AD7545_01 [INTERSIL]

12-Bit, Buffered, Multiplying CMOS DAC; 12位缓冲乘法CMOS DAC
AD7545_01
型号: AD7545_01
厂家: Intersil    Intersil
描述:

12-Bit, Buffered, Multiplying CMOS DAC
12位缓冲乘法CMOS DAC

文件: 总8页 (文件大小:272K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AD7545  
May 2001  
File Number 3108.3  
12-Bit, Buffered, Multiplying CMOS DAC  
Features  
The AD7545 is a low cost monolithic 12-bit, CMOS  
multiplying DAC with on-board data latches. Data is loaded  
• 12-Bit Resolution  
• Low Gain T.C. 2ppm/ C (Typ)  
itle  
o
D75 in a single 12-bit wide word which allows interfacing directly  
• Fast TTL/CMOS Compatible Data Latches  
• Single +5V to +15V Supply  
• Low Power  
to most 12-bit and 16-bit bus systems. Loading of the input  
)
latches is under the control of the CS and WR inputs. A logic  
low on these control inputs makes the input latches  
transparent allowing direct unbuffered operation of the DAC.  
bjec  
2-  
t,  
ffer  
• Low Cost  
Part Number Information  
,
Pinout  
TEMP.  
PKG.  
NO.  
o
ltip  
ng  
PART NUMBER RANGE ( C)  
PACKAGE  
20 Ld PDIP  
20 Ld PDIP  
AD7545  
(PDIP)  
TOP VIEW  
AD7545JN  
AD7545KN  
0 to 70  
0 to 70  
E20.3  
E20.3  
OS  
C)  
1
2
OUT 1  
AGND  
DGND  
DB11 (MSB)  
DB10  
20  
19  
18  
R
V
FB  
utho  
)
eyw  
s
REF  
DD  
Functional Diagram  
3
V
R
FB  
4
17 WR  
16 CS  
20  
5
AD7545  
DB9  
DB0 (LSB)  
6
15  
14  
13  
12  
tersi  
R
DB1  
DB2  
DB3  
DB8  
7
1
2
OUT1  
12-BIT  
V
REF  
19  
8
DB7  
MULTIPLYING DAC  
rpor  
on,  
ico  
AGND  
DB6  
9
12  
DB5  
10  
11 DB4  
18  
3
17  
16  
V
WR  
CS  
DD  
ucto  
INPUT DATA LATCHES  
12  
DGND  
ltip  
ng,  
L,  
DB11 - DB0  
(PINS 4 - 15)  
OS  
reato  
)
OCI  
O
fmar  
ge  
de  
seO  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Americas Inc. | Copyright © Intersil Americas Inc. 2001  
1
AD7545  
Absolute Maximum Ratings  
Thermal Information  
o
Supply Voltage (V  
to DGND). . . . . . . . . . . . . . . . . . . -0.3V, +17V  
Thermal Resistance (Typical, Note 1)  
θ
( C/W)  
DD  
Digital Input Voltage to DGND . . . . . . . . . . . . . . . . -0.3V, V  
JA  
+0.3V  
DD  
PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
80  
o
V
, V to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25V  
RFB REF  
Maximum Junction Temperature (PDIP Package) . . . . . . . . .150 C  
o
o
V
to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V, V  
+0.3V  
+0.3V  
PIN1  
DD  
DD  
Maximum Storage Temperature Range. . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300 C  
o
AGND to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V, V  
Operating Conditions  
o
o
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 C to 70 C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
Electrical Specifications  
T
= See Note 2, V  
= +10V, V  
= 0V, AGND = DGND, Unless Otherwise Specified  
OUT1  
A
REF  
V
= +5V (NOTE 7)  
V
= +15V (NOTE 7)  
DD  
DD  
PARAMETER  
STATIC PERFORMANCE  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
12  
-
-
-
-
-
-
-
-
12  
-
-
-
-
-
-
-
-
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
Relative Accuracy  
J
2
2
K
J
-
1
4
-
1
Differential Nonlinearity  
10-Bit Monotonic T  
12-Bit Monotonic T  
to T  
to T  
-
-
4
MIN  
MIN  
MAX  
K
J
-
1
-
1
MAX  
Gain Error  
(Using Internal RFB)  
DAC Register Loaded with  
1111 1111 1111  
-
20  
-
25  
K
Gain Error is Adjustable  
Using the Circuits of  
-
-
10  
-
-
15  
LSB  
Figures 5 and 6 (Note 3)  
o
o
Gain Temperature Coefficient  
Gain/Temperature  
Typical Value is 2ppm/ C for  
-
0.015  
-
-
-
-
5
0.03  
50  
-
0.01  
-
-
-
-
10  
0.02  
50  
ppm/ C  
V
= +5V (Note 4)  
DD  
DC Supply Rejection  
Gain/V  
DD  
V  
=
5%  
%
DD  
Output Leakage Current at  
OUT1  
J, K  
DB0 - DB11 = 0V; WR,  
CS = 0V (Note 2)  
nA  
DYNAMIC CHARACTERISTICS  
1
Current Settling Time  
To  
/
LSB, OUT1 LOAD = 100,  
-
-
-
-
2
-
-
-
-
2
µs  
2
DAC Output Measured fromFalling  
Edge of WR, CS = 0V (Note 4)  
Propagation Delay from Digital Input  
OUT1 LOAD = 100,  
300  
250  
ns  
Change to 90% of Final Analog Output  
Digital to Analog Glitch Impulse  
AC Feedthrough at OUT1  
C
= 13pF (Notes 4 and 5)  
EXT  
REF  
REF  
V
V
= AGND  
-
-
400  
5
-
-
-
-
250  
5
-
-
nV/s  
=
10V, 10kHz Sinewave  
mV  
P-P  
ANALOG OUTPUTS  
Output Capacitance  
C
DB0 - DB11 = 0V,  
WR, CS = 0V (Note 4)  
-
-
-
-
70  
-
-
-
-
70  
pF  
OUT1  
DB0 - DB11 = V  
,
200  
200  
pF  
DD  
WR, CS = 0V (Note 4)  
2
AD7545  
Electrical Specifications  
T
= See Note 2, V  
= +10V, V  
= 0V, AGND = DGND, Unless Otherwise Specified (Continued)  
OUT1  
A
REF  
V
= +5V (NOTE 7)  
V
= +15V (NOTE 7)  
DD  
DD  
PARAMETER  
REFERENCE INPUT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
Input Resistance (Pin 19 to GND)  
Input Resistance  
TC = -300ppm/ C (Typ)  
7
-
-
-
-
7
-
-
-
-
kΩ  
kΩ  
o
Typical Input Resistance = 11kΩ  
25  
25  
DIGITAL INPUTS  
Input High Voltage, V  
IH  
2.4  
-
-
-
-
-
-
-
-
-
-
13.5  
1.5  
10  
V
V
Input Low Voltage, V  
-
0.8  
10  
7
-
IL  
Input Current, I  
V
V
= 0 or V  
DD  
(Note 6)  
1
-
1
-
µA  
pF  
IN  
IN  
Input Capacitance  
DB0 -  
DB11  
= 0 (Note 4)  
7
IN  
WR, CS  
V
= 0 (Note 4)  
-
-
20  
-
-
20  
pF  
IN  
SWITCHING CHARACTERISTICS (Note 4)  
Chip Select to Write Setup Time, t  
See Figure 1  
See Figure 1  
380  
0
200  
-
-
-
-
-
-
200  
0
120  
-
-
-
ns  
ns  
ns  
ns  
ns  
CS  
Chip Select to Write Hold Time, t  
CH  
Write Pulse Width, t  
WR  
t
t  
, t  
0, See Figure 1  
400  
210  
10  
175  
100  
-
240  
120  
10  
100  
60  
-
CS  
WR CH  
Data Setup Time, t  
DS  
See Figure 1  
See Figure 1  
-
-
Data Hold Time, t  
DH  
POWER SUPPLY CHARACTERISTICS  
All Digital Inputs V or V  
I
-
-
-
-
2
500  
-
-
-
-
-
2
500  
-
mA  
µA  
µA  
DD  
IL  
IH  
All Digital Inputs 0V or V  
100  
10  
100  
10  
DD  
DD  
All Digital Inputs 0V or V  
NOTES:  
o
o
2. Temperature Ranges as follows: J, K versions:  
o
0 C to 70 C  
T
= 25 C for TYP Specifications. MIN and MAX are measured over the specified operating range.  
A
3. This includes the effect of 5ppm maximum gain TC.  
4. Parameter not tested. Parameter guaranteed by design, simulation, or characterization.  
5. DB0 - DB11 = 0V to V  
or V  
to 0V.  
6. Logic inputs are MOS gates. Typical input current (25 C) is less than 1nA.  
DD  
DD  
o
7. Typical values are not guaranteed but reflect mean performance specification. Specifications subject to change without notice.  
Timing Diagrams  
t
t
CH  
CH  
V
0
V
t
t
DD  
DD  
CHIP  
SELECT  
CHIP  
SELECT  
CS  
t
CS  
t
0
V
V
WR  
WR  
DD  
DD  
WRITE  
WRITE  
0
0
t
t
DH  
DH  
t
t
DS  
DS  
V
0
V
0
DD  
DD  
DATA IN  
DATA IN  
(DB0 - DB11)  
DATA VALID  
DATA VALID  
(DB0 - DB11)  
FIGURE 1A. TYPICAL WRITE CYCLE  
FIGURE 1B. PREFERRED WRITE CYCLE  
FIGURE 1. WRITE CYCLE TIMING DIAGRAM  
3
AD7545  
Circuit Information - Digital Section  
MODE SELECTION  
HOLD MODE:  
Figure 4 shows the digital structure for one bit. The digital  
signals CONTROL and CONTROL are generated from CS  
and WR.  
WRITE MODE:  
CS and WR low, DAC responds Either CS or WR high, data bus  
to data bus (DB0 - DB11) inputs (DB0 - DB11) is locked out; DAC  
holds last data present when WR  
or CS assumed high state.  
TO AGND SWITCH  
NOTES:  
8. V  
9. V  
= +5V; t = t = 20ns.  
r f  
DD  
DD  
TO OUT1 SWITCH  
= +15V; t = t = 40ns.  
r
f
INPUTS BUFFERS  
10. All input signal rise and fall times measured from 10% to 90% of  
V
.
DD  
11. Timing measurement reference level is (V + V )/2.  
CONTROL  
CONTROL  
IH IL  
12. Since input data latches are transparent for CS and WR both  
low, it is preferred to have data valid before CS and WR both go  
low. This prevents undesirable changes at the analog output  
while the data inputs settle.  
FIGURE 4. DIGITAL INPUT STRUCTURE  
The input buffers are simple CMOS inverters designed such  
that when the AD7545 is operated with V  
= 5V, the buffers  
DD  
convert TTL input levels (2.4V and 0.8V) into CMOS logic  
Circuit Information - D/A Converter Section  
levels. When V is in the region of 2.0V to 3.5V the input  
IN  
Figure 2 shows a simplified circuit of the D/A converter  
section of the AD7545. Note that the ladder termination  
resistor is connected to AGND. R is typically 11k.  
buffers operate in their linear region and draw current from  
the power supply. To minimize power supply currents it is  
recommended that the digital input voltages be as close to  
the supply rails (V  
and DGND) as is practically possible.  
The binary weighted currents are switched between the OUT1  
bus line and AGND by N-Channel switches, thus maintaining a  
constant current in each ladder leg independent of the switch  
state. One of the current switches is shown in Figure 3.  
DD  
The AD7545 may be operated with any supply voltage in the  
range 5V V 15V. With V = +15V the input logic  
DD  
DD  
levels are CMOS compatible only, i.e., 1.5V and 13.5V.  
V
REF  
R
R
R
R
Application  
Output Offset  
2R  
2R  
2R  
2R  
2R  
2R  
CMOS current-steering D/A converters exhibit a code  
dependent output resistance which in turn causes a code  
dependent amplifier noise gain. The effect is a code  
dependent differential nonlinearity term at the amplifier  
R
FB  
OUT1  
AGND  
output which depends on V  
where V  
is the amplifier  
OS  
OS  
DB10  
DB9  
DB1  
DB0  
(LSB)  
DB11  
(MSB)  
input offset voltage. To maintain monotonic operation it is  
-6  
recommended that V  
be no greater than (25 x 10 )  
OS  
FIGURE 2. SIMPLIFIED D/A CIRCUIT OF AD7545  
TO LADDER  
(V  
) over the temperature range of operation.  
REF  
General Ground Management  
FROM  
INTERFACE  
LOGIC  
AC or transient voltages between AGND and DGND can  
cause noise injection into the analog output. The simplest  
method of ensuring that voltages at AGND and DGND are  
equal is to tie AGND and DGND together at the AD7545. In  
more complex systems where the AGND and DGND  
connection is on the backplane, it is recommended that two  
diodes be connected in inverse parallel between the AD7545  
AGND and DGND pins (1N914 or equivalent).  
AGND  
OUT1  
FIGURE 3. N-CHANNEL CURRENT STEERING SWITCH  
The capacitance at the OUT1 bus line, C  
dependent and varies from 70pF (all switches to AGND) to  
200pF (all switches to OUT1).  
, is code  
OUT1  
Digital Glitches  
The input resistance at V  
(Figure 2) is always equal to  
When WR and CS are both low the latched are transparent  
and the D/A converter inputs follow the data inputs. In some  
bus systems, data on the data bus is not always valid for the  
whole period during which WR is low and as a result invalid  
data can briefly occur at the D/A converter inputs during a  
write cycle. Such invalid data can cause unwanted glitches  
at the output of the D/A converter. The solution to this  
REF  
is the R/2R ladder characteristic resistance and is  
R
(R  
LDR LDR  
equal to the value “R”). Since R at the V  
pin is constant,  
IN REF  
the reference terminal can be driven by a reference voltage or a  
reference current, AC or DC, of positive or negative polarity. (If a  
current source is used, a low temperature coefficient external  
R
is recommended to define scale factor).  
FB  
4
AD7545  
problem, if it occurs, is to retime the write pulse (WR) so that  
it only occurs when data is valid.  
operational amplifiers which are good candidates for many  
applications. The main selection criteria for these  
operational amplifiers is to have low V , low V  
bias current and low settling time.  
drift, low  
OS  
OS  
Another cause of digital glitches is capacitive coupling from the  
digital lines to the OUT1 and AGND terminals. This should be  
minimized by isolating the analog pins of the AD7545 (pins 1, 2,  
19, 20) from the digital pins by a ground track run between pins  
2 and 3 and between pins 18 and 19 of the AD7545. Note how  
the analog pins are at one end of the package and separated  
These amplifiers need to maintain the low nonlinearity and  
monotonic operation of the D/A while providing enough  
speed for maximum converter performance.  
Operational Amplifiers  
from the digital pins by V  
and DGND to aid isolation at the  
DD  
HA-5127 Ultra Low Noise, Precision  
board level. On-chip capacitive coupling can also give rise to  
crosstalk from the digital to analog sections of the AD7545,  
particularly in circuits with high currents and fast rise and fall  
HA-5137 Ultra Low Noise, Precision, Wide Band  
HA-5147 Ultra Low Noise, Precision, High Slew Rate  
HA-5170 Precision, JFET Input  
times. This type of crosstalk is minimized by using V  
= +5V.  
DD  
However, great care should be taken to ensure that the +5V  
used to power the AD7545 is free from digitally induced noise.  
TABLE 1. RECOMMENDED TRIM RESISTOR VALUES vs  
GRADES FOR V  
= +5V  
DD  
TRIM RESISTOR  
J
K
Temperature Coefficients  
R1  
R2  
500Ω  
150Ω  
200Ω  
68Ω  
The gain temperature coefficient of the AD7545 has a  
o
o
maximum value of 5ppm/ C and a typical value of 2ppm/ C.  
This corresponds to worst case gain shifts of 2 LSBs and  
o
0.8 LSBs respectively over a 100 C temperature range.  
TABLE 2. UNIPOLAR BINARY CODE TABLE FOR CIRCUIT  
OF FIGURE 5  
When trim resistors R1 and R2 are used to adjust full scale  
range, the temperature coefficient of R1 and R2 should also  
be taken into account.  
BINARY NUMBER IN DAC  
REGISTER  
ANALOG OUTPUT  
Basic Applications  
4095  
------------  
4096  
Figures 5 and 6 show simple unipolar and bipolar circuits  
using the AD7545. Resistor R1 is used to trim for full scale.  
Capacitor C1 provides phase compensation and helps  
prevent overshoot and ringing when using high speed op  
amps. Note that the circuits of Figures 5 and 6 have constant  
1111  
1000  
0000  
0000  
1111  
1111  
0000  
0001  
0000  
V  
IN  
2048  
4096  
1
2
0000  
V  
------------ = --V  
IN  
IN  
1
0000  
V  
------------  
input impedance at the V  
terminal.  
IN  
4096  
REF  
The circuit of Figure 5 can either be used as a fixed reference  
D/A converter so that it provides an analog output voltage in the  
0000  
0V  
range 0V to -V (note the inversion introduced by the op amp)  
IN  
or V can be an AC signal in which case the circuit behaves as  
IN  
TABLE 3. 2’S COMPLEMENT CODE TABLE FOR CIRCUIT OF  
FIGURE 6  
an attenuator (2-Quadrant Multiplier). V can be any voltage in  
IN  
the range -20V V +20V (provided the op amp can handle  
IN  
such voltages) since V  
shows the code relationship for the circuit of Figure 5.  
is permitted to exceed V . Table 2  
DATA INPUT  
1111  
ANALOG OUTPUT  
REF  
DD  
2047  
------------  
2048  
0111  
0000  
0000  
1111  
1000  
1111  
0001  
0000  
1111  
0000  
+V  
+V  
Figure 6 and Table 3 illustrate the recommended circuit and  
code relationship for bipolar operation. The D/A function itself  
uses offset binary code and inverter U on the MSB line  
IN  
IN  
1
1
------------  
2048  
0000  
converts 2’s complement input code to offset binary code. If  
appropriate, inversion of the MSB may be done in software  
using an exclusive -OR instruction and the inverter omitted. R3,  
R4 and R5 must be selected to match within 0.01% and they  
should be the same type of resistor (preferably wire-wound or  
metal foil), so that their temperature coefficients match.  
Mismatch of R3 value to R4 causes both offset and full scale  
error. Mismatch of R5 to R4 and R3 causes full scale error.  
0000  
0V  
1
V  
V  
------------  
2048  
1111  
IN  
IN  
2048  
------------  
2048  
0000  
The choice of the operational amplifiers in Figure 5 and  
Figure 6 depends on the application and the trade off  
between required precision and speed. Below is a list of  
5
AD7545  
V
R2 (NOTE)  
DD  
C1  
33pF  
18  
20  
V
R
OUT 1  
AGND  
DGND  
DD  
FB  
V
1
2
V
IN  
-
OUT  
19  
17  
V
REF  
AD7545  
+
R1 (NOTE)  
WR  
CS  
16  
3
ANALOG  
COMMON  
DB11 - DB0  
(PINS 4 - 15)  
NOTE: REFER TO TABLE 1  
FIGURE 5. UNIPOLAR BINARY OPERATION  
V
R2 (NOTE)  
DD  
R4  
20K  
C1  
33pF  
18  
20  
R3  
10K  
R5  
20K  
V
R
OUT 1  
AGND  
DD  
FB  
V
1
2
IN  
A1  
19  
17  
V
REF  
AD7545  
-
V
A2  
OUT  
R1 (NOTE)  
R6  
5K  
DB11  
4
WR  
CS  
+
DB10 - DB0  
16  
3
DGND  
ANALOG  
COMMON  
11  
12  
U
1
(SEE TEXT)  
NOTE: FOR VALUES OF R1 AND R2  
SEE TABLE 1  
DATA INPUT  
FIGURE 6. BIPOLAR OPERATION (2’S COMPLEMENT CODE)  
6
AD7545  
Die Characteristics  
DIE DIMENSIONS  
PASSIVATION  
121 mils x 123 mils (3073µm x 3124µm)  
Type: PSG/Nitride  
PSG: 7 1.4kÅ  
Nitride: 8 1.2kÅ  
METALLIZATION  
Type: Pure Aluminum  
Thickness: 10 1kÅ  
PROCESS  
CMOS Metal Gate  
Metallization Mask Layout  
AD7545  
PIN 4  
DB11  
(MSB)  
PIN 7  
DB8  
PIN 6  
DB9  
PIN 5  
DB10  
PIN 3  
DGND  
PIN 2  
AGND  
PIN 1  
OUT1  
PIN 8  
DB7  
PIN 9  
DB6  
PIN 10  
DB5  
PIN 11  
DB4  
PIN 20  
R
FEEDBACK  
PIN 19  
PIN 12  
DB3  
V
REF  
PIN 13  
DB2  
PIN 18  
V
DD  
PIN 14  
DB1  
PIN 15  
DB0  
(LSB)  
PIN 16  
CS  
PIN 17  
WR  
7
AD7545  
Dual-In-Line Plastic Packages (PDIP)  
E20.3 (JEDEC MS-001-AD ISSUE D)  
20 LEAD DUAL-IN-LINE PLASTIC PACKAGE  
N
E1  
INDEX  
AREA  
INCHES  
MILLIMETERS  
1
2
3
N/2  
SYMBOL  
MIN  
MAX  
0.210  
-
MIN  
-
MAX  
5.33  
-
NOTES  
-B-  
A
A1  
A2  
B
-
4
-A-  
0.015  
0.115  
0.014  
0.045  
0.008  
0.980  
0.005  
0.300  
0.240  
0.39  
2.93  
0.356  
1.55  
0.204  
24.89  
0.13  
7.62  
6.10  
4
D
E
BASE  
PLANE  
0.195  
0.022  
0.070  
0.014  
1.060  
-
4.95  
0.558  
1.77  
0.355  
26.9  
-
-
A2  
A
-C-  
-
SEATING  
PLANE  
L
C
L
B1  
C
8
D1  
B1  
-
eA  
A1  
A
D1  
e
D
5
eC  
B S  
C
B
eB  
D1  
E
5
0.010 (0.25) M  
C
0.325  
0.280  
8.25  
7.11  
6
E1  
e
5
NOTES:  
0.100 BSC  
0.300 BSC  
2.54 BSC  
7.62 BSC  
-
1. Controlling Dimensions: INCH. In case of conflict between English  
and Metric dimensions, the inch dimensions control.  
e
e
6
A
B
-
0.430  
0.150  
-
10.92  
3.81  
7
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
L
0.115  
2.93  
4
9
3. Symbols are defined in the “MO Series Symbol List” in Section 2.2  
of Publication No. 95.  
N
20  
20  
4. Dimensions A, A1 and L are measured with the package seated in  
Rev. 0 12/93  
JEDEC seating plane gauge GS-3.  
5. D, D1, and E1 dimensions do not include mold flash or protrusions.  
Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).  
e
6. E and  
dicular to datum  
7. e and e are measured at the lead tips with the leads uncon-  
are measured with the leads constrained to be perpen-  
A
-C-  
.
B
C
strained. e must be zero or greater.  
C
8. B1 maximum dimensions do not include dambar protrusions. Dam-  
bar protrusions shall not exceed 0.010 inch (0.25mm).  
9. N is the maximum number of terminal positions.  
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3,  
E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).  
All Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at website www.intersil.com/design/quality/iso.asp.  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice.  
Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. How-  
ever, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use.  
No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
Intersil Corporation  
2401 Palm Bay Rd.  
Palm Bay, FL 32905  
TEL: (321) 724-7000  
FAX: (321) 724-7240  
EUROPE  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
ASIA  
Intersil Ltd.  
8F-2, 96, Sec. 1, Chien-kuo North,  
Taipei, Taiwan 104  
Republic of China  
TEL: 886-2-2515-8508  
FAX: 886-2-2515-8369  
8

相关型号:

AD7546AD

IC PARALLEL, WORD INPUT LOADING, 10 us SETTLING TIME, 16-BIT DAC, CDIP40, CERAMIC, DIP-40, Digital to Analog Converter
ADI

AD7546BD

IC PARALLEL, WORD INPUT LOADING, 10 us SETTLING TIME, 16-BIT DAC, CDIP40, CERAMIC, DIP-40, Digital to Analog Converter
ADI

AD7546JN

IC PARALLEL, WORD INPUT LOADING, 10 us SETTLING TIME, 16-BIT DAC, PDIP40, PLASTIC, DIP-40, Digital to Analog Converter
ADI

AD7546KN

IC PARALLEL, WORD INPUT LOADING, 10 us SETTLING TIME, 16-BIT DAC, PDIP40, PLASTIC, DIP-40, Digital to Analog Converter
ADI

AD7547

LC2MOS PARALLEL LOADING DUAL 12-BIT DAC
ADI

AD7547ACHIPS

Dual 12-Bit CMOS DAC with Parallel Load Input Structure
ADI

AD7547AQ

LC2MOS PARALLEL LOADING DUAL 12-BIT DAC
ADI

AD7547BQ

LC2MOS PARALLEL LOADING DUAL 12-BIT DAC
ADI

AD7547CQ

LC2MOS PARALLEL LOADING DUAL 12-BIT DAC
ADI

AD7547JC/D

12-Bit Digital-to-Analog Converter
ETC

AD7547JCWG

12-Bit Digital-to-Analog Converter
ETC

AD7547JEWG

12-Bit Digital-to-Analog Converter
ETC