S80C198 [INTEL]

COMMERCIAL/EXPRESS CHMOS MICROCONTROLLER; 商业/ EXPRESS CHMOS单片机
S80C198
型号: S80C198
厂家: INTEL    INTEL
描述:

COMMERCIAL/EXPRESS CHMOS MICROCONTROLLER
商业/ EXPRESS CHMOS单片机

微控制器和处理器 外围集成电路 装置 时钟
文件: 总19页 (文件大小:277K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8XC198  
COMMERCIAL/EXPRESS CHMOS MICROCONTROLLER  
8 Kbytes of OTPROM  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
8 Kbytes of On-Chip OTPROM or ROM  
232 Byte Register File  
16 MHz Standard  
Y
Y
Y
Y
Y
Y
Y
Y
Full Duplex Serial Port  
Register-to-Register Architecture  
28 Interrupt Sources/16 Vectors  
1.75 ms 16 x 16 Multiply (16 MHz)  
3.0 ms 32/16 Divide (16 MHz)  
Powerdown and Idle Modes  
16-Bit Watchdog Timer  
High Speed I/O Subsystem  
16-Bit Timer  
16-Bit Counter  
Pulse-Width-Modulated Output  
Four 16-Bit Software Timers  
10-Bit A/D Converter with Sample/Hold  
Extended Temperature Available  
8-Bit External Bus  
The 8XC198 family offers low-cost entry into Intel’s powerful MCS -96 16-bit microcontroller architecture.  
É
Intel’s CHMOS process provides a high performance processor along with low power consumption. To further  
reduce power requirements, the processor can be placed into Idle or Powerdown Mode.  
The 8XC198 is the 8-bit bus version of the 8XC196KB. The prefixes mean: 80 (ROMless), 83 (ROM), 87 (OTP)  
One Time Programmable. The ROM and OTP are available in 8 Kbytes.  
Bit, byte, word and some 32-bit operations are available on the 8XC198. With a 16 MHz oscillator a 16-bit  
addition takes 0.50 ms, and the instruction times average 0.37 ms to 1.1 ms in typical applications.  
Four high-speed capture inputs are provided to record times when events occur. Six high-speed outputs are  
available for pulse or waveform generation. The high-speed output can also generate four software timers or  
start an A/D conversion. Events can be based on the timer or counter. Also provided on-chip are an A/D  
converter, serial port, watchdog timer and a pulse-width-modulated output signal.  
With the commercial (standard) temperature option, operational characteristics are guaranteed over the tem-  
a
perature range of 0 C to 70 C. Wth the extended temperature range option, operational characteristics are  
guaranteed over the temperature range of 40 C to 85 C.  
§
§
b
a
§
§
MCS -96 is a registered trademark of Intel Corporation.  
É
*Other brands and names are the property of their respective owners.  
Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoever, including infringement of any patent or  
copyright, for sale and use of Intel products except as provided in Intel’s Terms and Conditions of Sale for such products. Intel retains the right to make  
changes to these specifications at any time, without notice. Microcomputer Products may have minor variations to this specification known as errata.  
©
COPYRIGHT INTEL CORPORATION, 1995  
October 1992  
Order Number: 272034-003  
8XC198  
272034–1  
Figure 1. 87C198 Block Diagram  
0FFFFH  
4000H  
EXTERNAL MEMORY OR I/O  
INTERNAL ROM/EPROM OR  
EXTERNAL MEMORY  
2080H  
2040H  
2030H  
2020H  
2019H  
2018H  
2014H  
RESERVED  
UPPER 8 INTERRUPT VECTORS  
ROM/OTP SECURITY KEY  
RESERVED  
CHIP CONFIGURATION BYTE  
RESERVED  
272034–7  
LOWER 8 INTERRUPT VECTORS  
PLUS 2 SPECIAL INTERRUPTS  
Figure 3. Chip Configuration (2018H)  
2000H  
1FFEH  
0100H  
PORT 3 AND PORT 4  
EXTERNAL MEMORY OR I/O  
INTERNAL DATA MEMORY - REGISTER FILE  
(STACK POINTER, RAM AND SFRS)  
EXTERNAL PROGRAM CODE MEMORY  
