RN80532KC0601M [INTEL]

Microprocessor, 32-Bit, 2500MHz, CMOS, CPGA603, INTERPOSER, MICRO, PGA-603;
RN80532KC0601M
型号: RN80532KC0601M
厂家: INTEL    INTEL
描述:

Microprocessor, 32-Bit, 2500MHz, CMOS, CPGA603, INTERPOSER, MICRO, PGA-603

时钟 外围集成电路
文件: 总132页 (文件大小:2316K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intel® Xeon™ Processor MP with up to 2MB L3 Cache (on the 0.13 Micron Process)  
Datasheet  
Product Features  
Available at 1.50, 1.90, 2, 2.50, and  
512-KB Advanced Transfer L2 Cache (on-  
die, full speed Level 2 cache) with 8-way  
associativity and Error Correcting Code  
(ECC)  
1-MB or 2-MB L3 Cache (on-die, full  
speed Level 3 cache) with 8-way  
associativity and Error Correcting Code  
(ECC)  
2.80 GHz  
Multi-processing server support  
Binary compatible with applications  
running on previous members of the Intel®  
IA32 microprocessor line  
Intel® NetBurst™ microarchitecture  
Hyper-Threading Technology  
Enables system support of up to 64 GB of  
— Hardware support for multi-threaded  
physical memory  
applications  
Streaming SIMD Extensions 2 (SSE2)  
400 MHz System bus  
— 144 new instructions for double-precision  
floating point operations, media/video  
streaming, and secure transactions  
— Bandwidth up to 3.2 GB/second  
Rapid Execution Engine: Arithmetic Logic  
Units (ALUs) run at twice the processor  
core frequency  
Enhanced floating point and multimedia  
unit for enhanced video, audio, encryption,  
and 3D performance  
Hyper-Pipelined Technology  
Power Management capabilities  
— System Management mode  
— Multiple low-power states  
Advance Dynamic Execution  
Very deep out-of-order execution  
— Enhanced branch prediction  
Advanced System Management Features  
— System Management Bus  
Level 1 Execution Trace Cache stores 12 K  
micro-ops and removes decoder latency  
from main execution loops  
— Processor Information ROM (PIROM)  
— OEM Scratch EEPROM  
— Includes 8- KB Level 1 data cache  
— Thermal Monitor  
— Machine Check Architecture (MCA)  
The Intel® Xeon™ processor MP with up to 2-MB L3 cache on the 0.13 micron process is designed for high-  
performance multi-processor server applications. Based on the Intel® NetBurst™ microarchitecture and the new  
Hyper-Threading Technology, it is binary compatible with previous Intel Architecture (IA-32) processors. The Intel  
Xeon processor MP with up to 2-MB L3 cache is scalable to four processors in a multiprocessor system providing  
exceptional performance for applications running on advanced operating systems such as Microsoft Windows* XP  
and Windows* 2000 operating systems, Linux*, and UNIX*. The Intel Xeon processor MP with up to 2 MB L3  
cache delivers compute power at unparalleled value and flexibility for internet infrastructure and departmental  
server applications. The Intel NetBurst microarchitecture and Hyper-Threading Technology deliver outstanding  
performance and headroom for peak internet server workloads, resulting in faster response times, support for more  
users, and improved scalability.  
Document Number 251931-002  
June 2003  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS  
OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS  
DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL  
ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO  
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A  
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER  
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel  
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future  
changes to them.  
The Intel® Xeonprocessor MP with up to 2-MB L3 Cache may contain design defects or errors known as errata which may  
cause the product to deviate from published specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was developed  
by Intel. Implementations of the I2C bus/protocol or the SMBus bus/protocol may require licenses from various entities, including  
Philips Electronics N.V. and North American Philips Corporation.  
Intel, Pentium, Pentium III Xeon, Intel Xeon and Intel NetBurst are trademarks or registered trademarks of Intel Corporation or its  
subsidiaries in the United States and other countries.  
* Other names and brands may be claimed as the property of others.  
Copyright © 2002-2003 Intel Corporation  
ii  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Contents  
1
Introduction ............................................................................................................................. 1-1  
1.1  
Terminology .................................................................................................................... 1-3  
1.1.1 Processor Packaging Terminology.................................................................... 1-3  
References ....................................................................................................................... 1-4  
1.2  
2
Electrical Specifications ...................................................................................................... 2-1  
2.1  
2.2  
2.3  
System Bus and GTLREF ............................................................................................... 2-1  
Power and Ground Pins................................................................................................... 2-1  
Decoupling Guidelines.................................................................................................... 2-1  
2.3.1  
2.3.2  
VCC Decoupling............................................................................................... 2-2  
System Bus AGTL+ Decoupling...................................................................... 2-2  
2.4  
2.5  
2.6  
System Bus Clock (BCLK[1:0]) and Processor Clocking .............................................. 2-2  
2.4.1 Bus Clock......................................................................................................... 2-3  
PLL Filter ........................................................................................................................ 2-4  
2.5.1 Mixing Processors............................................................................................. 2-5  
Voltage Identification..................................................................................................... 2-6  
2.6.1 Mixing Processors of Different Voltages.......................................................... 2-7  
2.7  
2.8  
2.9  
2.10  
2.11  
2.12  
2.13  
2.14  
Reserved or Unused Pins................................................................................................. 2-8  
System Bus Signal Groups.............................................................................................. 2-8  
Asynchronous GTL+ Signals .......................................................................................... 2-9  
Maximum Ratings ......................................................................................................... 2-10  
Processor DC Specifications ......................................................................................... 2-10  
AGTL+ System Bus Specifications .............................................................................. 2-16  
System Bus AC Specifications...................................................................................... 2-17  
Processor AC Timing Waveforms................................................................................. 2-22  
3
System Bus Signal Quality Specifications.................................................................... 3-1  
3.1  
System Bus Clock (BCLK) Signal Quality Specifications and Measurement Guidelines 3-  
1
3.2  
3.3  
System Bus Signal Quality Specifications and Measurement Guidelines ...................... 3-2  
System Bus Signal Quality Specifications and Measurement Guidelines ...................... 3-5  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
3.3.5  
3.3.6  
Overshoot/Undershoot Guidelines.................................................................... 3-5  
Overshoot/Undershoot Magnitude.................................................................... 3-6  
Overshoot/Undershoot Pulse Duration ............................................................. 3-6  
Activity Factor .................................................................................................. 3-6  
Reading Overshoot/Undershoot Specification Tables ...................................... 3-7  
Determining if a System Meets the Overshoot/Undershoot Specifications...... 3-7  
4
Mechanical Specifications .................................................................................................. 4-1  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
Mechanical Specifications............................................................................................... 4-3  
Package Load Specifications........................................................................................... 4-8  
Insertion Specifications ................................................................................................... 4-8  
Mass Specifications......................................................................................................... 4-8  
Materials.......................................................................................................................... 4-9  
Markings.......................................................................................................................... 4-9  
Pinout Diagram.............................................................................................................. 4-10  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
iii  
5
6
Thermal Specifications ........................................................................................................5-1  
5.1  
5.2  
Thermal Specifications.................................................................................................... 5-3  
Measurements for Thermal Specifications......................................................................5-5  
5.2.1  
Processor Case Temperature Measurement ...................................................... 5-5  
Features...................................................................................................................................... 6-1  
6.1  
6.2  
Power-On Configuration Options.................................................................................... 6-1  
Clock Control and Low Power States.............................................................................. 6-1  
6.2.1  
6.2.2  
6.2.3  
6.2.4  
6.2.5  
6.2.6  
Normal State—State 1.......................................................................................6-1  
AutoHALT Powerdown State—State 2............................................................ 6-1  
Stop-Grant State—State 3.................................................................................6-2  
HALT/Grant Snoop State—State 4................................................................... 6-3  
Sleep State—State 5.......................................................................................... 6-3  
Bus Response during Low Power States........................................................... 6-4  
6.3  
6.4  
Thermal Monitor.............................................................................................................. 6-4  
6.3.1 Thermal Diode................................................................................................... 6-4  
System Management Bus (SMBus) Interface ................................................................. 6-5  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.4.5  
6.4.6  
Processor Information ROM (PIROM)............................................................. 6-6  
Scratch EEPROM.............................................................................................. 6-8  
PIROM and Scratch EEPROM Supported SMBus Transactions ..................... 6-8  
SMBus Thermal Sensor .................................................................................... 6-8  
Thermal Sensor Supported SMBus Transactions.............................................. 6-9  
SMBus Thermal Sensor Registers................................................................... 6-11  
6.4.6.1 Thermal Reference Registers............................................................ 6-11  
6.4.6.2 Thermal Limit Registers................................................................... 6-11  
6.4.6.3 Status Register .................................................................................. 6-11  
6.4.6.4 Configuration Register...................................................................... 6-12  
6.4.6.5 Conversion Rate Registers................................................................ 6-13  
SMBus Thermal Sensor Alert Interrupt .......................................................... 6-13  
SMBus Device Addressing ............................................................................. 6-13  
6.4.7  
6.4.8  
7
Boxed Processor Specifications........................................................................................ 7-1  
7.1  
7.2  
Introduction ..................................................................................................................... 7-1  
Mechanical Specifications............................................................................................... 7-2  
7.2.1  
7.2.2  
7.2.3  
Boxed Processor Heatsink Dimensions............................................................. 7-2  
Boxed Processor Heatsink Weight.................................................................... 7-2  
Boxed Processor Retention Mechanism and Heatsink Supports ...................... 7-2  
7.3  
7.4  
Boxed Processor Requirements.......................................................................................7-5  
7.3.1  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor....................  
........................................................................................................................... 7-5  
Thermal Specifications.................................................................................................... 7-5  
7.4.1 Boxed Processor Cooling Requirements........................................................... 7-5  
8
9
Debug Tools Specifications......................................................................................... 8-1  
8.1 Logic Analyzer Interface (LAI).......................................................................................8-1  
8.1.1  
8.1.2  
Mechanical Considerations ............................................................................... 8-1  
Electrical Considerations................................................................................... 8-1  
Pin Listing and Signal Definitions ........................................................................... 9-1  
9.1  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Pin Assignments . 9-1  
9.1.1 Pin Listing by Pin Number.............................................................................. 9-10  
9.2  
Signal Definitions..........................................................................................................9-19  
iv  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Figures  
1
2
3
Typical VCCIOPLL, VCCA and VSSA Power Distribution.......................................... 2-4  
Phase Lock Loop (PLL) Filter Requirements ................................................................. 2-5  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Voltage-Current Pro-  
jections........................................................................................................................... 2-12  
Electrical Test Circuit.................................................................................................... 2-22  
TCK Clock Waveform .................................................................................................. 2-23  
Differential Clock Waveform........................................................................................ 2-23  
Differential Clock Crosspoint Specification ................................................................. 2-24  
System Bus Common Clock Valid Delay Timing Waveform ...................................... 2-24  
System Bus Source Synchronous 2X (Address) Timing Waveform............................. 2-25  
System Bus Source Synchronous 4X (Data) Timing Waveform.................................. 2-26  
System Bus Reset and Configuration Timing Waveform............................................. 2-27  
Power-On Reset and Configuration Timing Waveform................................................ 2-27  
TAP Valid Delay Timing Waveform ............................................................................ 2-28  
Test Reset (TRST#), Async GTL+ Input, and PROCHOT# Timing Waveform..................  
....................................................................................................................................... 2-28  
THERMTRIP# to Vcc Timing...................................................................................... 2-28  
SMBus Timing Waveform ............................................................................................ 2-29  
SMBus Valid Delay Timing Waveform........................................................................ 2-29  
Example 3.3 Volt/SM_VCC Sequencing...................................................................... 2-30  
FERR#/PBE# Valid Delay Timing ............................................................................... 2-31  
BCLK[1:0] Signal Integrity Waveform........................................................................... 3-2  
Low-to-High System Bus Receiver Ringback Tolerance for AGTL+ and Asynchronous  
GTL+ Buffers.................................................................................................................. 3-3  
High-to-Low System Bus Receiver Ringback Tolerance for AGTL+ and Asynchronous  
GTL+ Buffers.................................................................................................................. 3-3  
Low-to-High System Bus Receiver Ringback Tolerance for PWRGOOD and TAP Buffers  
3-4  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
High-to-Low System Bus Receiver Ringback Tolerance for PWRGOOD and TAP Buffers  
3-5  
25  
26  
Maximum Acceptable Overshoot/Undershoot Waveform............................................ 3-10  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor and Intel® Xeon™ Pro-  
cessor with 512-KB L2 Cache in INT-mPGA Package - Assembly Drawing (Including  
Socket)............................................................................................................................. 4-2  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Package Top View  
Component Placement Detail.......................................................................................... 4-3  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Package Drawing 4-3  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Top View - Compo-  
nent Keep-In.................................................................................................................... 4-5  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor and Intel® Xeon™ Pro-  
cessor with 512-KB L2 Cache in INT-mPGA Package - Cross Section View - Pin Side  
Component Keep-In ........................................................................................................ 4-5  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor and Intel® Xeon™ Pro-  
cessor with 512-KB L2 Cache in INT-mPGA Package - Processor Pin Details............. 4-6  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Package IHS Flatness  
and Tilt Drawing.............................................................................................................. 4-7  
Intel® Xeon™ Processor MP on the 0.13 Micron Process INT-mPGA Package IHS Flat-  
ness and Tilt Drawing...................................................................................................... 4-7  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Top-Side Markings  
27  
28  
29  
30  
31  
32  
33  
34  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
v
(Package Example).......................................................................................................... 4-9  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Bottom-Side Markings  
(Package Example)........................................................................................................ 4-10  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor and Intel® Xeon™ Pro-  
cessor with 512-KB L2 Cache in INT-mPGA Package - Pinout Diagram - Top View 4-11  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor and Intel® Xeon™ Pro-  
cessor with 512-KB L2 Cache in INT-mPGA Package - Pinout Diagram - Bottom View..  
4-12  
35  
36  
37  
38  
39  
Thermal and Mechanical Components - Exploded View................................................ 5-1  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Thermal Design Power  
vs. Electrical Projections ................................................................................................. 5-4  
Thermal Measurement Point for Processor TCASE........................................................ 5-5  
Stop Clock State Machine ............................................................................................... 6-2  
Logical Schematic of SMBus Circuitry........................................................................... 6-5  
Mechanical Representation of the Boxed Intel® Xeon™ Processor MP on the 0.13 Micron  
Process Processor Passive Heatsink ................................................................................ 7-1  
Boxed Processor Clip ...................................................................................................... 7-3  
Boxed Processor Retention Mechanism.......................................................................... 7-3  
Multiple View Space Requirements for Boxed Processors............................................. 7-4  
40  
41  
42  
43  
44  
45  
46  
Tables  
1
Feature Table for Intel® Xeon™ Processor MP on the 0.13 Micron Process......................  
......................................................................................................................................... 1-2  
Core Frequency to System Bus Multiplier Configuration...............................................2-3  
System Bus Clock Frequency Select Truth Table for BSEL[1:0]................................... 2-3  
Voltage Identification Definition..................................................................................... 2-7  
System Bus Signal Groups .............................................................................................. 2-9  
Processor Absolute Maximum Ratings ......................................................................... 2-10  
Voltage and Current Specifications...............................................................................2-11  
System Bus Differential BCLK DC Specifications....................................................... 2-13  
AGTL+ Signal Group DC Specifications...................................................................... 2-14  
PWRGOOD and TAP Signal Group DC Specifications............................................... 2-14  
Asynchronous GTL+ Signal Group DC Specifications ................................................ 2-15  
SMBus Signal Group DC Specifications....................................................................... 2-15  
BSEL[1:0] and VID[4:0] DC Specifications................................................................. 2-15  
AGTL+ Bus Voltage Definitions .................................................................................. 2-17  
System Bus Differential Clock AC Specifications....................................................... 2-18  
System Bus Common Clock AC Specifications............................................................ 2-18  
System Bus Source Synchronous AC Specifications.................................................... 2-19  
Miscellaneous Signals AC Specifications ..................................................................... 2-20  
System Bus AC Specifications (Reset Conditions)....................................................... 2-20  
TAP Signal Group AC Specifications........................................................................... 2-21  
SMBus Signal Group AC Specifications....................................................................... 2-21  
BCLK Signal Quality Specifications............................................................................... 3-1  
Ringback Specifications for AGTL+ and Asynchronous GTL+ Buffers........................ 3-2  
Ringback Specifications for PWRGOOD Input and TAP Buffers.................................. 3-3  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Source Synchronous  
AGTL+ Signal Group (Data) Overshoot/Undershoot Tolerance .........................................  
......................................................................................................................................... 3-8  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
vi  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
26  
27  
28  
29  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Common Clock  
AGTL+ Signal Group Overshoot/Undershoot Tolerance ............................................... 3-8  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Common Clock  
AGTL+ Signal Group Overshoot/Undershoot Tolerance ............................................... 3-9  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Asynchronous GTL+  
and TAP Signal Groups Overshoot/Undershoot Tolerance ............................................ 3-9  
Dimensions for the Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor  
Package............................................................................................................................ 4-4  
Package Dynamic and Static Load Specifications .......................................................... 4-8  
Processor Mass ................................................................................................................ 4-8  
Processor Material Properties.......................................................................................... 4-9  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Thermal Design Power  
5-3  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
Power-On Configuration Option Pins ............................................................................. 6-1  
Processor Information ROM Format............................................................................... 6-6  
Read Byte SMBus Packet................................................................................................ 6-8  
Write Byte SMBus Packet............................................................................................... 6-8  
Write Byte SMBus Packet............................................................................................... 6-9  
Read Byte SMBus Packet................................................................................................ 6-9  
Send Byte SMBus Packet.............................................................................................. 6-10  
Receive Byte SMBus Packet......................................................................................... 6-10  
ARA SMBus Packet...................................................................................................... 6-10  
SMBus Thermal Sensor Command Byte Bit Assignments........................................... 6-10  
Thermal Reference Register Values.............................................................................. 6-11  
SMBus Thermal Sensor Status Register........................................................................ 6-12  
SMBus Thermal Sensor Configuration Register........................................................... 6-12  
SMBus Thermal Sensor Conversion Rate Registers..................................................... 6-13  
Thermal Sensor SMBus Addressing on the Intel® Xeon™ Processor MP on the 0.13 Mi-  
cron Process Processor .................................................................................................. 6-15  
Memory Device SMBus Addressing on the Intel® Xeon™ Processor MP on the 0.13 Mi-  
cron Process Processor .................................................................................................. 6-15  
Pin Listing by Pin Name for the INT-mPGA Package.................................................... 9-1  
Pin Listing by Pin Number for the INT-mPGA Package.............................................. 9-10  
Signal Definitions.......................................................................................................... 9-19  
49  
50  
51  
52  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
vii  
§
viii  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Revision History  
Revision  
Description  
Date  
-001  
-002  
Initial public release  
November 2002  
June 2003  
Added 2.80 GHz 2-MB L3 cache specifications  
Added 2.50 GHz 1-MB L3 cache specifications  
Added 2 GHz 1-MB L3 cache specifications  
Updated Sections 5.1, 5.2.1, and 6.3  
§
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
ix  
x
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Introduction  
Introduction  
1
The Intel® Xeon™ processor MP with up to 2-MB L3 cache on the 0.13 micron process is based on  
the Intel® NetBurstTM microarchitecture, which operates at significantly higher clock speeds and  
delivers performance levels that are significantly higher than previous generations of IA-32  
processors. While based on the Intel NetBurst microarchitecture, it maintains the tradition of  
compatibility with IA-32 software. The Intel NetBurst microarchitecture features include Hyper  
Pipelined Technology, a Rapid Execution Engine, a 400 MHz system bus, and an Execution Trace  
Cache. The Hyper Pipelined Technology doubles the pipeline depth in the processor, allowing the  
processor to reach much higher core frequencies. The Rapid Execution Engine allows the two  
integer ALUs in the processor to run at twice the core frequency, which allows many integer  
instructions to execute in one half of the internal core clock period. The 400 MHz system bus is a  
quad-pumped bus running off a 100 MHz system bus clock making 3.2 GB/sec data transfer rates  
possible. The Execution Trace Cache is a L1 cache that stores approximately twelve thousand  
decoded micro-operations, which removes the decoder from the main execution path and increases  
performance.  
Improved features within the Intel NetBurst microarchitecture include Advanced Dynamic  
Execution, Advanced Transfer Cache, enhanced floating point and multi-media unit, and  
Streaming SIMD Extensions 2 (SSE2). The Advanced Dynamic Execution improves speculative  
execution and branch prediction internal to the processor. The Advanced Transfer Cache is a  
512-KB, on-die L2 cache with increased bandwidth over previous microarchitectures. The floating  
point and multi-media units have been improved by making the registers 128 bits wide and adding  
a separate register for data movement. Finally, SSE2 adds 144 new instructions for double-  
precision floating point, SIMD integer, and memory management.  
In addition, the Intel Xeon processor MP with up to 2-MB L3 cache includes Hyper-Threading  
Technology. This new technology delivers two logical processors that can execute different tasks  
simultaneously using shared hardware resources. As a result, multi-threaded applications will  
execute on more than one thread per physical processor. This will increasing the performance of  
system applications.  
The Intel Xeon processors MP with up to 2-MB L3 Cache are intended for high performance server  
systems with up to four processors on one bus. The processor is designed for 1-4 way (and beyond)  
designs.  
The Intel Xeon processor MP with up to 2-MB L3 cache is available with 1 MB or 2 MB of  
integrated level 3 (L3) cache. All versions of this processor will include manageability features and  
are based upon the Intel NetBurst microarchitecture. Components of the manageability features  
include an OEM EEPROM and Processor Information ROM which are accessed through a SMBus  
interface and contain information relevant to the particular processor and system in which it is  
installed. In addition, enhancements have been made to the Machine Check Architecture.  
The Intel Xeon processor MP with 400 MHz system bus support will be offered only in the  
Interposer Micro-Pin Grid Array (INT-mPGA) package. These output pins can interface with a  
thermal sensor device that is placed on the baseboard. The 603-pin socket will accommodate the  
Intel Xeon processor in the INT-mPGA package. The different processor features are summarized  
in Table 1.  
The Intel Xeon processor MP on the 0.13 micron process processor in INT-mPGA package utilize  
a surface mount ZIF socket with 603 pins. This INT-mPGA package will include the processor die,  
and a pinned FR4 interposer. This package includes an integrated heat spreader (IHS).  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
1-1  
Introduction  
As a note of reference, the Intel® Xeon™ processor with 512-KB L2 cache on the 0.13 micron  
process in the FC-mPGA2 package contains an extra pin (located at location AE30) compared to  
the INT-mPGA package. This additional pin serves as a keying mechanism to prevent the FC-  
mPGA2 package from being installed in the 603-pin socket since processors in the FC-mPGA2  
package are only supported in the 604-pin socket. Since the additional contact for pin AE30 is  
electrically inert, the 604-pin socket will not have a solder ball at this location.  
Mechanical components used for attaching thermal solutions to the baseboard should have a high  
degree of commonality with the thermal solution components enabled for the Intel Xeon processor.  
Enabled heatsinks and retention mechanisms have been designed with manufacturability as a high  
priority. Hence, mechanical assembly can be completed from the top of the baseboard.  
Table 1. Feature Table for Intel® Xeon™ Processor MP on the 0.13 Micron Process  
Intel®  
Xeon™  
processor  
MP with  
up to 2-  
MB L3  
INT-  
mPGA  
1MB, 2  
MB  
1 - 4  
512 KB  
400 MHz  
Yes  
Yes  
Yes  
603-pin  
(603 pins)  
cache  
The Intel Xeon processor MP on the 0.13 micron process uses a scalable system bus protocol  
referred to as the “system bus” in this document. This processor system bus utilizes a split-  
transaction, deferred reply protocol similar to that of the P6 processor family system bus, but is not  
compatible with the P6 processor family system bus. This processor system bus is compatible with  
the Intel Xeon processor system bus. The system bus uses Source-Synchronous Transfer (SST) of  
address and data to improve performance. Whereas the P6 processor family transfers data once per  
bus clock, the Intel Xeon processor MP on the 0.13 micron process processor transfers data four  
times per bus clock (4X data transfer rate, as in AGP 4X). Along with the 4X data bus, the address  
bus can deliver addresses two times per bus clock and is referred to as a ‘double-clocked’ or 2X  
address bus. In addition, the Request Phase completes in one clock cycle. Working together, the 4X  
data bus and 2X address bus provide a data bus bandwidth of up to 3.2 GB/second (3200 MB/sec)  
with a 400 MHz system bus. Finally, the system bus also introduces transactions that are used to  
deliver interrupts.  
Signals on the system bus use Assisted GTL+ (AGTL+) level voltages which are fully described in  
the appropriate platform design guide (refer to Section 1.2).  
1-2  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Introduction  
1.1  
Terminology  
A ‘#’ symbol after a signal name refers to an active low signal, indicating a signal is in the asserted  
state when driven to a low level. For example, when RESET# is low, a reset has been requested.  
Conversely, when NMI is high, a nonmaskable interrupt has occurred. In the case of signals where  
the name does not imply an active state but describes part of a binary sequence (such as address or  
data), the ‘#’ symbol implies that the signal is inverted. For example, D[3:0] = ‘HLHL’ refers to a  
hex ‘A, and D[3:0]# = ‘LHLH’ also refers to a hex ‘A(H= High logic level, L= Low logic level).  
“System bus” refers to the interface between the processor, system core logic (the chipset  
components), and other bus agents. The system bus is a multiprocessing interface to processors,  
memory, and I/O. For this document, “system bus” is used as the generic term for the “Intel®  
Xeon™ processor MP with up to 2-MB L3 cache processor system bus”.  
1.1.1  
Processor Packaging Terminology  
Commonly used terms are explained here for clarification:  
603-Pin Socket - The connector which mates the Intel Xeon processor MP with up to 2-MB  
L3 Cache in INT-mPGA package to the baseboard. The 603-pin socket is a surface mount  
technology (SMT), zero insertion force (ZIF) socket utilizing solder ball attachment to the  
platform. See the 603-Pin Socket Design Guidelines for details regarding this socket.  
604-Pin Socket - The 604-pin socket contains an additional contact to accept the additional  
keying pin on the Intel Xeon processor in the FC-mPGA2 packages at pin location AE30. The  
604-pin socket will also accept processors with the INT-mPGA package. Since the additional  
contact for pin AE30 is electrically inert, the 604-pin socket will not have a solder ball at this  
location. Therefore, the additional keying pin will not require a baseboard via nor a surface-  
mount pad.  
Flip Chip Ball Grid Array (FCBGA) - Microprocessor packaging using “flip chip” design,  
where the processor is attached to the substrate face-down for better signal integrity, more  
efficient heat removal and lower inductance.  
FC-mPGA2 - Packaging technology with the processor die mounted directly to a micro-Pin  
Grid Array substrate with an integrated heat spreader (IHS).  
Integrated Heat Spreader (IHS) - The surface used to attach a heatsink or other thermal  
solution to the Intel Xeon processor MP with up to 2-MB L3 cache processor. The IHS will  
come in two sizes for the Intel Xeon processor MP with up to 2-MB L3 cache processor, see  
Section 4 for specific details.  
Interposer - The structure on which the processor core package and I/O pins are mounted.  
INT-mPGA - Packaging technology with the processor die on a Flip Chip Ball Grid Array  
(FC-BGA) core mounted to a pinned interposer with an integrated heat spreader (IHS).  
OEM - Original Equipment Manufacturer.  
Processor core - The processor’s execution engine. All AC timing and signal integrity  
specifications are to the pads of the processor core.  
Processor Information ROM (PIROM) - A memory device located on the Intel Xeon  
processor MP with up to 2-MB L3 cache processor and the Intel Xeon processor in INT-  
mPGA package, accessible via the SMBus which contains information regarding the  
processor’s features. This device is shared with a scratch EEPROM. The PIROM is  
programmed during the manufacturing and is write-protected. See Section 6.4 for details on  
the PIROM.  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
1-3  
Introduction  
Retention mechanism - The support components that are mounted through the baseboard to  
the chassis to provide mechanical retention for the processor and heatsink assembly.  
Scratch EEPROM (Electrically Erasable, Programmable Read-Only Memory) - A  
memory device located on the Intel Xeon processor MP with up to 2-MB L3 cache processor  
and the Intel Xeon processor in INT-mPGA package, addressable via the SMBus which can be  
used by the OEM to store information (e.g., information for system management, etc). See  
Section 6.4 for details on the Scratch EEPROM.  
SMBus - System Management Bus. A two-wire interface through which simple system and  
power management related devices can communicate with the rest of the system. It is based on  
the principals of the operation of the I2C two-wire serial bus from Philips Semiconductor.  
1.2  
References  
Material and concepts available in the following documents may be beneficial when reading this  
document.  
Document  
Number/Location  
®
AP-485, Intel Processor Identification and the CPUID Instruction  
241618  
®
IA-32 Intel Architecture Software Developer's Manual  
1. Volume I: Basic Architecture  
245470  
245471  
245472  
2. Volume II: Instruction Set Reference  
3. Volume III: System Programming Guide  
CK00 Clock Synthesizer/Driver Design Guidelines  
VRM 9.1 DC-DC Converter Design Guidelines  
249206  
298646  
®
Intel Xeon™ Processor Multiprocessor Platform Design Guide  
250397  
®
Intel Xeon™ Processor (MP) Thermal Design Guidelines  
298650  
603 -Pin Socket Design Guidelines  
249672  
®
Intel Xeon™ Processor MP Family Enabled Components ProE* Files  
http://developer.intel.com  
http://developer.intel.com  
®
Intel Xeon™ Processor MP Family Enabled Components IGES Files  
®
Intel Xeon™ Processor MP with 512-KB L2 Cache Core Boundary Scan  
Descriptor Language (BSDL) Model (V1.1) and Cell Descriptor File (V1.0)  
http://developer.intel.com  
ITP 700 Debug Port Design Guide  
249679  
System Management Bus Specification, rev 1.1  
Wired for Management 2.0 Design Guide  
www.sbs-forum.org/smbus  
http://developer.intel.com  
NOTES:.  
1. Available electronically on the Intel Developer public website http://developer.intel.com  
2. Available electronically on the www.sbs-forum.org/smbus.  
§
1-4  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Electrical Specifications  
Electrical Specifications  
2
2.1  
System Bus and GTLREF  
Most Xeon processor family system bus signals use Assisted Gunning Transceiver Logic (AGTL+)  
signaling technology. This signaling technology provides improved noise margins and reduced  
ringing through low voltage swings and controlled edge rates. The termination voltage level for the  
Xeon processor family AGTL+ signals is VCC, the operating voltage of the processor core. This is  
the same as the previous Intel Xeon processor MP processor. VTT (termination voltage level for the  
I/O buffers) is identical to VCC on the Intel Xeon processor family. The use of a termination voltage  
that is determined by the processor core allows better voltage scaling on the system bus for the  
Intel Xeon processor MP on the 0.13 micron process. Because of the speed improvements to data  
and address busses, signal integrity and platform design methods become more critical than with  
previous processor families. Design guidelines for the Intel Xeon processor MP on the 0.13 micron  
process system bus are detailed in the appropriate platform design guide (refer to Section 1.2).  
The AGTL+ inputs require a reference voltage (GTLREF) which is used by the receivers to  
determine if a signal is a logical 0 or a logical 1. GTLREF must be generated on the baseboard (See  
Table 14 for GTLREF specifications). Termination resistors are provided on the processor silicon  
and are terminated to its core voltage (VCC). The on-die termination resistors are a selectable  
feature and can be enabled or disabled via the ODTEN pin. For end bus agents, on-die termination  
can be enabled to control reflections on the transmission line. For middle bus agents, on-die  
termination must be disabled. Intel chipsets will also provide on-die termination, thus eliminating  
the need to terminate the bus on the baseboard for most AGTL+ signals. Refer to Section 2.12 for  
details on ODTEN resistor termination requirements.  
Note: Some AGTL+ signals do not include on-die termination and must be terminated on the baseboard.  
See Table 5 for details regarding these signals.  
The AGTL+ signals depend on incident wave switching. Therefore timing calculations for AGTL+  
signals are based on flight time as opposed to capacitive deratings. Analog signal simulation of the  
system bus, including trace lengths, is highly recommended when designing a system. The Intel®  
Xeon™ Processor MP on the 0.13 Micron Process Processor Signal Integrity and Package Models  
are available through your Intel representative.  
2.2  
2.3  
Power and Ground Pins  
For clean on-chip power distribution, Intel Xeon processor MP on the 0.13 micron process  
processor has 190 VCC (power) and 189 VSS (ground) inputs. All power pins must be connected to  
the system power plane, while all VSS pins must be connected to the system ground plane. The  
processor VCC pins must be supplied the voltage determined by the processor VID (Voltage ID)  
pins.  
Decoupling Guidelines  
Due to its large number of transistors and high internal clock speeds, the Intel Xeon processor MP  
on the 0.13 micron process processor is capable of generating large average current swings  
between low and full power states. This may cause voltages on power planes to sag below their  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
2-1  
Electrical Specifications  
minimum values if bulk decoupling is not adequate. Larger bulk storage (CBULK), such as  
electrolytic capacitors, supply current during longer lasting changes in current demand by the  
component, such as coming out of an idle condition. Similarly, they act as a storage well for current  
when entering an idle condition from a running condition. Care must be taken in the baseboard  
design to ensure that the voltage provided to the processor remains within the specifications listed  
in Table 7. Failure to do so can result in timing violations or reduced lifetime of the component. For  
further information and guidelines, refer to the appropriate platform design guidelines.  
2.3.1  
VCC Decoupling  
Regulator solutions need to provide bulk capacitance with a low Effective Series Resistance (ESR)  
and the baseboard designer must assure a low interconnect resistance from the regulator (or VRM  
pins) to the 603-pin socket. Bulk decoupling may be provided on the voltage regulation module  
(VRM) to meet, in part, the need to handle large current swings. The remaining decoupling is  
provided on the baseboard. The power delivery path must be capable of delivering enough current  
while maintaining the required tolerances (defined in Table 7). For further information regarding  
power delivery, decoupling, and layout guidelines, refer to the appropriate platform design  
guidelines.  
2.3.2  
System Bus AGTL+ Decoupling  
The Intel Xeon processor MP on the 0.13 micron process integrates signal termination on the die as  
well as part of the required high frequency decoupling capacitance on the processor package.  
However, additional high frequency capacitance must be added to the baseboard to properly  
decouple the return currents from the system bus. Bulk decoupling must also be provided by the  
baseboard for proper AGTL+ bus operation. Decoupling guidelines are described in the appropriate  
platform design guidelines.  
2.4  
System Bus Clock (BCLK[1:0]) and Processor  
Clocking  
BCLK[1:0] directly controls the system bus interface speed as well as the core frequency of the  
processor. As in previous generation processors, the Intel Xeon processor MP on the 0.13 micron  
process processor core frequency is a multiple of the BCLK[1:0] frequency. The Intel Xeon  
processor MP on the 0.13 micron process processor bus ratio multiplier will be set during  
manufacturing. The default setting will equal the maximum speed for the processor. It will be  
possible to override this setting using software. This will permit operation at speeds lower than the  
processor’s tested frequency.  
The BCLK[1:0] inputs directly control the operating speed of the system bus interface. The  
processor core frequency is configured during Reset by using values stored internally during  
manufacturing. The stored value sets the highest bus fraction at which the particular processor can  
operate. If lower speeds are desired, the appropriate ratio can be set with software using  
MSR_EBC_FREQ_GOAL to produce a lower operating speed. For details of operation at core  
frequencies lower than the maximum rated processor speed.  
Clock multiplying within the processor is provided by the internal PLL, which requires a constant  
frequency BCLK[1:0] input with exceptions for spread spectrum clocking. Processor DC and AC  
specifications for the BCLK[1:0] inputs are provided in Table 8 and Table 13, respectively. These  
specifications must be met while also meeting signal integrity requirements as outlined in  
Section 3. The Intel Xeon processor MP on the 0.13 micron process processor utilizes a differential  
2-2  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Electrical Specifications  
clock. Details regarding BCLK[1:0] driver specifications are provided in the CK00 Clock  
Synthesizer/Driver Design Guidelines. Table 2 contains Intel Xeon processor MP on the 0.13  
micron process processor bus fraction ratios and their corresponding core frequencies.  
Table 2. Core Frequency to System Bus Multiplier Configuration  
Core Frequency to System Bus  
Multiplier Configuration  
1,2,3  
Core Frequency 100 MHz BCLK  
Notes  
1/12  
1/13  
1/14  
1/15  
1/16  
1/17  
1/18  
1/19  
1/20  
1/25  
1/28  
1.20 GHz  
1.30 GHz  
1.40 GHz  
1.50 GHz  
1.60 GHz  
1.70 GHz  
1.80 GHz  
1.90 GHz  
2 GHz  
2.5 GHz  
2.8 GHz  
NOTES:  
1. Individual processors operate only at or below the frequency marked on the package.  
2. Listed frequencies are not necessarily committed production frequencies.  
3. Platforms should support a 400 MHz system bus.  
2.4.1  
Bus Clock  
The system bus frequency is set to the maximum supported by the individual processor. BSEL[1:0]  
are outputs used to select the system bus frequency. Table 3 defines the possible combinations of  
the signals and the frequency associated with each combination. The frequency is determined by  
the processor(s), chipset, and clock synthesizer. All system bus agents must operate at the same  
frequency. Individual processors will only operate at their specified system bus clock frequency.  
The Intel Xeon processor with a 400 MHz system bus is designed to run on a baseboard with a  
100 MHz bus clock. On these baseboards, BSEL[1:0] are both considered ‘reserved’ at the  
processor socket. No change is required for operation with Intel Xeon processor MP on the 0.13  
micron process processors. Operation will default to 100 MHz.  
See the appropriate platform design guide for further details.  
Table 3. System Bus Clock Frequency Select Truth Table for BSEL[1:0]  
BSEL1  
BSEL0  
Bus Clock Frequency  
0
0
1
1
0
1
0
1
100 MHz  
Reserved  
Reserved  
Reserved  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
2-3  
Electrical Specifications  
2.5  
PLL Filter  
VCCA and VCCIOPLL are power sources required by the PLL clock generators on the Intel Xeon  
processor MP on the 0.13 micron process processor. This requirement is identical to that used on  
the Intel Xeon processors. Since these PLLs are analog in nature, they require quiet power supplies  
for minimum jitter. Jitter is detrimental to the system; it degrades external I/O timings as well as  
internal core timings (i.e. maximum frequency). To prevent this degradation, these supplies must  
be low pass filtered from VCC. A typical filter topology is shown in Figure 1.  
The AC low-pass requirements, with input at VCC and output measured across the capacitor (CA or  
CIO in Figure 1), is as follows:  
< 0.2 dB gain in pass band  
< 0.5 dB attenuation in pass band < 1 Hz (see DC drop in next set of requirements)  
> 34 dB attenuation from 1 MHz to 66 MHz  
> 28 dB attenuation from 66 MHz to core frequency  
The filter requirements are illustrated in Figure 2. For recommendations on implementing the filter  
refer to the appropriate platform design guidelines.  
Figure 1. Typical VCCIOPLL, VCCA and VSSA Power Distribution  
Trace < 0.02 Ω  
Processor interposer "pin"  
VCCA  
VCC  
L1/L2  
R-Socket  
R-Socket  
R-Trace  
R-Trace  
PLL  
C
Baseboard via that connects  
filter to VCC plane  
Socket pin  
Processor  
VSSA  
C
R-Socket  
VCCIOPLL  
L1/L2  
2-4  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Electrical Specifications  
Figure 2. Phase Lock Loop (PLL) Filter Requirements  
0.2 dB  
0 dB  
-0.5 dB  
forbidden  
zone  
-28 dB  
forbidden  
zone  
-34 dB  
DC  
passband  
1 Hz  
fpeak  
1 MHz  
66 MHz  
fcore  
high frequency  
band  
NOTES:  
1. Diagram not to scale.  
2. No specifications for frequencies beyond f  
(core frequency).  
core  
3. f  
, if existent, should be less than 0.05 MHz.  
peak  
2.5.1  
Mixing Processors  
Intel only supports multi-processor combinations that operate with the same system bus frequency,  
core frequency, VID settings, and cache sizes. Mixing processors operating at different internal  
clock frequencies is not supported and will not be validated by Intel. Not all operating systems can  
support multiple processors with mixed frequencies. Intel does not support or validate operation of  
processors with different cache sizes. Mixing processors of different steppings but the same model  
(as per CPUID instruction) is supported. Details on CPUID are provided in the Intel Processor  
Identification and the CPUID Instruction application note.  
Unlike previous Intel Xeon processors, the Intel Xeon processor with 512-KB L2 cache and the  
Low Voltage Intel Xeon processor do not sample the pins IGNNE, LINT0, LINT1, and A20M# to  
establish the core to system bus ratio. Rather, the processor runs at its tested frequency at initial  
power-on. If the processor needs to run at a lower core frequency, as must be done when a higher  
speed processor is added to a system that contains a lower frequency processor, the system BIOS  
writes a value in the MSR_EBC_FREQ_GOAL (Ratio Configuration Register), and asserts a  
system reset to effect the change in the core to system bus ratio. On previous platforms, the second  
reset has not been required, so the impact of this second reset needs to be comprehended by the  
system designer.  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
2-5  
Electrical Specifications  
2.6  
Voltage Identification  
The VID specification for the Intel Xeon processor MP on the 0.13 micron process processor is  
supported by the VRM 9.1 DC-DC Converter Design Guidelines. The minimum voltage is  
provided in Table 7, and changes with processor frequency. This allows processors running at a  
higher frequency to have a relaxed minimum voltage specification. The specifications have been  
set such that one voltage regulator design can work with all supported processor frequencies.  
Note that the VID pins will drive valid and correct logic levels when the Intel Xeon processor MP  
on the 0.13 micron process processor is provided with a valid voltage applied to the SM_VCC pins.  
SM_VCC must be correct and stable prior to enabling the output of the VRM that supplies  
VCC. Similarly, the output of the VRM must be disabled before SM_VCC becomes invalid.  
Refer to Figure 18 for details.  
The Intel Xeon processor MP on the 0.13 micron process processor uses five voltage identification  
pins, VID[4:0], to support automatic selection of processor voltages. Table 4 specifies the voltage  
level corresponding to the state of VID[4:0]. A ‘1’ in this table refers to a high voltage and a ‘0’  
refers to low voltage level. If the processor socket is empty (VID[4:0] = 11111), or the VRM cannot  
supply the voltage that is requested, this VRM must disable itself. See the VRM 9.1 DC-DC  
Converter Design Guidelines.  
2-6  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Electrical Specifications  
Table 4. Voltage Identification Definition  
Processor Pins  
VID4  
VID3  
VID2  
VID1  
VID0  
VCC_VID (V)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
VRM output off  
1.100  
1.125  
1.150  
1.175  
1.200  
1.225  
1.250  
1.275  
1.300  
1.325  
1.350  
1.375  
1.400  
1.425  
1.450  
1.475  
1.500  
1.525  
1.550  
1.575  
1.600  
1.625  
1.650  
1.675  
1.700  
1.725  
1.750  
1.775  
1.800  
1.825  
1.850  
2.6.1  
Mixing Processors of Different Voltages  
Mixing processors operating with different VID settings (voltages) is not supported and will not be  
validated by Intel.  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
2-7  
Electrical Specifications  
2.7  
Reserved or Unused Pins  
All Reserved pins must remain unconnected on the system baseboard. Connection of these pins to  
VCC, VSS, or to any other signal (including each other) can result in component malfunction or  
incompatibility with future processors. See Section 9 for a pin listing of the processor and for the  
location of all Reserved pins.  
For reliable operation, always connect unused inputs or bidirectional signals to an appropriate  
signal level. In a system level design, on-die termination has been included on the Intel Xeon  
processor MP on the 0.13 micron process processor to allow signals to be terminated within the  
processor silicon. Most unused AGTL+ inputs should be left as no connects, as AGTL+ termination  
is provided on the processor silicon. However, see Table 4 for details on AGTL+ signals that do not  
include on-die termination. Unused active high inputs should be connected through a resistor to  
ground (VSS). Unused outputs can be left unconnected, however this may interfere with some TAP  
functions, complicate debug probing, and prevent boundary scan testing. A resistor must be used  
when tying bidirectional signals to power or ground. When tying any signal to power or ground, a  
resistor will also allow for system testability. For unused AGTL+ input or I/O signals, use pull-up  
resistors of the same value for the on-die termination resistors (RTT). See Table 14.  
TAP, Asynchronous GTL+ inputs, and Asynchronous GTL+ outputs do not include on-die  
termination. Inputs and all used outputs must be terminated on the baseboard. Unused outputs may  
be terminated on the baseboard or left unconnected. Note that leaving unused outputs unterminated  
may interfere with some TAP functions, complicate debug probing, and prevent boundary scan  
testing.  
All TESTHI[6:0] pins should be individually connected to VCC via a pull-up resistor which  
matches the trace impedance within a range of ± 10 . TESTHI[3:0] and TESTHI[6:5] may all be  
tied together and pulled up to VCC with a single resistor if desired. However, utilization of boundary  
scan test will not be functional if these pins are connected together. TESTHI4 must always be  
pulled up independently from the other TESTHI pins. For optimum noise margin, all pull-up  
resistor values used for TESTHI[6:0] pins should have a resistance value within ± 20% of the  
impedance of the baseboard transmission line traces. For example, if the trace impedance is 50 ,  
then a value between 40 and 60 should be used. The TESTHI[6:0] termination  
recommendations provided in the Intel® XeonProcessor MP Datasheet are still suitable for the  
Intel Xeon processor MP on the 0.13 micron process processor. However, Intel recommends new  
designs or designs undergoing design updates follow the trace impedance matching termination  
guidelines given in this section.  
2.8  
System Bus Signal Groups  
In order to simplify the following discussion, the system bus signals have been combined into  
groups by buffer type. AGTL+ input signals have differential input buffers, which use GTLREF as  
a reference level. In this document, the term “AGTL+ Input” refers to the AGTL+ input group as  
well as the AGTL+ I/O group when receiving. Similarly, “AGTL+ Output” refers to the AGTL+  
output group as well as the AGTL+ I/O group when driving.  
With the implementation of a source synchronous data bus comes the need to specify two sets of  
timing parameters. One set is for common clock signals whose timings are specified with respect to  
rising edge of BCLK0 (ADS#, HIT#, HITM#, etc.) and the second set is for the source  
synchronous signals which are relative to their respective strobe lines (data and address) as well as  
the rising edge of BCLK0. Asynchronous signals are still present (A20M#, IGNNE#, etc.) and can  
become active at any time during the clock cycle. Table 5 identifies which signals are common  
clock, source synchronous and asynchronous.  
2-8  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Electrical Specifications  
Table 5. System Bus Signal Groups  
1
Signal Group  
Type  
Signals  
3
3
BPRI#, BR[3:1]# , DEFER#, RESET# ,  
RS[2:0]#, RSP#, TRDY#  
AGTL+ Common Clock Input  
AGTL+ Common Clock I/O  
Synchronous to BCLK[1:0]  
Synchronous to BCLK[1:0]  
6
6
ADS#, AP[1:0]#, BINIT# , BNR# ,  
2
2
BPM[5:0]# , BR0# , DBSY#, DP[3:0]#,  
DRDY#, HIT# , HITM# , LOCK#, MCERR#  
6
6
6
Signals  
Associated Strobe  
REQ[4:0]#,A[16:3]#5  
A[35:17]#4  
ADSTB0#  
ADSTB1#  
AGTL+ Source Synchronous  
I/O  
Synchronous to assoc.  
strobe  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBP0#, DSTBN0#  
DSTBP1#, DSTBN1#  
DSTBP2#, DSTBN2#  
DSTBP3#, DSTBN3#  
AGTL+ Strobes  
Synchronous to BCLK[1:0]  
Asynchronous  
ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#  
4
4
5
4
A20M# , IGNNE# , INIT# , LINT0/INTR ,  
3
Asynchronous GTL+ Input  
4
5
LINT1/NMI , SMI# , SLP#, STPCLK#  
3
Asynchronous GTL+ Output  
System Bus Clock  
Asynchronous  
Clock  
FERR#, IERR#, THERMTRIP#, PROCHOT#  
BCLK1, BCLK0  
TCK, TDI, TMS, TRST#  
TDO  
2
TAP Input  
Synchronous to TCK  
Synchronous to TCK  
2
TAP Output  
SM_EP_A[2:0], SM_TS_A[1:0], SM_DAT,  
SM_CLK, SM_ALERT#, SM_WP  
7
SMBus Interface  
Synchronous to SM_CLK  
BSEL[1:0], COMP[1:0], GTLREF, ODTEN,  
PWRGOOD, Reserved, SKTOCC#,  
Power/Other  
Power/Other  
8
TESTHI[6:0],VID[4:0], V , SM_VCC , V  
,
CC  
CCA  
V
, V  
, , V  
,
V
, V  
CCIOPLL  
SSA  
SS  
CCSENSE SSSENSE  
NOTES:  
1. Refer to Section 9.2 for signal descriptions.  
2. These signal groups are not terminated by the processor.  
3. These signals do not have on-die termination. Refer to corresponding platform design guidelines for  
termination requirements.  
4. Note that Reset initialization function of these pins is now a software function on the Intel Xeon  
processor MP on the 0.13 micron process processor.  
5. The value of these pins during the active-to-inactive edge of RESET# to determine processor configuration  
options. See Section 6.1 for details.  
6. These signals may be driven simultaneously by multiple agents (wired-or).  
7. These signals are not terminated by the processor’s on-die termination. However, some signals in this group  
include termination on the processor interposer. See Section 6.4 for details.  
8. SM_Vcc is required for correct operation of the Intel Xeon processor MP on the 0.13 micron process  
processors VID logic. Refer to Figure 18 for details.  
2.9  
Asynchronous GTL+ Signals  
The Intel Xeon processor MP on the 0.13 micron process processor does not utilize CMOS voltage  
levels on any signals that connect to the processor silicon. As a result, legacy input signals such as  
A20M#, IGNNE#, INIT#, LINT0/INTR, LINT1/NMI, SMI#, SLP#, and STPCLK# utilize GTL+  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
2-9  
Electrical Specifications  
input buffers. Legacy output FERR#/PBE# and other non-AGTL+ signals IERR#, THERMTRIP#  
and PROCHOT# utilize GTL+ output buffers. All of these asynchronous GTL+ signals follow the  
same DC requirements as AGTL+ signals, however the outputs are not driven high (during the  
logical 0-to-1 transition) by the processor (the major difference between GTL+ and AGTL+).  
Asynchronous GTL+ signals do not have setup or hold time specifications in relation to  
BCLK[1:0]. However, all of the asynchronous GTL+ signals are required to be asserted for at least  
two BCLKs in order for the processor to recognize them. See Table 11 and Table 18 for the DC  
and AC specifications for the asynchronous GTL+ signal groups.  
SMBus signals are derived from components mounted on the processor interposer along with the  
processor silicon. The required SM_VCC for these signals is 3.3 V. See Section 6.4 for further  
details.  
2.10  
Maximum Ratings  
Table 6 lists the processor’s maximum environmental stress ratings. Functional operation at the  
absolute maximum and minimum is neither implied nor guaranteed. The processor should not  
receive a clock while subjected to these conditions. Functional operating parameters are listed in  
the AC and DC tables. Extended exposure to the maximum ratings may affect device reliability.  
Furthermore, although the processor contains protective circuitry to resist damage from static  
electric discharge, one should always take precautions to avoid high static voltages or electric  
fields.  
Table 6. Processor Absolute Maximum Ratings  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
T
Processor storage temperature  
–40  
85  
°C  
2
STORAGE  
Any processor supply voltage with  
respect to VSS  
V
V
V
V
–0.3  
–0.1  
-0.1  
-0.3  
1.75  
1.75  
1.75  
V
V
V
1
CC  
AGTL+ buffer DC input voltage with  
respect to VSS  
inAGTL+  
inGTL+  
inSMBus  
Async GTL+ buffer DC input voltage  
with respect to Vss  
SMBus buffer DC input voltage with  
respect to Vss  
6.0  
5
V
I
Max VID pin current  
mA  
VID  
NOTES:  
1. This rating applies to any pin of the processor.  
2. Contact Intel for storage requirements in excess of one year.  
2.11  
Processor DC Specifications  
The processor DC specifications in this section are defined at the processor core (pads) unless  
noted otherwise. See for the Intel Xeon processor MP on the 0.13 micron process processor pin  
listings and Section 9.2 for the signal definitions. The voltage and current specifications for all  
versions of the processor are detailed in Table 6. For platform planning refer to Figure 3. Notice  
that the graphs include Thermal Design Power (TDP) associated with the maximum current levels.  
The DC specifications for the AGTL+ signals are listed in Table 9.  
2-10  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Electrical Specifications  
The system bus clock signal group and the SMBus interface signal group are detailed in Table 8  
and Table 12, respectively. The DC specifications for these signal groups are listed in Table 12.  
Table 7 through Table 11 list the DC specifications for the Intel Xeon processor MP on the  
0.13 micron process processor and are valid only while meeting specifications for case temperature  
(TCASE as specified inSection 5), clock frequency, and input voltages. Care should be taken to read  
all notes associated with each parameter. )  
Table 7. Voltage and Current Specifications  
1
Symbol  
Parameter  
Core Freq  
Min  
Typ  
Max  
VID  
Unit  
Notes  
VCC for processor  
core with 2-MB L3  
cache  
2 GHz  
1.333  
1.314  
1.449  
1.441  
Refer to  
Figure 3  
VCC  
1.475  
V
2, 3, 4,11,12  
2.80 GHz  
1.50 GHz  
1.90 GHz  
2 GHz  
1.345  
1.336  
1.333  
1.327  
1.453  
1.450  
1.449  
1.432  
VCC for processor  
core with 1-MB L3  
cache  
2, 3, 4,11,12  
2, 3, 4,11,12  
Refer to  
Figure 3  
VCC  
1.475  
V
2.50 GHz  
SMBus supply  
voltage  
SM_VCC  
ICC  
All frequencies  
3.135  
3.30  
3.465  
V
A
8
ICC for processor  
core with 2-MB L3  
cache  
2 GHz  
44.8  
57.5  
4, 5  
2.80 GHz  
1.50 GHz  
1.90 GHz  
2 GHz  
37.2  
43.1  
44.8  
51.9  
ICC for processor  
core with 1-MB L3  
Cache  
4, 5  
4, 5  
ICC  
A
2.50 GHz  
ICC for PLL power  
pins  
I
All frequencies  
All frequencies  
60  
mA  
mA  
9
8
CC_PLL  
Icc for SMBus power  
supply  
ICC_SMBus  
100.0  
122.5  
ICC_GTLREF  
I
for GTLREF pins  
All frequencies  
All frequencies  
15  
25  
uA  
A
10  
6
CC  
ISGnt/I  
ICC Stop-Grant  
SLP  
ICC Stop-Grant for  
ISGnt/I  
All frequencies  
All frequencies  
10.1  
18.6  
A
A
6
7
SLP  
Low Voltage Intel  
Xeon processor  
I
I
TCC active  
CC  
TCC  
NOTES:  
1. Unless otherwise noted, all specifications in this table are based on the latest silicon measurements available  
at the time of publication.  
2. These voltages are targets only. A variable voltage source should exist on systems in the event that a  
different voltage is required. See Section 2.6 and Table 4 for more information.  
3. The voltage specification requirements are measured across vias on the platform for the VCC_SENSE and  
VSS_SENSE pins close to the socket with a 100 MHz bandwidth oscilloscope, 1.5 pF maximum probe  
capacitance, and 1 mohm minimum impedance. The maximum length of ground wire on the probe should be  
less than 5 mm. Ensure external noise from the system is not coupled in the scope probe.  
4. Refer to Figure 3 as appropriate for the particular Intel Xeon processor MP on the 0.13 micron process  
processor of interest. The processor should not be subjected to any static V level that exceeds the  
CC  
V
associated with any particular current. Moreover, Vcc should never exceed VCC_VID. Failure to  
CC_MAX  
adhere to this specification can shorten the processor lifetime.  
5. Maximum current is defined at VCC_max  
.
6. The current specified is also for AutoHALT State.  
7. The maximum instantaneous current the processor will draw while the thermal control circuit is active as  
indicated by the assertion of PROCHOT#.  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
2-11  
Electrical Specifications  
8. SM_Vcc/VID_Vcc is required for correct operation of the Intel Xeon processor MP on the 0.13 micron  
process processor VID and BSEL logic. Refer to Figure 18 for details.  
9. This specification applies to the PLL power pins VCCA and VCCIOPLL. See Section 2.4.1 for details. This  
parameter is based on design characterization and is not tested  
10.This specification applies to each GTLREF pin.  
11.The loadlines specify voltage limits at the die measured at V _sense and Vss_sense pins. Voltage  
CC  
regulation feedback for voltage regulator circuits must be taken from processor VCC and VSS pins.  
12.Adherence to this loadline specification as shown in Figure 3 is required to ensure reliable processor  
operations.  
Figure 3. Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Voltage-Current  
Projections  
1.480  
1.475  
1.470  
1.465  
1.460  
1.455  
1.450  
1.445  
1.440  
1.435  
1.430  
0
10  
20  
30  
40  
50  
60  
70  
Processor Current (A)  
2-12  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Electrical Specifications  
Table 8. System Bus Differential BCLK DC Specifications  
Notes  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit Figure  
1
Input Low  
Voltage  
V
-0.150  
0.660  
0.000  
0.710  
N/A  
N/A  
V
V
V
6
6
L
Input High  
Voltage  
V
0.850  
H
V
V
Absolute  
Crossing Point  
CROSS(  
abs)  
0.250  
0.550  
6, 7  
2,8  
0.250 +  
0.550 +  
Relative  
Crossing Point  
CROSS(  
rel)  
N/A  
N/A  
V
V
6, 7  
6, 7  
2,3,8,9  
0.5(V  
- 0.710)  
0.5(V  
- 0.710)  
Havg  
Havg  
Range of  
Crossing Points  
V  
N/A  
0.140  
2,10  
CROS  
S
V
Overshoot  
Undershoot  
N/A  
N/A  
N/A  
N/A  
N/A  
V
+ 0.3  
H
V
V
V
V
6
6
6
6
4
5
6
7
OV  
US  
V
-0.300  
0.200  
N/A  
N/A  
+ 0.100  
V
Ringback Margin  
Threshold Margin  
RBM  
VTM  
V
- 0.100  
V
CROSS  
CROSS  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. Crossing voltage is defined as the instantaneous voltage value when the rising edge of BCLK0 equals the  
falling edge of BCLK1.  
3. V  
is the statistical average of the V measured by the oscilloscope.  
Havg  
H
4. Overshoot is defined as the absolute value of the maximum voltage.  
5. Undershoot is defined as the absolute value of the minimum voltage.  
6. Ringback Margin is defined as the absolute voltage difference between the maximum Rising Edge Ringback  
and the maximum Falling Edge Ringback.  
7. Threshold Region is defined as a region entered around the crossing point voltage in which the differential  
receiver switches. It includes input threshold hysteresis.  
8. The crossing point must meet the absolute and relative crossing point specifications simultaneously.  
9. V  
can be measured directly using “Vtop” on Agilent scopes and “High” on Tektronix scopes.  
Havg  
10.V  
is defined as the total variation of all crossing voltages as defined in note 2.  
CROSS  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
2-13  
Electrical Specifications  
Table 9. AGTL+ Signal Group DC Specifications  
Notes  
Symbol  
Parameter  
Min  
Max  
Unit  
1,8  
VIH  
VIL  
VOH  
IOL  
Input High Voltage  
Input Low Voltage  
Output High Voltage  
Output Low Current  
Pin Leakage High  
Pin Leakage Low  
1.10 * GTLREF  
V
V
V
2, 4, 5  
CC  
0.0  
N/A  
N/A  
N/A  
N/A  
7
0.90 * GTLREF  
3, 5  
4, 5  
5
V
V
CC  
50  
mA  
µA  
µA  
IHI  
100  
500  
11  
8
ILO  
7
RON  
Buffer On Resistance  
6
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies and cache sizes.  
2. VIH is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high value.  
3. VIL is defined as the maximum voltage level at a receiving agent that will be interpreted as a logical low value.  
4. VIH and VOH may experience excursions above VCC. However, input signal drivers must comply with the signal  
quality specifications in Section 3.  
5. The VCC referred to in these specifications refers to instantaneous VCC  
.
6. V of 0.450 V is guaranteed when driving into a test load as indicated in Figure 4, with Rtt enabled.  
OL_MAX  
7. Leakage to Vcc with Pin held at 300 mV.  
8. Leakage to Vss with pin held at Vcc.  
Table 10. PWRGOOD and TAP Signal Group DC Specifications  
1,2  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
V
Input Hysteresis  
200  
300  
mV  
7
HYS  
Input Low to High  
Threshold Voltage  
V
1/2*(V + V  
)
)
1/2*(V + V )  
HYS_MAX  
V
V
4
4
T+  
T-  
cc  
HYS_MIN  
cc  
Input High to Low  
Threshold Voltage  
V
1/2*(V - V  
1/2*(V - V  
)
HYS_MIN  
cc  
HYS_MAX  
cc  
VOH  
IOL  
Output High Voltage  
Output Low Current  
Pin Leakage High  
Pin Leakage Low  
N/A  
VCC  
40  
V
mA  
µA  
µA  
3,4  
5,6  
9
IHI  
N/A  
N/A  
8.75  
100  
500  
ILO  
8
RON  
Buffer On Resistance  
13.75  
NOTES:.  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies and cache sizes.  
2. All outputs are open drain  
3. TAP signal group must meet the system signal quality specification in Section 3.  
4. The Vcc referred to in these specifications refers to instantaneous Vcc.  
5. The maximum output current is based on maximum current handling capability of the buffer and is not  
specified into the test load.  
6. V  
7. V  
of 0.300 V is guaranteed when driving a test load.  
represents the amount of hysteresis, nominally centered about 1/2 Vcc, for all TAP inputs.  
OL_MAX  
HYS  
8. Leakage to Vcc with Pin held at 300 mV.  
9. Leakage to Vss with pin held at Vcc.  
2-14  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Electrical Specifications  
Table 11. Asynchronous GTL+ Signal Group DC Specifications  
Notes  
Symbol  
Parameter  
Min  
Max  
Unit  
1, 6  
VIH  
Input High Voltage  
Input Low Voltage  
Output High Voltage  
Output Low Current  
Pin Leakage High  
Pin Leakage Low  
1.10 * GTLREF  
VCC  
V
V
3, 5, 6  
4
V
0.0  
0.90 * GTLREF  
IL  
VOH  
IOL  
N/A  
VCC  
50  
V
2, 5, 6  
7, 8  
10  
mA  
µA  
µA  
IHI  
N/A  
N/A  
7
100  
500  
11  
ILO  
9
RON  
Buffer On Resistance  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies and cache sizes.  
2. All outputs are open drain  
3. VIH is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high value.  
4. VIL is defined as the maximum voltage level at a receiving agent that will be interpreted as a logical low value.  
5. VIH and VOH may experience excursions above VCC. However, input signal drivers must comply with the signal  
quality specifications in Section 3.  
6. The VCC referred to in these specifications refers to instantaneous VCC  
.
7. The maximum output current is based on maximum current handling capability of the buffer and is not  
specified into the test load.  
8. V  
of 0.450 V is guaranteed when driving into a test load as indicated in Figure 4, with Rtt enabled.  
OL_MAX  
9. Leakage to Vcc with Pin held at 300 mV.  
10. Leakage to Vss with pin held at Vcc.  
Table 12. SMBus Signal Group DC Specifications  
1, 2, 3  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
VIL  
Input Low Voltage  
Input High Voltage  
-0.30  
0.30 * SM_V  
3.465  
0.400  
3.0  
V
V
CC  
VIH  
VOL  
IOL  
ILI  
0.70 * SM_V  
CC  
Output Low Voltage  
Output Low Current  
Input Leakage Current  
Output Leakage Current  
SMBus Pin Capacitance  
0
V
N/A  
N/A  
N/A  
mA  
µA  
µA  
pF  
± 10  
ILO  
± 10  
C
15.0  
4
SMB  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies and cache sizes.  
2. These parameters are based on design characterization and are not tested.  
3. All DC specifications for the SMBus signal group are measured at the processor pins.  
4. Platform designers may need this value to calculate the maximum loading of the SMBus and to determine  
maximum rise and fall times for SMBus signals.  
Table 13. BSEL[1:0] and VID[4:0] DC Specifications  
1
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
Buffer On  
Resistance  
Ron (BSEL)  
9.2  
14.3  
2
Ron  
(VID)  
Buffer On  
Resistance  
7.8  
12.8  
100  
2
3
I
Pin Leakage Hi  
N/A  
µA  
HI  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
2-15  
Electrical Specifications  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. These parameters are not tested and are based on design simulations.  
3. Leakage to Vss with pin held at 2.50 V.  
2.12  
AGTL+ System Bus Specifications  
Routing topologies are dependent on the number of processors supported and the chipset used in  
the design. Please refer to the appropriate platform design guidelines. In most cases, termination  
resistors are not required as these are integrated into the processor. See Table 5 for details on which  
AGTL+ signals do not include on-die termination. The termination resistors are enabled or disabled  
through the ODTEN pin. To enable termination, this pin should be pulled up to VCC through a  
resistor and to disable termination, this pin should be pulled down to VSS through a resistor. For  
optimum noise margin, all pull-up and pull-down resistor values used for the ODTEN pin should  
have a resistance value within ± 20% of the impedance of the baseboard transmission line traces.  
For example, if the trace impedance is 50 , then a value between 40 and 60 should be used.  
The processor's on-die termination must be enabled for the end agent only. Please refer to Table 12  
for termination resistor values. For more details on platform design see the appropriate platform  
design guidelines.  
Valid high and low levels are determined by the input buffers via comparing with a reference  
voltage called GTLREF.  
Table 12 lists the GTLREF specifications. The AGTL+ reference voltage (GTLREF) should be  
generated on the baseboard using high precision voltage divider circuits. It is important that the  
baseboard impedance is held to the specified tolerance, and that the intrinsic trace capacitance for  
the AGTL+ signal group traces is known and well-controlled. For more details on platform design  
see the appropriate platform design guidelines.  
2-16  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Electrical Specifications  
Table 14. AGTL+ Bus Voltage Definitions  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
GTLREF  
Bus Reference Voltage  
2/3 VCC - 2%  
2/3 VCC  
2/3 VCC + 2%  
V
2, 3, 6  
GTLREF  
New Design  
Bus Reference Voltage  
Termination Resistance  
Termination Resistance  
0.63*VCC - 2% 0.63*VCC 0.63*VCC + 2%  
V
2, 3, 6  
4
R
36  
45  
41  
50  
46  
55  
TT  
R
TT  
New Design  
4, 8  
COMP[1:0] COMP Resistance  
42.77  
49.55  
43.2  
50  
43.63  
50.45  
5, 7  
COMP[1:0]  
COMP Resistance  
New Design  
5, 7, 8  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. The tolerances for this specification have been stated generically to enable system designer to calculate the  
minimum values across the range of V  
.
CC  
3. GTLREF is generated from V on the baseboard by a voltage divider of 1% resistors. Refer to the  
CC  
appropriate platform design guidelines for implementation details.  
4. R is the on-die termination resistance measured from V to 1/3 V at the AGTL+ output driver.  
TT  
CC  
CC  
5. COMP resistors are pull downs to VSS provided on the baseboard with 1% tolerance. See the appropriate  
platform design guidelines for implementation details.  
6. The V referred to in these specifications refers to instantaneous V  
.
CC  
CC  
7. COMP value may vary with chipset.  
8. The values for R and COMP noted as ‘New Designs’ apply to designs that will not support Intel Xeon  
TT  
processor MP (previously code named Foster MP). These designs are optimized for the Intel Xeon processor  
MP on the 0.13 micron process processor.  
2.13  
System Bus AC Specifications  
The processor system bus timings specified in this section are defined at the processor core (pads).  
See Section 9 for the Intel Xeon processor MP on the 0.13 micron process processor pin listing and  
signal definitions.  
Table 15 through Table 20 list the AC specifications associated with the processor system bus.  
Specific parameters for a 400 MHz system bus are listed in these tables.  
All AGTL+ timings are referenced to GTLREF for both ‘0’ and ‘1’ logic levels unless otherwise  
specified.  
AGTL+ layout guidelines are also available in the appropriate platform design guidelines.  
Note: Care should be taken to read all notes associated with a particular timing parameter  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
2-17  
Electrical Specifications  
Table 15. System Bus Differential Clock AC Specifications  
1
T# Parameter  
Min  
Nom  
Max  
Unit  
Figure  
Notes  
System Bus Clock Frequency (400 MHz)  
T1: BCLK[1:0] Period (400 MHz)  
T2: BCLK[1:0] Period Stability  
100.0  
10.20  
150  
MHz  
ns  
2
3
10.00  
N/A  
6
ps  
4, 5  
T3: T BCLK[1:0] Pulse High Time (400 MHz)  
3.94  
3.94  
175  
5
5
6.12  
6.12  
700  
ns  
6
6
6
6
PH  
T4: T BCLK[1:0] Pulse Low Time (400 MHz)  
ns  
PL  
T5: BCLK[1:0] Rise Time  
T6: BCLK[1:0] Fall Time  
ps  
6
6
175  
700  
ps  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies and cache sizes.  
2. The Intel Xeon processor MP on the 0.13 micron process processor core clock frequency is derived from  
BCLK. The bus clock to processor core clock ratio is determined during initialization as described in Section  
2.4. Table 2 shows the supported ratios for the Intel Xeon processor MP on the 0.13 micron process  
processor.  
3. The period specified here is the average period. A given period may vary from this specification as governed  
by the period stability specification (T2).  
4. For the clock jitter specification, refer to either the CK00 Clock Synthesizer/Driver Design Guidelines or the  
CK408 Clock Synthesizer/Driver Design Guidelines or the CK408B Clock Synthesizer/Driver Design  
Guidelines.  
5. In this context, period stability is defined as the worst case timing difference between successive crossover  
voltages. In other words, the largest absolute difference between adjacent clock periods must be less than  
the period stability.  
6. Slew rate is measured between the 35% and 65% points of the clock swing (V and V ).  
L
H
.
Table 16. System Bus Common Clock AC Specifications  
1,2,3  
T# Parameter  
Min  
Max  
Unit  
Figure Notes  
T10: Common Clock Output Valid Delay  
T11: Common Clock Input Setup Time  
T12: Common Clock Input Hold Time  
T13: RESET# Pulse Width  
0.12  
0.65  
0.40  
1.00  
1.27  
N/A  
ns  
ns  
ns  
ms  
8
8
4
5
5
N/A  
8
10.00  
11  
6, 7, 8  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies and cache sizes.  
2. Not 100% tested. Specified by design characterization.  
3. All common clock AC timings for AGTL+ signals are referenced to the Crossing Voltage (VCROSS) of the  
BCLK[1:0] at rising edge of BCLK0. All common clock AGTL+ signal timings are referenced at GTLREF at the  
processor core.  
4. Valid delay timings for these signals are specified into the test circuit described in Figure 3 and with GTLREF  
at 2/3 VCC ± 2%.  
5. Specification is for a minimum swing defined between AGTL+ VIL_MAX to VIH_MIN. This assumes an edge rate of  
0.3 V/ ns to 4.0V/ns.  
6. RESET# can be asserted (active) asynchronously, but must be deasserted synchronously.  
7. This should be measured after VCC and BCLK[1:0] become stable.  
8. Maximum specification applies only while PWRGOOD is asserted.  
2-18  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Electrical Specifications  
.
Table 17. System Bus Source Synchronous AC Specifications  
1,2,3,4  
T# Parameter  
Min  
Max  
Unit  
Figure Notes  
T20: Source Sync. Output Valid Delay (first data/  
address only)  
0.20  
1.30  
ns  
ns  
ns  
ns  
ns  
9, 10  
10  
10  
9
5
T21: T  
Source Sync. Data Output Valid Before  
VBD  
0.85  
0.85  
1.88  
1.88  
5, 8  
5, 8  
5, 8  
5, 9  
Data Strobe (400 MHz)  
T22: T Source Sync. Data Output Valid After  
VAD  
Data Strobe (400 MHz)  
T23: T Source Sync. Address Output Valid  
VBA  
Before Address Strobe (400 MHz)  
T24: T Source Sync. Address Output Valid After  
VAA  
9
Address Strobe (400 MHz)  
T25: T  
T26: T  
Source Sync. Input Setup Time  
0.21  
0.21  
ns  
ns  
9, 10  
9, 10  
6
6
SUSS  
Source Sync. Input Hold Time  
HSS  
T27: T  
BCLK  
Source Sync. Input Setup Time to  
SUCC  
0.65  
ns  
9, 10  
9
7
10, 14  
11, 12, 14  
13  
T28: T  
Address Strobe  
First Address Strobe to Second  
FASS  
1/2  
n/4  
BCLKs  
BCLKs  
T29: T : First Data Strobe to Subsequent  
Strobes  
FDSS  
10  
T30: Data Strobe ‘n’ (DSTBN#) Output Valid Delay  
(400 MHz)  
8.80  
2.27  
10.20  
4.23  
ns  
ns  
10  
9
T31: Address Strobe Output Valid Delay (400 MHz)  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies and cache sizes.  
2. Not 100% tested. Specified by design characterization.  
3. All source synchronous AC timings are referenced to their associated strobe at GTLREF. Source  
synchronous data signals are referenced to the falling edge of their associated data strobe. Source  
synchronous address signals are referenced to the rising and falling edge of their associated address strobe.  
All source synchronous AGTL+ signal timings are referenced at GTLREF at the processor core.  
4. Unless otherwise noted, these specifications apply to both data and address timings.  
5. Valid delay timings for these signals are specified into the test circuit described in Figure 3 and with GTLREF  
at 2/3 VCC ± 2%.  
6. Specification is for a minimum swing defined between AGTL+ VIL_MAX to VIH_MIN. This assumes an edge rate of  
0.3 V/ns to 4.0 V/ns.  
7. All source synchronous signals must meet the specified setup time to BCLK as well as the setup time to each  
respective strobe.  
8. This specification represents the minimum time the data or address will be valid before its strobe. Refer to the  
appropriate platform design guidelines for more information on the definitions and use of these specifications.  
9. This specification represents the minimum time the data or address will be valid after its strobe. Refer to the  
appropriate platform design guidelines for more information on the definitions and use of these specifications.  
10.The rising edge of ADSTB# must come approximately 1/2 BCLK period after the falling edge of ADSTB#.  
11.For this timing parameter, n = 1, 2, and 3 for the second, third, and last data strobes respectively.  
12.The second data strobe (falling edge of DSTBn#) must come approximately 1/4 BCLK period after the first  
falling edge of DSTBp#. The third data strobe (falling edge of DSTBp#) must come approximately 2/4 BCLK  
period after the first falling edge of DSTBp#. The last data strobe (falling edge of DSTBn#) must come  
approximately 3/4 BCLK period after the first falling edge of DSTBp#.  
13.This specification applies only to DSTBN[3:0]# and is measured to the second falling edge of the strobe.  
14.This specification reflects a typical value, not a minimum or maximum.  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
2-19  
Electrical Specifications  
.
Table 18. Miscellaneous Signals AC Specifications  
T# Parameter  
Min  
Max  
Unit  
Figure  
Notes  
T35: Async GTL+ input pulse width  
T36: PWRGOOD to RESET# de-assertion time  
T37: PWRGOOD inactive pulse width  
T38: PROCHOT# pulse width  
2
1
N/A  
10  
BCLKs  
ms  
1, 2, 3, 4  
1, 2, 3, 4  
12  
12  
14  
18  
10  
500  
N/A  
BCLKs  
µs  
1, 2, 3, 4, 5  
1, 2, 3, 4, 6  
T39: THERMTRIP# to Vcc Removal  
0.5  
5
s
T40: FERR# Valid Delay from STPCLK#  
deassertion  
0
BCLKs  
19  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies and cache sizes.  
2. All AC timings for the Asynchronous GTL+ signals are referenced to the BCLK0 rising edge at Crossing  
Voltage (V  
). All Asynchronous GTL+ signal timings are referenced at GTLREF. PWRGOOD is  
CROSS  
referenced to the BCLK0 rising edge at 0.5*VCC.  
3. These signals may be driven asynchronously.  
4. Refer to Section 6.2 for additional timing requirements for entering and leaving low power states.  
5. Refer to the PWRGOOD signal definition in Section 9.2 for more detail information on behavior of the signal.  
6. Length of assertion for PROCHOT# does not equal internal clock modulation time. Time is allocated after the  
assertion of PROCHOT# for the processor to complete current instruction execution.  
Table 19. System Bus AC Specifications (Reset Conditions)  
T# Parameter  
Min  
Max  
Unit  
Figure  
Notes  
T45: Reset Configuration Signals (A[31:3]#,  
BR[3:0]#, INIT#, SMI#) Setup Time  
4
BCLKs  
11  
1
T46: Reset Configuration Signals (A[31:3]#,  
BR[3:0]#, INIT#, SMI#) Hold Time  
2
20  
BCLKs  
11  
2
NOTES:  
1. Before the de-assertion of RESET#  
2. After the clock that de-asserts RESET#  
.
2-20  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Electrical Specifications  
Table 20. TAP Signal Group AC Specifications  
Notes  
1,2,3,9  
T# Parameter  
Min  
Max  
Unit  
Figure  
T55: TCK Period  
60.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5
5
T56: TCK Rise Time  
9.5  
9.5  
8.5  
8.5  
4
4
T57: TCK Fall Time  
5
T58: TMS, TDI Rise Time  
T59: TMS, TDI Fall Time  
T61: TDI, TMS Setup Time  
T62: TDI, TMS Hold Time  
T63: TDO Clock to Output Delay  
T64: TRST# Assert Time  
5
4
5
4
0
13  
13  
13  
14  
5, 7  
5,7  
6
3.0  
0.5  
2.0  
3.5  
T
8
TCK  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies and cache sizes.  
2. Not 100% tested. Specified by design characterization.  
3. All AC timings for the TAP signals are referenced to the TCK signal at 0.5 * Vcc at the processor pins. All TAP  
signal timings (TMS, TDI, etc) are referenced at the 0.5 * Vcc processor pins.  
4. Rise and fall times are measured from the 20% to 80% points of the signal swing.  
5. Referenced to the rising edge of TCK.  
6. Referenced to the falling edge of TCK.  
7. Specification for a minimum swing defined between TAP 20% to 80%. This assumes a minimum edge rate of  
0.5 V/ns  
8. TRST# must be held asserted for 2 TCK periods to be guaranteed that it is recognized by the processor.  
9. It is recommended that TMS be asserted while TRST# is being deasserted.  
.
Table 21. SMBus Signal Group AC Specifications  
1,2,3  
T# Parameter  
T70: SM_CLK Frequency  
Min  
Max  
Unit  
Figure  
Notes  
10  
10  
100  
100  
N/A  
N/A  
1.0  
KHz  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
µs  
µs  
µs  
T71: SM_CLK Period  
T72: SM_CLK High Time  
4.0  
4.7  
0.02  
0.02  
0.1  
250  
300  
4.7  
4.0  
4.7  
4.0  
16  
16  
16  
16  
17  
16  
16  
16  
16  
16  
16  
T73: SM_CLK Low Time  
T74: SMBus Rise Time  
5
5
T75: SMBus Fall Time  
0.3  
T76: SMBus Output Valid Delay  
T77: SMBus Input Setup Time  
T78: SMBus Input Hold Time  
T79: Bus Free Time  
4.5  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
4, 6  
T80: Hold Time after Repeated Start Condition  
T81: Repeated Start Condition Setup Time  
T82: Stop Condition Setup Time  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies and cache sizes.  
2. These parameters are based on design characterization and are not tested.  
3. All AC timings for the SMBus signals are referenced at V  
pins. Refer to Figure 16.  
or V  
and measured at the processor  
IL_MAX  
IH_MIN  
4. Minimum time allowed between request cycles.  
5. Rise time is measured from (V  
- 0.15 V) to (V  
+ 0.15 V). Fall time is measured from (0.9 *  
IH_MIN  
IL_MAX  
SM_VCC) to (V  
- 0.15V). DC parameters are specified in Table 12.  
IL_MAX  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
2-21  
Electrical Specifications  
6. Following a write transaction, an internal device write cycle time of 10ms must be allowed before starting the  
next transaction.  
2.14  
Processor AC Timing Waveforms  
The following figures are used in conjunction with the AC timing tables, Table 14 through  
Table 21.  
Note: For Figure 4 through Figure 19, the following apply:  
1. All common clock AC timings for AGTL+ signals are referenced to the Crossing Voltage  
(VCROSS) of the BCLK[1:0] at rising edge of BCLK0. All common clock AGTL+ signal  
timings are referenced at GTLREF at the processor core (pads).  
2. All source synchronous AC timings for AGTL+ signals are referenced to their associated  
strobe (address or data) at GTLREF. Source synchronous data signals are referenced to the  
falling edge of their associated data strobe. Source synchronous address signals are referenced  
to the rising and falling edge of their associated address strobe. All source synchronous  
AGTL+ signal timings are referenced at GTLREF at the processor core (pads).  
3. All AC timings for AGTL+ strobe signals are referenced to BCLK[1:0] at VCROSS. All  
AGTL+ strobe signal timings are referenced at GTLREF at the processor core (pads).  
4. All AC Timing for the TAP signals are referenced to the TCK signal at 0.5 * Vcc at the  
processor pins. All TAP signal timings (TMS, TDI, etc) are referenced at the 0.5 * Vcc at the  
processor core (pads).  
5. All AC timings for the SMBus signals are referenced to the SM_CLK signal at 0.5 * SM_VCC  
at the processor pins. All SMBus signal timings (SM_DAT, SM_ALERT#, etc) are referenced  
at VIL_MAX or VIL_MIN at the processor pins.  
Figure 4. Electrical Test Circuit  
Vtt  
Vtt  
Rload = 50 ohms  
Zo = 50 ohms, d=420mils, So=169ps/in  
L = 2.4nH  
C = 1.2pF  
AC Timings  
specified at pad.  
2-22  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Electrical Specifications  
Figure 5. TCK Clock Waveform  
tr  
*V2  
*V3  
CLK  
*V1  
tf  
tp  
Tr = T56, T58 (Rise Time)  
Tf = T57, T59 (Fall Time)  
T p = T55 (Period)  
V1, V2: For rise and fall times, TCK is measured between 20% to 80%points on the waveform  
V3:  
TCK is referenced to 0.5 * Vcc  
Figure 6. Differential Clock Waveform  
Tph  
Overshoot  
VH  
BCLK1  
Rising Edge  
Ringback  
Crossing  
Voltage  
Crossing  
Voltage  
Ringback  
Margin  
Threshold  
Region  
Falling Edge  
Ringback,  
BCLK0  
VL  
Undershoot  
Tpl  
Tp  
Tp = T1 (BCLK[1:0] period)  
T2 = BCLK[1:0] Period stability (not shown)  
Tph =T3 (BCLK[1:0] pulse high time)  
Tpl = T4 (BCLK[1:0] pulse low time)  
T5 = BCLK[1:0] rise time through the threshold region  
T6 = BCLK[1:0] fall time through the threshold region  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
2-23  
Electrical Specifications  
Figure 7. Differential Clock Crosspoint Specification  
Crosspoint Specification  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
550 mV  
550 + 0.5 (VHavg - 710)  
250 + 0.5 (VHavg - 710)  
250 mV  
660 670 680 690 700 710 720 730 740 750 760 770 780 790 800 810 820 830 840 850  
Vhavg (mV)  
Figure 8. System Bus Common Clock Valid Delay Timing Waveform  
T0  
T1  
T2  
BCLK1  
BCLK0  
TP  
Common Clock  
Signal (@ driver)  
valid  
valid  
TQ  
TR  
Common Clock  
Signal (@ receiver)  
valid  
TP = T10: Common Clock Output Valid Delay  
TQ = T11: Common Clock Input Setup  
TR = T12: Common Clock Input Hold Time  
2-24  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Electrical Specifications  
Figure 9. System Bus Source Synchronous 2X (Address) Timing Waveform  
T1  
T2  
1/4  
1/2  
3/4  
BCLK BCLK BCLK  
BCLK1  
BCLK0  
TP  
ADSTB# (@ driver)  
A# (@ driver)  
TR  
TH  
TJ  
TH  
TJ  
valid  
valid  
TS  
ADSTB# (@ receiver)  
A# (@ receiver)  
TK  
valid  
valid  
TN  
TM  
TH = T23: Source Sync. Address Output Valid Before Address Strobe  
TJ = T24: Source Sync. Address Output Valid After Address Strobe  
TK = T27: Source Sync. Input Setup to BCLK  
TM = T26: Source Sync. Input Hold Time  
TN = T25: Source Sync. Input Setup Time  
TP = T28: First Address Strobe to Second Address Strobe  
TS = T20: Source Sync. Output Valid Delay  
TR = T31: Address Strobe Output Valid Delay  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
2-25  
Electrical Specifications  
Figure 10. System Bus Source Synchronous 4X (Data) Timing Waveform  
T0  
T1  
T2  
1/4  
1/2  
3/4  
BCLK BCLK BCLK  
BCLK1  
BCLK0  
DSTBp# (@ driver)  
DSTBn# (@ driver)  
TH  
TD  
TA TB TA  
D# (@ driver)  
TJ  
DSTBp# (@ receiver)  
DSTBn# (@ receiver)  
D# (@ receiver)  
TC  
TE TG TE TG  
TA = T21: Source Sync. Data Output Valid Delay Before Data Strobe  
TB = T22: Source Sync. Data Output Valid Delay After Data Strobe  
TC = T27: Source Sync. Setup Time to BCLK  
TD = T30: Source Sync. Data Strobe 'N' (DSTBN#) Output Valid Delay  
TE = T25: Source Sync. Input Setup Time  
TG = T26: Source Sync. Input Hold Time  
TH = T29: First Data Strobe to Subsequent Strobes  
TJ = T20: Source Sync. Data Output Valid Delay  
2-26  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Electrical Specifications  
Figure 11. System Bus Reset and Configuration Timing Waveform  
T
u
T
t
RESET#  
T
v
T
x
Configuration  
Safe  
Valid  
Valid  
(A[31:3]#, BR0#,  
SMI#, INIT#)  
Tw  
Configuration  
(A[31:3]#, BR0#,  
SMI#, INIT#)  
T
v
=
=
T13 (RESET# Pluse Width)  
T
T45 (Reset Configuration Signals (A[14:5]#, BR0#, SMI#, INIT#) Setup Time)  
w
T
T46 (Reset Configuration signals (A[14:5]#, BR0#, SMI#, INIT#) Hold Time)  
x
=
Figure 12. Power-On Reset and Configuration Timing Waveform  
BLCK  
VCC  
PWRGOOD  
T
a
T
b
RESET#  
Ta = T37 (PWRGOOD Inactive Pluse Width)  
Tb = T36 (PWRGOOD to RESET# de-assertion time)  
NOTES:  
1. The function of configuration signals (A20M#, IGNNE#, LINT[1:0]) are illustrated for legacy designs only.  
Setting the bus ratio for Intel Xeon processor MP on the 0.13 micron process processor is software  
controlled.  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
2-27  
Electrical Specifications  
Figure 13. TAP Valid Delay Timing Waveform  
V
TCK  
Ts  
Th  
Tx  
Signal  
V Valid  
Tx = T63 (TDO Clock to Output Delay)  
Ts = T61 (TDI, TMS Setup Time)  
Th = T62 (TDI, TMS Hold Time)  
V = 0.5 *Vcc  
Figure 14. Test Reset (TRST#), Async GTL+ Input, and PROCHOT# Timing Waveform  
V
T
q
T64 (TRST# Pulse Width), V = 0.5 * Vcc  
T38 (PROCHOT# Pulse Width), V=GTLREF  
T
=
q
Figure 15. THERMTRIP# to Vcc Timing  
T39  
THERMTRIP#  
Vcc  
T39 < 0.5 seconds  
NOTE: THERMTRIP# is undefined when RESET is active.  
2-28  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Electrical Specifications  
Figure 16. SMBus Timing Waveform  
t
t
F
t
HD;STA  
R
t
LOW  
Clk  
t
t
t
t
t
HIGH  
SU;STO  
t
HD;STA  
SU;STA  
HD;DAT  
SU;DAT  
Data  
t
BUF  
S
S
P
P
STOP  
START  
START  
STOP  
t
t
t
t
t
t
t
t
t
=
=
=
=
T80  
T78  
T79  
T77  
= T73  
=T81  
=T82  
LOW  
HD;STA  
HD;DAT  
BUF  
SU;STA  
SU;STD  
t
HIGH = T72  
R
F
=
T74  
= T75  
SU;DAT  
Figure 17. SMBus Valid Delay Timing Waveform  
SM_CLK  
TAA  
DATA VALID  
SM_DAT  
DATA OUTPUT  
TAA = T76  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
2-29  
Electrical Specifications  
Figure 18. Example 3.3 Volt/SM_VCC Sequencing  
Power UP  
T0=95% 3.3 volt level  
3.3 VDC/SM_VCC  
OUTEN  
> T0 + 100 ms  
PWR_OK /  
VID[4:0]  
T0 + 1 mS  
T0 + 1 mS  
BSEL[1:0]  
VRM PWRGD  
> 10 ms  
Processor  
PWRGOOD  
Processor  
RESET#  
1 ms<T36<10 ms  
VID[4:0]  
PWRGD  
VRM  
PWRGOOD  
OUTEN  
CPU  
PWR_OK  
SM_VCC  
Power  
Supply  
3.3 VDC  
95% 3.3 volt level  
Power Down  
3.3 VDC/SM_VCC  
PWROK  
Power Down Warning > 1 ms  
2-30  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Electrical Specifications  
Figure 19. FERR#/PBE# Valid Delay Timing  
BCLK  
system bus  
STPCLK#  
SG  
Ack  
Ta  
FERR#/  
FERR# undefined  
PBE#  
undefined FERR#  
PBE#  
Ta = T40 (FERR# Valid Delay from STPCLK# Deassertion)  
Note: FERR#/PBE# is undefined from STPCLK# assertion until the stop grant acknowledge is driven on the processor system  
bus. FERR#/PBE# is also undefined for a period of Ta from STPCLK# deassertion. Inside these undefined regions the PBE#  
signal is driven. FERR# is driven at all other times.  
§
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
2-31  
Electrical Specifications  
2-32  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
System Bus Signal Quality Specifications  
System Bus Signal Quality  
Specifications  
3
Source synchronous data transfer requires the clean reception of data signals and their associated  
strobes. Ringing below receiver thresholds, non-monotonic signal edges, and excessive voltage  
swing will adversely affect system timings. Ringback and signal non-monotinicity cannot be  
tolerated since these phenomena may inadvertently advance receiver state machines. Excessive  
signal swings (overshoot and undershoot) are detrimental to silicon gate oxide integrity, and can  
cause device failure if absolute voltage limits are exceeded. Additionally, overshoot and  
undershoot can degrade timing due to the build up of inter-symbol interference (ISI) effects. For  
these reasons, it is crucial that the designer assure acceptable signal quality across all systematic  
variations encountered in volume manufacturing.  
This section documents signal quality metrics used to derive topology and routing guidelines  
through simulation and all specifications are specified at the processor core (pad measurements).  
Specifications for signal quality are for measurements at the processor core only and are only  
observable through simulation. The same is true for all system bus AC timing specifications in  
Section 2.13.  
3.1  
System Bus Clock (BCLK) Signal Quality  
Specifications and Measurement Guidelines  
Table 22 describes the signal quality specifications at the processor pads for the processor system  
bus clock (BCLK) signals. Figure 20 describes the signal quality waveform for the system bus  
clock at the processor pads.  
Table 22. BCLK Signal Quality Specifications  
1
Parameter  
BCLK[1:0] Overshoot  
Min  
Max  
0.30  
0.30  
N/A  
Unit  
V
Figure  
20  
Notes  
N/A  
N/A  
0.20  
N/A  
BCLK[1:0] Undershoot  
V
20  
BCLK[1:0] Ringback Margin  
BCLK[1:0] Threshold Region  
V
20  
0.10  
V
20  
2
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies and cache sizes.  
2. The rising and falling edge ringback voltage specified is the minimum (rising) or maximum (falling) absolute  
voltage the BCLK signal can dip back to after passing the VIH (rising) or VIL (falling) voltage limits. This  
specification is an absolute value.  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
3-1  
System Bus Signal Quality Specifications  
Figure 20. BCLK[1:0] Signal Integrity Waveform  
Overshoot  
VH  
BCLK1  
Rising Edge  
Ringback  
Crossing  
Voltage  
Crossing  
Voltage  
Ringback  
Margin  
Threshold  
Region  
Falling Edge  
Ringback,  
BCLK0  
VL  
Undershoot  
3.2  
System Bus Signal Quality Specifications and  
Measurement Guidelines  
Many scenarios have been simulated to generate a set of AGTL+ layout guidelines which are  
available in the appropriate platform design guidelines.  
Table 23 provides the signal quality specifications for all processor signals for use in simulating  
signal quality at the processor pads.  
Intel Xeon processor MP on the 0.13 micron process processor maximum allowable overshoot and  
undershoot specifications for a given duration of time are detailed in Table 25 through Table 28.  
Figure 21 shows the system bus ringback tolerance for low-to-high transitions and Figure 22 shows  
ringback tolerance for high-to-low transitions.  
Table 23. Ringback Specifications for AGTL+ and Asynchronous GTL+ Buffers  
Maximum Ringback  
(with Input Diodes Present)  
Signal Group  
Transition  
Unit  
Figure  
Notes  
AGTL+, Asynch GTL+  
AGTL+, Asynch GTL+  
L H  
H L  
GTLREF + 0.100*GTLREF  
GTLREF - 0.100*GTLREF  
V
V
21  
22  
1, 2, 3, 4, 5, 6  
1, 2, 3, 4, 5, 6  
NOTES:  
1. All signal integrity specifications are measured at the processor core (pads).  
2. Unless otherwise noted, all specifications in this table apply to all Intel Xeon processor MP on the 0.13 micron  
process processor frequencies and cache sizes.  
3. Specifications are for the edge rate of 0.3 - 4.0 V/ns at the receiver.  
4. All values specified by design characterization.  
5. Please see Section 3.1 for maximum allowable overshoot.  
6. Intel recommends simulations not exceed a ringback value of GTLREF ± 0.100*GTLREF to allow margin for  
other sources of system noise.  
3-2  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
System Bus Signal Quality Specifications  
Table 24. Ringback Specifications for PWRGOOD Input and TAP Buffers  
Maximum Ringback  
(with Input Diodes  
Present)  
Signal  
Group  
Transition  
Threshold  
Unit  
Figure  
Notes  
TAP and  
PWRGOOD  
L H  
H L  
VT+(max) TO VT-(max)  
VT-(min) TO VT+(min)  
VT+(max)  
VT-(min)  
V
V
23  
24  
1, 2, 3, 4, 5  
1, 2, 3, 4, 5  
TAP and  
PWRGOOD  
NOTES:  
1. All signal integrity specifications are measured at the processor core (pads).  
2. Unless otherwise noted, all specifications in this table apply to all Intel Xeon processor MP on the 0.13 micron  
process processor frequencies and cache sizes  
3. Specifications are for the edge rate of 0.3 - 4.0 V/ns.  
4. All values specified by design characterization.  
5. Please see Section 3.1 for maximum allowable overshoot.  
Figure 21. Low-to-High System Bus Receiver Ringback Tolerance for AGTL+ and  
Asynchronous GTL+ Buffers  
VCC  
Noise Margin  
+10%  
GTLREF  
-10%  
VSS  
Figure 22. High-to-Low System Bus Receiver Ringback Tolerance for AGTL+ and  
Asynchronous GTL+ Buffers  
VCC  
+10%  
GTLREF  
-10%  
Noise Margin  
VSS  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
3-3  
System Bus Signal Quality Specifications  
Figure 23. Low-to-High System Bus Receiver Ringback Tolerance for PWRGOOD and TAP  
Buffers  
Vcc  
Threshold Region to switch  
receiver to a logic 1.  
Vt+ (max)  
Vt+ (min)  
0.5 * Vcc  
Vt- (max)  
Allowable Ringback  
Vss  
3-4  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
System Bus Signal Quality Specifications  
Figure 24. High-to-Low System Bus Receiver Ringback Tolerance for PWRGOOD and TAP  
Buffers  
Vcc  
Allowable Ringback  
Vt+ (min)  
0.5 * Vcc  
Vt- (max)  
Vt- (min)  
Threshold Region to switch  
receiver to a logic 0.  
Vss  
3.3  
System Bus Signal Quality Specifications and  
Measurement Guidelines  
3.3.1  
Overshoot/Undershoot Guidelines  
Overshoot (or undershoot) is the absolute value of the maximum voltage above or below VSS. The  
overshoot/undershoot specifications limit transitions beyond VCC or VSS due to the fast signal edge  
rates. The processor can be damaged by single and/or repeated overshoot or undershoot events on  
any input, output, or I/O buffer if the charge is large enough (i.e., if the over/undershoot is great  
enough). Determining the impact of an overshoot/undershoot condition requires knowledge of the  
magnitude, the pulse direction, and the activity factor (AF). Permanent damage to the processor is  
the likely result of excessive overshoot/undershoot.  
When performing simulations to determine impact of overshoot and undershoot, ESD diodes must  
be properly characterized. ESD protection diodes do not act as voltage clamps and will not provide  
overshoot or undershoot protection. ESD diodes modelled within Intel I/O buffer models do not  
clamp undershoot or overshoot and will yield correct simulation results. If other I/O buffer models  
are being used to characterize the Intel Xeon processor MP on the 0.13 micron process processor  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
3-5  
System Bus Signal Quality Specifications  
system bus, care must be taken to ensure that ESD models do not clamp extreme voltage levels.  
Intel I/O buffer models also contain I/O capacitance characterization. Therefore, removing the ESD  
diodes from an I/O buffer model will impact results and may yield excessive overshoot/undershoot.  
3.3.2  
Overshoot/Undershoot Magnitude  
Magnitude describes the maximum potential difference between a signal and its voltage reference  
level. For the Intel Xeon processor MP on the 0.13 micron process processor both are referenced to  
VSS. It is important to note that overshoot and undershoot conditions are separate and their impact  
must be determined independently.  
Overshoot/undershoot magnitude levels must observe the absolute maximum specifications listed  
in Table 25 through Table 28. These specifications must not be violated at any time regardless of  
bus activity or system state. Within these specifications are threshold levels that define different  
allowed pulse duration. Provided that the magnitude of the overshoot/undershoot is within the  
absolute maximum specifications, the pulse magnitude, duration and activity factor must all be  
used to determine if the overshoot/undershoot pulse is within specifications.  
3.3.3  
3.3.4  
Overshoot/Undershoot Pulse Duration  
Pulse duration describes the total time an overshoot/undershoot event exceeds VID. The total time  
could encompass several oscillations above the reference voltage. Multiple overshoot/undershoot  
pulses within a single overshoot/undershoot event may need to be measured to determine the total  
pulse duration.  
Note: Oscillations below the reference voltage can not be subtracted from the total overshoot/undershoot  
pulse duration.  
Activity Factor  
Activity Factor (AF) describes the frequency of overshoot (or undershoot) occurrence relative to a  
clock. Since the highest frequency of assertion of any common clock signal is every other clock, an  
AF = 1 indicates that the specific overshoot (or undershoot) waveform occurs every other clock  
cycle. Thus, an AF = 0.01 indicates that the specific overshoot (or undershoot) waveform occurs  
one time in every 200 clock cycles.  
For source synchronous signals (address, data, and associated strobes), the activity factor is in  
reference to the strobe edge. The highest frequency of assertion of any source synchronous signal is  
every active edge of its associated strobe. So, an AF = 1 indicates that the specific overshoot (or  
undershoot) waveform occurs every strobe cycle.  
The specifications provided in Table 25 through Table 28 show the maximum pulse duration  
allowed for a given overshoot/undershoot magnitude at a specific activity factor. Each table entry is  
independent of all others, meaning that the pulse duration reflects the existence of overshoot/  
undershoot events of that magnitude ONLY. A platform with an overshoot/undershoot that just  
meets the pulse duration for a specific magnitude where the AF < 1, means that there can be no  
other overshoot/undershoot events, even of lesser magnitude (note that if AF = 1, then the event  
occurs at all times and no other events can occur).  
3-6  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
System Bus Signal Quality Specifications  
NOTES:  
1. Activity factor for common clock AGTL+ signals is referenced to BCLK[1:0] frequency.  
2. Activity factor for source synchronous (2x) signals is referenced to ADSTB[1:0]#.  
3. Activity factor for source synchronous (4x) signals is referenced to DSTBP[3:0]#and DSTBN[3:0]#.  
3.3.5  
Reading Overshoot/Undershoot Specification Tables  
The overshoot/undershoot specification for the Intel Xeon processor MP on the 0.13 micron  
process processor is not a simple single value. Instead, many factors are needed to determine the  
over/undershoot specification. In addition to the magnitude of the overshoot, the following  
parameters must be considered: the width of the overshoot and the activity factor (AF). To  
determine the allowed overshoot for a particular overshoot event, the following must be done:  
1. Determine the signal group that particular signal falls into. For AGTL+ signals operating in  
the 4X source synchronous domain, use Table 25. For AGTL+ signals operating in the 2X  
source synchronous domain, use Table 26. If the signal is an AGTL+ signal operating in the  
common clock domain, use Table 27. Finally, all other signals reside in the 33 MHz domain  
(asynchronous GTL+, TAP, etc.) and are referenced in Table 28.  
2. Determine the magnitude of the overshoot or the undershoot (relative to VSS).  
3. Determine the activity factor (how often does this overshoot occur).  
4. Next, from the appropriate specification table, determine the maximum pulse duration (in  
nanoseconds) allowed.  
5. Compare the specified maximum pulse duration to the signal being measured. If the pulse  
duration measured is less than the pulse duration shown in the table, then the signal meets the  
specifications.  
Undershoot events must be analyzed separately from overshoot events as they are mutually  
exclusive.  
3.3.6  
Determining if a System Meets the Overshoot/Undershoot  
Specifications  
The overshoot/undershoot specifications listed in the following tables specify the allowable  
overshoot/undershoot for a single overshoot/undershoot event. However most systems will have  
multiple overshoot and/or undershoot events for a given transition, with each having their own set  
of parameters (duration, AF and magnitude). While each overshoot on its own may meet the  
overshoot specification, when you add the total impact of all overshoot events, the system may fail  
(see Figure 25). A guideline to ensure a system passes the overshoot and undershoot specifications  
is shown below.  
1. Ensure no signal ever exceeds VCC or -0.25V or  
2. If only one overshoot/undershoot event magnitude occurs, ensure it meets the over/undershoot  
specifications in the following tables or  
3. If multiple overshoots and/or multiple undershoots occur, measure the worst case pulse  
duration for each magnitude and compare the results against the AF = 1 specifications. If all of  
these worst case overshoot or undershoot events meet the specifications (measured time <  
specifications) in the table (where AF=1), then the system passes.  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
3-7  
System Bus Signal Quality Specifications  
The following notes apply to Table 25 through Table 28.  
NOTES:  
1. Absolute Maximum Overshoot magnitude of 1.8V must never be exceeded.  
2. Absolute Maximum Overshoot is measured referenced to VSS, Pulse Duration of overshoot is measured  
relative to VCC  
.
3. Absolute Maximum Undershoot and Pulse Duration of undershoot is measured relative to VSS  
4. Ringback below VCC cannot be subtracted from overshoots/undershoots.  
5. Lesser undershoot does not allocate longer or larger overshoot.  
6. OEMs are strongly encouraged to follow Intel layout guidelines.  
7. All values specified by design characterization.  
.
8. Refer to Table 5 for signal group definitions.  
Table 25. Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Source  
Synchronous AGTL+ Signal Group (Data) Overshoot/Undershoot Tolerance  
Absolute  
Maximum  
Overshoot  
(V)  
Absolute  
Maximum  
Undershoot  
(V)  
Pulse Duration  
(ns)  
Pulse Duration  
(ns)  
Pulse Duration  
(ns)  
AF = 1  
AF = 0.1  
AF = 0.01  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
- 0.347  
- 0.297  
- 0.247  
- 0.197  
- 0.147  
- 0.097  
- 0.047  
0.04  
0.12  
0.36  
1.05  
3.09  
5.00  
5.00  
0.46  
1.37  
5.00  
5.00  
5.00  
5.00  
5.00  
4.70  
5.00  
5.00  
5.00  
5.00  
5.00  
5.00  
NOTES:  
1. These specifications are measured at the processor pad.  
2. Assumes a BCLK period of 10 ns.  
3. AF is referenced to associated source synchronous strobes  
Table 26. Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Common Clock  
AGTL+ Signal Group Overshoot/Undershoot Tolerance  
Absolute  
Maximum  
Overshoot  
(V)  
Absolute  
Maximum  
Undershoot  
(V)  
Pulse Duration  
(ns)  
Pulse Duration  
(ns)  
Pulse Duration  
(ns)  
AF = 1  
AF = 0.1  
AF = 0.01  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
- 0.347  
- 0.297  
- 0.247  
- 0.197  
- 0.147  
- 0.097  
- 0.047  
0.08  
0.25  
0.86  
2.53  
8.67  
10.00  
10.00  
10.00  
10.00  
10.00  
10.00  
0.73  
7.34  
2.11  
10.00  
10.00  
10.00  
10.00  
6.19  
10.00  
10.00  
NOTES:  
1. These specifications are measured at the processor pad.  
2. Assumes a BCLK period of 10 ns.  
3. AF is referenced to associated source synchronous strobes.  
.
3-8  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
System Bus Signal Quality Specifications  
Table 27. Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Common Clock  
AGTL+ Signal Group Overshoot/Undershoot Tolerance  
Absolute  
Maximum  
Overshoot  
(V)  
Absolute  
Maximum  
Undershoot  
(V)  
Pulse Duration  
(ns)  
Pulse Duration  
(ns)  
Pulse Duration  
(ns)  
AF = 1  
AF = 0.1  
AF = 0.01  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
- 0.347  
- 0.297  
- 0.247  
- 0.197  
- 0.147  
- 0.097  
- 0.047  
0.17  
0.50  
1.73  
5.06  
17.34  
20.00  
20.00  
20.00  
20.00  
20.00  
20.00  
1.46  
14.69  
20.00  
20.00  
20.00  
20.00  
4.23  
12.39  
20.00  
20.00  
NOTES:  
1. These specifications are measured at the processor pad.  
2. BCLK period is 10 ns.  
3. WIRED OR signals on Intel Xeon processor MP on the 0.13 micron process processor can tolerate up to 1 V  
of overshoot/undershoot.  
4. AF is referenced to BCLK[1:0].  
Table 28. Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Asynchronous  
GTL+ and TAP Signal Groups Overshoot/Undershoot Tolerance  
Absolute  
Maximum  
Overshoot  
(V)  
Absolute  
Maximum  
Undershoot  
(V)  
Pulse Duration  
(ns)  
Pulse Duration  
(ns)  
Pulse Duration  
(ns)  
AF = 1  
AF = 0.1  
AF = 0.01  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
- 0.347  
- 0.297  
- 0.247  
- 0.197  
- 0.147  
- 0.097  
- 0.047  
0.52  
1.51  
5.20  
52.03  
60.00  
60.00  
60.00  
60.00  
60.00  
60.00  
15.19  
44.90  
60.00  
60.00  
60.00  
60.00  
4.40  
12.71  
37.19  
60.00  
60.00  
NOTES:  
1. These specifications are measured at the processor pad.  
2. These signals are assumed in a 33 MHz time domain.  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
3-9  
System Bus Signal Quality Specifications  
Figure 25. Maximum Acceptable Overshoot/Undershoot Waveform  
Maximum  
Absolute  
Overshoot  
Time-dependent  
Overshoot  
VMAX  
VCC  
GTLREF  
VOL  
VSS  
VMIN  
Time-dependent  
Undershoot  
Maximum  
Absolute  
Undershoot  
§
3-10  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Mechanical Specifications  
Mechanical Specifications  
4
The Intel Xeon processor MP on the 0.13 micron process processor uses a Micro-Pin Grid Array  
(INT-mPGA) packaging technology. The Intel Xeon processor with 512-KB of L2 cache uses the  
INT-mPGA package for 400 MHz system bus processors and the Flip Chip Micro-Pin Grid Array  
(FC-mPGA2) package for 533 MHz system bus processors. In addition, the Low Voltage Intel  
Xeon processor uses the Flip Chip Micro-Pin Grid Array (FC-mPGA2) package for 400 MHz  
system bus processors. Both packages include an integrated heat spreader (IHS). The Intel Xeon  
processor MP on the 0.13 micron process and the Intel Xeon processor in INT-mPGA package  
include the processor die, and a pinned FR4 interposer. The Intel Xeon processor in the FC-  
mPGA2 package contains the processor die but no interposer, PIROM or scratch EEPROM.  
Mechanical specifications for the processor are given in this section. See Section 1.1 for  
terminology definitions. Figure 26 and Figure 27 provide a basic processor assembly drawing and  
includes the components which make up the entire processor. The Intel Xeon processor MP on the  
0.13 micron process processor and the Intel Xeon processor in INT-mPGA package also includes  
several SMBus components on the package interposer, an EEPROM, and a thermal sensor.  
Table 29 provides dimensions for the package shown in Figure 28. These dimensions describe a  
high thermal performance package for use on the Intel Xeon processor MP on the 0.13 micron  
process processor. A thermal performance benefit is expected from the use of an IHS with an  
increase in thickness from 1.5 mm to 3.0 mm. This results in a change from the Intel Xeon  
processor package configuration.  
The Intel Xeon processor MP on the 0.13 micron process processor and the Intel Xeon processor in  
INT-mPGA utilize a surface mount 603-pin zero-insertion force (ZIF) socket for installation into  
the baseboard. Please refer to the 603- Pin Socket Design Guidelines for further details on the  
processor socket. The Intel Xeon processor in the FC-mPGA2 package utilizes a surface mount  
604-pin zero-insertion force (ZIF) socket for installation into the baseboard. The 604-pin socket is  
required to accommodate the solder fillet on the FC-mPGA2 package pins. Please refer to the 604-  
Pin Socket Design Guidelines for further details on the processor socket. Note that Intel Xeon  
processor in INT-mPGA package can utilize the 604-pin socket.  
Note: For Figure 26 through Figure 37, the following notes apply:  
1. Unless otherwise specified, the following drawing dimensions are expressed in millimeters.  
2. Currently, all mechanical specifications are preliminary and subject to change.  
3. Figures and drawings labelled as “Reference Dimensions” are provided for informational  
purposes only. Reference Dimensions are extracted from the mechanical design database and  
are nominal dimensions with no tolerance information applied. Reference Dimensions are  
NOT checked as part of the processor manufacturing process. Unless noted as such,  
dimensions in parentheses without tolerances are Reference Dimensions.  
4. The Intel Xeon processor MP on the 0.13 micron process processor will utilize a 42.5 mm  
INT-mPGA package and for the purpose of this section will be referred to as the “Xeon MP  
package.” The Intel Xeon processor will use a 35 mm INT-mPGA or 31 mm for the FC-  
mPGA2 package. The differences between these packages include the package dimensions  
and the IHS dimensions. Thermal solutions should be designed to support both packages and  
their associated IHS sizes. See the Intel® XeonProcessor (MP) Thermal Design Guidelines  
for additional details on thermal solution design.  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
4-1  
Mechanical Specifications  
Figure 26. Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor and Intel®  
Xeon™ Processor with 512-KB L2 Cache in INT-mPGA Package - Assembly  
Drawing (Including Socket)  
1
2
5
6
3
4
7
8
9
Note: This drawing is not to scale and is for reference only. The assembly applies to both Intel Xeon  
processor MP on the 0.13 micron process processor and Intel Xeon processor in the INT-mPGA  
package. The 603-pin socket is supplied as a reference only.  
1. Integrated Heat Spreader (IHS)  
2. Thermal Interface Material (TIM) between processor die and IHS  
3. Processor die  
4. Flip Chip interconnect  
5. FCBGA (Flip Chip Ball Grid Array) package  
6. FCBGA solder joints  
7. Processor interposer  
8. 603-pin socket  
9. 603-pin socket solder joints  
4-2  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Mechanical Specifications  
4.1  
Mechanical Specifications  
Figure 27. Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Package Top  
View Component Placement Detail  
Pin A1  
CPU  
Figure 28. Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Package  
Drawing  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
4-3  
Mechanical Specifications  
Table 29. Dimensions for the Intel® Xeon™ Processor MP on the 0.13 Micron Process  
Processor Package  
Millimeters  
Symbol  
Notes  
Min  
Nominal  
53.34  
Max  
A
B
C
D
E
F
53.19  
42.45  
38.40  
3.47  
53.49  
42.64  
38.95  
4.15  
42.50  
38.50  
3.81  
Includes placement tolerance  
Includes placement tolerance  
6.05  
6.50  
6.95  
1.95  
2.03  
2.11  
G
H
J
19.05  
38.10  
7.32  
Nominal  
Nominal  
7.19  
7.44  
K
L
14.38  
14.63  
13.97  
30.48  
6.05  
14.88  
Nominal  
Nominal  
M
N
5.92  
0.28  
6.17  
0.36  
φP  
R
0.31  
Pin Diameter  
Nominal  
1.27  
T
14.38  
14.63  
14.88  
0.26  
Pin Tp  
Figure 29 details the keep-in zone for components mounted to the top side of the processor  
interposer for the Intel Xeon processor MP on the 0.13 micron process processor and Intel Xeon  
processor in INT-mPGA package. The components include the EEPROM, thermal sensor, resistors  
and capacitors.  
4-4  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Mechanical Specifications  
Figure 29. Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Top View -  
Component Keep-In  
Figure 30 details the keep in specification for pin-side components. The Intel Xeon processor MP  
on the 0.13 micron process processor may contain pin side capacitors mounted to the processor  
INT-mPGA package. The capacitors will be exposed within the opening of the interposer cavity.  
This keep-out specification applies to the Intel Xeon processor MP on the 0.13 micron process  
processor and the Intel Xeon processor in INT-mPGA package.  
Figure 30. Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor and Intel®  
Xeon™ Processor with 512-KB L2 Cache in INT-mPGA Package - Cross Section  
View - Pin Side Component Keep-In  
IHS  
FCBGA  
Interposer  
1.270mm  
Component  
Keepin  
13.411mm  
Component Keepin  
Socket must allow clearance  
for pin shoulders and mate  
flush with this surface  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
4-5  
Mechanical Specifications  
Figure 31. Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor and Intel®  
Xeon™ Processor with 512-KB L2 Cache in INT-mPGA Package - Processor Pin  
Details  
NOTES:  
1. Kovar pin with plating of 0.2 micrometers Au over 2.0 micrometer Ni.  
2. 0.254 Diametric true position, pin to pin.  
Figure 32 and Figure 33 detail the flatness and tilt specifications for the IHS of the Intel Xeon  
processor MP on the 0.13 micron process processor and Intel Xeon processor. Tilt is measured with  
the reference datum set to the bottom of the processor interposer.  
4-6  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Mechanical Specifications  
Figure 32. Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Package IHS  
Flatness and Tilt Drawing  
Figure 33. Intel® Xeon™ Processor MP on the 0.13 Micron Process INT-mPGA Package IHS  
Flatness and Tilt Drawing  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
4-7  
Mechanical Specifications  
4.2  
Package Load Specifications  
Table 30 provides dynamic and static load specifications for the Intel Xeon processor MP on the  
0.13 micron process processor IHS. These mechanical load limits should not be exceeded during  
heat sink assembly, mechanical stress testing, or standard drop and shipping conditions. The heat  
sink attach solutions must not induce continuous stress onto the processor with the exception of a  
uniform load to maintain the heat sink-to-processor thermal interface. It is not recommended to use  
any portion of the processor interposer as a mechanical reference or load bearing surface for  
thermal solutions.  
Table 30. Package Dynamic and Static Load Specifications  
Parameter  
Max  
Unit  
Notes  
Static  
50  
lbf  
lbf  
1, 2, 3  
Dynamic  
50 + 1 lb * 50G input * 1.8 (AF)  
1, 2, 4,5  
NOTES:  
1. This specification applies to a uniform compressed load.  
2. This is the maximum static force that can be applied by the heatsink and clip to maintain the heatsink and  
processor interface.  
3. These parameters are based on design characterization and not tested.  
4. Dynamic loading specifications are defined assuming a maximum duration of 11 ms.  
5. 1 lb is Heatsink weight. 50 G is shock input to the system during shock testing. AF is the amplification factor.  
This is equivalent to 140 lbs.  
4.3  
4.4  
Insertion Specifications  
The Intel Xeon processor MP on the 0.13 micron process processor can be inserted and removed 15  
times from a 603/604-pin socket meeting the 603-Pin Socket Design Guidelines document.  
Mass Specifications  
Table 31 specifies the processors mass. This includes all components which make up the entire  
processor product.  
Table 31. Processor Mass  
Processor  
Mass (grams)  
Intel® Xeon™ processor MP on the 0.13 micron process processor  
with 1-MB L3 cache  
57  
Intel® Xeon™ processor MP on the 0.13 micron process processor  
with 2-MB L3 cache  
57  
4-8  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Mechanical Specifications  
4.5  
Materials  
The Intel Xeon processor MP on the 0.13 micron process processor is assembled from several  
components. The basic material properties are described in Table 32.  
Table 32. Processor Material Properties  
Component  
Material  
Notes  
Integrated Heat Spreader  
INT-mPGA & FC-mPGA2 package  
Interposer  
Nickel plated copper  
BT Resin  
FR4  
Interposer pins (INT-mPGA2)  
FC-mPGA2 package pins  
Kovar with Gold over nickel  
Cu Alloy 194  
4.6  
Markings  
Figure 34 shows the topside markings while Figure 35 shows the bottom side markings on the  
processor. These diagrams are to aid in the identification of the Intel Xeon processor MP on the  
0.13 micron process processor.  
Figure 34. Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Top-Side  
Markings (Package Example)  
Dynamic Laser  
Mark Area with 2D Matrix  
Group A Line1  
Group A Line2  
2D Matrix encodes ATPO  
number and Serial number  
Pin A1  
NOTES:  
1. Character size for laser marking is: height 0.050 inch (1.27mm), width 0.032 inch (0.81mm)  
2. All characters will be in upper case.  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
4-9  
Mechanical Specifications  
Figure 35. Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Bottom-Side  
Markings (Package Example)  
Engr (QDF)  
Sample Mark  
Prod(SSPEC)  
Sample Mark  
Description  
Legal mark  
Group A Line 1 Intel Confidential {Intel Brand}  
Group A Line 2 i(m) '02  
i(m) '02  
Group B Line 1 XXXXXXXX  
Croup B Line 2 YYYY  
XXXXXXXX  
YYYY  
ATPO mark  
Serial number mark  
Group C Line 1 80532KC2.0G2M 2000/2M/400/1/475V Product code  
Group C Line 2 QXXXCosta Rica S XXXCosta Rica  
Group C Line 3 XXXXXXXX-YYYY XXXXXXXX-YYYY  
QDF/Sspec, Assy site  
FPO-SN mark  
Group C Line 1  
Group C Line 2  
Group C Line 3  
*Example shown is a 2.0GHz Intel(R) Xeon(TM) Processor  
Pin A1  
4.7  
Pinout Diagram  
This section provides two views of the processor pin grid. Figure 36 and Figure 37 detail the  
coordinates of the Intel Xeon processor MP on the 0.13 micron process processor and Intel Xeon  
processor in INT-mPGA 603-pins package.  
4-10  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Mechanical Specifications  
Figure 36. Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor and Intel®  
Xeon™ Processor with 512-KB L2 Cache in INT-mPGA Package - Pinout Diagram -  
Top View  
COMMON  
CLOCK  
COMMON  
CLOCK  
Async /  
JTAG  
ADDRESS  
1
3
5
7
9
11  
13  
15  
17  
19  
21  
23 25  
27  
29  
31  
A
B
A
B
C
D
C
D
E
E
F
F
G
H
J
G
H
J
K
L
M
N
P
R
K
L
Intel® Xeon™ Processor MP  
on the 0.13 Micron Process  
Processor  
M
N
P
Top View  
R
T
T
U
V
U
V
W
Y
W
Y
AA  
AA  
AB  
AC  
AD  
AB  
AC  
AD  
AE  
AE  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
CLOCKS  
DATA  
SMBus  
= Signal  
= Power  
= Ground  
= SM_VCC  
= GTLREF  
= Reserved  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
4-11  
Mechanical Specifications  
Figure 37. Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor and Intel®  
Xeon™ Processor with 512-KB L2 Cache in INT-mPGA Package - Pinout Diagram -  
Bottom View  
Async /  
JTAG  
COMMON  
CLOCK  
COMMON  
CLOCK  
ADDRESS  
31  
29  
27  
25 23 21  
19 17 15  
13 11  
9
7
5
3
1
A
B
A
B
C
C
D
D
E
E
F
F
G
G
H
J
H
J
K
L
M
N
P
R
K
L
Intel® Xeon™ Processor MP on the  
0.13 Micron Process Processor  
Family  
M
N
P
Bottom View  
R
T
T
U
V
W
U
V
W
Y
Y
AA  
AB  
AA  
AB  
AC  
AC  
AD  
AE  
AD  
AE  
28 26 24  
22 20  
18 16  
14 12 10  
= SM_VCC  
8
6
4
2
SMBus  
DATA  
CLOCKS  
= Signal  
= Power  
= Ground  
= GTLREF  
= Reserved  
§
4-12  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Thermal Specifications  
Thermal Specifications  
5
This chapter provides the thermal specifications necessary for designing a thermal solution for the  
Intel Xeon processor MP on the 0.13 micron process processor. The IHS provides a common  
interface intended to be compatible with many heatsink designs. Thermal specifications are based  
on the temperature of the IHS top, referred to as “TCASE”. Thermal solutions should be designed to  
maintain the processor within its TCASE specifications. For information on performing Tcase  
measurements for thermal solution design and validation, refer to the Intel® Xeon™ Processor  
(MP) Thermal Design Guidelines. See Figure 38 for an exploded view of the processor package  
and thermal solution assembly. For boxed processor specifications, refer to Section 7.  
Note: The processor is either shipped alone or with a heatsink (boxed processor only). All other  
components shown in Figure 38 must be purchased separately.  
Figure 38. Thermal and Mechanical Components - Exploded View  
Heat sink clip  
Heat sink  
EMI ground  
frame  
Retention  
mechanism  
603-pin  
socket  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
5-1  
Thermal Specifications  
NOTE: This is a graphical representation. It is applicable for the 604-pin socket also which is required for the  
Intel Xeon processor with 512-KB L2 cache in the FC-mPGA2 package. For specifications, see each  
component’s respective documentation listed in Section 1.2.  
5-2  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Thermal Specifications  
5.1  
Thermal Specifications  
To assure the optimal operation and long-term reliability of Intel Xeon processor-based systems,  
the system/processor thermal solution should be designed such that the processor remains between  
the minimum and maximum case temperature (TC) specifications when operating at or below the  
Thermal Design Power (TDP) value listed per frequency in Table 33.Thermal solutions not  
designed to provide this level of thermal capability may affect the long-term reliability of the  
processor and system. For more details on thermal solution design, please refer to the appropriate  
processor thermal design guidelines.  
The case temperature is defined at the geometric top center of the processor IHS (Integrated Heat  
Spreader). Analysis indicates that real applications are unlikely to cause the processor to consume  
maximum power dissipation for sustained time periods. Intel recommends that complete thermal  
solution designs target the Thermal Design Power (TDP) indicated in Table 33 instead of the  
maximum processor power consumption. The Thermal Monitor feature is intended to help protect  
the processor in the unlikely event that an application exceeds the TDP recommendation for a  
sustained period of time. For more details on the usage of this feature, refer to Section 6.3. To  
ensure maximum flexibility for future requirements, systems should be designed to the Flexible  
Motherboard Guidelines (FMB), even if a processor with a lower thermal dissipation is currently  
planned. In all cases, the Thermal Monitor feature must be enabled for the processor to remain  
within specification  
.
Table 33. Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Thermal Design  
Power  
Maximum  
Processor  
Power (W)  
ThermalDesign  
Minimum  
TCASE  
(°C)  
Maximum  
TCASE  
2
7
3, 4  
Core Frequency  
Power  
(W)  
Note  
1
(°C)  
Processor with 2-MB  
L3 Cache  
2 GHz  
65  
83  
57  
72  
5
5
69  
69  
2.80 Ghz  
Processor 1-MB L3  
Cache  
1.50 GHz  
1.90 GHz  
2 GHz  
54  
63  
65  
74  
48  
55  
57  
66  
5
5
5
5
67  
68  
69  
70  
2.50 GHz  
NOTES:  
1. Maximum Processor Power is the maximum thermal power that can be dissipated by the processor through  
the integrated heat spreader.  
2. Intel recommends that thermal solutions be designed to meet the Thermal Design Power guidelines. Refer to  
®
the Intel Xeon™ Processor (MP) Thermal Design Guidelines.  
3. TDP values are specified at the point on Vcc_max loadline corresponding to Icc_TDP.  
4. Systems must be designed to ensure that the processor is not subjected to any static Vcc and Icc  
combination wherein Vcc exceeds Vcc_max at specified Icc. Please refer to the loadline specifications in  
Section 2.  
5. Values are based on the latest silicon available at the time of publication. Any updates will be provided in a  
future revision of this document.  
6. Actual specifications for future processor frequencies may be different.  
7. TCASE values are based on Intel reference heatsink with psi_ca of 0.33 C/W. Refer to the Intel Xeon™  
®
Processor (MP) Thermal Design Guidelines for details.  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
5-3  
Thermal Specifications  
Figure 39. Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Thermal Design  
Power vs. Electrical Projections  
1.455  
1.450  
1.445  
1.440  
1.435  
80  
70  
60  
50  
40  
TDP  
VMAX  
35  
40  
45  
50  
55  
60  
65  
70  
Processor MaximumCurrent (A)  
5-4  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Thermal Specifications  
5.2  
Measurements for Thermal Specifications  
5.2.1  
Processor Case Temperature Measurement  
The maximum and minimum case temperature (TC) for the Intel Xeon Processor is specified in  
Table 33. This temperature specification is meant to help ensure proper operation of the processor.  
Figure 40 illustrates where Intel recommends TC thermal measurements should be made.  
Figure 40. Thermal Measurement Point for Processor TCASE  
Measure from edge of processor interposer  
Measure TCASE at this point  
(geometric center of IHS)  
26.67 mm [1.05 in]  
22.86 mm [0.90 in]  
Thermal grease should cover  
entire area of IHS  
Intel® Xeon™ MP Processor with up to 2-MB L3 Cache  
(53.34 mm x 53.34 mm interposer)  
NOTE: Figure is not to scale, and is for reference only  
§
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
5-5  
Thermal Specifications  
5-6  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Features  
Features  
6
6.1  
Power-On Configuration Options  
Intel Xeon processor MP on the 0.13 micron process processor members have several  
configuration options that are determined by the state of specific processor pins at the active-to-  
inactive transition of the processor RESET# signal. These configuration options cannot be changed  
except by another reset. Both power on and software induced resets reconfigure the processor(s).  
Table 34. Power-On Configuration Option Pins  
1
Configuration Option  
Pin  
Notes  
Output tri state  
SMI#  
INIT#  
Execute BIST (Built-In Self Test)  
In Order Queue de-pipelining (set IOQ depth to 1)  
Disable MCERR# observation  
Disable BINIT# observation  
APIC cluster ID (0-3)  
A7#  
A9#  
A10#  
A[12:11]#  
A15#  
2
3
Disable bus parking  
Disable Hyper-Threading Technology  
Symmetric agent arbitration ID  
A31#  
BR[3:0]#  
NOTES:  
1. Asserting this signal during active-to-inactive edge of RESET# will selects the corresponding option.  
6.2  
Clock Control and Low Power States  
The Intel Xeon processor MP on the 0.13 micron process processor allows the use of AutoHALT,  
Stop-Grant and Sleep states to reduce power consumption by stopping the clock to internal sections  
of the processor, depending on each particular state. See Figure 41 for a visual representation of the  
processor low power states.  
Due to the inability of processors to recognize bus transactions during the Sleep state,  
multiprocessor Intel Xeon processor MP on the 0.13 micron process processor based systems are  
not allowed to simultaneously have one processor in Sleep state and the other processors in Normal  
or Stop-Grant state.  
6.2.1  
6.2.2  
Normal State—State 1  
This is the normal operating state for the processor.  
AutoHALT Powerdown State—State 2  
AutoHALT is a low power state entered when the processor executes the HALT instruction. The  
processor will transition to the Normal state upon the occurrence of SMI#, BINIT#, INIT#,  
LINT[1:0] (NMI, INTR), or an interrupt delivered over the system bus. RESET# will cause the  
processor to immediately initialize itself.  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
6-1  
Features  
The return from a System Management Interrupt (SMI) handler can be to either Normal Mode or  
the AutoHALT Power Down state. See the Intel Architecture Software Developer's Manual,  
Volume III: System Programmer's Guide for more information.  
The system can generate a STPCLK# while the processor is in the AutoHALT Power Down state.  
When the system deasserts the STPCLK# interrupt, the processor will return execution to the  
HALT state.  
Figure 41. Stop Clock State Machine  
HALT Instruction and  
HALT Bus Cycle Generated  
2. Auto HALT Power Down State  
BCLK running  
INIT#, BINIT#, INTR, NMI,  
SMI#, RESET#  
.
1. Normal State  
Normal execution  
Snoops and interrupts allowed  
STPCLK#  
De-asserted  
STPCLK#  
Asserted  
Snoop  
Event  
Snoop  
Event  
Occurs  
Serviced  
4. HALT/Grant Snoop State  
BCLK running  
3. Stop Grant State  
BCLK running  
Snoop Event Occurs  
Snoop Event Serviced  
Service snoops to caches  
Snoops and interrupts allowed  
SLP#  
Asserted  
SLP#  
De-asserted  
5. Sleep State  
BCLK running  
No snoops or interrupts  
allowed  
6.2.3  
Stop-Grant State—State 3  
When the STPCLK# pin is asserted, the Stop-Grant state of the processor is entered 20 bus clocks  
after the response phase of the processor-issued Stop Grant Acknowledge special bus cycle. Once  
the STPCLK# pin has been asserted, it may only be deasserted once the processor is in the Stop  
Grant state. For the Intel Xeon processor MP on the 0.13 micron process processor, both logical  
processors must be in the Stop Grant state before the deassertion of STPCLK#.  
Since the AGTL+ signal pins receive power from the system bus, these pins should not be driven  
(allowing the level to return to VCC) for minimum power drawn by the termination resistors in this  
state. In addition, all other input pins on the system bus should be driven to the inactive state.  
6-2  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Features  
BINIT# will be recognized while the processor is in Stop-Grant state. If STPCLK# is still asserted  
at the completion of the BINIT# bus initialization, the processor will remain in Stop-Grant mode. If  
the STPCLK# is not asserted at the completion of the BINIT# bus initialization, the processor will  
return to Normal state.  
RESET# will cause the processor to immediately initialize itself, but the processor will stay in  
Stop-Grant state. A transition back to the Normal state will occur with the deassertion of the  
STPCLK# signal. When re-entering the Stop-Grant state from the sleep state, STPCLK# should  
only be deasserted one or more bus clocks after the deassertion of SLP#.  
A transition to the HALT/Grant Snoop state will occur when the processor detects a snoop on the  
system bus (see Section 6.2.4). A transition to the Sleep state (see Section 6.2.5) will occur with the  
assertion of the SLP# signal.  
While in the Stop-Grant state, SMI#, INIT#, BINIT# and LINT[1:0] will be latched by the  
processor, and only serviced when the processor returns to the Normal state. Only one occurrence  
of each event will be recognized upon return to the Normal state.  
6.2.4  
6.2.5  
HALT/Grant Snoop State—State 4  
The processor will respond to snoop transactions on the system bus while in Stop-Grant state or in  
AutoHALT Power Down state. During a snoop transaction, the processor enters the HALT/Grant  
Snoop state. The processor will stay in this state until the snoop on the system bus has been  
serviced (whether by the processor or another agent on the system bus). After the snoop is serviced,  
the processor will return to the Stop-Grant state or AutoHALT Power Down state, as appropriate.  
Sleep State—State 5  
The Sleep state is a very low power state in which each processor maintains its context, maintains  
the phase-locked loop (PLL), and has stopped most of internal clocks. The Sleep state can only be  
entered from Stop-Grant state. Once in the Stop-Grant state, the SLP# pin can be asserted, causing  
the processor to enter the Sleep state. The SLP# pin is not recognized in the Normal or AutoHALT  
states.  
Snoop events that occur while in Sleep state or during a transition into or out of Sleep state will  
cause unpredictable behavior.  
In the Sleep state, the processor is incapable of responding to snoop transactions or latching  
interrupt signals. No transitions or assertions of signals (with the exception of SLP# or RESET#)  
are allowed on the system bus while the processor is in Sleep state. Any transition on an input  
signal before the processor has returned to Stop-Grant state will result in unpredictable behavior.  
If RESET# is driven active while the processor is in the Sleep state, and held active as specified in  
the RESET# pin specification, then the processor will reset itself, ignoring the transition through  
Stop-Grant state. If RESET# is driven active while the processor is in the Sleep state, the SLP# and  
STPCLK# signals should be deasserted immediately after RESET# is asserted to ensure the  
processor correctly executes the reset sequence.  
Once in the Sleep state, the SLP# pin can be deasserted if another asynchronous system bus event  
occurs. The SLP# pin should only be asserted when the processor is in the Stop-Grant state. For  
Intel Xeon processor MP on the 0.13 micron process processors, the SLP# pin may only be  
asserted when all logical processors are in the Stop-Grant state. SLP# assertions while the  
processors are not in the Stop-Grant state is out of specification and may result in illegal operation.  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
6-3  
Features  
6.2.6  
Bus Response during Low Power States  
While in AutoHALT Power Down and Stop-Grant states, the processor will process a system bus  
snoop.  
When the processor is in Sleep state, the processor will not process interrupts or snoop  
transactions.  
6.3  
Thermal Monitor  
The Thermal Monitor feature helps control the processor temperature by activating the Thermal  
Control Circuit (TCC) when the processor silicon reaches its maximum operating temperature. The  
TCC reduces processor power consumption by modulating (starting and stopping) the internal  
processor core clocks. The Thermal Monitor feature must be enabled for the processor to be  
operating within specifications. The temperature at which Thermal Monitor activates the thermal  
control circuit is not user configurable and is not software visible. Bus traffic is snooped in the  
normal manner, and interrupt requests are latched (and serviced during the time that the clocks are  
on) while the TCC is active.  
When the Thermal Monitor feature is enabled, and a high temperature situation exists (i.e. TCC is  
active), the clocks will be modulated by alternately turning the clocks off and on at a duty cycle  
specific to the processor (typically 30-50%). Clocks often will not be off for more than 3.0  
microseconds when the TCC is active. Cycle times are processor speed dependent and will  
decrease as processor core frequencies increase. A small amount of hysteresis has been included to  
prevent rapid active/inactive transitions of the TCC when the processor temperature is near its  
maximum operating temperature. Once the temperature has dropped below the maximum  
operating temperature, and the hysteresis timer has expired, the TCC goes inactive and clock  
modulation ceases.  
With a properly designed and characterized thermal solution, it is anticipated that the TCC would  
only be activated for very short periods of time when running the most power intensive  
applications. The processor performance impact due to these brief periods of TCC activation is  
expected to be so minor that it would be immeasurable. An under-designed thermal solution that is  
not able to prevent excessive activation of the TCC in the anticipated ambient environment may  
cause a noticeable performance loss, and in some cases may result in a TC that exceeds the  
specified maximum temperature and may affect the long-term reliability of the processor. In  
addition, a thermal solution that is significantly under-designed may not be capable of cooling the  
processor even when the TCC is active continuously. Refer to the Intel Xeon Processor Thermal  
Design Guidelines for information on designing a thermal solution.  
The duty cycle for the TCC, when activated by the Thermal Monitor, is factory configured and  
cannot be modified. The Thermal Monitor does not require any additional hardware, software  
drivers, or interrupt handling routines.  
6.3.1  
Thermal Diode  
The Intel Xeon processor MP on the 0.13 micron process processor incorporates an on-die thermal  
diode. This thermal diode is separate from the Thermal Monitor’s thermal sensor and cannot be  
used to predict the behavior of the Thermal Monitor. See Section 6.4.4 for details.  
6-4  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Features  
6.4  
System Management Bus (SMBus) Interface  
The Intel Xeon processor MP on the 0.13 micron process processor in the INT-mPGA package  
includes an SMBus interface which allows access to a memory component with two sections  
(referred to as the Processor Information ROM and the Scratch EPROM) and a thermal sensor on  
the substrate. The SMBus thermal sensor may be used to read the thermal diode mentioned in  
Section 6.3.1. These devices and their features are described below. See Section 4 for the physical  
location of these devices.  
The SMBus thermal sensor and its associated thermal diode are not related to, and are completely  
independent of, the precision on-die temperature sensor and thermal control circuit (TCC) of the  
Thermal Monitor feature discussed in Section 6.3.  
The processor SMBus implementation uses the clock and data signals of the V1.1 System  
Management Bus Specification. It does not implement the SMBSUS# signal. Layout and routing  
guidelines are available in the appropriate platform design guidelines document and the SMBus  
and I2C Bus Design Guide application note.  
For platforms which do not implement any of the SMBus features found on the processor, all of the  
SMBus connections, except SM_VCC, to the socket pins may be left unconnected (SM_ALERT#,  
SM_CLK, SM_DAT, SM_EP_A[2:0], SM_TS_A[1:0], SM_WP). SM_VCC provides power to the  
VID generation logic in addition to supplying the SMBus and must be supplied with 3.3 volt power  
to assure correct setting of the processor core voltage (VCC).  
Figure 42. Logical Schematic of SMBus Circuitry  
SM_VCC  
SM_TS_A0  
SM_TS_A1  
VCC  
VCC  
A0  
SM_EP_A0  
SM_EP_A1  
SM_EP_A2  
CLK  
A0  
A1  
CLK  
Processor  
Information  
ROM  
and  
Scratch  
DATA  
A1  
A2  
WP  
DATA  
Thermal  
Sensor  
STDBY#  
ALERT#  
SM_WP  
EEPROM  
(1 Kbit each)  
VSS  
VSS  
SM_CLK  
SM_DAT  
SM_ALERT#  
NOTE: Actual implementation may vary. For use in general understanding of the architecture. All SMBus pull-up  
and pull-down resistors are 10Kand located on the processor.  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
6-5  
Features  
6.4.1  
Processor Information ROM (PIROM)  
The lower half (128 bytes) of the SMBus memory component is an electrically programmed read-  
only memory with information about the processor. This information is permanently write-  
protected. Table 35 shows the data fields and formats provided in the Processor Information ROM  
(PIROM).  
Table 35. Processor Information ROM Format (Sheet 1 of 2)  
# of  
Bits  
Offset/Section  
Function  
Notes  
Header:  
00h  
01 - 02h  
03h  
8
16  
8
Data Format Revision  
EEPROM Size  
Two 4-bit hex digits  
Size in bytes (MSB first)  
Processor Data Address  
Byte pointer, 00h if not present  
Processor Core Data  
Address  
04h  
8
Byte pointer, 00h if not present  
05h  
06h  
07h  
8
8
8
L3 Cache Data Address  
Package Data Address  
Part Number Data Address  
Byte pointer, 00h if not present  
Byte pointer, 00h if not present  
Byte pointer, 00h if not present  
Thermal Reference Data  
Address  
08h  
8
Byte pointer, 00h if not present  
09h  
0Ah  
8
8
Feature Data Address  
Other Data Address  
Reserved  
Byte pointer, 00h if not present  
Byte pointer, 00h if not present  
Reserved  
0Bh  
16  
8
0Dh  
Checksum  
1 byte checksum  
Processor Data:  
0E - 13h  
48  
S-spec/QDF Number  
Six 8-bit ASCII characters  
6
2
Reserved  
Reserved (most significant bits)  
14h  
Sample/Production  
00b=Sample only, 01-11b=Production  
15h  
Processor Core Data:  
16 - 17h  
8
Checksum  
1 byte checksum  
2
4
Processor Core Type  
Processor Core Family  
Processor Core Model  
Processor Core Stepping  
Reserved  
From CPUID  
From CPUID  
4
From CPUID  
4
From CPUID  
2
Reserved  
18 - 19h  
1A - 1Bh  
16  
16  
Reserved  
Reserved  
System Bus Speed  
16-bit binary number (in MHz)  
2
6
Multiprocessor Support  
Reserved  
00b=UP, 01b=DP, 10b=RSVD, 11b=MP  
Reserved  
1Ch  
1D - 1Eh  
1F - 20h  
21 - 22h  
23h  
16  
16  
16  
8
Maximum Core Frequency  
Processor VID (Voltage ID)  
Core Voltage, Minimum  
16-bit binary number (in MHz)  
Voltage requested by VID outputs in mV  
Minimum processor DC Vcc spec in mV  
Maximum case temperature spec in °C  
T
Maximum  
CASE  
6-6  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Features  
Table 35. Processor Information ROM Format (Sheet 2 of 2)  
# of  
Bits  
Offset/Section  
Function  
Checksum  
Notes  
24h  
8
1 byte checksum  
Reserved  
Cache Data:  
25 - 26h  
16  
16  
16  
48  
8
Reserved  
27-28h  
L2 Cache Size  
L3 Cache Size  
Reserved  
16-bit binary number (in KB)  
16-bit binary number (in KB)  
Reserved  
29 - 2Ah  
2B - 30h  
31h  
Checksum  
1 byte checksum  
Package Data:  
32 - 35h  
32  
8
Package Revision  
Reserved  
Four 8-bit ASCII characters  
Reserved  
36h  
37h  
8
Checksum  
1 byte checksum  
Part Number Data:  
38 - 3Eh  
56  
Processor Part Number  
Reserved  
Seven 8-bit ASCII characters  
Reserved  
3F - 4Ch  
112  
Processor Electronic  
Signature  
4D - 54h  
64  
64-bit identification number  
55 - 6Eh  
208  
8
Reserved  
Reserved  
6Fh  
Thermal Ref. Data:  
70h  
Checksum  
1 byte checksum  
8
16  
8
Thermal Reference Byte  
Reserved  
See Section 6.4.4 for details  
Reserved  
71 - 72h  
73h  
Checksum  
1 byte checksum  
Feature Data:  
Processor Core Feature  
Flags  
74 - 77h  
32  
8
From CPUID function 1, EDX contents  
[7] = Reserved  
[6] = Serial Signature  
[5] = Electronic Signature Present  
[4] = Thermal Sense Device Present  
[3] = Thermal Reference Byte Present  
[2] = OEM EEPROM Present  
[1] = Core VID Present  
78h  
Processor Feature Flags  
[0] = L3 Cache Present  
Additional Processor  
Feature Flags  
79-7Bh  
24  
Reserved  
7Ch  
7Dh  
8
8
Reserved  
Reserved  
Checksum  
1 byte checksum  
Other Data:  
7E - 7Fh  
16  
Reserved  
Reserved  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
6-7  
Features  
6.4.2  
Scratch EEPROM  
Also available in the memory component on the Intel Xeon processor MP on the 0.13 micron  
process processor in INT-mPGA package, is an EEPROM which may be used for other data at the  
system or processor vendor’s discretion. The data in this EEPROM, once programmed, can be  
write-protected by asserting the active-high SM_WP signal. This signal has a weak pull-down  
(10 k) to allow the EEPROM to be programmed in systems with no implementation of this  
signal. The Scratch EEPROM resides in the upper half of the memory component (addresses 80 -  
FFh). The lower half comprises the Processor Information ROM (address 00 - 7Fh), which is  
permanently write protected by Intel.  
6.4.3  
PIROM and Scratch EEPROM Supported SMBus  
Transactions  
The Processor Information ROM (PIR) responds to two SMBus packet types: Read Byte and Write  
Byte. However, since the PIR is write-protected, it will acknowledge a Write Byte command but  
ignore the data. The Scratch EEPROM responds to Read Byte and Write Byte commands. Table 36  
diagrams the Read Byte command. Table 37 diagrams the Write Byte command. Following a write  
cycle to the scratch ROM, software must allow a minimum of 10 ms before accessing either ROM  
of the processor.  
In the tables, ‘S’ represents the SMBus start bit, ‘P’ represents a stop bit, ‘R’ represents a read bit,  
‘W’ represents a write bit, ‘Arepresents an acknowledge (ACK), and ‘///’ represents a negative  
acknowledge (NACK). The shaded bits are transmitted by the Processor Information ROM or  
Scratch EEPROM, and the bits that aren’t shaded are transmitted by the SMBus host controller. In  
the tables the data addresses indicate 8 bits.The SMBus host controller should transmit 8 bits with  
the most significant bit indicating which section of the EEPROM is to be addressed: the Processor  
Information ROM (MSB = 0) or the Scratch EEPROM (MSB = 1).  
Table 36. Read Byte SMBus Packet  
Slave  
Address  
Command  
Code  
Slave  
Address  
Rea  
d
S
Write  
A
A
S
A
Data  
///  
P
1
7-bits  
1
1
8-bits  
1
1
7-bits  
1
1
8-bits  
1
1
Table 37. Write Byte SMBus Packet  
Slave  
Address  
S
Write  
A
Command Code  
A
Data  
A
P
1
7-bits  
1
1
8-bits  
1
8-bits  
1
1
6.4.4  
SMBus Thermal Sensor  
The Intel Xeon processor MP on the 0.13 micron process processor in INT-mPGA package provide  
a SMBus thermal sensor as a means of acquiring thermal data from the processor. The thermal  
sensor is composed of control logic, SMBus interface logic, a precision analog-to-digital converter,  
and a precision current source. The sensor drives a small current through the p-n junction of a  
thermal diode located on the processor core. The forward bias voltage generated across the thermal  
diode is sensed and the precision A/D converter derives a single byte of thermal reference data, or  
a “thermal byte reading.” The nominal precision of the least significant bit of a thermal byte is 1°C.  
6-8  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Features  
The processor incorporates the SMBus thermal sensor and thermal reference byte onto the  
processor package for the Intel Xeon processor MP on the 0.13 micron process processor and Intel  
Xeon processor in the INT-mPGA package. Upper and lower thermal reference thresholds can be  
individually programmed for the SMBus thermal sensor. Comparator circuits sample the register  
where the single byte of thermal data (thermal byte reading) is stored. These circuits compare the  
single byte result against programmable threshold bytes. If enabled, the alert signal on the  
processor SMBus (SM_ALERT#) will be asserted when the sensor detects that either threshold is  
reached or crossed. Analysis of SMBus thermal sensor data may be useful in detecting changes in  
the system environment that may require attention.  
During manufacturing, the thermal reference byte (TRB) is programmed into the Processor  
Information ROM. The thermal reference byte represents the approximate temperature reading  
from the thermal diode when the processor is operating at its maximum specified TCASE under  
steady state temperature and application conditions. The TRB is derived for the processor through  
device characterization and the value varies with processor core frequency, similar to the TCASE  
specifications.  
The processor SMBus thermal sensor and thermal reference byte may be used to monitor long term  
temperature trends, but can not be used to manage the short term temperature of the processor or  
predict the activation of the thermal control circuit. As mentioned earlier, the processors high  
thermal ramp rates make this infeasible. Refer to the Intel® XeonTM Processor (MP) Thermal  
Design Guidelines for more details.  
The SMBus thermal sensor feature in the processor cannot be used to measure TCASE. The TCASE  
specification in Section 5 must be met regardless of the reading of the processor's thermal sensor in  
order to ensure adequate cooling for the entire Intel Xeon processor MP on the 0.13 micron process  
processor. The SMBus thermal sensor feature is only available while VCC and SM_VCC are at  
valid levels and the processor is not in a low-power state.  
6.4.5  
Thermal Sensor Supported SMBus Transactions  
The thermal sensor responds to five of the SMBus packet types: Write Byte, Read Byte, Send Byte,  
Receive Byte, and Alert Response Address (ARA). The Send Byte packet is used for sending one-  
shot commands only. The Receive Byte packet accesses the register commanded by the last Read  
Byte packet and can be used to continuously read from a register. If a Receive Byte packet was  
preceded by a Write Byte or send Byte packet more recently than a Read Byte packet, then the  
behavior is undefined. Table 38 through Table 42 diagram the five packet types. In these figures,  
‘S’ represents the SMBus start bit, ‘P’ represents a stop bit, ‘Ack’ represents an acknowledge, and  
‘///’ represents a negative acknowledge (NACK). The shaded bits are transmitted by the thermal  
sensor, and the bits that aren’t shaded are transmitted by the SMBus host controller. Table 43 shows  
the encoding of the command byte.  
Table 38. Write Byte SMBus Packet  
Slave  
Address  
Command  
Code  
S
Write  
Ack  
Ack  
Data  
Ack  
P
1
7-bits  
1
1
8-bits  
1
8-bits  
1
1
Table 39. Read Byte SMBus Packet  
Slave  
Address  
Command  
Code  
Slave  
Address  
S
Write Ack  
Ack  
S
Read Ack  
Data  
8-bits  
///  
P
1
7-bits  
1
1
8-bits  
1
1
7-bits  
1
1
1
1
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
6-9  
Features  
Table 40. Send Byte SMBus Packet  
Command  
Code  
S
Slave Address  
Read  
Ack  
Ack  
P
1
7-bits  
1
1
8-bits  
1
1
Table 41. Receive Byte SMBus Packet  
S
Slave Address  
Read  
Ack  
Data  
///  
P
1
7-bits  
1
1
8-bits  
1
1
Table 42. ARA SMBus Packet  
S
ARA  
Read  
Ack  
Address  
///  
P
1
0001 100  
1
1
Device Address1  
1
1
NOTE: This is an 8-bit field. The device which sent the alert will respond to the ARA Packet with its address in  
the seven most significant bits. The least significant bit is undefined and may return as a ‘1’ or ‘0’. See  
Section 6.4.8 for details on the Thermal Sensor Device addressing.  
Table 43. SMBus Thermal Sensor Command Byte Bit Assignments  
Register  
Command  
Reset State  
Function  
Reserved for future use  
RESERVED  
TRR  
00h  
01h  
RESERVED  
0000 0000  
N/A  
Read processor core thermal diode  
Read status byte (flags, busy signal)  
Read configuration byte  
RS  
02h  
RC  
03h  
00XX XXXX  
0000 0010  
RESERVED  
RESERVED  
0111 1111  
1100 1001  
N/A  
RCR  
04h  
Read conversion rate byte  
RESERVED  
RESERVED  
RRHL  
05h  
Reserved for future use  
06h  
Reserved for future use  
07h  
Read processor core thermal diode T  
Read processor core thermal diode T  
Write configuration byte  
limit  
limit  
HIGH  
LOW  
RRLL  
08h  
WC  
09h  
WCR  
0Ah  
N/A  
Write conversion rate byte  
RESERVED  
RESERVED  
WRHL  
0Bh  
RESERVED  
RESERVED  
N/A  
Reserved for future use  
0Ch  
0Dh  
0Eh  
Reserved for future use  
Write processor core thermal diode T  
Write processor core thermal diode T  
limit  
limit  
HIGH  
LOW  
WRLL  
N/A  
OSHT  
0Fh  
N/A  
One shot command (use send byte packet)  
Reserved for future use  
RESERVED  
10h – FFh  
N/A  
All of the commands in Table 48 are for reading or writing registers in the SMBus thermal sensor,  
except the one-shot command (OSHT) register. The one-shot command forces the immediate start  
of a new conversion cycle. If a conversion is in progress when the one-shot command is received,  
then the command is ignored. If the thermal sensor is in stand-by mode when the one-shot  
command is received, a conversion is performed and the sensor returns to stand-by mode. The one-  
shot command is not supported when the thermal sensor is in auto-convert mode.  
6-10  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Features  
Note: Writing to a read-command register or reading from a write-command register will produce invalid  
results.  
The default command after reset is to a reserved value (00h). After reset, “Receive Byte” SMBus  
packets will return invalid data until another command is sent to the thermal sensor.  
6.4.6  
SMBus Thermal Sensor Registers  
6.4.6.1  
Thermal Reference Registers  
Once the SMBus thermal sensor reads the processor thermal diode, it performs an analog to digital  
conversion and stores the result in the Thermal Reference Register (TRR). The supported range is  
+127 to 0 decimal and is expressed as an eight-bit number representing temperature in degrees  
Celsius. This eight-bit value consists of seven data bits and a sign bit (MSB) as shown in Table 44.  
The values shown are also used to program the Thermal Limit Registers.  
The values of these registers should be treated as saturating values. Values above 127 are  
represented as 127 decimal, while values of zero and below may be represented as 0 to -127  
decimal. If the thermal sensor returns a value with the sign bit set (1) and the data is 000_0000  
through 111_1110, the temperature should be interpreted as 0 ºC.  
Table 44. Thermal Reference Register Values  
Temperature  
(°C)  
Register Value  
(binary)  
+127  
+126  
+100  
+50  
+25  
+1  
0 111 1111  
0 111 1110  
0 110 0100  
0 011 0010  
0 001 1001  
0 000 0001  
0 000 0000  
0
6.4.6.2  
6.4.6.3  
Thermal Limit Registers  
The SMBus thermal sensor has four Thermal Limit Registers: RRHL is used to read the high limit;  
RRLL is read for the low limit; WRHL is used to write the high limit; and the WRLL to write the  
low limit. These registers allow the user to define high and low limits for the processor core  
thermal diode reading. The encoding for these registers is the same as for the Thermal Reference  
Register shown in Table 44. If the processor thermal diode reading equals or exceeds one of these  
limits, then the alarm bit (RHIGH or RLOW) in the Thermal Sensor Status Register is triggered.  
Status Register  
The Status Register shown in Table 45 indicates which (if any) thermal value thresholds for the  
processor core thermal diode have been exceeded. It also indicates if a conversion is in progress or  
if an open circuit has been detected in the processor core thermal diode connection. Once set, alarm  
bits stay set until they are cleared by a Status Register read. A successful read to the Status Register  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
6-11  
Features  
will clear any alarm bits that may have been set, unless the alarm condition persists. If the  
SM_ALERT# signal is enabled via the Thermal Sensor Configuration Register and a thermal diode  
threshold is exceeded, an alert will be sent to the platform via the SM_ALERT# signal.  
This register is read by accessing the RS Command Register.  
Table 45. SMBus Thermal Sensor Status Register  
Bit  
Name  
Reset State  
Function  
If set, indicates that the device’s analog to digital converter is  
busy.  
7 (MSB)  
BUSY  
N/A  
6
5
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Reserved for future use  
Reserved for future use  
If set, indicates the processor core thermal diode high  
temperature alarm has activated.  
4
3
2
RHIGH  
RLOW  
OPEN  
0
0
0
If set, indicates the processor core thermal diode low  
temperature alarm has activated.  
If set, indicates an open fault in the connection to the  
processor core diode.  
1
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Reserved for future use.  
Reserved for future use.  
0 (LSB)  
6.4.6.4  
Configuration Register  
The Configuration Register controls the operating mode (stand-by vs. auto-convert) of the SMBus  
thermal sensor. Table 46 shows the format of the Configuration Register. If the RUN/STOP bit is  
set (high) then the thermal sensor immediately stops converting and enters stand-by mode. The  
thermal sensor will still perform analog to digital conversions in stand-by mode when it receives a  
one-shot command. If the RUN/STOP bit is clear (low) then the thermal sensor enters auto-  
conversion mode.  
This register is accessed by using the thermal sensor Command Register: The RC command  
register is used for read commands and the WC command register is used for write commands. See  
Table 43.  
Table 46. SMBus Thermal Sensor Configuration Register  
Bit  
Name  
Reset State  
Function  
Mask SM_ALERT# bit. Clear bit to allow interrupts via  
SM_ALERT# and allow the thermal sensor to respond to the  
ARA command when an alarm is active. Set the bit to disable  
interrupt mode. The bit is not used to clear the state of the  
SM_ALERT# output. An ARA command may not be  
recognized if the mask is enabled.  
7 (MSB)  
MASK  
0
Stand-by mode control bit. If set, the device immediately stops  
converting, and enters stand-by mode. If cleared, the device  
converts in either one-shot mode or automatically updates on  
a timed basis.  
6
RUN/STOP  
RESERVED  
0
5:0  
RESERVED Reserved for future use.  
6-12  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Features  
6.4.6.5  
Conversion Rate Registers  
The contents of the Conversion Rate Registers determine the nominal rate at which analog to  
digital conversions happen when the SMBus thermal sensor is in auto-convert mode. There are two  
Conversion Rate Registers, RCR for reading the conversion rate value and WCR for writing the  
value. Table 47 shows the mapping between Conversion Rate Register values and the conversion  
rate. As indicated in Table 43, the Conversion Rate Register is set to its default state of 02h  
(0.25 Hz nominally) when the thermal sensor is powered up. There is a ±30% error tolerance  
between the conversion rate indicated in the conversion rate register and the actual conversion rate.  
Table 47. SMBus Thermal Sensor Conversion Rate Registers  
Register Value  
Conversion Rate (Hz)  
00h  
01h  
0.0625  
0.125  
02h  
0.25  
03h  
0.5  
04h  
1.0  
05h  
2.0  
06h  
4.0  
8.0  
07h  
08h to FFh  
Reserved for future use  
6.4.7  
SMBus Thermal Sensor Alert Interrupt  
The SMBus thermal sensor located on the processor includes the ability to interrupt the SMBus  
when a fault condition exists. The fault conditions consist of: 1) a processor thermal diode value  
measurement that exceeds a user-defined high or low threshold programmed into the Command  
Register or 2) disconnection of the processor thermal diode from the thermal sensor. The interrupt  
can be enabled and disabled via the thermal sensor Configuration Register and is delivered to the  
baseboard via the SM_ALERT# open drain output. Once latched, the SM_ALERT# should only be  
cleared by reading the Alert Response byte from the Alert Response Address of the thermal sensor.  
The Alert Response Address is a special slave address shown in Table 42. The SM_ALERT# will  
be cleared once the SMBus master device first reads the status register then reads the slave ARA  
unless the fault condition persists. Reading the Status Register alone or setting the mask bit within  
the Configuration Register does not clear the interrupt.  
6.4.8  
SMBus Device Addressing  
Of the addresses broadcast across the SMBus, the memory component claims those of the form  
“1010XXXZb”. The “XXX” bits are defined by pullups and pulldowns on the system baseboard.  
These address pins are pulled down weakly (10 k) on the processor substrate to ensure that the  
memory components are in a known state in systems which do not support the SMBus, or only  
support a partial implementation. The “Z” bit is the read/write bit for the serial bus transaction.  
The thermal sensor internally decodes one of three upper address patterns from the bus of the form  
“0011XXXZb”, “1001XXXZb”, or “0101XXXZb”. The device’s addressing, as implemented, uses  
the SM_TS_A[1:0] pins in either the HI, LO, or Hi-Z state. Therefore, the thermal sensor supports  
nine unique addresses. To set either pin for the Hi-Z state, the pin must be left floating. As before,  
the “Z” bit is the read/write bit for the serial transaction.  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
6-13  
Features  
Note that addresses of the form “0000XXXXb” are Reserved and should not be generated by an  
SMBus master. The thermal sensor samples and latches the SM_TS_A[1:0] signals at power-up  
and at the starting point of every conversion. System designers should ensure that these signals are  
at valid VIH, VIL, or floating input levels prior to or while the thermal sensor’s SM_VCC supply  
powers up. This should be done by pulling the pins to SM_VCC or VSS via a 1 kor smaller  
resistor, or leaving the pins floating to achieve the Hi-Z state. If the designer desires to drive the  
SM_TS_A[1:0] pins with logic, the designer must still ensure that the pins are at valid input levels  
prior to or while the SM_VCC supply ramps up. The system designer must also ensure that their  
particular implementation does not add excessive capacitance to the address inputs. Excess  
capacitance at the address inputs may cause address recognition problems. Refer to the appropriate  
platform design guidelines document and the SMBus and I2C Bus Design Guide application note.  
Figure 42 on page 5 shows a logical diagram of the pin connections. Table 48 and Table 49  
describe the address pin connections and how they affect the addressing of the devices.  
6-14  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Features  
Table 48. Thermal Sensor SMBus Addressing on the Intel® Xeon™ Processor MP on the 0.13  
Micron Process Processor  
Device Select  
8-bit Address Word on Serial Bus  
b[7:0]  
Address (Hex)  
Upper Address1  
SM_TS_A1  
SM_TS_A0  
0
0
0
0
0011000Xb  
0011001Xb  
0011010Xb  
0101001Xb  
0101010Xb  
0101011Xb  
1001100Xb  
1001101Xb  
1001110Xb  
2
3Xh  
0011  
Z
1
0
2
Z
2
2
5Xh  
9Xh  
0101  
1001  
Z
Z
2
1
0
Z
1
1
1
2
Z
1
NOTES:  
1. Upper address bits are decoded in conjunction with the select pins.  
2. A tri-state or “Z” state on this pin is achieved by leaving this pin unconnected.  
Note: System management software must be aware of the processor dependent addresses for the thermal  
sensor.  
Table 49. Memory Device SMBus Addressing on the Intel® Xeon™ Processor MP on the 0.13  
Micron Process Processor  
Upper  
Device Select  
R/W  
bit 0  
1
Address  
bits 7-4  
Address  
(Hex)  
SM_EP_A2  
bit 3  
SM_EP_A1  
bit 2  
SM_EP_A0  
bit 1  
A0h/A1h  
A2h/A3h  
A4h/A5h  
A6h/A7h  
A8h/A9h  
AAh/ABh  
ACh/ADh  
AEh/AFh  
1010  
1010  
1010  
1010  
1010  
1010  
1010  
1010  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
X
X
X
X
X
X
X
X
NOTES:  
1. . This addressing scheme will support up to 8 processors on a single SMBus.  
§
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
6-15  
Features  
6-16  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Boxed Processor Specifications  
Boxed Processor Specifications  
7
7.1  
Introduction  
The Intel Xeon processor MP on the 0.13 micron process processor is also offered as an Intel boxed  
processor. Intel boxed processors are intended for system integrators who build systems from  
components available through distribution channels. The current plan for the Intel Xeon processor  
MP on the 0.13 micron process boxed processor is to include an unattached passive heatsink. Intel  
boxed processors do not include voltage regulation modules (VRMs). Integrators should contact  
their baseboard supplier to receive a list of supported module vendors and models.  
This chapter documents baseboard and platform requirements for the cooling solution that is  
supplied with the boxed processor. This chapter is particularly important for OEM's that  
manufacture baseboards and chassis for integrators. Figure 43 shows the a mechanical  
representation of the boxed processor heatsink for the Intel Xeon processor MP on the 0.13 micron  
process processor.  
Note: Drawings in this section reflect only the specifications on the Intel boxed processor product. These  
dimensions should not be used as a generic keep-out zone for all cooling solutions. It is the system  
designer's responsibility to consider their proprietary cooling solution when designing to the  
required keep-out zone on their system platform and chassis.  
Figure 43. Mechanical Representation of the Boxed Intel® Xeon™ Processor MP on the 0.13  
Micron Process Processor Passive Heatsink  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
7-1  
Boxed Processor Specifications  
7.2  
Mechanical Specifications  
This section documents the mechanical specifications of the boxed processor passive heatsink.  
Proper clearance is required around the heatsink to ensure proper installation of the processor and  
unimpeded airflow for proper cooling.  
7.2.1  
Boxed Processor Heatsink Dimensions  
The boxed processor is shipped with an unattached passive heatsink. Clearance is required around  
the heatsink to ensure unimpeded airflow for proper cooling. The physical space requirements and  
dimensions for the boxed Intel Xeon processor with 512KB L2 cache and assembled heatsink are  
shown in Figure 44 and Figure 45. The airflow requirements for the boxed processor heatsink must  
also be taken into consideration when designing new baseboards and chassis. The airflow  
requirements are detailed in the Thermal Specifications, Section 7.4.  
Please refer to the Intel® XeonProcessor Multiprocessor (MP) Thermal Design Guidelines for  
details on the processor clearance requirements.  
7.2.2  
7.2.3  
Boxed Processor Heatsink Weight  
The boxed processor heatsink weighs no more than 450 grams. See Section 4 and Section 5 of this  
document along with the Intel® XeonProcessor Multiprocessor (MP) Thermal Design  
Guidelines for details on the processor weight and heatsink requirements.  
Boxed Processor Retention Mechanism and Heatsink  
Supports  
The boxed processor requires a processor retention solution to secure the processor, the baseboard,  
and the chassis. The retention solution contains two retention mechanisms and two retention clips  
per processor. For the boxed processor, the current plan is to ship with retention mechanisms,  
cooling solution retention clips, and direct chassis attach screws. Baseboards and chassis designed  
for use by system integrators should include holes that are in proper alignment with each other to  
support the boxed processor. Refer to the Server System Infrastructure Specification (SSI-EEB) at  
http://www.ssiforum.org for details on the hole locations. Please see the <Boxed integration notes>  
at http://support.intel.com/support/processors/xeon/ for retention mechanism installation  
instructions. Retention mechanism clips must interface with the boxed processor heatsink area  
shown in Detail A in Figure 46.  
The retention mechanism that ships with the boxed Intel Xeon processor is different than the  
reference solution from Intel. It adds tabs that allow the PWT (processor wind tunnel) to be  
attached directly to it. Please reference Figure 45 below, which contains the dimensions for the tabs  
that are different. For dimensions of the reference solution, please see the appropriate platform  
design guidelines.  
7-2  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Boxed Processor Specifications  
Figure 44. Boxed Processor Clip  
Figure 45. Boxed Processor Retention Mechanism  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
7-3  
Boxed Processor Specifications  
Figure 46. Multiple View Space Requirements for Boxed Processors  
7-4  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Boxed Processor Specifications  
7.3  
Boxed Processor Requirements  
®
7.3.1  
Intel Xeon™ Processor MP on the 0.13 Micron Process  
Processor  
Systems do not need to account for the processor wind tunnel or heat sink fan header in order to  
support the Intel boxed processor based on the Intel Xeon processor MP on the 0.13 micron process  
processor. If the system has no intention of supporting the boxed Intel Xeon processor with  
512-KB L2 cache, these features may be removed. It has not yet been determined if the retention  
mechanism for the Intel Xeon processor MP on the 0.13 micron process processor will ship with  
the boxed processor or with the baseboards. If the retention mechanism is not included with the  
boxed processor, the system integrator or baseboard supplier will have to account for these pieces.  
No other special platform or system design considerations are required for integrated boxed Intel  
Xeon processor MP on the 0.13 micron process processor.  
7.4  
Thermal Specifications  
This section describes the cooling requirements of the heatsink solution utilized by the boxed  
processor.  
7.4.1  
Boxed Processor Cooling Requirements  
The boxed processor will be directly cooled with a passive heatsink. For the passive heatsink to  
effectively cool the boxed processor, it is critical that sufficient, unimpeded, cool air flow over the  
heatsink of every processor in the system. Meeting the processor's temperature specification is a  
function of the thermal design of the entire system, and ultimately the responsibility of the system  
integrator. The processor temperature specification is found in Section 5. It is important that system  
integrators perform thermal tests to verify that the boxed processor is kept below its maximum  
temperature specification in a specific baseboard and chassis.  
At an absolute minimum, the boxed processor heatsink will require 500 Linear Feet per Minute  
(LFM) of cool air flowing over the heatsink. The airflow must be directed from the outside of the  
chassis directly over the processor heatsinks in a direction passing from one retention mechanism  
to the other. It also should flow from the front to the back of the chassis. Directing air over the  
passive heatsink of the boxed Intel Xeon processor MP on the 0.13 micron process processor can  
be done with auxiliary chassis fans, fan ducts, or other techniques.  
It is also recommended that the ambient air temperature outside of the chassis be kept at or below  
35 °C. The air passing directly over the processor heatsink should not be preheated by other system  
components (such as another processor), and should be kept at or below 45 °C. Again, meeting the  
processor's temperature specification is the responsibility of the system integrator. The processor  
temperature specification is found in Section 5.  
§
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
7-5  
Boxed Processor Specifications  
7-6  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Debug Tools Specifications  
Debug Tools Specifications  
8
The Debug Port design information has been moved. This includes all information necessary to  
develop a Debug Port on this platform, including electrical specifications, mechanical  
requirements, and all In-Target Probe (ITP) signal layout guidelines. Please reference the ITP700  
Debug Port Design Guide for the design of your platform.  
Note: This change is effective for all future processors.  
8.1  
Logic Analyzer Interface (LAI)  
Intel is working with two logic analyzer vendors to provide logic analyzer interfaces (LAIs) for use  
in debugging systems. Tektronix and Agilent should be contacted to get specific information about  
their logic analyzer interfaces. The following information is general in nature. Specific information  
must be obtained from the logic analyzer vendor.  
Due to the complexity of systems, the LAI is critical in providing the ability to probe and capture  
system bus signals. There are two sets of considerations to keep in mind when designing a system  
that can make use of an LAI: mechanical and electrical.  
8.1.1  
Mechanical Considerations  
The LAI is installed between the processor socket and the processor. The LAI pins plug into the  
socket, while the processor pins plug into a socket on the LAI. Cabling that is part of the LAI  
egresses the system to allow an electrical connection between the processor and a logic analyzer.  
The maximum volume occupied by the LAI, known as the keepout volume, as well as the cable  
egress restrictions, should be obtained from the logic analyzer vendor. System designers must  
make sure that the keepout volume remains unobstructed inside the system. Note that it is possible  
that the keepout volume reserved for the LAI may differ from the space normally occupied by the  
processor heatsink. If this is the case, the logic analyzer vendor will provide a cooling solution as  
part of the LAI.  
8.1.2  
Electrical Considerations  
The LAI will also affect the electrical performance of the system bus; therefore, it is critical to  
obtain electrical load models from each of the logic analyzers to be able to run system level  
simulations to prove that their tool will work in the system. Contact the logic analyzer vendor for  
electrical specifications and load models for the LAI solution they provide.  
§
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
8-1  
Debug Tools Specifications  
8-2  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Pin Listing and Signal Definitions  
Pin Listing and Signal Definitions  
9
9.1  
Intel® Xeon™ Processor MP on the 0.13 Micron  
Process Processor Pin Assignments  
Section 2.8 contains the system bus signal groups in Table 5 for the Intel Xeon processor MP on the  
0.13 micron process processor. This section provides a sorted pin list in Table 50 and Table 51 for  
INT-mPGA package. Table 50 is a listing of all processor pins ordered alphabetically by pin name.  
Table 51 is a listing of all processor pins ordered by pin number.  
Table 50. Pin Listing by Pin Name for the  
INT-mPGA Package  
Table 50. Pin Listing by Pin Name for the  
INT-mPGA Package  
Signal  
Pin Name  
Pin No.  
Direction  
Buffer Type  
Signal  
Buffer Type  
Pin Name  
Pin No.  
Direction  
A27#  
A28#  
B8  
E13  
D12  
C11  
B7  
Source Sync Input/Output  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Async GTL+  
Common Clk  
Source Sync  
Source Sync  
Common Clk  
Common Clk  
Sys Bus Clk  
Sys Bus Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
A3#  
A4#  
A22  
A20  
B18  
C18  
A19  
C17  
D17  
A13  
B16  
B14  
B13  
A12  
C15  
C14  
D16  
D15  
F15  
A10  
B10  
B11  
C12  
E14  
D13  
A9  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
A29#  
A30#  
A5#  
A31#  
A6#  
A32#  
A6  
A7#  
A33#  
A7  
A8#  
A34#  
C9  
A9#  
A35#  
C8  
A10#  
A11#  
A12#  
A13#  
A14#  
A15#  
A16#  
A17#  
A18#  
A19#  
A20#  
A21#  
A22#  
A23#  
A24#  
A25#  
A26#  
A20M#  
ADS#  
F27  
D19  
F17  
F14  
E10  
D9  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input  
ADSTB0#  
ADSTB1#  
AP0#  
AP1#  
BCLK0  
BCLK1  
BINIT#  
BNR#  
Y4  
W5  
F11  
F20  
F6  
Input  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
BPM0#  
BPM1#  
BPM2#  
BPM3#  
BPM4#  
BPM5#  
F8  
E7  
F5  
E8  
E4  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
9-1  
Pin Listing and Signal Definitions  
Table 50. Pin Listing by Pin Name for the  
INT-mPGA Package  
Table 50. Pin Listing by Pin Name for the  
INT-mPGA Package  
Signal  
Buffer Type  
Signal  
Buffer Type  
Pin Name  
Pin No.  
Direction  
Pin Name  
Pin No.  
Direction  
BPRI#  
BR0#  
BR1#  
D23  
D20  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Input  
D30#  
D31#  
D32#  
D33#  
D34#  
D35#  
D36#  
D37#  
D38#  
D39#  
D40#  
D41#  
D42#  
D43#  
D44#  
D45#  
D46#  
D47#  
D48#  
D49#  
D50#  
D51#  
D52#  
D53#  
D54#  
D55#  
D56#  
D57#  
D58#  
D59#  
D60#  
D61#  
D62#  
D63#  
DBSY#  
DEFER#  
DBI0#  
DBI1#  
DBI2#  
AD19  
AB17  
AB16  
AA16  
AC17  
AE13  
AD18  
AB15  
AD13  
AD14  
AD11  
AC12  
AE10  
AC11  
AE9  
Source Sync Input/Output  
Source Sync Input/Output  
Source Sync Input/Output  
Source Sync Input/Output  
Input/Output  
Input  
F12  
1
BR2#  
E11  
Input  
1
BR3#  
D10  
Input  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
2
BSEL0  
AA3  
Output  
2
BSEL1  
AB3  
Output  
COMP0  
COMP1  
D0#  
AD16  
E16  
Input  
Input  
Y26  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
D1#  
AA27  
Y24  
D2#  
D3#  
AA25  
AD27  
Y23  
D4#  
D5#  
D6#  
AA24  
AB26  
AB25  
AB23  
AA22  
AA21  
AB20  
AB22  
AB19  
AA19  
AE26  
AC26  
AD25  
AE25  
AC24  
AD24  
AE23  
AC23  
AA18  
AC20  
AC21  
AE22  
AE20  
AD21  
AD10  
AD8  
D7#  
D8#  
AC9  
D9#  
AA13  
AA14  
AC14  
AB12  
AB13  
AA11  
AA10  
AB10  
AC8  
D10#  
D11#  
D12#  
D13#  
D14#  
D15#  
D16#  
D17#  
D18#  
D19#  
D20#  
D21#  
D22#  
D23#  
D24#  
D25#  
D26#  
D27#  
D28#  
D29#  
AD7  
AE7  
Source Sync Input/Output  
Source Sync Input/Output  
AC6  
Source Sync Input/Output  
Source Sync Input/Output  
AC5  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Common Clk  
Common Clk  
Source Sync  
Source Sync  
Source Sync  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
AA8  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input  
Y9  
AB6  
F18  
C23  
AC27  
AD22  
AE12  
Input/Output  
Input/Output  
Input/Output  
9-2  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Pin Listing and Signal Definitions  
Table 50. Pin Listing by Pin Na1m4e for the  
Table 50. Pin Listing by Pin Name for the  
INT-mPGA Package  
INT-mPGA Package  
Signal  
Buffer Type  
Signal  
Buffer Type  
Pin Name  
Pin No.  
Direction  
Pin Name  
Pin No.  
Direction  
DBI3#  
DP0#  
AB9  
AC18  
AE19  
AC15  
AE17  
E18  
Y21  
Y18  
Y15  
Y12  
Y20  
Y17  
Y14  
Y11  
E27  
W23  
W9  
Source Sync Input/Output  
Common Clk Input/Output  
Common Clk Input/Output  
Common Clk Input/Output  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
RESET#  
RS0#  
A15  
A16  
A26  
B1  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Power/Other  
Async GTL+  
SMBus  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Input  
DP1#  
DP2#  
DP3#  
Common Clk  
Common Clk  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Async GTL+  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Common Clk  
Async GTL+  
Async GTL+  
Async GTL+  
Async GTL+  
Async GTL+  
Common Clk  
Common Clk  
Power/Other  
Async GTL+  
Power/Other  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Reserved  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Output  
C5  
DRDY#  
DSTBN0#  
DSTBN1#  
DSTBN2#  
DSTBN3#  
DSTBP0#  
DSTBP1#  
DSTBP2#  
DSTBP3#  
FERR#  
D25  
W3  
Y3  
Y27  
Y28  
AC1  
AD1  
AE4  
AE15  
AE16  
Y8  
GTLREF  
GTLREF  
GTLREF  
GTLREF  
HIT#  
Input  
Input  
E21  
D22  
F21  
Input  
F23  
F9  
Input  
RS1#  
Input  
Input  
RS2#  
Input  
E22  
A23  
E5  
Input/Output  
Input/Output  
Output  
RSP#  
C6  
Input  
HITM#  
SKTOCC#  
SLP#  
A3  
Output  
IERR#  
AE6  
AD28  
AC28  
AC29  
AA29  
AB29  
AB28  
AA28  
Y29  
AE28  
AE29  
AD29  
C27  
D4  
Input  
IGNNE#  
INIT#  
C26  
D6  
Input  
SM_ALERT#  
SM_CLK  
SM_DAT  
SM_EP_A0  
SM_EP_A1  
SM_EP_A2  
SM_TS1_A0  
SM_TS1_A1  
SM_VCC  
SM_VCC  
SM_WP  
SMI#  
Output  
Input  
SMBus  
Input  
LINT0  
B24  
G23  
A17  
D7  
Input  
SMBus  
Input/Output  
Input  
LINT1  
Input  
SMBus  
LOCK#  
Input/Output  
Input/Output  
Input  
SMBus  
Input  
MCERR#  
ODTEN  
PROCHOT#  
PWRGOOD  
REQ0#  
SMBus  
Input  
B5  
SMBus  
Input  
B25  
AB7  
B19  
B21  
C21  
C20  
B22  
A1  
Output  
SMBus  
Input  
Power/Other  
Power/Other  
SMBus  
Input  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Reserved  
Reserved  
REQ1#  
Input  
Input  
Input  
Input  
Input  
Output  
Async GTL+  
Async GTL+  
TAP  
REQ2#  
REQ3#  
STPCLK#  
TCK  
REQ4#  
E24  
C24  
E25  
TAP  
Reserved  
Reserved  
TDI  
Reserved  
TAP  
A4  
TDO  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
9-3  
Pin Listing and Signal Definitions  
Table 50. Pin Listing by Pin Name for the  
INT-mPGA Package  
Table 50. Pin Listing by Pin Name for the  
INT-mPGA Package  
Signal  
Buffer Type  
Signal  
Buffer Type  
Pin Name  
Pin No.  
Direction  
Pin Name  
Pin No.  
Direction  
TESTHI0  
TESTHI1  
TESTHI2  
TESTHI3  
TESTHI4  
TESTHI5  
TESTHI6  
THERMTRIP#  
TMS  
W6  
W7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Async GTL+  
TAP  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
E2  
E6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
W8  
E12  
E20  
E26  
E28  
E30  
F1  
Y6  
AA7  
AD5  
AE5  
F26  
A25  
E19  
F24  
A2  
F4  
TRDY#  
TRST#  
VCC  
Common Clk  
TAP  
F10  
F16  
F22  
F29  
F31  
G2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
A8  
VCC  
A14  
A18  
A24  
A28  
A30  
B4  
VCC  
VCC  
G4  
VCC  
G6  
VCC  
G8  
VCC  
G24  
G26  
G28  
G30  
H1  
VCC  
B6  
VCC  
B12  
B20  
B26  
B29  
B31  
C2  
VCC  
VCC  
VCC  
H3  
VCC  
H5  
VCC  
H7  
VCC  
C4  
H9  
VCC  
C10  
C16  
C22  
C28  
C30  
D1  
H23  
H25  
H27  
H29  
H31  
J2  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
D8  
J4  
VCC  
D14  
D18  
D24  
D29  
D31  
J6  
VCC  
J8  
VCC  
J24  
J26  
J28  
VCC  
VCC  
9-4  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Pin Listing and Signal Definitions  
Table 50. Pin Listing by Pin Name for the  
INT-mPGA Package  
Table 50. Pin Listing by Pin Name for the  
INT-mPGA Package  
Signal  
Buffer Type  
Signal  
Buffer Type  
Pin Name  
Pin No.  
Direction  
Pin Name  
Pin No.  
Direction  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
J30  
K1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
N31  
P2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
K3  
P4  
K5  
P6  
K7  
P8  
K9  
P24  
P26  
P28  
P30  
R1  
K23  
K25  
K27  
K29  
K31  
L2  
R3  
R5  
L4  
R7  
L6  
R9  
L8  
R23  
R25  
R27  
R29  
R31  
T2  
L24  
L26  
L28  
L30  
M1  
M3  
M5  
M7  
M9  
M23  
M25  
M27  
M29  
M31  
N1  
T4  
T6  
T8  
T24  
T26  
T28  
T30  
U1  
U3  
U5  
N3  
U7  
N5  
U9  
N7  
U23  
U25  
U27  
U29  
U31  
V2  
N9  
N23  
N25  
N27  
N29  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
9-5  
Pin Listing and Signal Definitions  
Table 50. Pin Listing by Pin Name for the  
INT-mPGA Package  
Table 50. Pin Listing by Pin Name for the  
INT-mPGA Package  
Signal  
Buffer Type  
Signal  
Buffer Type  
Pin Name  
Pin No.  
Direction  
Pin Name  
Pin No.  
Direction  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
V4  
V6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCCA  
VCCIOPLL  
VCCSENSE  
VID0  
VID1  
VID2  
VID3  
VID4  
VSS  
AD20  
AD26  
AD30  
AE3  
AE8  
AE14  
AE18  
AE24  
AB4  
AD4  
B27  
F3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
V8  
V24  
V26  
V28  
V30  
W1  
W25  
W27  
W29  
W31  
Y10  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
E3  
Y16  
D3  
Y2  
C3  
Y22  
B3  
Y30  
A5  
AA1  
AA4  
AA6  
AA12  
AA20  
AA26  
AA31  
AB2  
AB8  
AB14  
AB18  
AB24  
AB30  
AC3  
AC4  
AC10  
AC16  
AC22  
AC31  
AD2  
AD6  
AD12  
VSS  
A11  
A21  
A27  
A29  
A31  
B2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
B9  
VSS  
B15  
B17  
B23  
B28  
B30  
C1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
C7  
VSS  
C13  
C19  
C25  
C29  
C31  
D2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
D5  
VSS  
D11  
9-6  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Pin Listing and Signal Definitions  
Table 50. Pin Listing by Pin Name for the  
INT-mPGA Package  
Table 50. Pin Listing by Pin Name for the  
INT-mPGA Package  
Signal  
Buffer Type  
Signal  
Buffer Type  
Pin Name  
Pin No.  
Direction  
Pin Name  
Pin No.  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
D21  
D27  
D28  
D30  
E1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
J7  
J9  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
J23  
J25  
J27  
J29  
J31  
K2  
E9  
E15  
E17  
E23  
E29  
E31  
F2  
K4  
K6  
K8  
K24  
K26  
K28  
K30  
L1  
F7  
F13  
F19  
F25  
F28  
F30  
G1  
L3  
L5  
L7  
G3  
L9  
G5  
L23  
L25  
L27  
L29  
L31  
M2  
M4  
M6  
M8  
M24  
M26  
M28  
M30  
N2  
G7  
G9  
G25  
G27  
G29  
G31  
H2  
H4  
H6  
H8  
H24  
H26  
H28  
H30  
J1  
N4  
N6  
J3  
N8  
J5  
N24  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
9-7  
Pin Listing and Signal Definitions  
Table 50. Pin Listing by Pin Name for the  
INT-mPGA Package  
Table 50. Pin Listing by Pin Name for the  
INT-mPGA Package  
Signal  
Buffer Type  
Signal  
Buffer Type  
Pin Name  
Pin No.  
Direction  
Pin Name  
Pin No.  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
N26  
N28  
N30  
P1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
V1  
V3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
V5  
V7  
P3  
V9  
P5  
V23  
V25  
V27  
V29  
V31  
W2  
P7  
P9  
P23  
P25  
P27  
P29  
P31  
R2  
W4  
W24  
W26  
W28  
W30  
Y1  
R4  
R6  
R8  
R24  
R26  
R28  
R30  
T1  
Y5  
Y7  
Y13  
Y19  
Y25  
Y31  
AA2  
AA9  
AA15  
AA17  
AA23  
AA30  
AB1  
AB5  
AB11  
AB21  
AB27  
AB31  
AC2  
AC7  
AC13  
AC19  
T3  
T5  
T7  
T9  
T23  
T25  
T27  
T29  
T31  
U2  
U4  
U6  
U8  
U24  
U26  
U28  
U30  
9-8  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Pin Listing and Signal Definitions  
Table 50. Pin Listing by Pin Name for the  
INT-mPGA Package  
Table 50. Pin Listing by Pin Name for the  
INT-mPGA Package  
Signal  
Buffer Type  
Signal  
Buffer Type  
Pin Name  
Pin No.  
Direction  
Pin Name  
Pin No.  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AC25  
AC30  
AD3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
AE11  
AE21  
AE27  
AA5  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
AD9  
VSSA  
Input  
AD15  
AD17  
AD23  
AD31  
AE2  
VSSSENSE  
D26  
Output  
NOTES:  
1. In systems utilizing the Intel Xeon processor, the system  
designer must pull-up these signals to the processor VCC.  
2. Baseboard treating AA3 and AB3 as Reserved will operate  
correctly with a bus clock of 100 MHz.  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
9-9  
Pin Listing and Signal Definitions  
9.1.1  
Pin Listing by Pin Number  
Table 51. Pin Listing by Pin Number for the  
INT-mPGA Package  
Table 51. Pin Listing by Pin Number for the  
INT-mPGA Package  
Signal  
Buffer Type  
Pin No.  
Pin Name  
Direction  
Signal  
Pin Name  
Pin No.  
Direction  
B1  
B2  
Reserved  
VSS  
Reserved  
Reserved  
Buffer Type  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
A1  
A2  
Reserved  
VCC  
Reserved  
Power/Other  
Power/Other  
Reserved  
Reserved  
B3  
VID4  
Output  
Input  
B4  
VCC  
A3  
SKTOCC#  
Reserved  
VSS  
Output  
B5  
OTDEN  
VCC  
A4  
Reserved  
B6  
A5  
Power/Other  
B7  
A31#  
A27#  
VSS  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
A6  
A32#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
B8  
A7  
A33#  
B9  
A8  
VCC  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
B31  
C1  
A21#  
A22#  
VCC  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
A9  
A26#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
A20#  
VSS  
A13#  
A12#  
VSS  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
A14#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
A10#  
VCC  
A11#  
VSS  
Source Sync Input/Output  
Power/Other  
Reserved  
Reserved  
LOCK#  
VCC  
Reserved  
Reserved  
Reserved  
Reserved  
A5#  
Source Sync Input/Output  
Common Clk  
Power/Other  
Input/Output  
REQ0#  
VCC  
Common Clk  
Power/Other  
Common Clk  
Common Clk  
Power/Other  
Async GTL+  
Input/Output  
A7#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
REQ1#  
REQ4#  
VSS  
Input/Output  
Input/Output  
A4#  
VSS  
A3#  
Source Sync Input/Output  
LINT0  
Input  
Common Clk  
Power/Other  
TAP  
HITM#  
VCC  
Input/Output  
PROCHOT# Power/Other  
VCC Power/Other  
VCCSENSE Power/Other  
Output  
TMS  
Input  
Output  
Reserved  
VSS  
Reserved  
Reserved  
VSS  
VCC  
VSS  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VSS  
VCC  
VSS  
9-10  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Pin Listing and Signal Definitions  
Table 51. Pin Listing by Pin Number for the  
INT-mPGA Package  
Table 51. Pin Listing by Pin Number for the  
INT-mPGA Package  
Signal  
Buffer Type  
Signal  
Buffer Type  
Pin No.  
Pin Name  
Direction  
Pin No.  
Pin Name  
Direction  
1
C2  
C3  
VCC  
VID3  
Power/Other  
Power/Other  
Power/Other  
Reserved  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
BR3#  
Common Clk  
Input  
Output  
VSS  
A29#  
A25#  
VCC  
A18#  
A17#  
A9#  
Power/Other  
C4  
VCC  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
C5  
Reserved  
RSP#  
VSS  
Reserved  
Input  
C6  
Common Clk  
Power/Other  
C7  
Source Sync Input/Output  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
C8  
A35#  
A34#  
VCC  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
C9  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
C31  
D1  
VCC  
A30#  
A23#  
VSS  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
Common  
Input/Output  
Clk  
D19  
D20  
ADS#  
BR0#  
Common  
Input/Output  
Clk  
A16#  
A15#  
VCC  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
D31  
E1  
VSS  
RS1#  
Power/Other  
Common Clk  
Common Clk  
Power/Other  
Reserved  
Input  
Input  
BPRI#  
VCC  
A8#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
A6#  
Reserved  
Reserved  
Output  
VSS  
VSSSENSE Power/Other  
Common Clk  
Common Clk  
Power/Other  
Common Clk  
TAP  
REQ3#  
REQ2#  
VCC  
Input/Output  
Input/Output  
VSS  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Common Clk  
Power/Other  
Common Clk  
Common Clk  
Power/Other  
Common Clk  
Common Clk  
Power/Other  
VCC  
DEFER#  
TDI  
Input  
Input  
Input  
Input  
Input  
VSS  
VCC  
VSS  
Power/Other  
Async GTL+  
Async GTL+  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Async GTL+  
Power/Other  
Async GTL+  
Common Clk  
Power/Other  
Common Clk  
VSS  
IGNNE#  
SMI#  
VCC  
E2  
VCC  
E3  
VID1  
BPM5#  
IERR#  
VCC  
Output  
Input/Output  
Output  
E4  
VSS  
E5  
VCC  
E6  
VSS  
E7  
BPM2#  
BPM4#  
VSS  
Input/Output  
Input/Output  
VCC  
E8  
D2  
VSS  
E9  
D3  
VID2  
Output  
Input  
E10  
E11  
E12  
E13  
E14  
E15  
AP0#  
Input/Output  
Input  
D4  
STPCLK#  
VSS  
1
BR2#  
D5  
VCC  
A28#  
A24#  
VSS  
D6  
INIT#  
MCERR#  
VCC  
Input  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
D7  
Input/Output  
D8  
D9  
AP1#  
Input/Output  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
9-11  
Pin Listing and Signal Definitions  
Table 51. Pin Listing by Pin Number for the  
INT-mPGA Package  
Table 51. Pin Listing by Pin Number for the  
INT-mPGA Package  
Signal  
Buffer Type  
Signal  
Buffer Type  
Pin No.  
Pin Name  
Direction  
Pin No.  
Pin Name  
Direction  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
E27  
E28  
E29  
E30  
E31  
F1  
COMP1  
VSS  
Power/Other  
Power/Other  
Common Clk  
Common Clk  
Power/Other  
Common Clk  
Common Clk  
Power/Other  
TAP  
Input  
F24  
F25  
TRST#  
VSS  
TAP  
Input  
Power/Other  
DRDY#  
TRDY#  
VCC  
Input/Output  
Input  
THERMTRIP  
#
F26  
Async GTL+  
Output  
Input  
F27  
F28  
F29  
F30  
F31  
G1  
A20M#  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
LINT1  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
Async GTL+  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Async GTL+  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
RS0#  
HIT#  
Input  
Input/Output  
VSS  
TCK  
Input  
TDO  
TAP  
Output  
G2  
VCC  
Power/Other  
Async GTL+  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Common Clk  
Power/Other  
Common Clk  
Power/Other  
Power/Other  
Common Clk  
Common Clk  
Power/Other  
G3  
FERR#  
VCC  
Output  
G4  
G5  
VSS  
G6  
VCC  
G7  
VSS  
G8  
VCC  
G9  
F2  
VSS  
G23  
G24  
G25  
G26  
G27  
G28  
G29  
G30  
G31  
H1  
Input  
F3  
VID0  
Output  
F4  
VCC  
F5  
BPM3#  
BPM0#  
VSS  
Input/Output  
Input/Output  
F6  
F7  
F8  
BPM1#  
GTLREF  
VCC  
Input/Output  
Input  
F9  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
BINIT#  
BR1#  
VSS  
Input/Output  
Input  
H2  
H3  
ADSTB1#  
A19#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
H4  
H5  
VCC  
H6  
ADSTB0#  
DBSY#  
VSS  
Source Sync Input/Output  
H7  
Common Clk  
Power/Other  
Common Clk  
Common Clk  
Power/Other  
Power/Other  
Input/Output  
H8  
H9  
BNR#  
RS2#  
VCC  
Input/Output  
Input  
H23  
H24  
H25  
GTLREF  
Input  
9-12  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Pin Listing and Signal Definitions  
Table 51. Pin Listing by Pin Number for the  
INT-mPGA Package  
Table 51. Pin Listing by Pin Number for the  
INT-mPGA Package  
Signal  
Buffer Type  
Signal  
Buffer Type  
Pin No.  
Pin Name  
Direction  
Pin No.  
Pin Name  
Direction  
H26  
H27  
H28  
H29  
H30  
H31  
J1  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
K29  
K30  
K31  
L1  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
L2  
L3  
L4  
J2  
L5  
J3  
L6  
J4  
L7  
J5  
L8  
J6  
L9  
J7  
L23  
L24  
L25  
L26  
L27  
L28  
L29  
L30  
L31  
M1  
J8  
J9  
J23  
J24  
J25  
J26  
J27  
J28  
J29  
J30  
J31  
K1  
M2  
M3  
M4  
K2  
M5  
K3  
M6  
K4  
M7  
K5  
M8  
K6  
M9  
K7  
M23  
M24  
M25  
M26  
M27  
M28  
M29  
M30  
M31  
K8  
K9  
K23  
K24  
K25  
K26  
K27  
K28  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
9-13  
Pin Listing and Signal Definitions  
Table 51. Pin Listing by Pin Number for the  
INT-mPGA Package  
Table 51. Pin Listing by Pin Number for the  
INT-mPGA Package  
Signal  
Buffer Type  
Signal  
Buffer Type  
Pin No.  
Pin Name  
Direction  
Pin No.  
Pin Name  
Direction  
N1  
N2  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
R4  
R5  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
N3  
R6  
N4  
R7  
N5  
R8  
N6  
R9  
N7  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R31  
T1  
N8  
N9  
N23  
N24  
N25  
N26  
N27  
N28  
N29  
N30  
N31  
P1  
T2  
T3  
T4  
P2  
T5  
P3  
T6  
P4  
T7  
P5  
T8  
P6  
T9  
P7  
T23  
T24  
T25  
T26  
T27  
T28  
T29  
T30  
T31  
U1  
P8  
P9  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
P31  
R1  
U2  
U3  
U4  
R2  
U5  
R3  
U6  
9-14  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Pin Listing and Signal Definitions  
Table 51. Pin Listing by Pin Number for the  
INT-mPGA Package  
Table 51. Pin Listing by Pin Number for the  
INT-mPGA Package  
Signal  
Buffer Type  
Signal  
Buffer Type  
Pin No.  
Pin Name  
Direction  
Pin No.  
Pin Name  
Direction  
U7  
U8  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Reserved  
W23  
W24  
W25  
W26  
W27  
W28  
W29  
W30  
W31  
Y1  
GTLREF  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Reserved  
Input  
U9  
VCC  
VCC  
U23  
U24  
U25  
U26  
U27  
U28  
U29  
U30  
U31  
V1  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
Y2  
VCC  
VCC  
Y3  
Reserved  
BCLK0  
VSS  
Reserved  
Input  
VSS  
Y4  
Sys Bus Clk  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
V2  
VCC  
Y5  
V3  
VSS  
Y6  
TESTHI3  
VSS  
Input  
V4  
VCC  
Y7  
V5  
VSS  
Y8  
RESET#  
D62#  
Input  
V6  
VCC  
Y9  
Source Sync Input/Output  
Power/Other  
V7  
VSS  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
Y23  
Y24  
Y25  
Y26  
Y27  
Y28  
Y29  
Y30  
VCC  
V8  
VCC  
DSTBP3#  
DSTBN3#  
VSS  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
V9  
VSS  
V23  
V24  
V25  
V26  
V27  
V28  
V29  
V30  
V31  
W1  
W2  
W3  
W4  
W5  
W6  
W7  
W8  
W9  
VSS  
VCC  
DSTBP2#  
DSTBN2#  
VCC  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
VSS  
VCC  
VSS  
DSTBP1#  
DSTBN1#  
VSS  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
VCC  
VSS  
VCC  
DSTBP0#  
DSTBN0#  
VCC  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
VSS  
VCC  
VSS  
D5#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
Reserved  
VSS  
Reserved  
D2#  
Power/Other  
Sys Bus Clk  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
BCLK1  
TESTHI0  
TESTHI1  
TESTHI2  
GTLREF  
Input  
Input  
Input  
Input  
Input  
D0#  
Source Sync Input/Output  
Reserved  
Reserved  
SM_TS1_A1  
VCC  
Reserved  
Reserved  
SMBus  
Reserved  
Reserved  
Input  
Power/Other  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
9-15  
Pin Listing and Signal Definitions  
Table 51. Pin Listing by Pin Number for the  
INT-mPGA Package  
Table 51. Pin Listing by Pin Number for the  
INT-mPGA Package  
Signal  
Buffer Type  
Signal  
Buffer Type  
Pin No.  
Pin Name  
Direction  
Pin No.  
Pin Name  
Direction  
Y31  
AA1  
AA2  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AB8  
AB9  
VCC  
DBI3#  
D55#  
VSS  
Power/Other  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
VSS  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
AB23  
AB24  
AB25  
AB26  
AB27  
AB28  
AB29  
AB30  
AB31  
AC1  
2
AA3  
BSEL0  
VCC  
Output  
Input  
AA4  
AA5  
D51#  
D52#  
VCC  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
VSSA  
VCC  
AA6  
AA7  
TESTHI4  
D61#  
VSS  
Input  
D37#  
D32#  
D31#  
VCC  
Source Sync Input/Output  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
AA8  
Source Sync Input/Output  
Power/Other  
AA9  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AA23  
AA24  
AA25  
AA26  
AA27  
AA28  
AA29  
AA30  
AA31  
AB1  
D54#  
D53#  
VCC  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
D14#  
D12#  
VSS  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
D48#  
D49#  
VSS  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
D13#  
D9#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
D33#  
VSS  
Source Sync Input/Output  
Power/Other  
VCC  
D8#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
D24#  
D15#  
VCC  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
D7#  
VSS  
SM_EP_A2  
SM_EP_A1  
VCC  
SMBus  
Input  
Input  
D11#  
D10#  
VSS  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
SMBus  
Power/Other  
Power/Other  
Reserved  
VSS  
D6#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
Reserved  
VSS  
Reserved  
D3#  
AC2  
Power/Other  
Power/Other  
Power/Other  
VCC  
AC3  
VCC  
D1#  
Source Sync Input/Output  
AC4  
VCC  
SM_TS1_A0  
SM_EP_A0  
VSS  
SMBus  
Input  
Input  
AC5  
D60#  
D59#  
VSS  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
SMBus  
AC6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Sync  
AC7  
VCC  
AC8  
D56#  
D47#  
VCC  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
VSS  
AC9  
AB2  
VCC  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
2
AB3  
BSEL1  
VCCA  
VSS  
Output  
Input  
D43#  
D41#  
VSS  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
AB4  
AB5  
AB6  
AB7  
D63#  
D50#  
DP2#  
Source Sync Input/Output  
PWRGOOD Power/Other  
Input  
Common Clk  
Input/Output  
9-16  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Pin Listing and Signal Definitions  
Table 51. Pin Listing by Pin Number for the  
INT-mPGA Package  
Table 51. Pin Listing by Pin Number for the  
INT-mPGA Package  
Signal  
Buffer Type  
Signal  
Buffer Type  
Pin No.  
Pin Name  
Direction  
Pin No.  
Pin Name  
Direction  
AC16  
AC17  
AC18  
AC19  
AC20  
AC21  
AC22  
AC23  
AC24  
AC25  
AC26  
AC27  
AC28  
AC29  
AC30  
AC31  
AD1  
VCC  
D34#  
DP0#  
VSS  
Power/Other  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AD31  
AE2  
D21#  
D18#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
Source Sync Input/Output  
Common Clk  
Input/Output  
VCC  
Power/Other  
D4#  
Source Sync Input/Output  
D25#  
D26#  
VCC  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
SM_ALERT#  
SM_WP  
VCC  
SMBus  
Output  
Input  
SMBus  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Reserved  
D23#  
D20#  
VSS  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
VSS  
VSS  
AE3  
VCC  
D17#  
DBI0#  
SM_CLK  
SM_DAT  
VSS  
Source Sync Input/Output  
Source Sync Input/Output  
AE4  
Reserved  
TESTHI6  
SLP#  
Reserved  
Input  
AE5  
Power/Other  
Async GTL+  
SMBus  
Input  
AE6  
Input  
SMBus  
Output  
AE7  
D58#  
Source Sync Input/Output  
Power/Other  
Power/Other  
Power/Other  
Reserved  
AE8  
VCC  
VCC  
AE9  
D44#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
Reserved  
VCC  
Reserved  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
AE26  
AE27  
AE28  
AE29  
D42#  
AD2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
AD3  
VSS  
DBI2#  
D35#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
AD4  
VCCIOPLL  
TESTHI5  
VCC  
Input  
Input  
AD5  
VCC  
AD6  
Reserved  
Reserved  
DP3#  
Reserved  
Reserved  
Reserved  
Reserved  
AD7  
D57#  
D46#  
VSS  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
AD8  
Common Clk  
Power/Other  
Common Clk  
Input/Output  
AD9  
VCC  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
D45#  
D40#  
VCC  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
DP1#  
Input/Output  
D28#  
Source Sync Input/Output  
Power/Other  
VSS  
D38#  
D39#  
VSS  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
D27#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
D22#  
VCC  
COMP0  
VSS  
Power/Other  
Power/Other  
Input  
D19#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
D16#  
D36#  
D30#  
VCC  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
VSS  
SM_VCC  
SM_VCC  
Power/Other  
Power/Other  
D29#  
DBI1#  
VSS  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
1. In systems utilizing the Intel Xeon processor, the system  
designer must pull-up these signals to the processor VCC.  
2. Baseboards treating AA3 and AB3 as Reserved will operate  
correctly with a bus clock of 100 MHz.  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
9-17  
Pin Listing and Signal Definitions  
§
9-18  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
9.2  
Signal Definitions  
Table 52. Signal Definitions (Sheet 1 of 9)  
Name  
Type  
Description  
36  
A[35:3]# (Address) define a 2 byte physical memory address space. In sub-phase  
1 of the address phase, these pins transmit the address of a transaction. In sub-  
phase 2, these pins transmit transaction type information. These signals must  
®
connect the appropriate pins of all agents on the Intel Xeon™ processor MP on  
the 0.13 micron process processor system bus. A[35:3]# are protected by parity  
signals AP[1:0]#. A[35:3]# are source synchronous signals and are latched into the  
receiving buffers by ADSTB[1:0]#.  
A[35:3]#  
I/O  
On the active-to-inactive transition of RESET#, the processors sample a subset of  
the A[35:3]# pins to determine their power-on configuration. See Section 6.1.  
If A20M# (Address-20 Mask) is asserted, the processor masks physical address bit  
20 (A20#) before looking up a line in any internal cache and before driving a read/  
write transaction on the bus. Asserting A20M# emulates the 8086 processor's  
address wrap-around at the 1 MB boundary. Assertion of A20M# is only supported  
in real mode.  
A20M#  
I
A20M# is an asynchronous signal. However, to ensure recognition of this signal  
following an I/O write instruction, it must be valid along with the TRDY# assertion of  
the corresponding I/O write bus transaction.  
ADS# (Address Strobe) is asserted to indicate the validity of the transaction  
address on the A[35:3]# pins. All bus agents observe the ADS# activation to begin  
parity checking, protocol checking, address decode, internal snoop, or deferred  
reply ID match operations associated with the new transaction. This signal must  
connect the appropriate pins on all Intel Xeon processor MP on the 0.13 micron  
process processor System Bus agents.  
ADS#  
I/O  
I/O  
Address strobes are used to latch A[35:3]# and REQ[4:0]# on their rising and falling  
edge.  
ADSTB[1:0]#  
AP[1:0]# (Address Parity) are driven by the request initiator along with ADS#,  
A[35:3]#, and the transaction type on the REQ[4:0]# pins. A correct parity signal is  
high if an even number of covered signals are low and low if an odd number of  
covered signals are low. This allows parity to be high when all the covered signals  
are high. AP[1:0]# should connect the appropriate pins of all Intel Xeon processor  
MP on the 0.13 micron process processor system bus agents. The following table  
defines the coverage model of these signals.  
AP[1:0]#  
I/O  
Request Signals  
Subphase 1  
Subphase 2  
A[35:24]#  
A[23:3]#  
AP0#  
AP1#  
AP1#  
AP1#  
AP0#  
AP0#  
REQ[4:0]#  
The differential pair BCLK (Bus Clock) determines the bus frequency. All processor  
system bus agents must receive these signals to drive their outputs and latch their  
inputs.  
BCLK[1:0]  
I
All external timing parameters are specified with respect to the rising edge of  
BCLK0 crossing the falling edge of BCLK1.  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
9-19  
Table 52. Signal Definitions (Sheet 2 of 9)  
Name  
Type  
Description  
BINIT# (Bus Initialization) may be observed and driven by all processor system bus  
agents and if used, must connect the appropriate pins of all such agents. If the  
BINIT# driver is enabled during power on configuration, BINIT# is asserted to signal  
any bus condition that prevents reliable future information.  
If BINIT# observation is enabled during power-on configuration (see Section 6.1)  
and BINIT# is sampled asserted, symmetric agents reset their bus LOCK# activity  
and bus request arbitration state machines. The bus agents do not reset their IOQ  
and transaction tracking state machines upon observation of BINIT# assertion.  
Once the BINIT# assertion has been observed, the bus agents will re-arbitrate for  
the system bus and attempt completion of their bus queue and IOQ entries.  
BINIT#  
I/O  
If BINIT# observation is disabled during power-on configuration, a central agent  
may handle an assertion of BINIT# as appropriate to the error handling architecture  
of the system.  
BNR# (Block Next Request) is used to assert a bus stall by any bus agent who is  
unable to accept new bus transactions. During a bus stall, the current bus owner  
cannot issue any new transactions.  
Since multiple agents might need to request a bus stall at the same time, BNR# is a  
wire-OR signal which must connect the appropriate pins of all processor system  
bus agents. In order to avoid wire-OR glitches associated with simultaneous edge  
transitions driven by multiple drivers, BNR# is activated on specific clock edges and  
sampled on specific clock edges.  
BNR#  
I/O  
BPM[5:0]# (Breakpoint Monitor) are breakpoint and performance monitor signals.  
They are outputs from the processor which indicate the status of breakpoints and  
programmable counters used for monitoring processor performance. BPM[5:0]#  
should connect the appropriate pins of all Intel Xeon processor MP on the 0.13  
micron process processor system bus agents.  
BPM4# provides PRDY# (Probe Ready) functionality for the TAP port. PRDY# is a  
processor output used by debug tools to determine processor debug readiness.  
BPM[5:0]#  
I/O  
BPM5# provides PREQ# (Probe Request) functionality for the TAP port. PREQ# is  
used by debug tools to request debug operation of the processors.  
BPM[5:4]# must be bussed to all bus agents.  
These signals do not have on-die termination and must be terminated at the  
end agent. See the ITP Debug Port Design Guide for more information.  
BPRI# (Bus Priority Request) is used to arbitrate for ownership of the processor  
system bus. It must connect the appropriate pins of all processor system bus  
agents. Observing BPRI# active (as asserted by the priority agent) causes all other  
agents to stop issuing new requests, unless such requests are part of an ongoing  
locked operation. The priority agent keeps BPRI# asserted until all of its requests  
are completed, then releases the bus by deasserting BPRI#.  
BPRI#  
I
9-20  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Table 52. Signal Definitions (Sheet 3 of 9)  
Name  
Type  
Description  
BR[3:0]# (Bus Request) drive the BREQ[3:0]# signals in the system. The  
BREQ[3:0]# signals are interconnected in a rotating manner to individual processor  
pins. The tables below give the rotating interconnect between the processor and  
bus signals for 2-way and 4-way systems.  
BR[3:0]# Signals Rotating Interconnect, 4-way system (MP processors only)  
Bus Signal Agent 0 Pins Agent 1 Pins Agent 2 pins Agent 3 pins  
BREQ0#  
BREQ1#  
BREQ2#  
BREQ3#  
BR0#  
BR1#  
BR2#  
BR3#  
BR3#  
BR0#  
BR1#  
BR2#  
BR2#  
BR3#  
BR0#  
BR1#  
BR1#  
BR2#  
BR3#  
BR0#  
BR0#  
BR[1:3]#  
I/O  
I
BR[1:0]# Signals Rotating Interconnect, 2-way system  
Bus Signal Agent 0 Pins Agent 1 Pins  
1
BREQ0#  
BREQ1#  
BR0#  
BR1#  
BR1#  
BR0#  
BR2# and BR3# must not be utilized in 2-way platform designs.  
During power-on configuration, the central agent must assert the BR0# bus signal.  
All symmetric agents sample their BR[3:0]# pins on the active-to-inactive transition  
of RESET#. The pin which the agent samples asserted determines it’s agent ID.  
These signals do not have on-die termination and must be terminated at the end  
agent. See the appropriate platform design guideline for additional information.  
BSEL[1:0] (Bus Select) output signals are used to select the system bus frequency.  
A BSEL[1:0] = “00” will select a 100 MHz bus clock frequency. The frequency is  
determined by the processor(s), chipset, and frequency synthesizer capabilities. All  
system bus agents must operate at the same frequency. The Intel Xeon processor  
MP on the 0.13 micron process processor currently operates at 100 MHz system  
bus frequencies. Individual processors will only operate at their specified front side  
bus (FSB) frequency.  
BSEL[1:0]  
O
On baseboards which support operation only at 100 MHz bus clocks these signals  
can be ignored.  
See the appropriate platform design guide for implementation examples.  
See Table 3, “System Bus Clock Frequency Select Truth Table for BSEL[1:0]” on  
page 3 for output values.  
COMP[1:0] must be terminated to V on the baseboard using precision resistors.  
SS  
COMP[1:0]  
I
These inputs configure the AGTL+ drivers of the processor. Refer to the appropriate  
platform design guidelines and Table 14 for implementation details.  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
9-21  
Table 52. Signal Definitions (Sheet 4 of 9)  
Name  
Type  
Description  
D[63:0]# (Data) are the data signals. These signals provide a 64-bit data path  
between the processor system bus agents, and must connect the appropriate pins  
on all such agents. The data driver asserts DRDY# to indicate a valid data transfer.  
D[63:0]# are quad-pumped signals, and will thus be driven four times in a common  
clock period. D[63:0]# are latched off the falling edge of both DSTBP[3:0]# and  
DSTBN[3:0]#. Each group of 16 data signals correspond to a pair of one DSTBP#  
and one DSTBN#. The following table shows the grouping of data signals to strobes  
and DBI#.  
DSTBN/  
DSTBP  
D[63:0]#  
I/O  
Data Group  
DBI#  
D[15:0]#  
D[31:16]#  
D[47:32]#  
D[63:48]#  
0
1
2
3
0
1
2
3
Furthermore, the DBI# pins determine the polarity of the data signals. Each group  
of 16 data signals corresponds to one DBI# signal. When the DBI# signal is active,  
the corresponding data group is inverted and therefore sampled active high.  
DBI[3:0]# (Data Bus Inversion) are source synchronous and indicate the polarity of  
the D[63:0]# signals. The DBI[3:0]# signals are activated when the data on the data  
bus is inverted. The bus agent will invert the data bus signals if more than half the  
bits, within a 16-bit group, change logic level in the next cycle.  
DBI[3:0] Assignment To Data Bus  
Bus Signal  
Data Bus Signals  
DBI[3:0]#  
I/O  
DBI0#  
DBI1#  
DBI2#  
DBI3#  
D[15:0]#  
D[31:16]#  
D[47:32]#  
D[63:48]#  
DBSY# (Data Bus Busy) is asserted by the agent responsible for driving data on the  
processor system bus to indicate that the data bus is in use. The data bus is  
released after DBSY# is deasserted. This signal must connect the appropriate pins  
on all processor system bus agents.  
DBSY#  
I/O  
DEFER# (Defer) is asserted by an agent to indicate that a transaction cannot be  
guaranteed in-order completion. Assertion of DEFER# is normally the responsibility  
of the addressed memory or I/O agent. This signal must connect the appropriate  
pins of all processor system bus agents.  
DEFER#  
DP[3:0]#  
DRDY#  
I
DP[3:0]# (Data Parity) provide parity protection for the D[63:0]# signals. They are  
driven by the agent responsible for driving D[63:0]#, and must connect the  
appropriate pins of all processor system bus agents.  
I/O  
I/O  
DRDY# (Data Ready) is asserted by the data driver on each data transfer,  
indicating valid data on the data bus. In a multi-common clock data transfer, DRDY#  
may be deasserted to insert idle clocks. This signal must connect the appropriate  
pins of all processor system bus agents.  
DSTBN[3:0]#  
DSTBP[3:0]#  
I/O  
I/O  
Data strobe used to latch in D[63:0]#.  
Data strobe used to latch in D[63:0]#.  
9-22  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Table 52. Signal Definitions (Sheet 5 of 9)  
Name  
Type  
Description  
FERR#/PBE# (floating point error/pending break event) is a multiplexed signal and  
its meaning is qualified by STPCLK#. When STPCLK# is not asserted, FERR#/  
PBE# indicates a floating-point error and will be asserted when the processor  
detects an unmasked floating-point error. When STPCLK# is not asserted, FERR#/  
PBE# is similar to the ERROR# signal on the Intel 387 coprocessor, and is included  
for compatibility with systems using MS-DOS*-type floating-point error reporting.  
When STPCLK# is asserted, an assertion of FERR#/PBE# indicates that the  
processor has a pending break event waiting for service. The assertion of FERR#/  
PBE# indicates that the processor should be returned to the Normal state. When  
FERR#/PBE# is asserted, indicating a break event, it will remain asserted until  
STPCLK# is deasserted. For additional information on the pending break event  
functionality, including the identification of support of the feature and enable/disable  
information, refer to volume 3 of the Intel Architecture Software Developer's Manual  
and the Intel Processor Identification and the CPUID Instruction application note.  
FERR#/PBE#  
O
This signal does not have on-die termination and must be terminated at the end  
agent. See the appropriate platform design guideline for additional information.  
GTLREF determines the signal reference level for AGTL+ input pins. GTLREF  
should be set to either 2/3Vcc or 0.63*Vcc (future processors). GTLREF is used by  
the AGTL+ receivers to determine if a signal is a logical 0 or a logical 1.  
GTLREF  
I
HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction snoop operation  
results. Any system bus agent may assert both HIT# and HITM# together to  
indicate that it requires a snoop stall, which can be continued by reasserting HIT#  
and HITM# together.  
HIT#  
I/O  
I/O  
Since multiple agents may deliver snoop results at the same time, HIT# and HITM#  
are wire-OR signals which must connect the appropriate pins of all processor  
system bus agents. In order to avoid wire-OR glitches associated with simultaneous  
edge transitions driven by multiple drivers, HIT# and HITM# are activated on  
specific clock edges and sampled on specific clock edges.  
HITM#  
IERR# (Internal Error) is asserted by a processor as the result of an internal error.  
Assertion of IERR# is usually accompanied by a SHUTDOWN transaction on the  
processor system bus. This transaction may optionally be converted to an external  
error signal (e.g., NMI) by system core logic. The processor will keep IERR#  
asserted until the assertion of RESET#.  
IERR#  
O
This signal does not have on-die termination and must be terminated at the end  
agent. See the appropriate platform design guideline for additional information.  
IGNNE# (Ignore Numeric Error) is asserted to force the processor to ignore a  
numeric error and continue to execute noncontrol floating-point instructions. If  
IGNNE# is deasserted, the processor generates an exception on a noncontrol  
floating-point instruction if a previous floating-point instruction caused an error.  
IGNNE# has no effect when the NE bit in control register 0 (CR0) is set.  
IGNNE#  
I
IGNNE# is an asynchronous signal. However, to ensure recognition of this signal  
following an I/O write instruction, it must be valid along with the TRDY# assertion of  
the corresponding I/O write bus transaction.  
INIT# (Initialization), when asserted, resets integer registers inside all processors  
without affecting their internal caches or floating-point registers. Each processor  
then begins execution at the power-on Reset vector configured during power-on  
configuration. The processor continues to handle snoop requests during INIT#  
assertion. INIT# is an asynchronous signal and must connect the appropriate pins  
of all processor system bus agents.  
INIT#  
I
If INIT# is sampled active on the active to inactive transition of RESET#, then the  
processor executes its Built-in Self-Test (BIST).  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
9-23  
Table 52. Signal Definitions (Sheet 6 of 9)  
Name  
Type  
Description  
LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins of all system  
bus agents. When the APIC functionality is disabled, the LINT0 signal becomes  
INTR,  
a maskable interrupt request signal, and LINT1 becomes NMI, a  
nonmaskable interrupt. INTR and NMI are backward compatible with the signals of  
those names on the Pentium processor. Both signals are asynchronous.  
LINT[1:0]  
I
Both of these signals must be software configured via BIOS programming of the  
APIC register space to be used either as NMI/INTR or LINT[1:0]. Because the APIC  
is enabled by default after Reset, operation of these pins as LINT[1:0] is the default  
configuration.  
LOCK# indicates to the system that a transaction must occur atomically. This signal  
must connect the appropriate pins of all processor system bus agents. For a locked  
sequence of transactions, LOCK# is asserted from the beginning of the first  
transaction to the end of the last transaction.  
LOCK#  
I/O  
When the priority agent asserts BPRI# to arbitrate for ownership of the processor  
system bus, it will wait until it observes LOCK# deasserted. This enables symmetric  
agents to retain ownership of the processor system bus throughout the bus locked  
operation and ensure the atomicity of lock.  
MCERR# (Machine Check Error) is asserted to indicate an unrecoverable error  
without a bus protocol violation. It may be driven by all processor system bus  
agents.  
MCERR# assertion conditions are configurable at a system level. Assertion options  
are defined by the following options:  
Enabled or disabled.  
Asserted, if configured, for internal errors along with IERR#.  
Asserted, if configured, by the request initiator of a bus transaction after it  
observes an error.  
MCERR#  
I/O  
Asserted by any bus agent when it observes an error in a bus transaction.  
For more details regarding machine check architecture, refer to the IA-32 Software  
Developer’s Manual, Volume 3: System Programming Guide.  
Since multiple agents may drive this signal at the same time, MCERR# is a wire-OR  
signal which must connect the appropriate pins of all processor system bus agents.  
In order to avoid wire-OR glitches associated with simultaneous edge transitions  
driven by multiple drivers, MCERR# is activated on specific clock edges and  
sampled on specific clock edges.  
ODTEN (On-die termination enable) should be connected to V  
to enable on-die  
CC  
termination for end bus agents. For middle bus agents, pull this signal down via a  
resistor to ground to disable on-die termination. Whenever ODTEN is high, on-die  
termination will be active, regardless of other states of the bus.  
ODTEN  
I
The assertion of PROCHOT# (processor hot) indicates that the processor die  
temperature has reached its thermal limit. See Section 6.3 for more details.  
PROCHOT#  
O
These signals do not have on-die termination and must be terminated at the end  
agent. See the appropriate platform design guideline for additional information.  
PWRGOOD (Power Good) is an input. The processor requires this signal to be a  
clean indication that all Intel Xeon processor MP on the 0.13 micron process  
processor clocks and power supplies are stable and within their specifications.  
“Clean” implies that the signal will remain low (capable of sinking leakage current),  
without glitches, from the time that the power supplies are turned on until they come  
within specification. The signal must then transition monotonically to a high state.  
Figure 12 illustrates the relationship of PWRGOOD to the RESET# signal.  
PWRGOOD can be driven inactive at any time, but clocks and power must again be  
stable before a subsequent rising edge of PWRGOOD. It must also meet the  
minimum pulse width specification in Table 18, and be followed by a 1 ms RESET#  
pulse.  
PWRGOOD  
I
The PWRGOOD signal must be supplied to the processor; it is used to protect  
internal circuits against voltage sequencing issues. It should be driven high  
throughout boundary scan operation.  
9-24  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Table 52. Signal Definitions (Sheet 7 of 9)  
Name  
Type  
Description  
REQ[4:0]# (Request Command) must connect the appropriate pins of all processor  
system bus agents. They are asserted by the current bus owner to define the  
currently active transaction type. These signals are source synchronous to  
ADSTB[1:0]#. Refer to the AP[1:0]# signal description for details on parity checking  
of these signals.  
REQ[4:0]#  
I/O  
Asserting the RESET# signal resets all processors to known states and invalidates  
their internal caches without writing back any of their contents. For a power-on  
Reset, RESET# must stay active for at least one millisecond after VCC and BCLK  
have reached their proper specifications. On observing active RESET#, all system  
bus agents will deassert their outputs within two clocks. RESET# must not be kept  
asserted for more than 10ms.  
RESET#  
I
A number of bus signals are sampled at the active-to-inactive transition of RESET#  
for power-on configuration. These configuration options are described in the  
Section 6.1.  
This signal does not have on-die termination and must be terminated at the end  
agent. See the appropriate platform design guideline for additional information.  
RS[2:0]# (Response Status) are driven by the response agent (the agent  
responsible for completion of the current transaction), and must connect the  
appropriate pins of all processor system bus agents.  
RS[2:0]#  
RSP#  
I
I
RSP# (Response Parity) is driven by the response agent (the agent responsible for  
completion of the current transaction) during assertion of RS[2:0]#, the signals for  
which RSP# provides parity protection. It must connect to the appropriate pins of all  
processor system bus agents.  
A correct parity signal is high if an even number of covered signals are low and low  
if an odd number of covered signals are low. While RS[2:0]# = 000, RSP# is also  
high, since this indicates it is not being driven by any agent guaranteeing correct  
parity.  
SKTOCC# (Socket occupied) will be pulled to ground by the processor to indicate  
that the processor is present.  
SKTOCC#  
SLP#  
O
I
SLP# (Sleep), when asserted in Stop-Grant state, causes processors to enter the  
Sleep state. During Sleep state, the processor stops providing internal clock signals  
to all units, leaving only the Phase-Locked Loop (PLL) still operating. Processors in  
this state will not recognize snoops or interrupts. The processor will recognize only  
assertion of the RESET# signal, deassertion of SLP#, and removal of the BCLK  
input while in Sleep state. If SLP# is deasserted, the processor exits Sleep state  
and returns to Stop-Grant state, restarting its internal clock signals to the bus and  
processor core units.  
SMB_PRT (SMBus Present) pin is grounded on processor packages (FC-mPGA2)  
that do not contain SMBus components (PIROM, Scratch EEPROM, and thermal  
sensor). It is floating on processor packages (INT-mPGA) that do contain the  
SMBus components.  
SMB_PRT  
O
O
SM_ALERT# (SMBus Alert) is an asynchronous interrupt line associated with the  
SMBus Thermal Sensor device. It is an open-drain output and the processor  
SM_ALERT#  
includes a 10kpull-up resistor to SM_V for this signal. It is only available on the  
CC  
Intel Xeon processor in INT-mPGA package. For more information on the usage of  
the SM_ALERT# pin, see Section 6.4.5.  
The SM_CLK (SMBus Clock) signal is an input clock to the system management  
logic which is required for operation of the system management features of the Intel  
Xeon processor MP on the 0.13 micron process processor. This clock is driven by  
the SMBus controller and is asynchronous to other clocks in the processor.The  
SM_CLK  
SM_DAT  
I/O  
I/O  
processor includes a 10 kpull-up resistor to SM_V  
for this signal. It is only  
available on the Intel Xeon processor in INT-mPGA package.  
CC  
The SM_DAT (SMBus Data) signal is the data signal for the SMBus. This signal  
provides the single-bit mechanism for transferring data between SMBus  
devices.The processor includes a 10 kpull-up resistor to SM_V for this signal.  
CC  
It is only available on the Intel Xeon processor in INT-mPGA package.  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
9-25  
Table 52. Signal Definitions (Sheet 8 of 9)  
Name  
Type  
Description  
The SM_EP_A (EEPROM Select Address) pins are decoded on the SMBus in  
conjunction with the upper address bits in order to maintain unique addresses on  
the SMBus in a system with multiple processors. To set an SM_EP_A line high, a  
pull-up resistor should be used that is no larger than 1k. The processor includes a  
SM_EP_A[2:0]  
I
10kpull-down resistor to V for each of these signals. It is only available on the  
SS  
Intel Xeon processor in INT-mPGA package.  
For more information on the usage of these pins, see Section 6.4.8.  
The SM_TS_A (Thermal Sensor Select Address) pins are decoded on the SMBus  
in conjunction with the upper address bits in order to maintain unique addresses on  
the SMBus in a system with multiple processors.  
The device’s addressing, as implemented, includes a Hi-Z state for both address  
pins. The use of the Hi-Z state is achieved by leaving the input floating  
(unconnected). It is only available on the Intel Xeon processor in INT-mPGA  
package.  
SM_TS_A[1:0]  
I
For more information on the usage of these pins, see Section 6.4.8.  
Provides power to the SMBus components which are only available on the Intel  
Xeon processor in INT-mPGA package. Additionally provides power for the VID and  
BSEL logic. Intel Xeon processor MP on the 0.13 micron processprocessor  
baseboards MUST provide SM_Vcc. See Figure for further details.  
SM_V  
I
I
CC  
WP (Write Protect) can be used to write protect the Scratch EEPROM. The Scratch  
EEPROM is write-protected when this input is pulled high to SM_V .The  
CC  
SM_WP  
SMI#  
processor includes a 10k pull-down resistor to V for this signal. It is only available  
SS  
on the Intel Xeon processor in INT-mPGA package.  
SMI# (System Management Interrupt) is asserted asynchronously by system logic.  
On accepting a System Management Interrupt, processors save the current state  
and enter System Management Mode (SMM). An SMI Acknowledge transaction is  
issued, and the processor begins program execution from the SMM handler.  
I
I
If SMI# is asserted during the deassertion of RESET# the processor will tri-state its  
outputs. It is only available on the Intel Xeon processor in INT-mPGA package.  
STPCLK# (Stop Clock), when asserted, causes processors to enter a low power  
Stop-Grant state. The processor issues a Stop-Grant Acknowledge transaction, and  
stops providing internal clock signals to all processor core units except the system  
bus and APIC units. The processor continues to snoop bus transactions and  
service interrupts while in Stop-Grant state. When STPCLK# is deasserted, the  
processor restarts its internal clock to all units and resumes execution. The  
assertion of STPCLK# has no effect on the bus clock; STPCLK# is an  
asynchronous input.  
STPCLK#  
TCK (Test Clock) provides the clock input for the processor Test Bus (also known  
as the Test Access Port).  
TCK  
TDI  
I
I
TDI (Test Data In) transfers serial test data into the processor. TDI provides the  
serial input needed for JTAG specification support.  
TDO (Test Data Out) transfers serial test data out of the processor. TDO provides  
the serial output needed for JTAG specification support.  
TDO  
O
All TESTHI[6:0] pins should be individually connected to VCC via a pull-up resistor  
which matches the trace impedance within a range of ± 10 . TESTHI[3:0] and  
TESTHI[6:5] may all be tied together and pulled up to VCC with a single resistor if  
desired. However, utilization of boundary scan test will not be functional if these  
pins are connected together. TESTHI4 must always be pulled up independently  
from the other TESTHI pins. For optimum noise margin, all pull-up resistor values  
used for TESTHI[6:0] pins should have a resistance value within ± 20% of the  
impedance of the baseboard transmission line traces. For example, if the trace  
impedance is 50 , then a value between 40 and 60 should be used.  
TESTHI[6:0]  
I
9-26  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Table 52. Signal Definitions (Sheet 9 of 9)  
Name  
Type  
Description  
Assertion of THERMTRIP# (Thermal Trip) indicates the processor junction  
temperature has reached a level where permanent silicon damage may occur.  
Measurement of the temperature is accomplished through an internal thermal  
sensor which is configured to trip at approximately 135°C. Upon assertion of  
THERMTRIP#, the processor will shut off its internal clocks (thus halting program  
execution) in an attempt to reduce the processor junction temperature. To protect  
the processor, its core voltage (Vcc) must be removed following the assertion of  
THERMTRIP#. See Figure 15 and Table 18 for the appropriate power down  
sequence and timing requirements.  
THERMTRIP#  
O
Once activated, THERMTRIP# remains latched until RESET# is asserted. While  
the assertion of the RESET# signal will de-assert THERMTRIP#, if the processor’s  
junction temperature remains at or above the trip level, THERMTRIP# will again be  
asserted.  
This signal does not have on-die termination and must be terminated at the end  
agent. See the appropriate platform design guideline for additional information.  
TMS (Test Mode Select) is a JTAG specification support signal used by debug  
tools.  
TMS  
I
This signal does not have on-die termination and must be terminated at the end  
agent. See the appropriate platform design guideline for additional information.  
TRDY# (Target Ready) is asserted by the target to indicate that it is ready to receive  
a write or implicit writeback data transfer. TRDY# must connect the appropriate pins  
of all system bus agents.  
TRDY#  
TRST#  
I
I
TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST# must be driven  
low during power on Reset. See the appropriate platform design guideline for  
additional information.  
VCCA provides isolated power for the analog portion of the internal PLL’s. Use a  
discrete RLC filter to provide clean power. Use the filter defined in Section 2.5 to  
provide clean power to the PLL. The tolerance and total ESR for the filter is  
important. Refer to the appropriate platform design guidelines for complete  
implementation details.  
V
V
I
I
CCA  
V
provides isolated power for digital portion of the internal PLL’s. Follow the  
CCIOPLL  
guidelines for V  
(Section 2.5). Refer to the appropriate platform design  
CCIOPLL  
CCA  
guidelines for complete implementation details.  
The Vccsense and Vsssense pins are the points for which processor minimum and  
maximum voltage requirements are specified. Uniprocessor designs may utilize  
these pins for voltage sensing for the processor's voltage regulator. However, multi-  
processor designs must not connect these pins to sense logic, but rather utilize  
V
V
CCSENSE  
O
SSSENSE  
them for power delivery validation.  
VID[4:0] (Voltage ID) pins can be used to support automatic selection of power  
supply voltages (V ). Unlike previous generations of processors, these are logic  
CC  
signals and are driven by the Intel Xeon processor MP on the 0.13 micron process  
processor. Hence the voltage supply for these pins (SM_Vcc) must be valid before  
the VRM supplying Vcc to the processor is enabled (see Figure ). Conversely, the  
VRM output must be disabled prior to the voltage supply for these pins becomes  
invalid. The VID pins are needed to support processor voltage specification  
variations. See Table 4 for definitions of these pins. The power supply must supply  
the voltage that is requested by these pins, or disable itself.  
VID[4:0]  
O
V
provides an isolated, internal ground for internal PLL’s. Do not connect  
SSA  
directly to ground. This pin is to be connected to V  
and V  
through a  
CCA  
CCIOPLL  
V
I
SSA  
discrete filter circuit. Follow the guidelines for V  
(Section 2.5). Refer to the  
SSA  
appropriate platform design guidelines for complete implementation details.  
NOTES:  
1. Intel Xeon processors only support BR0# and BR1#. However, the Intel Xeon processors must terminate  
BR2# and BR3# to the processor V  
.
CC.  
§
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
9-27  
9-28  
Intel® Xeon™ Processor MP with up to 2MB L3 Cache  
Working page only. Do not distribute.  
1
2
Introduction..........................................................................................................1-1  
1.1  
Terminology ..................................................................................................1-3  
1.1.1 Processor Packaging Terminology ..................................................1-3  
References....................................................................................................1-4  
1.2  
Electrical Specifications .................................................................................2-1  
2.1  
2.2  
2.3  
System Bus and GTLREF.............................................................................2-1  
Power and Ground Pins................................................................................2-1  
Decoupling Guidelines..................................................................................2-1  
2.3.1 VCC Decoupling...............................................................................2-2  
2.3.2 System Bus AGTL+ Decoupling ......................................................2-2  
System Bus Clock (BCLK[1:0]) and Processor Clocking..............................2-2  
2.4  
2.5  
2.6  
2.4.1  
Bus Clock........................................................................................2-3  
PLL Filter.......................................................................................................2-4  
2.5.1 Mixing Processors............................................................................2-5  
Voltage Identification....................................................................................2-6  
2.6.1 Mixing Processors of Different Voltages..........................................2-7  
Reserved or Unused Pins.............................................................................2-8  
System Bus Signal Groups...........................................................................2-8  
Asynchronous GTL+ Signals ........................................................................2-9  
Maximum Ratings .......................................................................................2-10  
Processor DC Specifications ......................................................................2-10  
AGTL+ System Bus Specifications.............................................................2-16  
System Bus AC Specifications....................................................................2-17  
Processor AC Timing Waveforms...............................................................2-22  
2.7  
2.8  
2.9  
2.10  
2.11  
2.12  
2.13  
2.14  
3
System Bus Signal Quality Specifications..............................................3-1  
3.1  
System Bus Clock (BCLK) Signal Quality Specifications and Measurement  
Guidelines.....................................................................................................3-1  
System Bus Signal Quality Specifications and Measurement Guidelines ....3-2  
System Bus Signal Quality Specifications and Measurement Guidelines ....3-5  
3.3.1 Overshoot/Undershoot Guidelines...................................................3-5  
3.3.2 Overshoot/Undershoot Magnitude...................................................3-6  
3.3.3 Overshoot/Undershoot Pulse Duration ............................................3-6  
3.3.4 Activity Factor ..................................................................................3-6  
3.3.5 Reading Overshoot/Undershoot Specification Tables .....................3-7  
3.3.6 Determining if a System Meets the Overshoot/Undershoot Specifica-  
tions .................................................................................................3-7  
3.2  
3.3  
4
5
Mechanical Specifications.............................................................................4-1  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
Mechanical Specifications.............................................................................4-3  
Package Load Specifications........................................................................4-8  
Insertion Specifications.................................................................................4-8  
Mass Specifications ......................................................................................4-8  
Materials .......................................................................................................4-9  
Markings .......................................................................................................4-9  
Pinout Diagram ...........................................................................................4-10  
Thermal Specifications....................................................................................5-1  
5.1  
5.2  
Thermal Specifications..................................................................................5-3  
Measurements for Thermal Specifications....................................................5-5  
5.2.1 Processor Case Temperature Measurement...................................5-5  
29  
Intel Confidential  
Working page only. Do not distribute.  
6
Features.................................................................................................................6-1  
6.1  
6.2  
Power-On Configuration Options..................................................................6-1  
Clock Control and Low Power States ...........................................................6-1  
6.2.1 Normal State—State 1.....................................................................6-1  
6.2.2 AutoHALT Powerdown State—State 2............................................6-1  
6.2.3 Stop-Grant State—State 3...............................................................6-2  
6.2.4 HALT/Grant Snoop State—State 4..................................................6-3  
6.2.5 Sleep State—State 5 .......................................................................6-3  
6.2.6 Bus Response during Low Power States.........................................6-4  
Thermal Monitor............................................................................................6-4  
6.3.1 Thermal Diode .................................................................................6-4  
System Management Bus (SMBus) Interface...............................................6-5  
6.4.1 Processor Information ROM (PIROM).............................................6-6  
6.4.2 Scratch EEPROM............................................................................6-8  
6.4.3 PIROM and Scratch EEPROM Supported SMBus Transactions.....6-8  
6.4.4 SMBus Thermal Sensor...................................................................6-8  
6.4.5 Thermal Sensor Supported SMBus Transactions............................6-9  
6.4.6 SMBus Thermal Sensor Registers.................................................6-11  
6.4.6.1 Thermal Reference Registers...........................................6-11  
6.4.6.2 Thermal Limit Registers....................................................6-11  
6.4.6.3 Status Register .................................................................6-11  
6.4.6.4 Configuration Register ......................................................6-12  
6.4.6.5 Conversion Rate Registers...............................................6-13  
6.4.7 SMBus Thermal Sensor Alert Interrupt..........................................6-13  
6.4.8 SMBus Device Addressing ............................................................6-13  
6.3  
6.4  
7
Boxed Processor Specifications.................................................................7-1  
7.1  
7.2  
Introduction...................................................................................................7-1  
Mechanical Specifications ............................................................................7-2  
7.2.1 Boxed Processor Heatsink Dimensions...........................................7-2  
7.2.2 Boxed Processor Heatsink Weight ..................................................7-2  
7.2.3 Boxed Processor Retention Mechanism and Heatsink Supports ....7-2  
Boxed Processor Requirements...................................................................7-5  
7.3.1 Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor ..  
.........................................................................................................7-5  
7.3  
7.4  
Thermal Specifications .................................................................................7-5  
7.4.1 Boxed Processor Cooling Requirements.........................................7-5  
8
9
Debug Tools Specifications..........................................................................8-1  
8.1  
Logic Analyzer Interface (LAI) ......................................................................8-1  
8.1.1 Mechanical Considerations..............................................................8-1  
8.1.2 Electrical Considerations .................................................................8-1  
Pin Listing and Signal Definitions..............................................................9-1  
9.1  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Pin As-  
signments .....................................................................................................9-1  
9.1.1 Pin Listing by Pin Number .............................................................9-10  
Signal Definitions........................................................................................9-19  
9.2  
30  
Intel Confidential  
Working page only. Do not distribute.  
1
2
3
Typical VCCIOPLL, VCCA and VSSA Power Distribution.................................... 2-4  
Phase Lock Loop (PLL) Filter Requirements ........................................................... 2-5  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Voltage-Current  
Projections............................................................................................................... 2-12  
Electrical Test Circuit.............................................................................................. 2-22  
TCK Clock Waveform ............................................................................................ 2-23  
Differential Clock Waveform.................................................................................. 2-23  
Differential Clock Crosspoint Specification ........................................................... 2-24  
System Bus Common Clock Valid Delay Timing Waveform ................................ 2-24  
System Bus Source Synchronous 2X (Address) Timing Waveform....................... 2-25  
System Bus Source Synchronous 4X (Data) Timing Waveform............................ 2-26  
System Bus Reset and Configuration Timing Waveform....................................... 2-27  
Power-On Reset and Configuration Timing Waveform.......................................... 2-27  
TAP Valid Delay Timing Waveform ...................................................................... 2-28  
Test Reset (TRST#), Async GTL+ Input, and PROCHOT# Timing Waveform............  
................................................................................................................................. 2-28  
THERMTRIP# to Vcc Timing................................................................................ 2-28  
SMBus Timing Waveform ...................................................................................... 2-29  
SMBus Valid Delay Timing Waveform.................................................................. 2-29  
Example 3.3 Volt/SM_VCC Sequencing................................................................ 2-30  
FERR#/PBE# Valid Delay Timing ......................................................................... 2-31  
BCLK[1:0] Signal Integrity Waveform..................................................................... 3-2  
Low-to-High System Bus Receiver Ringback Tolerance for AGTL+ and Asynchro-  
nous GTL+ Buffers ................................................................................................... 3-3  
High-to-Low System Bus Receiver Ringback Tolerance for AGTL+ and Asynchro-  
nous GTL+ Buffers ................................................................................................... 3-3  
Low-to-High System Bus Receiver Ringback Tolerance for PWRGOOD and TAP  
Buffers....................................................................................................................... 3-4  
High-to-Low System Bus Receiver Ringback Tolerance for PWRGOOD and TAP  
Buffers....................................................................................................................... 3-5  
Maximum Acceptable Overshoot/Undershoot Waveform...................................... 3-10  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor and Intel® Xeon™  
Processor with 512-KB L2 Cache in INT-mPGA Package - Assembly Drawing (In-  
cluding Socket).......................................................................................................... 4-2  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Package Top View  
Component Placement Detail.................................................................................... 4-3  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Package Drawing  
4-3  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Top View - Com-  
ponent Keep-In.......................................................................................................... 4-5  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor and Intel® Xeon™  
Processor with 512-KB L2 Cache in INT-mPGA Package - Cross Section View - Pin  
Side Component Keep-In .......................................................................................... 4-5  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor and Intel® Xeon™  
Processor with 512-KB L2 Cache in INT-mPGA Package - Processor Pin Details. 4-6  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Package IHS Flat-  
ness and Tilt Drawing................................................................................................ 4-7  
Intel® Xeon™ Processor MP on the 0.13 Micron Process INT-mPGA Package IHS  
Flatness and Tilt Drawing ......................................................................................... 4-7  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Top-Side Markings  
(Package Example).................................................................................................... 4-9  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Bottom-Side  
Markings (Package Example).................................................................................. 4-10  
31  
32  
33  
34  
35  
31  
Intel Confidential  
Working page only. Do not distribute.  
36  
37  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor and Intel® Xeon™  
Processor with 512-KB L2 Cache in INT-mPGA Package - Pinout Diagram - Top View  
4-11  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor and Intel® Xeon™  
Processor with 512-KB L2 Cache in INT-mPGA Package - Pinout Diagram - Bottom  
View......................................................................................................................... 4-12  
Thermal and Mechanical Components - Exploded View.......................................... 5-1  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Thermal Design  
Power vs. Electrical Projections ................................................................................ 5-4  
Thermal Measurement Point for Processor TCASE.................................................. 5-5  
Stop Clock State Machine ......................................................................................... 6-2  
Logical Schematic of SMBus Circuitry..................................................................... 6-5  
Mechanical Representation of the Boxed Intel® Xeon™ Processor MP on the 0.13 Mi-  
cron Process Processor Passive Heatsink .................................................................. 7-1  
Boxed Processor Clip ................................................................................................ 7-3  
Boxed Processor Retention Mechanism.................................................................... 7-3  
Multiple View Space Requirements for Boxed Processors....................................... 7-4  
38  
39  
40  
41  
42  
43  
44  
45  
46  
32  
Intel Confidential  
Working page only. Do not distribute.  
1
Feature Table for Intel® Xeon™ Processor MP on the 0.13 Micron Process.................  
................................................................................................................................... 1-2  
Core Frequency to System Bus Multiplier Configuration......................................... 2-3  
System Bus Clock Frequency Select Truth Table for BSEL[1:0]............................. 2-3  
Voltage Identification Definition .............................................................................. 2-7  
System Bus Signal Groups........................................................................................ 2-9  
Processor Absolute Maximum Ratings ................................................................... 2-10  
Voltage and Current Specifications......................................................................... 2-11  
System Bus Differential BCLK DC Specifications................................................. 2-13  
AGTL+ Signal Group DC Specifications ............................................................... 2-14  
PWRGOOD and TAP Signal Group DC Specifications......................................... 2-14  
Asynchronous GTL+ Signal Group DC Specifications .......................................... 2-15  
SMBus Signal Group DC Specifications ................................................................ 2-15  
BSEL[1:0] and VID[4:0] DC Specifications........................................................... 2-15  
AGTL+ Bus Voltage Definitions ............................................................................ 2-17  
System Bus Differential Clock AC Specifications................................................. 2-18  
System Bus Common Clock AC Specifications ..................................................... 2-18  
System Bus Source Synchronous AC Specifications.............................................. 2-19  
Miscellaneous Signals AC Specifications............................................................... 2-20  
System Bus AC Specifications (Reset Conditions)................................................. 2-20  
TAP Signal Group AC Specifications..................................................................... 2-21  
SMBus Signal Group AC Specifications ................................................................ 2-21  
BCLK Signal Quality Specifications......................................................................... 3-1  
Ringback Specifications for AGTL+ and Asynchronous GTL+ Buffers.................. 3-2  
Ringback Specifications for PWRGOOD Input and TAP Buffers ........................... 3-3  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Source Synchro-  
nous AGTL+ Signal Group (Data) Overshoot/Undershoot Tolerance ...........................  
................................................................................................................................... 3-8  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Common Clock  
AGTL+ Signal Group Overshoot/Undershoot Tolerance ......................................... 3-8  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Common Clock  
AGTL+ Signal Group Overshoot/Undershoot Tolerance ......................................... 3-9  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Asynchronous  
GTL+ and TAP Signal Groups Overshoot/Undershoot Tolerance ........................... 3-9  
Dimensions for the Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor  
Package...................................................................................................................... 4-4  
Package Dynamic and Static Load Specifications .................................................... 4-8  
Processor Mass.......................................................................................................... 4-8  
Processor Material Properties.................................................................................... 4-9  
Intel® Xeon™ Processor MP on the 0.13 Micron Process Processor Thermal Design  
Power......................................................................................................................... 5-3  
Power-On Configuration Option Pins ....................................................................... 6-1  
Processor Information ROM Format......................................................................... 6-6  
Read Byte SMBus Packet.......................................................................................... 6-8  
Write Byte SMBus Packet......................................................................................... 6-8  
Write Byte SMBus Packet......................................................................................... 6-9  
Read Byte SMBus Packet.......................................................................................... 6-9  
Send Byte SMBus Packet........................................................................................ 6-10  
Receive Byte SMBus Packet................................................................................... 6-10  
ARA SMBus Packet................................................................................................ 6-10  
SMBus Thermal Sensor Command Byte Bit Assignments..................................... 6-10  
Thermal Reference Register Values........................................................................ 6-11  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
33  
Intel Confidential  
Working page only. Do not distribute.  
45  
46  
47  
48  
SMBus Thermal Sensor Status Register.................................................................. 6-12  
SMBus Thermal Sensor Configuration Register..................................................... 6-12  
SMBus Thermal Sensor Conversion Rate Registers ............................................... 6-13  
Thermal Sensor SMBus Addressing on the Intel® Xeon™ Processor MP on the 0.13  
Micron Process Processor........................................................................................ 6-15  
Memory Device SMBus Addressing on the Intel® Xeon™ Processor MP on the 0.13  
Micron Process Processor........................................................................................ 6-15  
Pin Listing by Pin Name for the INT-mPGA Package.............................................. 9-1  
Pin Listing by Pin Number for the INT-mPGA Package ........................................ 9-10  
Signal Definitions.................................................................................................... 9-19  
49  
50  
51  
52  
34  
Intel Confidential  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY