically comparable to the entire  
5.5mA supply current of each EL5164, EL5165, and EL5364  
amplifiers. Special circuitry has been incorporated in the  
EL5164, EL5165, and EL5364 to reduce the variation of  
output impedance with current output. This results in dG and  
dP specifications of TBD% and TBD°, while driving 150at  
a gain of 2.  
The EL5164, EL5165, and EL5364 have been optimized  
with a TBDfeedback resistor. With the high bandwidth of  
these amplifiers, these resistor values might cause stability  
problems when combined with parasitic capacitance, thus  
ground plane is not recommended around the inverting input  
pin of the amplifier.  
Feedback Resistor Values  
The EL5164, EL5165, and EL5364 have been designed and  
specified at a gain of +2 with R approximately 412. This  
F
value of feedback resistor gives 300MHz of -3dB bandwidth  
at A = 2 with 2dB of peaking. With A = -2, an R of 300Ω  
V
V
F
Video performance has also been measured with a 500Ω  
load at a gain of +1. Under these conditions, the EL5164,  
EL5165, and EL5364 have dG and dP specifications of  
0.01% and 0.01°, respectively.  
gives 275MHz of bandwidth with 1dB of peaking. Since the  
EL5164, EL5165, and EL5364 are current-feedback  
amplifiers, it is also possible to change the value of R to get  
F
more bandwidth. As seen in the curve of Frequency  
Response for Various R and R , bandwidth and peaking  
F
G
Output Drive Capability  
can be easily modified by varying the value of the feedback  
resistor.  
In spite of their low 5.5mA of supply current, the EL5164,  
EL5165, and EL5364 are capable of providing a minimum of  
±75mA of output current. With a minimum of ±75mA of  
output drive, the EL5164, EL5165, and EL5364 are capable  
of driving 50loads to both rails, making it an excellent  
Because the EL5164, EL5165, and EL5364 are current-  
feedback amplifiers, their gain-bandwidth product is not a  
constant for different closed-loop gains. This feature actually  
10  
EL5164, EL5165, EL5364  
choice for driving isolation transformers in  
telecommunications applications.  
where:  
• V = Supply voltage  
S
Driving Cables and Capacitive Loads  
• I  
= Maximum supply current of 1A  
SMAX  
When used as a cable driver, double termination is always  
recommended for reflection-free performance. For those  
applications, the back-termination series resistor will  
decouple the EL5164, EL5165, and EL5364 from the cable  
and allow extensive capacitive drive. However, other  
applications may have high capacitive loads without a back-  
termination resistor. In these applications, a small series  
resistor (usually between 5and 50) can be placed in  
series with the output to eliminate most peaking. The gain  
• V  
OUTMAX  
= Maximum output voltage (required)  
• R = Load resistance  
L
Typical Application Circuits  
0.1µF  
+5V  
IN+  
IN-  
V +  
S
OUT  
resistor (R ) can then be chosen to make up for any gain  
V -  
S
G
0.1µF  
loss which may be created by this additional resistor at the  
output. In many cases it is also possible to simply increase  
-5V  
375Ω  
5Ω  
5Ω  
the value of the feedback resistor (R ) to reduce the  
F
peaking.  
0.1µF  
V
Current Limiting  
OUT  
+5V  
IN+  
The EL5164, EL5165, and EL5364 have no internal current-  
limiting circuitry. If the output is shorted, it is possible to  
exceed the Absolute Maximum Rating for output current or  
power dissipation, potentially resulting in the destruction of  
the device.  
V +  
S
OUT  
IN-  
-5V  
V -  
S
0.1µF  
375Ω  
375Ω  
V
IN  
Power Dissipation  
With the high output drive capability of the EL5164, EL5165,  
and EL5364, it is possible to exceed the 125°C Absolute  
Maximum junction temperature under certain very high load  
FIGURE 23. INVERTING 200mA OUTPUT CURRENT  
DISTRIBUTION AMPLIFIER  
current conditions. Generally speaking when R falls below  
L
375Ω  
375Ω  
about 25, it is important to calculate the maximum junction  
temperature (T  
) for the application to determine if  
JMAX  
0.1µF  
+5V  
IN+  
power supply voltages, load conditions, or package type  
need to be modified for the EL5164, EL5165, and EL5364 to  
remain in the safe operating area. These parameters are  
calculated as follows:  
V +  
S
OUT  
IN-  
-5V  
V -  
S
0.1µF  
375Ω  
375Ω  
T
= T  
+ (θ × n × PD  
)
MAX  
JMAX  
MAX  
JA  
0.1µF  
where:  
• T  
+5V  
IN+  
= Maximum ambient temperature  
V +  
S
MAX  
V
IN  
OUT  
V
OUT  
θ = Thermal resistance of the package  
IN-  
-5V  
JA  
V -  
S
0.1µF  
• n = Number of amplifiers in the package  
• PD  
= Maximum power dissipation of each amplifier in  
the package  
MAX  
FIGURE 24. FAST-SETTLING PRECISION AMPLIFIER  
PD  
for each amplifier can be calculated as follows:  
MAX  
V
OUTMAX  
----------------------------  
PD  
= (2 × V × I  
) + (V V  
) ×  
MAX  
S
SMAX  
S
OUTMAX  
R
L
11  
EL5164, EL5165, EL5364  
0.1µF  
0.1µF  
+5V  
IN+  
+5V  
IN+  
V +  
V +  
S
S
OUT  
OUT  
IN-  
-5V  
IN-  
-5V  
V -  
V -  
S
S
0.1µF  
0.1µF  
0.1µF  
0.1µF  
375Ω  
162Ω  
162Ω  
375Ω  
375Ω  
V
V
+
OUT  
1kΩ  
1kΩ  
0.1µF  
+5V  
IN+  
240Ω  
0.1µF  
+5V  
IN+  
V +  
S
OUT  
V +  
S
-
OUT  
IN-  
-5V  
OUT  
V
OUT  
V -  
S
IN-  
0.1µF  
V -  
S
0.1µF  
-5V  
375Ω  
375Ω  
V
IN  
375Ω  
375Ω  
RECEIVER  
TRANSMITTER  
FIGURE 25. DIFFERENTIAL LINE DRIVER/RECEIVER  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
12  

相关型号:

EL5164IW-T13

1 CHANNEL, VIDEO AMPLIFIER, PDSO6, SOT-23, 6 PIN
RENESAS

EL5164IW-T7

600MHz Current Feedback Amplifiers with Enable
INTERSIL

EL5164IW-T7A

600MHz Current Feedback Amplifiers with Enable
INTERSIL

EL5164IW-T7A

1 CHANNEL, VIDEO AMPLIFIER, PDSO6, SOT-23, 6 PIN
RENESAS

EL5164IWZ

IC,OP-AMP,SINGLE,BIPOLAR,TSOP,6PIN,PLASTIC
RENESAS

EL5164IWZ-T7

600MHz Current Feedback Amplifiers with Enable
INTERSIL

EL5164IWZ-T7A

600MHz Current Feedback Amplifiers with Enable
INTERSIL

EL5164_05

600MHz Current Feedback Amplifiers with Enable
INTERSIL

EL5164_07

600MHz Current Feedback Amplifiers with Enable
INTERSIL

EL5165

600MHz Current Feedback Amplifiers with Enable
INTERSIL

EL5165IC-T7

600MHz Current Feedback Amplifiers with Enable
INTERSIL

EL5165IC-T7A

600MHz Current Feedback Amplifiers with Enable
INTERSIL