QX6850 [INTEL]

on 65 nm Process in the 775-land LGA Package supporting Intel 64 architecture; 在775-土地LGA封装支持英特尔64位架构的65纳米工艺
QX6850
型号: QX6850
厂家: INTEL    INTEL
描述:

on 65 nm Process in the 775-land LGA Package supporting Intel 64 architecture
在775-土地LGA封装支持英特尔64位架构的65纳米工艺

文件: 总98页 (文件大小:1450K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
Intel Core™2 Extreme Quad-Core  
Δ
Processor QX6000 Sequence and  
®
Intel Core™2 Quad Processor  
Δ
Q6000 Sequence  
Datasheet  
—on 65 nm Process in the 775-land LGA Package supporting  
±
Intel® 64architecture and Intel® Virtualization Technology  
August 2007  
Document Number: 315592-005  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR  
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS  
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING  
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,  
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT  
INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
®
®
The Intel Core™2 Extreme quad-core processor QX6000 sequence and Intel Core™2 quad processor Q6000 sequence may contain design defects or  
errors known as errata which may cause the product to deviate from published specifications.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Δ
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different  
processor families. See http://www.intel.com/products/processor_number for details. Over time processor numbers will increment based on changes in  
clock, speed, cache, FSB, or other features, and increments are not intended to represent proportional or quantitative increases in any particular  
feature. Current roadmap processor number progression is not necessarily representative of future roadmaps. See www.intel.com/products/  
processor_number for details.  
®
Intel 64 requires a computer system with a processor, chipset, BIOS, operating system, device drivers, and applications enabled for Intel 64. Processor  
will not operate (including 32-bit operation) without an Intel 64-enabled BIOS. Performance will vary depending on your hardware and software  
configurations. See http://www.intel.com/technology/intel64/index.htm for more information including details on which processors support Intel 64, or  
consult with your system vendor for more information.  
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system. Check  
with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.  
±
®
®
Intel Virtualization Technology requires a computer system with an enabled Intel processor, BIOS, virtual machine monitor (VMM) and, for some  
uses, certain platform software enabled for it. Functionality, performance or other benefits will vary depending on hardware and software configurations  
and may require a BIOS update. Software applications may not be compatible with all operating systems. Please check with your application vendor.  
Intel, Pentium, Itanium, Xeon, Intel SpeedStep, andand the Intel logo are trademarks of Intel Corporation in the U.S. and other countries..  
*Other names and brands may be claimed as the property of others.  
Copyright © 2006–2007 Intel Corporation.  
2
Datasheet  
Contents  
1
Introduction..............................................................................................................9  
1.1  
Terminology .......................................................................................................9  
1.1.1 Processor Terminology............................................................................ 10  
References ....................................................................................................... 11  
1.2  
2
Electrical Specifications........................................................................................... 13  
2.1  
2.2  
Power and Ground Lands.................................................................................... 13  
Decoupling Guidelines........................................................................................ 13  
2.2.1 VCC Decoupling ..................................................................................... 13  
2.2.2 VTT Decoupling...................................................................................... 13  
2.2.3 FSB Decoupling...................................................................................... 14  
Voltage Identification......................................................................................... 14  
Reserved, Unused, and TESTHI Signals ................................................................ 16  
Voltage and Current Specification........................................................................ 17  
2.5.1 Absolute Maximum and Minimum Ratings .................................................. 17  
2.5.2 DC Voltage and Current Specification........................................................ 18  
2.5.3 VCC Overshoot ...................................................................................... 21  
2.5.4 Die Voltage Validation............................................................................. 21  
Signaling Specifications...................................................................................... 22  
2.6.1 FSB Signal Groups.................................................................................. 22  
2.6.2 CMOS and Open Drain Signals ................................................................. 24  
2.6.3 Processor DC Specifications ..................................................................... 24  
2.6.3.1 GTL+ Front Side Bus Specifications ............................................. 26  
Clock Specifications........................................................................................... 26  
2.7.1 Front Side Bus Clock (BCLK[1:0]) and Processor Clocking............................ 26  
2.7.2 FSB Frequency Select Signals (BSEL[2:0])................................................. 27  
2.7.3 Phase Lock Loop (PLL) and Filter .............................................................. 27  
2.7.4 BCLK[1:0] Specifications......................................................................... 28  
2.3  
2.4  
2.5  
2.6  
2.7  
3
Package Mechanical Specifications .......................................................................... 31  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Package Mechanical Drawing............................................................................... 31  
Processor Component Keep-Out Zones................................................................. 35  
Package Loading Specifications ........................................................................... 35  
Package Handling Guidelines............................................................................... 35  
Package Insertion Specifications.......................................................................... 36  
Processor Mass Specification............................................................................... 36  
Processor Materials............................................................................................ 36  
Processor Markings............................................................................................ 36  
Processor Land Coordinates................................................................................ 38  
4
5
Land Listing and Signal Descriptions ....................................................................... 39  
4.1  
4.2  
Processor Land Assignments............................................................................... 39  
Alphabetical Signals Reference............................................................................ 62  
Thermal Specifications and Design Considerations .................................................. 71  
5.1  
Processor Thermal Specifications......................................................................... 71  
5.1.1 Thermal Specifications ............................................................................ 71  
5.1.2 Thermal Metrology ................................................................................. 76  
Processor Thermal Features................................................................................ 76  
5.2.1 Thermal Monitor..................................................................................... 76  
5.2.2 Thermal Monitor 2.................................................................................. 77  
5.2.3 On-Demand Mode .................................................................................. 78  
5.2.4 PROCHOT# Signal.................................................................................. 79  
5.2  
Datasheet  
3
5.2.5 THERMTRIP# Signal................................................................................79  
Platform Environment Control Interface (PECI) ......................................................80  
5.3.1 Introduction...........................................................................................80  
5.3.1.1 TCONTROL and TCC Activation on PECI-Based Systems.....................80  
5.3.2 PECI Specifications .................................................................................81  
5.3.2.1 PECI Device Address..................................................................81  
5.3.2.2 PECI Command Support.............................................................81  
5.3.2.3 PECI Fault Handling Requirements...............................................81  
5.3.2.4 PECI GetTemp0() and GetTemp1() Error Code Support...................81  
5.3  
6
Features ..................................................................................................................83  
6.1  
6.2  
Power-On Configuration Options ..........................................................................83  
Clock Control and Low Power States.....................................................................83  
6.2.1 Normal State .........................................................................................84  
6.2.2 HALT and Extended HALT Powerdown States ..............................................84  
6.2.2.1 HALT Powerdown State ..............................................................84  
6.2.2.2 Extended HALT Powerdown State ................................................85  
6.2.3 Stop Grant State ....................................................................................85  
6.2.4 Extended HALT Snoop or HALT Snoop State,  
Stop Grant Snoop State...........................................................................86  
6.2.4.1 HALT Snoop State, Stop Grant Snoop State ..................................86  
6.2.4.2 Extended HALT Snoop State .......................................................86  
7
Boxed Processor Specifications................................................................................87  
7.1  
Mechanical Specifications....................................................................................88  
7.1.1 Boxed Processor Cooling Solution Dimensions.............................................88  
7.1.2 Boxed Processor Fan Heatsink Weight .......................................................90  
7.1.3 Boxed Processor Retention Mechanism and Heatsink Attach Clip Assembly .....90  
Electrical Requirements ......................................................................................90  
7.2.1 Fan Heatsink Power Supply ......................................................................90  
Thermal Specifications........................................................................................92  
7.3.1 Boxed Processor Cooling Requirements......................................................92  
7.3.2 Fan Speed Control Operation (Intel® Core™2 Extreme processors only).........94  
7.3.3 Fan Speed Control Operation (Intel® Core™2 Quad processor) .....................94  
7.2  
7.3  
8
Debug Tools Specifications ......................................................................................97  
8.1  
Logic Analyzer Interface (LAI) .............................................................................97  
8.1.1 Mechanical Considerations .......................................................................97  
8.1.2 Electrical Considerations..........................................................................97  
4
Datasheet  
Figures  
1
2
3
4
5
6
7
8
9
VCC Static and Transient Tolerance............................................................................. 20  
VCC Overshoot Example Waveform ............................................................................. 21  
Differential Clock Waveform ...................................................................................... 29  
Differential Clock Crosspoint Specification ................................................................... 30  
Differential Measurements......................................................................................... 30  
Processor Package Assembly Sketch........................................................................... 31  
Processor Package Drawing Sheet 1 of 3 ..................................................................... 32  
Processor Package Drawing Sheet 2 of 3 ..................................................................... 33  
Processor Package Drawing Sheet 3 of 3 ..................................................................... 34  
10 Processor Top-Side Markings Example for 1066 MHz Processors ..................................... 36  
11 Processor Top-Side Markings Example for 1333 MHz Processors ..................................... 37  
12 Processor Land Coordinates and Quadrants (Top View) ................................................. 38  
13 land-out Diagram (Top View – Left Side)..................................................................... 40  
14 land-out Diagram (Top View – Right Side)................................................................... 41  
15 Thermal Profile for 130 W Processors.......................................................................... 73  
16 Thermal Profile for 105 W Processors.......................................................................... 74  
17 Thermal Profile 95 W Processors ................................................................................ 75  
18 Case Temperature (TC) Measurement Location ............................................................ 76  
19 Thermal Monitor 2 Frequency and Voltage Ordering...................................................... 78  
20 Conceptual Fan Control on PECI-Based Platforms ......................................................... 80  
21 Processor Low Power State Machine ........................................................................... 84  
22 Mechanical Representation of the Boxed Processor ....................................................... 87  
23 Space Requirements for the Boxed Processor (Side View).............................................. 88  
24 Space Requirements for the Boxed Processor (Top View)............................................... 89  
25 Space Requirements for the Boxed Processor (Overall View).......................................... 89  
26 Boxed Processor Fan Heatsink Power Cable Connector Description.................................. 91  
27 Baseboard Power Header Placement Relative to Processor Socket................................... 92  
28 Boxed Processor Fan Heatsink Airspace Keepout Requirements (Side 1 View)................... 93  
29 Boxed Processor Fan Heatsink Airspace Keepout Requirements (Side 2 View)................... 93  
30 Boxed Processor Fan Heatsink Set Points..................................................................... 95  
Datasheet  
5
Tables  
1
2
3
4
5
6
7
8
9
References ..............................................................................................................11  
Voltage Identification Definition..................................................................................15  
Absolute Maximum and Minimum Ratings ....................................................................17  
Voltage and Current Specifications..............................................................................18  
VCC Static and Transient Tolerance .............................................................................19  
VCC Overshoot Specifications......................................................................................21  
FSB Signal Groups....................................................................................................22  
Signal Characteristics................................................................................................23  
Signal Reference Voltages .........................................................................................23  
10 GTL+ Signal Group DC Specifications ..........................................................................24  
11 Open Drain and TAP Output Signal Group DC Specifications ...........................................24  
12 CMOS Signal Group DC Specifications..........................................................................25  
13 PECI DC Electrical Limits ...........................................................................................25  
14 GTL+ Bus Voltage Definitions.....................................................................................26  
15 Core Frequency to FSB Multiplier Configuration.............................................................26  
16 BSEL[2:0] Frequency Table for BCLK[1:0] ...................................................................27  
17 Front Side Bus Differential BCLK Specifications.............................................................28  
18 FSB Differential Clock Specifications (1066 MHz FSB) ....................................................28  
19 FSB Differential Clock Specifications (1333 MHz FSB) ....................................................29  
20 Processor Loading Specifications.................................................................................35  
21 Package Handling Guidelines......................................................................................35  
22 Processor Materials...................................................................................................36  
23 Alphabetical Land Assignments...................................................................................42  
24 Numerical Land Assignment.......................................................................................52  
25 Signal Description.....................................................................................................62  
26 Processor Thermal Specifications................................................................................72  
27 Thermal Profile for 130 W Processors ..........................................................................73  
28 Thermal Profile for 105 W Processors ..........................................................................74  
29 Thermal Profile 95 W Processors.................................................................................75  
30 GetTemp0() and GetTemp1() Error Codes....................................................................81  
31 Power-On Configuration Option Signals .......................................................................83  
32 Fan Heatsink Power and Signal Specifications...............................................................91  
33 Fan Heatsink Power and Signal Specifications...............................................................95  
6
Datasheet  
Revision History  
Revision  
Number  
Description  
Date  
-001  
Initial release  
November 2006  
®
Added specifications for the Intel Core™2 Quad Processor Q6600  
Updated Table 8, “Signal Characteristics.  
-002  
January 2007  
July 2007  
Updated VTT_SEL description in Table 24.  
Updated Table 29, “Fan Heatsink Power and Signal Specifications.  
®
®
Added specifications for the Intel Core™2 Quad Processor Q6700 and Intel Core™2  
Extreme quad-core processor QX6850  
-003  
®
-003  
-004  
-005  
Added Intel Core™2 Quad Processor Q6600 for 775_VR_CONFIG_05A  
July 2007  
®
Added Intel Core™2 Extreme quad-core processor QX6850  
July 2007  
®
Added Intel Core™2 Extreme quad-core processor QX6800  
August 2007  
§
Datasheet  
7
Intel® Core™2 Extreme Quad-Core Processor QX6000 and  
Intel® Core™2 Quad Processor Q6000 Sequence Features  
• Available at 3.00 GHz (Intel® Core™2  
• Binary compatible with applications running  
on previous members of the Intel  
microprocessor line  
Extreme Quad-Core Processor QX6850 only)  
• Available at 2.66 GHz (Intel® Core™2  
Extreme Quad-Core Processor QX6700 and  
Intel® Core™2 Quad Processor Q6700 only)  
• Advance Dynamic Execution  
• Very deep out-of-order execution  
• Enhanced branch prediction  
• Optimized for 32-bit applications running on  
advanced 32-bit operating systems  
• Available at 2.40 GHz (Intel® Core™2 Quad  
Processor Q6600 only)  
• Available at 2.93 GHz (Intel® Core™2  
Extreme Quad-Core Processor QX6800 only)  
• Four 32-KB Level 1 data caches  
• Enhanced Intel Speedstep® Technology  
• Supports Intel® 64Φ architecture  
• Supports Intel® Virtualization Technology  
Two 4 MB Level 2 caches  
• Intel® Advanced Digital Media Boost  
• Enhanced floating point and multimedia unit  
for enhanced video, audio, encryption, and  
3D performance  
• Power Management capabilities  
• System Management mode  
• Multiple low-power states  
• Supports Execute Disable Bit capability  
• FSB frequency at 1066 MHz (Intel® Core™2  
Extreme Quad-Core Processor QX6700,  
QX6800 and Intel® Core™2 Quad Processor  
Q6700 and Q6600 only)  
• FSB frequency at 1333 MHz (Intel® Core™2  
Extreme Quad-Core Processor QX6850 only)  
• 8-way cache associativity provides improved  
cache hit rate on load/store operations  
• 775-land Package  
The Intel Core™2 Extreme quad-core processor QX6000 sequence and Intel® Core™2 quad processor  
Q6000 sequence deliver Intel's advanced, powerful processors for desktop PCs. The processor is  
designed to deliver performance across applications and usages where end-users can truly appreciate  
and experience the performance. These applications include Internet audio and streaming video,  
image processing, video content creation, speech, 3D, CAD, games, multimedia, and multitasking  
user environments.  
Intel® 64Φ architecture enables the processor to execute operating systems and applications written  
to take advantage of the Intel 64 architecture. The processor, supporting Enhanced Intel Speedstep®  
technology, allows tradeoffs to be made between performance and power consumption.  
The Core™2 Extreme quad-core processor QX6000 sequence and Intel® Core™2 quad processor  
Q6000 sequence also include the Execute Disable Bit capability. This feature, combined with a  
supported operating system, allows memory to be marked as executable or non-executable.  
The Core™2 Extreme quad-core processor QX6000 sequence and Intel® Core™2 quad processor  
Q6000 sequence support Intel® Virtualization Technology. Virtualization Technology provides silicon-  
based functionality that works together with compatible Virtual Machine Monitor (VMM) software to  
improve on software-only solutions.  
§ §  
8
Datasheet  
Introduction  
1
Introduction  
The Intel® Core™2 Extreme quad-core processor QX6000 sequence and Intel® Core™2  
quad processor Q6000 sequence are the first desktop quad-core processors that  
combine the performance and power efficiencies of four low-power microarchitecture  
cores to enable a new level of multi-tasking, multi-media, and gaming experiences.  
They are 64-bit processors that maintain compatibility with IA-32 software.  
The processors use Flip-Chip Land Grid Array (FC-LGA6) package technology, and plug  
into a 775-land surface mount, Land Grid Array (LGA) socket, referred to as the  
LGA775 socket. The processors are based on 65 nm process technology.  
Note:  
Note:  
In this document the Intel® Core™2 Extreme quad-core processor QX6000 sequence  
and Intel® Core™2 quad processor Q6000 sequence are referred to simply as  
“processor.”  
In this document the Intel® Core™2 quad-core processor Q6000 sequence refers to the  
Intel® Core™2 quad processor Q6600 and Q6700. The Intel® Core™2 Extreme quad-  
core processor QX6000 sequence refers to the Intel® Core™2 Extreme quad-core  
processors QX6700, QX6800, and QX6850.  
The processor supports all the existing Streaming SIMD Extensions 2 (SSE2) and  
Streaming SIMD Extensions 3 (SSE3). The processor supports several advanced  
technologies including Execute Disable Bit, Intel® 64 architecture, and Intel®  
Virtualization Technology (VT).  
The processor's front side bus (FSB) uses a split-transaction, deferred reply protocol  
like the Intel® Pentium® 4 processor. The FSB uses Source-Synchronous Transfer (SST)  
of address and data to improve performance by transferring data four times per bus  
clock (4X data transfer rate, as in AGP 4X). Along with the 4X data bus, the address  
bus can deliver addresses two times per bus clock and is referred to as a "double-  
clocked" or 2X address bus. Working together, the 4X data bus and 2X address bus  
provide a data bus bandwidth of up to 10.7 GB/s.  
The processor uses some of the infrastructure already enabled by the  
775_VR_CONFIG_05 platforms including heatsink, heatsink retention mechanism, and  
socket. Supported platforms may need to be refreshed to ensure the correct voltage  
regulation (VRD11) and PECI support is enabled. Manufacturability is a high priority;  
hence, mechanical assembly may be completed from the top of the baseboard and  
should not require any special tooling.  
The processor includes an address bus power-down capability that removes power from  
the address and data signals when the FSB is not in use. This feature is always enabled  
on the processor.  
1.1  
Terminology  
A ‘#’ symbol after a signal name refers to an active low signal, indicating a signal is in  
the active state when driven to a low level. For example, when RESET# is low, a reset  
has been requested. Conversely, when NMI is high, a nonmaskable interrupt has  
occurred. In the case of signals where the name does not imply an active state but  
describes part of a binary sequence (such as address or data), the ‘#’ symbol implies  
that the signal is inverted. For example, D[3:0] = ‘HLHL’ refers to a hex ‘A, and  
D[3:0]# = ‘LHLH’ also refers to a hex ‘A’ (H= High logic level, L= Low logic level).  
Datasheet  
9
Introduction  
“Front Side Bus” refers to the interface between the processor and system core logic  
(a.k.a. the chipset components). The FSB is a multiprocessing interface to processors,  
memory, and I/O.  
1.1.1  
Processor Terminology  
Commonly used terms are explained here for clarification:  
Intel® Core™2 Extreme quad-core processor QX6000 sequence — Quad  
core processor in the FC-LGA6 package with a 2x4 MB L2 cache.  
Intel® Core™2 quad processor Q6000 sequence — Quad core processor in the  
FC-LGA6 package with a 2x4 MB L2 cache.  
Processor — For this document, the term processor is the generic form of the  
Intel® Core™2 Extreme quad-core processor QX6000 sequence and Intel® Core™2  
quad processor Q6000 sequence. The processor is a single package that contains  
one or more execution units.  
Keep-out zone — The area on or near the processor that system design can not  
utilize.  
Processor core — Processor core die with integrated L2 cache.  
LGA775 socket — The processor mates with the system board through a surface  
mount, 775-land, LGA socket.  
Integrated heat spreader (IHS) —A component of the processor package used  
to enhance the thermal performance of the package. Component thermal solutions  
interface with the processor at the IHS surface.  
Retention mechanism (RM) — Since the LGA775 socket does not include any  
mechanical features for heatsink attach, a retention mechanism is required.  
Component thermal solutions should attach to the processor via a retention  
mechanism that is independent of the socket.  
FSB (Front Side Bus) — The electrical interface that connects the processor to  
the chipset. Also referred to as the processor system bus or the system bus. All  
memory and I/O transactions as well as interrupt messages pass between the  
processor and chipset over the FSB.  
Storage conditions — Refers to a non-operational state. The processor may be  
installed in a platform, in a tray, or loose. Processors may be sealed in packaging or  
exposed to free air. Under these conditions, processor lands should not be  
connected to any supply voltages, have any I/Os biased, or receive any clocks.  
Upon exposure to “free air”(i.e., unsealed packaging or a device removed from  
packaging material) the processor must be handled in accordance with moisture  
sensitivity labeling (MSL) as indicated on the packaging material.  
Functional operation — Refers to normal operating conditions in which all  
processor specifications, including DC, AC, system bus, signal quality, mechanical  
and thermal are satisfied.  
Execute Disable Bit — The Execute Disable bit allows memory to be marked as  
executable or non-executable, when combined with a supporting operating system.  
If code attempts to run in non-executable memory the processor raises an error to  
the operating system. This feature can prevent some classes of viruses or worms  
that exploit buffer over run vulnerabilities and can thus help improve the overall  
security of the system. See the Intel® Architecture Software Developer's Manual  
for more detailed information.  
Intel® 64 Architecture — An enhancement to Intel's IA-32 architecture, allowing  
the processor to execute operating systems and applications written to take  
advantage of the Intel 64 architecture. Further details on Intel 64 architecture and  
programming model can be found in the Intel Extended Memory 64 Technology  
Software Developer Guide at http://www.intel.com/technology/intel64/index.htm.  
10  
Datasheet  
Introduction  
Enhanced Intel Technology SpeedStep® Technology — Enhanced Intel  
Technology SpeedStep® Technology allows trade-offs to be made between  
performance and power consumptions, based on processor utilization. This may  
lower average power consumption (in conjunction with OS support).  
Intel® Virtualization Technology (Intel® VT) — Intel Virtualization Technology  
provides silicon-based functionality that works together with compatible Virtual  
Machine Monitor (VMM) software to improve upon software-only solutions. Because  
this virtualization hardware provides a new architecture upon which the operating  
system can run directly, it removes the need for binary translation. Thus, it helps  
eliminate associated performance overhead and vastly simplifies the design of the  
VMM, in turn allowing VMMs to be written to common standards and to be more  
robust. See the Intel® Virtualization Technology Specification for the IA-32 Intel®  
Architecture for more details.  
1.2  
References  
Material and concepts available in the following documents may be beneficial when  
reading this document.  
Table 1.  
References  
Document  
Location  
Intel® Core™2 Extreme Quad-Core Processor QX6000 Sequence http://www.intel.com/design/  
and Intel® Core™2 Quad Processor Q6000 Sequence  
Specification Update  
processor/specupdt/  
315593.htm  
Intel® Core™2 Extreme Quad-Core Processor and Intel®  
Core™2 Quad Processor Thermal and Mechanical Design  
Guidelines  
http://www.intel.com/design/  
processor/designex/  
315594.htm  
http://www.intel.com/design/  
processor/applnots/  
313214.htm  
Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery  
Design Guidelines For Desktop LGA775 Socket  
Balanced Technology Extended (BTX) System Design Guide  
www.formfactors.org  
http://www.intel.com/  
technology/computing/  
vptech/index.htm  
Intel® Virtualization Technology Specification for the IA-32  
Intel® Architecture  
http://intel.com/design/  
Pentium4/guides/  
302666.htm  
LGA775 Socket Mechanical Design Guide  
Intel® 64 and IA-32 Architecture Software Developer’s Manuals  
Volume 1: Basic Architecture  
http://www.intel.com/  
products/processor/manuals/  
http://www.intel.com/  
products/processor/manuals/  
Volume 2A: Instruction Set Reference, A-M  
Volume 2B: Instruction Set Reference, N-Z  
Volume 3A: System Programming Guide  
Volume 3B: System Programming Guide  
http://www.intel.com/  
products/processor/manuals/  
http://www.intel.com/  
products/processor/manuals/  
http://www.intel.com/  
products/processor/manuals/  
§ §  
Datasheet  
11  
Introduction  
12  
Datasheet  
Electrical Specifications  
2
Electrical Specifications  
This chapter describes the electrical characteristics of the processor interfaces and  
signals. DC electrical characteristics are provided.  
2.1  
Power and Ground Lands  
The processor has VCC (power), VTT and VSS (ground) inputs for on-chip power  
distribution. All power lands must be connected to VCC, while all VSS lands must be  
connected to a system ground plane. The processor VCC lands must be supplied the  
voltage determined by the Voltage IDentification (VID) lands.  
The signals are denoted as VTT, which provide termination for the front side bus and  
power to the I/O buffers. A separate supply must be implemented for these lands, that  
meets the VTT specifications outlined in Table 4.  
2.2  
Decoupling Guidelines  
Due to its large number of transistors and high internal clock speeds, the processor is  
capable of generating large current swings. This may cause voltages on power planes  
to sag below their minimum specified values if bulk decoupling is not adequate. Larger  
bulk storage (CBULK), such as electrolytic or aluminum-polymer capacitors, supply  
current during longer lasting changes in current demand by the component, such as  
coming out of an idle condition. Similarly, they act as a storage well for current when  
entering an idle condition from a running condition. The motherboard must be designed  
to ensure that the voltage provided to the processor remains within the specifications  
listed in Table 4. Failure to do so can result in timing violations or reduced lifetime of  
the component.  
2.2.1  
2.2.2  
V
Decoupling  
CC  
VCC regulator solutions need to provide sufficient decoupling capacitance to satisfy the  
processor voltage specifications. This includes bulk capacitance with low effective series  
resistance (ESR) to keep the voltage rail within specifications during large swings in  
load current. In addition, ceramic decoupling capacitors are required to filter high  
frequency content generated by the front side bus and processor activity. Consult the  
Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For  
Desktop LGA775 Socket.  
V Decoupling  
TT  
Decoupling must be provided on the motherboard. Decoupling solutions must be sized  
to meet the expected load. To insure compliance with the specifications, various factors  
associated with the power delivery solution must be considered including regulator  
type, power plane and trace sizing, and component placement. A conservative  
decoupling solution would consist of a combination of low ESR bulk capacitors and high  
frequency ceramic capacitors.  
Datasheet  
13  
Electrical Specifications  
2.2.3  
FSB Decoupling  
The processor integrates signal termination on the die. In addition, some of the high  
frequency capacitance required for the FSB is included on the processor package.  
However, additional high frequency capacitance must be added to the motherboard to  
properly decouple the return currents from the front side bus. Bulk decoupling must  
also be provided by the motherboard for proper [A]GTL+ bus operation.  
2.3  
Voltage Identification  
The Voltage Identification (VID) specification for the processor is defined by the Voltage  
Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For Desktop  
LGA775 Socket. The voltage set by the VID signals is the reference VR output voltage  
to be delivered to the processor VCC pins (see Chapter 2.5.3 for VCC overshoot  
specifications). Refer to Table 12 for the DC specifications for these signals. Voltages  
for each processor frequency is provided in Table 4.  
Individual processor VID values may be calibrated during manufacturing such that two  
devices at the same core speed may have different default VID settings. This is  
reflected by the VID Range values provided in Table 4. Refer to the Intel® Core™2  
Extreme Quad-Core Processor QX6000 Sequence and Intel® Core™2 Quad Processor  
Q6000 Sequence Specification Update for further details on specific valid core  
frequency and VID values of the processor. Note that this differs from the VID  
employed by the processor during a power management event (Thermal Monitor 2,  
Enhanced Intel SpeedStep® Technology, or Extended HALT State).  
The processor uses six voltage identification signals, VID[7:0], to support automatic  
selection of power supply voltages. Table 2 specifies the voltage level corresponding to  
the state of VID[7:0]. A ‘1’ in this table refers to a high voltage level and a ‘0’ refers to  
a low voltage level. If the processor socket is empty (VID[7:0] = 11111111), or the  
voltage regulation circuit cannot supply the voltage that is requested, it must disable  
itself. The Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design  
Guidelines For Desktop LGA775 Socket defines VID [7:0], VID7 and VID0 are not used  
on the processor; VID0 and VID7 are strapped to VSS on the processor package. VID0  
and VID7 must be connected to the VR controller for compatibility with future  
processors.  
The processor provides the ability to operate while transitioning to an adjacent VID and  
its associated processor core voltage (VCC). This will represent a DC shift in the load  
line. It should be noted that a low-to-high or high-to-low voltage state change may  
result in as many VID transitions as necessary to reach the target core voltage.  
Transitions above the specified VID are not permitted. Table 4 includes VID step sizes  
and DC shift ranges. Minimum and maximum voltages must be maintained as shown in  
Table 5 and Figure 1 as measured across the VCC_SENSE and VSS_SENSE lands.  
The VRM or VRD utilized must be capable of regulating its output to the value defined  
by the new VID. DC specifications for dynamic VID transitions are included in Table 4  
and Table 5. Refer to the Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery  
Design Guidelines For Desktop LGA775 Socket for further details.  
14  
Datasheet  
Electrical Specifications  
Table 2.  
Voltage Identification Definition  
VID6 VID5 VID4 VID3 VID2 VID1 VCC_MAX  
VID6 VID5 VID4 VID3 VID2 VID1 VCC_MAX  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.8500  
0.8625  
0.8750  
0.8875  
0.9000  
0.9125  
0.9250  
0.9375  
0.9500  
0.9625  
0.9750  
0.9875  
1.0000  
1.0125  
1.0250  
1.0375  
1.0500  
1.0625  
1.0750  
1.0875  
1.1000  
1.1125  
1.1250  
1.1375  
1.1500  
1.1625  
1.1750  
1.1875  
1.2000  
1.2125  
1.2250  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1.2375  
1.2500  
1.2625  
1.2750  
1.2875  
1.3000  
1.3125  
1.3250  
1.3375  
1.3500  
1.3625  
1.3750  
1.3875  
1.4000  
1.4125  
1.4250  
1.4375  
1.4500  
1.4625  
1.4750  
1.4875  
1.5000  
1.5125  
1.5250  
1.5375  
1.5500  
1.5625  
1.5750  
1.5875  
1.6000  
OFF  
Datasheet  
15  
Electrical Specifications  
2.4  
Reserved, Unused, and TESTHI Signals  
All RESERVED lands must remain unconnected. Connection of these lands to VCC, VSS,  
VTT, or to any other signal (including each other) can result in component malfunction  
or incompatibility with future processors. See Chapter 4 for a land listing of the  
processor and the location of all RESERVED lands.  
In a system level design, on-die termination has been included by the processor to  
allow signals to be terminated within the processor silicon. Most unused GTL+ inputs  
should be left as no connects as GTL+ termination is provided on the processor silicon.  
However, see Table 7 for details on GTL+ signals that do not include on-die termination.  
Unused active high inputs, should be connected through a resistor to ground (VSS).  
Unused outputs can be left unconnected, however this may interfere with some TAP  
functions, complicate debug probing, and prevent boundary scan testing. A resistor  
must be used when tying bidirectional signals to power or ground. When tying any  
signal to power or ground, a resistor will also allow for system testability. Resistor  
values should be within ± 20% of the impedance of the motherboard trace for front  
side bus signals. For unused GTL+ input or I/O signals, use pull-up resistors of the  
same value as the on-die termination resistors (RTT). For details see Table 14.  
TAP and CMOS signals do not include on-die termination. Inputs and utilized outputs  
must be terminated on the motherboard. Unused outputs may be terminated on the  
motherboard or left unconnected. Note that leaving unused outputs unterminated may  
interfere with some TAP functions, complicate debug probing, and prevent boundary  
scan testing.  
All TESTHI[13,11:10,7:0] lands should be individually connected to VTT via a pull-up  
resistor which matches the nominal trace impedance.  
The TESTHI signals may use individual pull-up resistors or be grouped together as  
detailed below. A matched resistor must be used for each group:  
• TESTHI[1:0]  
• TESTHI[7:2]  
• TESTHI10 – cannot be grouped with other TESTHI signals  
• TESTHI11 – cannot be grouped with other TESTHI signals  
• TESTHI13 – cannot be grouped with other TESTHI signals  
However, use of boundary scan test will not be functional if these lands are connected  
together. For optimum noise margin, all pull-up resistor values used for  
TESTHI[13,11:10,7:0] lands should have a resistance value within ±20% of the  
impedance of the board transmission line traces. For example, if the nominal trace  
impedance is 50 Ω, then a value between 40 Ω and 60 Ω should be used.  
16  
Datasheet  
Electrical Specifications  
2.5  
Voltage and Current Specification  
2.5.1  
Absolute Maximum and Minimum Ratings  
Table 3 specifies absolute maximum and minimum ratings only and lie outside the  
functional limits of the processor. Within functional operation limits, functionality and  
long-term reliability can be expected.  
At conditions outside functional operation condition limits, but within absolute  
maximum and minimum ratings, neither functionality nor long-term reliability can be  
expected. If a device is returned to conditions within functional operation limits after  
having been subjected to conditions outside these limits, but within the absolute  
maximum and minimum ratings, the device may be functional, but with its lifetime  
degraded depending on exposure to conditions exceeding the functional operation  
condition limits.  
At conditions exceeding absolute maximum and minimum ratings, neither functionality  
nor long-term reliability can be expected. Moreover, if a device is subjected to these  
conditions for any length of time then, when returned to conditions within the  
functional operating condition limits, it will either not function, or its reliability will be  
severely degraded.  
Although the processor contains protective circuitry to resist damage from static  
electric discharge, precautions should always be taken to avoid high static voltages or  
electric fields.  
Table 3.  
Absolute Maximum and Minimum Ratings  
Symbol  
VCC  
Parameter  
Min  
Max  
Unit Notes1,2  
Core voltage with respect to VSS  
–0.3  
1.55  
V
V
-
-
FSB termination voltage with  
respect to VSS  
VTT  
TC  
–0.3  
1.55  
See  
Chapter 5  
See  
Chapter 5  
Processor case temperature  
°C  
°C  
-
3, 4,  
5
TSTORAGE  
Processor storage temperature  
–40  
85  
NOTES:  
1. For functional operation, all processor electrical, signal quality, mechanical and thermal  
specifications must be satisfied.  
2. Excessive overshoot or undershoot on any signal will likely result in permanent damage to the  
processor.  
3. Storage temperature is applicable to storage conditions only. In this scenario, the processor  
must not receive a clock, and no lands can be connected to a voltage bias. Storage within these  
limits will not affect the long-term reliability of the device. For functional operation, Refer to the  
processor case temperature specifications.  
4. This rating applies to the processor and does not include any tray or packaging.  
5. Failure to adhere to this specification can affect the long term reliability of the processor.  
Datasheet  
17  
Electrical Specifications  
2.5.2  
DC Voltage and Current Specification  
Table 4.  
Voltage and Current Specifications  
2
Symbol  
VID Range  
Parameter  
Min  
Typ  
Max  
Unit Notes1,  
3
VID  
0.8500  
1.5  
V
Processor Number  
VCC for  
775_VR_CONFIG_05  
QX6850  
QX6800  
QX6700  
Q6700  
3.00 GHz  
2.93 GHz  
2.66 GHz  
2.66 GHz  
2.40 GHz  
Refer to Table 5 and  
Figure 1  
4, 5,  
6
VCC  
V
V
Q6600  
VCC_BOOT  
VCCPLL  
Default VCC voltage for initial power up  
PLL VCC  
1.10  
1.50  
- 5%  
+ 5%  
Processor Number  
ICC for  
775_VR_CONFIG_05B  
QX6850  
QX6800  
QX6700  
Q66007  
3.00 GHz  
125  
125  
125  
115  
8
A
2.93 GHz  
2.66 GHz  
ICC  
2.40 GHz  
Processor Number  
ICC for  
775_VR_CONFIG_05A  
8
Q6700  
Q66009  
2.66 GHz  
2.40 GHz  
115  
115  
10  
ITCC  
VTT  
ICC TCC active  
ICC  
A
V
FSB termination voltage  
(DC + AC specifications)  
11, 12  
1.14  
1.20  
1.26  
VTT_OUT_LEFT  
and  
DC Current that may be drawn from  
580  
mA  
A
VTT_OUT_RIGHT VTT_OUT_LEFT and VTT_OUT_RIGHT per pin  
ICC  
ICC for VTT supply before VCC stable  
8.0  
7.0  
13  
ITT  
ICC for VTT supply after VCC stable  
ICC_VCCPLL  
ICC_GTLREF  
NOTES:  
ICC for PLL land  
ICC for GTLREF  
130  
200  
mA  
-—  
μA  
1. Unless otherwise noted, all specifications in this table are based on estimates and simulations or empirical data.  
These specifications will be updated with characterized data from silicon measurements at a later date.  
2. Adherence to the voltage specifications for the processor are required to ensure reliable processor operation.  
3. Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and can not be altered. Individual maximum VID values are calibrated during manufacturing such  
that two processors at the same frequency may have different settings within the VID range. Note this differs  
from the VID employed by the processor during a power management event (Thermal Monitor 2, Enhanced Intel  
SpeedStep® Technology, or Extended HALT State).  
4. These voltages are targets only. A variable voltage source should exist on systems in the event that a different  
voltage is required. See Section 2.3 and Table 2 for more information.  
5. The voltage specification requirements are measured across VCC_SENSE and VSS_SENSE lands at the socket  
with a 100 MHz bandwidth oscilloscope, 1.5 pF maximum probe capacitance, and 1 MΩ minimum impedance.  
The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the  
system is not coupled into the oscilloscope probe.  
6. Refer to Table 5 and Figure 1 for the minimum, typical, and maximum VCC allowed for a given current. The  
processor should not be subjected to any VCC and ICC combination wherein VCC exceeds VCC_MAX for a given  
current.  
7. These processors have CPUID = 06F7h  
18  
Datasheet  
Electrical Specifications  
8. ICC_MAX specification is based on the VCC_MAX loadline. Refer to Figure 1 for details.  
9. These Processors have CPUID = 06FBh  
10.The maximum instantaneous current the processor will draw while the thermal control circuit is active (as  
indicated by the assertion of PROCHOT#) is the same as the maximum ICC for the processor.  
11.VTT must be provided via a separate voltage source and not be connected to VCC. This specification is measured  
at the land.  
12.Baseboard bandwidth is limited to 20 MHz.  
13.This is maximum total current drawn from VTT plane by only the processor. This specification does not include  
the current coming from RTT (through the signal line). Refer to the Voltage Regulator-Down (VRD) 11.0 Processor  
Power Delivery Design Guidelines For Desktop LGA775 Socket to determine the total ITT drawn by the system.  
This parameter is based on design characterization and is not tested.  
Table 5.  
VCC Static and Transient Tolerance  
Voltage Deviation from VID Setting (V)1, 2, 3, 4  
ICC (A)  
Maximum Voltage  
Typical Voltage  
Minimum Voltage  
1.30 mΩ  
1.38 mΩ  
1.45 mΩ  
0
5
0.000  
-0.007  
-0.013  
-0.020  
-0.026  
-0.033  
-0.039  
-0.046  
-0.052  
-0.059  
-0.065  
-0.072  
-0.078  
-0.085  
-0.091  
-0.098  
-0.101  
-0.111  
-0.117  
-0.124  
-0.130  
-0.137  
-0.143  
-0.150  
-0.156  
-0.163  
-0.019  
-0.026  
-0.033  
-0.040  
-0.047  
-0.053  
-0.060  
-0.067  
-0.074  
-0.081  
-0.088  
-0.095  
-0.102  
-0.108  
-0.115  
-0.122  
-0.126  
-0.136  
-0.143  
-0.150  
-0.157  
-0.163  
-0.170  
-0.177  
-0.184  
-0.191  
-0.038  
-0.045  
-0.053  
-0.060  
-0.067  
-0.074  
-0.082  
-0.089  
-0.096  
-0.103  
-0.111  
-0.118  
-0.125  
-0.132  
-0.140  
-0.147  
-0.151  
-0.161  
-0.169  
-0.176  
-0.183  
-0.190  
-0.198  
-0.205  
-0.212  
-0.219  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
78  
85  
90  
95  
100  
105  
110  
115  
120  
125  
NOTES:  
1. The loadline specification includes both static and transient limits except for overshoot allowed  
as shown in Section 2.5.3.  
2. This table is intended to aid in reading discrete points on Figure 1.  
3. The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE  
lands. Voltage regulation feedback for voltage regulator circuits must be taken from processor  
VCC and VSS lands. Refer to the Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design  
Guidelines For Desktop LGA775 Socket for socket loadline guidelines and VR implementation details.  
4. Adherence to this loadline specification is required to ensure reliable processor operation.  
Datasheet  
19  
Electrical Specifications  
Figure 1.  
VCC Static and Transient Tolerance  
Icc [A]  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
VID - 0.000  
VID - 0.013  
VID - 0.025  
VID - 0.038  
VID - 0.050  
VID - 0.063  
VID - 0.075  
VID - 0.088  
VID - 0.100  
VID - 0.113  
VID - 0.125  
VID - 0.138  
VID - 0.150  
VID - 0.163  
VID - 0.175  
VID - 0.188  
VID - 0.200  
VID - 0.213  
VID - 0.225  
Vcc Maximum  
Vcc Typical  
Vcc Minimum  
NOTES:  
1.  
The loadline specification includes both static and transient limits except for overshoot  
allowed as shown in Section 2.5.3.  
2.  
3.  
This loadline specification shows the deviation from the VID set point.  
The loadlines specify voltage limits at the die measured at the VCC_SENSE and  
VSS_SENSE lands. Voltage regulation feedback for voltage regulator circuits must be taken  
from processor VCC and VSS lands. Refer to the Voltage Regulator-Down (VRD) 11.0  
Processor Power Delivery Design Guidelines For Desktop LGA775 Socket for socket loadline  
guidelines and VR implementation details.  
20  
Datasheet  
Electrical Specifications  
2.5.3  
V
Overshoot  
CC  
The processor can tolerate short transient overshoot events where VCC exceeds the VID  
voltage when transitioning from a high to low current load condition. This overshoot  
cannot exceed VID + VOS_MAX (VOS_MAX is the maximum allowable overshoot voltage).  
The time duration of the overshoot event must not exceed TOS_MAX (TOS_MAX is the  
maximum allowable time duration above VID). These specifications apply to the  
processor die voltage as measured across the VCC_SENSE and VSS_SENSE lands.  
Table 6.  
VCC Overshoot Specifications  
Symbol  
Parameter  
Min  
Max  
Unit Figure Notes  
1
VOS_MAX Magnitude of VCC overshoot above VID  
50  
mV  
2
2
Time duration of VCC overshoot above  
1
TOS_MAX  
VID  
25  
μs  
NOTES:  
1.  
Adherence to these specifications is required to ensure reliable processor operation.  
Figure 2.  
VCC Overshoot Example Waveform  
Example Overshoot Waveform  
VOS  
VID + 0.050  
VID - 0.000  
TOS  
0
5
10  
15  
20  
25  
Time [us]  
TOS: Overshoot time above VID  
OS: Overshoot above VID  
V
NOTES:  
1.  
2.  
V
OS is measured overshoot voltage.  
TOS is measured time duration above VID.  
2.5.4  
Die Voltage Validation  
Overshoot events on processor must meet the specifications in Table 6 when measured  
across the VCC_SENSE and VSS_SENSE lands. Overshoot events that are < 10 ns in  
duration may be ignored. These measurements of processor die level overshoot must  
be taken with a bandwidth limited oscilloscope set to a greater than or equal to  
100 MHz bandwidth limit.  
Datasheet  
21  
Electrical Specifications  
2.6  
Signaling Specifications  
Most processor Front Side Bus signals use Gunning Transceiver Logic (GTL+) signaling  
technology. This technology provides improved noise margins and reduced ringing  
through low voltage swings and controlled edge rates. Platforms implement a  
termination voltage level for GTL+ signals defined as VTT. Because platforms implement  
separate power planes for each processor (and chipset), separate VCC and VTT supplies  
are necessary. This configuration allows for improved noise tolerance as processor  
frequency increases. Speed enhancements to data and address busses have caused  
signal integrity considerations and platform design methods to become even more  
critical than with previous processor families.  
The GTL+ inputs require a reference voltage (GTLREF) which is used by the receivers to  
determine if a signal is a logical 0 or a logical 1. GTLREF must be generated on the  
motherboard (see Table 14 for GTLREF specifications). Termination resistors (RTT) for  
GTL+ signals are provided on the processor silicon and are terminated to VTT. Intel  
chipsets will also provide on-die termination, thus eliminating the need to terminate the  
bus on the motherboard for most GTL+ signals.  
2.6.1  
FSB Signal Groups  
The front side bus signals have been combined into groups by buffer type. GTL+ input  
signals have differential input buffers, which use GTLREF[3:0] as a reference level. In  
this document, the term “GTL+ Input” refers to the GTL+ input group as well as the  
GTL+ I/O group when receiving. Similarly, “GTL+ Output” refers to the GTL+ output  
group as well as the GTL+ I/O group when driving.  
With the implementation of a source synchronous data bus comes the need to specify  
two sets of timing parameters. One set is for common clock signals which are  
dependent upon the rising edge of BCLK0 (ADS#, HIT#, HITM#, etc.) and the second  
set is for the source synchronous signals which are relative to their respective strobe  
lines (data and address) as well as the rising edge of BCLK0. Asychronous signals are  
still present (A20M#, IGNNE#, etc.) and can become active at any time during the  
clock cycle. Table 7 identifies which signals are common clock, source synchronous,  
and asynchronous.  
Table 7.  
FSB Signal Groups (Sheet 1 of 2)  
Signal Group  
Type  
Signals1  
GTL+ Common  
Clock Input  
Synchronous to  
BCLK[1:0]  
BPRI#, DEFER#, RESET#, RS[2:0]#, TRDY#  
GTL+ Common  
Clock I/O  
Synchronous to  
BCLK[1:0]  
ADS#, BNR#, BPM[5:0]#, BPMb[3:0]#, BR0#, DBSY#,  
DRDY#, HIT#, HITM#, LOCK#  
Signals  
Associated Strobe  
REQ[4:0]#, A[16:3]#3  
A[35:17]#3  
ADSTB0#  
ADSTB1#  
GTL+ Source  
Synchronous I/O  
Synchronous to  
assoc. strobe  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBP0#, DSTBN0#  
DSTBP1#, DSTBN1#  
DSTBP2#, DSTBN2#  
DSTBP3#, DSTBN3#  
Synchronous to  
BCLK[1:0]  
GTL+ Strobes  
ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#  
22  
Datasheet  
Electrical Specifications  
Table 7.  
FSB Signal Groups (Sheet 2 of 2)  
Signal Group  
Type  
Signals1  
A20M#, IGNNE#, INIT#, LINT0/INTR, LINT1/NMI, SMI#,  
STPCLK#, PWRGOOD, TCK, TDI, TMS, TRST#, BSEL[2:],  
VID[7:0]  
CMOS  
Open Drain  
Output  
FERR#/PBE#, IERR#, THERMTRIP#, TDO  
Open Drain  
Input/Output  
PROCHOT#4  
FSB Clock  
Clock  
BCLK[1:0], ITP_CLK[1:0]2  
VCC, VTT, VCCA, VCCIOPLL, VCCPLL, VSS, VSSA,  
GTLREF[3:0], COMP[8,3:0], RESERVED,  
TESTHI[13,11:10,7:0], VCC_SENSE,  
Power/Other  
VCC_MB_REGULATION, VSS_SENSE,  
VSS_MB_REGULATION, DBR#2, VTT_OUT_LEFT,  
VTT_OUT_RIGHT, VTT_SEL, FCx, PECI, MSID[1:0]  
NOTES:  
1.  
2.  
Refer to Section 4.2 for signal descriptions.  
In processor systems where no debug port is implemented on the system board, these  
signals are used to support a debug port interposer. In systems with the debug port  
implemented on the system board, these signals are no connects.  
The value of these signals during the active-to-inactive edge of RESET# defines the  
processor configuration options. See Section 6.1 for details.  
3.  
4.  
PROCHOT# signal type is open drain output and CMOS input.  
.
Table 8.  
Signal Characteristics  
Signals with RTT  
Signals with No RTT  
A20M#, BCLK[1:0], BSEL[2:0],  
COMP[8,3:0], IGNNE#, INIT#, ITP_CLK[1:0],  
LINT0/INTR, LINT1/NMI, PWRGOOD,  
RESET#, SMI#, STPCLK#,  
TESTHI[13,11:10,7:0], VID[7:0],  
GTLREF[3:0], TCK, TDI, TMS, TRST#,  
MSID[1:0], VTT_SEL  
A[35:3]#, ADS#, ADSTB[1:0]#, BNR#, BPRI#,  
D[63:0]#, DBI[3:0]#, DBSY#, DEFER#,  
DRDY#, DSTBN[3:0]#, DSTBP[3:0]#, HIT#,  
HITM#, LOCK#, PROCHOT#, REQ[4:0]#,  
RS[2:0]#, TRDY#  
Open Drain Signals1  
THERMTRIP#, FERR#/PBE#, IERR#, BPM[5:0]#,  
BPMb[3:0]#, BR0#, TDO, FCx  
NOTES:  
1. Signals that do not have RTT, nor are actively driven to their high-voltage level.  
.
Table 9.  
Signal Reference Voltages  
GTLREF  
VTT/2  
BPM[5:0]#, BPMb[3:0]#, RESET#, BNR#, HIT#,  
HITM#, BR0#, A[35:0]#, ADS#, ADSTB[1:0]#,  
BPRI#, D[63:0]#, DBI[3:0]#, DBSY#, DEFER#,  
DRDY#, DSTBN[3:0]#, DSTBP[3:0]#, LOCK#,  
REQ[4:0]#, RS[2:0]#, TRDY#  
A20M#, LINT0/INTR, LINT1/NMI,  
IGNNE#, INIT#, PROCHOT#,  
PWRGOOD1, SMI#, STPCLK#, TCK1,  
TDI1, TMS1, TRST#1  
NOTES:  
1. These signals also have hysteresis added to the reference voltage. See Table 11 for more  
information.  
Datasheet  
23  
Electrical Specifications  
2.6.2  
CMOS and Open Drain Signals  
Legacy input signals such as A20M#, IGNNE#, INIT#, SMI#, and STPCLK# use CMOS  
input buffers. All of the CMOS and Open Drain signals are required to be asserted/  
deasserted for at least four BCLKs for the processor to recognize the proper signal  
state. See Section 2.6.3 for the DC specifications. See Section 6.2 for additional timing  
requirements for entering and leaving the low power states.  
2.6.3  
Processor DC Specifications  
The processor DC specifications in this section are defined at the processor core (pads)  
unless otherwise stated. All specifications apply to all frequencies and cache sizes  
unless otherwise stated.  
Table 10.  
GTL+ Signal Group DC Specifications  
Symbol  
Parameter  
Min  
Max  
Unit Notes1  
2,  
3
VIL  
VIH  
VOH  
Input Low Voltage  
Input High Voltage  
Output High Voltage  
-0.10  
GTLREF – 0.10  
VTT + 0.10  
VTT  
V
V
V
3, 4, 5  
3, 5  
GTLREF + 0.10  
VTT – 0.10  
VTT_MAX  
/
IOL  
ILI  
Output Low Current  
N/A  
N/A  
N/A  
10  
A
µA  
µA  
Ω
-
[(RTT_MIN)+(2*RON_MIN)]  
6
Input Leakage Current  
± 200  
Output Leakage  
Current  
7
ILO  
± 200  
13  
RON  
Buffer On Resistance  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. VIL is defined as the voltage range at a receiving agent that will be interpreted as a logical low  
value.  
3. The VTT referred to in these specifications is the instantaneous VTT.  
4. VIH is defined as the voltage range at a receiving agent that will be interpreted as a logical high  
value.  
5. VIH and VOH may experience excursions above VTT.  
6. Leakage to VSS with land held at VTT.  
7. Leakage to VTT with land held at 300 mV.  
Table 11.  
Open Drain and TAP Output Signal Group DC Specifications  
Symbol  
Parameter  
Output Low Voltage  
Min  
Max  
Unit Notes1  
VOL  
VOH  
0
VTT – 0.05  
16  
0.20  
VTT + 0.05  
50  
V
V
-
2
Output High Voltage  
Output Low Current  
Output Leakage Current  
3
4
IOL  
mA  
µA  
ILO  
N/A  
± 200  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. V  
is determined by the value of the external pull-up resister to V .  
OH  
TT  
3. Measured at VTT * 0.2.  
4. For Vin between 0 and VOH  
.
24  
Datasheet  
Electrical Specifications  
Table 12.  
CMOS Signal Group DC Specifications  
Symbol  
Parameter  
Input Low Voltage  
Min  
Max  
Unit Notes1  
2,  
3
VIL  
VIH  
-0.10  
VTT * 0.70  
-0.10  
VTT * 0.30  
VTT + 0.10  
VTT * 0.10  
VTT + 0.10  
4.70  
V
V
3, 4, 5  
3
Input High Voltage  
VOL  
Output Low Voltage  
Output High Voltage  
Output Low Current  
Output High Current  
Input Leakage Current  
Output Leakage Current  
V
3, 5,6  
3, 7  
3, 7  
8
VOH  
IOL  
0.90 * VTT  
1.70  
V
mA  
mA  
µA  
µA  
IOH  
1.70  
4.70  
ILI  
N/A  
± 100  
9
ILO  
N/A  
± 100  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. VIL is defined as the voltage range at a receiving agent that will be interpreted as a logical low  
value.  
3. The VTT referred to in these specifications refers to instantaneous VTT.  
4. VIH is defined as the voltage range at a receiving agent that will be interpreted as a logical high  
value.  
5. VIH and VOH may experience excursions above VTT.  
6. All outputs are open drain.  
7. IOL is measured at 0.10 * VTT. IOH is measured at 0.90 * VTT.  
8. Leakage to VSS with land held at VTT.  
9. Leakage to VTT with land held at 300 mV  
Table 13.  
PECI DC Electrical Limits  
Symbol  
Definition and Conditions  
Input Voltage Range  
Min  
Max  
Units Notes  
Vin  
-0.30  
VTT  
V
Vhysteresis Hysteresis  
0.1 * VTT  
V
V
V
3
Vn  
Vp  
Negative-edge threshold voltage  
0.275 * VTT  
0.550 * VTT  
0.500 * VTT  
0.725 * VTT  
Positive-edge threshold voltage  
High level output source  
(VOH = 0.75 * VTT)  
Isource  
-6.0  
0.5  
N/A  
1.0  
mA  
mA  
Low level output sink  
(VOL = 0.25 * VTT)  
Isink  
Ileak+  
Ileak-  
High impedance state leakage to VTT  
High impedance leakage to GND  
Bus capacitance  
N/A  
N/A  
50  
10  
10  
µA  
µA  
2
2
Cbus  
pF  
Vnoise  
Signal noise immunity above 300 MHz  
0.1 * VTT  
Vp-p  
NOTE:  
1.  
VTT supplies the PECI interface. PECI behavior does not affect VTT min/max specifications.  
Refer to Table 4 for VTT specifications.  
2.  
3.  
The leakage specification applies to powered devices on the PECI bus.  
The input buffers use a Schmitt-triggered input design for improved noise immunity.  
Datasheet  
25  
Electrical Specifications  
2.6.3.1  
GTL+ Front Side Bus Specifications  
In most cases, termination resistors are not required as these are integrated into the  
processor silicon. See Table 8 for details on which GTL+ signals do not include on-die  
termination.  
Valid high and low levels are determined by the input buffers by comparing with a  
reference voltage called GTLREF. Table 14 lists the GTLREF specifications. The GTL+  
reference voltage (GTLREF) should be generated on the system board using high  
precision voltage divider circuits.  
Table 14.  
GTL+ Bus Voltage Definitions  
Symbol  
Parameter  
Min  
Typ  
Max  
Units Notes1  
2
GTLREF_PU  
GTLREF_PD  
RTT  
GTLREF pull-up resistor  
124 * 0.99  
124  
210  
124 * 1.01  
210 * 1.01  
55  
Ω
2
GTLREF pull-down resistor 210 * 0.99  
Ω
3
Termination Resistance  
COMP Resistance  
45  
50  
Ω
4
COMP[3:0]  
COMP8  
49.40  
24.65  
49.90  
24.90  
50.40  
Ω
4
COMP Resistance  
25.15  
Ω
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. GTLREF is to be generated from VTT by a voltage divider of 1% resistors (one divider for each  
GTLEREF land). Refer to the applicable platform design guide for implementation details.  
3. RTT is the on-die termination resistance measured at VTT/3 of the GTL+ output driver.  
4. COMP resistance must be provided on the system board with 1% resistors. COMP[3:0] and  
COMP8 resistors are to VSS  
.
2.7  
Clock Specifications  
2.7.1  
Front Side Bus Clock (BCLK[1:0]) and Processor Clocking  
BCLK[1:0] directly controls the FSB interface speed as well as the core frequency of the  
processor. As in previous generation processors, the processor’s core frequency is a  
multiple of the BCLK[1:0] frequency. The processor bus ratio multiplier will be set at its  
default ratio during manufacturing.  
The processor uses a differential clocking implementation. For more information on the  
processor clocking, contact your Intel field representative.  
Table 15.  
Core Frequency to FSB Multiplier Configuration  
Multiplication of System  
Core Frequency to FSB  
Frequency  
Core Frequency  
(266 MHz BCLK/  
1066 MHz FSB)  
Core Frequency  
(333 MHz BCLK/  
1333 MHz FSB)  
2
Notes1,  
1/6  
1.60 GHz  
1.87 GHz  
2.13 GHz  
2.40 GHz  
2.66 GHz  
2.93 GHz  
3.20 GHz  
2.00 GHz  
2.33 GHz  
2.66 GHz  
3.00 GHz  
3.33 GHz  
3.66 GHz  
4.00 GHz  
-
-
-
-
-
-
-
1/7  
1/8  
1/9  
1/10  
1/11  
1/12  
NOTES:  
1. Individual processors operate only at or below the rated frequency.  
2. Listed frequencies are not necessarily committed production frequencies.  
26  
Datasheet  
Electrical Specifications  
2.7.2  
FSB Frequency Select Signals (BSEL[2:0])  
The BSEL[2:0] signals are used to select the frequency of the processor input clock  
(BCLK[1:0]). Table 16 defines the possible combinations of the signals and the  
frequency associated with each combination. The required frequency is determined by  
the processor, chipset, and clock synthesizer. All agents must operate at the same  
frequency.  
The Intel® Core™2 Extreme Quad-Core processor QX6800, QX6700 and Intel® Core™2  
Quad processors Q6600 and Q6700 operate at a 1066 MHz FSB frequency (selected by  
a 266 MHz BCLK[1:0] frequency). The Intel® Core™2 Extreme Quad-Core processor  
QX6850 operates at 1333 MHz FSB frequency (selected by a 333 MHz BCLK[1:0]  
frequency). Individual processors will only operate at their specified FSB frequency.  
Table 16.  
BSEL[2:0] Frequency Table for BCLK[1:0]  
BSEL2  
BSEL1  
BSEL0  
FSB Frequency  
L
L
L
L
L
H
H
L
266 MHz  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
333 MHz  
L
H
H
H
H
L
L
H
H
H
H
L
H
H
L
L
2.7.3  
Phase Lock Loop (PLL) and Filter  
An on-die PLL filter solution will be implemented on the processor. The VCCPLL input is  
used for the PLL. Refer to Table 4 for DC specifications.  
Datasheet  
27  
Electrical Specifications  
2.7.4  
BCLK[1:0] Specifications  
Table 17.  
Front Side Bus Differential BCLK Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit Figure Notes1  
2
VL  
Input Low Voltage  
Input High Voltage  
-0.30  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1.15  
0.550  
0.140  
1.4  
V
V
V
V
V
V
V
3
3
2
VH  
3, 4,  
5
VCROSS(abs) Absolute Crossing Point  
0.300  
N/A  
3, 4  
3, 4  
3
ΔVCROSS  
VOS  
Range of Crossing Points  
Overshoot  
-
6
N/A  
6
7
VUS  
Undershoot  
-0.300  
0.300  
N/A  
3
VSWING  
Differential Output Swing  
N/A  
5
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. "Steady state" voltage, not including overshoot or undershoot.  
3. Crossing voltage is defined as the instantaneous voltage value when the rising edge of BCLK0  
equals the falling edge of BCLK1.  
4. The crossing point must meet the absolute and relative crossing point specifications  
simultaneously  
5. VHavg is the statistical average of the VH measured by the oscilloscope.  
6. Overshoot is defined as the absolute value of the maximum voltage. Undershoot is defined as  
the absolute value of the minimum voltage.  
7. Measurement taken from differential waveform.  
.
Table 18.  
FSB Differential Clock Specifications (1066 MHz FSB)  
T# Parameter  
BCLK[1:0] Frequency  
Min  
Nom  
Max  
Unit  
Figure  
Notes1  
2
265.307  
3.74963  
266.746  
3.76922  
150  
MHz  
ns  
3
4
T1: BCLK[1:0] Period  
3
3
T2: BCLK[1:0] Period Stability  
ps  
T5: BCLK[1:0] Rise and Fall Slew  
Rate  
5
6
2.5  
8
V/nS  
%
5
T6: Slew Rate Matching  
N/A  
N/A  
20  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor core frequencies  
based on a 266 MHz BCLK[1:0].  
2. Duty Cycle (High time/Period) must be between 40 and 60%.  
3. The period specified here is the average period. A given period may vary from this specification  
as governed by the period stability specification (T2). Min period specification is based on  
-300 PPM deviation from a 3.75 ns period. Max period specification is based on the summation  
of +300 PPM deviation from a 3.75 ns period and a +0.5% maximum variance due to spread  
spectrum clocking.  
4. In this context, period stability is defined as the worst case timing difference between successive  
crossover voltages. In other words, the largest absolute difference between adjacent clock  
periods must be less than the period stability.  
5. Measurement taken from differential waveform.  
6. Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured  
using a ±75 mV window centered on the average cross point where Clock rising meets Clock#  
falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to  
use for the edge rate calculations.  
28  
Datasheet  
Electrical Specifications  
Table 19.  
FSB Differential Clock Specifications (1333 MHz FSB)  
T# Parameter  
BCLK[1:0] Frequency  
Min  
Nom  
Max  
Unit  
Figure  
Notes1  
2
331.635  
2.99972  
333.364  
3.01536  
150  
MHz  
ns  
-
3
T1: BCLK[1:0] Period  
3
3
5
4,  
5
T2: BCLK[1:0] Period Stability  
T5: BCLK[1:0] Rise and Fall Slew Rate  
T6: Slew Rate Matching  
NOTES:  
ps  
6
2.5  
8
V/nS  
%
7
N/A  
N/A  
20  
1. Unless otherwise noted, all specifications in this table apply to all processor core frequencies  
based on a 333 MHz BCLK[1:0].  
2. Duty Cycle (High time/Period) must be between 40 and 60%.  
3. The period specified here is the average period. A given period may vary from this specification  
as governed by the period stability specification (T2). Min period specification is based on -300  
PPM deviation from a 3 ns period. Max period specification is based on the summation of +300  
PPM deviation from a 3 ns period and a +0.5% maximum variance due to spread spectrum  
clocking.  
4. For the clock jitter specification, refer to the CK505 Clock Synthesizer/Driver Specification.  
5. In this context, period stability is defined as the worst case timing difference between successive  
crossover voltages. In other words, the largest absolute difference between adjacent clock  
periods must be less than the period stability.  
6. Measurement taken from differential waveform.  
7. Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured  
using a ±75 mV window centered on the average cross point where Clock rising meets Clock#  
falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to  
use for the edge rate calculations. Slew rate matching is a single ended measurement.  
Figure 3.  
Differential Clock Waveform  
CLK 0  
VCROSS Max  
500 mV  
VCROSS  
Median + 75 mV  
VCROSS  
VCROSS  
median  
median  
VCROSS  
VCROSS Min  
300 mV  
Median - 75 mV  
CLK 1  
High Time  
Low Time  
Period  
Datasheet  
29  
Electrical Specifications  
Figure 4.  
Differential Clock Crosspoint Specification  
650  
600  
550  
500  
550 mV  
550 + 0.5 (VHavg - 700)  
450  
400  
300 + 0.5 (VHavg - 700)  
350  
300  
250  
200  
300 mV  
660 670 680 690 700 710 720 730 740 750 760 770 780 790 800 810 820 830 840 850  
VHavg (mV)  
Figure 5.  
Differential Measurements  
Slew_rise  
Slew _fall  
+150 mV  
0.0 V  
+150 mV  
0.0V  
V_swing  
-150 mV  
-150 mV  
D iff  
§ §  
30  
Datasheet  
Package Mechanical Specifications  
3
Package Mechanical  
Specifications  
The processor is packaged in a Flip-Chip Land Grid Array (FC-LGA6) package that  
interfaces with the motherboard via an LGA775 socket. The package consists of a  
processor core mounted on a substrate land-carrier. An integrated heat spreader (IHS)  
is attached to the package substrate and core and serves as the mating surface for  
processor component thermal solutions, such as a heatsink. Figure 6 shows a sketch of  
the processor package components and how they are assembled together. Refer to the  
LGA775 Socket Mechanical Design Guide for complete details on the LGA775 socket.  
The package components shown in Figure 6 include the following:  
• Integrated Heat Spreader (IHS)  
• Thermal Interface Material (TIM)  
• Processor core (die)  
• Package substrate  
• Capacitors  
Figure 6.  
Processor Package Assembly Sketch  
Core (die)  
TIM  
IHS  
Substrate  
Capacitors  
LGA775 Socket  
System Board  
NOTE:  
1.  
Socket and motherboard are included for reference and are not part of processor package.  
3.1  
Package Mechanical Drawing  
The package mechanical drawings are shown in Figure 7 and Figure 8. The drawings  
include dimensions necessary to design a thermal solution for the processor. These  
dimensions include:  
• Package reference with tolerances (total height, length, width, etc.)  
• IHS parallelism and tilt  
• Land dimensions  
Top-side and back-side component keep-out dimensions  
• Reference datums  
• All drawing dimensions are in mm [in].  
• Guidelines on potential IHS flatness variation with socket load plate actuation and  
installation of the cooling solution is available in the processor Thermal and  
Mechanical Design Guidelines.  
Datasheet  
31  
Package Mechanical Specifications  
Figure 7.  
Processor Package Drawing Sheet 1 of 3  
32  
Datasheet  
Package Mechanical Specifications  
Figure 8.  
Processor Package Drawing Sheet 2 of 3  
Datasheet  
33  
Package Mechanical Specifications  
Figure 9.  
Processor Package Drawing Sheet 3 of 3  
34  
Datasheet  
Package Mechanical Specifications  
3.2  
3.3  
Processor Component Keep-Out Zones  
The processor may contain components on the substrate that define component keep-  
out zone requirements. A thermal and mechanical solution design must not intrude into  
the required keep-out zones. Decoupling capacitors are typically mounted to either the  
topside or land-side of the package substrate. See Figure 7 and Figure 8 for keep-out  
zones. The location and quantity of package capacitors may change due to  
manufacturing efficiencies but will remain within the component keep-in.  
Package Loading Specifications  
Table 20 provides dynamic and static load specifications for the processor package.  
These mechanical maximum load limits should not be exceeded during heatsink  
assembly, shipping conditions, or standard use condition. Also, any mechanical system  
or component testing should not exceed the maximum limits. The processor package  
substrate should not be used as a mechanical reference or load-bearing surface for  
thermal and mechanical solution. The minimum loading specification must be  
maintained by any thermal and mechanical solutions.  
.
Table 20.  
Processor Loading Specifications  
Parameter  
Minimum  
Maximum  
Notes  
1, 2,  
3
Static  
80 N [17 lbf]  
311 N [70 lbf]  
756 N [170 lbf]  
1, 3, 4  
Dynamic  
NOTES:  
1. These specifications apply to uniform compressive loading in a direction normal to the  
processor IHS.  
2. This is the maximum force that can be applied by a heatsink retention clip. The clip must also  
provide the minimum specified load on the processor package.  
3. These specifications are based on limited testing for design characterization. Loading limits are  
for the package only and do not include the limits of the processor socket.  
4. Dynamic loading is defined as an 11 ms duration average load superimposed on the static load  
requirement.  
3.4  
Package Handling Guidelines  
Table 21 includes a list of guidelines on package handling in terms of recommended  
maximum loading on the processor IHS relative to a fixed substrate. These package  
handling loads may be experienced during heatsink removal.  
Table 21.  
Package Handling Guidelines  
Parameter  
Maximum Recommended  
Notes  
1,  
2
Shear  
Tensile  
Torque  
311 N [70 lbf]  
111 N [25 lbf]  
2, 3  
2, 4  
3.95 N-m [35 lbf-in]  
NOTES:  
1. A shear load is defined as a load applied to the IHS in a direction parallel to the IHS top surface.  
2. These guidelines are based on limited testing for design characterization.  
3. A tensile load is defined as a pulling load applied to the IHS in a direction normal to the IHS  
surface.  
4. A torque load is defined as a twisting load applied to the IHS in an axis of rotation normal to the  
IHS top surface.  
Datasheet  
35  
Package Mechanical Specifications  
3.5  
3.6  
Package Insertion Specifications  
The processor can be inserted into and removed from a LGA775 socket 15 times. The  
socket should meet the LGA775 requirements detailed in the LGA775 Socket  
Mechanical Design Guide.  
Processor Mass Specification  
The typical mass of the processor is 21.5 g [0.76 oz]. This mass [weight] includes all  
the components that are included in the package.  
3.7  
Processor Materials  
Table 22 lists some of the package components and associated materials.  
Table 22.  
Processor Materials  
Component  
Material  
Integrated Heat Spreader  
(IHS)  
Nickel Plated Copper  
Substrate  
Fiber Reinforced Resin  
Gold Plated Copper  
Substrate Lands  
3.8  
Processor Markings  
Figure 10 shows the topside markings on the processor. This diagram is to aid in the  
identification of the processor.  
Figure 10.  
Processor Top-Side Markings Example for 1066 MHz Processors  
M
INTEL ©'05 QX6700  
INTEL® CORE™2 EXTREME  
SLxxx [COO]  
2.66GHZ/8M/1066/05B  
e4  
[FPO]  
ATPO  
S/N  
36  
Datasheet  
Package Mechanical Specifications  
Figure 11.  
Processor Top-Side Markings Example for 1333 MHz Processors  
M
INTEL ©'05 QX6850  
INTEL® CORE™2 EXTREME  
SLxxx [COO]  
3.00GHZ/8M/1333/05B  
e4  
[FPO]  
ATPO  
S/N  
Datasheet  
37  
Package Mechanical Specifications  
3.9  
Processor Land Coordinates  
Figure 12 shows the top view of the processor land coordinates. The coordinates are  
referred to throughout the document to identify processor lands.  
.
Figure 12.  
Processor Land Coordinates and Quadrants (Top View)  
VCC / VSS  
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9 8 7 6 5 4 3 2 1  
AN  
AM  
AL  
AK  
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
AN  
AM  
AL  
AK  
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
Socket 775  
Quadrants  
Top View  
W
V
W
Address/  
UV Common Clock/  
U
T
T
Async  
R
R
P
N
M
L
P
N
M
L
K
K
J
J
H
H
G
F
G
F
E
E
D
C
B
A
D
C
B
A
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9 8 7 6 5 4 3 2 1  
VTT / Clocks  
Data  
§ §  
38  
Datasheet  
Land Listing and Signal Descriptions  
4
Land Listing and Signal  
Descriptions  
This chapter provides the processor land assignment and signal descriptions.  
4.1  
Processor Land Assignments  
This section contains the land listings for the processor. The land-out footprint is shown  
in Figure 13 and Figure 14. These figures represent the land-out arranged by land  
number and they show the physical location of each signal on the package land array  
(top view). Table 23 is a listing of all processor lands ordered alphabetically by land  
(signal) name. Table 24 is also a listing of all processor lands; the ordering is by land  
number.  
Datasheet  
39  
Land Listing and Signal Descriptions  
Figure 13.  
land-out Diagram (Top View – Left Side)  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
AN  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
AM  
AL  
AK  
AJ  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
W
V
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
U
T
R
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
P
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
N
M
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
L
K
J
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
FC34  
VSS  
FC31  
FC33  
VCC  
H
BSEL1  
FC15  
FC32  
G
F
BSEL2 BSEL0 BCLK1 TESTHI4 TESTHI5 TESTHI3 TESTHI6 RESET# D47#  
D44# DSTBN2# DSTBP2# D35#  
D36#  
D37#  
VSS  
D32#  
VSS  
D31#  
D30#  
D33#  
VSS  
RSVD  
FC26  
VTT  
BCLK0 VTT_SEL TESTHI0 TESTHI2 TESTHI7 RSVD  
VSS  
D43#  
D42#  
VSS  
D41#  
VSS  
VSS  
D40#  
DBI2#  
D38#  
D39#  
VSS  
E
D
VSS  
VTT  
VSS  
VTT  
VSS  
VTT  
VSS  
VTT  
FC10  
VSS  
RSVD  
D45#  
D34#  
RSVD  
VTT  
VTT  
VCCPLL D46#  
D48#  
D49#  
VCCIO  
VSS  
C
VTT  
VTT  
VTT  
VTT  
VTT  
VSS  
D58#  
DBI3#  
VSS  
D54# DSTBP3#  
VSS  
D51#  
D53#  
PLL  
B
A
VTT  
VTT  
30  
VTT  
VTT  
29  
VTT  
VTT  
28  
VTT  
VTT  
27  
VTT  
VTT  
26  
VTT  
VTT  
25  
VSS  
FC23  
24  
VSSA  
VCCA  
23  
D63#  
D62#  
22  
D59#  
VSS  
21  
VSS  
RSVD  
20  
D60#  
D61#  
19  
D57#  
VSS  
18  
VSS  
D56#  
17  
D55#  
DSTBN3# VSS  
16 15  
40  
Datasheet  
Land Listing and Signal Descriptions  
Figure 14.  
land-out Diagram (Top View – Right Side)  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
VID_SEL  
ECT  
VSS_MB_  
REGULATION REGULATION SENSE  
VCC_MB_  
VSS_  
VCC_  
SENSE  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VID0  
VSS  
AN  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VID7  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
FC40  
VID3  
FC8  
VID6  
VID1  
VSS  
VID5  
VID4  
VSS  
VID2  
VSS  
FC25  
FC24  
BPM1#  
VSS  
AM  
AL  
AK  
AJ  
VRDSEL PROCHOT#  
VCC  
VSS  
ITP_CLK0  
ITP_CLK1  
VSS  
VSS  
VCC  
A35#  
VSS  
A34#  
A33#  
A31#  
A27#  
VSS  
BPM0#  
RSVD  
BPM3#  
BPM4#  
VSS  
VCC  
A32#  
A30#  
A28#  
RSVD  
VSS  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
VCC  
A29#  
VSS  
BPM5#  
VSS  
TRST#  
TDO  
VCC  
SKTOCC#  
VCC  
RSVD  
A22#  
VSS  
FC18  
TCK  
ADSTB1#  
A25#  
A24#  
FC36  
BPM2#  
DBR#  
IERR#  
TDI  
VCC  
RSVD  
A26#  
VSS  
TMS  
VCC  
A17#  
FC37  
VSS  
VTT_OUT_  
RIGHT  
VCC  
VSS  
VSS  
A23#  
A21#  
VSS  
FC39  
AA  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
A19#  
A18#  
VSS  
A10#  
VSS  
VSS  
A16#  
A14#  
A12#  
A9#  
A20#  
VSS  
FC17  
TESTHI1  
VSS  
VSS  
TDI_M  
RSVD  
FC29  
FC4  
FC0  
Y
W
V
MSID0  
MSID1  
TDO_M  
COMP1  
A15#  
A13#  
A11#  
FC30  
U
T
VSS  
FERR#/  
PBE#  
VCC  
VSS  
ADSTB0#  
VSS  
A8#  
VSS  
COMP3  
R
VCC  
VCC  
VSS  
VSS  
A4#  
RSVD  
RSVD  
VSS  
INIT#  
VSS  
SMI#  
TESTHI11  
P
VSS  
RSVD  
IGNNE# PWRGOOD  
N
THERMTRI  
VSS  
VCC  
VSS  
REQ2#  
A5#  
A7#  
STPCLK#  
M
P#  
VCC  
VCC  
VSS  
VSS  
VSS  
A3#  
A6#  
VSS  
TESTHI13  
VSS  
LINT1  
LINT0  
L
REQ3#  
VSS  
REQ0#  
A20M#  
K
VTT_OUT_  
LEFT  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VSS  
REQ4#  
VSS  
REQ1#  
TESTHI10  
PECI  
VSS  
FC22  
VSS  
FC3  
J
H
FC35  
GTLREF1  
COMP2  
GTLREF0  
BPMb0#  
GTLRE  
F2  
D29#  
D27#  
DSTBN1# DBI1#  
D16#  
BPRI#  
DEFER#  
RSVD  
BPMb2# BPMb3#  
G
D28#  
VSS  
VSS  
D26#  
D25#  
D24#  
DSTBP1#  
VSS  
D23#  
VSS  
VSS  
D21#  
D22#  
D18#  
D19#  
VSS  
D17#  
VSS  
VSS  
RSVD  
D20#  
FC21  
RSVD  
VSS  
RS1#  
FC20  
VSS  
VSS  
HITM#  
HIT#  
BR0#  
TRDY#  
VSS  
GTLREF3  
VSS  
F
E
D
C
RSVD  
D15#  
D12#  
ADS#  
RSVD  
DRDY#  
VSS  
D52#  
VSS  
D14#  
D11#  
VSS  
BPMb1# DSTBN0#  
VSS  
D3#  
D1#  
VSS  
LOCK#  
BNR#  
VSS  
D50#  
14  
COMP8  
COMP0  
13  
D13#  
VSS  
12  
VSS  
D9#  
11  
D10# DSTBP0#  
VSS  
DBI0#  
8
D6#  
D7#  
7
D5#  
VSS  
6
VSS  
D4#  
5
D0#  
D2#  
4
RS0#  
RS2#  
3
DBSY#  
VSS  
2
B
A
D8#  
VSS  
10  
9
1
Datasheet  
41  
Land Listing and Signal Descriptions  
Table 23.  
Land Name  
Alphabetical Land  
Assignments  
Table 23.  
Land Name  
Alphabetical Land  
Assignments  
Land  
Signal  
Land  
#
Signal  
Buffer Type  
Direction  
Direction  
#
Buffer Type  
A3#  
A4#  
L5  
P6  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
BNR#  
BPM0#  
BPM1#  
BPM2#  
BPM3#  
BPM4#  
BPM5#  
BPMb0#  
BPMb1#  
BPMb2#  
BPMb3#  
BPRI#  
BR0#  
BSEL0  
BSEL1  
BSEL2  
COMP0  
COMP1  
COMP2  
COMP3  
COMP8  
D0#  
C2  
Common Clock Input/Output  
AJ2 Common Clock Input/Output  
AJ1 Common Clock Input/Output  
AD2 Common Clock Input/Output  
AG2 Common Clock Input/Output  
AF2 Common Clock Input/Output  
AG3 Common Clock Input/Output  
A5#  
M5  
A6#  
L4  
A7#  
M4  
A8#  
R4  
A9#  
T5  
A10#  
A11#  
A12#  
A13#  
A14#  
A15#  
A16#  
A17#  
A18#  
A19#  
A20#  
A21#  
A22#  
A23#  
A24#  
A25#  
A26#  
A27#  
A28#  
A29#  
A30#  
A31#  
A32#  
A33#  
A34#  
A35#  
A20M#  
ADS#  
ADSTB0#  
ADSTB1#  
BCLK0  
BCLK1  
U6  
G1  
C9  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
T4  
U5  
G4  
U4  
G3  
V5  
G8  
Common Clock  
Input  
V4  
F3  
Common Clock Input/Output  
W5  
AB6  
W6  
Y6  
G29  
H30  
G30  
A13  
T1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
Output  
Output  
Input  
Y4  
Input  
AA4  
AD6  
AA5  
AB5  
AC5  
AB4  
AF5  
AF4  
AG6  
AG4  
AG5  
AH4  
AH5  
AJ5  
AJ6  
K3  
G2  
Input  
R1  
Input  
B13  
B4  
Input  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
D1#  
C5  
D2#  
A4  
D3#  
C6  
D4#  
A5  
D5#  
B6  
D6#  
B7  
D7#  
A7  
D8#  
A10  
A11  
B10  
C11  
D8  
D9#  
D10#  
D11#  
D12#  
D13#  
D14#  
D15#  
D16#  
D17#  
Asynch CMOS  
Input  
D2  
Common Clock Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
B12  
C12  
D11  
G9  
R6  
AD5  
F28  
G28  
Clock  
Clock  
Input  
Input  
F8  
42  
Datasheet  
Land Listing and Signal Descriptions  
Table 23.  
Land Name  
Alphabetical Land  
Assignments  
Table 23.  
Land Name  
Alphabetical Land  
Assignments  
Land  
Signal  
Land  
Signal  
Direction  
Direction  
#
Buffer Type  
#
Buffer Type  
D18#  
D19#  
D20#  
D21#  
D22#  
D23#  
D24#  
D25#  
D26#  
D27#  
D28#  
D29#  
D30#  
D31#  
D32#  
D33#  
D34#  
D35#  
D36#  
D37#  
D38#  
D39#  
D40#  
D41#  
D42#  
D43#  
D44#  
D45#  
D46#  
D47#  
D48#  
D49#  
D50#  
D51#  
D52#  
D53#  
D54#  
D55#  
D56#  
F9  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
D57#  
D58#  
B18  
C21  
B21  
B19  
A19  
A22  
B22  
A8  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
E9  
D7  
D59#  
E10  
D10  
F11  
F12  
D13  
E13  
G13  
F14  
G14  
F15  
G15  
G16  
E15  
E16  
G18  
G17  
F17  
F18  
E18  
E19  
F20  
E21  
F21  
G21  
E22  
D22  
G22  
D20  
D17  
A14  
C15  
C14  
B15  
C18  
B16  
A17  
D60#  
D61#  
D62#  
D63#  
DBI0#  
DBI1#  
DBI2#  
DBI3#  
DBR#  
G11  
D19  
C20  
AC2  
B2  
Power/Other  
Common Clock Input/Output  
Common Clock Input  
Output  
DBSY#  
DEFER#  
DRDY#  
DSTBN0#  
DSTBN1#  
DSTBN2#  
DSTBN3#  
DSTBP0#  
DSTBP1#  
DSTBP2#  
DSTBP3#  
FC0  
G7  
C1  
Common Clock Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
C8  
G12  
G20  
A16  
B9  
E12  
G19  
C17  
Y1  
FC3  
J2  
Power/Other  
FC10  
E24  
H29  
Y3  
Power/Other  
FC15  
Power/Other  
FC17  
Power/Other  
FC18  
AE3  
E5  
Power/Other  
FC20  
Power/Other  
FC21  
F6  
Power/Other  
FC22  
J3  
Power/Other  
FC23  
A24  
AK1  
AL1  
E29  
U2  
Power/Other  
FC24  
Power/Other  
FC25  
Power/Other  
FC26  
Power/Other  
FC29  
Power/Other  
FC30  
U3  
Power/Other  
FC31  
J16  
Power/Other  
Datasheet  
43  
Land Listing and Signal Descriptions  
Table 23.  
Land Name  
Alphabetical Land  
Assignments  
Table 23.  
Land Name  
Alphabetical Land  
Assignments  
Land  
Signal  
Land  
#
Signal  
Buffer Type  
Direction  
Direction  
#
Buffer Type  
FC32  
FC33  
H15  
H16  
J17  
H4  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch CMOS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESET#  
RS0#  
AH2  
D1  
FC34  
D14  
D16  
E23  
E6  
FC35  
FC36  
AD3  
AB3  
AA2  
T2  
FC37  
FC39  
E7  
FC4  
F23  
F29  
G6  
FC40  
AM6  
AK6  
R3  
FC8  
FERR#/PBE#  
GTLREF0  
GTLREF1  
GTLREF2  
GTLREF3  
HIT#  
Output  
Input  
Input  
Input  
Input  
N4  
H1  
N5  
H2  
P5  
G10  
F2  
V2  
G23 Common Clock  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
Input  
Input  
Output  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Input  
D4  
Common Clock Input/Output  
Common Clock Input/Output  
B3  
F5  
Common Clock  
Common Clock  
Common Clock  
Power/Other  
Asynch CMOS  
Asynch CMOS  
TAP  
HITM#  
IERR#  
E4  
RS1#  
AB2  
N2  
Asynch CMOS  
Asynch CMOS  
Asynch CMOS  
TAP  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
RS2#  
A3  
IGNNE#  
INIT#  
SKTOCC#  
SMI#  
AE8  
P2  
P3  
ITP_CLK0  
ITP_CLK1  
LINT0  
AK3  
AJ3  
K1  
STPCLK#  
TCK  
M3  
TAP  
AE1  
AD1  
W2  
AF1  
U1  
Asynch CMOS  
Asynch CMOS  
TDI  
TAP  
LINT1  
L1  
TDI_M  
Power/Other  
TAP  
LOCK#  
MSID0  
C3  
Common Clock Input/Output  
TDO  
W1  
V1  
Power/Other  
Power/Other  
Output  
Output  
TDO_M  
TAP  
MSID1  
TESTHI0  
TESTHI1  
TESTHI10  
TESTHI11  
TESTHI13  
TESTHI2  
TESTHI3  
TESTHI4  
TESTHI5  
TESTHI6  
TESTHI7  
THERMTRIP#  
TMS  
F26  
W3  
H5  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch CMOS  
TAP  
PECI  
G5  
Power/Other Input/Output  
Asynch CMOS Input/Output  
PROCHOT#  
PWRGOOD  
REQ0#  
REQ1#  
REQ2#  
REQ3#  
REQ4#  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
AL2  
N1  
Power/Other  
Input  
P1  
K4  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
L2  
J5  
F25  
G25  
G27  
G26  
G24  
F24  
M2  
M6  
K6  
J6  
A20  
AC4  
AE4  
AE6  
AC1  
44  
Datasheet  
Land Listing and Signal Descriptions  
Table 23.  
Land Name  
Alphabetical Land  
Assignments  
Table 23.  
Land Name  
Alphabetical Land  
Assignments  
Land  
Signal  
Land  
Signal  
Direction  
Direction  
#
Buffer Type  
#
Buffer Type  
TRDY#  
TRST#  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
E3  
Common Clock  
TAP  
Input  
Input  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AF22  
AF8  
Power/Other  
Power/Other  
Power/Other  
AG1  
AA8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AF9  
AB8  
AG11 Power/Other  
AG12 Power/Other  
AG14 Power/Other  
AG15 Power/Other  
AG18 Power/Other  
AG19 Power/Other  
AG21 Power/Other  
AG22 Power/Other  
AG25 Power/Other  
AG26 Power/Other  
AG27 Power/Other  
AG28 Power/Other  
AG29 Power/Other  
AG30 Power/Other  
AC23  
AC24  
AC25  
AC26  
AC27  
AC28  
AC29  
AC30  
AC8  
AD23 Power/Other  
AD24 Power/Other  
AD25 Power/Other  
AD26 Power/Other  
AD27 Power/Other  
AD28 Power/Other  
AD29 Power/Other  
AD30 Power/Other  
AG8  
AG9  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AH11  
AH12  
AH14  
AH15  
AH18  
AH19  
AH21  
AH22  
AH25  
AH26  
AH27  
AH28  
AH29  
AH30  
AH8  
AD8  
AE11  
AE12  
AE14  
AE15  
AE18  
AE19  
AE21  
AE22  
AE23  
AE9  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AF11  
AF12  
AF14  
AF15  
AF18  
AF19  
AF21  
AH9  
AJ11  
AJ12  
AJ14  
AJ15  
Datasheet  
45  
Land Listing and Signal Descriptions  
Table 23.  
Land Name  
Alphabetical Land  
Assignments  
Table 23.  
Land Name  
Alphabetical Land  
Assignments  
Land  
Signal  
Land  
#
Signal  
Buffer Type  
Direction  
Direction  
#
Buffer Type  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AJ18  
AJ19  
AJ21  
AJ22  
AJ25  
AJ26  
AJ8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AM19 Power/Other  
AM21 Power/Other  
AM22 Power/Other  
AM25 Power/Other  
AM26 Power/Other  
AM29 Power/Other  
AM30 Power/Other  
AJ9  
AM8  
AM9  
AN11  
AN12  
AN14  
AN15  
AN18  
AN19  
AN21  
AN22  
AN25  
AN26  
AN29  
AN30  
AN8  
AN9  
J10  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AK11  
AK12  
AK14  
AK15  
AK18  
AK19  
AK21  
AK22  
AK25  
AK26  
AK8  
AK9  
AL11  
AL12  
AL14  
AL15  
AL18  
AL19  
AL21  
AL22  
AL25  
AL26  
AL29  
AL30  
AL8  
J11  
J12  
J13  
J14  
J15  
J18  
J19  
J20  
J21  
AL9  
J22  
AM11 Power/Other  
AM12 Power/Other  
AM14 Power/Other  
AM15 Power/Other  
AM18 Power/Other  
J23  
J24  
J25  
J26  
J27  
46  
Datasheet  
Land Listing and Signal Descriptions  
Table 23.  
Land Name  
Alphabetical Land  
Assignments  
Table 23.  
Land Name  
Alphabetical Land  
Assignments  
Land  
Signal  
Land  
Signal  
Direction  
Direction  
#
Buffer Type  
#
Buffer Type  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
J28  
J29  
J30  
J8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
T27  
T28  
T29  
T30  
T8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
J9  
K23  
K24  
K25  
K26  
K27  
K28  
K29  
K30  
K8  
U23  
U24  
U25  
U26  
U27  
U28  
U29  
U30  
U8  
L8  
V8  
M23  
M24  
M25  
M26  
M27  
M28  
M29  
M30  
M8  
W23  
W24  
W25  
W26  
W27  
W28  
W29  
W30  
W8  
N23  
N24  
N25  
N26  
N27  
N28  
N29  
N30  
N8  
Y23  
Y24  
Y25  
Y26  
Y27  
Y28  
Y29  
Y30  
Y8  
P8  
VCC_MB_  
REGULATION  
AN5  
Power/Other  
Output  
Output  
R8  
VCC_SENSE  
VCCA  
AN3  
A23  
C23  
D23  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
T23  
T24  
T25  
T26  
VCCIOPLL  
VCCPLL  
Datasheet  
47  
Land Listing and Signal Descriptions  
Table 23.  
Land Name  
Alphabetical Land  
Assignments  
Table 23.  
Land Name  
Alphabetical Land  
Assignments  
Land  
Signal  
Land  
#
Signal  
Buffer Type  
Direction  
Direction  
#
Buffer Type  
VID_SELECT  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7  
VRDSEL  
VSS  
AN7  
AM2  
AL5  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AC6  
AC7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AD4  
AM3  
AL6  
AD7  
AE10  
AE13  
AE16  
AE17  
AE2  
AK4  
AL4  
AM5  
AM7  
AL3  
AE20  
AE24  
AE25  
AE26  
AE27  
AE28  
AE29  
AE30  
AE5  
A12  
VSS  
A15  
VSS  
A18  
VSS  
A2  
VSS  
A21  
VSS  
A6  
VSS  
A9  
VSS  
AA23  
AA24  
AA25  
AA26  
AA27  
AA28  
AA29  
AA3  
VSS  
AE7  
VSS  
AF10  
AF13  
AF16  
AF17  
AF20  
AF23  
AF24  
AF25  
AF26  
AF27  
AF28  
AF29  
AF3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AA30  
AA6  
VSS  
VSS  
AA7  
VSS  
AB1  
VSS  
AB23  
AB24  
AB25  
AB26  
AB27  
AB28  
AB29  
AB30  
AB7  
VSS  
VSS  
VSS  
AF30  
AF6  
VSS  
VSS  
AF7  
VSS  
AG10 Power/Other  
AG13 Power/Other  
AG16 Power/Other  
AG17 Power/Other  
VSS  
VSS  
VSS  
AC3  
48  
Datasheet  
Land Listing and Signal Descriptions  
Table 23.  
Land Name  
Alphabetical Land  
Assignments  
Table 23.  
Land Name  
Alphabetical Land  
Assignments  
Land  
Signal  
Land  
Signal  
Direction  
Direction  
#
Buffer Type  
#
Buffer Type  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AG20 Power/Other  
AG23 Power/Other  
AG24 Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AK30  
AK5  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AK7  
AG7  
AH1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AL10  
AL13  
AL16  
AL17  
AL20  
AL23  
AL24  
AL27  
AL28  
AL7  
AH10  
AH13  
AH16  
AH17  
AH20  
AH23  
AH24  
AH3  
AH6  
AM1  
AH7  
AM10 Power/Other  
AM13 Power/Other  
AM16 Power/Other  
AM17 Power/Other  
AM20 Power/Other  
AM23 Power/Other  
AM24 Power/Other  
AM27 Power/Other  
AM28 Power/Other  
AJ10  
AJ13  
AJ16  
AJ17  
AJ20  
AJ23  
AJ24  
AJ27  
AJ28  
AJ29  
AJ30  
AJ4  
AM4  
AN1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AN10  
AN13  
AN16  
AN17  
AN2  
AJ7  
AK10  
AK13  
AK16  
AK17  
AK2  
AN20  
AN23  
AN24  
AN27  
AN28  
B1  
AK20  
AK23  
AK24  
AK27  
AK28  
AK29  
B11  
B14  
B17  
Datasheet  
49  
Land Listing and Signal Descriptions  
Table 23.  
Land Name  
Alphabetical Land  
Assignments  
Table 23.  
Land Name  
Alphabetical Land  
Assignments  
Land  
Signal  
Land  
#
Signal  
Buffer Type  
Direction  
Direction  
#
Buffer Type  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
B20  
B24  
B5  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
H11  
H12  
H13  
H14  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
H25  
H26  
H27  
H28  
H3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
B8  
C10  
C13  
C16  
C19  
C22  
C24  
C4  
C7  
D12  
D15  
D18  
D21  
D24  
D3  
H6  
D5  
H7  
D6  
H8  
D9  
H9  
E11  
E14  
E17  
E2  
J4  
J7  
K2  
K5  
E20  
E25  
E26  
E27  
E28  
E8  
K7  
L23  
L24  
L25  
L26  
L27  
L28  
L29  
L3  
F10  
F13  
F16  
F19  
F22  
F4  
L30  
L6  
L7  
F7  
M1  
H10  
M7  
50  
Datasheet  
Land Listing and Signal Descriptions  
Table 23.  
Land Name  
Alphabetical Land  
Assignments  
Table 23.  
Land Name  
Alphabetical Land  
Assignments  
Land  
Signal  
Land  
Signal  
Direction  
Direction  
#
Buffer Type  
#
Buffer Type  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
N3  
N6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
W4  
W7  
Y2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
N7  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
P4  
Y5  
Y7  
VSS_MB_  
REGULATION  
AN6  
Power/Other  
Output  
Output  
VSS_SENSE  
VSSA  
VTT  
AN4  
B23  
A25  
A26  
A27  
A28  
A29  
A30  
B25  
B26  
B27  
B28  
B29  
B30  
C25  
C26  
C27  
C28  
C29  
C30  
D25  
D26  
D27  
D28  
D29  
D30  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VTT  
VTT  
VTT  
P7  
VTT  
R2  
VTT  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R5  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
R7  
VTT  
T3  
VTT  
T6  
VTT  
T7  
VTT  
U7  
VTT  
V23  
V24  
V25  
V26  
V27  
V28  
V29  
V3  
VTT  
VTT  
VTT  
VTT  
VTT_OUT_  
LEFT  
J1  
Power/Other  
Output  
VTT_OUT_  
RIGHT  
AA1  
F27  
Power/Other  
Power/Other  
Output  
Output  
VTT_SEL  
V30  
V6  
V7  
Datasheet  
51  
Land Listing and Signal Descriptions  
Table 24.  
Numerical Land  
Assignment  
Table 24.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
Type  
A2  
A3  
VSS  
RS2#  
D02#  
D04#  
VSS  
Power/Other  
B11  
B12  
VSS  
Power/Other  
Common Clock  
Input  
D13#  
Source Synch Input/Output  
A4  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
C1  
COMP8  
VSS  
Power/Other  
Power/Other  
Input  
A5  
A6  
D53#  
D55#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
A7  
D07#  
DBI0#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
A8  
A9  
D57#  
D60#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
B1  
D08#  
D09#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D59#  
D63#  
VSSA  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
COMP0  
D50#  
VSS  
Power/Other  
Input  
Source Synch Input/Output  
Power/Other  
Power/Other  
DSTBN3#  
D56#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VTT  
Power/Other  
VTT  
Power/Other  
VTT  
Power/Other  
D61#  
RESERVED  
VSS  
Source Synch Input/Output  
VTT  
Power/Other  
VTT  
Power/Other  
Power/Other  
VTT  
Power/Other  
D62#  
VCCA  
FC23  
VTT  
Source Synch Input/Output  
Power/Other  
DRDY#  
BNR#  
LOCK#  
VSS  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Power/Other  
C2  
Power/Other  
C3  
Power/Other  
C4  
VTT  
Power/Other  
C5  
D01#  
D03#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VTT  
Power/Other  
C6  
VTT  
Power/Other  
C7  
VTT  
Power/Other  
C8  
DSTBN0#  
Source Synch Input/Output  
VTT  
Power/Other  
Common  
Input/Output  
Clock  
C9  
BPMb1#  
VSS  
Power/Other  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
VSS  
D11#  
D14#  
VSS  
Power/Other  
B2  
DBSY#  
RS0#  
D00#  
VSS  
Common Clock Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
B3  
Common Clock  
Input  
B4  
Source Synch Input/Output  
Power/Other  
B5  
D52#  
D51#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
B6  
D05#  
D06#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
B7  
B8  
DSTBP3#  
D54#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
B9  
DSTBP0#  
D10#  
Source Synch Input/Output  
Source Synch Input/Output  
B10  
52  
Datasheet  
Land Listing and Signal Descriptions  
Table 24.  
Numerical Land  
Assignment  
Table 24.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
D1  
DBI3#  
D58#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D29  
D30  
E2  
VTT  
VTT  
VSS  
Power/Other  
Power/Other  
Power/Other  
VCCIOPLL  
VSS  
Power/Other  
E3  
TRDY#  
HITM#  
FC20  
Common Clock  
Input  
Power/Other  
E4  
Common Clock Input/Output  
Power/Other  
VTT  
Power/Other  
E5  
VTT  
Power/Other  
E6  
RESERVED  
RESERVED  
VSS  
VTT  
Power/Other  
E7  
VTT  
Power/Other  
E8  
Power/Other  
VTT  
Power/Other  
E9  
D19#  
D21#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VTT  
Power/Other  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
E27  
E28  
E29  
F2  
RESERVED  
ADS#  
VSS  
D2  
Common Clock Input/Output  
Power/Other  
DSTBP1#  
D26#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D3  
D4  
HIT#  
VSS  
Common Clock Input/Output  
Power/Other  
D5  
D33#  
D34#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D6  
VSS  
Power/Other  
D7  
D20#  
D12#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D8  
D39#  
D40#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D22#  
D15#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D42#  
D45#  
RESERVED  
FC10  
Source Synch Input/Output  
Source Synch Input/Output  
D25#  
RESERVED  
VSS  
Source Synch Input/Output  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
RESERVED  
D49#  
VSS  
VSS  
Source Synch Input/Output  
Power/Other  
VSS  
VSS  
DBI2#  
D48#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
FC26  
GTLREF3  
BR0#  
VSS  
Power/Other  
Input  
F3  
Common Clock Input/Output  
Power/Other  
D46#  
VCCPLL  
VSS  
Source Synch Input/Output  
Power/Other  
F4  
F5  
RS1#  
FC21  
Common Clock  
Power/Other  
Power/Other  
Input  
Power/Other  
F6  
VTT  
Power/Other  
F7  
VSS  
VTT  
Power/Other  
F8  
D17#  
D18#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VTT  
Power/Other  
F9  
VTT  
Power/Other  
F10  
Datasheet  
53  
Land Listing and Signal Descriptions  
Table 24.  
Numerical Land  
Assignment  
Table 24.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
Type  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
F25  
F26  
F27  
F28  
F29  
G1  
D23#  
D24#  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
G21  
G22  
D44#  
D47#  
Source Synch Input/Output  
Source Synch Input/Output  
VSS  
G23  
G24  
G25  
G26  
G27  
G28  
G29  
G30  
H1  
RESET#  
TESTHI6  
TESTHI3  
TESTHI5  
TESTHI4  
BCLK1  
BSEL0  
BSEL2  
GTLREF0  
GTLREF1  
VSS  
Common Clock  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Clock  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Output  
Input  
Input  
D28#  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D30#  
VSS  
D37#  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D38#  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
D41#  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D43#  
VSS  
H2  
RESERVED  
TESTHI7  
TESTHI2  
TESTHI0  
VTT_SEL  
BCLK0  
RESERVED  
BPMb0#  
COMP2  
BPMb3#  
BPMb2#  
PECI  
H3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Clock  
Input  
Input  
Input  
Output  
Input  
H4  
FC35  
TESTHI10  
VSS  
H5  
Input  
H6  
H7  
VSS  
H8  
VSS  
H9  
VSS  
Common Clock Input/Output  
Power/Other Input  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
H25  
H26  
H27  
H28  
H29  
VSS  
G2  
VSS  
G3  
Common Clock Input/Output  
Common Clock Input/Output  
Power/Other Input/Output  
VSS  
G4  
VSS  
G5  
VSS  
G6  
RESERVED  
DEFER#  
BPRI#  
D16#  
FC32  
FC33  
VSS  
G7  
Common Clock  
Common Clock  
Input  
Input  
G8  
G9  
Source Synch Input/Output  
Power/Other Input  
VSS  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
GTLREF2  
DBI1#  
DSTBN1#  
D27#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
VSS  
VSS  
VSS  
D29#  
VSS  
D31#  
VSS  
D32#  
VSS  
D36#  
VSS  
D35#  
VSS  
DSTBP2#  
DSTBN2#  
VSS  
FC15  
54  
Datasheet  
Land Listing and Signal Descriptions  
Table 24.  
Numerical Land  
Assignment  
Table 24.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
Type  
H30  
J1  
BSEL1  
Power/Other  
Output  
Output  
K23  
K24  
K25  
K26  
K27  
K28  
K29  
K30  
L1  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VTT_OUT_LEFT Power/Other  
J2  
FC3  
FC22  
VSS  
Power/Other  
Power/Other  
Power/Other  
J3  
J4  
J5  
REQ1#  
REQ4#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
J6  
J7  
J8  
VCC  
LINT1  
TESTHI13  
VSS  
Asynch CMOS  
Power/Other  
Power/Other  
Input  
Input  
J9  
VCC  
L2  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
J27  
J28  
J29  
J30  
K1  
VCC  
L3  
VCC  
L4  
A06#  
A03#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VCC  
L5  
VCC  
L6  
VCC  
L7  
VSS  
Power/Other  
VCC  
L8  
VCC  
Power/Other  
FC31  
FC34  
VCC  
L23  
L24  
L25  
L26  
L27  
L28  
L29  
L30  
M1  
VSS  
Power/Other  
VSS  
Power/Other  
VSS  
Power/Other  
VCC  
VSS  
Power/Other  
VCC  
VSS  
Power/Other  
VCC  
VSS  
Power/Other  
VCC  
VSS  
Power/Other  
VCC  
VSS  
Power/Other  
VCC  
VSS  
Power/Other  
VCC  
M2  
THERMTRIP# Asynch CMOS  
Output  
Input  
VCC  
M3  
STPCLK#  
A07#  
A05#  
REQ2#  
VSS  
Asynch CMOS  
VCC  
M4  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VCC  
M5  
VCC  
M6  
VCC  
M7  
LINT0  
VSS  
Asynch CMOS  
Power/Other  
Asynch CMOS  
Input  
M8  
VCC  
Power/Other  
K2  
M23  
M24  
M25  
M26  
M27  
M28  
M29  
VCC  
Power/Other  
K3  
A20M#  
REQ0#  
VSS  
Input  
VCC  
Power/Other  
K4  
Source Synch Input/Output  
Power/Other  
VCC  
Power/Other  
K5  
VCC  
Power/Other  
K6  
REQ3#  
VSS  
Source Synch Input/Output  
Power/Other  
VCC  
Power/Other  
K7  
VCC  
Power/Other  
K8  
VCC  
Power/Other  
VCC  
Power/Other  
Datasheet  
55  
Land Listing and Signal Descriptions  
Table 24.  
Numerical Land  
Assignment  
Table 24.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
Type  
M30  
N1  
VCC  
Power/Other  
R7  
VSS  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
PWRGOOD  
IGNNE#  
VSS  
Power/Other  
Asynch CMOS  
Power/Other  
Input  
Input  
R8  
N2  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
N3  
N4  
RESERVED  
RESERVED  
VSS  
N5  
N6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch CMOS  
Asynch CMOS  
Power/Other  
N7  
VSS  
N8  
VCC  
N23  
N24  
N25  
N26  
N27  
N28  
N29  
N30  
P1  
VCC  
VCC  
T1  
T2  
COMP1  
FC4  
Input  
VCC  
VCC  
T3  
VSS  
VCC  
T4  
A11#  
A09#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VCC  
T5  
VCC  
T6  
VCC  
T7  
VSS  
Power/Other  
TESTHI11  
SMI#  
INIT#  
VSS  
Input  
Input  
Input  
T8  
VCC  
Power/Other  
P2  
T23  
T24  
T25  
T26  
T27  
T28  
T29  
T30  
U1  
VCC  
Power/Other  
P3  
VCC  
Power/Other  
P4  
VCC  
Power/Other  
P5  
RESERVED  
A04#  
VSS  
VCC  
Power/Other  
P6  
Source Synch Input/Output  
Power/Other  
VCC  
Power/Other  
P7  
VCC  
Power/Other  
P8  
VCC  
Power/Other  
VCC  
Power/Other  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
R1  
VSS  
Power/Other  
VCC  
Power/Other  
VSS  
Power/Other  
TDO_M  
FC29  
FC30  
A13#  
A12#  
A10#  
VSS  
TAP  
Output  
VSS  
Power/Other  
U2  
Power/Other  
Power/Other  
VSS  
Power/Other  
U3  
VSS  
Power/Other  
U4  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VSS  
Power/Other  
U5  
VSS  
Power/Other  
U6  
VSS  
Power/Other  
U7  
COMP3  
VSS  
Power/Other  
Power/Other  
Input  
U8  
VCC  
Power/Other  
R2  
U23  
U24  
U25  
U26  
U27  
VCC  
Power/Other  
R3  
FERR#/PBE# Asynch CMOS  
Output  
VCC  
Power/Other  
R4  
A08#  
VSS  
Source Synch Input/Output  
Power/Other  
VCC  
Power/Other  
R5  
VCC  
Power/Other  
R6  
ADSTB0#  
Source Synch Input/Output  
VCC  
Power/Other  
56  
Datasheet  
Land Listing and Signal Descriptions  
Table 24.  
Numerical Land  
Assignment  
Table 24.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
Type  
U28  
U29  
U30  
V1  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Y5  
Y6  
VSS  
A19#  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
Power/Other  
Source Synch Input/Output  
Power/Other  
VCC  
Y7  
MSID1  
RESERVED  
VSS  
Output  
Y8  
Power/Other  
V2  
Y23  
Y24  
Y25  
Y26  
Y27  
Y28  
Y29  
Y30  
Power/Other  
V3  
Power/Other  
Power/Other  
V4  
A15#  
A14#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
Power/Other  
V5  
Power/Other  
V6  
Power/Other  
V7  
VSS  
Power/Other  
Power/Other  
V8  
VCC  
Power/Other  
Power/Other  
V23  
V24  
V25  
V26  
V27  
V28  
V29  
V30  
W1  
W2  
W3  
W4  
W5  
W6  
W7  
W8  
W23  
W24  
W25  
W26  
W27  
W28  
W29  
W30  
Y1  
VSS  
Power/Other  
Power/Other  
VSS  
Power/Other  
VTT_OUT_  
RIGHT  
AA1  
Power/Other  
Output  
VSS  
Power/Other  
AA2  
AA3  
FC39  
VSS  
Power/Other  
Power/Other  
VSS  
Power/Other  
VSS  
Power/Other  
AA4  
A21#  
A23#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VSS  
Power/Other  
AA5  
VSS  
Power/Other  
AA6  
VSS  
Power/Other  
AA7  
VSS  
Power/Other  
MSID0  
TDI_M  
TESTHI1  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
Input  
Input  
AA8  
VCC  
VSS  
Power/Other  
AA23  
AA24  
AA25  
AA26  
AA27  
AA28  
AA29  
AA30  
AB1  
Power/Other  
VSS  
Power/Other  
VSS  
Power/Other  
A16#  
A18#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VSS  
Power/Other  
VSS  
Power/Other  
VSS  
Power/Other  
VCC  
Power/Other  
VSS  
Power/Other  
VCC  
Power/Other  
VSS  
Power/Other  
VCC  
Power/Other  
VSS  
Power/Other  
VCC  
Power/Other  
AB2  
IERR#  
FC37  
A26#  
A24#  
A17#  
VSS  
Asynch CMOS  
Power/Other  
Output  
VCC  
Power/Other  
AB3  
VCC  
Power/Other  
AB4  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VCC  
Power/Other  
AB5  
VCC  
Power/Other  
AB6  
VCC  
Power/Other  
AB7  
FC0  
Power/Other  
AB8  
VCC  
VSS  
Power/Other  
Y2  
VSS  
Power/Other  
AB23  
AB24  
AB25  
Power/Other  
Y3  
FC17  
A20#  
Power/Other  
VSS  
Power/Other  
Y4  
Source Synch Input/Output  
VSS  
Power/Other  
Datasheet  
57  
Land Listing and Signal Descriptions  
Table 24.  
Numerical Land  
Assignment  
Table 24.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
Type  
AB26  
AB27  
AB28  
AB29  
AB30  
AC1  
VSS  
VSS  
VSS  
VSS  
VSS  
TMS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TAP  
AE3  
FC18  
Power/Other  
AE4  
AE5  
RESERVED  
VSS  
Power/Other  
AE6  
RESERVED  
VSS  
AE7  
C
Input  
AE8  
SKTOCC#  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TAP  
Output  
AC2  
DBR#  
VSS  
Power/Other  
Power/Other  
Output  
AE9  
AC3  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
AE26  
AE27  
AE28  
AE29  
AE30  
AF1  
VSS  
AC4  
RESERVED  
A25#  
VSS  
VCC  
AC5  
Source Synch Input/Output  
Power/Other  
VCC  
AC6  
VSS  
AC7  
VSS  
Power/Other  
VCC  
AC8  
VCC  
Power/Other  
VCC  
AC23  
AC24  
AC25  
AC26  
AC27  
AC28  
AC29  
AC30  
AD1  
VCC  
Power/Other  
VSS  
VCC  
Power/Other  
VSS  
VCC  
Power/Other  
VCC  
VCC  
Power/Other  
VCC  
VCC  
Power/Other  
VSS  
VCC  
Power/Other  
VCC  
VCC  
Power/Other  
VCC  
VCC  
Power/Other  
VCC  
TDI  
TAP  
Input  
VSS  
AD2  
BPM2#  
FC36  
VSS  
Common Clock Input/Output  
Power/Other  
VSS  
AD3  
VSS  
AD4  
Power/Other  
VSS  
AD5  
ADSTB1#  
A22#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VSS  
AD6  
VSS  
AD7  
VSS  
AD8  
VCC  
Power/Other  
TDO  
BPM4#  
VSS  
Output  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AE1  
VCC  
Power/Other  
AF2  
Common Clock Input/Output  
Power/Other  
VCC  
Power/Other  
AF3  
VCC  
Power/Other  
AF4  
A28#  
A27#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VCC  
Power/Other  
AF5  
VCC  
Power/Other  
AF6  
VCC  
Power/Other  
AF7  
VSS  
Power/Other  
VCC  
Power/Other  
AF8  
VCC  
Power/Other  
VCC  
Power/Other  
AF9  
VCC  
Power/Other  
TCK  
TAP  
Input  
AF10  
AF11  
VSS  
Power/Other  
AE2  
VSS  
Power/Other  
VCC  
Power/Other  
58  
Datasheet  
Land Listing and Signal Descriptions  
Table 24.  
Numerical Land  
Assignment  
Table 24.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
Type  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
AF22  
AF23  
AF24  
AF25  
AF26  
AF27  
AF28  
AF29  
AF30  
AG1  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TAP  
AG21  
AG22  
AG23  
AG24  
AG25  
AG26  
AG27  
AG28  
AG29  
AG30  
AH1  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
AH2  
RESERVED  
VSS  
A32#  
A33#  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
AH3  
Power/Other  
VSS  
AH4  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
AH5  
VSS  
AH6  
VSS  
AH7  
VSS  
AH8  
VSS  
AH9  
TRST#  
BPM3#  
BPM5#  
A30#  
A31#  
A29#  
VSS  
Input  
AH10  
AH11  
AH12  
AH13  
AH14  
AH15  
AH16  
AH17  
AH18  
AH19  
AH20  
AH21  
AH22  
AH23  
AH24  
AH25  
AH26  
AH27  
AH28  
AH29  
AG2  
Common Clock Input/Output  
Common Clock Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
AG3  
AG4  
AG5  
AG6  
AG7  
AG8  
VCC  
VCC  
VSS  
Power/Other  
AG9  
Power/Other  
AG10  
AG11  
AG12  
AG13  
AG14  
AG15  
AG16  
AG17  
AG18  
AG19  
AG20  
Power/Other  
VCC  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
VSS  
Power/Other  
VCC  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Datasheet  
59  
Land Listing and Signal Descriptions  
Table 24.  
Numerical Land  
Assignment  
Table 24.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
Type  
AH30  
AJ1  
VCC  
BPM1#  
BPM0#  
ITP_CLK1  
VSS  
Power/Other  
AK9  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
FC25  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clock Input/Output  
Common Clock Input/Output  
AK10  
AK11  
AK12  
AK13  
AK14  
AK15  
AK16  
AK17  
AK18  
AK19  
AK20  
AK21  
AK22  
AK23  
AK24  
AK25  
AK26  
AK27  
AK28  
AK29  
AK30  
AL1  
AJ2  
AJ3  
TAP  
Input  
AJ4  
Power/Other  
AJ5  
A34#  
A35#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AJ6  
AJ7  
AJ8  
VCC  
AJ9  
VCC  
AJ10  
AJ11  
AJ12  
AJ13  
AJ14  
AJ15  
AJ16  
AJ17  
AJ18  
AJ19  
AJ20  
AJ21  
AJ22  
AJ23  
AJ24  
AJ25  
AJ26  
AJ27  
AJ28  
AJ29  
AJ30  
AK1  
AK2  
AK3  
AK4  
AK5  
AK6  
AK7  
AK8  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
AL2  
AL3  
PROCHOT#  
VRDSEL  
VID5  
VID1  
VID3  
VSS  
Asynch CMOS Input/Output  
Power/Other  
VSS  
VCC  
AL4  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
Output  
Output  
VCC  
AL5  
VSS  
AL6  
VSS  
AL7  
VSS  
AL8  
VCC  
VSS  
AL9  
VCC  
FC24  
VSS  
AL10  
AL11  
AL12  
AL13  
AL14  
AL15  
AL16  
AL17  
VSS  
VCC  
ITP_CLK0  
VID4  
VSS  
TAP  
Input  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
VSS  
VCC  
FC8  
VCC  
VSS  
VSS  
VCC  
VSS  
60  
Datasheet  
Land Listing and Signal Descriptions  
Table 24.  
Numerical Land  
Assignment  
Table 24.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
Type  
AL18  
AL19  
AL20  
AL21  
AL22  
AL23  
AL24  
AL25  
AL26  
AL27  
AL28  
AL29  
AL30  
AM1  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VID0  
VID2  
VSS  
VID6  
FC40  
VID7  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AM27  
AM28  
AM29  
AM30  
AN1  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AN2  
AN3  
VCC_SENSE  
VSS_SENSE  
Power/Other  
Power/Other  
Output  
Output  
AN4  
VCC_MB_  
REGULATION  
AN5  
AN6  
Power/Other  
Power/Other  
Output  
VSS_MB_  
REGULATION  
Output  
Output  
AN7  
VID_SELECT  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AN8  
AN9  
AM2  
Output  
Output  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AN16  
AN17  
AN18  
AN19  
AN20  
AN21  
AN22  
AN23  
AN24  
AN25  
AN26  
AN27  
AN28  
AN29  
AN30  
AM3  
AM4  
AM5  
Output  
Output  
AM6  
AM7  
AM8  
AM9  
AM10  
AM11  
AM12  
AM13  
AM14  
AM15  
AM16  
AM17  
AM18  
AM19  
AM20  
AM21  
AM22  
AM23  
AM24  
AM25  
AM26  
Datasheet  
61  
Land Listing and Signal Descriptions  
4.2  
Alphabetical Signals Reference  
Table 25.  
Signal Description (Sheet 1 of 9)  
Name  
Type  
Description  
A[35:3]# (Address) define a 236-byte physical memory address  
space. In sub-phase 1 of the address phase, these signals transmit  
the address of a transaction. In sub-phase 2, these signals transmit  
transaction type information. These signals must connect the  
appropriate pins/lands of all agents on the processor FSB. A[35:3]#  
are source synchronous signals and are latched into the receiving  
buffers by ADSTB[1:0]#.  
Input/  
Output  
A[35:3]#  
On the active-to-inactive transition of RESET#, the processor  
samples a subset of the A[35:3]# signals to determine power-on  
configuration. See Section 6.1 for more details.  
If A20M# (Address-20 Mask) is asserted, the processor masks  
physical address bit 20 (A20#) before looking up a line in any  
internal cache and before driving a read/write transaction on the  
bus. Asserting A20M# emulates the 8086 processor's address wrap-  
around at the 1-MB boundary. Assertion of A20M# is only supported  
in real mode.  
A20M#  
Input  
A20M# is an asynchronous signal. However, to ensure recognition  
of this signal following an Input/Output write instruction, it must be  
valid along with the TRDY# assertion of the corresponding Input/  
Output Write bus transaction.  
ADS# (Address Strobe) is asserted to indicate the validity of the  
transaction address on the A[35:3]# and REQ[4:0]# signals. All bus  
