N87C196MD [INTEL]

8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER; 8XC196MH工业电机控制CHMOS单片机
N87C196MD
型号: N87C196MD
厂家: INTEL    INTEL
描述:

8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER
8XC196MH工业电机控制CHMOS单片机

微控制器和处理器 外围集成电路 装置 电动机控制 电机 可编程只读存储器 时钟
文件: 总41页 (文件大小:1550K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
8XC196MH INDUSTRIAL MOTOR CONTROL  
CHMOS MICROCONTROLLER  
High Performance CHMOS 16-bit CPU  
16 MHz Operating Frequency  
Event Processor Array (EPA) with 2 High-  
speed Capture/Compare Modules and 4 High-  
speed Compare-only Modules  
32 Kbytes of On-chip OTPROM/ROM  
744 Bytes of On-chip Register RAM  
Register-to-register Architecture  
16 Prioritized Interrupt Sources  
Two Programmable 16-bit Timers with  
Quadrature Counting Inputs  
Two Pulse-width Modulator (PWM) Outputs  
with High Drive Capability  
Flexible 8- or 16-bit External Bus  
Peripheral Transaction Server (PTS) with 15  
×
Prioritized Sources  
1.75 µs 16 16 Multiply  
Up to 52 I/O Lines  
3 µs 32/16 Divide  
3-phase Complementary Waveform Generator  
Extended Temperature Available  
Idle and Powerdown Modes  
Watchdog Timer  
8-channel 8- or 10-bit A/D with Sample and  
Hold  
2-channel UART  
®
The 8XC196MH is a member of Intel’s family of 16-bit MCS 96 microcontrollers. It is designed primarily to  
control three-phase AC induction and DC brushless motors. It features an enhanced three-phase waveform  
generator specifically designed for use in “inverter” motor-control applications. This peripheral provides pulse-  
width modulation and three-phase sine wave generation with minimal CPU intervention. It generates three  
complementary non-overlapping PWM pulses with resolutions of 0.125 µs (edge triggered) or 0.250 µs  
(centered).  
The 8XC196MH has two dedicated serial port peripherals, allowing less software overhead. The watchdog timer  
can be programmed with one of four time options.  
The 8XC196MH is available as the 80C196MH, which does not have on-chip ROM, the 87C196MH,  
which contains 32 Kbytes of on-chip OTPROM* or factory programmed ROM, and the 83C196MH, which  
contains 32 Kbytes of factory programmed MASK ROM. It is available in 84-lead PLCC, 80-lead Shrink EIAJ/QFP,  
and 64-lead SDIP. The 64-lead package does not contain pins for the P5.1/INST and P6.7/PWM1 signals.  
Operational characteristics are guaranteed over the temperature range of – 40°C to + 85°C.  
*One-Time Programmable Read-Only Memory (OTPROM) is similar to EPROM but comes in an unwindowed package and  
cannot be erased. It is user programmable.  
Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent  
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel.  
© INTEL CORPORATION, 2004  
August 2004  
Order Number: 272543-003  
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
32K  
On-chip  
ROM/  
16  
CPU  
OTPROM  
Interrupt  
744  
Byte  
Register  
File  
RALU  
Controller  
Port 5  
Control  
Signals  
8
8
Memory  
Controller  
Port 3  
AD7:0  
8/10-Bit  
A/D  
Converter  
Peripheral  
Transaction  
Server  
24 Bytes  
CPU SFRs  
Microcode  
Engine  
Queue  
Port 4  
AD15:8  
8
Watchdog  
Timer  
S/H  
Event  
Processor  
Array  
Baud  
Rate  
Generator  
3-Phase  
Waveform  
Generator  
SIO 0  
SIO 1  
Timer 1  
Timer 2  
PWM0  
PWM1  
Mux  
Port 0  
6
4
2
2
6
Port 1  
Port 2  
Port 6  
8
8
8
4
A/D  
Port 1  
Port 2  
EXTINT  
Port 6  
Port 0  
Serial I/O  
SIO, EPA  
2 Capture/Compare  
4 Compare  
Waveform  
Generator  
A2542-01  
Figure 1. 8XC196MH Block Diagram  
2
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
the application. The Intel Packaging Handbook (order  
number 240800) describes Intel’s thermal impedance  
PROCESS INFORMATION  
This device is manufactured on PX29.5, a CHMOS IV  
process. Additional process and reliability information  
is available in Intel’s Components Quality and  
Reliability Handbook (order number 210997).  
test methodology.  
Table 1. Thermal Characteristics  
Package Type  
84-lead PLCC  
80-lead QFP  
θ
θ
JC  
JA  
All thermal impedance data is approximate for static  
air conditions at 1 watt of power dissipation. Values  
will change depending on operating conditions and  
33°C/W  
56°C/W  
56°C/W  
11°C/W  
12°C/W  
N/A  
64-lead SDIP  
X XX 8 X C 196 XX XX  
Device Speed:  
No Mark = 16 MHz  
Kx, Mx, Nx  
Product Family:  
CHMOS Technology  
Program Memory Options:  
0 = ROMless, 3 = ROM, 7 = OTPROM  
x = SDIP, x = PLCC, x = QFP  
Package - Type Options:  
Temperature and Burn In Options:  
x = –40˚C – +85˚C Ambient  
with Intel Standard Burn-In  
A2759-01  
Figure 2. The 8XC196MH Family Nomenclature  
To address the fact that many of the package prefix variables have changed,  
all package prefix variables in this document are now indicated with an "x".  
NOTE:  
3
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
Table 2. 8XC196MH Memory Map  
Address  
Description  
(1)  
Notes  
0FFFFH  
External Memory  
0A000H  
09FFFH  
Internal ROM/OTPROM or External Memory  
02080H  
0207FH  
Reserved  
0205EH  
1, 2  
0205DH  
PTS Vectors  
02040H  
0203FH  
Interrupt Vectors (upper)  
02030H  
0202FH  
ROM/OTPROM Security Key  
02020H  
0201FH  
Reserved  
0201CH  
1, 2  
0201BH  
0201AH  
02019H  
02018H  
Reserved (must contain 20H)  
CCB1  
Reserved (must contain 20H)  
CCB0  
02017H  
02014H  
Reserved  
02013H  
02000H  
Interrupt Vectors (lower)  
Internal SFRs  
External Memory  
Register RAM  
CPU SFRs  
01FFFH  
01F00H  
1
1EFFH  
300H  
2FFH  
18H  
3
1
17H  
00H  
NOTES:  
1. Unless otherwise noted, write 0FFH to reserved memory locations and write 0 to reserved SFR bits.  
2. WARNING: The contents and/or function of reserved locations may change with future revisions of the  
device.  
3. Code executed in locations 0000H to 02FFH will be forced external.  
4
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
Table 3. Signals Arranged by Functional Categories  
Address & Data  
Programming Control  
AINC#  
Input/Output  
P0.0/ACH0  
Input/Output (Cont’d)  
P2.5/COMP1  
P2.6/COMP2  
P2.7/SCLK1#/BCLK1  
P3.7:0  
AD15:0  
CPVER  
P0.1/ACH1  
Bus Control & Status  
ALE/ADV#  
BHE#/WRH#  
BUSWIDTH  
INST  
PACT#  
P0.2/ACH2  
PALE#  
P0.3/ACH3  
PBUS15:0  
PMODE.3:0  
PROG#  
P0.4/ACH4  
P4.7:0  
P0.5/ACH5  
P5.7:0  
P0.6/ACH6/T1CLK  
P0.7/ACH7/T1DIR  
P1.0/TXD0  
P6.0/WG1#  
P6.1/WG1  
READY  
PVER  
RD#  
P6.2/WG2#  
P6.3/WG2  
WR#/WRL#  
Processor Control  
EA#  
P1.1/RXD0  
P1.2/TXD1  
P6.4/WG3#  
P6.5/WG3  
Power & Ground  
EXTINT  
NMI  
P1.3/RXD1  
ANGND  
VCC  
P2.0/EPA0  
P6.6/PWM0  
P6.7/PWM1  
ONCE#  
P2.1/SCLK0#/BCLK0  
P2.2/EPA1  
VPP  
RESET#  
XTAL1  
VREF  
VSS  
P2.3/COMP3  
P2.4/COMP0  
XTAL2  
NOTE: The following signals are not available in the 64-pin package: P5.1, P6.7, INST, and PWM1.  
5
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
VSS  
P5.0/ALE/ADV#  
VPP  
1
2
3
4
5
6
7
8
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P5.6/READY  
P5.4/ONCE#  
EXTINT  
P5.3/RD#  
VSS  
XTAL1  
P5.5/BHE#/WRH#  
P5.2/WR#/WRL#  
P5.7/BUSWIDTH  
P4.6/AD14/PBUS.14  
P4.5/AD13/PBUS.13  
P4.7/AD15/PBUS.15  
VCC  
P4.4/AD12/PBUS.12  
P4.3/AD11/PBUS.11  
P4.2/AD10/PBUS.10  
P4.1/AD9/PBUS.9  
P4.0/AD8/PBUS.8  
P3.7/AD7/PBUS.7  
P3.6/AD6/PBUS.6  
P3.5/AD5/PBUS.5  
P3.4/AD4/PBUS.4  
P3.3/AD3/PBUS.3  
P3.2/AD2/PBUS.2  
P3.1/AD1/PBUS.1  
P3.0/AD0/PBUS.0  
RESET#  
XTAL2  
P6.6/PWM0  
P2.7/SCLK1#/BCLK1  
P2.6/COMP2/CPVER  
P2.5/COMP1/PACT#  
P2.4/COMP0/AINC#  
P2.3/COMP3  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
P2.2/EPA1/PROG#  
P2.1/SCLK0#/BCLK0/PALE#  
P2.0/EPA0/PVER  
P0.0/ACH0  
xx8XC196MH  
P0.1/ACH1  
P0.2/ACH2  
TOP VIEW  
(Looking down  
on component side of  
PC board)  
P0.3/ACH3  
P0.4/ACH4/PMODE.0  
P0.5/ACH5/PMODE.1  
VREF  
ANGND  
P0.6/ACH6/T1CLK/PMODE.2  
P0.7/ACH7/T1DIR/PMODE.3  
P1.0/TXD0  
NMI  
EA#  
P1.1/RXD0  
VSS  
VCC  
P6.5/WG3  
P1.2/TXD1  
P1.3/RXD1  
P6.0/WG1#  
P6.4/WG3#  
P6.1/WG1  
P6.3/WG2  
P6.2/WG2#  
A2572-01  
Figure 3. 8XC196MH 64-lead Shrink DIP (SDIP) Package  
6
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
Table 4. 64-lead Shrink DIP (SDIP) Pin Assignment  
Pin  
Name  
Pin  
Name  
Pin  
Name  
Pin  
Name  
1
VSS  
17 P3.7/AD7  
/PBUS.7  
33 P6.2/WG2#  
34 P6.1/WG1  
35 P6.0/WG1#  
36 P1.3/RXD1  
37 P1.2/TXD1  
38 P1.1/RXD0  
39 P1.0/TXD0  
49 P0.0/ACH0  
2
3
4
5
6
7
8
9
P5.0/ALE/ADV#  
VPP  
18 P3.6/AD6  
/PBUS.6  
50 P2.0/EPA0/PVER  
19 P3.5/AD5  
/PBUS.5  
51 P2.1/SCLK0#  
/BCLK0/PALE#  
P5.3/RD#  
20 P3.4/AD4  
/PBUS.4  
52 P2.2/EPA1  
/PROG#  
P5.5/BHE#/WRH#  
P5.2/WR#/WRL#  
P5.7/BUSWIDTH  
21 P3.3/AD3  
/PBUS.3  
53 P2.3/COMP3  
22 P3.2/AD2  
/PBUS.2  
54 P2.4/COMP0  
/AINC#  
23 P3.1/AD1  
/PBUS.1  
55 P2.5/COMP1  
/PACT#  
P4.6/AD14  
/PBUS.14  
24 P3.0/AD0  
/PBUS.0  
40 P0.7/ACH7/T1DIR  
/PMODE.3  
56 P2.6/COMP2  
/CPVER  
P4.5/AD13  
/PBUS.13  
25 RESET#  
41 P0.6/ACH6  
57 P2.7/SCLK1#  
/BCLK1  
/T1CLK/PMODE.2  
10 P4.7/AD15  
/PBUS.15  
26 NMI  
42 ANGND  
58 P6.6/PWM0  
11 VCC  
27 EA#  
28 VSS  
43 VREF  
59 XTAL2  
60 XTAL1  
12 P4.4/AD12  
/PBUS.12  
44 P0.5/ACH5  
/PMODE.1  
13 P4.3/AD11  
/PBUS.11  
29 VCC  
45 P0.4/ACH4  
/PMODE.0  
61 VSS  
14 P4.2/AD10  
/PBUS.10  
30 P6.5/WG3  
46 P0.3/ACH3  
62 EXTINT  
15 P4.1/AD9/PBUS.9  
16 P4.0/AD8/PBUS.8  
31 P6.4/WG3#  
32 P6.3/WG2  
47 P0.2/ACH2  
48 P0.1/ACH1  
63 P5.4/ONCE#  
64 P5.6/READY  
7
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
P4.7/AD15/PBUS.15  
P4.6/AD14/PBUS.14  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
P2.5/COMP1/PACT#  
P2.4/COMP0/AINC#  
NC  
V
CC  
P4.5/AD13/PBUS.13  
NC  
NC  
P2.7/SCLK1#/BCLK1  
P2.3/COMP3  
P2.2/EPA1/PROG#  
NC  
P4.4/AD12/PBUS.12  
P4.3/AD11/PBUS.11  
P4.2/AD10/PBUS.10  
P4.1/AD9/PBUS.9  
P4.0/AD8/PBUS.8  
NC  
xx8XC196MH  
NC  
P2.1/SCLK0#/BCLK0/PALE#  
P2.0/EPA0/PVER  
NC  
P0.0/ACH0  
P0.1/ACH1  
P0.2/ACH2  
P0.3/ACH3  
P0.4/ACH4/PMODE.0  
P0.5/ACH5/PMODE.1  
TOP VIEW  
(Looking down  
on component side of  
PC board)  
NC  
P3.7/AD7/PBUS.7  
P3.6/AD6/PBUS.6  
P3.5.AD5/PBUS.5  
P3.4/AD4/PBUS.4  
P3.3/AD3/PBUS.3  
P3.2/AD2/PBUS.2  
P3.1/AD1/PBUS.1  
P3.0/AD0/PBUS.0  
NC  
V
REF  
ANGND  
P0.6/ACH6/T1CLK/PMODE.2  
A2573-02  
Figure 4. 8XC196MH 84-lead PLCC Package  
8
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
Table 5. 84-lead PLCC Pin Assignment  
Pin  
1
Name  
Pin  
Name  
Pin  
Name  
Pin  
Name  
P5.4/ONCE#  
P5.6/READY  
22 NC  
23 NC  
43 VSS  
64 P2.0/EPA0/PVER  
2
44 P6.2/WG2#  
45 P6.1/WG1  
46 P6.0/WG1#  
47 P1.3/RXD1  
48 P1.2/TXD1  
49 NC  
65 P2.1/SCLK0#  
/BCLK0/PALE#  
3
4
5
6
7
8
9
P5.1/INST  
VSS  
24 P3.7/AD7  
/PBUS.7  
66 NC  
25 P3.6/AD6  
/PBUS.6  
67 NC  
P5.0/ALE/ADV#  
VPP  
26 P3.5/AD5  
/PBUS.5  
68 P2.2/EPA1  
/PROG#  
27 P3.4/AD4  
/PBUS.4  
69 P2.3/COMP3  
P5.3/RD#  
P5.5/BHE#/WRH#  
NC  
28 P3.3/AD3  
/PBUS.3  
70 P2.7/SCLK1#  
/BCLK1  
29 P3.2/AD2  
/PBUS.2  
50 NC  
71 NC  
30 P3.1/AD1  
/PBUS.1  
51 P1.1/RXD0  
52 P1.0/TXD0  
53 P0.7/ACH7  
72 NC  
10 P5.2/WR#/WRL#  
11 P5.7/BUSWIDTH  
31 P3.0/AD0  
/PBUS.0  
73 P2.4/COMP0  
/AINC#  
32 NC  
74 P2.5/COMP1  
/PACT#  
/T1DIR/PMODE.3  
54 P0.6/ACH6  
/T1CLK/PMODE.2  
12 P4.7/AD15  
/PBUS.15  
33 RESET#  
34 NMI  
75 P2.6/COMP2  
/CPVER  
13 P4.6/AD14  
/PBUS.14  
55 ANGND  
76 P6.7/PWM1  
14 VCC  
35 NC  
56 VREF  
77 P6.6/PWM0  
78 NC  
15 P4.5/AD13  
/PBUS.13  
36 EA#  
57 P0.5/ACH5  
/PMODE.1  
16 NC  
37 VSS  
58 P0.4/ACH4  
/PMODE.0  
79 NC  
17 P4.4/AD12  
/PBUS.12  
38 NC  
59 P0.3/ACH3  
60 P0.2/ACH2  
61 P0.1/ACH1  
80 NC  
18 P4.3/AD11  
/PBUS.11  
39 VCC  
81 XTAL2  
82 XTAL1  
19 P4.2/AD10  
/PBUS.10  
40 P6.5/WG3  
20 P4.1/AD9/PBUS.9  
21 P4.0/AD8/PBUS.8  
41 P6.4/WG3#  
42 P6.3/WG2  
62 P0.0/ACH0  
63 NC  
83 VSS  
84 EXTINT  
9
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
80  
75  
68  
65  
67 66  
79 78 77 76  
74 73 72 71 70 69  
P6.7/PWM1  
64  
1
P5.2/WR#/WRL#  
P5.7/BUSWIDTH  
P2.6/COMP2/CPVER  
P2.5/COMP1/PACT#  
P2.4/COMP0/AINC#  
NC  
63  
62  
61  
2
3
P4.7/AD15/PBUS.15  
P4.6/AD14/PBUS.14  
4
60  
59  
58  
57  
56  
55  
54  
53  
V
5
CC  
NC  
6
P4.5/AD13/PBUS.13  
NC  
P2.7/SCLK1#/BCLK1  
P2.3/COMP3  
P2.2/EPA1/PROG#  
NC  
7
8
P4.4/AD12/PBUS.12  
P4.3/AD11/PBUS.11  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P4.2/AD10/PBUS.10  
P4.1/AD9/PBUS.9  
xx8XC196MH  
NC  
P2.1/SCLK0#/BCLK0/PALE#  
P2.0/EPA0/PVER  
NC  
P4.0/AD8/PBUS.8  
TOP VIEW  
(Looking down  
on component side of  
PC board)  
52  
51  
P3.7/AD7/PBUS.7  
P3.6/AD6/PBUS.6  
P3.5/AD5/PBUS.5  
P0.0/ACH0  
50  
49  
48  
47  
P0.1/ACH1  
P3.4/AD4/PBUS.4  
P3.3/AD3/PBUS.3  
P0.2/ACH2  
P0.3/ACH3  
P3.2/AD2/PBUS.2  
P3.1/AD1/PBUS.1  
P3.0/AD0/PBUS.0  
NC  
46  
45  
44  
43  
P0.4/ACH4/PMODE.0  
P0.5/ACH5/PMODE.1  
V
21  
22  
23  
REF  
ANGND  
RESET#  
P0.6/ACH6/T1CLK/PMODE.2  
P0.7/ACH7/T1DIR/PMODE.3  
42  
41  
NMI  
EA#  
24  
36  
38 39  
25 26 27 28 29 30 31 32 33 34 35  
37  
40  
A2574-01  
Figure 5. 8XC196MH 80-lead Shrink EIAJ/QFP Package  
10  
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
Table 6. 80-lead Shrink EIAJ/QFP Pin Assignment  
Pin  
Name  
Pin  
Name  
Pin  
Name  
Pin  
Name  
1
P5.2/WR#/WRL#  
21 NC  
41 P0.7/ACH7/T1DIR  
/PMODE.3  
61 P2.4/COMP0  
/AINC#  
2
3
4
5
6
P5.7/BUSWIDTH  
22 RESET#  
23 NMI  
24 EA#  
25 VSS  
42 P0.6/ACH6  
62 P2.5/COMP1  
/PACT#  
/T1CLK/PMODE.2  
P4.7/AD15  
/PBUS.15  
43 ANGND  
63 P2.6/COMP2  
/CPVER  
P4.6/AD14  
/PBUS.14  
44 VREF  
64 P6.7/PWM1  
65 P6.6/PWM0  
66 NC  
VCC  
45 P0.5/ACH5  
/PMODE.1  
P4.5/AD13  
/PBUS.13  
26 NC  
46 P0.4/ACH4  
/PMODE.0  
7
8
NC  
27 VCC  
47 P0.3/ACH3  
48 P0.2/ACH2  
67 NC  
68 NC  
P4.4/AD12  
/PBUS.12  
28 P6.5/WG3  
9
P4.3/AD11  
/PBUS.11  
29 P6.4/WG3#  
30 P6.3/WG2  
49 P0.1/ACH1  
50 P0.0/ACH0  
69 XTAL2  
70 XTAL1  
10 P4.2/AD10  
/PBUS.10  
11 P4.1/AD9/PBUS.9  
12 P4.0/AD8/PBUS.8  
13 P3.7/AD7/PBUS.7  
31 VSS  
51 NC  
71 VSS  
32 P6.2/WG2#  
33 P6.1/WG1  
52 P2.0/EPA0/PVER  
72 EXTINT  
73 P5.4/ONCE#  
53 P2.1/SCLK0#  
/BCLK0/PALE#  
14 P3.6/AD6/PBUS.6  
15 P3.5/AD5/PBUS.5  
16 P3.4/AD4/PBUS.4  
34 P6.0/WG1#  
35 P1.3/RXD1  
36 P1.2/TXD1  
54 NC  
55 NC  
74 P5.6/READY  
75 P5.1/INST  
76 VSS  
56 P2.2/EPA1  
/PROG#  
17 P3.3/AD3/PBUS.3  
18 P3.2/AD2/PBUS.2  
37 NC  
38 NC  
57 P2.3/COMP3  
77 P5.0/ALE/ADV#  
78 VPP  
58 P2.7/SCLK1#  
/BCLK1  
19 P3.1/AD1/PBUS.1  
20 P3.0/AD0/PBUS.0  
39 P1.1/RXD0  
40 P1.0/TXD0  
59 NC  
60 NC  
79 P5.3/RD#  
80 P5.5/BHE#/WRH#  
11  
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
PIN DESCRIPTIONS  
Table 7. Signal Descriptions  
Signal  
Multiplexed  
With  
Type  
Description  
Name  
ACH7  
I
Analog Channels. These pins are analog inputs to the A/D  
converter.  
P0.7/T1DIR/PMODE.3  
P0.6/T1CLK/PMODE.2  
P0.5/PMODE.1  
P0.4/PMODE.0  
P0.3:0  
ACH6  
ACH5  
ACH4  
ACH3:0  
These pins are multiplexed with the port 0 pins. While it is  
possible for the pins to function simultaneously as analog and  
digital inputs, this is not recommended because reading the  
port while a conversion is in process can produce unreliable  
conversion results.  
The ANGND and VREF pins must be connected for the A/D  
converter and the multiplexed port pins to function.  
AD15:8  
AD7:0  
I/O  
O
Address/Data Lines. These pins provide a multiplexed  
address and data bus. During the address phase of the bus  
cycle, address bits 0–15 are presented on the bus and can  
be latched using ALE or ADV#. During the data phase, 8- or  
16-bit data is transferred.  
P4.7:0/PBUS.15:8  
P3.7:0/PBUS.7:0  
ADV#  
Address Valid. This active-low output signal is asserted only P5.0/ALE  
during external memory accesses.  
ADV# indicates that valid address information is available on  
the system address/data bus. The signal remains low while a  
valid bus cycle is in progress and is returned high as soon as  
the bus cycle completes.  
An external latch can use the ADV# signal to demultiplex the  
address from the address/data bus. Used with a decoder,  
ADV# can generate chip-selects for external memory.  
AINC#  
ALE  
I
Auto Increment. In slave programming mode, this active-low P2.4/COMP0  
input signal enables the autoincrement mode. Auto increment  
allows reading from or writing to sequential OTPROM  
locations without requiring address transactions across the  
programming bus for each read or write.  
O
Address Latch Enable. This active-high output signal is  
asserted only during external memory cycles.  
P5.0/ADV#  
ALE signals the start of an external bus cycle and indicates  
that valid address information is available on the system  
address/data bus. ALE differs from ADV# in that it is not  
returned high until a new bus cycle is to begin.  
An external latch can use ALE to demultiplex the address  
from the address/data bus.  
ANGND  
GND Analog Ground. Reference ground for the A/D converter  
and the logic used to read port 0. ANGND must be held at  
nominally the same potential as VSS  
.
BCLK1  
BCLK0  
I
Serial Communications Baud Clock 0 and 1. BCLK0 and 1 P2.7/SCLK1#  
are alternate clock sources for the serial ports. The maximum P2.1/SCLK0#/PALE#  
input frequency is FOSC/4.  
12  
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
Table 7. Signal Descriptions (Continued)  
Signal  
Name  
Multiplexed  
Type  
Description  
With  
BHE#  
O
Byte High Enable. During 16-bit bus cycles, this active-low  
output signal is asserted for word reads and writes and for  
high-byte reads and writes to external memory. BHE#  
indicates that valid data is being transferred over the upper  
half of the system address/data bus.  
P5.5/WRH#  
BHE#, in conjunction with A0, selects the memory byte to be  
accessed:  
BHE#  
A0  
Byte(s) Accessed  
0
0
1
0
1
0
both bytes  
high byte only  
low byte only  
BUSWIDTH  
I
Bus Width. When enabled in the chip configuration register, P5.7  
this active-high input signal dynamically selects the bus width  
of the bus cycle in progress. When BUSWIDTH is high, a 16-  
bit bus cycle occurs; when BUSWIDTH is low, an 8-bit bus  
cycle occurs. BUSWIDTH is active during a CCR fetch.  
COMP3  
COMP2  
COMP1  
COMP0  
O
O
Event Processor Array (EPA) Compare Pins. These  
signals are the output of the EPA compare modules. These  
pins are multiplexed with other signals and may be  
configured as standard I/O.  
P2.3  
P2.6/CPVER  
P2.5/PACT#  
P2.4/AINC#  
CPVER  
Cumulative Program Verification. This active-high output  
signal indicates whether any verify errors have occurred  
since the device entered programming mode. CPVER  
remains high until a verify error occurs, at which time it is  
driven low. Once an error occurs, CPVER remains low until  
the device exits programming mode. When high, CPVER  
indicates that all locations have programmed correctly since  
the device entered programming mode.  
P2.6/COMP2  
EA#  
I
External Access. This active-low input signal directs  
memory accesses to on-chip or off-chip memory. If EA# is  
low, the memory access is off-chip. If EA# is high and the  
memory address is within 2000H–2FFFH, the access is to  
on-chip ROM or OTPROM. Otherwise, an access with EA#  
high is to off-chip memory.  
EA# is sampled only on the rising edge of RESET#.  
If EA# = VEA on the rising edge of RESET#, the device enters  
the programming mode selected by PMODE.3:0.  
For devices without ROM, EA# must be tied low.  
EPA1  
EPA0  
I/O  
Event Processor Array (EPA) Input/Output pins. These  
are the high-speed input/output pins for the EPA  
P2.2/PROG#  
P2.0/PVER  
capture/compare modules. These pins are multiplexed with  
other signals and may be configured as standard I/O.  
13  
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
Table 7. Signal Descriptions (Continued)  
Signal  
Name  
Multiplexed  
With  
Type  
Description  
EXTINT  
I
External Interrupt. This programmable interrupt is controlled  
by the WG_PROTECT register. This register controls  
whether the interrupt is edge triggered or sampled and  
whether a rising edge/high level or falling edge/low level  
activates the interrupt. This interrupt vectors through memory  
location 203CH. If the chip is in idle mode and if EXTINT is  
enabled, a valid EXTINT interrupt brings the chip back to  
normal operation, where the first action is to execute the  
EXTINT service routine. After completion of the service  
routine, execution resumes at the instruction following the  
one that put the chip into idle mode.  
In powerdown mode, a valid EXTINT interrupt causes the  
chip to return to normal operating mode. If EXTINT is  
enabled, the EXTINT service routine is executed. Otherwise,  
execution continues at the instruction following the IDLPD  
instruction that put the chip into powerdown mode.  
INST  
O
Instruction Fetch. This active-high output signal is valid only P5.1  
during external memory bus cycles. When high, INST  
indicates that an instruction is being fetched from external  
memory. The signal remains high during the entire bus cycle  
of an external instruction fetch. INST is low for data  
accesses, including interrupt vector fetches and chip configu-  
ration byte reads. INST is low during internal memory  
fetches.  
NMI  
I
Nonmaskable Interrupt. In normal operating mode, a rising  
edge on NMI causes a vector through the NMI interrupt at  
location 203EH. NMI must be asserted for greater than one  
state time to guarantee that it is recognized.  
In idle mode, a rising edge on NMI brings the chip back to  
normal operation, where the first action is to execute the NMI  
service routine. After completion of the service routine,  
execution resumes at the instruction following the one that  
put the chip into idle mode.  
In powerdown mode, NMI causes a return to normal  
operating mode only if it is tied to EXTINT.  
ONCE#  
I
On-circuit Emulation. Holding this pin low while the  
RESET# signal transitions from a low to a high places the  
device into on-circuit emulation (ONCE) mode. ONCE mode  
isolates the device from other components in the system to  
allow the use of a clip-on emulator for system debugging.  
This mode puts all pins except XTAL1 and XTAL2 into a high-  
impedance state. To exit ONCE mode, reset the device by  
pulling the RESET# signal low.  
P5.4  
14  
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
Table 7. Signal Descriptions (Continued)  
Signal  
Name  
Multiplexed  
Type  
Description  
With  
P0.7  
I
Port 0. This is a high-impedance, input-only port. Port 0 pins ACH7/T1DIR/PMODE.3  
P0.6  
P0.5  
P0.4  
P0.3:0  
should not be left floating.  
ACH6/T1CLK/PMODE.2  
ACH5/PMODE.1  
ACH4/PMODE.0  
ACH3:0  
These pins may individually be used as analog inputs  
(ACHx) or digital inputs (P0.x). While it is possible for the pins  
to function simultaneously as analog and digital inputs, this is  
not recommended because reading port 0 while a conversion  
is in process can produce unreliable conversion results.  
ANGND and VREF must be connected for port 0 and the A/D  
converter to function.  
P1.3  
P1.2  
P1.1  
P1.0  
I
Port 1. This is a 4-bit, bidirectional, standard I/O port that is  
multiplexed with individually selectable special-function  
signals. (Used as PBUS.15:12 in Auto-programming Mode.)  
RXD1  
TXD1  
RXD0  
TXD0  
P2.7  
P2.6  
P2.5  
P2.4  
P2.3  
P2.2  
P2.1  
P2.0  
I/O  
Port 2. This is an 8-bit, bidirectional, standard I/O port that is SCLK1#/BCLK1  
multiplexed with individually selectable special-function COMP2/CPVER  
signals. P2.6 is multiplexed with a special test mode function. COMP1/PACT#  
To prevent accidental entry into test modes, always configure COMP0/AINC#  
P2.6 as an output.  
COMP3  
EPA1/PROG#  
SCLK0#/BCLK0/PALE#  
EPA0/PVER  
P3.7:0  
I/O  
I/O  
I/O  
Port 3. This is an 8-bit, bidirectional, memory-mapped I/O  
port with open-drain outputs. The pins are shared with the  
multiplexed address/data bus, which has complementary  
drivers.  
AD7:0/PBUS.7:0  
In programming modes, port 3 serves as the low byte of the  
programming bus (PBUS).  
P4.7:0  
Port 4. This is an 8-bit, bidirectional, memory-mapped I/O  
port with open-drain outputs. The pins are shared with the  
multiplexed address/data bus, which has complementary  
drivers.  
AD15:8/PBUS.15:8  
In programming modes, port 4 serves as the high byte of the  
programming bus (PBUS).  
P5.7  
P5.6  
P5.5  
P5.4  
P5.3  
P5.2  
P5.1  
P5.0  
Port 5. This is an 8-bit, bidirectional, standard I/O port that is BUSWIDTH  
multiplexed with individually selectable control signals.  
Because P5.4 is multiplexed with the ONCE# function,  
always configure it as an output to prevent accidental entry  
into ONCE mode.  
READY  
BHE#/WRH#  
ONCE#  
RD#  
WR#/WRL#  
INST  
ALE/ADV#  
15  
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
Table 7. Signal Descriptions (Continued)  
Signal  
Name  
Multiplexed  
With  
Type  
Description  
P6.7  
O
Port 6. This is an 8-bit output port that is multiplexed with the PWM1  
P6.6  
P6.5  
P6.4  
P6.3  
P6.2  
P6.1  
P6.0  
special functions of the waveform generator and PWM  
peripherals. The WG_OUT register configures the pins,  
PWM0  
WG3  
establishes the output polarity, and controls whether changes WG3#  
to the outputs are synchronized with an event or take effect  
immediately.  
WG2  
WG2#  
WG1  
WG1#  
PACT#  
O
I
Programming Active. In auto-programming mode, PACT#  
low indicates that programming activity is occurring.  
P2.5/COMP1  
PALE#  
Programming ALE. In slave programming mode, this active- P2.1/SCLK0#/BCLK0  
low input indicates that ports 3 and 4 contain a  
command/address. When PALE# is asserted, data and  
commands on ports 3 and 4 are read into the device.  
PBUS.15:8  
PBUS.7:0  
I/O  
Programming Bus. In programming modes, used as a  
P4.7:0/AD15:8  
bidirectional port with open-drain outputs to pass commands, P3.7:0/AD7:0  
addresses, and data to or from the device. Used as a regular  
system bus to access external memory during auto-  
programming mode. When using slave programming mode,  
the PBUS is used in open-drain I/O port mode (not as a  
system bus). In slave programming mode, you must add  
external pull-up resistors to read data from the device during  
the dump word routine.  
PMODE.3  
PMODE.2  
PMODE.1  
PMODE.0  
I
I
Programming Mode Select. Determines the OTPROM  
programming algorithm that is to be performed. PMODE is  
sampled after a device reset when EA# = VEA and must be  
stable while the device is operating.  
P0.7/ACH7/T1DIR  
P0.6/ACH6/T1CLK  
P0.5/ACH5  
P0.4/ACH4  
PROG#  
Programming Start. This active-low input is valid only in  
slave programming mode. The rising edge of PROG# latches  
data on the PBUS and begins programming. The falling edge  
of PROG# ends programming.  
P2.2/EPA1  
O
Program Verification. In programming modes, this active-  
high output signal is asserted to indicate that the word has  
programmed correctly. (PVER low after the rising edge of  
PROG# indicates an error.)  
P2.0/EPA0  
PVER  
PWM1:0  
RD#  
O
O
Pulse Width Modulator Outputs. These are PWM output  
pins with high-current drive capability. The duty cycle and  
frequency-pulse-widths are programmable.  
P6.7:6  
P5.3  
Read. Read-signal output to external memory. RD# is  
asserted only during external memory reads.  
16  
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
Table 7. Signal Descriptions (Continued)  
Signal  
Name  
Multiplexed  
Type  
Description  
With  
READY  
I
Ready Input. This active-high input signal is used to  
lengthen external memory cycles for slow memory by  
generating wait states.  
P5.6  
When READY is high, CPU operation continues in a normal  
manner. If READY is low, the memory controller inserts wait  
states until the READY signal goes high or until the number  
of wait states is equal to the number programmed into the  
chip configuration register.  
READY is ignored for all internal memory accesses.  
RESET#  
I/O  
Reset. Reset input to and open-drain output from the chip. A  
falling edge on RESET# initiates the reset process. When  
RESET# is first asserted, the chip turns on a pull-down  
transistor connected to the RESET pin for 16 state times.  
This function can also be activated by execution of the RST  
instruction. In the powerdown and idle modes, asserting  
RESET# causes the chip to reset and return to normal  
operating mode. RESET# is a level-sensitive input.  
RXD1  
RXD0  
I/O  
I/O  
Receive Serial Data 0 and 1. In modes 1, 2, and 3, RXD0  
and 1 are used to receive serial port data. In mode 0, they  
function as either inputs or open-drain outputs for data.  
P1.3  
P1.1  
SCLK1#  
SCLK0#  
Synchronous Clock Pin 0 and 1. In mode 4, these are the  
bidrectional, shift clock signals that synchronize the serial  
data transfer. Data is transferred 8 bits at a time with the LSB  
first. The DIR bit (SP_CONx.7) controls the direction of  
SCLKx signal.  
P2.7/BCLK1  
P2.1/BCLK0  
DIR = 0 The internal shift clock is output on SCLKx.  
DIR = 1 An external shift clock is input on SCLKx.  
