7555IPA [INTERSIL]

General Purpose Timers; 通用定时器
7555IPA
型号: 7555IPA
厂家: Intersil    Intersil
描述:

General Purpose Timers
通用定时器

文件: 总12页 (文件大小:287K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICM7555, ICM7556  
®
Data Sheet  
August 24, 2006  
FN2867.9  
General Purpose Timers  
Features  
• Exact Equivalent in Most Cases for SE/NE555/556 or  
TLC555/556  
The ICM7555 and ICM7556 are CMOS RC timers providing  
significantly improved performance over the standard  
SE/NE 555/6 and 355 timers, while at the same time being  
direct replacements for those devices in most applications.  
Improved parameters include low supply current, wide  
operating supply voltage range, low THRESHOLD,  
TRIGGER and RESET currents, no crowbarring of the  
supply current during output transitions, higher frequency  
performance and no requirement to decouple CONTROL  
VOLTAGE for stable operation.  
• Low Supply Current  
- ICM7555. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60μA  
- ICM7556. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120μA  
• Extremely Low Input Currents . . . . . . . . . . . . . . . . . 20pA  
• High Speed Operation . . . . . . . . . . . . . . . . . . . . . . . 1MHz  
• Guaranteed Supply Voltage Range . . . . . . . . . 2V to 18V  
Temperature Stability . . . . . . . . . . . . 0.005%/°C at +25°C  
Specifically, the ICM7555 and ICM7556 are stable  
controllers capable of producing accurate time delays or  
frequencies. The ICM7556 is a dual ICM7555, with the two  
timers operating independently of each other, sharing only  
V+ and GND. In the one shot mode, the pulse width of each  
circuit is precisely controlled by one external resistor and  
capacitor. For astable operation as an oscillator, the free  
running frequency and the duty cycle are both accurately  
controlled by two external resistors and one capacitor. Unlike  
the regular bipolar SE/NE 555/6 devices, the CONTROL  
VOLTAGE terminal need not be decoupled with a capacitor.  
The circuits are triggered and reset on falling (negative)  
waveforms, and the output inverter can source or sink  
currents large enough to drive TTL loads, or provide minimal  
offsets to drive CMOS loads.  
• Normal Reset Function - No Crowbarring of Supply During  
Output Transition  
• Can be Used with Higher Impedance Timing Elements  
than Regular 555/6 for Longer RC Time Constants  
• Timing from Microseconds through Hours  
• Operates in Both Astable and Monostable Modes  
• Adjustable Duty Cycle  
• High Output Source/Sink Driver can Drive TTL/CMOS  
• Outputs have Very Low Offsets, HI and LO  
• Pb-Free Plus Anneal Available (RoHS Compliant)  
Applications  
• Precision Timing  
• Pulse Generation  
• Sequential Timing  
• Time Delay Generation  
• Pulse Width Modulation  
• Pulse Position Modulation  
• Missing Pulse Detector  
Pinouts  
ICM7555 (8 LD PDIP, SOIC)  
ICM7556 (14 LD PDIP, CERDIP)  
TOP VIEW  
TOP VIEW  
DISCHARGE  
1
2
3
4
5
6
7
14 V  
DD  
THRESH-  
OLD  
CONTROL  
VOLTAGE  
13 DISCHARGE  
12 THRESHOLD  
1
2
3
4
8
7
6
5
GND  
TRIGGER  
OUTPUT  
RESET  
V
DD  
DISCHARGE  
THRESHOLD  
CONTROL  
11  
RESET  
OUTPUT  
TRIGGER  
GND  
VOLTAGE  
10 RESET  
CONTROL  
VOLTAGE  
9
8
OUTPUT  
TRIGGER  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2002, 2004, 2005, 2006. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
ICM7555, ICM7556  
Ordering Information  
TEMP. RANGE  
(°C)  
PART NUMBER  
ICM7555CBA  
PART MARKING  
7555 CBA  
PACKAGE  
8 Ld SOIC  
PKG. DWG. #  
M8.15  
0 to +70  
0 to +70  
0 to +70  
0 to +70  
ICM7555CBA-T  
7555 CBA  
7555 CBAZ  