0000H  
Figure 2. Memory Map  
WARNING:  
Reserved memory locations must not be written or read. The contents and/or function of these locations may change with  
future revisions of the device. Therefore, a program that relies on one or more of these locations may not function properly.  
2
8XC198  
PACKAGING  
The 8XC198 is available in a 52-pin PLCC package and an 80-pin QFP package. Contact your local sales  
office to determine the exact ordering code for the part desired.  
Package Designators:  
e
e
N
S
52-pin PLCC  
80-pin QFP  
Thermal Characteristics  
Package Type  
PLCC  
i
i
jc  
ja  
40 C/W  
§
70 C/W  
QFP  
4 C/W  
§
§
All thermal impedance data is approximate for static air conditions at 1W of power dissipation. Values will  
change depending on operating conditions and application. See the IntelPackaging Handbook (Order Number  
240800) for a description of Intel’s thermal impedance test methodology.  
272034–2  
Figure 4. 52-Pin PLCC Package  
NOTE:  
The above pinout diagram applies to the OTP (87C198) device. The OTP device uses all of the programming pins shown  
above. The ROM (83C198) device only uses programming pins: AINC, PALE, PMODE.n and PROG. The ROMless (80C198)  
doesn’t use any of the programming pins.  
3
8XC198  
272034–4  
NOTE:  
N.C. means No Connect (do not connect these pins).  
Figure 5. 80-Pin QFP Package  
NOTE:  
The above pinout diagram applies to the OTP (87C198) device. The OTP device uses all of the programming pins shown  
above. The ROM (83C198) device only uses programming pins: AINC, PALE, PMODE.n and PROG. The ROMless (80C198)  
doesn’t use any of the programming pins.  
4
8XC198  
PIN DESCRIPTIONS  
Symbol  
Name and Function  
V
V
Main supply voltage (5V).  
CC  
The PLCC package has 5 V pins and the QFP package has 12 V pins. All must be  
SS SS  
connected to digital ground.  
SS  
V
REF  
Reference voltage for the A/D converter (5V). V  
is also the supply voltage to the  
REF  
analog portion of the A/D converter and the logic used to read Port 0. Must be  
connected for A/D and Port 0 to function.  
ANGND  
Reference ground for the A/D converter. Must be held at nominally the same potential  
.
as V  
SS  
V
Programming Voltage. Also, timing pin for the return from powerdown circuit.  
Input of the oscillator inverter and of the internal clock generator.  
Output of the oscillator inverter.  
PP  
XTAL1  
XTAL2  
RESET  
Reset input to and open-drain output from the chip. Input low for at least 4 state times to  
reset the chip. The subsequent low-to-high transition commences the 10-state Reset  
Sequence.  
INST  
EA  
Output high during an external memory read indicates the read is an instruction fetch.  
INST is valid throughout the bus cycle. INST is activated only during external memory  
accesses and output low for a data fetch.  
Input for memory select (External Access). EA equal to a TTL-high causes memory  
accesses to locations 2000H through 3FFFH to be directed to on-chip ROM/EPROM.  
EA equal to a TTL-low causes accesses to these locations to be directed to off-chip  
memory.  
ALE/ADV  
RD  
Address Latch Enable or Address Valid output, as selected by CCR. Both pin options  
provide a latch to demultiplex the address from the address/data bus. When the pin is  
ADV, it goes inactive high at the end of the bus cycle. ALE/ADV is activated only during  
external memory accesses.  
Read signal output to external memory. RD is activated only during external memory  
reads.  
WR  
Write output to external memory. WR will go low for every external write.  
READY  
Ready input to lengthen external memory cycles. When the external memory is not  
being used, READY has no effect. Internal control of the number of wait states inserted  
into a bus cycle held not ready is available through configuration of CCR.  
HSI  
Inputs to High Speed Input Unit. Four HSI pins are available: HSI.0, HSI.1, HSI.2 and  
HSI.3. Two of them (HSI.2 and HSI.3) are shared with the HSO Unit.  
HSO  
Outputs from High Speed Output Unit. Six HSO pins are available: HSO.0, HSO.1,  
HSO.2, HSO.3, HSO.4 and HSO.5. Two of them (HSO.4 and HSO.5) are shared with the  
HSI Unit.  
Port 0  
4-bit high impedance input-only port. These pins can be used as digital inputs and/or as  
analog inputs to the on-chip A/D converter. These pins set the Programming Mode on  
the EPROM device.  
5
8XC198  
PIN DESCRIPTIONS (Continued)  
Symbol  
Name and Function  
Port 2  
Multi-functional port. All of its pins are shared with other functions in the 80C198.  
Ports 3 and 4  
8-bit bidirectional I/O ports with open drain outputs. These pins are shared with  
the multiplexed address/data bus which has strong internal pullups. Available as  
I/O only on the ROM and EPROM devices.  
TxD  
RxD  
The TxD pin is used for serial port transmission in Modes 1, 2 and 3. In mode 0 the  
pin is used as the serial clock output.  
Serial Port Receive pin used for serial port reception. In mode 0 the pin functions  
as input or output data.  
EXTINT  
T2CLK  
A positive transition on the EXTINT pin will generate an external interrupt.  
The T2CLK pin is the Timer2 clock input or the serial port baud rate generator  
input.  
T2RST  
PWM  
A rising edge on the T2RST pin will reset Timer2.  
The PWM output.  
PMODE  
Programming Mode Select. Determines the EPROM programming algorithm that is  
performed. PMODE is sampled after a chip reset and should be static while the  
part is operating.  
SID  
Slave ID Number. Used to assign each slave a pin of Port 3 or 4 to use for passing  
programming verification acknowledgement.  
PALE  
Programming ALE Input. Accepted by the 87C196KB when it is in Slave  
Programming Mode. Used to indicate that Ports 3 and 4 contain a command/  
address.  
PROG  
PVAL  
PVER  
Programming. Falling edge indicates valid data on PBUS and the beginning of  
programming. Rising edge indicates end of programming.  
Program Valid. This signal indicates the success or failure of programming in the  
Auto Programming Mode. A zero indicates successful programming.  
Program Verification. Used in Slave Programming and Auto CLB Programming  
Modes. Signal is low after rising edge of PROG if the programming was not  
successful.  
AINC  
Auto Increment. Active low signal indicates that the auto increment mode is  
enabled. Auto Increment will allow reading or writing of sequential EPROM  
locations without address transactions across the PBUS for each read or write.  
PORTS 3 and 4  
(when programming)  
Address/Command/Data Bus. Used to pass commands, addresses, and data to  
and from slave mode 87C196KBs. Used by chips in Auto Programming Mode to  
pass command, addresses and data to slaves. Also used in the Auto Programming  
Mode as a regular system bus to access external memory. Should have pullups to  
V
(15 kX).  
CC  
6
8XC198  
ELECTRICAL CHARACTERISTICS  
NOTICE: This data sheet contains preliminary infor-  
mation on new products in production. It is valid for  
the devices indicated in the revision history. The  
specifications are subject to change without notice.  
ABSOLUTE MAXIMUM RATINGS*  
Ambient Temperature  
under BiasÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 55 C to 125 C  
*WARNING: Stressing the device beyond the ‘‘Absolute  
Maximum Ratings’’ may cause permanent damage.  
These are stress ratings only. Operation beyond the  
‘‘Operating Conditions’’ is not recommended and ex-  
tended exposure beyond the ‘‘Operating Conditions’’  
may affect device reliability.  
b
a
§
§
b
a
Storage Temperature ÀÀÀÀÀÀÀÀÀÀ 65 C to 150 C  
§
§
Voltage on V or EA to  
V
PP  
or ANGND ÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 0.3V to 13.0V  
b a  
SS  
b a  
ÀÀ 0.5V to 7.0V  
Voltage on Any Other Pin to V  
(1)  
SS  
Power Dissipation ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ1.5W  
NOTE:  
1. Power dissipation is based on package heat transfer lim-  
itations, not device power consumption.  
OPERATING CONDITIONS  
(All characteristics in this data sheet apply to these operating conditions unless otherwise noted.)  
Symbol  
Description  
Min  
0
Max  
Units  
a
T
A
Ambient Temperature Under Bias  
Digital Supply Voltage  
70  
C
§
V
V
4.50  
4.50  
3.5  
5.50  
5.50  
16  
V
V
CC  
Analog Supply Voltage  
REF  
OSC  
F
Oscillator Frequency 16 MHz  
MHz  
NOTE:  
ANGND and V should be nominally at the same potential.  
SS  
DC CHARACTERISTICS  
Symbol  
Description  
Input Low Voltage  
Min  
Max  
0.8  
a
Units  
Test Conditions  
b
V
V
V
V
V
0.5  
V
V
V
V
IL  
(1)  
a
Input High Voltage  
0.2 V  
0.9  
V
V
V
0.5  
0.5  
0.5  
IH  
CC  
CC  
a
a
Input High Voltage on XTAL1  
Input High Voltage on RESET  
Output Low Voltage  
0.7 V  
CC  
IH1  
IH2  
OL  
CC  
CC  
2.6  
e
e
e
0.3  
0.45  
1.5  
V
V
V
I
I
I
200 mA  
32 mA  
7 mA  
OL  
OL  
OL  
b
b
b
e b  
e b  
e b  
V
Output High Voltage  
(Standard Outputs)  
V
V
V
0.3  
0.7  
1.5  
V
V
V
I
I
I
200 mA  
3.2 mA  
7 mA  
OH  
CC  
OH  
OH  
OH  
k
CC  
CC  
k
b
0.3V  
g
I
I
I
Input Leakage Current (Std. Inputs)  
Input Leakage Current (Port 0)  
10  
mA  
mA  
mA  
0
0
V
V
IN  
V
IN  
V
V
LI  
CC  
k
k
a
3
6
LI1  
IL1  
REF  
b
e
0.45 V  
Logical 0 Input Current in Reset  
(ALE, RD, INST)  
IN  
Hyst  
Hysteresis on RESET Pin  
300  
mV  
NOTE:  
1. All pins except RESET and XTAL1.  
7
8XC198  
DC CHARACTERISTICS (Continued)  
(6)  
Symbol  
Description  
Active Mode Current in Reset  
A/D Converter Reference Current  
Idle Mode Current  
Min Typ  
Max Units  
Test Conditions  
e
16 MHz  
I
I
I
I
I
50  
2
60  
5
mA  
mA  
mA  
mA  
mA  
X
XTAL1  
e
CC  
e
e
V
V
PP  
V
REF  
5.5V  
5.5V  
CC  
REF  
IDLE  
CC1  
PD  
10  
15  
5
25  
25  
30  
50K  
10  
e
3.5 MHz  
Active Mode Current  
XTAL1  
e
e
V
e
Powerdown Mode Current  
Reset Pullup Resistor  
V
CC  
V
PP  
REF  
R
RST  
6K  
e
C
S
Pin Capacitance (Any Pin to V  
)
SS  
pF  
F
1.0 MHz  
TEST  
NOTES:  
(Notes apply to all specifications)  
1. Standard Outputs include AD015, RD, WR, ALE, INST, HSO pins, PWM/P2.5, RESET, Ports 3 and 4, TXD/P2.0 and  
RXD (in serial mode 0). The V specification is not valid for RESET. Ports 3 and 4 are open-drain outputs.  
OH  
2. Standard Inputs include HSI pins, EA, READY, RXD/P2.1, EXTINT/P2.2, T2CLK/P2.3 and T2RST/P2.4.  
3. Maximum current per pin must be externally limited to the following values if V is held above 0.45V or V  
is held  
OL OH  
b
on Output pins: 10 mA  
on Standard Output pins: 10 mA  
below V  
0.7V:  
CC  
I
I
OL  
OH  
g
4. Maximum current per bus pin (data and control) during normal operation is 3.2 mA.  
5. During normal (non-transient) conditions the following total current limits apply:  
HSO, P2.0, RXD, RESET  
P2.5, WR  
AD0AD15  
I : 29 mA  
OL  
I : 13 mA  
OL  
I : 52 mA  
OL  
I : 13 mA  
OL  
I : 26 mA  
OH  
I : 11 mA  
OH  
I : 52 mA  
OH  
I : 13 mA  
OH  
RD, ALE, INST  
6. Typicals are based on a limited number of samples and are not guaranteed. The values listed are at room temperature  
e
e
and V  
V
CC  
5V.  
REF  
e
Max  
c
a
FREQ
I
I
Max  
3.88  
e
CC  
c
a
FREQ 2.2  
1.65  
27203422  
IDLE  
Figure 8. I and I  
CC  
vs Frequency  
IDLE  
8
8XC198  
AC CHARACTERISTICS  
Test Conditions: Capacitive load on all pins  
e
e
e
12/16 MHz  
OSC  
100 pF, Rise and fall times  
10 ns, F  
The system must meet these specifications to work with the 87C198:  
Symbol  
Description  
Min  
Max  
Units  
ns  
Notes  
b
OSC  
T
T
T
T
T
T
T
Address Valid to Ready Setup  
Non READY Time  
2 T  
75  
AVYV  
YLYH  
LLYX  
AVDV  
RLDV  
RHDZ  
RXDX  
No upper limit  
ns  
b
b
b
READY Hold after ALE Low  
Address Valid to Input Data Valid  
RD Active to Input Data Valid  
End of RD to Input Data Float  
Data Hold after RD Inactive  
T
15  
2 T  
40  
55  
ns  
(Note 1)  
(Note 2)  
(Note 2)  
OSC  
OSC  
OSC  
3 T  
ns  
b
T
T
23  
ns  
OSC  
OSC  
b
20  
ns  
0
ns  
NOTES:  
1. If max is exceeded, additional wait states will occur.  
c
e
2. When using wait states, add 2 T  
n, where n  
number of wait states.  
OSC  
9
8XC198  
AC CHARACTERISTICS  
Test Conditions: Capacitive load on all pins  
e
e
e
12/16 MHz  
OSC  
100 pF, Rise and fall times  
10 ns, F  
The 87C198 will meet these specifications:  
Symbol  
Description  
Min  
3.5  
Max  
12  
Units  
MHz  
MHz  
ns  
Notes  
(Note 1)  
(Note 1)  
F
F
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
Frequency on XTAL1 12 MHz  
Frequency on XTAL1 16 MHz  
XTAL  
XTAL  
OSC  
3.5  
16  
1/F  
1/F  
12 MHz  
16 MHz  
83.3  
62.5  
286  
286  
XTAL  
XTAL  
ns  
OSC  
ALE Cycle Time  
4 T  
ns  
(Note 3)  
LHLH  
LHLL  
OSC  
b
b
b
b
a
ALE High Period  
T
T
T
T
10  
T
10  
ns  
OSC  
OSC  
OSC  
OSC  
OSC  
Address Setup to ALE Falling Edge  
Address Hold after ALE Falling Edge  
ALE Falling Edge to RD Falling Edge  
RD Low Period  
20  
40  
35  
5
ns  
AVLL  
LLAX  
LLRL  
ns  
ns  
b
a
a
T
T
T
25  
25  
ns  
(Note 3)  
(Note 2)  
RLRH  
RHLH  
RLAZ  
LLWL  
QVWH  
WLWH  
WHQX  
WHLH  
WHBX  
LLBX  
RHBX  
WHAX  
RHAX  
OSC  
OSC  
OSC  
RD Rising Edge to ALE Rising Edge  
RD Low to Address Float  
T
ns  
OSC  
5
ns  
b
ALE Falling Edge to WR Falling Edge  
Data Stable to WR Rising Edge  
WR Low Period  
T
T
T
T
T
T
T
T
T
T
10  
23  
15  
15  
15  
15  
10  
10  
30  
25  
ns  
OSC  
OSC  
OSC  
OSC  
OSC  
OSC  
OSC  
OSC  
OSC  
OSC  
b
b
b
b
b
b
b
b
b
ns  
(Note 3)  
(Note 3)  
a
T
5
ns  
OSC  
Data Hold after WR Rising Edge  
WR Rising Edge to ALE Rising Edge  
INST Hold after WR Rising Edge  
INST Hold after ALE Rising Edge  
INST Hold after RD Rising Edge  
AD815 Hold after WR Rising Edge  
AD815 Hold after RD Rising Edge  
ns  
a
T
10  
ns  
(Note 2)  
OSC  
ns  
ns  
ns  
ns  
ns  
NOTES:  
1. Testing performed at 3.5 MHz. However, the part is static by design and will typically operate below 1 Hz.  
2. Assuming back-to-back bus cycles.  
c
e
3. When using wait states, add 2 T  
n, where n  
number of wait states.  
OSC  
10  
8XC198  
System Bus Timings  