agents observe the ADS# activation to begin protocol checking,  
address decode, internal snoop, or deferred reply ID match  
operations associated with the new transaction.  
Input/  
Output  
ADS#  
Address strobes are used to latch A[35:3]# and REQ[4:0]# on their  
rising and falling edges. Strobes are associated with signals as  
shown below.  
Input/  
Output  
Signals  
Associated Strobe  
ADSTB[1:0]#  
REQ[4:0]#, A[16:3]#  
A[35:17]#  
ADSTB0#  
ADSTB1#  
The differential pair BCLK (Bus Clock) determines the FSB  
frequency. All processor FSB agents must receive these signals to  
drive their outputs and latch their inputs.  
BCLK[1:0]  
BNR#  
Input  
All external timing parameters are specified with respect to the  
rising edge of BCLK0 crossing VCROSS  
.
BNR# (Block Next Request) is used to assert a bus stall by any bus  
agent unable to accept new bus transactions. During a bus stall, the  
current bus owner cannot issue any new transactions.  
Input/  
Output  
62  
Datasheet  
Land Listing and Signal Descriptions  
Table 25.  
Signal Description (Sheet 2 of 9)  
Name  
Type  
Description  
BPM[5:0]# and BPMb[3:0]# (Breakpoint Monitor) are breakpoint  
and performance monitor signals. They are outputs from the  
processor which indicate the status of breakpoints and  
programmable counters used for monitoring processor  
performance. BPM[5:0]# and BPMb[3:0]# should connect the  
appropriate pins/lands of all processor FSB agents. BPM[3:0]# are  
associated with core 0. BPMb[3:0]# are associated with core 1.  
BPM[5:0]#  
Input/  
Output  
BPM4# provides PRDY# (Probe Ready) functionality for the TAP  
port. PRDY# is a processor output used by debug tools to determine  
processor debug readiness.  
BPMb[3:0]#  
BPM5# provides PREQ# (Probe Request) functionality for the TAP  
port. PREQ# is used by debug tools to request debug operation of  
the processor.  
These signals do not have on-die termination. Refer to Section 2.5.2  
for termination requirements.  
BPRI# (Bus Priority Request) is used to arbitrate for ownership of  
the processor FSB. It must connect the appropriate pins/lands of all  
processor FSB agents. Observing BPRI# active (as asserted by the  
priority agent) causes all other agents to stop issuing new requests,  
unless such requests are part of an ongoing locked operation. The  
priority agent keeps BPRI# asserted until all of its requests are  
completed, then releases the bus by de-asserting BPRI#.  
BPRI#  
Input  
BR0# drives the BREQ0# signal in the system and is used by the  
processor to request the bus. During power-on configuration this  
signal is sampled to determine the agent ID = 0.  
Input/  
Output  
BR0#  
This signal does not have on-die termination and must be  
terminated.  
The BCLK[1:0] frequency select signals BSEL[2:0] are used to  
select the processor input clock frequency. Table 16 defines the  
possible combinations of the signals and the frequency associated  
BSEL[2:0]  
Output with each combination. The required frequency is determined by the  
processor, chipset and clock synthesizer. All agents must operate at  
the same frequency. For more information about these signals,  
including termination recommendations refer to Section 2.7.2.  
COMP8  
COMP[3:0] and COMP8 must be terminated to VSS on the system  
board using precision resistors.  
Analog  
COMP[3:0]  
Datasheet  
63  
Land Listing and Signal Descriptions  
Table 25.  
Signal Description (Sheet 3 of 9)  
Name  
Type  
Description  
D[63:0]# (Data) are the data signals. These signals provide a 64-  
bit data path between the processor FSB agents, and must connect  
the appropriate pins/lands on all such agents. The data driver  
asserts DRDY# to indicate a valid data transfer.  
D[63:0]# are quad-pumped signals and will, thus, be driven four  
times in a common clock period. D[63:0]# are latched off the falling  
edge of both DSTBP[3:0]# and DSTBN[3:0]#. Each group of 16  
data signals correspond to a pair of one DSTBP# and one DSTBN#.  
The following table shows the grouping of data signals to data  
strobes and DBI#.  
Quad-Pumped Signal Groups  
Input/  
Output  
D[63:0]#  
DSTBN#/  
DSTBP#  
Data Group  
DBI#  
D[15:0]#  
D[31:16]#  
D[47:32]#  
D[63:48]#  
0
1
2
3
0
1
2
3
Furthermore, the DBI# signals determine the polarity of the data  
signals. Each group of 16 data signals corresponds to one DBI#  
signal. When the DBI# signal is active, the corresponding data  
group is inverted and therefore sampled active high.  
DBI[3:0]# (Data Bus Inversion) are source synchronous and  
indicate the polarity of the D[63:0]# signals.The DBI[3:0]# signals  
are activated when the data on the data bus is inverted. If more  
than half the data bits, within a 16-bit group, would have been  
asserted electrically low, the bus agent may invert the data bus  
signals for that particular sub-phase for that 16-bit group.  
DBI[3:0] Assignment To Data Bus  
Input/  
DBI[3:0]#  
Output  
Bus Signal  
Data Bus Signals  
DBI3#  
DBI2#  
DBI1#  
DBI0#  
D[63:48]#  
D[47:32]#  
D[31:16]#  
D[15:0]#  
DBR# (Debug Reset) is used only in processor systems where no  
debug port is implemented on the system board. DBR# is used by a  
DBR#  
Output debug port interposer so that an in-target probe can drive system  
reset. If a debug port is implemented in the system, DBR# is a no  
connect in the system. DBR# is not a processor signal.  
DBSY# (Data Bus Busy) is asserted by the agent responsible for  
driving data on the processor FSB to indicate that the data bus is in  
use. The data bus is released after DBSY# is de-asserted. This  
signal must connect the appropriate pins/lands on all processor FSB  
Input/  
Output  
DBSY#  
agents.  
64  
Datasheet  
Land Listing and Signal Descriptions  
Table 25.  
Signal Description (Sheet 4 of 9)  
Name  
Type  
Description  
DEFER# is asserted by an agent to indicate that a transaction  
cannot be guaranteed in-order completion. Assertion of DEFER# is  
normally the responsibility of the addressed memory or input/  
output agent. This signal must connect the appropriate pins/lands  
of all processor FSB agents.  
DEFER#  
Input  
DRDY# (Data Ready) is asserted by the data driver on each data  
transfer, indicating valid data on the data bus. In a multi-common  
clock data transfer, DRDY# may be de-asserted to insert idle clocks.  
This signal must connect the appropriate pins/lands of all processor  
FSB agents.  
Input/  
Output  
DRDY#  
DSTBN[3:0]# are the data strobes used to latch in D[63:0]#.  
Signals  
Associated Strobe  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBN0#  
DSTBN1#  
DSTBN2#  
DSTBN3#  
Input/  
Output  
DSTBN[3:0]#  
DSTBP[3:0]# are the data strobes used to latch in D[63:0]#.  
Signals  
Associated Strobe  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBP0#  
DSTBP1#  
DSTBP2#  
DSTBP3#  
Input/  
Output  
DSTBP[3:0]#  
FC signals are signals that are available for compatibility with other  
processors.  
FCx  
Other  
FERR#/PBE# (floating point error/pending break event) is a  
multiplexed signal and its meaning is qualified by STPCLK#. When  
STPCLK# is not asserted, FERR#/PBE# indicates a floating-point  
error and will be asserted when the processor detects an unmasked  
floating-point error. When STPCLK# is not asserted, FERR#/PBE# is  
similar to the ERROR# signal on the Intel 387 coprocessor, and is  
included for compatibility with systems using MS-DOS*-type  
floating-point error reporting. When STPCLK# is asserted, an  
assertion of FERR#/PBE# indicates that the processor has a  
pending break event waiting for service. The assertion of FERR#/  
PBE# indicates that the processor should be returned to the Normal  
state. For additional information on the pending break event  
functionality, including the identification of support of the feature  
and enable/disable information, refer to volume 3 of the Intel  
Architecture Software Developer's Manual and the Intel Processor  
Identification and the CPUID Instruction application note.  
FERR#/PBE#  
Output  
GTLREF[3:0] determine the signal reference level for GTL+ input  
signals. GTLREF is used by the GTL+ receivers to determine if a  
signal is a logical 0 or logical 1.  
GTLREF[3:0]  
Input  
Datasheet  
65  
Land Listing and Signal Descriptions  
Table 25.  
Signal Description (Sheet 5 of 9)  
Name  
Type  
Description  
Input/  
Output  
HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction  
snoop operation results. Any FSB agent may assert both HIT# and  
HITM# together to indicate that it requires a snoop stall, which can  
be continued by reasserting HIT# and HITM# together.  
HIT#  
HITM#  
IERR#  
Input/  
Output  
IERR# (Internal Error) is asserted by a processor as the result of an  
internal error. Assertion of IERR# is usually accompanied by a  
SHUTDOWN transaction on the processor FSB. This transaction may  
optionally be converted to an external error signal (e.g., NMI) by  
system core logic. The processor will keep IERR# asserted until the  
assertion of RESET#.  
Output  
This signal does not have on-die termination. Refer to Section 2.5.2  
for termination requirements.  
IGNNE# (Ignore Numeric Error) is asserted to the processor to  
ignore a numeric error and continue to execute noncontrol floating-  
point instructions. If IGNNE# is de-asserted, the processor  
generates an exception on a noncontrol floating-point instruction if  
a previous floating-point instruction caused an error. IGNNE# has  
no effect when the NE bit in control register 0 (CR0) is set.  
IGNNE#  
Input  
IGNNE# is an asynchronous signal. However, to ensure recognition  
of this signal following an Input/Output write instruction, it must be  
valid along with the TRDY# assertion of the corresponding Input/  
Output Write bus transaction.  
INIT# (Initialization), when asserted, resets integer registers inside  
the processor without affecting its internal caches or floating-point  
registers. The processor then begins execution at the power-on  
Reset vector configured during power-on configuration. The  
processor continues to handle snoop requests during INIT#  
assertion. INIT# is an asynchronous signal and must connect the  
appropriate pins/lands of all processor FSB agents.  
INIT#  
Input  
Input  
ITP_CLK[1:0] are copies of BCLK that are used only in processor  
systems where no debug port is implemented on the system board.  
ITP_CLK[1:0] are used as BCLK[1:0] references for a debug port  
implemented on an interposer. If a debug port is implemented in the  
system, ITP_CLK[1:0] are no connects in the system. These are not  
processor signals.  
ITP_CLK[1:0]  
LINT[1:0] (Local APIC Interrupt) must connect the appropriate  
pins/lands of all APIC Bus agents. When the APIC is disabled, the  
LINT0 signal becomes INTR, a maskable interrupt request signal,  
and LINT1 becomes NMI, a nonmaskable interrupt. INTR and NMI  
are backward compatible with the signals of those names on the  
Pentium processor. Both signals are asynchronous.  
LINT[1:0]  
Input  
Both of these signals must be software configured via BIOS  
programming of the APIC register space to be used either as NMI/  
INTR or LINT[1:0]. Because the APIC is enabled by default after  
Reset, operation of these signals as LINT[1:0] is the default  
configuration.  
66  
Datasheet  
Land Listing and Signal Descriptions  
Table 25.  
Signal Description (Sheet 6 of 9)  
Name  
Type  
Description  
LOCK# indicates to the system that a transaction must occur  
atomically. This signal must connect the appropriate pins/lands of  
all processor FSB agents. For a locked sequence of transactions,  
LOCK# is asserted from the beginning of the first transaction to the  
end of the last transaction.  
Input/  
Output  
LOCK#  
When the priority agent asserts BPRI# to arbitrate for ownership of  
the processor FSB, it will wait until it observes LOCK# de-asserted.  
This enables symmetric agents to retain ownership of the processor  
FSB throughout the bus locked operation and ensure the atomicity  
of lock.  
Input/ PECI is a proprietary one-wire bus interface. See Section 5.3 for  
Output details.  
PECI  
As an output, PROCHOT# (Processor Hot) will go active when the  
processor temperature monitoring sensor detects that the processor  
has reached its maximum safe operating temperature. This  
Input/ indicates that the processor Thermal Control Circuit (TCC) has been  
Output activated, if enabled. As an input, assertion of PROCHOT# by the  
system will activate the TCC, if enabled. The TCC will remain active  
until the system de-asserts PROCHOT#. See Section 5.2.4 for more  
details.  
PROCHOT#  
PWRGOOD (Power Good) is a processor input. The processor  
requires this signal to be a clean indication that the clocks and  
power supplies are stable and within their specifications. ‘Clean’  
implies that the signal will remain low (capable of sinking leakage  
current), without glitches, from the time that the power supplies are  
turned on until they come within specification. The signal must then  
transition monotonically to a high state. PWRGOOD can be driven  
inactive at any time, but clocks and power must again be stable  
before a subsequent rising edge of PWRGOOD.  
PWRGOOD  
REQ[4:0]#  
RESET#  
Input  
The PWRGOOD signal must be supplied to the processor; it is used  
to protect internal circuits against voltage sequencing issues. It  
should be driven high throughout boundary scan operation.  
REQ[4:0]# (Request Command) must connect the appropriate pins/  
Input/ lands of all processor FSB agents. They are asserted by the current  
Output bus owner to define the currently active transaction type. These  
signals are source synchronous to ADSTB0#.  
Asserting the RESET# signal resets the processor to a known state  
and invalidates its internal caches without writing back any of their  
contents. For a power-on Reset, RESET# must stay active for at  
least one millisecond after VCC and BCLK have reached their proper  
specifications. On observing active RESET#, all FSB agents will de-  
assert their outputs within two clocks. RESET# must not be kept  
Input  
asserted for more than 10 ms while PWRGOOD is asserted.  
A number of bus signals are sampled at the active-to-inactive  
transition of RESET# for power-on configuration. These  
configuration options are described in the Section 6.1.  
This signal does not have on-die termination and must be  
terminated on the system board.  
All RESERVED lands must remain unconnected. Connection of these  
lands to VCC, VSS, VTT, or to any other signal (including each other)  
can result in component malfunction or incompatibility with future  
processors.  
RESERVED  
Datasheet  
67  
Land Listing and Signal Descriptions  
Table 25.  
Signal Description (Sheet 7 of 9)  
Name  
Type  
Description  
RS[2:0]# (Response Status) are driven by the response agent (the  
agent responsible for completion of the current transaction), and  
must connect the appropriate pins/lands of all processor FSB  
agents.  
RS[2:0]#  
Input  
SKTOCC# (Socket Occupied) will be pulled to ground by the  
SKTOCC#  
SMI#  
Output processor. System board designers may use this signal to determine  
if the processor is present.  
SMI# (System Management Interrupt) is asserted asynchronously  
by system logic. On accepting a System Management Interrupt, the  
processor saves the current state and enter System Management  
Mode (SMM). An SMI Acknowledge transaction is issued, and the  
processor begins program execution from the SMM handler.  
Input  
If SMI# is asserted during the de-assertion of RESET#, the  
processor will tri-state its outputs.  
STPCLK# (Stop Clock), when asserted, causes the processor to  
enter a low power Stop Grant state. The processor issues a Stop  
Grant Acknowledge transaction, and stops providing internal clock  
signals to all processor core units except the FSB and APIC units.  
The processor continues to snoop bus transactions and service  
interrupts while in Stop Grant state. When STPCLK# is de-asserted,  
the processor restarts its internal clock to all units and resumes  
execution. The assertion of STPCLK# has no effect on the bus clock;  
STPCLK# is an asynchronous input.  
STPCLK#  
Input  
TCK (Test Clock) provides the clock input for the processor Test Bus  
(also known as the Test Access Port).  
TCK  
Input  
Input  
TDI and TDI_M (Test Data In) transfer serial test data into the  
processor cores. TDI and TDI_M provide the serial input needed for  
JTAG specification support. TDI connects to core 0. TDI_M connects  
to core 1.  
TDI, TDI_M  
TDO and TDO_M (Test Data Out) transfer serial test data out of the  
processor cores. TDO and TDI_M provide the serial output needed  
for JTAG specification support. TDO connects to core 1. TDO_M  
connects to core 0.  
TDO, TDO_M  
Output  
Input  
TESTHI[13,11:10,7:0] must be connected to the processor’s  
appropriate power source (refer to VTT_OUT_LEFT and  
VTT_OUT_RIGHT signal description) through a resistor for proper  
processor operation. See Section 2.4 for more details.  
TESTHI[13,  
11:10,7:0]  
68  
Datasheet  
Land Listing and Signal Descriptions  
Table 25.  
Signal Description (Sheet 8 of 9)  
Name  
Type  
Description  
In the event of a catastrophic cooling failure, the processor will  
automatically shut down when the silicon has reached a  
temperature approximately 20 °C above the maximum TC. Assertion  
of THERMTRIP# (Thermal Trip) indicates the processor junction  
temperature has reached a level beyond where permanent silicon  
damage may occur. Upon assertion of THERMTRIP#, the processor  
will shut off its internal clocks (thus, halting program execution) in  
an attempt to reduce the processor junction temperature. To protect  
the processor, its core voltage (VCC) must be removed following the  
THERMTRIP#  
Output assertion of THERMTRIP#. Driving of the THERMTRIP# signal is  
enabled within 10 μs of the assertion of PWRGOOD (provided VTT  
and VCC are valid) and is disabled on de-assertion of PWRGOOD (if  
V
TT or VCC are not valid, THERMTRIP# may also be disabled). Once  
activated, THERMTRIP# remains latched until PWRGOOD, VTT, or  
CC is de-asserted. While the de-assertion of the PWRGOOD, VTT, or  
V
VCC will de-assert THERMTRIP#, if the processor’s junction  
temperature remains at or above the trip level, THERMTRIP# will  
again be asserted within 10 μs of the assertion of PWRGOOD  
(provided VTT and VCC are valid).  
TMS (Test Mode Select) is a JTAG specification support signal used  
by debug tools.  
TMS  
Input  
Input  
Input  
TRDY# (Target Ready) is asserted by the target to indicate that it is  
ready to receive a write or implicit writeback data transfer. TRDY#  
must connect the appropriate pins/lands of all FSB agents.  
TRDY#  
TRST#  
TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST#  
must be driven low during power on Reset.  
VCC are the power pins for the processor. The voltage supplied to  
these pins is determined by the VID[7:0] pins.  
VCC  
Input  
Input  
VCCPLL  
VCCPLL provides isolated power for internal processor FSB PLLs.  
VCC_SENSE is an isolated low impedance connection to processor  
VCC_SENSE  
Output core power (VCC). It can be used to sense or measure voltage near  
the silicon with little noise.  
This land is provided as a voltage regulator feedback sense point for  
V
CC. It is connected internally in the processor package to the sense  
VCC_MB_  
REGULATION  
Output point land U27 as described in the Voltage Regulator-Down (VRD)  
11.0 Processor Power Delivery Design Guidelines For Desktop  
LGA775 Socket.  
VID[7:0] (Voltage ID) signals are used to support automatic  
selection of power supply voltages (VCC). Refer to the Voltage  
Regulator-Down (VRD) 11.0 Processor Power Delivery Design  
Guidelines For Desktop LGA775 Socket for more information. The  
voltage supply for these signals must be valid before the VR can  
Output supply VCC to the processor. Conversely, the VR output must be  
disabled until the voltage supply for the VID signals becomes valid.  
The VID signals are needed to support the processor voltage  
specification variations. See Table 2 for definitions of these signals.  
The VR must supply the voltage that is requested by the signals, or  
disable itself.  
VID[7:0]  
This land is tied high on the processor package and is used by the  
VR to choose the proper VID table. Refer to the Voltage Regulator-  
Down (VRD) 11.0 Processor Power Delivery Design Guidelines For  
VID_SELECT  
Output  
Desktop LGA775 Socket for more information.  
Datasheet  
69  
Land Listing and Signal Descriptions  
Table 25.  
Signal Description (Sheet 9 of 9)  
Name  
Type  
Description  
This input should be left as a no connect in order for the processor  
to boot. The processor will not boot on legacy platforms where this  
VRDSEL  
Input  
land is connected to VSS  
.
VSS are the ground pins for the processor and should be connected  
to the system ground plane.  
VSS  
Input  
Input  
VSSA  
VSSA is the isolated ground for internal PLLs.  
VSS_SENSE is an isolated low impedance connection to processor  
VSS_SENSE  
Output core VSS. It can be used to sense or measure ground near the  
silicon with little noise.  
This land is provided as a voltage regulator feedback sense point for  
V
SS. It is connected internally in the processor package to the sense  
VSS_MB_  
REGULATION  
Output point land V27 as described in the Voltage Regulator-Down (VRD)  
11.0 Processor Power Delivery Design Guidelines For Desktop  
LGA775 Socket.  
VTT  
Miscellaneous voltage supply.  
VTT_OUT_LEFT  
The VTT_OUT_LEFT and VTT_OUT_RIGHT signals are included to  
Output provide a voltage supply for some signals that require termination  
to VTT on the motherboard.  
VTT_OUT_RIGHT  
VTT_SEL  
The VTT_SEL signal is used to select the correct VTT voltage level for  
Output the processor. This land is connected internally in the package to  
VTT.  
§ §  
70  
Datasheet  
Thermal Specifications and Design Considerations  
5
Thermal Specifications and  
Design Considerations  
5.1  
Processor Thermal Specifications  
The processor requires a thermal solution to maintain temperatures within the  
operating limits as set forth in Section 5.1.1. Any attempt to operate the processor  
outside these operating limits may result in permanent damage to the processor and  
potentially other components within the system. As processor technology changes,  
thermal management becomes increasingly crucial when building computer systems.  
Maintaining the proper thermal environment is key to reliable, long-term system  
operation.  
A complete thermal solution includes both component and system level thermal  
management features. Component level thermal solutions can include active or passive  
heatsinks attached to the processor Integrated Heat Spreader (IHS). Typical system  
level thermal solutions may consist of system fans combined with ducting and venting.  
For more information on designing a component level thermal solution, refer to the  
appropriate Thermal and Mechanical Design Guidelines (see Section 1.2).  
Note:  
The boxed processor will ship with a component thermal solution. Refer to Chapter 7  
for details on the boxed processor.  
5.1.1  
Thermal Specifications  
To allow for the optimal operation and long-term reliability of Intel processor-based  
systems, the system/processor thermal solution should be designed such that the  
processor remains within the minimum and maximum case temperature (TC)  
specifications when operating at or below the Thermal Design Power (TDP) value listed  
per frequency in Table 26. Thermal solutions not designed to provide this level of  
thermal capability may affect the long-term reliability of the processor and system. For  
more details on thermal solution design, refer to the appropriate Thermal and  
Mechanical Design Guidelines (see Section 1.2).  
The processor uses a methodology for managing processor temperatures which is  
intended to support acoustic noise reduction through fan speed control. Selection of the  
appropriate fan speed is based on the relative temperature data reported by the  
processor’s Platform Environment Control Interface (PECI) bus as described in  
Section 5.3.1.1. The temperature reported over PECI is always a negative value and  
represents a delta below the onset of thermal control circuit (TCC) activation, as  
indicated by PROCHOT# (see Section 5.2). Systems that implement fan speed control  
must be designed to take these conditions in to account. Systems that do not alter the  
fan speed only need to guarantee the case temperature meets the thermal profile  
specifications.  
To determine a processor's case temperature specification based on the thermal profile,  
it is necessary to accurately measure processor power dissipation. Intel has developed  
a methodology for accurate power measurement that correlates to Intel test  
temperature and voltage conditions. Refer to the appropriate Thermal and Mechanical  
Design Guidelines (see Section 1.2).  
Datasheet  
71  
Thermal Specifications and Design Considerations  
The case temperature is defined at the geometric top center of the processor. Analysis  
indicates that real applications are unlikely to cause the processor to consume  
maximum power dissipation for sustained time periods. Intel recommends that  
complete thermal solution designs target the Thermal Design Power (TDP) indicated in  
Table 26 instead of the maximum processor power consumption. The Thermal Monitor  
feature is designed to protect the processor in the unlikely event that an application  
exceeds the TDP recommendation for a sustained periods of time. For more details on  
the usage of this feature, refer to Section 5.2. In all cases the Thermal Monitor and  
Thermal Monitor 2 feature must be enabled for the processor to remain within  
specification.  
Table 26.  
Processor Thermal Specifications  
Core  
Frequency  
(GHz)  
Thermal  
Design  
Power (W)  
Extended  
775_VR_  
Processor  
Number  
Minimum Maximum  
HALT Power CONFIG_05A  
Notes  
TC (°C)  
TC (°C)  
(W)1  
/B Guidance2  
QX6850  
QX6800  
QX6700  
3.00  
2.93  
2.66  
130  
130  
130  
37  
37  
50  
5
5
5
See  
Table 27,  
Figure 15  
775_VR_CONF  
IG_05B  
3,  
4
See  
Table 29,  
Figure 17  
775_VR_CONF  
IG_05A  
3, 4  
Q6700  
Q6600  
2.66  
2.40  
2.40  
95  
105  
95  
24  
50  
24  
5
5
5
See  
Table 28,  
Figure 16  
775_VR_CONF  
IG_05B  
3, 4, 5  
3, 4, 6  
See  
Table 29,  
Figure 17  
775_VR_CONF  
IG_05A  
Q6600  
NOTES:  
1. Specification is at 50 °C TC and typical voltage loadline.  
2. 775_VR_CONFIG_05B guidelines provide a design target for meeting future thermal requirements.  
3. Thermal Design Power (TDP) should be used for processor thermal solution design targets. The TDP is not  
the maximum power that the processor can dissipate.  
4. This table shows the maximum TDP for a given frequency range. Individual processors may have a lower  
TDP. Therefore, the maximum TC will vary depending on the TDP of the individual processor. Refer to  
thermal profile figure and associated table for the allowed combinations of power and TC.  
5. These processors have CPUID = 06F7h  
6. These processors have CPUID = 06FBh  
72  
Datasheet  
Thermal Specifications and Design Considerations  
Table 27.  
Thermal Profile for 130 W Processors  
Power  
(W)  
Maximum  
Tc (°C)  
Power  
(W)  
Maximum  
Tc (°C)  
Power  
(W)  
Maximum  
Tc (°C)  
Power  
(W)  
Maximum  
Tc (°C)  
0
42.4  
42.7  
43.1  
43.4  
43.8  
44.1  
44.4  
44.8  
45.1  
45.5  
45.8  
46.1  
46.5  
46.8  
47.2  
47.5  
47.8  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
64  
66  
48.2  
48.5  
48.9  
49.2  
49.5  
49.9  
50.2  
50.6  
50.9  
51.2  
51.6  
51.9  
52.3  
53.1  
52.9  
53.3  
53.6  
68  
70  
72  
74  
76  
78  
80  
82  
84  
86  
88  
90  
92  
94  
96  
98  
100  
54.0  
54.3  
54.6  
55.0  
55.3  
57.7  
56.0  
56.3  
56.7  
57.0  
57.4  
57.7  
58.0  
58.4  
58.7  
59.1  
59.4  
102  
104  
106  
108  
110  
112  
114  
116  
118  
120  
122  
124  
126  
128  
130  
59.7  
60.1  
60.4  
60.8  
61.1  
61.4  
61.8  
62.1  
62.5  
62.8  
63.1  
63.5  
63.8  
64.1  
64.5  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
Figure 15.  
Thermal Profile for 130 W Processors  
65.0  
60.0  
55.0  
50.0  
45.0  
40.0  
y = 0.17x + 42.4  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
Power (W)  
Datasheet  
73  
Thermal Specifications and Design Considerations  
Table 28.  
Thermal Profile for 105 W Processors  
Power  
(W)  
Maximum  
Tc (°C)  
Power  
(W)  
Maximum  
Tc (°C)  
Power  
(W)  
Maximum  
Tc (°C)  
Power  
(W)  
Maximum  
Tc (°C)  
0
43.3  
43.7  
44.0  
44.4  
44.7  
45.1  
45.5  
45.7  
46.1  
46.4  
46.9  
47.3  
47.6  
48.0  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
48.3  
48.7  
49.1  
49.4  
49.8  
50.1  
50.5  
50.9  
51.2  
51.6  
51.9  
52.3  
52.7  
53.0  
56  
58  
60  
62  
64  
66  
68  
70  
72  
74  
76  
78  
80  
82  
53.4  
53.8  
54.1  
54.5  
54.9  
55.2  
55.4  
55.9  
56.3  
56.7  
57.0  
57.4  
57.7  
58.1  
84  
86  
58.4  
58.8  
59.1  
59.5  
59.9  
60.3  
60.6  
60.9  
61.3  
61.7  
62.0  
62.2  
2
4
88  
6
90  
8
92  
10  
12  
14  
16  
18  
20  
22  
24  
26  
94  
96  
98  
100  
102  
104  
105  
Figure 16.  
Thermal Profile for 105 W Processors  
65.0  
60.0  
55.0  
50.0  
45.0  
40.0  
y = 0.18x + 43.3  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
Power (W)  
74  
Datasheet  
Thermal Specifications and Design Considerations  
Table 29.  
Thermal Profile 95 W Processors  
Power  
(W)  
Maximum  
Tc (°C)  
Power  
(W)  
Maximum  
Tc (°C)  
Power  
(W)  
Maximum  
Tc (°C)  
Power  
(W)  
Maximum  
Tc (°C)  
0
44.4  
45.0  
45.5  
46.1  
46.6  
47.2  
47.8  
48.3  
48.9  
49.4  
50.0  
50.6  
51.1  
51.7  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
52.2  
52.8  
53.4  
53.9  
54.5  
55.0  
55.6  
56.2  
56.7  
57.3  
57.8  
58.4  
59.0  
59.5  
56  
58  
60  
62  
64  
66  
68  
70  
72  
74  
76  
78  
80  
82  
60.1  
60.6  
61.2  
61.8  
62.3  
62.9  
63.4  
64.0  
64.6  
65.1  
65.7  
66.2  
66.8  
67.4  
84  
86  
88  
90  
92  
94  
95  
67.9  
68.5  
69.0  
69.6  
70.2  
70.7  
71.0  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
Figure 17.  
Thermal Profile 95 W Processors  
Datasheet  
75  
Thermal Specifications and Design Considerations  
5.1.2  
Thermal Metrology  
The maximum and minimum case temperatures (TC) for the processor is specified in  
Table 26. This temperature specification is meant to help ensure proper operation of  
the processor. Figure 18 illustrates where Intel recommends TC thermal measurements  
should be made. For detailed guidelines on temperature measurement methodology,  
refer to the appropriate Thermal and Mechanical Design Guidelines (see Section 1.2).  
Figure 18.  
Case Temperature (TC) Measurement Location  
Measure TC atthis point  
(geometric center of the package)  
37.5 mm  
5.2  
Processor Thermal Features  
5.2.1  
Thermal Monitor  
The Thermal Monitor feature helps control the processor temperature by activating the  
thermal control circuit (TCC) when the processor silicon reaches its maximum operating  
temperature. The TCC reduces processor power consumption by modulating (starting  
and stopping) the internal processor core clocks. The Thermal Monitor feature must  
be enabled for the processor to be operating within specifications. The  
temperature at which Thermal Monitor activates the thermal control circuit is not user  
configurable and is not software visible. Bus traffic is snooped in the normal manner,  
and interrupt requests are latched (and serviced during the time that the clocks are on)  
while the TCC is active.  
When the Thermal Monitor feature is enabled, and a high temperature situation exists  
(i.e., TCC is active), the clocks will be modulated by alternately turning the clocks off  
and on at a duty cycle specific to the processor (typically 30–50%). Clocks often will  
not be off for more than 3.0 microseconds when the TCC is active. Cycle times are  
processor speed dependent and will decrease as processor core frequencies increase. A  
small amount of hysteresis has been included to prevent rapid active/inactive  
transitions of the TCC when the processor temperature is near its maximum operating  
temperature. Once the temperature has dropped below the maximum operating  
temperature, and the hysteresis timer has expired, the TCC goes inactive and clock  
modulation ceases.  
With a properly designed and characterized thermal solution, it is anticipated that the  
TCC would only be activated for very short periods of time when running the most  
power intensive applications. The processor performance impact due to these brief  
periods of TCC activation is expected to be so minor that it would be immeasurable. An  
76  
Datasheet  
Thermal Specifications and Design Considerations  
under-designed thermal solution that is not able to prevent excessive activation of the  
TCC in the anticipated ambient environment may cause a noticeable performance loss,  
and in some cases may result in a TC that exceeds the specified maximum temperature  
and may affect the long-term reliability of the processor. In addition, a thermal solution  
that is significantly under-designed may not be capable of cooling the processor even  
when the TCC is active continuously. Refer to the appropriate Thermal and Mechanical  
Design Guidelines (see Section 1.2) for information on designing a thermal solution.  
The duty cycle for the TCC, when activated by the Thermal Monitor, is factory  
configured and cannot be modified. The Thermal Monitor does not require any  
additional hardware, software drivers, or interrupt handling routines.  
5.2.2  
Thermal Monitor 2  
The processor also supports an additional power reduction capability known as Thermal  
Monitor 2. This mechanism provides an efficient means for limiting the processor  
temperature by reducing the power consumption within the processor.  
When Thermal Monitor 2 is enabled, and a high temperature situation is detected, the  
Thermal Control Circuit (TCC) will be activated. The TCC causes the processor to adjust  
its operating frequency (via the bus multiplier) and input voltage (via the VID signals).  
This combination of reduced frequency and VID results in a reduction to the processor  
power consumption.  
A processor enabled for Thermal Monitor 2 includes two operating points, each  
consisting of a specific operating frequency and voltage. The first operating point  
represents the normal operating condition for the processor. Under this condition, the  
core-frequency-to-FSB multiple utilized by the processor is that contained in the  
CLOCK_FLEX_MAX MSR and the VID is that specified in Table 4. These parameters  
represent normal system operation.  
The second operating point consists of both a lower operating frequency and voltage.  
When the TCC is activated, the processor automatically transitions to the new  
frequency. This transition occurs very rapidly (on the order of 5 μs). During the  
frequency transition, the processor is unable to service any bus requests, and  
consequently, all bus traffic is blocked. Edge-triggered interrupts will be latched and  
kept pending until the processor resumes operation at the new frequency.  
Once the new operating frequency is engaged, the processor will transition to the new  
core operating voltage by issuing a new VID code to the voltage regulator. The voltage  
regulator must support dynamic VID steps in order to support Thermal Monitor 2.  
During the voltage change, it will be necessary to transition through multiple VID codes  
to reach the target operating voltage. Each step will likely be one VID table entry (see  
Table 4). The processor continues to execute instructions during the voltage transition.  
Operation at the lower voltage reduces the power consumption of the processor.  
A small amount of hysteresis has been included to prevent rapid active/inactive  
transitions of the TCC when the processor temperature is near its maximum operating  
temperature. Once the temperature has dropped below the maximum operating  
temperature, and the hysteresis timer has expired, the operating frequency and  
voltage transition back to the normal system operating point. Transition of the VID code  
will occur first, in order to insure proper operation once the processor reaches its  
normal operating frequency. Refer to Figure 19 for an illustration of this ordering.  
Datasheet  
77  
Thermal Specifications and Design Considerations  
Figure 19.  
Thermal Monitor 2 Frequency and Voltage Ordering  
TTM2  
Temperature  
Frequency  
fMAX  
fTM2  
VID  
VIDTM2  
VID  
PROCHOT#  
The PROCHOT# signal is asserted when a high temperature situation is detected,  
regardless of whether Thermal Monitor or Thermal Monitor 2 is enabled.  
It should be noted that the Thermal Monitor 2 TCC cannot be activated via the on  
demand mode. The Thermal Monitor TCC, however, can be activated through the use of  
the on demand mode.  
5.2.3  
On-Demand Mode  
The processor provides an auxiliary mechanism that allows system software to force  
the processor to reduce its power consumption. This mechanism is referred to as “On-  
Demand” mode and is distinct from the Thermal Monitor feature. On-Demand mode is  
intended as a means to reduce system level power consumption. Systems using the  
processor must not rely on software usage of this mechanism to limit the processor  
temperature.  
The processor provides an auxiliary mechanism that allows system software to force  
the processor to reduce its power consumption. This mechanism is referred to as “On-  
Demand” mode and is distinct from the Thermal Monitor and Thermal Monitor 2  
features. On-Demand mode is intended as a means to reduce system level power  
consumption. Systems utilizing the Clovertown processor s must not rely on software  
usage of this mechanism to limit the processor temperature. If bit 4 of the  
IA32_CLOCK_MODULATION MSR is set to a ‘1, the processor will immediately reduce  
its power consumption via modulation (starting and stopping) of the internal core clock,  
independent of the processor temperature. When using On-Demand mode, the duty  
cycle of the clock modulation is programmable via bits 3:1 of the same  
IA32_CLOCK_MODULATION MSR. In On-Demand mode, the duty cycle can be  
programmed from 12.5% on/ 87.5% off to 87.5% on/ 12.5% off in 12.5% increments.  
On-Demand mode may be used in conjunction with the Thermal Monitor; however, if  
the system tries to enable On-Demand mode at the same time the TCC is engaged, the  
factory configured duty cycle of the TCC will override the duty cycle selected by the On-  
Demand mode.  
78  
Datasheet  
Thermal Specifications and Design Considerations  
5.2.4  
PROCHOT# Signal  
An external signal, PROCHOT# (processor hot), is asserted when the processor core  
temperature has reached its maximum operating temperature. If the Thermal Monitor  
is enabled (note that the Thermal Monitor must be enabled for the processor to be  
operating within specification), the TCC will be active when PROCHOT# is asserted. The  
processor can be configured to generate an interrupt upon the assertion or de-  
assertion of PROCHOT#.  
As an output, PROCHOT# (Processor Hot) will go active when the processor  
temperature monitoring sensor detects that one or both cores has reached its  
maximum safe operating temperature. This indicates that the processor Thermal  
Control Circuit (TCC) has been activated, if enabled. As an input, assertion of  
PROCHOT# by the system will activate the TCC, if enabled, for both cores. The TCC will  
remain active until the system de-asserts PROCHOT#.  
PROCHOT# allows for some protection of various components from over-temperature  
situations. The PROCHOT# signal is bi-directional in that it can either signal when the  
processor (either core) has reached its maximum operating temperature or be driven  
from an external source to activate the TCC. The ability to activate the TCC via  
PROCHOT# can provide a means for thermal protection of system components.  
PROCHOT# can allow VR thermal designs to target maximum sustained current instead  
of maximum current. Systems should still provide proper cooling for the VR, and rely  
on PROCHOT# only as a backup in case of system cooling failure. The system thermal  
design should allow the power delivery circuitry to operate within its temperature  
specification even while the processor is operating at its Thermal Design Power. With a  
properly designed and characterized thermal solution, it is anticipated that PROCHOT#  
would only be asserted for very short periods of time when running the most power  
intensive applications. An under-designed thermal solution that is not able to prevent  
excessive assertion of PROCHOT# in the anticipated ambient environment may cause a  
noticeable performance loss. Refer to the the Voltage Regulator-Down (VRD) 11.0  
Processor Power Delivery Design Guidelines For Desktop LGA775 Socket for details on  
implementing the bi-directional PROCHOT# feature.  
5.2.5  
THERMTRIP# Signal  
Regardless of whether or not Thermal Monitor or Thermal Monitor 2 is enabled, in the  
event of a catastrophic cooling failure, the processor will automatically shut down when  
the silicon has reached an elevated temperature (refer to the THERMTRIP# definition in  
Table 25). At this point, the FSB signal THERMTRIP# will go active and stay active as  
described in Table 25. THERMTRIP# activation is independent of processor activity and  
does not generate any bus cycles. If THERMTRIP# is asserted, processor core voltage  
(VCC) must be removed within the timeframe defined in Table 10.  
Datasheet  
79  
Thermal Specifications and Design Considerations  
5.3  
Platform Environment Control Interface (PECI)  
5.3.1  
Introduction  
PECI offers an interface for thermal monitoring of Intel processor and chipset  
components. It uses a single wire; thus, alleviating routing congestion issues. PECI  
uses CRC checking on the host side to ensure reliable transfers between the host and  
client devices. Also, data transfer speeds across the PECI interface are negotiable  
within a wide range (2 Kbps to 2 Mbps). The PECI interface on the processor is disabled  
by default and must be enabled through BIOS.  
5.3.1.1  
T
and TCC Activation on PECI-Based Systems  
CONTROL  
Fan speed control solutions based on PECI use a TCONTROL value stored in the processor  
IA32_TEMPERATURE_TARGET MSR. The TCONTROL MSR uses the same offset  
temperature format as PECI though it contains no sign bit. Thermal management  
devices should infer the TCONTROL value as negative. Thermal management algorithms  
should use the relative temperature value delivered over PECI in conjunction with the  
TCONTROL MSR value to control or optimize fan speeds. Figure 20 shows a conceptual  
fan control diagram using PECI temperatures.  
The relative temperature value reported over PECI represents the delta below the onset  
of thermal control circuit (TCC) activation as indicated by PROCHOT# assertions. As the  
temperature approaches TCC activation, the PECI value approaches zero. TCC activates  
at a PECI count of zero.  
.
Figure 20.  
Conceptual Fan Control on PECI-Based Platforms  
TCONTROL  
Setting  
TCC Activation  
Temperature  
PECI = 0  
Max  
PECI = -10  
Fan Speed  
(RPM)  
Min  
PECI = -20  
Temperature  
Note: Not intended to depict actual implementation  
80  
Datasheet  
Thermal Specifications and Design Considerations  
5.3.2  
PECI Specifications  
5.3.2.1  
PECI Device Address  
The socket 0 PECI register resides at address 30h and socket 1 resides at 31h. Note  
that each address also supports two domains (Domain 0 and Domain 1). For more  
information on PECI domains, refer to the Platform Environment Control Interface  
Specification.  
5.3.2.2  
5.3.2.3  
PECI Command Support  
PECI command support is covered in detail in the Platform Environment Control  
Interface Specification. Refer to this document for details on supported PECI command  
function and codes.  
PECI Fault Handling Requirements  
PECI is largely a fault tolerant interface, including noise immunity and error checking  
improvements over other comparable industry standard interfaces. The PECI client is  
as reliable as the device that it is embedded in, and thus given operating conditions  
that fall under the specification, the PECI will always respond to requests and the  
protocol itself can be relied upon to detect any transmission failures. There are,  
however, certain scenarios where the PECI is known to be unresponsive.  
Prior to a power on RESET# and during RESET# assertion, PECI is not ensured to  
provide reliable thermal data. System designs should implement a default power-on  
condition that ensures proper processor operation during the time frame when reliable  
data is not available via PECI.  
To protect platforms from potential operational or safety issues due to an abnormal  
condition on PECI, the Host controller should take action to protect the system from  
possible damaging states. It is recommended that the PECI host controller take  
appropriate action to protect the client processor device if valid temperature readings  
have not been obtained in response to three consecutive GetTemp0()s or GetTemp1()s  
or for a one second time interval. The host controller may also implement an alert to  
software in the event of a critical or continuous fault condition.  
5.3.2.4  
PECI GetTemp0() and GetTemp1() Error Code Support  
The error codes supported for the processor GetTemp0() and GetTemp1() commands  
are listed in Table 30.  
Table 30.  
GetTemp0() and GetTemp1() Error Codes  
Error Code  
8000h  
Description  
General sensor error  
Sensor is operational, but has detected a temperature below its operational  
range (underflow).  
8002h  
§ §  
Datasheet  
81  
Thermal Specifications and Design Considerations  
82  
Datasheet  
Features  
6
Features  
6.1  
Power-On Configuration Options  
Several configuration options can be configured by hardware. The processor samples  
the hardware configuration at reset, on the active-to-inactive transition of RESET#. For  
specifications on these options, refer to Table 31.  
The sampled information configures the processor for subsequent operation. These  
configuration options cannot be changed except by another reset. All resets reconfigure  
the processor; for reset purposes, the processor does not distinguish between a  
"warm" reset and a "power-on" reset.  
Table 31.  
Power-On Configuration Option Signals  
Configuration Option  
Output tristate  
Signal1,2,3  
SMI#  
Execute BIST  
A3#  
Disable dynamic bus parking  
Symmetric agent arbitration ID  
RESERVED  
A25#  
BR0#  
A[8:5]#, A[24:11]#, A[35:26]#  
NOTES:  
1. Asserting this signal during RESET# will select the corresponding option.  
2. Address signals not identified in this table as configuration options should not  
be asserted during RESET#.  
3. Disabling of any of the cores within the processor must be handled by  
configuring the EXT_CONFIG Model Specific Register (MSR). This MSR will allow  
for the disabling of a single core per die within the package.  
6.2  
Clock Control and Low Power States  
The processor allows the use of AutoHALT and Stop Grant states to reduce power  
consumption by stopping the clock to internal sections of the processor, depending on  
each particular state. See Figure 21 for a visual representation of the processor low  
power states.  
Datasheet  
83  
Features  
Figure 21.  
Processor Low Power State Machine  
HALT or MWAIT Instruction and  
HALT Bus Cycle Generated  
Extended HALT or HALT  
State  
- BCLK running  
- Snoops and interrupts  
allowed  
Normal State  
INIT#, BINIT#, INTR, NMI, SMI#,  
RESET#, FSB interrupts  
- Normal Execution  
Snoop  
Event  
Occurs  
Snoop  
Event  
Serviced  
STPCLK#  
Asserted  
STPCLK#  
De-asserted  
STPCLK#  
Asserted  
STPCLK#  
De-asserted  
Extended HALT Snoop or  
HALT Snoop State  
- BCLK running  
- Service Snoops to cahces  
Stop Grant State  
- BCLK running  
- Snoops and interrupts  
allowed  
Snoop Event Occurs  
Snoop Event Serviced  
Stop Grant Snoop State  
- BCLK running  
- Service Snoops to cahces  
SleepStateFigure  
6.2.1  
6.2.2  
Normal State  
This is the normal operating state for the processor.  
HALT and Extended HALT Powerdown States  
The processor supports the HALT or Extended HALT powerdown state. The Extended  
HALT Powerdown must be enabled via the BIOS for the processor to remain within its  
specification.  
The Extended HALT state is a lower power state as compared to the Stop Grant State.  
If Extended HALT is not enabled, the default Powerdown state entered will be HALT.  
Refer to the sections below for details about the HALT and Extended HALT states.  
6.2.2.1  
HALT Powerdown State  
HALT is a low power state entered when all the processor cores have executed the HALT  
or MWAIT instructions. When one of the processor cores executes the HALT instruction,  
that processor core is halted, however, the other processor continues normal operation.  
The processor will transition to the Normal state upon the occurrence of SMI#, INIT#,  
or LINT[1:0] (NMI, INTR). RESET# will cause the processor to immediately initialize  
itself.  
The return from a System Management Interrupt (SMI) handler can be to either  
Normal Mode or the HALT Power Down state. See the Intel Architecture Software  
Developer's Manual, Volume III: System Programmer's Guide for more information.  
84  
Datasheet  
Features  
The system can generate a STPCLK# while the processor is in the HALT Power Down  
state. When the system deasserts the STPCLK# interrupt, the processor will return  
execution to the HALT state.  
While in HALT Power Down state, the processor will process bus snoops.  
6.2.2.2  
Extended HALT Powerdown State  
Extended HALT is a low power state entered when all processor cores have executed  
the HALT or MWAIT instructions and Extended HALT has been enabled via the BIOS.  
When one of the processor cores executes the HALT instruction, that logical processor  
is halted; however, the other processor continues normal operation. The Extended  
HALT Powerdown must be enabled via the BIOS for the processor to remain within its  
specification.  
Not all processors are capable of supporting Extended HALT State. More details on  
which processor frequencies will support this feature will be provided in future releases  
of the Intel® Core™2 Extreme Quad-Core Processor QX6700 and Intel® Core™2 Quad  
Processor Q6000 Sequence Specification Update when available.  
The processor will automatically transition to a lower frequency and voltage operating  
point before entering the Extended HALT state. Note that the processor FSB frequency  
is not altered; only the internal core frequency is changed. When entering the low  
power state, the processor will first switch to the lower bus ratio and then transition to  
the lower VID.  
While in Extended HALT state, the processor will process bus snoops.  
The processor exits the Extended HALT state when a break event occurs. When the  
processor exits the Extended HALT state, it will first transition the VID to the original  
value and then change the bus ratio back to the original value.  
6.2.3  
Stop Grant State  
When the STPCLK# signal is asserted, the Stop Grant state of the processor is entered  
20 bus clocks after the response phase of the processor-issued Stop Grant  
Acknowledge special bus cycle. The processor will issue two Stop Grant Acknowledge  
special bus cycles, once for each die. Once the STPCLK# pin has been asserted, it may  
only be deasserted once the processor is in the Stop Grant state. All processor cores  
will enter the Stop Grant state once the STPCLK# pin is asserted. Additionally, all  
processor cores must be in the Stop Grant state before the deassertion of STPCLK#.  
Since the GTL+ signals receive power from the FSB, these signals should not be driven  
(allowing the level to return to VTT) for minimum power drawn by the termination  
resistors in this state. In addition, all other input signals on the FSB should be driven to  
the inactive state.  
RESET# will cause the processor to immediately initialize itself, but the processor will  
stay in Stop Grant state. A transition back to the Normal state will occur with the de-  
assertion of the STPCLK# signal.  
A transition to the Grant Snoop state will occur when the processor detects a snoop on  
the FSB (see Section 6.2.4).  
While in the Stop Grant State, SMI#, INIT#, and LINT[1:0] will be latched by the  
processor, and only serviced when the processor returns to the Normal State. Only one  
occurrence of each event will be recognized upon return to the Normal state.  
While in Stop Grant state, the processor will process a FSB snoop.  
Datasheet  
85  
Features  
6.2.4  
Extended HALT Snoop or HALT Snoop State,  
Stop Grant Snoop State  
The Extended HALT Snoop State is used in conjunction with the new Extended HALT  
state. If Extended HALT state is not enabled in the BIOS, the default Snoop State  
entered will be the HALT Snoop State. Refer to the sections below for details on HALT  
Snoop State, Grant Snoop State and Extended HALT Snoop State.  
6.2.4.1  
HALT Snoop State, Stop Grant Snoop State  
The processor will respond to snoop transactions on the FSB while in Stop Grant state  
or in HALT Power Down state. During a snoop transaction, the processor enters the  
HALT Snoop State:Stop Grant Snoop state. The processor will stay in this state until the  
snoop on the FSB has been serviced (whether by the processor or another agent on the  
FSB). After the snoop is serviced, the processor will return to the Stop Grant state or  
HALT Power Down state, as appropriate.  
6.2.4.2  
Extended HALT Snoop State  
The Extended HALT Snoop State is the default Snoop State when the Extended HALT  
state is enabled via the BIOS. The processor will remain in the lower bus ratio and VID  
operating point of the Extended HALT state.  
While in the Extended HALT Snoop State, snoops are handled the same way as in the  
HALT Snoop State. After the snoop is serviced the processor will return to the Extended  
HALT state.  
§ §  
86  
Datasheet  
Boxed Processor Specifications  
7
Boxed Processor Specifications  
The processor will also be offered as an Intel boxed processor. Intel boxed processors  
are intended for system integrators who build systems from baseboards and standard  
components. The boxed processor will be supplied with a cooling solution. This chapter  
documents baseboard and system requirements for the cooling solution that will be  
supplied with the boxed processor. This chapter is particularly important for OEMs that  
manufacture baseboards for system integrators. Unless otherwise noted, all figures in  
this chapter are dimensioned in millimeters and inches [in brackets]. Figure 22 shows a  
mechanical representation of a boxed processor.  
Note:  
Drawings in this section reflect only the specifications on the Intel boxed processor  
product. These dimensions should not be used as a generic keep-out zone for all  
cooling solutions. It is the system designers’ responsibility to consider their proprietary  
cooling solution when designing to the required keep-out zone on their system  
platforms and chassis. Refer to the appropriate Thermal and Mechanical Design  
Guidelines (see Section 1.2).  
Figure 22.  
Mechanical Representation of the Boxed Processor  
NOTE: The airflow of the fan heatsink is into the center and out of the sides of the fan heatsink.  
Datasheet  
87  
Boxed Processor Specifications  
7.1  
Mechanical Specifications  
7.1.1  
Boxed Processor Cooling Solution Dimensions  
This section documents the mechanical specifications of the boxed processor. The  
boxed processor will be shipped with an unattached fan heatsink. Figure 22 shows a  
mechanical representation of the boxed processor.  
Clearance is required around the fan heatsink to ensure unimpeded airflow for proper  
cooling. The physical space requirements and dimensions for the boxed processor with  
assembled fan heatsink are shown in Figure 23 (Side View), and Figure 24 (Top View).  
The airspace requirements for the boxed processor fan heatsink must also be  
incorporated into new baseboard and system designs. Airspace requirements are  
shown in Figure 28 and Figure 29. Note that some figures have centerlines shown  
(marked with alphabetic designations) to clarify relative dimensioning.  
Figure 23.  
Space Requirements for the Boxed Processor (Side View)  
95.0  
[3.74]  
81.3  
[3.2]  
10.0  
25.0  
[0.39]  
[0.98]  
Boxed Proc SideView  
88  
Datasheet  
Boxed Processor Specifications  
Figure 24.  
Space Requirements for the Boxed Processor (Top View)  
NOTES:  
1. Diagram does not show the attached hardware for the clip design and is provided only as a  
mechanical representation.  
Figure 25.  
Space Requirements for the Boxed Processor (Overall View)  
Datasheet  
89  
Boxed Processor Specifications  
7.1.2  
7.1.3  
Boxed Processor Fan Heatsink Weight  
The boxed processor fan heatsink will not weigh more than 550 grams. Refer to  
Chapter 5 and the appropriate Thermal and Mechanical Design Guidelines (see  
Section 1.2) for details on the processor weight and heatsink requirements.  
Boxed Processor Retention Mechanism and Heatsink  
Attach Clip Assembly  
The boxed processor thermal solution requires a heatsink attach clip assembly, to  
secure the processor and fan heatsink in the baseboard socket. The boxed processor  
will ship with the heatsink attach clip assembly.  
7.2  
Electrical Requirements  
7.2.1  
Fan Heatsink Power Supply  
The boxed processor's fan heatsink requires a +12 V power supply. A fan power cable  
will be shipped with the boxed processor to draw power from a power header on the  
baseboard. The power cable connector and pinout are shown in Figure 26. Baseboards  
must provide a matched power header to support the boxed processor. Table 32  
contains specifications for the input and output signals at the fan heatsink connector.  
The fan heatsink outputs a SENSE signal, which is an open- collector output that pulses  
at a rate of 2 pulses per fan revolution. A baseboard pull-up resistor provides VOH to  
match the system board-mounted fan speed monitor requirements, if applicable. Use of  
the SENSE signal is optional. If the SENSE signal is not used, pin 3 of the connector  
should be tied to GND.  
The fan heatsink receives a PWM signal from the motherboard from the 4th pin of the  
connector labeled as CONTROL.  
The boxed processor's fanheat sink requires a constant +12 V supplied to pin 2 and  
does not support variable voltage control or 3-pin PWM control.  
The power header on the baseboard must be positioned to allow the fan heatsink power  
cable to reach it. The power header identification and location should be documented in  
the platform documentation, or on the system board itself. Figure 27 shows the  
location of the fan power connector relative to the processor socket. The baseboard  
power header should be positioned within 110 mm [4.33 inches] from the center of the  
processor socket.  
90  
Datasheet  
Boxed Processor Specifications  
Figure 26.  
Boxed Processor Fan Heatsink Power Cable Connector Description  
Signal  
Pin  
Straight square pin, 4-pin terminal housing with  
polarizing ribs and friction locking ramp.  
1
2
3
4
GND  
+12 V  
0.100" pitch, 0.025" square pin width.  
SENSE  
CONTROL  
Match with straight pin, friction lock header on  
mainboard.  
3 4  
1 2  
Table 32.  
Fan Heatsink Power and Signal Specifications  
Description  
Min  
Typ  
Max  
Unit  
Notes  
+12 V: 12 volt fan power supply  
11.4  
12  
12.6  
V
-
IC:  
- Maximum fan steady-state current draw  
- Average fan steady-state current draw  
- Maximum fan start-up current draw  
1.2  
0.5  
2.2  
1.0  
A
A
A
-
- Fan start-up current draw maximum  
duration  
Second  
pulses per  
fan  
1
SENSE: SENSE frequency  
2
revolution  
2,  
3
CONTROL  
21  
25  
28  
Hz  
NOTES:  
1. Baseboard should pull this pin up to 5 V with a resistor.  
2. Open drain type, pulse width modulated.  
3. Fan will have pull-up resistor to 4.75 V maximum of 5.25 V.  
Datasheet  
91  
Boxed Processor Specifications  
Figure 27.  
Baseboard Power Header Placement Relative to Processor Socket  
7.3  
Thermal Specifications  
This section describes the cooling requirements of the fan heatsink solution used by the  
boxed processor.  
7.3.1  
Boxed Processor Cooling Requirements  
The boxed processor may be directly cooled with a fan heatsink. However, meeting the  
processor's temperature specification is also a function of the thermal design of the  
entire system, and ultimately the responsibility of the system integrator. The processor  
temperature specification is in Chapter 5. The boxed processor fan heatsink is able to  
keep the processor temperature within the specifications (see Table 26) in chassis that  
provide good thermal management. For the boxed processor fan heatsink to operate  
properly, it is critical that the airflow provided to the fan heatsink is unimpeded. Airflow  
of the fan heatsink is into the center and out of the sides of the fan heatsink. Airspace  
is required around the fan to ensure that the airflow through the fan heatsink is not  
blocked. Blocking the airflow to the fan heatsink reduces the cooling efficiency and  
decreases fan life. Figure 28 and Figure 29 illustrate an acceptable airspace clearance  
for the fan heatsink. The air temperature entering the fan should be kept below 39 ºC.  
Again, meeting the processor's temperature specification is the responsibility of the  
system integrator.  
92  
Datasheet  
Boxed Processor Specifications  
Figure 28.  
Boxed Processor Fan Heatsink Airspace Keepout Requirements (Side 1 View)  
Figure 29.  
Boxed Processor Fan Heatsink Airspace Keepout Requirements (Side 2 View)  
Datasheet  
93  
Boxed Processor Specifications  
®
7.3.2  
Fan Speed Control Operation (Intel Core™2 Extreme  
processors only)  
The boxed processor fan heatsink is designed to operate continuously at full speed to  
allow maximum user control over fan speed. The fan speed can be controlled by  
hardware and software from the motherboard. This is accomplished by varying the duty  
cycle of the Control signal on the 4th pin (see Table 32). The motherboard must have a  
4-pin fan header and must be designed with a fan speed controller with PWM output  
and Digital Thermometer measurement capabilities. For more information on specific  
motherboard requirements for 4-wire based fan speed control refer to the appropriate  
Thermal and Mechanical Design Guidelines (see Section 1.2).  
The Internal chassis temperature should be kept below 39 ºC. Meeting the processor's  
temperature specification (see Chapter 5) is the responsibility of the system integrator.  
The motherboard must supply a constant +12 V to the processor's power header to  
ensure proper operation of the fan for the boxed processor. See Table 32 for specific  
requirements.  
®
7.3.3  
Fan Speed Control Operation (Intel Core™2 Quad  
processor)  
If the boxed processor fan heatsink 4-pin connector is connected to a 3-pin  
motherboard header it will operate as follows:  
The boxed processor fan will operate at different speeds over a short range of  
internal chassis temperatures. This allows the processor fan to operate at a lower  
speed and noise level, while internal chassis temperatures are low. If internal  
chassis temperature increases beyond a lower set point, the fan speed will rise  
linearly with the internal temperature until the higher set point is reached. At that  
point, the fan speed is at its maximum. As fan speed increases, so does fan noise  
levels. Systems should be designed to provide adequate air around the boxed  
processor fan heatsink that remains cooler then lower set point. These set points,  
represented in Figure 30 and Table 33, can vary by a few degrees from fan  
heatsink to fan heatsink. The internal chassis temperature should be kept below  
38 ºC. Meeting the processor's temperature specification (see Chapter 5) is the  
responsibility of the system integrator.  
The motherboard must supply a constant +12 V to the processor's power header to  
ensure proper operation of the variable speed fan for the boxed processor. Refer to  
Table 32 for the specific requirements.  
94  
Datasheet  
Boxed Processor Specifications  
Figure 30.  
Boxed Processor Fan Heatsink Set Points  
Higher Set Point  
Highest Noise Level  
Increasing Fan  
Speed & Noise  
Lower Set Point  
Lowest Noise Level  
X
Y
Z
Internal Chassis Temperature (Degrees C)  
Table 33.  
Fan Heatsink Power and Signal Specifications  
Boxed Processor Fan  
Boxed Processor Fan Speed  
Notes  
Heatsink Set Point (ºC)  
When the internal chassis temperature is below or equal to  
this set point, the fan operates at its lowest speed.  
Recommended maximum internal chassis temperature for  
nominal operating environment.  
1
X 30  
When the internal chassis temperature is at this point, the  
fan operates between its lowest and highest speeds.  
Recommended maximum internal chassis temperature for  
worst-case operating environment.  
Y = 35  
-
-
When the internal chassis temperature is above or equal to  
this set point, the fan operates at its highest speed.  
Z 39  
NOTES:  
1. Set point variance is approximately ± 1 °C from fan heatsink to fan heatsink.  
If the boxed processor fan heatsink 4-pin connector is connected to a 4-pin  
motherboard header and the motherboard is designed with a fan speed controller with  
PWM output (CONTROL see Table 32) and remote thermal diode measurement  
capability the boxed processor will operate as follows:  
As processor power has increased the required thermal solutions have generated  
increasingly more noise. Intel has added an option to the boxed processor that allows  
system integrators to have a quieter system in the most common usage.  
The 4th wire PWM solution provides better control over chassis acoustics. This is  
achieved by more accurate measurement of processor die temperature through the  
processor's Digital Thermal Sensors (DTS) and PECI. Fan RPM is modulated through the  
use of an ASIC located on the motherboard that sends out a PWM control signal to the  
4th pin of the connector labeled as CONTROL. The fan speed is based on actual  
processor temperature instead of internal ambient chassis temperatures.  
Datasheet  
95  
Boxed Processor Specifications  
If the new 4-pin active fan heat sink solution is connected to an older 3-pin baseboard  
processor fan header it will default back to a thermistor controlled mode, allowing  
compatibility with existing 3-pin baseboard designs. Under thermistor controlled mode,  
the fan RPM is automatically varied based on the Tinlet temperature measured by a  
thermistor located at the fan inlet.  
For more details on specific motherboard requirements for 4-wire based fan speed  
control refer to the appropriate Thermal and Mechanical Design Guidelines (see  
Section 1.2).  
§ §  
96  
Datasheet  
Debug Tools Specifications  
8
Debug Tools Specifications  
8.1  
Logic Analyzer Interface (LAI)  
Intel is working with two logic analyzer vendors to provide logic analyzer interfaces  
(LAIs) for use in debugging systems. Tektronix and Agilent should be contacted to get  
specific information about their logic analyzer interfaces. The following information is  
general in nature. Specific information must be obtained from the logic analyzer  
vendor.  
Due to the complexity of systems, the LAI is critical in providing the ability to probe and  
capture FSB signals. There are two sets of considerations to keep in mind when  
designing a r system that can make use of an LAI: mechanical and electrical.  
8.1.1  
Mechanical Considerations  
The LAI is installed between the processor socket and the processor. The LAI lands plug  
into the processor socket, while the processor lands plug into a socket on the LAI.  
Cabling that is part of the LAI egresses the system to allow an electrical connection  
between the processor and a logic analyzer. The maximum volume occupied by the LAI,  
known as the keepout volume, as well as the cable egress restrictions, should be  
obtained from the logic analyzer vendor. System designers must make sure that the  
keepout volume remains unobstructed inside the system. Note that it is possible that  
the keepout volume reserved for the LAI may differ from the space normally occupied  
by the processor’s heatsink. If this is the case, the logic analyzer vendor will provide a  
cooling solution as part of the LAI.  
8.1.2  
Electrical Considerations  
The LAI will also affect the electrical performance of the FSB; therefore, it is critical to  
obtain electrical load models from each of the logic analyzers to be able to run system  
level simulations to prove that their tool will work in the system. Contact the logic  
analyzer vendor for electrical specifications and load models for the LAI solution it  
provides.  
§ §  
Datasheet  
97  
Debug Tools Specifications  
98  
Datasheet  

相关型号:

QX7135

LED驱动IC,存储器IC,放大器IC,移动电源IC,功放IC。
ETC

QX7136

可调的LED 恒流驱动器
ETC

QX7137

可调的LED恒流驱动器
ETC

QX7138

泉芯电子产品
ETC

QX8007

7段滑动调光
ETC

QX82527

Serial Communications Controller—CAN Protocol
INNOVASIC

QX888

触摸芯片,3,4段调光无频闪
ETC

QX9775

Intel Core2 Extreme Processor
INTEL

QX9910

LED恒流驱动控制IC
ETC

QX9911

高精度、高功率因数AC-DC LED驱动器
ETC

QX9920

LED驱动IC,存储器IC,放大器IC,移动电源IC,功放IC等。
ETC

QX9930

LED恒流驱动控制IC QX9930
ETC