7555 CBAZ  
8 Ld SOIC Tape and Reel  
8 Ld SOIC (Pb-free)  
M8.15  
M8.15  
M8.15  
ICM7555CBAZ (Note)  
ICM7555CBAZ-T (Note)  
8 Ld SOIC (Pb-free)  
Tape and Reel  
ICM7555IBA  
7555 IBA  
7555 IBA  
7555 IBAZ  
7555 IBAZ  
-25 to +85  
-25 to +85  
-25 to +85  
-25 to +85  
8 Ld SOIC  
M8.15  
M8.15  
M8.15  
M8.15  
ICM7555IBAT  
8 Ld SOIC Tape and Reel  
8 Ld SOIC (Pb-free)  
ICM7555IBAZ (Note)  
ICM7555IBAZ-T (Note)  
8 Ld SOIC (Pb-free)  
Tape and Reel  
ICM7555IPA  
7555 IPA  
-25 to +85  
-25 to +85  
-25 to +85  
-25 to +85  
-55 to +125  
8 Ld PDIP  
E8.3  
ICM7555IPAZ (Note)  
ICM7556IPD  
7555 IPAZ  
8 Ld PDIP** (Pb-free)  
14 Ld PDIP  
E8.3  
ICM7556IPD  
ICM7556IPDZ  
ICM7556MJD  
E14.3  
E14.3  
F14.3  
ICM7556IPDZ (Note)  
ICM7556MJD  
14 Ld PDIP** (Pb-free)  
14 Ld Cerdip  
**Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing  
applications.  
NOTE: Intersil Pb-free products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate  
termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are  
MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
FN2867.9  
August 24, 2006  
2
ICM7555, ICM7556  
Absolute Maximum Ratings  
Thermal Information  
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+18V  
Input Voltage  
Trigger, Control Voltage, Threshold,  
Reset (Note 1) . . . . . . . . . . . . . . . . . . . . . V+ +0.3V to GND -0.3V  
Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100mA  
Thermal Resistance (Typical, Note 2)  
14 Lead CERDIP Package. . . . . . . . . .  
14 Lead PDIP Package* . . . . . . . . . . .  
8 Lead PDIP Package* . . . . . . . . . . . .  
8 Lead SOIC Package . . . . . . . . . . . . .  
θ
(°C/W)  
80  
115  
130  
170  
θ
(°C/W)  
24  
N/A  
N/A  
N/A  
JA  
JC  
Maximum Junction Temperature (Hermetic Package) . . . . . . . +175°C  
Maximum Junction Temperature (Plastic Package) . . . . . . . +150°C  
Maximum Storage Temperature Range . . . . . . . . -65°C to +150°C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . +300°C  
(SOIC - Lead Tips Only)  
* Pb-free PDIPs can be used for through hole wave solder  
processing only. They are not intended for use in Reflow solder  
processing applications.  
Operating Conditions  
Temperature Range  
ICM7555C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to +70°C  
ICM7555I, ICM7556I . . . . . . . . . . . . . . . . . . . . . . -25°C to +85°C  
ICM7556M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55°C to +125°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to a voltage greater than  
V+ +0.3V or less than V- -0.3V may cause destructive latchup. For this reason it is recommended that no inputs from external sources not  
operating from the same power supply be applied to the device before its power supply is established. In multiple supply systems, the supply  
of the ICM7555 and ICM7556 must be turned on first.  
2. θ is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief 379 for details.  
JA  
Electrical Specifications Applies to ICM7555 and ICM7556, unless otherwise specified  
(NOTE 4)  
T
= +25°C  
-55°C TO +125°C  
A
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP MAX MIN TYP MAX UNITS  
Static Supply Current  
I
ICM7555  
ICM7556  
V
V
V
V
= 5V  
40  
60  
80  
120  
2
200  
300  
400  
600  
300  
300  
600  
600  
μA  
μA  
DD  
DD  
DD  
DD  
DD  
= 15V  
= 5V  
μA  
= 15V  
μA  
Monostable Timing Accuracy  
R
= 10K, C = 0.1μF, V  
= 5V  
DD  
%
A
858  
1161  
μs  
Drift with Temperature  
(Note 3)  
V
V
V
V
R
= 5V  
150  
200  
250  
0.5  
ppm/°C  
ppm/°C  
ppm/°C  
%/V  
DD  
DD  
DD  
DD  
= 10V  
= 15V  
Drift with Supply (Note 3)  
= 5V to 15V  
0.5  
2
Astable Timing Accuracy  
= R = 10K, C = 0.1μF, V = 5V  
DD  
%
A
B
1717  
2323  
μs  
Drift with Temperature  
(Note 3)  
V
V
V
V
V
V
V
V
V
= 5V  
150  
200  
250  
0.5  
ppm/°C  
ppm/°C  
ppm/°C  
%/V  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
= 10V  
= 15V  
= 5V to 15V  
= 15V  
= 15V  
= 15V  
= 15V  
= 15V  
Drift with Supply (Note 3)  
Threshold Voltage  
Trigger Voltage  
0.5  
67  
32  
V
62  
28  
71  
36  
10  
10  
71  
61  
27  
72  
37  
50  
50  
72  
% V  
% V  
TH  
DD  
V
TRIG  
DD  
Trigger Current  
I
nA  
nA  
% V  
TRIG  
Threshold Current  
Control Voltage  
I
TH  
V
62  
67  
61  
CV  
DD  
FN2867.9  
August 24, 2006  
3
ICM7555, ICM7556  
Electrical Specifications Applies to ICM7555 and ICM7556, unless otherwise specified (Continued)  
(NOTE 4)  
T
= +25°C  
-55°C TO +125°C  
A
PARAMETER  
Reset Voltage  
SYMBOL  
TEST CONDITIONS  
= 2V to 15V  
MIN  
TYP MAX MIN  
TYP MAX UNITS  
V
V
V
V
V
V
V
V
V
V
0.4  
1.0  
10  
0.2  
1.2  
50  
V
nA  
nA  
V
RST  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
Reset Current  
I
= 15V  
= 15V  
= 15V, I  
RST  
Discharge Leakage  
Output Voltage  
I
10  
50  
DIS  
V
= 20mA  
0.4  
0.2  
1.0  
0.4  
1.25  
0.5  
OL  
OH  
DIS  
SINK  
= 5V, I  
SINK  
= 3.2mA  
V
V
= 15V, I  
= 0.8mA  
14.3  
4.0  
14.6  
4.3  
14.2  
3.8  
V
SOURCE  
= 5V, I  
= 0.8mA  
V
SOURCE  
= 15mA  
Discharge Output Voltage  
V
= 5V, I  
0.2  
0.4  
0.6  
0.4  
V
SINK  
= 15V, I  
= 15mA  
V
SINK  
Supply Voltage (Note 3)  
Output Rise Time (Note 3)  
Output Fall Time (Note 3)  
V
Functional Operation  
2.0  
18.0  
3.0  
16.0  
V
DD  
t
R
R
= 10M, C = 10pF, V  
= 5V  
75  
75  
1
ns  
ns  
MHz  
R
L
L
DD  
t
= 10M, C = 10pF, V  
= 5V  
F
L
L
DD  
Oscillator Frequency  
(Note 3)  
f
V
= 5V, R = 470Ω, R = 270Ω,  
DD A B  
MAX  
C = 200pF  
NOTES:  
3. These parameters are based upon characterization data and are not tested.  
4. Applies only to military temperature range product (M suffix).  
Functional Diagram  
V
DD  
FLIP-FLOP  
RESET  
8
4
OUTPUT  
DRIVERS  
R
R
COMPARATOR  
A
THRESHOLD  
+
6
5
OUTPUT  
3
-
CONTROL  
VOLTAGE  
7
DISCHARGE  
1
n
+
TRIGGER  
2
-
COMPARATOR  
B
R
1
GND  
NOTE: This functional diagram reduces the circuitry down to its simplest equivalent components. Tie down unused inputs.  
TRUTH TABLE  
THRESHOLD VOLTAGE  
TRIGGER VOLTAGE  
RESET  
Low  
OUTPUT  
Low  
DISCHARGE SWITCH  
Don’t Care  
2
Don’t Care  
1
On  
On  
> / (V+)  
3
> / (V+)  
3
High  
Low  
2
1
< / (V+)  
3
> / (V+)  
3
High  
Stable  
High  
Stable  
Off  
1
Don’t Care  
< / (V+)  
High  
3
NOTE: RESET will dominate all other inputs: TRIGGER will dominate over THRESHOLD.  
FN2867.9  
August 24, 2006  
4
ICM7555, ICM7556  
Schematic Diagram  
V
DD  
P
P
P
P
R
R
R
THRESHOLD  
N
N
NPN  
CONTROL  
VOLTAGE  
OUTPUT  
P
P
TRIGGER  
N
N
N
N
N
N
N
GND  
RESET  
DISCHARGE  
R = 100kΩ ±20% (TYP)  
The ICM7555 and ICM7556 produce supply current spikes  
of only 2mA - 3mA instead of 300mA - 400mA and supply  
decoupling is normally not necessary. Also, in most  
instances, the CONTROL VOLTAGE decoupling capacitors  
are not required since the input impedance of the CMOS  
comparators on chip are very high. Thus, for many  
applications, two capacitors can be saved using an ICM7555  
and three capacitors with an ICM7556.  
Application Information  
General  
The ICM7555 and ICM7556 devices are, in most instances,  
direct replacements for the NE/SE 555/6 devices. However,  
it is possible to effect economies in the external component  
count using the ICM7555 and ICM7556. Because the bipolar  
NE/SE 555/6 devices produce large crowbar currents in the  
output driver, it is necessary to decouple the power supply  
lines with a good capacitor close to the device. The ICM7555  
and ICM7556 devices produce no such transients. See  
Figure 1.  
POWER SUPPLY CONSIDERATIONS  
Although the supply current consumed by the ICM7555 and  
ICM7556 devices is very low, the total system supply current  
can be high unless the timing components are high  
impedance. Therefore, use high values for R and low values  
for C in Figures 2A, 2B, and 3.  
500  
T
= 25°C  
A
400  
V
DD  
V
300  
200  
DD  
GND  
TRIGGER  
10K  
1
2
3
4
8
7
6
5
SE/NE555  
DISCHARGE  
THRESHOLD  
V
100  
0
DD  
CONTROL  
VOLTAGE  
RESET  
OPTIONAL  
CAPACITOR  
ICM7555/56  
R
C
0
200  
400  
600  
800  
TIME (ns)  
FIGURE 2A. ASTABLE OPERATION  
FIGURE 1. SUPPLY CURRENT TRANSIENT COMPARED WITH  
A STANDARD BIPOLAR 555 DURING AN OUTPUT  
TRANSITION  
FN2867.9  
August 24, 2006  
5
ICM7555, ICM7556  
t
= -ln (1/3) R C = 1.1R C  
V
OUTPUT  
A
A
DD  
R
R
V
A
B
DD  
R
A
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
DISCHARGE  
THRESHOLD  
TRIGGER  
OUTPUT  
OUTPUT  
ICM7555  
CONTROL  
VOLTAGE  
V
DD  
RESET  
OPTIONAL  
CAPACITOR  
OPTIONAL  
CAPACITOR  
C
C
V
18V  
DD  
FIGURE 2B. ALTERNATE ASTABLE CONFIGURATION  
FIGURE 3. MONOSTABLE OPERATION  
CONTROL VOLTAGE  
OUTPUT DRIVE CAPABILITY  
The CONTROL VOLTAGE terminal permits the two trip  
voltages for the THRESHOLD and TRIGGER internal  
The output driver consists of a CMOS inverter capable of  
driving most logic families including CMOS and TTL. As  
such, if driving CMOS, the output swing at all supply  
voltages will equal the supply voltage. At a supply voltage of  
4.5V or more, the ICM7555 and ICM7556 will drive at least  
two standard TTL loads.  
comparators to be controlled. This provides the possibility of  
oscillation frequency modulation in the astable mode or even  
inhibition of oscillation, depending on the applied voltage. In  
the monostable mode, delay times can be changed by  
varying the applied voltage to the CONTROL VOLTAGE pin.  
ASTABLE OPERATION  
RESET  
The circuit can be connected to trigger itself and free run as  
a multivibrator, see Figure 2A. The output swings from rail to  
rail, and is a true 50% duty cycle square wave. (Trip points  
and output swings are symmetrical.) Less than a 1%  
frequency variation is observed over a voltage range of +5V  
to +15V.  
The RESET terminal is designed to have essentially the  
same trip voltage as the standard bipolar 555/6, i.e., 0.6V to  
0.7V. At all supply voltages it represents an extremely high  
input impedance. The mode of operation of the RESET  
function is, however, much improved over the standard  
bipolar NE/SE 555/6 in that it controls only the internal flip-  
flop, which in turn controls simultaneously the state of the  
OUTPUT and DISCHARGE pins. This avoids the multiple  
threshold problems sometimes encountered with slow falling  
edges in the bipolar devices.  
1
------------------  
f =  
(EQ. 1)  
1.4 RC  
The timer can also be connected as shown in Figure 2B. In this  
circuit, the frequency is:  
(EQ. 2)  
f = 1.44 ⁄ (R + 2R )C  
A
B
The duty cycle is controlled by the values of R and R , by the  
A
B
equation:  
(EQ. 3)  
D = (R + R ) ⁄ (R + 2R  
)
A
B
A
B
MONOSTABLE OPERATION  
In this mode of operation, the timer functions as a one-shot.  
See Figure 3. Initially the external capacitor (C) is held  
discharged by a transistor inside the timer. Upon application of  