T1CLK  
T1DIR  
I
I
External Clock. External clock for timer 1. Timer 1  
increments (or decrements) on both rising and falling edges  
of T1CLK. Also used in conjunction with T1DIR for  
quadrature counting mode.  
P0.6/ACH6/PMODE.2  
Timer 1 External Direction. External direction (up/down) for P0.7/ACH7/PMODE.3  
timer 1. Timer 1 increments when T1DIR is high and  
decrements when it is low. Also used in conjunction with  
T1CLK for quadrature counting mode.  
TXD1  
TXD0  
O
Transmit Serial Data 0 and 1. In serial I/O modes 1, 2, and  
3, TXD0 and 1 are used to transmit serial port data. In mode P1.0  
0, they are used as the serial clock output.  
P1.2  
VCC  
VPP  
PWR Digital Supply Voltage. Connect each VCC pin to the digital  
supply voltage.  
PWR Programming Voltage. Set to 12.5 V when programming the  
on-chip OTPROM. Also the timing pin for the “return from  
power-down” circuit.  
17  
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
Table 7. Signal Descriptions (Continued)  
Description  
Signal  
Name  
Multiplexed  
With  
Type  
VREF  
PWR Reference Voltage for the A/D Converter. VREF is also the  
supply voltage to the analog portion of the A/D converter and  
the logic used to read Port 0. VREF must be connected for the  
A/D and port 0 to function.  
VSS  
GND Digital Circuit Ground (0 volts). Connect each VSS pin to  
ground.  
WG3  
WG2  
WG1  
O
O
O
O
Waveform Generator Phase 13 Positive Outputs.  
P6.5  
P6.3  
P6.1  
3-phase output signals used in motion-control applications.  
WG3#  
WG2#  
WG1#  
Waveform Generator Phase 13 Negative Outputs.  
Complementary 3-phase output signals used in motion-  
control applications.  
P6.4  
P6.2  
P6.0  
WR#  
Write. This active-low output indicates that an external write  
is occurring. This signal is asserted only during external  
memory writes.  
P5.2/WRL#  
WRH#  
Write High. During 16-bit bus cycles, this active-low output  
signal is asserted for high-byte writes and word writes to  
external memory.  
P5.5/BHE#  
During 8-bit bus cycles, WRH# is asserted for all write  
operations.  
WRL#  
XTAL1  
O
I
Write Low. During 16-bit bus cycles, this active-low output  
signal is asserted for low-byte writes and word writes.  
During 8-bit bus cycles, WRL# is asserted for all write  
operations.  
P5.2/WR#  
Clock/Oscillator Input. Input to the on-chip oscillator  
inverter and the internal clock generator. Also provides the  
clock input for the serial I/O baud-rate generator, timers, and  
PWM unit. If an external oscillator is used, connect the  
external clock input signal to XTAL1 and ensure that the  
XTAL1 VIH specification is met.  
XTAL2  
O
Oscillator Output. Output of the on-chip oscillator inverter.  
When using the on-chip oscillator, connect XTAL2 to an  
external crystal or resonator. When using an external clock  
source, let XTAL2 float.  
18  
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
ELECTRICAL CHARACTERISTICS  
ABSOLUTE MAXIMUM RATINGS*  
Storage Temperature ................................ – 65°C to + 150°C  
Ambient Temperature  
NOTICE: This data sheet contains preliminary infor-  
mation on new products in production. It is valid for  
the devices indicated in the revision history. The  
specifications are subject to change without notice.  
under Bias.............................................. – 40°C to + 85°C  
Voltage from VPP or EA# to  
VSS or ANGND (Note 1) ...................... – 0.5 V to + 13.0 V  
Voltage with respect to  
*WARNING: Stressing the device beyond the “Absolute  
Maximum Ratings” may cause permanent damage. These  
are stress ratings only. Operation beyond the “Operating  
Conditions” is not recommended and extended exposure  
beyond the “Operating Conditions” may affect device reli-  
ability.  
V
SS or ANGND (Note 1) ........................ – 0.5 V to + 7.0 V  
(This includes VPP on ROM and CPU devices.)  
Power Dissipation .......................................................... 1.5 W  
(based on package heat transfer limitations, not device  
power consumption)  
OPERATING CONDITIONS*  
TA (Ambient Temperature Under Bias) .........– 40°C to + 85°C  
V
CC (Digital Supply Voltage) .......................... 4.50 V to 5.50 V  
V
REF (Analog Supply Voltage) ....................... 4.50 V to 5.50 V  
F
OSC (Oscillator Frequency) (Note 2) ........... 8 MHz to 16 MHz  
NOTES:  
1. ANGND and VSS should be at nominally the same  
potential.  
2. Testing is performed down to 8 MHz, although  
the device is static by design and will typically  
operate below 1 Hz.  
19  
 
 
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
DC CHARACTERISTICS  
Table 8. DC Characteristics over Specified Operating Conditions  
Symbol  
VIL  
Parameter  
Min  
Typ (4)  
Max  
Units  
Test Conditions  
Input Low Voltage  
– 0.5  
0.3 VCC  
V
(standard inputs (1))  
VIL  
Input Low Voltage  
(RESET#, ports 3, 4, and  
5)  
– 0.5  
0.8  
V
1
VIH  
VIH  
Input High Voltage  
(standard inputs (1))  
0.7 VCC  
VCC + 0.5  
VCC + 0.5  
V
V
Input High Voltage  
(RESET#, ports 3, 4, and  
5)  
0.2 VCC + 1.0  
1
VOL  
Output Low Voltage  
(RESET#, ports 1, 2, 5,  
P6.6, P6.7, and XTAL2)  
0.3  
0.45  
1.5  
V
V
V
I
OL = 200 µA  
IOL = 3.2 mA  
IOL = 7.0 mA  
VOL  
VOL  
Output Low Voltage (ports  
3, 4)  
1.0  
V
V
IOL = 7 mA  
1
Output Low Voltage  
(P6.5:0)  
0.45  
IOL = 10 mA  
2
VOH  
Output High Voltage  
(output pins and I/O  
configured as push/pull  
outputs)  
VCC – 0.3  
VCC – 0.7  
VCC – 1.5  
V
V
V
IOH = – 200 µA  
IOH = – 3.2 mA  
IOH = – 7.0 mA  
VTH+ – VTHHysteresis voltage width  
on RESET# pin  
0.2  
V
ILI  
Input Leakage Current  
(standard inputs (1))  
± 10  
± 3  
µA  
µA  
VSS < VIN < VCC – 0.3V  
VSS < VIN < VREF  
ILI  
Input Leakage Current  
(port 0 – A/D inputs)  
1
IIH  
IIL  
Input High Current (NMI)  
300  
µA  
µA  
VIN = 0.7 VCC  
VIN = 0.3 VCC  
Input Low Current (port 2,  
except P2.6)  
70  
NOTES:  
1. Standard input pins include XTAL1, EA#, and Ports 1 and 2 when configured as inputs.  
2. Maximum current that an external device must sink to ensure test mode entry.  
3. Violating these specifications during reset may cause the device to enter test modes.  
4. Typical values are based on a limited number of samples and are not guaranteed. Operating conditions  
for typical values are room temperature and VREF = VCC = 5.5 V.  
5. Testing is performed down to 8 MHz, although the device is static by design and will typically operate  
below 1 Hz.  
6. All voltages are referenced relative to VSS. When used, VSS refers to the device pin.  
7. Table 9 lists the total current limits during normal (non-transient conditions). The total current listed is the  
sum of the pins listed for each specification value.  
20  
 
 
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
Table 8. DC Characteristics over Specified Operating Conditions (Continued)  
Symbol  
Parameter  
Min  
Typ (4)  
Max  
Units  
Test Conditions  
IIL  
IIL  
IIL  
Input Low Current (P5.4  
and P2.6 during reset) (2)  
– 10  
mA  
VIN = 0.8 V  
1
Input Low Current (ports 3,  
4, and 5, except P5.4)  
– 300  
– 300  
µA  
VIN = 0.8 V  
2
Input Low Current (port 1)  
µA  
VIN = 0.3 VCC  
0.7 VCC  
3
IOH  
IOH  
ICC  
Output High Current (P5.4  
and P2.6 during reset) (3)  
– 0.2  
– 6  
mA  
Output High Current  
(P6.5:0 during reset)  
– 40  
70  
µA  
0.7 VCC  
1
VCC Supply Current  
50  
2
mA  
XTAL1 = 16 MHz  
VCC = 5.5 V  
VPP = 5.5 V  
V
REF = 5.5 V  
IREF  
A/D Reference Supply  
Current  
5
mA  
IIDLE  
IPD  
Idle Mode Current  
15  
5
30  
50  
mA  
µA  
Powerdown Mode Current  
(4)  
RRST  
CS  
Reset Pull-up Resistor  
6
65  
10  
kΩ  
Pin Capacitance (any pin  
pF  
FTEST = 1.0 MHz  
to VSS  
)
NOTES:  
1. Standard input pins include XTAL1, EA#, and Ports 1 and 2 when configured as inputs.  
2. Maximum current that an external device must sink to ensure test mode entry.  
3. Violating these specifications during reset may cause the device to enter test modes.  
4. Typical values are based on a limited number of samples and are not guaranteed. Operating conditions  
for typical values are room temperature and VREF = VCC = 5.5 V.  
5. Testing is performed down to 8 MHz, although the device is static by design and will typically operate  
below 1 Hz.  
6. All voltages are referenced relative to VSS. When used, VSS refers to the device pin.  
7. Table 9 lists the total current limits during normal (non-transient conditions). The total current listed is the  
sum of the pins listed for each specification value.  
21  
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
ICC Max  
70  
60  
50  
40  
30  
20  
ICC Typ  
ICC  
(mA)  
IIDLE Max  
IIDLE Typ  
10  
0
0
4
10  
16  
Frequency (MHz)  
A2711-01  
Table 9. Total Current Limits During Normal (Non-transient) Conditions  
Signal Names  
Port 1  
Maximum IOL Limits  
25 mA  
Maximum IOH Limits  
– 25 mA  
Port 2, P6.6, P6.7  
Port 3  
40 mA  
– 40 mA  
40 mA  
– 30 mA  
Port 4  
40 mA  
– 30 mA  
Port 5  
40 mA  
– 30 mA  
P6.5:0  
40 mA  
– 30 mA  
Figure 6. ICC, IIDLE versus Frequency  
22  
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
EXPLANATION OF AC SYMBOLS  
Each symbol consists of two pairs of letters prefixed by “T” (for time). The characters in a pair indicate a signal  
and its condition, respectively. Symbols represent the time between the two signal/condition points. For example,  
TRHDZ is the time between signal R (RD#) condition H (high) and signal D (Input Data) condition Z (floating). Table  
10 defines the signal and condition codes.  
Table 10. AC Timing Symbol Definitions  
Signals  
Conditions  
A
B
D
G
I
Address  
BHE#  
P
PROG#  
H
L
High  
Q
R
V
Data Out  
RD#  
Low  
Data In  
V
X
Z
Valid  
BUSWIDTH  
T1DIR/AINC#  
T1CLK  
PVER  
No Longer Valid  
Floating  
W
X
WR#/WRH#/WRL#  
XTAL1  
K
L
ALE/ADV#/PALE#  
Y
READY  
AC CHARACTERISTICS (OVER SPECIFIED OPERATION CONDITIONS)  
Table 11 defines the AC timing specifications that the external memory system must meet and those that the  
8XC196MH will provide.  
Table 11. AC Timing Definitions (1)  
Symbol  
FOSC  
Parameter  
Frequency on XTAL1  
1/FOSC  
Min  
8
Max  
16  
Units  
MHz  
ns  
Notes  
4
TOSC  
62.5  
125  
The External Memory System Must Meet These Specifications  
TAVYV  
TLLYV  
Address Valid to READY Setup  
ALE/ADV# Low to READY Setup  
Non READY Time  
2TOSC – 75  
TOSC – 70  
No Upper Limit  
ns  
ns  
ns  
ns  
ns  
ns  
TYLYH  
TLLYX  
READY Hold after ALE/ADV# Low  
Address Valid to BUSWIDTH Setup  
ALE/ADV# Low to BUSWIDTH Setup  
TOSC – 15  
2TOSC – 40  
2TOSC – 75  
TOSC – 60  
2
TAVGV  
TLLGV  
NOTES:  
1. Test Conditions: Capacitive load on all pins = 100 pF, rise and fall times = 10 ns, FOSC = 16 MHz.  
2. Exceeding the maximum specification causes additional wait states.  
3. If wait states are used, add 2TOSC × n, where n = number of wait states.  
4. Testing is performed down to 8 MHz, although the device is static by design and will typically operate  
below 1 Hz.  
5. Assuming back-to-back bus cycles.  
6. 8-bit bus only.  
23  
 
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
Table 11. AC Timing Definitions (1) (Continued)  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
The External Memory System Must Meet These Specifications (Continued)  
TLLGX  
TLHDV  
TAVDV  
TRLDV  
TRHDZ  
TRXDX  
BUSWIDTH Hold after ALE/ADV# Low  
ALE/ADV# High to Input Data Valid  
Address Valid to Input Data Valid  
RD# Active to Input Data Valid  
End of RD# to Input Data Float  
Data Hold after RD# Inactive  
TOSC  
ns  
ns  
ns  
ns  
ns  
ns  
3TOSC – 55  
3TOSC – 55  
TOSC – 30  
TOSC  
3
3
0
The 8XC196MH will Meet These Specifications  
TXHLH  
TXHLL  
TLHLH  
TLHLL  
XTAL1 Rising Edge to ALE Rising  
20  
20  
110  
110  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
XTAL1 Rising Edge to ALE Falling  
ALE/ADV# Cycle Time  
4TOSC  
3
ALE/ADV# High Period  
TOSC – 10  
TOSC – 17  
TOSC – 17  
TOSC – 40  
TOSC – 30  
TOSC – 5  
TOSC  
TOSC + 10  
TAVLH  
TAVLL  
Address Valid to ALE/ADV# High  
Address Valid to ALE/ADV# Low  
Address Hold after ALE/ADV# Low  
ALE/ADV# Low to RD# Low  
RD# Low Period  
TLLAX  
TLLRL  
TRLRH  
TRHLH  
TRLAZ  
TLLWL  
TQVWH  
TWLWH  
TWHQX  
TWHLH  
TWHBX  
TWHAX  
TRHBX  
TRHAX  
NOTES:  
TOSC + 25  
TOSC + 25  
5
3
5
RD# High to ALE/ADV# High  
RD# Low to Address Float  
ALE/ADV# Low to WR# Low  
Data Valid before WR# High  
WR# Low Period  
TOSC – 10  
TOSC – 23  
TOSC – 30  
TOSC – 25  
TOSC – 10  
TOSC – 10  
TOSC – 30  
TOSC – 10  
TOSC – 30  
3
5
6
6
Data Hold after WR# High  
WR# High to ALE/ADV# High  
BHE#, INST Hold after WR# High  
A15:8 Hold after WR# High  
BHE#, INST Hold after RD# High  
A15:8 Hold after RD# High  
TOSC + 15  
1. Test Conditions: Capacitive load on all pins = 100 pF, rise and fall times = 10 ns, FOSC = 16 MHz.  
2. Exceeding the maximum specification causes additional wait states.  
3. If wait states are used, add 2TOSC × n, where n = number of wait states.  
4. Testing is performed down to 8 MHz, although the device is static by design and will typically operate  
below 1 Hz.  
5. Assuming back-to-back bus cycles.  
6. 8-bit bus only.  
24  
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
SYSTEM BUS TIMINGS  
T
OSC  
XTAL1  
ALE  
T
T
XHLH  
XHLL  
T
LHLH  
T
LHDV  
T
T
T
RHLH  
T
LHLL  
RLRH  
LLRL  
RD#  
T
T
T
RHDZ  
AVLH  
T
LLAX  
RLDV  
T
T
RXDX  
AVLL  
T
RLAZ  
Address Out  
BUS  
WR#  
Data  
T
AVDV  
T
T
T
WHLH  
LLWL  
WLWH  
T
T
WHQX  
QVWH  
BUS  
Address Out  
Data Out  
Address Out  
T
RHBX  
T
WHBX  
INST  
Valid  
T
T
RHAX  
WHAX  
A15:8  
(8-bit Bus)  
Address Out  
A2543-01  
Figure 7. System Bus Timing Diagram  
25  
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
READY TIMING (ONE WAIT STATE)  
T
OSC  
XTAL1  
T
+ 2T  
OSC  
LHLH  
ALE  
T
LLYX(Max)  
T
LLYX(Min)  
T
CLYX(Max)  
T
CLYX(Min)  
T
LLYV  
READY  
RD#  
16 MHz  
8 MHz  
T
T
RLRH  
+ 2T  
AVYV  
OSC  
T
+ 2T  
OSC  
RLDV  
T
+ 2T  
AVDV  
OSC  
Address Out  
Data In  
Bus  
T
+ 2T  
WLWH  
OSC  
WR#  
T
+ 2T  
OSC  
RLDV  
T
+ 2T  
QVWH  
OSC  
Bus  
Address Out  
Data Out  
Address  
A2544-01  
Figure 8. READY Timing Diagram (One Wait State)  
26  
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
BUSWIDTH TIMING  
T
OSC  
XTAL1  
ALE  
Bus  
Address Out  
Data In  
T
AVGV  
BUSWIDTH  
T
LLGV  
T
LLGX  
A2545-01  
Figure 9. BUSWIDTH Timing Diagram  
Table 12. External Clock Drive Timing  
EXTERNAL CLOCK DRIVE  
Symbol  
Parameter  
Oscillator Frequency  
Min  
8
Max  
16  
Units  
MHz  
ns  
1/TXLXL  
TXLXL  
Oscillator Period (TOSC  
High Time  
)
62.5  
22  
125  
TXHXX  
TXLXX  
TXLXH  
TXHXL  
ns  
Low Time  
22  
ns  
Rise Time  
10  
10  
ns  
Fall Time  
ns  
27  
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
T
T
XLXH  
XHXL  
T
XHXX  
0.7 VCC  
0.7 VCC  
0.7 VCC  
T
XLXX  
0.8 V  
0.8 V  
XTAL1  
T
XLXL  
A2578-01  
Figure 10. External Clock Drive Waveforms  
VCC  
4.7k*  
External  
XTAL1  
8XC196 Device  
XTAL2  
Clock Input  
Clock Driver  
No Connect  
Note:  
*Required if TTL driver is used. Not needed if CMOS driver is used.  