27203423  
11  
8XC198  
READY Timings (One Wait State)  
27203424  
EXTERNAL CLOCK DRIVE  
Symbol  
Parameter  
Oscillator Frequency 12 MHz  
Oscillator Frequency 16 MHz  
Oscillator Period 12 MHz  
Oscillator Period 16 MHz  
High Time  
Min  
3.5  
Max  
12.0  
16.0  
286  
286  
Units  
MHz  
MHz  
ns  
1/T  
1/T  
XLXL  
XLXL  
3.5  
T
T
T
T
T
T
83.3  
62.5  
21.25  
21.25  
XLXL  
ns  
XLXL  
XHXX  
XLXX  
XLXH  
XHXL  
ns  
Low Time  
ns  
Rise Time  
10  
10  
ns  
Fall Time  
ns  
EXTERNAL CLOCK DRIVE WAVEFORMS  
27203425  
An external oscillator may encounter as much as a 100 pF load at XTAL1 when it starts-up. This is due to  
interaction between the amplifier and its feedback capacitance. Once the external signal meets the V and  
IL  
V
IH  
specifications the capacitance will not exceed 20 pF.  
12  
8XC198  
EXTERNAL CRYSTAL CONNECTIONS  
EXTERNAL CLOCK CONNECTIONS  
27203432  
27203433  
NOTE:  
Keep oscillator components close to chip and use  
short direct traces to XTAL1, XTAL2 and V . When  
SS  
NOTE:  
*Required if open collector TTL driver used. Not need-  
ed if CMOS driver is used.  
e
e
20 pF. When using  
using crystals, C1  
20 pF, C2  
ceramic resonators consult manufacturer for recom-  
mended capacitor values.  
AC TESTING INPUT, OUTPUT WAVEFORMS  
FLOAT WAVEFORMS  
27203426  
AC Testing inputs are driven at 2.4V for a Logic ‘‘1’’ and 0.45V for  
a Logic ‘‘0’’ Timing measurements are made at 2.0V for a Logic  
‘‘1’’ and 0.8V for a Logic ‘‘0’’.  
27203427  
For Timing Purposes a Port Pin is no Longer Floating when a  
200 mV change from Load Voltage Occurs and Begins to Float  
when a 200 mV change from the Loaded V /V Level occurs  
OH OL  
e
g
15 mA.  
I
/I  
OL OH  
EXPLANATION OF AC SYMBOLS  
Each symbol is two pairs of letters prefixed by ‘‘T’’ for time. The characters in a pair indicate a signal and its  
condition, respectively. Symbols represent the time between the two signal/condition points.  
Conditions:  
Signals:  
H
L
- High  
A
D
L
- Address  
- Low  
- DATA IN  
- ALE/ADV  
- DATA OUT  
- RD  
V
X
Z
- Valid  
- No Longer Valid  
- Floating  
Q
R
W
X
- WR  
- XTAL1  
- READY  
Y
13  
8XC198  
State times are calculated as follows:  
2
state time  
10-BIT AID CHARACTERISTICS  
At a clock speed of 6 MHz or less, the clock prescal-  
er should be disabled. This is accomplished by set-  
e
f
XTAL1  
e
ting IOC2.4  
1.  
The converter is ratiometric, so the absolute accura-  
cy is directly dependent on the accuracy and stability  
At higher frequencies (greater than 6 MHz) the clock  
e
of V  
. V  
must be close to V since it supplies  
prescaler should be turned on (IOC2.4  
the comparator to settle.  
0) to allow  
REF REF CC  
both the resistor ladder and the digital section of the  
converter.  
The table below shows two different clock speeds  
and their corresponding A/D conversion and sample  
times.  
See the MCS-96 A/D Converter Quick Reference  
for definition of A/D terms.  
Example Sample and Conversion Times  
Sample Time  
at Clock  
Speed (ms)  
Conversion  
Time  
(States)  
Conversion  
Time at Clock  
Speed (ms)  
AID Clock  
Prescaler  
Clock Speed  
(MHz)  
Sample Time  
(States)  
e
IOC2.4  
IOC2.4  
0
1
x
x
ON  
16  
6
15  
8
1.875  
2.667  
156.5  
89.5  
19.6  
29.8  
e
OFF  
A/D CONVERTER SPECIFICATIONS  
Parameter  
Resolution  
Typical(1)  
Minimum  
Maximum  
Units*  
Notes  
1024  
10  
1024  
10  
Levels  
Bits  
g
Absolute Error  
0
3
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
g
0.25 0.50  
Full Scale Error  
b
g
0.25 0.50  
Zero Offset Error  
g
1.5 2.5  
g
a
Non-Linearity Error  
Differential Non-Linearity Error  
Channel-to-Channel Matching  
Repeatability  
0
3
2
1
l
b
1
g
g
0.1  
0
g
0.25  
Temperature Coefficients:  
Offset  
Full Scale  
0.009  
0.009  
0.009  
LSB/ C  
§
LSB/ C  
§
Differential Non-Linearity  
LSB/ C  
§
b
Off Isolation  
Feedthrough  
60  
dB  
dB  
dB  
X
2, 3  
2
b
b
60  
60  
V
Power Supply Rejection  
2
CC  
Input Series Resistance  
DC Input Leakage  
750  
0
1.2K  
3.0  
4
mA  
Sample Time: Prescaler On  
Prescaler Off  
15  
8
States  
States  
Sampling Capacitor  
3
pF  
NOTES:  
*An ‘‘LSB’’, as used here, has a value of approximately 5 mV.  
1. Typical values are expected for most devices at 25 C but are not tested or guaranteed.  
§
2. DC to 100 KHz.  
3. Multiplexer Break-Before-Make Guaranteed.  
4. Resistance from device pin, through internal MUX, to sample capacitor.  
14  
8XC198  
EPROM SPECIFICATIONS  
EPROM PROGRAMMING OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
20  
Max  
30  
Units  
T
Ambient Temperature during Programming  
Supply Voltages during Programming  
Programming Mode Supply Voltage  
EPROM Programming Supply Voltage  
Digital and Analog Ground  
C
§
A
(1)  
V
V
V
V
, V , V  
CC PD REF  
4.5  
5.5  
13.0  
13.0  
0
V
(2)  
V
12.50  
12.50  
0
EA  
PP  
(2)  
V
,
V
SS  
(3)  
ANGND  
F
Oscillator Frequency 16 MHz  
6.0  
16.0  
MHz  
OSC  
NOTES:  
1. V , V and V  
CC PD  
should nominally be at the same voltage during programming.  
2. V and V must never exceed the maximum voltage for any amount of time or the device may be damaged.  
REF  
EA PP  
3. V and ANGND should nominally be at the same voltage (0V) during programming.  
SS  
AC EPROM PROGRAMMING CHARACTERISTICS  
Symbol  
Description  
Reset High to First PALE Low  
PALE Pulse Width  
Min  
1100  
40  
Max  
Units  
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
OSC  
T
OSC  
T
OSC  
T
OSC  
T
OSC  
T
OSC  
T
OSC  
T
OSC  
T
OSC  
T
OSC  
T
OSC  
T
OSC  
T
OSC  
T
OSC  
T
OSC  
T
OSC  
T
OSC  
T
OSC  
SHLL  
LLLH  
AVLL  
LLAX  
LLVL  
PLDV  
PHDX  
DVPL  
PLDX  
PLPH  
PHLL  
LHPL  
PHPL  
PHIL  
Address Setup Time  
0
Address Hold Time  
50  
PALE Low to PVER Low  
PROG Low to Word Dump Valid  
Word Dump Data Hold  
Data Setup Time  
60  
50  
50  
0
Data Hold Time  
50  
PROG Pulse Width  
40  
PROG High to Next PALE Low  
PALE High to PROG Low  
PROG High to Next PROG Low  
PROG High to AINC Low  
AINC Pulse Width  
120  
220  
120  
0
40  
ILIH  
PVER Hold after AINC Low  
AINC Low to PROG Low  
PROG High to PVER Low  
50  
ILVH  
ILPL  
170  
90  
PHVL  
DC EPROM PROGRAMMING CHARACTERISTICS  
Symbol  
Description  
Min  
Max  
100  
Units  
I
V
Supply Current (When Programming)  
PP  
mA  
PP  
15  
8XC198  
EPROM PROGRAMMING WAVEFORMS  
SLAVE PROGRAMMING MODE DATA PROGRAM MODE WITH SINGLE PROGRAM PULSE  
27203428  
SLAVE PROGRAMMING MODE IN WORD DUMP OR DATA VERIFY MODE WITH AUTO INCREMENT  
27203429  
16  
8XC198  
SLAVE PROGRAMMING MODE TIMING IN DATA PROGRAM MODE WITH REPEATED PROG PULSE  
AND AUTO INCREMENT  
27203430  
17  
8XC198  
AC CHARACTERISTICSÐSERIAL PORTÐSHIFT REGISTER MODE  
SERIAL PORT TIMINGÐSHIFT REGISTER MODE  
Symbol  
Parameter  
Min  
6 T  
Max  
Units  
ns  
t
Serial Port Clock Period (BRR 8002H)  
T
T
XLXL  
OSC  
b
a
Serial Port Clock Falling Edge  
t
to Rising Edge (BRR 8002H)  
4 T  
50  
50  
4 T  
2 T  
50  
50  
ns  
XLXH  
OSC  
OSC  
e
T
T
Serial Port Clock Period (BRR  
8001H)  
4 T  
ns  
ns  
XLXL  
OSC  
b
a
Serial Port Clock Falling Edge  
e
2 T  
XLXH  
OSC  
OSC  
to Rising Edge (BRR  
8001H)  
b
b
T
QVXH  
T
XHQX  
T
XHQV  
T
DVXH  
T
XHDX  
T
XHQZ  
Output Data Setup to Clock Rising Edge  
Output Data Hold after Clock Rising Edge  
Next Output Data Valid after Clock Rising Edge  
Input Data Setup to Clock Rising Edge  
Input Data Hold after Clock Rising Edge  
Last Clock Rising to Output Float  
2 T  
2 T  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
OSC  
OSC  
a
2 T  
50  
OSC  
a
T
50  
OSC  
0
2 T  
OSC  
WAVEFORMÐSERIAL PORTÐSHIFT REGISTER MODE  
SERIAL PORT WAVEFORMÐSHIFT REGISTER MODE  
27203431  
18  
8XC198  
FUNCTIONAL DEVIATIONS  
REVISION HISTORY  
Devices marked with an ‘‘E’’, ‘‘F’’, or ‘‘G’’ have the  
following errata.  
This data sheet (272034-003) is valid for devices  
marked with an ‘‘E’’, ‘‘F’’, or ‘‘G’’ at the end of the  
top side tracking number. Data sheets are changed  
as new device information becomes available. Verify  
with your local Intel sales office that you have the  
latest version before finalizing a design or ordering  
devices.  
1. HIGH SPEED INPUTS  
The High Speed Input (HSI) has three deviations  
from the specifications.  
NOTE:  
The following differences exist between this data  
sheet and the previous version (-002).  
‘‘Events’’ are defined as one or more pin tran-  
sitions. ‘‘Entries’’ are defined as the recording of  
one or more events.  
1. This data sheet added the ROMless and ROM  
devices 80C198 and 83C198 respectively.  
A. The resolution is nine states instead of eight  
states. Events occurring on the same pin more  
frequently than once every nine states may be  
lost.  
2. The description of the A/D converter prescalar  
bit was improved.  
B. A mismatch between the nine state HSI resolu-  
tion and the eight state hardware timer causes  
one time-tag value to be skipped every nine timer  
counts. Events may receive a time-tag one count  
later than expected.  
C. If the FIFO and Holding Register are empty, the  
first event will transfer into the Holding Register,  
leaving the FIFO empty again. The next event  
that occurs will be the first event loaded into the  
empty FIFO. If the first two events into an empty  
FIFO (not counting the Holding Register) occur  
coincident with each other, both are recorded as  
one entry with one time-tag. If the second event  
occurs within 9 states after the first, the events  
will be entered separately with time-tags at least  
one count apart. If the second event enters the  
FIFO coincident with the ‘‘skipped’’ time-tag situ-  
ation (see B above) the time-tags will be at least  
two counts apart.  
2. CMPL with R0  
Using CMPL with register 0 can set incorrect flags.  
Don’t use register 0 with the compare long instruc-  
tion. Use another long word register and set it equal  
to zero. See Techbit MC0692.  
19  

相关型号:

S80C198-16

16-Bit Microcontroller
ETC

S80C31

Microcontroller, 8-Bit, 8051 CPU, 12MHz, CMOS, PQCC44,
TEMIC

S80C31-12

8-Bit Microcontroller
ETC

S80C31-16

8-Bit Microcontroller
ETC

S80C31-16-CB

IC-SM-8-BIT CMOS CPU
ETC

S80C31-20

8-Bit Microcontroller
ETC

S80C31-25

8-Bit Microcontroller
ETC

S80C31-30

8-Bit Microcontroller
ETC

S80C31-36

8-Bit Microcontroller
ETC

S80C31-40

8-Bit Microcontroller
ETC

S80C31-42

Microcontroller, 8-Bit, 8051 CPU, 42MHz, CMOS, PQCC44,
TEMIC

S80C31-L16

8-Bit Microcontroller
ETC