a negative TRIGGER pulse to pin 2, the internal flip-flop is set  
which releases the short circuit across the external capacitor  
and drives the OUTPUT high. The voltage across the capacitor  
now increases exponentially with a time constant t = R C.  
A
2
When the voltage across the capacitor equals / V+, the  
3
comparator resets the flip-flop, which in turn discharges the  
capacitor rapidly and also drives the OUTPUT to its low state.  
TRIGGER must return to a high state before the OUTPUT can  
return to a low state.  
FN2867.9  
August 24, 2006  
6
ICM7555, ICM7556  
Typical Performance Curves  
200  
180  
400  
360  
320  
280  
1200  
T
= 25°C  
1100  
1000  
900  
A
160  
140  
120  
800  
T
T
T
= -20°C  
= 25°C  
= 70°C  
A
A
A
240  
200  
160  
120  
700  
600  
500  
400  
100  
80  
V
= 2V  
DD  
60  
300  
200  
40  
20  
0
80  
40  
0
V
= 5V  
DD  
V
= 18V  
DD  
100  
0
0
2
4
6
8
10 12 14 16 18 20  
0
10  
20  
30  
40  
)
SUPPLY VOLTAGE (V)  
LOWEST VOLTAGE LEVEL OF TRIGGER PULSE (%V  
DD  
FIGURE 4. MINIMUM PULSE WIDTH REQUIRED FOR  
TRIGGERING  
FIGURE 5. SUPPLY CURRENT vs SUPPLY VOLTAGE  
-0.1  
100  
T
= 25°C  
A
T
= -20°C  
A
V
= 2V  
DD  
V
= 5V  
V
= 18V  
DD  
DD  
-1.0  
10.0  
1.0  
V
= 5V  
DD  
V
= 2V  
DD  
-10.0  
-100  
V
= 18V  
DD  
0.1  
0.01  
0.1  
1.0  
10.0  
-10  
-1.0  
-0.1  
-0.01  
OUTPUT VOLTAGE REFERENCED TO V  
(V)  
OUTPUT LOW VOLTAGE (V)  
DD  
FIGURE 6. OUTPUT SOURCE CURRENT vs OUTPUT VOLTAGE  
FIGURE 7. OUTPUT SINK CURRENT vs OUTPUT VOLTAGE  
100  
100  
T
= 70°C  
A
T
= 25°C  
A
V
= 18V  
V
= 18V  
DD  
DD  
V
= 5V  
DD  
10.0  
10.0  
1.0  
V
= 5V  
DD  
V
= 2V  
V
= 2V  
DD  
DD  
1.0  
0.1  
0.1  
0.01  
0.01  
0.1  
1.0  
10.0  
0.1  
1.0  
10.0  
OUTPUT LOW VOLTAGE (V)  
OUTPUT LOW VOLTAGE (V)  
FIGURE 8. OUTPUT SINK CURRENT vs OUTPUT VOLTAGE  
FIGURE 9. OUTPUT SINK CURRENT vs OUTPUT VOLTAGE  
FN2867.9  
August 24, 2006  
7
ICM7555, ICM7556  
Typical Performance Curves (Continued)  
8
6
4
2
0
2
4
100  
T
= 25°C  
A
T
= 25°C  
A
V
= 5V  
DD  
V
= 18V  
DD  
10.0  
R
= R = 10MΩ  
B
A
V
= 2V  
DD  
C = 100pF  
R
= R = 10kΩ  
B
A
1.0  
0.1  
C = 0.1μF  
6
8
0.1  
1.0  
10.0  
100.0  
0.01  
0.1  
1.0  
10.0  
SUPPLY VOLTAGE (V)  
DISCHARGE LOW VOLTAGE (V)  
FIGURE 10. NORMALIZED FREQUENCY STABILITY IN THE  
ASTABLE MODE vs SUPPLY VOLTAGE  
FIGURE 11. DISCHARGE OUTPUT CURRENT vs DISCHARGE  
OUTPUT VOLTAGE  
600  
+1.0  
R
= R = 10kΩ  
B
A
V
= 5V  
+0.9  
+0.8  
DD  
C = 0.1μF  
500  
+0.7  
+0.6  
+0.5  
400  
300  
V
= 5V  
DD  
+0.4  
+0.3  
V = 18V  
DD  
T
= 70°C  
A
200  
100  
0
T
= 25°C  
+0.2  
+0.1  
V
= 2V  
40  
A
DD  
T
= -20°C  
20  
A
V
= 2V  
0
DD  
-0.1  
0
10  
30  
40  
)
-20  
0
20  
60  
80  
LOWEST VOLTAGE LEVEL OF TRIGGER PULSE (%V  
TEMPERATURE (°C)  
DD  
FIGURE 12. PROPAGATION DELAY vs VOLTAGE LEVEL OF  
TRIGGER PULSE  
FIGURE 13. NORMALIZED FREQUENCY STABILITY IN THE  
ASTABLE MODE vs TEMPERATURE  
1.0  
1.0  
T
= 25°C  
A
T
= 25°C  
100m  
10m  
A
100m  
R
A
10m  
1m  
1kΩ  
(R + 2R )  
1m  
100μ  
10μ  
1μ  
A
B
1kΩ  
10kΩ  
100kΩ  
1MΩ  
10MΩ  
100MΩ  
10kΩ  
100kΩ  
1MΩ  
10MΩ  
100MΩ  
100μ  
10μ  
1μ  
100n  
10n  
1n  
100n  
10n  
1n  
100p  
100p  
10p  
1p  
10p  
1p  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100n  
1μ  
10μ  
100μ 1m  
10m 100m  
1
10  
FREQUENCY (Hz)  
TIME DELAY (s)  
FIGURE 14. FREE RUNNING FREQUENCY vs R , R AND C  
A
B
FIGURE 15. TIME DELAY IN THE MONOSTABLE MODE vs  
AND C  
R
A
FN2867.9  
August 24, 2006  
8
ICM7555, ICM7556  
Small Outline Plastic Packages (SOIC)  
M8.15 (JEDEC MS-012-AA ISSUE C)  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
N
INDEX  
AREA  
0.25(0.010)  
M
B M  
H
INCHES MILLIMETERS  
E
SYMBOL  
MIN  
MAX  
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
NOTES  
-B-  
A
A1  
B
C
D
E
e
0.0532  
0.0040  
0.013  
0.0688  
0.0098  
0.020  
-
-
1
2
3
L
9
SEATING PLANE  
A
0.0075  
0.1890  
0.1497  
0.0098  
0.1968  
0.1574  
-
-A-  
3
h x 45°  
D
4
-C-  
0.050 BSC  
1.27 BSC  
-
α
H
h
0.2284  
0.0099  
0.016  
0.2440  
0.0196  
0.050  
5.80  
0.25  
0.40  
6.20  
0.50  
1.27  
-
e
A1  
C
5
B
0.10(0.004)  
L
6
0.25(0.010) M  
C
A M B S  
N
α
8
8
7
NOTES:  
0°  
8°  
0°  
8°  
-
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of  
Publication Number 95.  
Rev. 1 6/05  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006  
inch) per side.  
4. Dimension “E” does not include interlead flash or protrusions. Inter-  
lead flash and protrusions shall not exceed 0.25mm (0.010 inch) per  
side.  
5. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater  
above the seating plane, shall not exceed a maximum value of  
0.61mm (0.024 inch).  
10. Controlling dimension: MILLIMETER. Converted inch dimensions  
are not necessarily exact.  
FN2867.9  
August 24, 2006  
9
ICM7555, ICM7556  
Dual-In-Line Plastic Packages (PDIP)  
E8.3 (JEDEC MS-001-BA ISSUE D)  
8 LEAD DUAL-IN-LINE PLASTIC PACKAGE  
N
E1  
INDEX  
AREA  
INCHES MILLIMETERS  
1
2
3
N/2  
SYMBOL  
MIN  
MAX  
0.210  
-
MIN  
-
MAX  
5.33  
-
NOTES  
-B-  
-C-  
A
A1  
A2  
B
-
4
-A-  
D
E
0.015  
0.115  
0.014  
0.045  
0.008  
0.355  
0.005  
0.300  
0.240  
0.39  
2.93  
0.356  
1.15  
0.204  
9.01  
0.13  
7.62  
6.10  
4
BASE  
PLANE  
0.195  
0.022  
0.070  
0.014  
0.400  
-
4.95  
0.558  
1.77  
0.355  
10.16  
-
-
A2  
A
-
SEATING  
PLANE  
L
C
L
B1  
C
8, 10  
D1  
B1  
eA  
-
A
A
1
D1  
e
D
5
eC  
C
B
eB  
D1  
E
5
0.010 (0.25) M  
C
B S  
0.325  
0.280  
8.25  
7.11  
6
NOTES:  
E1  
e
5
1. Controlling Dimensions: INCH. In case of conflict between  
0.100 BSC  
0.300 BSC  
2.54 BSC  
7.62 BSC  
-
English and Metric dimensions, the inch dimensions control.  
e
e
6
A
B
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
-
0.430  
0.150  
-
10.92  
3.81  
7
3. Symbols are defined in the “MO Series Symbol List” in Section  
2.2 of Publication No. 95.  
L
0.115  
2.93  
4
9
4. Dimensions A, A1 and L are measured with the package seated  
N
8
8
in JEDEC seating plane gauge GS-3.  
Rev. 0 12/93  
5. D, D1, and E1 dimensions do not include mold flash or protru-  
sions. Mold flash or protrusions shall not exceed 0.010 inch  
(0.25mm).  
e
6. E and  
pendicular to datum  
7. e and e are measured at the lead tips with the leads uncon-  
are measured with the leads constrained to be per-  
A
-C-  
.
B
C
strained. e must be zero or greater.  
C
8. B1 maximum dimensions do not include dambar protrusions.  
Dambar protrusions shall not exceed 0.010 inch (0.25mm).  
9. N is the maximum number of terminal positions.  
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3,  
E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch  
(0.76 - 1.14mm).  
FN2867.9  
August 24, 2006  
10  
ICM7555, ICM7556  
Dual-In-Line Plastic Packages (PDIP)  
N
E14.3 (JEDEC MS-001-AA ISSUE D)  
14 LEAD DUAL-IN-LINE PLASTIC PACKAGE  
E1  
INDEX  
AREA  
1
2
3
N/2  
INCHES MILLIMETERS  
-B-  
-C-  
SYMBOL  
MIN  
MAX  
0.210  
-
MIN  
-
MAX  
5.33  
-
NOTES  
-A-  
A
A1  
A2  
B
-
4
D
E
0.015  
0.115  
0.014  
0.045  
0.008  
0.735  
0.005  
0.300  
0.240  
0.39  
2.93  
0.356  
1.15  
0.204  
18.66  
0.13  
7.62  
6.10  
4
BASE  
PLANE  
A2  
A
0.195  
0.022  
0.070  
0.014  
0.775  
-
4.95  
0.558  
1.77  
0.355  
19.68  
-
-
SEATING  
PLANE  
-
L
C
L
B1  
C
8
D1  
B1  
eA  
A1  
A
D1  
-
e
eC  
C
B
D
5
eB  
0.010 (0.25) M  
C
B S  
D1  
E
5
NOTES:  
0.325  
0.280  
8.25  
7.11  
6
1. Controlling Dimensions: INCH. In case of conflict between English  
and Metric dimensions, the inch dimensions control.  
E1  
e
5
0.100 BSC  
0.300 BSC  
2.54 BSC  
7.62 BSC  
-
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
e
e
6
A
B
3. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of  
Publication No. 95.  
-
0.430  
0.150  
-
10.92  
3.81  
7
4. Dimensions A, A1 and L are measured with the package seated in  
L
0.115  
2.93  
4
9
JEDEC seating plane gauge GS-3.  
N
14  
14  
5. D, D1, and E1 dimensions do not include mold flash or protrusions.  
Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).  
Rev. 0 12/93  
e
6. E and  
dicular to datum  
7. e and e are measured at the lead tips with the leads uncon-  
are measured with the leads constrained to be perpen-  
A
-C-  
.
B
C
strained. e must be zero or greater.  
C
8. B1maximumdimensionsdonotincludedambarprotrusions. Dambar  
protrusions shall not exceed 0.010 inch (0.25mm).  
9. N is the maximum number of terminal positions.  
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3,  
E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 -  
1.14mm).  
FN2867.9  
August 24, 2006  
11  
ICM7555, ICM7556  
Ceramic Dual-In-Line Frit Seal Packages (CERDIP)  
c1 LEAD FINISH  
F14.3 MIL-STD-1835 GDIP1-T14 (D-1, CONFIGURATION A)  
14 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE  
-D-  
E
-A-  
INCHES MILLIMETERS  
MIN  
BASE  
(c)  
METAL  
SYMBOL  
MAX  
0.200  
0.026  
0.023  
0.065  
0.045  
0.018  
0.015  
0.785  
0.310  
MIN  
-
MAX  
5.08  
0.66  
0.58  
1.65  
1.14  
0.46  
0.38  
19.94  
7.87  
NOTES  
b1  
A
b
-
-
M
M
(b)  
0.014  
0.014  
0.045  
0.023  
0.008  
0.008  
-
0.36  
0.36  
1.14  
0.58  
0.20  
0.20  
-
2
-B-  
b1  
b2  
b3  
c
3
SECTION A-A  
bbb  
C
D
A - B  
D
S
S
S
-
4
BASE  
PLANE  
Q
2
A
-C-  
SEATING  
PLANE  
c1  
D
3
L
α
5
S1  
b2  
eA  
A A  
E
0.220  
5.59  
5
e
S
b
eA/2  
aaa M  
c
e
0.100 BSC  
2.54 BSC  
-
eA  
eA/2  
L
0.300 BSC  
0.150 BSC  
7.62 BSC  
3.81 BSC  
-
ccc  
C
A - B  
D
C
A - B S D S  
M
S
-
NOTES:  
0.125  
0.200  
0.060  
-
3.18  
5.08  
1.52  
-
-
1. Index area: A notch or a pin one identification mark shall be locat-  
ed adjacent to pin one and shall be located within the shaded  
area shown. The manufacturer’s identification shall not be used  
as a pin one identification mark.  
Q
0.015  
0.38  
6
S1  
0.005  
0.13  
7
90°  
105°  
0.015  
0.030  
0.010  
0.0015  
90°  
105°  
0.38  
0.76  
0.25  
0.038  
-
α
aaa  
bbb  
ccc  
M
2. The maximum limits of lead dimensions b and c or M shall be  
measured at the centroid of the finished lead surfaces, when  
solder dip or tin plate lead finish is applied.  
-
-
-
-
-
-
-
-
-
-
3. Dimensions b1 and c1 apply to lead base metal only. Dimension  
M applies to lead plating and finish thickness.  
-
2, 3  
8
4. Corner leads (1, N, N/2, and N/2+1) may be configured with a  
partial lead paddle. For this configuration dimension b3 replaces  
dimension b2.  
N
14  
14  
Rev. 0 4/94  
5. This dimension allows for off-center lid, meniscus, and glass  
overrun.  
6. Dimension Q shall be measured from the seating plane to the  
base plane.  
7. Measure dimension S1 at all four corners.  
8. N is the maximum number of terminal positions.  
9. Dimensioning and tolerancing per ANSI Y14.5M - 1982.  
10. Controlling dimension: INCH.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN2867.9  
August 24, 2006  
12  

相关型号:

7555IPAZ

General Purpose Timers
INTERSIL

7555M

Analog-to-Digital Converter, 12-Bit
ETC

7556-49

Barrier Strip Terminal Block, 25A, 1 Row(s), 1 Deck(s)
MOLEX

7556-59

Barrier Strip Terminal Block, 25A, 1 Row(s), 1 Deck(s)
MOLEX

7556-C

Barrier Strip Terminal Block, 25A, 1 Row(s), 1 Deck(s)
MOLEX

7556-F

Barrier Strip Terminal Block, 25A, 1 Row(s), 1 Deck(s)
MOLEX

7556-M

Barrier Strip Terminal Block, 25A, 1 Row(s), 1 Deck(s)
MOLEX

7556-P

Barrier Strip Terminal Block, 25A, 1 Row(s), 1 Deck(s)
MOLEX

7556-V

Barrier Strip Terminal Block, 25A, 1 Row(s), 1 Deck(s)
MOLEX

75561-1500

Board Connector, 2 Contact(s), Male, Right Angle, Solder Terminal, Locking, Black Insulator, Plug,
MOLEX

75561-5000

EXTreme Power-Mass™ High-Current Connector Board-to-Board Applications
MOLEX

75561-5001

Board Connector, 2 Contact(s), Male, Right Angle, Solder Terminal, Locking, Black Insulator, Plug,
MOLEX