A0274-01  
Figure 11. External Clock Connections  
28  
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
C1  
XTAL1  
8XC196 Device  
XTAL2  
VSS  
C2  
Quartz Crystal  
Note:  
Keep oscillator components close to the chip and use  
short, direct traces to XTAL1, XTAL2, and Vss. When  
using crystals, C1=C220pF. When using ceramic  
resonators, consult the manufacturer for recommended  
oscillator circuitry.  
A0273-01  
Figure 12. External Crystal Connections  
3.5 V  
2.0 V  
0.8 V  
2.0 V  
0.8 V  
Test Points  
0.45 V  
AC testing inputs are driven at 3.5 V for a logic "1" and 0.45 V for  
a logic "0". Timing measurements are made at 2.0 V for a logic  
"1" and 0.8 V for a logic "0".  
A2120-02  
Figure 13. AC Testing Input, Output Waveforms  
29  
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
VLOAD + 0.1 V  
VOH – 0.1 V  
Timing Reference  
Points  
VLOAD  
VLOAD – 0.1 V  
VOL + 0.1 V  
For timing purposes, a port pin is no longer floating when a  
100 mV change from load voltage occurs and begins to float  
when a 100 mV change from the loading VOH/VOL level occurs  
with IOL/IOH 15 mA.  
A2579-01  
Figure 14. Float Waveforms  
AC CHARACTERISTICS — SERIAL PORT, SHIFT REGISTER MODE  
Table 13. Serial Port Timing — Shift Register Mode (Mode 0)  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
TXLXL  
Serial Port Clock Period  
(Baud-raten 8002H)  
(Baud-raten = 8001H)  
6TOSC  
4TOSC  
ns  
ns  
1, 2  
1, 2  
TXLXH  
Serial Port Clock Low Period  
(Baud-raten 8002H)  
(Baud-raten = 8001H)  
4TOSC – 50  
2TOSC – 50  
4TOSC + 50  
2TOSC + 50  
ns  
ns  
TQVXH  
TXHQX  
TXHQV  
TDVXH  
TXHDX  
TXHQZ  
NOTES:  
Output Data Setup to Clock High  
Output Data Hold after Clock High  
Next Output Data Valid after Clock High  
Input Data Setup to Clock High  
Input Data Hold after Clock High  
Last Clock High to Output Float  
2TOSC – 50  
2TOSC – 50  
ns  
ns  
ns  
ns  
ns  
ns  
2TOSC + 50  
TOSC + 50  
0
TOSC  
1. n for Baud-raten signifies Serial Port 0 or 1.  
2. Maximum Serial Port Mode 0 reception is with Baud-raten 8002H.  
30  
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
T
XLXL  
T
TXDn  
T
T
XHQV  
XLXH  
T
T
XHQZ  
XHQX  
5
QVXH  
RXDn  
(Out)  
0
1
2
7
4
6
3
T
T
DVXH  
XHDX  
Valid  
RXDn  
(In)  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
A2080-01  
Figure 15. Serial Port Waveform — Shift Register Mode (Mode 0)  
Table 14. Serial Port Timing — Mode 4  
Symbol  
TXLXL  
Parameter  
Min  
16TOSC  
(TXLXL/2) – 30  
(TXLXL/2) – 30  
16TOSC  
0
Max  
Units  
ns  
Serial Port Clock Period (DIR=0)  
Serial Port Clock Low Period (DIR=0/1)  
Serial Port Clock High Period (DIR=0/1)  
Serial Port Clock Period (DIR=1)  
Serial Clock Falling Time (DIR=1)  
Serial Clock Rising Time (DIR=1)  
Clock Low to Output Data Setup  
Output Data Hold after Clock Low  
Last Output Data Hold after Clock High (DIR=1)  
Input Data Setup to Clock Low Invalid  
Input Data Hold after Clock High  
131072TOSC  
TXLXX  
TXHXX  
TXLXL  
TXHXL  
TXLXH  
TXLQV  
TXLQX  
TXHQX  
TDVXX  
TXHDH  
ns  
ns  
ns  
20  
20  
ns  
0
ns  
7.5TOSC – 50  
ns  
0
13.7TOSC  
0
ns  
ns  
ns  
6TOSC  
ns  
31  
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
T
XLXL  
T
T
XLXX  
XHXX  
SCKn#  
T
T
XHDH  
DVXX  
RXDn  
TXDn  
T
T
XLQV  
XLQX  
T
XHQX  
A2550-01  
Figure 16. Serial Port Waveform — Mode 4  
T
T
T
XHXL  
XLXH  
XHXX  
V
IH  
T
XLXX  
V
IL  
SCKn#  
T
XLXL  
A2582-01  
Figure 17. Serial Port Waveform — Clock Drive (DIR = 1)  
32  
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
BAUD-RATE CLOCK DRIVE TABLE  
Table 15. Baud Rate Clock Drive  
Symbol  
TXLXL  
Parameter  
Baud Rate Clock Period  
Min  
Max  
Units  
ns  
4TOSC  
TXHXX  
TXLXX  
TXLXH  
TXHXL  
Baud Rate Clock High Time  
Baud Rate Clock Low Time  
Baud Rate Clock Rise Time  
Baud Rate Clock Fall Time  
2TOSC – 30  
2TOSC – 30  
ns  
ns  
20  
20  
ns  
ns  
T
T
T
XHXL  
XHXX  
XLXH  
V
IH  
T
XLXX  
V
IL  
BCLKn  
T
XLXL  
A2551-01  
Figure 18. Baud-Rate Clock Drive Waveforms  
33  
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
Use the following formulas to determine the SAM and  
CONV values:  
A/D SAMPLE AND CONVERSION TIMES  
Two parameters, sample time and conversion time,  
control the time required for an A/D conversion. The  
sample time is the length of time that the analog input  
voltage is actually connected to the sample capacitor.  
If this time is too short, the sample capacitor will not  
charge completely. If the sample time is too long, the  
input voltage may change and cause conversion  
errors. The conversion time is the length of time  
required to convert the analog input voltage stored on  
TSAM × FOSC 2  
SAM = ----------------------------------------  
8
TCONV × FOSC 3  
-------------------------------------------  
CONV =  
1  
2 × B  
where:  
SAM = 1 to 7  
the sample capacitor to  
a digital value. The  
CONV = 2 to 31  
TSAM is the sample time, in µsec  
conversion time must be long enough for the  
comparator and circuitry to settle and resolve the  
voltage. Excessively long conversion times allow the  
sample capacitor to discharge, degrading accuracy.  
(Tables 16 and 18)  
TCONV is the conversion time, in µsec  
(Tables 16 and 18)  
F
OSC is the XTAL1 frequency, in MHz  
The AD_TIME register programs the A/D sample and  
conversion times. Use the TSAM and TCONV specifica-  
tions in Tables 16 and 18 to determine appropriate  
values for SAM and CONV; otherwise, erroneous  
conversion results may occur.  
B is the number of bits to be converted (8 or 10)  
When the SAM and CONV values are known, write  
them to the AD_TIME register. Do not write to this  
register while a conversion is in progress; the results  
are unpredictable.  
34  
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
AC CHARACTERISTICS — A/D CONVERTER  
Table 16. 10-bit A/D Operating Conditions (1)  
Symbol  
Description  
Ambient Temperature  
Digital Supply Voltage  
Analog Supply Voltage  
Sample Time  
Min  
– 40  
4.50  
4.50  
1.0  
Max  
+ 85  
5.50  
5.50  
Units  
°C  
V
Notes  
T
A
VCC  
VREF  
TSAM  
TCONV  
FOSC  
V
2
3
3
µs  
Conversion Time  
10.0  
8
20.0  
16  
µs  
Oscillator Frequency  
MHz  
NOTES:  
1. ANGND and VSS should nominally be at the same potential.  
2. VREF must not exceed VCC by more than + 0.5 V because VREF supplies both the resistor ladder and the  
analog portion of the converter and input port pins.  
3. Program the AD_TIME register to meet the TSAM and TCONV specifications.  
Table 17. 10-bit Mode A/D Characteristics Over Specified Operating Conditions (1)  
Parameter  
Resolution  
Typical (3)  
Min  
Max  
Units (2)  
Notes  
1024  
10  
1024  
10  
Levels  
Bits  
Absolute Error  
0
± 3  
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
Full-scale Error  
Zero Offset Error  
Nonlinearity  
0.25 ± 0.5  
0.25 ± 0.5  
1.0 ± 2.0  
± 3  
+ 0.75  
± 1  
Differential Nonlinearity  
Channel-to-channel Matching  
Repeatability  
– 0.75  
± 0.1  
0
0
± 0.25  
NOTES:  
1. Testing is performed with VREF = 5.12 V and FOSC = 16 MHz.  
2. An LSB, as used here, has a value of approximately 5 mV.  
3. Typical values are based on a limited number of samples and are not guaranteed. Operating conditions  
for typical values are room temperature and VREF = VCC = 5.5 V.  
4. DC to 100 KHz.  
5. Multiplexer break-before-make guaranteed.  
6. Resistance from device pin, through internal multiplexer, to sample capacitor.  
7. These values may be exceeded if the pin current is limited to ± 2mA.  
8. Applying voltage beyond these specifications will degrade the accuracy of other channels being con-  
verted.  
9. All conversions were performed with processor in idle mode.  
35  
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
Table 17. 10-bit Mode A/D Characteristics Over Specified Operating Conditions (1) (Continued)  
Parameter  
Typical (3)  
Min  
Max  
Units (2)  
Notes  
Temperature Coefficients:  
Offset  
0.009  
0.009  
0.009  
LSB/C  
LSB/C  
LSB/C  
Full-scale  
Differential Nonlinearity  
Off-isolation  
Feedthrough  
– 60  
dB  
dB  
dB  
4, 5  
4
– 60  
– 60  
V
CC Power Supply Rejection  
6
Input Series Resistance  
Voltage on Analog Input Pin  
Sampling Capacitor  
DC Input Leakage  
NOTES:  
750  
1.2K  
4
ANGND – 0.5  
VREF + 0.5  
V
7, 8  
3
pF  
µA  
± 1.0  
0
± 3  
1. Testing is performed with VREF = 5.12 V and FOSC = 16 MHz.  
2. An LSB, as used here, has a value of approximately 5 mV.  
3. Typical values are based on a limited number of samples and are not guaranteed. Operating conditions  
for typical values are room temperature and VREF = VCC = 5.5 V.  
4. DC to 100 KHz.  
5. Multiplexer break-before-make guaranteed.  
6. Resistance from device pin, through internal multiplexer, to sample capacitor.  
7. These values may be exceeded if the pin current is limited to ± 2mA.  
8. Applying voltage beyond these specifications will degrade the accuracy of other channels being con-  
verted.  
9. All conversions were performed with processor in idle mode.  
Table 18. 8-bit A/D Operating Conditions (1)  
Symbol  
Description  
Ambient Temperature  
Digital Supply Voltage  
Analog Supply Voltage  
Sample Time  
Min  
– 40  
4.50  
4.50  
1.0  
Max  
+ 85  
5.50  
5.50  
Units  
°C  
V
Notes  
T
A
vCC  
vREF  
V
2
3
3
TSAM  
TCONV  
FOSC  
µs  
Conversion Time  
7.0  
20.0  
16  
µs  
Oscillator Frequency  
8
MHz  
NOTES:  
1. ANGND and VSS should nominally be at the same potential.  
2. VREF must not exceed VCC by more than + 0.5 V because VREF supplies both the resistor ladder and the  
analog portion of the converter and input port pins.  
3. Program the AD_TIME register to meet the TSAM and TCONV specifications.  
36  
 
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
Table 19. 8-bit Mode A/D Characteristics Over Specified Operating Conditions (1)  
Parameter  
Typical (3)  
Min  
Max  
Units (2)  
Notes  
Resolution  
256  
8
256  
8
Levels  
Bits  
Absolute Error  
0
± 1  
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
Full-scale Error  
± 0.5  
Zero Offset Error  
Nonlinearity  
± 0.5  
0
– 0.5  
0
± 1  
+ 0.5  
± 1  
Differential Nonlinearity  
Channel-to-channel Matching  
Repeatability  
± 0.25  
0
Temperature Coefficients:  
Offset  
0.003  
0.003  
0.003  
LSB/°C  
LSB/°C  
LSB/°C  
Full-scale  
Differential Nonlinearity  
Off Isolation  
– 60  
dB  
dB  
dB  
4, 5  
4
Feedthrough  
– 60  
– 60  
VCC Power Supply Rejection  
Input Series Resistance  
Voltage on Analog Input Pin  
Sampling Capacitor  
DC Input Leakage  
NOTES:  
4
750  
1.2K  
6
ANGND – 0.5  
VREF + 0.5  
V
7, 8  
3
pF  
µA  
± 1  
0
± 3  
1. Testing is performed with VREF = 5.12 V and FOSC = 16 MHz.  
2. An LSB, as used here, has a value of approximately 20 mV.  
3. Typical values are based on a limited number of samples and are not guaranteed. Operating conditions  
for typical values are room temperature and VREF = VCC = 5.5 V.  
4. DC to 100 KHz.  
5. Multiplexer break-before-make guaranteed.  
6. Resistance from device pin, through internal multiplexer, to sample capacitor.  
7. These values may be exceeded if the pin current is limited to ± 2mA.  
8. Applying voltage beyond these specifications will degrade the accuracy of other channels being con-  
verted.  
9. All conversions were performed with processor in idle mode.  
37  
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
OTPROM SPECIFICATIONS  
Table 20. Programming Operating Conditions  
Symbol  
Description  
Ambient Temperature  
Min  
20  
Max  
30  
Units  
°C  
V
Notes  
T
A
vCC  
Supply Voltage During Programming  
4.50  
4.50  
5.50  
5.50  
3
3
vREF  
Reference Supply Voltage During  
Programming  
V
VPP  
VEA  
Programming Voltage  
EA Pin Voltage  
12.25  
12.25  
6
12.75  
12.75  
8
V
V
2
2
FOSC  
Oscillator Frequency During Auto and  
Slave Mode Programming  
Oscillator Frequency During Run-Time  
Programming  
MHz  
6
12  
MHz  
NOTES:  
1. VCC and VREF should be at nominally the same voltage during programming.  
2. If VPP and VEA exceed the maximum specification, the device may be damaged.  
3.  
VSS and ANGND should be at nominally the same potential (0 volts).  
4. Load capacitance during auto and slave mode programming = 150 pF.  
Table 21. AC OTPROM Programming Characteristics  
Symbol  
TAVLL  
Description  
Address Setup Time  
Min  
0
Max  
Units  
TOSC  
TOSC  
TOSC  
TOSC  
TOSC  
TOSC  
TOSC  
TOSC  
TOSC  
TOSC  
TOSC  
TOSC  
TOSC  
TOSC  
TLLAX  
TDVPL  
TPLDX  
TLLLH  
TPLPH  
TPHLL  
TPHDX  
TPHPL  
TLHPL  
TPLDV  
TSHLL  
TPHIL  
Address Hold Time  
100  
0
Data Setup Time  
Data Hold Time  
400  
50  
PALE# Pulse Width  
PROG# Pulse Width (1)  
PROG# High to Next PALE# Low  
Word Dump Hold Time  
50  
220  
50  
50  
PROG# High to Next PROG# Low  
PALE# High to PROG# Low  
PROG# Low to Word Dump Valid  
RESET# High to First PALE# Low  
PROG# High to AINC# Low  
AINC# Pulse Width  
220  
220  
1100  
0
TILIH  
240  
NOTE:  
1. This specification is for Word Dump Mode. For programming pulses, use the Modified Quick Pulse Algo-  
rithm explained in the User’s Manual.  
38  
 
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
Table 21. AC OTPROM Programming Characteristics (Continued)  
Symbol  
TILVH  
Description  
PVER Hold after AINC# Low  
AINC# Low to PROG# Low  
PROG# High to PVER Valid  
Min  
50  
Max  
Units  
TOSC  
TOSC  
TOSC  
TILPL  
170  
TPHVL  
220  
NOTE:  
1. This specification is for Word Dump Mode. For programming pulses, use the Modified Quick Pulse Algo-  
rithm explained in the User’s Manual.  
Table 22. DC OTPROM Programming Characteristics  
Symbol  
Parameter  
Min  
Max  
Units  
IPP  
VPP Supply Current (when  
programming)  
100  
mA  
NOTE: Do not apply VPP until VCC is stable and within specifications and the oscillator/clock has stabiliized.  
Otherwise, the device may be damaged.  
OTPROM PROGRAMMING WAVEFORMS  
RESET#  
T
AVLL  
PORTS 3/4  
Address/Command  
Data  
Address/Command  
T
T
SHLL  
LLAX  
T
T
DVPL PLDX  
PALE#  
T
PHLL  
T
T
T
LLLH  
LHPL  
PLPH  
PROG#  
PVER  
T
PHVL  
A2549-01  
Figure 19. Slave Programming Mode Data Program Mode with Single Program Pulse  
39  
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
RESET#  
Address  
Address + 2  
Address/Command  
T
Ver Bits/Word Dump  
Ver Bits/Word Dump  
PORTS 3/4  
T
T
T
SHLL  
PLDV  
PHDX  
PLDV  
T
PHDX  
PALE#  
PROG#  
AINC#  
T
T
ILPL  
PHPL  
Note: P3.0 must be low ("0")  
A2546-01  
Figure 20. Slave Programming Mode in Word Dump with Autoincrement Timing  
SLAVE PROGRAMMING MODE IN WORD DUMP WITH AUTOINCREMENT  
RESET#  
Address  
Data  
Address  
Data  
Address + 2  
Data  
Address/Command  
PORTS 3/4  
PALE#  
T
T
PHPL  
ILPL  
P1  
PN  
PROG#  
T
ILVH  
Valid for  
PN  
Valid for P1  
PVER  
AINC#  
T
ILIH  
T
PHIL  
A2547-01  
Figure 21. Slave Programming Mode in Data Program with Repeated Program Pulse and Autoincrement  
40  
®
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER  
8XC196MC/MD TO 8XC196MH DESIGN  
CONSIDERATIONS  
The 8XC196MH is not pin compatible with the  
8XC196MC or the 8XC196MD. Be aware that signal  
multiplexing sometimes differs between the  
8XC196MH and the 8XC196MC/MD. For example,  
P2.7 is multiplexed with COMP3 on the  
8XC196MC/MD and with SCLK1# and BCLK1 on the  
8XC196MH.  
DATA SHEET REVISION HISTORY  
The -003 revisions were made due to the changes  
required for the lead free initiative. To address the  
fact that many of the package prefix variables have  
changed, all package prefix variables in this document  
are now indicated with an "x".  
41  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY