EL1516AIYZ [INTERSIL]

Dual Ultra Low Noise Amplifier; 双超低噪声放大器
EL1516AIYZ
型号: EL1516AIYZ
厂家: Intersil    Intersil
描述:

Dual Ultra Low Noise Amplifier
双超低噪声放大器

商用集成电路 放大器 光电二极管
文件: 总16页 (文件大小:596K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL1516, EL1516A  
®
Data Sheet  
May 4, 2005  
FN7328.0  
Dual Ultra Low Noise Amplifier  
Features  
The EL1516 is a dual, ultra low noise amplifier, ideally suited  
to line receiving applications in ADSL, VDSL, and home  
PNA designs. With low noise specification of just 1.3nV/Hz  
and 1.5pA/Hz, the EL1516 is perfect for the detection of  
very low amplitude signals.  
• EL2227 upgrade replacement  
• Voltage noise of only 1.3nV/Hz  
• Current noise of only 1.5pA/Hz  
• Bandwidth (-3dB) of 350MHz @ A = -1  
V
The EL1516 features a -3dB bandwidth of 350MHz @ A =  
V
• Bandwidth (-3dB) of 250MHz @ A = +2  
V
-1 and is gain-of-2 stable. The EL1516 also affords minimal  
power dissipation with a supply current of just 5.5mA per  
amplifier. The amplifier can be powered from supplies  
ranging from 5V to 12V.  
• Gain-of-2 stable  
• Just 5.5mA per amplifier  
• 100mA I  
OUT  
The EL1516A incorporates an enable and disable function to  
reduce the supply current to 5nA typical per amplifier,  
allowing the EN pins to float or apply a low logic level will  
enable the amplifiers.  
• Fast enable/disable (EL1516A only)  
• 5V to 12V operation  
• Pb-free available (RoHS compliant)  
The EL1516 is available in space-saving 8-pin MSOP and  
industry-standard 8-pin SO packages and the EL1516A is  
available in a 10-pin MSOP package. All are specified for  
operation over the -40°C to +85°C temperature range.  
Applications  
• ADSL receivers  
• VDSL receivers  
Pinouts  
• Home PNA receivers  
• Ultrasound input amplifiers  
• Wideband instrumentation  
• Communications equipment  
• AGC & PLL active filters  
• Wideband sensors  
EL1516  
(8-PIN SO, MSOP)  
TOP VIEW  
VOUTA  
VINA-  
VINA+  
VS-  
1
2
3
4
8
7
6
5
VS+  
-
+
VOUTB  
VINB-  
VINB+  
-
+
EL1516A  
(10-PIN MSOP)  
TOP VIEW  
VINA+  
ENA  
1
2
3
4
5
10 VINA-  
VOUTA  
VS+  
9
8
7
6
VS-  
ENB  
VOUTB  
VINB-  
VINB+  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2005. All Rights Reserved.  
1
All other trademarks mentioned are the property of their respective owners.  
EL1516, EL1516A  
Ordering Information  
PART  
TAPE &  
REEL  
NUMBER  
PACKAGE  
8-Pin MSOP  
8-Pin MSOP  
8-Pin MSOP  
PKG. DWG. #  
EL1516IY  
-
13”  
7”  
-
MDP0043  
MDP0043  
MDP0043  
MDP0043  
EL1516IY-T13  
EL1516IY-T7  
EL1516IYZ  
(See Note)  
8-Pin MSOP  
(Pb-free)  
EL1516IYZ-T13  
(See Note)  
8-Pin MSOP  
(Pb-free)  
13”  
7”  
MDP0043  
MDP0043  
EL1516IYZ-T7  
(See Note)  
8-Pin MSOP  
(Pb-free)  
EL1516IS  
8-Pin SO  
8-Pin SO  
8-Pin SO  
-
13”  
7”  
-
MDP0027  
MDP0027  
MDP0027  
MDP0027  
EL1516IS-T13  
EL1516IS-T7  
EL1516ISZ  
(See Note)  
8-Pin SO  
(Pb-free)  
EL1516ISZ-T13  
(See Note)  
8-Pin SO  
(Pb-free)  
13”  
7”  
MDP0027  
MDP0027  
EL1516ISZ-T7  
(See Note)  
8-Pin SO  
(Pb-free)  
EL1516AIY  
10-Pin MSOP  
-
13”  
7”  
-
MDP0043  
MDP0043  
MDP0043  
MDP0043  
EL1516AIY-T13 10-Pin MSOP  
EL1516AIY-T7  
10-Pin MSOP  
EL1516AIYZ  
(See Note)  
10-Pin MSOP  
(Pb-free)  
EL1516AIYZ-  
10-Pin MSOP  
(Pb-free)  
13”  
7”  
MDP0043  
MDP0043  
T13 (See Note)  
EL1516AIYZ-T7 10-Pin MSOP  
(See Note) (Pb-free)  
NOTE: Intersil Pb-free products employ special Pb-free material sets;  
molding compounds/die attach materials and 100% matte tin plate  
termination finish, which are RoHS compliant and compatible with  
both SnPb and Pb-free soldering operations. Intersil Pb-free products  
are MSL classified at Pb-free peak reflow temperatures that meet or  
exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
FN7328.0  
2
May 4, 2005  
EL1516, EL1516A  
Absolute Maximum Ratings (T = 25°C)  
A
Supply Voltage between V + and V -. . . . . . . . . . . . . . . . . . . . .14V  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
S
S
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . .V - -0.3V, V +0.3V  
S
S
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . . 40mA  
Maximum Die Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . .150°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are  
at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +2.5V, V - = -2.5V, R = 500and C = 3pF to 0V, R = R = 620, V  
= 0V, and T = 25°C, unless  
A
S
S
L
L
F
G
CM  
otherwise specified.  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
V
V
= 0V  
= 0V  
-0.2  
-0.3  
6.5  
50  
+3  
mV  
µV/°C  
µA  
OS  
TCV  
CM  
Average Offset Voltage Drift  
Input Bias Current  
OS  
I
I
9
B
CM  
Input Offset Current  
Input Impedance  
500  
nA  
OS  
R
C
2
MΩ  
IN  
IN  
Input Capacitance  
1.6  
pF  
CMIR  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
Open-Loop Gain  
-1.3  
85  
+1.7  
V
CMRR  
for V from -4.7V to 5.4V  
IN  
105  
75  
dB  
A
V
= ±1.25V  
O
70  
dB  
VOL  
e
Voltage Noise  
f = 100kHz  
f = 100kHz  
1.24  
1.5  
nV/Hz  
pA/Hz  
n
i
Current Noise  
n
OUTPUT CHARACTERISTICS  
V
Output Swing Low  
Output Swing High  
Short Circuit Current  
R
= 500Ω  
L
1.45  
1.37  
1.6  
1.35  
1.25  
V
V
OL  
R = 150Ω  
L
V
R
= 500Ω  
L
1.5  
1.4  
60  
V
OH  
R = 150Ω  
1.5  
V
L
I
R
= 10Ω  
75  
mA  
SC  
L
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
V
is moved from ±5.4V to ±6.6V  
75  
80  
5.7  
2
dB  
mA  
µA  
S
I
I
Supply Current Enable (Per Amplifier)  
No load  
I+ (DIS)  
I- (DIS)  
7
5
S ON  
Supply Current Disable (Per Amplifier)  
(EL1516A)  
S OFF  
-19  
5
-16  
32  
µA  
TC I  
I
Temperature Coefficient  
S
µA/°C  
V
S
V
Operating Range  
DYNAMIC PERFORMANCE  
12  
S
SR  
Slew Rate  
V
= ±1.25V square wave, measured 25%-  
80  
110  
V/µs  
O
75%  
TC SR  
SR Temperature Coefficient  
0.5  
25  
V/µs/°C  
ns  
t
Settling to 0.1% (A = +2)  
V
A
= +2, V  
±1V  
O =  
S
V
BW1  
BW2  
-3dB Bandwidth  
-3dB Bandwidth  
A
= -1, R  
100Ω  
100Ω  
320  
200  
MHz  
MHz  
V
F =  
= +2, R  
A
V
F =  
FN7328.0  
3
May 4, 2005  
EL1516, EL1516A  
Electrical Specifications V + = +2.5V, V - = -2.5V, R = 500and C = 3pF to 0V, R = R = 620, V  
= 0V, and T = 25°C, unless  
A
S
S
L
L
F
G
CM  
otherwise specified. (Continued)  
PARAMETER  
HD2  
DESCRIPTION  
2nd Harmonic Distortion  
3rd Harmonic Distortion  
CONDITIONS  
MIN  
TYP  
90  
MAX  
UNIT  
dBc  
f = 1MHz, V = 2V , R = 100Ω  
P-P  
O
L
HD3  
f = 1MHz, V = 2V , R = 100Ω  
P-P  
95  
dBc  
O
L
ENABLE (EL1516AIY ONLY)  
t
t
I
I
Enable Time  
125  
336  
18  
ns  
ns  
µA  
nA  
V
EN  
Disable Time  
DIS  
EN Pin Input High Current  
EN Pin Input Low Current  
EN = V +  
S
IHEN  
ILEN  
EN = V -  
10  
S
V
EN Pin Input High Voltage for Power-  
down  
V + -1  
S
IHEN  
V
EN Pin Input Low Voltage for Power-up  
V - +3  
V
IHEN  
S
Electrical Specifications V + = +6V, V - = -6V, R = 500and C = 3pF to 0V, R = R = 620, V  
= 0V, and T = 25°C, unless  
A
S
S
L
L
F
G
CM  
otherwise specified.  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
V
= 0V  
= 0V  
0.1  
-0.3  
6.5  
50  
3
mV  
µV/°C  
µA  
OS  
TCV  
CM  
Average Offset Voltage Drift  
Input Bias Current  
OS  
I
I
V
9
B
CM  
Input Offset Current  
Input Impedance  
500  
nA  
OS  
R
12  
MΩ  
IN  
IN  
C
Input Capacitance  
1.6  
pF  
CMIR  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
Open-Loop Gain  
-4.5  
90  
+5.5  
V
CMRR  
for V from -4.7V to 5.4V  
IN  
110  
80  
dB  
A
V
= ±2.5V  
O
75  
dB  
VOL  
e
Voltage Noise  
f = 100kHz  
f = 100kHz  
1.24  
1.5  
nV/Hz  
pA/Hz  
n
i
Current Noise  
n
OUTPUT CHARACTERISTICS  
V
Output Swing Low  
Output Swing High  
Short Circuit Current  
R
= 500Ω  
L
-4.8  
-4.6  
4.9  
-4.7  
-4.5  
V
V
OL  
R = 150Ω  
L
V
R
= 500Ω  
L
4.8  
4.5  
110  
V
OH  
R = 150Ω  
4.7  
V
L
I
R
= 10Ω  
160  
mA  
SC  
L
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
V
is moved from ±5.4V to ±6.6V  
75  
85  
5.8  
2
dB  
mA  
µA  
S
I
I
Supply Current Enable (Per Amplifier)  
No load  
I+ (DIS)  
I- (DIS)  
7
5
S ON  
Supply Current Disable (Per Amplifier)  
(EL1516A)  
S OFF  
-19  
5
-16  
32  
µA  
TC I  
I
Temperature Coefficient  
S
µA/°C  
V
S
V
Operating Range  
12  
S
FN7328.0  
4
May 4, 2005  
EL1516, EL1516A  
Electrical Specifications V + = +6V, V - = -6V, R = 500and C = 3pF to 0V, R = R = 620, V  
= 0V, and T = 25°C, unless  
A
S
S
L
L
F
G
CM  
otherwise specified. (Continued)  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC PERFORMANCE  
SR  
Slew Rate  
SR Temperature Coefficient  
V
= ±2.5V square wave, measured 25%-75%  
90  
128  
0.5  
V/µs  
V/µs/°C  
ns  
O
TC SR  
t
Settling to 0.1% (A = +2)  
V
A
= +2, V ±1V  
O =  
20  
S
V
BW1  
BW2  
HD2  
-3dB Bandwidth  
A
= -1, R  
100Ω  
100Ω  
350  
250  
125  
117  
115  
110  
MHz  
MHz  
dBc  
V
F =  
A = +2, R  
V
-3dB Bandwidth  
F =  
2nd Harmonic Distortion  
f = 1MHz, V = 2V , R = 500Ω  
P-P  
O
L
f = 1MHz, V = 2V , R = 150Ω  
P-P  
dBc  
O
L
HD3  
3rd Harmonic Distortion  
f = 1MHz, V = 2V , R = 500Ω  
P-P  
dBc  
O
L
f = 1MHz, V = 2V , R = 150Ω  
P-P  
dBc  
O
L
ENABLE (EL1516AIY ONLY)  
t
t
I
I
Enable Time  
125  
336  
17  
ns  
ns  
µA  
nA  
V
EN  
Disable Time  
DIS  
EN Pin Input High Current  
EN Pin Input Low Current  
EN = V +  
20  
20  
IHEN  
ILEN  
S
EN = V -  
7
S
V
EN Pin Input High Voltage for Power-  
down  
V + -1  
S
IHEN  
V
EN Pin Input Low Voltage for Power-up  
V - +3  
V
IHEN  
S
Typical Performance Curves  
4
4
2
V =±6V  
V =±6V  
S
S
A =+2  
R =348Ω  
F
V
R =500Ω  
R =500Ω  
L
L
2
0
R =100Ω  
0
F
R =348Ω  
F
-2  
-4  
-6  
R =1kΩ  
-2  
-4  
-6  
F
A =10  
A =5  
V
A =2  
V
V
R =619Ω  
F
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 1. NON-INVERTING FREQUENCY RESPONSE FOR  
VARIOUS R  
FIGURE 2. NON-INVERTING FREQUENCY RESPONSE (GAIN)  
F
FN7328.0  
5
May 4, 2005  
EL1516, EL1516A  
Typical Performance Curves (Continued)  
4
4
2
V =±6V  
S
V =±6V  
S
C =22pF  
L
C =12pF  
L
A =+2  
V
A =+2  
V
R =500Ω  
R =619Ω  
F
L
2
0
R =619Ω  
C =4.7pF  
L
F
0
R =500Ω  
L
R =100Ω  
L
-2  
-4  
-6  
-2  
-4  
-6  
C =1pF  
L
C =0pF  
L
R =50Ω  
L
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 3. NON-INVERTING FREQUENCY RESPONSE FOR  
FIGURE 4. NON-INVERTING FREQUENCY RESPONSE FOR  
VARIOUS R  
VARIOUS C  
L
L
4
2
4
2
V =±6V  
V =±6V  
S
S
A =+2  
A =-1  
V
V
R =500Ω  
R =500Ω  
L
L
R =348Ω  
F
V
=100mV  
PP  
IN  
R =420Ω  
F
R =100Ω  
F
V
=20mV  
PP  
IN  
0
0
V
=500mV  
PP  
IN  
R =620Ω  
F
-2  
-4  
-6  
-2  
-4  
-6  
V
=1V  
=2V  
IN  
IN  
PP  
PP  
R =1kΩ  
F
V
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 5. NON-INVERTING FREQUENCY RESPONSE FOR  
VARIOUS INPUT SIGNAL LEVELS  
FIGURE 6. INVERTING FREQUENCY RESPONSE FOR  
VARIOUS R  
F
4
4
2
V =±6V  
V =±6V  
S
S
C =18pF  
L
R =420Ω  
A =-1  
V
F
R =500Ω  
R =500Ω  
L
L
2
0
R =420Ω  
F
C =12pF  
L
0
A =-1  
V
A =-2  
V
-2  
-4  
-6  
-2  
-4  
-6  
A =-10  
V
C =2pF  
L
A =-5  
V
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 7. INVERTING FREQUENCY RESPONSE (GAIN)  
FIGURE 8. INVERTING FREQUENCY RESPONSE FOR  
VARIOUS C  
L
FN7328.0  
6
May 4, 2005  
EL1516, EL1516A  
Typical Performance Curves (Continued)  
4
5
3
V =±6V  
V =±2.5V  
S
S
A =-1  
A =-1  
V
V
R =500Ω  
R =500Ω  
L
L
2
0
R =420Ω  
F
V
=280mV  
PP  
IN  
R =100Ω  
F
V
=20mV  
PP  
1
R =422Ω  
F
IN  
V
V
=1.4V  
=2.8V  
IN  
IN  
PP  
-2  
-4  
-6  
-1  
-3  
-5  
R =619Ω  
F
PP  
R =1kΩ  
F
1M  
10M  
100M  
1G  
100K  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FREQUENCY (Hz)  
FIGURE 9. INVERTING FREQUENCY RESPONSE FOR  
VARIOUS SIGNAL LEVELS  
FIGURE 10. INVERTING FREQUENCY RESPONSE FOR  
VARIOUS R  
F
5
5
3
V =±2.5V  
V =±2.5V  
S
S
R =422Ω  
A =-1  
V
F
R =500Ω  
R =420Ω  
F
L
3
1
A =-2  
V
1
R =500Ω  
L
-1  
-3  
-5  
-1  
-3  
-5  
A =-1  
V
A =-5  
V
R =50Ω  
L
A =-10  
V
R =100Ω  
L
100K  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100K  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FIGURE 11. INVERTING FREQUENCY RESPONSE FOR  
VARIOUS A  
FIGURE 12. INVERTING FREQUENCY RESPONSE FOR  
VARIOUS R  
V
L
5
3
5
3
V =±2.5V  
S
V =±2.55V  
S
C =18pF  
L
A =-1  
V
A =-1  
V
R =420Ω  
R =420Ω  
F
F
R =500Ω  
R =500Ω  
L
L
C =15pF  
L
V
=280mV  
P-P  
IN  
1
1
C =12pF  
L
V
=20mV  
P-P  
IN  
-1  
-3  
-5  
-1  
-3  
-5  
C =10pF  
L
V
=1.4V  
IN  
P-P  
C =0pF  
L
V
=2.24V  
P-P  
IN  
100K  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100K  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FIGURE 13. INVERTING FREQUENCY RESPONSE FOR  
VARIOUS C  
FIGURE 14. INVERTING FREQUENCY RESPONSE FOR  
VARIOUS INPUT SIGNAL LEVELS  
L
FN7328.0  
May 4, 2005  
7
EL1516, EL1516A  
Typical Performance Curves (Continued)  
5
5
3
V =±2.5V  
V =±2.5V  
S
S
A =+2  
R =348Ω  
F
V
R =500Ω  
R =500Ω  
L
L
3
1
R =348Ω  
1
F
R =100Ω  
A =+2  
F
V
-1  
-3  
-5  
-1  
-3  
-5  
R =619Ω  
F
A =+5  
V
R =1kΩ  
L
A =+10  
V
100K  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100K  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FIGURE 15. NON-INVERTING FREQUENCY RESPONSE FOR  
VARIOUS R  
FIGURE 16. NON-INVERTING FREQUENCY RESPONSE FOR  
VARIOUS A  
F
V
5
3
5
3
V =±2.5V  
S
V =±2.5V  
S
A =+2  
V
A =+2  
V
C =27pF  
L
R =619Ω  
R =619Ω  
L
F
C =18pF  
R =500Ω  
L
L
C =10pF  
L
1
1
R =100Ω  
F
-1  
-3  
-5  
-1  
-3  
-5  
C =3.3pF  
L
R =500Ω  
F
C =0pF  
L
R =50Ω  
L
100K  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100K  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FIGURE 17. NON-INVERTING FREQUENCY RESPONSE FOR  
VARIOUS C  
FIGURE 18. NON-INVERTING FREQUENCY RESPONSE FOR  
VARIOUS R  
L
L
5
3
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
V =±2.55V  
V =±6V  
S
S
R =348Ω  
R =R =619Ω  
F
F
G
R =500Ω  
R =100Ω  
L
L
V
=20mV  
IN  
P-P  
1
V =100mV  
IN P-P  
V
=200mV  
=500mV  
IN  
P-P  
-1  
-3  
2ND HD  
6
V
IN  
P-P  
3RD HD  
8
V
=1V  
P-P  
IN  
-5  
100K  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
0
2
4
10  
OUTPUT SWING (V  
)
PP  
FIGURE 19. NON-INVERTING FREQUENCY RESPONSE FOR  
VARIOUS INPUT SIGNAL LEVELS  
FIGURE 20. 1MHz 2ND AND 3RD HARMONIC DISTORTION vs  
OUTPUT SWING  
FN7328.0  
8
May 4, 2005  
EL1516, EL1516A  
Typical Performance Curves (Continued)  
-70  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
V =±2.5V  
S
V
=2V  
PP  
O
A =+2  
V
V =±6V  
S
-75  
-80  
R =R =619Ω  
R =R =620Ω  
F
G
F
L
G
R =100Ω  
R =500Ω  
L
V
=2V  
OUT  
P-P  
-85  
-90  
THD  
-95  
2ND HD  
10M  
-100  
-105  
3RD HD  
-100  
500K  
10K  
100K  
200K  
1M  
20M  
FREQUENCY (Hz)  
FUNDAMENTAL FREQUENCY (Hz)  
FIGURE 21. THD + NOISE vs FREQUENCY  
FIGURE 22. HARMONIC DISTORTION vs FREQUENCY  
-30  
12  
10  
8
-40  
-50  
THD-F =10MHz  
IN  
-60  
6
-70  
4
-80  
V =±2.5V  
S
A =+2  
V
2
THD-F =1MHz  
IN  
-90  
R =R =619Ω  
F
G
R =500Ω  
L
-100  
0
0.2  
0.7  
1.2  
1.7  
2.2  
2.7  
3.2  
0
1
2
3
4
5
6
OUTPUT VOLTAGE (VP  
)
SUPPLY VOLTAGE (±V)  
-P  
FIGURE 23. THD vs OUTPUT VOLTAGE  
FIGURE 24. SUPPLY CURRENT vs SUPPLY VOLTAGE  
250  
200  
150  
100  
50  
-10  
V =±6V  
S
A =+2  
V
A =+2  
V
R =620Ω  
F
-30  
-50  
R =500Ω  
L
BaaaA  
A =-1  
V
-70  
AaaaB  
A =-2  
V
A =-10  
V
A =+5  
A =-5  
V
V
-90  
A =+10  
V
0
-110  
2
3
4
5
6
100K  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
SUPPLY VOLTAGE (±V)  
FIGURE 25. 3dB BANDWIDTH vs SUPPLY VOLTAGE  
FIGURE 26. CHANNEL-TO-CHANNEL ISOLATION vs  
FREQUENCY  
FN7328.0  
May 4, 2005  
9
EL1516, EL1516A  
Typical Performance Curves (Continued)  
-30  
-10  
-30  
V =±6V  
V =±6V  
S
S
R =1kΩ  
A =+1  
V
L
R =500Ω  
L
-50  
-70  
-50  
PSRR+  
-90  
-70  
PSRR-  
-110  
-90  
-130  
-110  
100K  
1M  
10M  
100M  
1G  
100K  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FREQUENCY (Hz)  
FIGURE 27. CMRR  
FIGURE 28. PSRR  
100  
10  
12  
10  
8
6
1
4
-0.1  
2
0
10  
0.01  
10K  
100K  
1M  
10M  
100M  
100  
1K  
10K  
100K  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 29. CLOSED LOOP OUTPUT IMPEDANCE vs  
FREQUENCY  
FIGURE 30. VOLTAGE NOISE  
0.07  
V =±6V  
S
V =±6V  
S
A =2  
R =500Ω  
V
L
0.06  
R =620Ω  
R =620Ω  
F
F
DIFF GAIN  
0.05  
0.04  
DIFF PHASE  
0.5V/DIV  
0.03  
0.02  
0.01  
0
1
2
3
4
100ns/DIV  
NUMBER OF 150LOADS  
FIGURE 31. DIFFERENTIAL GAIN/PHASE  
FIGURE 32. LARGE SIGNAL STEP RESPONSE  
FN7328.0  
May 4, 2005  
10  
EL1516, EL1516A  
Typical Performance Curves (Continued)  
V =±2.5V  
V =±6V  
S
S
R =500Ω  
R =500Ω  
L
L
R =620Ω  
R =620Ω  
F
F
0.5V/DIV  
20mV/DIV  
100ns/DIV  
100ns/DIV  
FIGURE 33. LARGE SIGNAL STEP RESPONSE  
FIGURE 34. SMALL SIGNAL STEP RESPONSE  
10  
9
V =±2.5V  
S
R =500Ω  
L
R =620Ω  
F
8
7
6
20mV/DIV  
5
4
3
2
-40 -20  
0
20 40 60 80 100 120 140 150  
DIE TEMPERATURE (°C)  
100ns/DIV  
FIGURE 35. SMALL SIGNAL STEP RESPONSE  
FIGURE 36. SUPPLY CURRENT vs TEMPERATURE  
200  
500  
450  
400  
350  
300  
250  
200  
A =+2V  
V
V
=2V  
PP  
O
R =200Ω  
F
160  
120  
80  
R =500Ω  
L
40  
0
-40 -20  
0
20 40 60 80 100 120 140 150  
DIE TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120 140 150  
DIE TEMPERATURE (°C)  
FIGURE 37. -3dB BANDWIDTH vs TEMPERATURE  
FIGURE 38. SLEW RATE vs TEMPERATURE  
FN7328.0  
11  
May 4, 2005  
EL1516, EL1516A  
Typical Performance Curves (Continued)  
30  
0
V =±6V  
S
50mV  
-50  
OPP  
26  
22  
18  
14  
10  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
-40 -20  
0
20 40 60 80 100 120 140 150  
DIE TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120 140 150  
DIE TEMPERATURE (°C)  
FIGURE 39. 0.1% SETTLING TIME vs TEMPERATURE  
FIGURE 40. V  
vs TEMPERATURE  
OS  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
8
7
6
5
4
1.2  
1
781mW  
0.8  
0.6  
0.4  
0.2  
0
SO8  
=160°C/W  
607mW  
θ
JA  
MSOP8/10  
JA  
θ
=206°C/W  
-40 -20  
0
20 40 60 80 100 120 140 150  
0
25  
50  
75 85 100  
125  
150  
DIE TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 41. I  
CURRENT vs TEMPERATURE  
FIGURE 42. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
BIAS  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1.8  
1.6  
1.4  
1.2  
1
1.136W  
SO8  
1.087W  
θ
=110°C/W  
JA  
0.8  
0.6  
0.4  
0.2  
0
MSOP8/10  
JA  
θ
=115°C/W  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
FIGURE 43. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FN7328.0  
May 4, 2005  
12  
EL1516, EL1516A  
Pin Descriptions  
EL1516  
(8-PIN SO &  
EL1516A  
8-PIN MSOP) (10-PIN MSOP)  
PIN NAME  
PIN FUNCTION  
Output  
EQUIVALENT CIRCUIT  
1
9
VOUTA  
V +  
S
V
OUT  
CIRCUIT 1  
2
10  
VINA-  
Input  
V +  
S
V
+
V -  
IN  
IN  
V -  
S
CIRCUIT 2  
3
4
5
6
7
8
1
3
VINA+  
VS-  
Input  
Supply  
Input  
Reference Circuit 2  
5
VINB+  
VINB-  
6
Input  
Reference Circuit 2  
Reference Circuit 1  
7
VOUTB  
VS+  
Output  
Supply  
Enable  
8
2, 4  
ENA, ENB  
V +  
S
EN  
570K  
V -  
S
CIRCUIT 3  
FN7328.0  
13  
May 4, 2005  
EL1516, EL1516A  
EL1516 to remain in the safe operating area. These  
parameters are related as follows:  
Applications Information  
Product Description  
T
= T  
+ (θ × PD  
MAXTOTAL  
)
JMAX  
MAX  
JA  
The EL1516 is a dual voltage feedback operational amplifier  
designed especially for DMT ADSL and other applications  
requiring very low voltage and current noise. It also features  
low distortion while drawing moderately low supply current.  
The EL1516 uses a classical voltage-feedback topology  
which allows it to be used in a variety of applications where  
current-feedback amplifiers are not appropriate because of  
restrictions placed upon the feedback element used with the  
amplifier. The conventional topology of the EL1516 allows,  
for example, a capacitor to be placed in the feedback path,  
making it an excellent choice for applications such as active  
filters, sample-and-holds, or integrators.  
where:  
• PD  
is the sum of the maximum power  
MAX  
MAXTOTAL  
dissipation of each amplifier in the package (PD  
)
• PD  
for each amplifier can be calculated as follows:  
MAX  
V
OUTMAX  
----------------------------  
PD  
= 2 × V × I  
+ (V V  
OUTMAX  
) ×  
MAX  
S
SMAX  
S
R
L
where:  
• T  
= Maximum ambient temperature  
MAX  
ADSL CPE Applications  
θ = Thermal resistance of the package  
JA  
• PD  
The low noise EL1516 amplifier is specifically designed for  
the dual differential receiver amplifier function with ADSL  
transceiver hybrids as well as other low-noise amplifier  
applications. A typical ADSL CPE line interface circuit is  
shown in Figure 44. The EL1516 is used in receiving DMT  
down stream signal. With careful transceiver hybrid design  
and the EL1516 1.4nV/Hz voltage noise and 1.5pA/Hz  
current noise performance, -140dBm/Hz system background  
noise performance can be easily achieved.  
= Maximum power dissipation of 1 amplifier  
MAX  
• V = Supply voltage  
S
• I  
= Maximum supply current of 1 amplifier  
MAX  
• V  
= Maximum output voltage swing of the  
OUTMAX  
application  
• R = Load resistance  
L
To serve as a guide for the user, we can calculate maximum  
allowable supply voltages for the example of the video cable-  
R
LINE +  
DRIVER  
INPUT  
OUT  
+
-
R
R
F
F
driver below since we know that T  
= 150°C, T  
=
JMAX  
MAX  
= 7.7mA, and the package θ s are shown in  
75°C, I  
SMAX  
JA  
R
G
Table 1. If we assume (for this example) that we are driving a  
back-terminated video cable, then the maximum average  
Z
LINE  
value (over duty-cycle) of V  
is 1.4V, and R = 150,  
OUTMAX  
L
R
LINE -  
OUT  
-
giving the results seen in Table 1.  
+
TABLE 1.  
R
R
F
MAXP  
DISS  
R
IN  
-
PART  
PACKAGE  
θ
@ T  
MAX V  
S
RECEIVE  
OUT +  
JA  
MAX  
+
+
RECEIVE  
EL1516IS  
SO8  
110°C/W  
115°C/W  
115°C/W  
0.406W @  
85°C  
AMPLIFIERS  
+
-
R
R
R
IN  
F
EL1516IY  
MSOP8  
0.400W @  
85°C  
RECEIVE  
OUT -  
EL1516AIY  
MSOP10  
0.400W @  
85°C  
FIGURE 44. TYPICAL LINE INTERFACE CONNECTION  
Power Dissipation  
Single-Supply Operation  
With the wide power supply range and large output drive  
capability of the EL1516, it is possible to exceed the 150°C  
maximum junction temperatures under certain load and  
power supply conditions. It is therefore important to calculate  
the maximum junction temperature (T  
applications to determine if power supply voltages, load  
conditions, or package type need to be modified for the  
The EL1516 has been designed to have a wide input and  
output voltage range. This design also makes the EL1516 an  
excellent choice for single-supply operation. Using a single  
positive supply, the lower input voltage range is within 1.2V  
) for all  
JMAX  
of ground (R = 500), and the lower output voltage range is  
L
within 875mV of ground. Upper input voltage range reaches  
3.6V, and output voltage range reaches 3.8V with a 5V  
supply and R = 500. This results in a 2.625V output swing  
L
on a single 5V supply. This wide output voltage range also  
FN7328.0  
14  
May 4, 2005  
EL1516, EL1516A  
allows single-supply operation with a supply voltage as high  
as 12V.  
output drive capability makes the EL1516 an ideal choice for  
RF, IF and video applications.  
Gain-Bandwidth Product and the -3dB Bandwidth  
Printed-Circuit Layout  
The EL1516 has a gain-bandwidth product of 300MHz while  
using only 6mA of supply current per amplifier. For gains  
greater than 2, their closed-loop -3dB bandwidth is  
approximately equal to the gain-bandwidth product divided  
by the noise gain of the circuit. For gains less than 2, higher-  
order poles in the amplifiers' transfer function contribute to  
even higher closed loop bandwidths. For example, the  
EL1516 has a -3dB bandwidth of 350MHz at a gain of +2,  
dropping to 80MHz at a gain of +5. It is important to note that  
the EL1516 has been designed so that this “extra” bandwidth  
in low-gain applications does not come at the expense of  
stability. As seen in the typical performance curves, the  
EL1516 in a gain of +2 only exhibits 0.5dB of peaking with a  
1000load.  
The EL1516 is well behaved, and easy to apply in most  
applications. However, a few simple techniques will help  
assure rapid, high quality results. As with any high-frequency  
device, good PCB layout is necessary for optimum  
performance. Ground-plane construction is highly  
recommended, as is good power supply bypassing. A 0.1µF  
ceramic capacitor is recommended for bypassing both  
supplies. Lead lengths should be as short as possible, and  
bypass capacitors should be as close to the device pins as  
possible. For good AC performance, parasitic capacitances  
should be kept to a minimum at both inputs and at the  
output. Resistor values should be kept under 5kbecause  
of the RC time constants associated with the parasitic  
capacitance. Metal-film and carbon resistors are both  
acceptable, use of wire-wound resistors is not recommended  
because of their parasitic inductance. Similarly, capacitors  
should be low-inductance for best performance.  
Output Drive Capability  
The EL1516 has been designed to drive low impedance  
loads. It can easily drive 6V into a 100load. This high  
PP  
MSOP Package Outline Drawing  
FN7328.0  
15  
May 4, 2005  
EL1516, EL1516A  
SO Package Outline Drawing  
NOTE: The package drawing shown here may not be the latest version. To check the latest revision, please refer to the Intersil website at  
http://www.intersil.com/design/packages/index.asp  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7328.0  
16  
May 4, 2005  

相关型号:

EL1516AIYZ-T13

Dual Ultra Low Noise Amplifier
INTERSIL

EL1516AIYZ-T7

Dual Ultra Low Noise Amplifier
INTERSIL

EL1516AIYZT13

Dual Ultra Low Noise Amplifier
INTERSIL

EL1516IS

Dual Ultra Low Noise Amplifier
INTERSIL

EL1516IS-T13

Dual Ultra Low Noise Amplifier
INTERSIL

EL1516IS-T7

Dual Ultra Low Noise Amplifier
INTERSIL

EL1516ISZ

Dual Ultra Low Noise Amplifier
INTERSIL

EL1516ISZ-T13

Dual Ultra Low Noise Amplifier
INTERSIL

EL1516ISZ-T7

Dual Ultra Low Noise Amplifier
INTERSIL

EL1516IY

Dual Ultra Low Noise Amplifier
INTERSIL

EL1516IY-T13

Dual Ultra Low Noise Amplifier
INTERSIL

EL1516IY-T7

Dual Ultra Low Noise Amplifier
INTERSIL