BX80547RE2667C/SL7VS [INTEL]

RISC Microprocessor, 32-Bit, 2660MHz, CMOS, PBGA775;
BX80547RE2667C/SL7VS
型号: BX80547RE2667C/SL7VS
厂家: INTEL    INTEL
描述:

RISC Microprocessor, 32-Bit, 2660MHz, CMOS, PBGA775

外围集成电路
文件: 总94页 (文件大小:2796K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
®
Δ
Intel Celeron D Processor 300  
Sequence  
Datasheet  
– On 90 nm Process in the 775-Land Package  
December 2005  
Document Number: 304092-006  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY  
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN  
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS  
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES  
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER  
INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
®
®
The Intel Celeron D processor 300 sequence on 90 nm process and in the 775-land package may contain design defects or errors known as errata  
which may cause the product to deviate from published specifications. Current characterized errata are available on request.  
Δ
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across  
different processor families. Over time processor numbers will increment based on changes in clock, speed, cache, FSB, or other features, and  
increments are not intended to represent proportional or quantitative increases in any particular feature. Current roadmap processor number  
progression is not necessarily representative of future roadmaps. See www.intel.com/products/processor_number for details.  
Φ
®
®
Intel Extended Memory 64 Technology (Intel EM64T) requires a computer system with a processor, chipset, BIOS, operating system, device  
drivers and applications enabled for Intel EM64T. Processor will not operate (including 32-bit operation) without an Intel EM64T-enabled BIOS.  
Performance will vary depending on your hardware and software configurations. See http://www.intel.com/info/em64t for more information including  
details on which processors support EM64T or consult with your system vendor for more information.  
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system.  
Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Intel, Celeron, Pentium, Itanium, Intel Xeon, Intel NetBurst and the Intel logo are trademarks or registered trademarks of Intel Corporation or its  
subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2004–2005 Intel Corporation. All rights reserved.  
2
Datasheet  
Contents  
1
Introduction.......................................................................................................................11  
1.1  
Terminology.........................................................................................................12  
1.1.1 Processor Packaging Terminology.........................................................12  
References..........................................................................................................13  
1.2  
2
Electrical Specifications....................................................................................................15  
2.1  
2.2  
2.3  
FSB and GTLREF ...............................................................................................15  
Power and Ground Lands ...................................................................................15  
Decoupling Guidelines ........................................................................................15  
2.3.1 VCC Decoupling.....................................................................................16  
2.3.2 FSB GTL+ Decoupling ...........................................................................16  
2.3.3 FSB Clock (BCLK[1:0]) and Processor Clocking....................................16  
Voltage Identification...........................................................................................17  
2.4.1 Phase Lock Loop (PLL) Power and Filter...............................................19  
Reserved, Unused, and TESTHI Signals............................................................20  
FSB Signal Groups..............................................................................................20  
GTL+ Asynchronous Signals...............................................................................22  
Test Access Port (TAP) Connection....................................................................23  
FSB Frequency Select Signals (BSEL[2:0])........................................................23  
Absolute Maximum and Minimum Ratings..........................................................23  
Processor DC Specifications...............................................................................24  
2.11.1 Processor DC Specifications..................................................................24  
VCC Overshoot Specification..............................................................................30  
2.12.1 Die Voltage Validation............................................................................30  
GTL+ FSB Specifications....................................................................................31  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
2.10  
2.11  
2.12  
2.13  
3
Package Mechanical Specifications.................................................................................33  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Package Mechanical Drawing.............................................................................33  
Processor Component Keep-Out Zones .............................................................37  
Package Loading Specifications .........................................................................37  
Package Handling Guidelines .............................................................................37  
Package Insertion Specifications ........................................................................38  
Processor Mass Specification .............................................................................38  
Processor Materials.............................................................................................38  
Processor Markings.............................................................................................38  
Processor Land Coordinates...............................................................................40  
4
5
Land Listing and Signal Descriptions ...............................................................................41  
4.1  
4.2  
Processor Land Assignments..............................................................................41  
Alphabetical Signals Reference ..........................................................................62  
Thermal Specifications and Design Considerations.........................................................71  
5.1  
5.2  
Processor Thermal Specifications.......................................................................71  
5.1.1 Thermal Specifications...........................................................................71  
5.1.2 Thermal Metrology .................................................................................74  
Processor Thermal Features...............................................................................74  
5.2.1 Thermal Monitor .....................................................................................74  
Datasheet  
3
5.2.2 Thermal Monitor 2 ..................................................................................75  
5.2.3 On-Demand Mode..................................................................................76  
5.2.4 PROCHOT# Signal ................................................................................77  
5.2.5 THERMTRIP# Signal .............................................................................77  
5.2.6  
T
and Fan Speed Reduction ....................................................77  
CONTROL  
5.2.7 Thermal Diode........................................................................................78  
6
7
Features...........................................................................................................................79  
6.1  
6.2  
Power-On Configuration Options ........................................................................79  
Clock Control and Low Power States..................................................................79  
6.2.1 Normal State ..........................................................................................80  
6.2.2 HALT Powerdown State.........................................................................80  
6.2.3 Stop-Grant States ..................................................................................81  
6.2.4 HALT Snoop State, Grant Snoop State .................................................81  
Boxed Processor Specifications.......................................................................................83  
7.1  
Mechanical Specifications...................................................................................84  
7.1.1 Boxed Processor Cooling Solution Dimensions.....................................84  
7.1.2 Boxed Processor Fan Heatsink Weight..................................................86  
7.1.3 Boxed Processor Retention Mechanism and Heatsink Attach  
Clip Assembly ........................................................................................86  
Electrical Requirements ......................................................................................86  
7.2.1 Fan Heatsink Power Supply...................................................................86  
Thermal Specifications........................................................................................88  
7.3.1 Boxed Processor Cooling Requirements ...............................................88  
7.3.2 Variable Speed Fan ...............................................................................90  
7.2  
7.3  
8
Debug Tools Specifications..............................................................................................93  
8.1  
Logic Analyzer Interface (LAI).............................................................................93  
8.1.1 Mechanical Considerations ....................................................................93  
8.1.2 Electrical Considerations........................................................................93  
4
Datasheet  
Figures  
2-1  
2-2  
2-3  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
3-7  
4-1  
4-2  
5-1  
5-2  
5-3  
6-1  
7-1  
7-2  
7-3  
7-4  
7-5  
7-6  
7-7  
7-8  
7-9  
Phase Lock Loop (PLL) Filter Requirements ......................................................19  
VCC Static and Transient Tolerance for 775_VR_CONFIG_04A .......................27  
VCC Overshoot Example Waveform...................................................................30  
Processor Package Assembly Sketch.................................................................33  
Processor Package Drawing 1............................................................................34  
Processor Package Drawing 2............................................................................35  
Processor Package Drawing 3............................................................................36  
Processor Top-Side Marking Example (with Processor Number).......................38  
Processor Top-Side Marking Example................................................................39  
Processor Land Coordinates (Top View) ............................................................40  
Landout Diagram (Top View – Left Side) ............................................................42  
Landout Diagram (Top View – Right Side)..........................................................43  
Thermal Profile for Platform Compatibility Guide ‘04 A Processors....................73  
Case Temperature (TC) Measurement Location.................................................74  
Thermal Monitor 2 Frequency and Voltage Ordering..........................................76  
Processor Low Power State Machine .................................................................80  
Mechanical Representation of the Boxed Processor ..........................................83  
Space Requirements for the Boxed Processor (Side View)................................84  
Space Requirements for the Boxed Processor (Top View).................................85  
Space Requirements for the Boxed Processor (Overall View)............................85  
Boxed Processor Fan Heatsink Power Cable Connector Description.................87  
Baseboard Power Header Placement Relative to Processor Socket..................88  
Boxed Processor Fan Heatsink Airspace Keep-out Requirements (Top View) ..89  
Boxed Processor Fan Heatsink Airspace Keep-out Requirements (Side View) .89  
Boxed Processor Fan Heatsink Set Points .........................................................90  
Datasheet  
5
Tables  
1-1  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-8  
2-9  
2-10  
2-11  
2-12  
2-13  
2-14  
2-15  
2-16  
2-17  
3-1  
3-2  
3-3  
4-1  
4-2  
4-3  
References..........................................................................................................13  
Core Frequency to FSB Multiplier Configuration.................................................16  
Voltage Identification Definition...........................................................................18  
FSB Signal Groups .............................................................................................21  
Signal Characteristics .........................................................................................22  
Signal Reference Voltages..................................................................................22  
BSEL[2:0] Frequency Table for BCLK[1:0] .........................................................23  
Processor DC Absolute Maximum Ratings.........................................................24  
Voltage and Current Specifications.....................................................................25  
VCC Static and Transient Tolerance for 775_VR_CONFIG_04A Processors....26  
GTL+ Asynchronous Signal Group DC Specifications.......................................28  
GTL+ Signal Group DC Specifications................................................................28  
PWRGOOD and TAP Signal Group DC Specifications ......................................29  
VTTPWRGD DC Specifications ..........................................................................29  
BSEL [2:0] and VID[5:0] DC Specifications.........................................................29  
BOOTSELECT DC Specifications.......................................................................29  
VCC Overshoot Specifications............................................................................30  
GTL+ Bus Voltage Definitions.............................................................................31  
Processor Loading Specifications.......................................................................37  
Package Handling Guidelines.............................................................................37  
Processor Materials ............................................................................................38  
Alphabetical Land Assignments..........................................................................44  
Numerical Land Assignments .............................................................................53  
Signal Description ...............................................................................................62  
Processor Thermal Specifications.......................................................................72  
Thermal Profile for Processors............................................................................73  
Thermal Diode Parameters .................................................................................78  
Thermal Diode Interface......................................................................................78  
Power-On Configuration Option Signals .............................................................79  
Fan Heatsink Power and Signal Specifications...................................................87  
Boxed Processor Fan Heatsink Set Points .........................................................91  
5-1  
5-2  
5-3  
5-4  
6-1  
7-1  
7-2  
6
Datasheet  
Revision History  
Revision  
Number  
Description  
Date  
-001  
-002  
-003  
Initial release  
September 2004  
November 2004  
December 2004  
Added 3.06 GHz processor  
Updated Clock Control and Low Power States section in chapter 6  
Added support for processor numbers 346, 341, 336, 331, and 326  
Added the letter “J” to processor numbers 345J, 340J, 335J, 330J and  
325J  
-004  
June 2005  
Added EM64T support  
-005  
-006  
Added support for processor number 351  
Added support for processor number 355  
June 2005  
December 2005  
§
Datasheet  
7
8
Datasheet  
Intel® Celeron® D Processor 300 Sequence  
Features  
„ Available at 3.33 GHz, 3.20 GHz,  
3.06 GHz, 2.93 GHz, 2.80 GHz, 2.66 GHz,  
and 2.53 GHz  
„ Binary compatible with applications  
running on previous members of the Intel  
microprocessor line  
„ FSB frequencies at 533 MHz  
„ Hyper-Pipelined Technology  
Advance Dynamic Execution  
Very deep out-of-order execution  
„ Enhanced branch prediction  
„ 16-KB Level 1 data cache  
„ 256-KB Advanced Transfer Cache (on-die,  
full-speed Level 2 (L2) cache) with 4-way  
associativity and Error Correcting Code  
(ECC)  
„ 144 Streaming SIMD Extensions 2 (SSE2)  
instructions  
„ Supports Execute Disable Bit capability  
„ 13 Streaming SIMD Extensions 3 (SSE3)  
instructions  
„ Power Management capabilities  
System Management mode  
Multiple low-power states  
„ Optimized for 32-bit applications running  
on advanced 32-bit operating systems  
„ 775-Land Package  
®
®
The Intel Celeron D processor family expands Intel’s processor family into the value-priced PC  
market segment. Celeron D processors provide the value that offers the customer the capability to  
affordably get onto the Internet, and use educational programs, home-office software, and  
productivity applications. All of the Celeron D processors include an integrated L2 cache, and are  
built on Intel’s advanced CMOS process technology. The Celeron D processor is backed by over  
30 years of Intel experience in manufacturing high-quality, reliable microprocessors.  
®
®
Intel Extended Memory 64 Technology (Intel EM64T) enables Celeron D processors to execute  
operating systems and applications written to take advantage of the Intel EM64T.  
The Celeron D processor also includes the Execute Disable Bit capability. This feature, combined  
with a supported operating system, allows memory to be marked as executable or non-executable.  
§
Datasheet  
9
10  
Datasheet  
Introduction  
1 Introduction  
®
®
The Intel Celeron D processor 300 sequence on 90 nm process and in the 775-land package is a  
®
®
follow-on to the Intel Celeron D processor in the 478-pin package. This processor uses Flip-  
Chip Land Grid Array (FC-LGA4) package technology, and plugs into a 775-land LGA socket,  
referred to as the LGA775 socket. LGA775 is required to support higher frequency processors.  
This next generation of socket provides longevity for processor support beyond 2004. LGA775  
designs support the Celeron D processor providing great flexibility and breadth of processor  
choices.  
The Intel Celeron D processor 300 sequence on 90 nm process in the 775-land package supports  
Φ
®
Intel Extended Memory 64 Technology (Intel EM64T) as an enhancement to Intel’s IA-32  
architecture. This enhancement enables the processor to execute operating systems and  
applications written to take advantage of Intel EMT64T. With appropriate 64 bit supporting  
hardware and software, platforms based on an Intel processor supporting Intel EM64T can enable  
use of extended virtual and physical memory. Further details on the 64-bit extension architecture  
®
and programming model is provided in the Intel Extended Memory 64 Technology Software  
Developer Guide at http://developer.intel.com/technology/64bitextensions/.  
Note: In this document the Celeron D processor on 90 nm process and in the 775-land package is also  
referred to as Celeron D processor in the 775-land package or as the “processor”.  
®
®
Note: In this document, unless otherwise specified, the Intel Celeron D processor 300 sequence refers  
to Intel Celeron D processors 355, 351, 345J/346, 340J/341, 335J/336, 330J/331, and 325J/326.  
®
®
®
Note: Intel Celeron D processors 355, 351, 346, 341, 336, 331, and 326 support Intel Extended  
Memory 64 Technology (Intel EM64T)  
The Celeron D processor in the 775-land package, like its predecessor, the Celeron D processor in  
the 478-pin package, is based on the same Intel 32-bit microarchitecture and maintains the tradition  
of compatibility with IA-32 software. It maintains the same Front Side Bus (FSB) data transfer  
speed at 533 MT/s and Level 2 cache size of 256 KB.  
The Celeron D Processor in the 775-Land Package includes the Execute Disable Bit capability  
®
®
previously available in Intel Itanium processors. This feature, combined with a supported  
operating system, allows memory to be marked as executable or nonexecutable. If code attempts to  
run in non-executable memory, the processor generates an error to the operating system. This  
feature can prevent some classes of viruses or worms that exploit buffer overrun vulnerabilities and  
®
can, thus, help improve the overall security of the system. See the Intel Architecture Software  
Developer's Manual for more detailed information.  
Intel will enable support components for the processor including heatsink, heatsink retention  
mechanism, and socket. Manufacturability is a high priority; hence, mechanical assembly may be  
completed from the top of the baseboard and should not require any special tooling.  
The processor includes an address bus powerdown capability that removes power from the address  
and data pins when the FSB is not in use. This feature is always enabled on the processor.  
Datasheet  
11  
Introduction  
1.1  
Terminology  
A ‘#’ symbol after a signal name refers to an active low signal, indicating a signal is in the active  
state when driven to a low level. For example, when RESET# is low, a reset has been requested.  
Conversely, when NMI is high, a nonmaskable interrupt has occurred. In the case of signals where  
the name does not imply an active state but describes part of a binary sequence (such as address or  
data), the ‘#’ symbol implies that the signal is inverted. For example, D[3:0] = ‘HLHLrefers to a  
hex ‘A, and D[3:0]# = ‘LHLH’ also refers to a hex ‘A(H= High logic level, L= Low logic level).  
“FSB” refers to the interface between the processor and system core logic (a.k.a. the chipset  
components). The FSB is a multiprocessing interface to processors, memory, and I/O.  
1.1.1  
Processor Packaging Terminology  
Commonly used terms are explained here for clarification:  
®
®
Intel Celeron D processor in the 775-land package — Processor in the FC-LGA4  
package with a 256 KB L2 cache.  
Processor — For this document, the term “processor” is the generic form of the Celeron D  
processor in the 775-land package.  
Keep-out zone — The area on or near the processor that system design can not use.  
®
Intel 915G\915GV\910GL and 915P/915PL Express chipset — Chipsets that support  
DDR and DDR2 memory technology for the Celeron D processor in the 775-land package.  
Processor core — Processor core die with integrated L2 cache.  
FC-LGA4 package — The Celeron D processor in the 775-land package is available in a  
Flip-Chip Land Grid Array 4 package, consisting of a processor core mounted on a substrate  
with an integrated heat spreader (IHS).  
LGA775 socket — The Celeron D processor in the 775-land package mates with the system  
board through a surface mount, 775-land, LGA socket.  
Integrated heat spreader (IHS) —A component of the processor package used to enhance  
the thermal performance of the package. Component thermal solutions interface with the  
processor at the IHS surface.  
Retention mechanism (RM)—Since the LGA775 socket does not include any mechanical  
features for heatsink attach, a retention mechanism is required. Component thermal solutions  
should attach to the processor via a retention mechanism that is independent of the socket.  
Storage conditions—Refers to a non-operational state. The processor may be installed in a  
platform, in a tray, or loose. Processors may be sealed in packaging or exposed to free air.  
Under these conditions, processor lands should not be connected to any supply voltages, have  
any I/Os biased, or receive any clocks. Upon exposure to “free air” (i.e., unsealed packaging or  
a device removed from packaging material) the processor must be handled in accordance with  
moisture sensitivity labeling (MSL) as indicated on the packaging material.  
Functional operation—Refers to normal operating conditions in which all processor  
specifications, including DC, AC, system bus, signal quality, mechanical and thermal, are  
satisfied.  
12  
Datasheet  
Introduction  
1.2  
References  
Material and concepts available in the following documents may be beneficial when reading this  
document.  
Table 1-1. References  
Document Numbers/  
Location  
Document  
http://developer.intel.com/  
design/Pentium4/guides/  
302553.htm  
Intel® Pentium® 4 Processor on 90 nm Process in the 775-Land LGA Package  
Thermal Design Guide  
http://developer.intel.com/  
Voltage Regulator Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket design/Pentium4/guides/  
302356.htm  
http://developer.intel.com/  
LGA775 Socket Mechanical Design Guide  
design/pentium4/guides/  
302666.htm  
Intel® Architecture Software Developer's Manual  
IA-32 Intel® Architecture Software Developer's Manual Volume 1: Basic  
Architecture  
IA-32 Intel® Architecture Software Developer's Manual Volume 2A: Instruction http://developer.intel.com/  
Set Reference Manual A–M  
design/pentium4/  
manuals/index_new.htm  
IA-32 Intel® Architecture Software Developer's Manual Volume 2B: Instruction  
Set Reference Manual, N–Z  
IA-32 Intel® Architecture Software Developer's Manual Volume 3: System  
Programming Guide  
http://developer.intel.com/  
design/pentium4/  
manuals/index_new.htm  
IA-32 Intel® Architecture and Intel® Extended Memory 64 Software  
Developer's Manual Documentation Changes  
§
Datasheet  
13  
Introduction  
14  
Datasheet  
Electrical Specifications  
2 Electrical Specifications  
This chapter describes the electrical characteristics of the processor interfaces and signals. DC  
electrical characteristics are provided.  
2.1  
FSB and GTLREF  
Most processor FSB signals use Gunning Transceiver Logic (GTL+) signaling technology.  
Platforms implement a termination voltage level for GTL+ signals defined as V . V must be  
TT TT  
provided via a separate voltage source and not be connected to V . This configuration allows for  
CC  
improved noise tolerance as processor frequency increases. Because of the speed improvements to  
the data and address bus, signal integrity and platform design methods have become more critical  
than with previous processor families.  
The GTL+ inputs require a reference voltage (GTLREF) which is used by the receivers to  
determine if a signal is a logical 0 or a logical 1. GTLREF must be generated on the system board  
(see Table 2-17 for GTLREF specifications). Termination resistors are provided on the processor  
silicon and are terminated to V . Intel chipsets will also provide on-die termination, thus  
TT  
eliminating the need to terminate the bus on the system board for most GTL+ signals.  
Some GTL+ signals do not include on-die termination and must be terminated on the system board.  
See Table 2-4 for details regarding these signals.  
The GTL+ bus depends on incident wave switching. Therefore timing calculations for GTL+  
signals are based on flight time as opposed to capacitive deratings. Analog signal simulation of the  
FSB, including trace lengths, is highly recommended when designing a system.  
2.2  
2.3  
Power and Ground Lands  
For clean on-chip power distribution, the Celeron D processor in the 775-land package has  
226 VCC (power), 24 VTT and 273 VSS (ground) lands. All power lands must be connected to  
V
, all VTT lands must be connected to V , while all VSS lands must be connected to a system  
CC  
TT  
ground plane. The processor VCC lands must be supplied by the voltage determined by the Voltage  
IDentification (VID) signals.  
Decoupling Guidelines  
Due to its large number of transistors and high internal clock speeds, the processor is capable of  
generating large current swings between low and full power states. This may cause voltages on  
power planes to sag below their minimum values if bulk decoupling is not adequate. Care must be  
taken in the board design to ensure that the voltage provided to the processor remains within the  
specifications listed in Table 2-8. Failure to do so can result in timing violations or reduced lifetime  
of the component. For further information, refer to the Voltage Regulator Down (VRD) 10.1 Design  
Guide For Desktop LGA775 Socket.  
Datasheet  
15  
Electrical Specifications  
2.3.1  
VCC Decoupling  
Regulator solutions need to provide bulk capacitance with a low Effective Series Resistance (ESR)  
and keep a low interconnect resistance from the regulator to the socket. Bulk decoupling for the  
large current swings when the part is powering on, or entering/exiting low power states, must be  
provided by the voltage regulator solution (VR). For more details, refer to the Voltage Regulator  
Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket.  
2.3.2  
2.3.3  
FSB GTL+ Decoupling  
The Celeron D processor in the 775-land package integrates signal termination on the die as well as  
incorporating high frequency decoupling capacitance on the processor package. Decoupling must  
also be provided by the system baseboard for proper GTL+ bus operation.  
FSB Clock (BCLK[1:0]) and Processor Clocking  
BCLK[1:0] directly controls the FSB interface speed as well as the core frequency of the processor.  
As in previous generation processors, the Celeron D processor in the 775-land package core  
frequency is a multiple of the BCLK[1:0] frequency. Refer to Table 2-1 for the Celeron D  
processor in the 775-land package supported ratios.  
The Celeron D processor in the 775-land package uses a differential clocking implementation. For  
more information on the Celeron D processor in the 775-land package clocking, refer to the  
CK410/CK410M Clock Synthesizer/Driver Specification.  
Table 2-1. Core Frequency to FSB Multiplier Configuration  
Multiplication of System Core Processor Core Frequency (133 MHz BCLK  
Notes1  
Frequency to FSB Frequency  
Number  
/ 533 MHz FSB)  
1/19  
325J/326  
330J/331  
335J/336  
340J/341  
345J/346  
351  
2.53 GHz  
2.66 GHz  
2.80 GHz  
2.93 GHz  
3.06 GHz  
3.20 GHz  
3.33 GHz  
1/20  
1/21  
1/22  
1/23  
1/24  
1/25  
355  
NOTES:  
1.  
Individual processors operate only at or below the rated frequency.  
16  
Datasheet  
Electrical Specifications  
2.4  
Voltage Identification  
The VID specification for the Celeron D processor in the 775-land package is supported by the  
Voltage Regulator Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket. The voltage set  
by the VID signals is the maximum voltage allowed by the processor. A minimum voltage is  
provided in Table 2-8 and changes with frequency. This allows processors running at a higher  
frequency to have a relaxed minimum voltage specification. The specifications have been set such  
that one voltage regulator can work with all supported frequencies.  
Individual processor VID values may be calibrated during manufacturing such that two devices at  
the same speed may have different VID settings.  
The Celeron D processor in the 775-land package uses six voltage identification signals, VID[5:0],  
to support automatic selection of power supply voltages. Table 2-2 specifies the voltage level  
corresponding to the state of VID[5:0]. A ‘1’ in this table refers to a high voltage level and a ‘0’  
refers to low voltage level. If the processor socket is empty (VID[5:0] = x11111), or the voltage  
regulation circuit cannot supply the voltage that is requested, it must disable itself. See the Voltage  
Regulator Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket for more details.  
Power source characteristics must be guaranteed to be stable when the supply to the voltage  
regulator is stable.  
The LL_ID[1:0] lands are used by the platform to configure the proper loadline slope for the  
processor. LL_ID[1:0] = 00 for the Celeron D processor in the 775-land package.  
The VTT_SEL land is used by the platform to configure the proper V voltage level for the  
TT  
processor. VTT_SEL = 1 for the Celeron D processor in the 775-land package.  
The GTLREF_SEL signal is used by the platform to select the appropriate chipset GTLREF level.  
GTLREF_SEL = 0 for the Celeron D processor in the 775-land package.  
The VID_SELECT signal is used by the platform to select the VID table that is to be used by the  
voltage regulator.  
LL_ID[1:0], VTT_SEL, GTLREF_SEL, and VID_SELECT are signals that are implemented on  
the processor package. That is they are either connected directly to V or are open lands.  
SS  
Datasheet  
17  
Electrical Specifications  
Table 2-2. Voltage Identification Definition  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
VID  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
VID  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0.8375  
0.8500  
0.8625  
0.8750  
0.8875  
0.9000  
0.9125  
0.9250  
0.9375  
0.9500  
0.9625  
0.9750  
0.9875  
1.0000  
1.0125  
1.0250  
1.0375  
1.0500  
1.0625  
1.0750  
1.0875  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1.2125  
1.2250  
1.2375  
1.2500  
1.2625  
1.2750  
1.2875  
1.3000  
1.3125  
1.3250  
1.3375  
1.3500  
1.3625  
1.3750  
1.3875  
1.4000  
1.4125  
1.4250  
1.4375  
1.4500  
1.4625  
VR output  
off  
1
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
1
1
1.4750  
1.4875  
VR output  
off  
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
1.1000  
1.1125  
1.1250  
1.1375  
1.1500  
1.1625  
1.1750  
1.1875  
1.2000  
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
1.5000  
1.5125  
1.5250  
1.5375  
1.5500  
1.5625  
1.5750  
1.5875  
1.6000  
18  
Datasheet  
Electrical Specifications  
2.4.1  
Phase Lock Loop (PLL) Power and Filter  
V
and V  
are power sources required by the PLL clock generators for the Celeron D  
CCIOPLL  
CCA  
processor in the 775-land package. Since these PLLs are analog, they require low noise power  
supplies for minimum jitter. Jitter is detrimental to the system: it degrades external I/O timings as  
well as internal core timings (i.e., maximum frequency). To prevent this degradation, these supplies  
must be low pass filtered from V .  
TT  
The AC low-pass requirements, with input at V are as follows:  
TT  
< 0.2 dB gain in pass band  
< 0.5 dB attenuation in pass band < 1 Hz  
> 34 dB attenuation from 1 MHz to 66 MHz  
> 28 dB attenuation from 66 MHz to core frequency  
The filter requirements are illustrated in Figure 2-1.  
.
Figure 2-1. Phase Lock Loop (PLL) Filter Requirements  
0.2 dB  
0 dB  
–0.5 dB  
Forbidden  
Zone  
Forbidden  
Zone  
–28 dB  
–34 dB  
DC  
1 Hz  
Passband  
fpeak  
1 MHz  
66 MHz  
fcore  
High  
Frequency  
Band  
Filter_Spec  
NOTES:  
1. Diagram not to scale.  
2. No specification exists for frequencies beyond fcore (core frequency).  
3. fpeak, if existent, should be less than 0.05 MHz.  
Datasheet  
19  
Electrical Specifications  
2.5  
Reserved, Unused, and TESTHI Signals  
All RESERVED signals must remain unconnected. Connection of these signals to V ,V , V  
CC SS  
TT,  
or to any other signal (including each other) can result in component malfunction or  
incompatibility with future processors. See Chapter 4 for a land listing of the processor and the  
location of all RESERVED signals.  
For reliable operation, always connect unused inputs or bidirectional signals to an appropriate  
signal level. In a system level design, on-die termination has been included on the Celeron D  
processor in the 775-land package to allow signals to be terminated within the processor silicon.  
Most unused GTL+ inputs should be left as no connects, as GTL+ termination is provided on the  
processor silicon. However, see Table 2-4 for details on GTL+ signals that do not include on-die  
termination. Unused active high inputs should be connected through a resistor to ground (V ).  
SS  
Unused outputs can be left unconnected; however, this may interfere with some test access port  
(TAP) functions, complicate debug probing, and prevent boundary scan testing. A resistor must be  
used when tying bidirectional signals to power or ground. When tying any signal to power or  
ground, a resistor will also allow for system testability. For unused GTL+ input or I/O signals, use  
pull-up resistors of the same value as the on-die termination resistors (RTT). Refer to Table 2-17 for  
more details.  
TAP, GTL+ Asynchronous inputs, and GTL+ Asynchronous outputs do not include on-die  
termination. Inputs and used outputs must be terminated on the system board. Unused outputs may  
be terminated on the system board or left unconnected. Note that leaving unused outputs  
unterminated may interfere with some TAP functions, complicate debug probing, and prevent  
boundary scan testing.  
The TESTHI signals must be tied to the processor V using a matched resistor, where a matched  
TT  
resistor has a resistance value within ±20% of the impedance of the board transmission line traces.  
For example, if the trace impedance is 60 Ω, then a value between 48 Ω and 72 Ω is required.  
The TESTHI signals may use individual pull-up resistors or be grouped together as detailed below.  
A matched resistor must be used for each group:  
TESTHI[1:0]  
TESTHI[7:2]  
TESTHI8 – cannot be grouped with other TESTHI signals  
TESTHI9 – cannot be grouped with other TESTHI signals  
TESTHI10 – cannot be grouped with other TESTHI signals  
TESTHI11 – cannot be grouped with other TESTHI signals  
TESTHI12 – cannot be grouped with other TESTHI signals  
TESTHI13 – cannot be grouped with other TESTHI signals  
2.6  
FSB Signal Groups  
The FSB signals have been combined into groups by buffer type. GTL+ input signals have  
differential input buffers, which use GTLREF as a reference level. In this document, the term  
"GTL+ Input" refers to the GTL+ input group as well as the GTL+ I/O group when receiving.  
Similarly, "GTL+ Output" refers to the GTL+ output group as well as the GTL+ I/O group when  
driving.  
20  
Datasheet  
Electrical Specifications  
With the implementation of a source synchronous data bus comes the need to specify two sets of  
timing parameters. One set is for common clock signals which are dependent upon the rising edge  
of BCLK0 (ADS#, HIT#, HITM#, etc.) and the second set is for the source synchronous signals  
which are relative to their respective strobe lines (data and address) as well as the rising edge of  
BCLK0. Asychronous signals are still present (A20M#, IGNNE#, etc.) and can become active at  
any time during the clock cycle. Table 2-3 identifies which signals are common clock, source  
synchronous, and asynchronous.  
Table 2-3. FSB Signal Groups  
Signal Group  
Type  
Signals1  
Synchronous to  
BCLK[1:0]  
GTL+ Common Clock Input  
BPRI#, DEFER#, RS[2:0]#, RSP#, TRDY#, EDRDY#2  
Synchronous to  
BCLK[1:0]  
AP[1:0]#, ADS#, BINIT#, BNR#, BPM[5:0]#, BR0#, DBSY#,  
DP[3:0]#, DRDY#, HIT#, HITM#, LOCK#, MCERR#  
GTL+ Common Clock I/O  
Signals  
Associated Strobe  
REQ[4:0]#, A[16:3]#3  
PC_REQ#2, 4  
ADSTB0#  
A[35:17]#3  
ADSTB1#  
Synchronous to assoc.  
strobe  
GTL+ Source Synchronous I/O  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBP0#, DSTBN0#  
DSTBP1#, DSTBN1#  
DSTBP2#, DSTBN2#  
DSTBP3#, DSTBN3#  
Synchronous to  
BCLK[1:0]  
GTL+ Strobes  
ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#  
A20M#, IGNNE#, INIT#, LINT0/INTR, LINT1/NMI, SMI#,  
STPCLK#, RESET#  
GTL+ Asynchronous Input  
GTL+ Asynchronous Output  
GTL+ Asynchronous Input/Output  
TAP Input  
FERR#/PBE#, IERR#, THERMTRIP#  
PROCHOT#  
Synchronous to TCK  
Synchronous to TCK  
Clock  
TCK, TDI, TMS, TRST#  
TDO  
TAP Output  
FSB Clock  
BCLK[1:0], ITP_CLK[1:0]5  
VCC, VTT, VCCA, VCCIOPLL, VID[7:0], VSS, VSSA,  
GTLREF[1:0], COMP[5:0], RESERVED, TESTHI[13:0],  
THERMDA, THERMDC, VCC_SENSE, VSS_SENSE,  
BSEL[2:0], SKTOCC#, DBR#5, VTTPWRGD, BOOTSELECT,  
PWRGOOD, VTT_OUT_LEFT, VTT_OUT_RIGHT, VTT_SEL,  
LL_ID[1:0], VID_SELECT, GTLREF_SEL  
Power/Other  
NOTES:  
1. Refer to Section 4.2 for signal descriptions.  
2. EDRDY# and PC_REQ# are not features of the Celeron D processor in the 775-land package. They are  
included here for future processor compatibility.  
3. The value of these signals during the active-to-inactive edge of RESET# defines the processor configuration  
options. See Section 6.1 for details.  
4. PC_REQ# is driven by the processor as Common Clock (1X); however, it must be received at the chipset as  
Source Synchronous and associated with ADSTB0#.  
5. In processor systems where there is no debug port implemented on the system board, these signals are used  
to support a debug port interposer. In systems with the debug port implemented on the system board, these  
signals are no connects.  
Datasheet  
21  
Electrical Specifications  
Table 2-4. Signal Characteristics  
Signals with RTT  
Signals with no RTT  
A20M#, BCLK[1:0], BPM[5:0]#, BR0#, BSEL[2:0],  
COMP[5:0], FERR#/PBE#, IERR#, IGNNE#,  
INIT#, LINT0/INTR, LINT1/NMI, PWRGOOD,  
RESET#, SKTOCC#, SMI#, STPCLK#, TDO,  
TESTHI[13:0], THERMDA, THERMDC,  
THERMTRIP#, VID[5:0], VTTPWRGD,  
A[35:3]#, ADS#, ADSTB[1:0]#, AP[1:0]#, BINIT#,  
BNR#, BOOTSELECT1, BPRI#, D[63:0]#, DBI[3:0]#,  
DBSY#, DEFER#, DP[3:0]#, DRDY#, DSTBN[3:0]#,  
DSTBP[3:0]#, HIT#, HITM#, LOCK#, MCERR#,  
PROCHOT#, REQ[4:0]#, RS[2:0]#, RSP#, TRDY#,  
EDRDY#2, PC_REQ#2  
GTLREF[1:0], TCK, TDI, TRST#, TMS  
Open Drain Signals3  
BSEL[2:0], VID[7:0], THERMTRIP#, FERR#/PBE#,  
IERR#, BPM[5:0]#, BR0#, TDO, VTT_SEL, LL_ID[1:0],  
MS_ID[1:0], GTLREF_SEL, VID_SELECT  
NOTES:  
1.  
2.  
The BOOTSELECT signal has a 500–5000 Ω pull-up to V rather than on-die termination.  
TT  
EDRDY# and PC_REQ# are not features of the Celeron D processor in the 775-land package. They are included here for  
future processor compatibility.  
3.  
Signals that do not have R , nor are actively driven to their high-voltage level.  
TT  
.
Table 2-5. Signal Reference Voltages  
GTLREF  
VTT/2  
BPM[5:0]#, LINT0/INTR, LINT1/NMI, RESET#, BINIT#,  
BNR#, HIT#, HITM#, MCERR#, PROCHOT#, BR0#,  
A[35:0]#, ADS#, ADSTB[1:0]#, AP[1:0]#, BPRI#, D[63:0]#,  
DBI[3:0]#, DBSY#, DEFER#, DP[3:0]#, DRDY#,  
DSTBN[3:0]#, DSTBP[3:0]#, LOCK#, REQ[4:0]#, RS[2:0]#,  
RSP#, TRDY#, EDRDY#1, PC_REQ#1  
BOOTSELECT, VTTPWRGD, A20M#,  
IGNNE#, INIT#, PWRGOOD2, SMI#,  
STPCLK#, TCK2, TDI2, TMS2, TRST#2  
NOTES:  
1.  
EDRDY# and PC_REQ# are not features of the Celeron D processor in the 775-land package. They are included here for  
future processor compatibility.  
2.  
These signals also have hysteresis added to the reference voltage. See Table 2-12 for more information.  
2.7  
GTL+ Asynchronous Signals  
Legacy input signals such as A20M#, IGNNE#, INIT#, SMI#, and STPCLK# use CMOS input  
buffers. All of these signals follow the same DC requirements as GTL+ signals; however, the  
outputs are not actively driven high (during a logical 0 to 1 transition) by the processor. These  
signals do not have setup or hold time specifications in relation to BCLK[1:0].  
All of the GTL+ Asynchronous signals are required to be asserted/de-asserted for at least six  
BCLKs for the processor to recognize the proper signal state. See Section 2.11 for the DC  
specifications for the GTL+ Asynchronous signal groups. See Section 6.2 for additional timing  
requirements for entering and leaving the low power states.  
22  
Datasheet  
Electrical Specifications  
2.8  
2.9  
Test Access Port (TAP) Connection  
Due to the voltage levels supported by other components in the Test Access Port (TAP) logic, it is  
recommended that the Celeron D processor in the 775-land package be first in the TAP chain and  
followed by any other components within the system. A translation buffer should be used to  
connect to the rest of the chain unless one of the other components is capable of accepting an input  
of the appropriate voltage level. Similar considerations must be made for TCK, TMS, TRST#, TDI,  
and TDO. Two copies of each signal may be required, with each driving a different voltage level.  
FSB Frequency Select Signals (BSEL[2:0])  
The BSEL[2:0] signals are used to select the frequency of the processor input clock (BCLK[1:0]).  
Table 2-6 defines the possible combinations of the signals and the frequency associated with each  
combination. The required frequency is determined by the processor, chipset, and clock  
synthesizer. All agents must operate at the same frequency.  
The Celeron D processor in the 775-land package currently operates at a 533 MHz FSB frequency  
(selected by a 133 MHz BCLK[1:0] frequency). Individual processors will only operate at their  
specified FSB frequency.  
For more information about these signals, refer to Section 4.2.  
Table 2-6. BSEL[2:0] Frequency Table for BCLK[1:0]  
BSEL2  
BSEL1  
BSEL0  
FSB Frequency  
L
L
L
L
L
H
H
L
Reserved  
133 MHz  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
L
H
H
L
L
H
H
H
H
L
L
H
H
L
H
H
2.10  
Absolute Maximum and Minimum Ratings  
Table 2-7 specifies absolute maximum and minimum ratings. Within functional operation limits,  
functionality and long-term reliability can be expected.  
At conditions outside functional operation condition limits, but within absolute maximum and  
minimum ratings, neither functionality nor long-term reliability can be expected. If a device is  
returned to conditions within functional operation limits after having been subjected to conditions  
outside these limits, but within the absolute maximum and minimum ratings, the device may be  
functional, but with its lifetime degraded depending on exposure to conditions exceeding the  
functional operation condition limits.  
Datasheet  
23  
Electrical Specifications  
At conditions exceeding absolute maximum and minimum ratings, neither functionality nor long-  
term reliability can be expected. Moreover, if a device is subjected to these conditions for any  
length of time then, when returned to conditions within the functional operating condition limits, it  
will either not function, or its reliability will be severely degraded.  
Although the processor contains protective circuitry to resist damage from static electric discharge,  
precautions should always be taken to avoid high static voltages or electric fields.  
Table 2-7. Processor DC Absolute Maximum Ratings  
Symbol  
VCC  
Parameter  
Min  
Max  
Unit  
Notes1, 2  
Core voltage with respect to  
VSS  
- 0.3  
1.55  
V
FSB termination voltage with  
respect to VSS  
VTT  
- 0.3  
1.55  
V
TC  
Processor case temperature  
Processor storage temperature  
See Chapter 5  
–40  
See Chapter 5  
+85  
°C  
°C  
3, 4  
TSTORAGE  
NOTES:  
1.  
2.  
3.  
For functional operation, all processor electrical, signal quality, mechanical and thermal specifications must be satisfied.  
Excessive overshoot or undershoot on any signal will likely result in permanent damage to the processor.  
Storage temperature is applicable to storage conditions only. In this scenario, the processor must not receive a clock, and  
no lands can be connected to a voltage bias. Storage within these limits will not affect the long-term reliability of the device.  
For functional operation, refer to the processor case temperature specifications.  
4.  
This rating applies to the processor and does not include any tray or packaging.  
2.11  
Processor DC Specifications  
The processor DC specifications in this section are defined at the processor core silicon and  
not at the package lands unless noted otherwise. See Chapter 4 for the signal definitions and  
signal assignments. Most of the signals on the processor FSB are in the GTL+ signal group. The  
DC specifications for these signals are listed in Table 2-11.  
Previously, legacy signals and Test Access Port (TAP) signals to the processor used low-voltage  
CMOS buffer types. However, these interfaces now follow DC specifications similar to GTL+. The  
DC specifications for these signal groups are listed in Table 2-10 and Table 2-12.  
Table 2-8 through Table 2-14 list the DC specifications for the Celeron D processor in the 775-land  
package and are valid only while meeting specifications for case temperature, clock frequency, and  
input voltages. Care should be taken to read all notes associated with each parameter.  
2.11.1  
Processor DC Specifications  
The processor DC specifications in this section are defined at the processor core silicon and  
not at the package lands unless noted otherwise. See Chapter 4 for the signal definitions and  
signal assignments. Most of the signals on the processor FSB are in the GTL+ signal group. The  
DC specifications for these signals are listed in Table 2-10.  
Table 2-8 through Table 2-15 list the DC specifications for the Celeron D processor in the 775-land  
package and are valid only while meeting specifications for case temperature, clock frequency, and  
input voltages. Care should be taken to read all notes associated with each parameter.  
24  
Datasheet  
Electrical Specifications  
Table 2-8. Voltage and Current Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
1
VID range  
VID  
1.250  
1.400  
V
Processor Core Frequency  
Number  
VCC for 775_VR_CONFIG_04A  
processors  
325J/326  
330J/331  
335J/336  
340J/341  
345J/346  
351  
2.53 GHz  
2.66 GHz  
2.80 GHz  
2.93 GHz  
3.06 GHz  
3.20 GHz  
3.33 GHz  
VCC  
Refer to Table 2-9 and  
Figure 2-2  
2, 3, 4, 5, 6  
V
355  
Processor Core Frequency  
Number  
ICC for processor with multiple  
VID  
325J/326  
330J/331  
335J/336  
340J/341  
345J/346  
351  
2.53 GHz  
2.66 GHz  
2.80 GHz  
2.93 GHz  
3.06 GHz  
3.20 GHz  
3.33 GHz  
78  
78  
78  
78  
78  
78  
78  
ICC  
7
A
355  
Processor Core Frequency  
Number  
ICC Stop-Grant  
325J/326  
330J/331  
335J/336  
340J/341  
345J/346  
351  
2.53 GHz  
2.66 GHz  
2.80 GHz  
2.93 GHz  
3.06 GHz  
3.20 GHz  
3.33 GHz  
40  
40  
40  
40  
40  
40  
40  
ISGNT  
8, 9, 13  
A
355  
10  
ITCC  
VTT  
ICC TCC active  
ICC  
A
V
FSB termination voltage (DC+AC  
specifications)  
11, 12  
1.14  
1.20  
1.26  
VTT_OUT  
ICC  
DC Current that may be drawn from  
VTT_OUT per pin  
580  
mA  
13, 14  
13  
ITT  
FSB termination current  
ICCfor PLL lands  
3.5  
120  
100  
200  
A
ICC_VCCA  
mA  
mA  
μA  
13  
ICC_VCCIOPLL ICC for I/O PLL land  
13  
ICC_GTLREF  
ICC for GTLREF  
NOTES:  
1.  
Individual processor VID values may be calibrated during manufacturing such that two devices at the same speed may have  
different VID settings.  
Datasheet  
25  
Electrical Specifications  
2.  
3.  
These voltages are targets only. A variable voltage source should exist on systems in the event that a different voltage is re-  
quired. See Section 2.4 and Table 2-2 for more information.  
The voltage specification requirements are measured across VCC_SENSE and VSS_SENSE lands at the socket with a  
100 MHz bandwidth oscilloscope, 1.5 pF maximum probe capacitance, and 1 MΩ minimum impedance. The maximum length  
of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled into the oscillo-  
scope probe.  
4.  
5.  
6.  
775_VR_CONFIG_04A refers to voltage regulator configurations that are defined in the Voltage Regulator Down (VRD) 10.1  
Design Guide For Desktop LGA775 Socket.  
Refer to Table 2-9 and Figure 2-2 for the minimum, typical, and maximum V  
allowed for a given current. The processor  
CC  
should not be subjected to any V and I combination wherein V exceeds V for a given current.  
CC  
CC  
CC  
CC_max  
These frequencies will operate properly in a system designed for 775_VR_CONFIG_04B processors. The power and I will  
CC  
be incrementally higher in this configuration due to the improved loadline and resulting higher V  
.
CC  
7.  
8.  
9.  
I
is specified at V  
.
CC_max  
CC_max  
The current specified is also for AutoHALT State.  
Icc Stop-Grant and I Sleep are specified at V  
.
CC_max  
CC  
10. The maximum instantaneous current the processor will draw while the thermal control circuit is active as indicated by the as-  
sertion of PROCHOT# is the same as the maximum Icc for the processor.  
11. VTT must be provided via a separate voltage source and not be connected to V . This specification is measured at the land.  
CC  
12. Baseboard bandwidth is limited to 20 MHz.  
13. These parameters are based on design characterization and are not tested.  
14. This is maximum total current drawn from V plane by only the processor. This specification does not include the current com-  
TT  
ing from R (through the signal line). Refer to the Voltage Regulator Down (VRD) 10.1 Design Guide For Desktop LGA775  
TT  
Socket to determine the total I drawn by the system.  
TT  
Table 2-9. V Static and Transient Tolerance for 775_VR_CONFIG_04A Processors  
CC  
Voltage Deviation from VID Setting (V)1, 2, 3  
ICC (A)  
Maximum Voltage  
Typical Voltage  
Minimum Voltage  
1.70 mΩ  
1.75 mΩ  
1.80 mΩ  
0
5
0.000  
-0.009  
-0.017  
-0.026  
-0.034  
-0.043  
-0.051  
-0.060  
-0.068  
-0.077  
-0.085  
-0.094  
-0.102  
-0.111  
-0.119  
-0.128  
-0.133  
-0.025  
-0.034  
-0.043  
-0.051  
-0.060  
-0.069  
-0.078  
-0.086  
-0.095  
-0.104  
-0.113  
-0.121  
-0.130  
-0.139  
-0.148  
-0.156  
-0.162  
-0.050  
-0.059  
-0.068  
-0.077  
-0.086  
-0.095  
-0.104  
-0.113  
-0.122  
-0.131  
-0.140  
-0.149  
-0.158  
-0.167  
-0.176  
-0.185  
-0.190  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
78  
NOTES:  
1.  
The loadline specification includes both static and transient limits except for overshoot allowed as shown in  
Section 2.12.  
2.  
3.  
This table is intended to aid in reading discrete points on Figure 2-2.  
The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage  
regulation feedback for voltage regulator circuits must be taken from processor VCC and VSS lands. Refer  
to the Voltage Regulator Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket for socket loadline  
guidelines and VR implementation details.  
26  
Datasheet  
Electrical Specifications  
Figure 2-2. V Static and Transient Tolerance for 775_VR_CONFIG_04A  
CC  
Icc [A]  
0
10  
20  
30  
40  
50  
60  
70  
VID - 0.000  
VID - 0.025  
VID - 0.050  
VID - 0.075  
VID - 0.100  
VID - 0.125  
VID - 0.150  
VID - 0.175  
VID - 0.200  
Vcc Maximum  
Vcc Typical  
Vcc Minimum  
NOTES:  
1. The loadline specification includes both static and transient limits except for overshoot allowed as shown in  
Section 2.12.  
2. This loadline specification shows the deviation from the VID set point.  
3. The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage  
regulation feedback for voltage regulator circuits must be taken from processor VCC and VSS lands. Refer to  
the Voltage Regulator Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket for socket loadline  
guidelines and VR implementation details.  
Datasheet  
27  
Electrical Specifications  
Table 2-10. GTL+ Asynchronous Signal Group DC Specifications  
Symbol  
Parameter  
Min  
Max  
Unit Notes1  
2, 3  
VIL  
VIH  
VOH  
IOL  
ILI  
Input Low Voltage  
0.0  
VTT/2 – (0.10 * VTT  
)
3, 4, 5, 6  
Input High Voltage  
Output High Voltage  
Output Low Current  
Input Leakage Current  
VTT/2 + (0.10 * VTT  
)
VTT  
VTT  
5, 6, 7  
0.90*VTT  
V
8
VTT/[(0.50*RTT_MIN) + RON_MIN  
± 200  
]
A
9
N/A  
µA  
Output Leakage  
Current  
10  
ILO  
N/A  
8
± 200  
12  
µA  
RON  
Buffer On Resistance  
Ω
NOTES:  
1.  
2.  
3.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
is defined as the voltage range at a receiving agent that will be interpreted as a logical low value.  
LINT0/INTR and LINT1/NMI use GTLREF as a reference voltage. For these two signals  
V
IL  
V
V
V
= GTLREF + (0.10 * VTT) and V = GTLREF – (0.10 * VTT).  
IH  
IH  
IH  
IL  
4.  
5.  
6.  
7.  
8.  
is defined as the voltage range at a receiving agent that will be interpreted as a logical high value.  
and V may experience excursions above V  
.
TT  
OH  
The VTT referred to in these specifications refers to instantaneous V  
All outputs are open drain.  
The maximum output current is based on maximum current handling capability of the buffer and is not specified into the test  
load.  
.
TT  
9.  
Leakage to V with land held at V .  
SS TT  
10. Leakage to V with land held at 300 mV.  
TT  
Table 2-11. GTL+ Signal Group DC Specifications  
Symbol  
Parameter  
Min  
Max  
Unit Notes1  
2, 3  
VIL  
VIH  
VOH  
IOL  
Input Low Voltage  
Input High Voltage  
Output High Voltage  
Output Low Current  
0.0  
GTLREF + (0.10 * VTT  
0.90*VTT  
GTLREF – (0.10 * VTT  
)
V
3, 4, 5  
)
VTT  
VTT  
V
3, 5  
V
N/A  
VTT/[(0.50*RTT_MIN) + RON_MIN  
± 200  
]
A
-
Input Leakage  
Current  
6
ILI  
N/A  
µA  
Output Leakage  
Current  
6
ILO  
N/A  
8
± 200  
12  
µA  
RON  
Buffer On Resistance  
Ω
NOTES:  
1.  
2.  
3.  
4.  
5.  
6.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
is defined as the voltage range at a receiving agent that will be interpreted as a logical low value.  
The V referred to in these specifications is the instantaneous V  
V
IL  
.
TT  
TT  
V
V
is defined as the voltage range at a receiving agent that will be interpreted as a logical high value.  
and V may experience excursions above V  
IH  
.
IH  
OH  
TT  
Leakage to V with land held at V  
.
SS  
TT  
28  
Datasheet  
Electrical Specifications  
.
Table 2-12. PWRGOOD and TAP Signal Group DC Specifications  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes1, 2  
3
VHYS  
Input Hysteresis  
200  
350  
mV  
Input low to high  
threshold voltage  
4
4
VT+  
0.5 * (VTT + VHYS_MIN  
)
0.5 * (VTT + VHYS_MAX  
)
V
V
Input high to low  
threshold voltage  
VT  
0.5 * (VTT – VHYS_MAX  
)
0.5 * (VTT – VHYS_MIN)  
-
4
5
6
6
VOH  
IOL  
Output High Voltage  
Output Low Current  
Input Leakage Current  
Output Leakage Current  
Buffer On Resistance  
N/A  
7
VTT  
45  
V
mA  
µA  
µA  
Ω
ILI  
± 200  
± 200  
12  
ILO  
RON  
NOTES:  
1.  
2.  
3.  
4.  
5.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
All outputs are open drain.  
V
represents the amount of hysteresis, nominally centered about 0.5 * V , for all TAP inputs.  
HYS  
TT  
The V referred to in these specifications refers to instantaneous V  
.
TT  
TT  
The maximum output current is based on maximum current handling capability of the buffer and is not specified into the test  
load.  
6.  
Leakage to V with land held at V .  
SS TT  
Table 2-13. VTTPWRGD DC Specifications  
Symbol  
Parameter  
Input Low Voltage  
Input High Voltage  
Min  
Typ  
Max  
Unit  
Notes  
VIL  
VIH  
0.3  
V
V
0.9  
Table 2-14. BSEL [2:0] and VID[5:0] DC Specifications  
Symbol  
Parameter  
Max  
Unit  
Notes1, 2  
RON (BSEL) Buffer On Resistance  
RON (VID) Buffer On Resistance  
60  
60  
8
Ω
Ω
IOL  
ILO  
Max Land Current  
mA  
µA  
V
3
Output Leakage Current  
Voltage Tolerance  
200  
VTOL  
VTT (max)  
NOTES:  
1.  
2.  
3.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
These parameters are not tested and are based on design simulations.  
Leakage to V with land held at 2.5 V.  
SS  
Table 2-15. BOOTSELECT DC Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
1
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
0.24  
V
V
0.96  
NOTES:  
1.  
These parameters are not tested and are based on design simulations.  
Datasheet  
29  
Electrical Specifications  
2.12  
V Overshoot Specification  
CC  
The Celeron D processor in the 775-land package can tolerate short transient overshoot events  
where V exceeds the VID voltage when transitioning from a high to low current load condition.  
CC  
This overshoot cannot exceed VID + VOS_MAX (VOS_MAX is the maximum allowable overshoot  
voltage). The time duration of the overshoot event must not exceed TOS_MAX (TOS_MAX is the  
maximum allowable time duration above VID). These specifications apply to the processor die  
voltage as measured across the VCC_SENSE and VSS_SENSE lands.  
Table 2-16. V Overshoot Specifications  
CC  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Figure  
VOS_MAX Magnitude of VCC overshoot above VID  
TOS_MAX Time duration of VCC overshoot above VID  
0.050  
25  
V
2-3  
2-3  
μs  
Figure 2-3. V Overshoot Example Waveform  
CC  
Example Overshoot Waveform  
VOS  
VID + 0.050  
VID  
TOS  
Time  
TOS: Overshoot time above VID  
VOS: Overshoot above VID  
NOTES:  
1. VOS is measured overshoot voltage.  
2. TOS is measured time duration above VID.  
2.12.1  
Die Voltage Validation  
Overshoot events from application testing on real processors must meet the specifications in  
Table 2-16 when measured across the VCC_SENSE and VSS_SENSE lands. Overshoot events that  
are < 10 ns in duration may be ignored. These measurements of processor die level overshoot  
should be taken with a 100 MHz bandwidth limited oscilloscope. Refer to the Voltage Regulator  
Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket for additional voltage regulator  
validation details.  
30  
Datasheet  
Electrical Specifications  
2.13  
GTL+ FSB Specifications  
Termination resistors are not required for most GTL+ signals, as these are integrated into the  
processor silicon.  
Valid high and low levels are determined by the input buffers which compare a signal’s voltage  
with a reference voltage called GTLREF.  
Table 2-17 lists the GTLREF specifications. The GTL+ reference voltage (GTLREF) should be  
generated on the system board using high precision voltage divider circuits.  
Table 2-17. GTL+ Bus Voltage Definitions  
Symbol  
Parameter  
Min  
Typ  
Max  
Units Notes1  
Bus Reference  
Voltage  
2, 3, 4  
GTLREF  
(0.98 * 0.67) * VTT 0.67 * VTT (1.02 * 0.67) * VTT  
V
On die pullup for  
BOOTSELECT  
signal  
5
RPULLUP  
500  
54  
5000  
66  
Ω
Termination  
Resistance  
6
RTT  
60  
Ω
7
COMP[1:0]  
COMP[3:2]  
COMP[5:4]  
NOTES:  
COMP Resistance  
COMP Resistance  
COMP Resistance  
59.8  
99  
60.4  
100  
61  
101  
61  
Ω
7
Ω
7
59.8  
60.4  
Ω
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
The tolerances for this specification have been stated generically to enable the system designer to calculate the minimum  
and maximum values across the range of V  
.
TT  
3.  
4.  
5.  
6.  
7.  
GTLREF should be generated from V by a voltage divider of 1% resistors or 1% matched resistors.  
TT  
The V referred to in these specifications is the instantaneous V  
.
TT  
TT  
These pull-ups are to V  
.
TT  
R
is the on-die termination resistance measured at V /2 of the GTL+ output driver.  
TT  
TT  
COMP resistance must be provided on the system board with 1% resistors. COMP[1:0] resistors are to V . COMP[3:2]  
SS  
resistors are to V . COMP[5:4] resistors are to V  
.
TT  
TT  
§
Datasheet  
31  
Electrical Specifications  
32  
Datasheet  
Package Mechanical Specifications  
3 Package Mechanical  
Specifications  
The Celeron D processor in the 775-land package is packaged in a Flip-Chip Land Grid Array  
(FC-LGA4) package that interfaces with the motherboard via an LGA775 socket. The package  
consists of a processor core mounted on a substrate land-carrier. An integrated heat spreader (IHS)  
is attached to the package substrate and core and serves as the mating surface for processor  
component thermal solutions, such as a heatsink. Figure 3-1 shows a sketch of the processor  
package components and how they are assembled together. Refer to the LGA775 Socket  
Mechanical Design Guide for complete details on the LGA775 socket.  
The package components shown in Figure 3-1 include the following:  
Integrated Heat Spreader (IHS)  
Thermal Interface Material (TIM)  
Processor core (die)  
Package substrate  
Capacitors  
Figure 3-1. Processor Package Assembly Sketch  
Core (die)  
TIM  
IHS  
Substrate  
Capacitors  
LGA775 Socket  
System Board  
NOTE:  
1. Socket and motherboard are included for reference and are not part of processor package.  
3.1  
Package Mechanical Drawing  
The package mechanical drawings are shown in Figure 3-2 through Figure 3-4. The drawings  
include dimensions necessary to design a thermal solution for the processor. These dimensions  
include:  
Package reference with tolerances (total height, length, width, etc.)  
IHS parallelism and tilt  
Land dimensions  
Top-side and back-side component keep-out dimensions  
Reference datums  
All drawing dimensions are in mm [in].  
Datasheet  
33  
Package Mechanical Specifications  
Figure 3-2. Processor Package Drawing 1  
34  
Datasheet  
Package Mechanical Specifications  
Figure 3-3. Processor Package Drawing 2  
Datasheet  
35  
Package Mechanical Specifications  
Figure 3-4. Processor Package Drawing 3  
36  
Datasheet  
Package Mechanical Specifications  
3.2  
Processor Component Keep-Out Zones  
The processor may contain components on the substrate that define component keep-out zone  
requirements. A thermal and mechanical solution design must not intrude into the required keep-  
out zones. Decoupling capacitors are typically mounted to either the topside or land-side of the  
package substrate. See Figure 3-2 and Figure 3-3 for keep-out zones.  
The location and quantity of package capacitors may change due to manufacturing efficiencies but  
will remain within the component keep-in.  
3.3  
Package Loading Specifications  
Table 3-1 provides dynamic and static load specifications for the processor package. These  
mechanical maximum load limits should not be exceeded during heatsink assembly, shipping  
conditions, or standard use condition. Also, any mechanical system or component testing should  
not exceed the maximum limits. The processor package substrate should not be used as a  
mechanical reference or load-bearing surface for thermal and mechanical solution. The minimum  
loading specification must be maintained by any thermal and mechanical solutions.  
.
Table 3-1. Processor Loading Specifications  
Parameter  
Minimum  
Maximum  
Notes  
1, 2, 3  
Static  
20 lbf  
45 lbf  
1, 3, 4  
Dynamic  
145 lbf  
NOTES:  
1.  
2.  
These specifications apply to uniform compressive loading in a direction normal to the processor IHS.  
This is the maximum force that can be applied by a heatsink retention clip. The clip must also provide the minimum spec-  
ified load on the processor package.  
3.  
4.  
These specifications are based on limited testing for design characterization. Loading limits are for the package only and  
do not include the limits of the processor socket.  
Dynamic loading is defined as an 11 ms duration average load superimposed on the static load requirement.  
3.4  
Package Handling Guidelines  
Table 3-2 includes a list of guidelines on package handling in terms of recommended maximum  
loading on the processor IHS relative to a fixed substrate. These package handling loads may be  
experienced during heatsink removal.  
Table 3-2. Package Handling Guidelines  
Parameter  
Maximum Recommended  
Notes  
1, 4  
Shear  
Tensile  
70 lbf  
25 lbf  
2, 4  
3, 4  
Torque  
35 lbf-in  
NOTES:  
1.  
2.  
3.  
4.  
A shear load is defined as a load applied to the IHS in a direction parallel to the IHS top surface.  
A tensile load is defined as a pulling load applied to the IHS in a direction normal to the IHS surface.  
A torque load is defined as a twisting load applied to the IHS in an axis of rotation normal to the IHS top surface.  
These guidelines are based on limited testing for design characterization.  
Datasheet  
37  
Package Mechanical Specifications  
3.5  
Package Insertion Specifications  
The Celeron D processor in the 775-land package can be inserted into and removed from a  
LGA775 socket 15 times. The socket should meet the LGA775 requirements detailed in the  
LGA775 Socket Mechanical Design Guide.  
3.6  
3.7  
Processor Mass Specification  
The typical mass of the Celeron D processor in the 775-land package is 21.5 g [0.76 oz]. This mass  
[weight] includes all the components that are included in the package.  
Processor Materials  
Table 3-3 lists some of the package components and associated materials.  
Table 3-3. Processor Materials  
Component  
Material  
Integrated Heat Spreader (IHS)  
Substrate  
Nickel Plated Copper  
Fiber Reinforced Resin  
Gold Plated Copper  
Substrate Lands  
3.8  
Processor Markings  
Figure 3-6 and Figure 3-6 show the topside markings on the processor. This diagrams are to aid in  
the identification of the Celeron D processor in the 775-land package.  
Figure 3-5. Processor Top-Side Marking Example (with Processor Number)  
m
I
04  
©
Celeron® D  
Processor  
Number  
346 SL7NX XXXXX  
3.06GHz/256/533  
FFFFFFFF-NNNN  
2D Matrix  
38  
Datasheet  
Package Mechanical Specifications  
Figure 3-6. Processor Top-Side Marking Example  
GROUP1 LINE1  
GROUP1 LINE2  
GROUP1 LINE3  
GROUP1 LINE4  
GROUP1 LINE5  
Grp1line1: INTEL m © ‘03  
Grp1line2: CELERON® D  
Grp1line3: 2.53GHZ/256/533  
Grp1line4: SLxxx PHILLIPINES  
Grp1line5: 7407A234  
ATPO #  
SERIAL #  
ATPO #  
SER #  
2D Matrix  
Datasheet  
39  
Package Mechanical Specifications  
3.9  
Processor Land Coordinates  
Figure 3-7 shows the top view of the processor land coordinates. The coordinates are referred to  
throughout the document to identify processor lands.  
.
Figure 3-7. Processor Land Coordinates (Top View)  
V
/ V  
S S  
C C  
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
AN  
AM  
AL  
AK  
A J  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
AN  
AM  
AL  
AK  
A J  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
W
V
W
V
Address /  
C om m on C lock  
/ Async  
775-Land P ackage Quadrants  
(Top V iew )  
U
U
T
T
R
R
P
P
N
N
M
M
L
L
K
K
J
J
H
H
G
G
F
F
E
E
D
D
C
C
B
B
A
A
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
V
/ C locks  
D ata  
TT  
§
40  
Datasheet  
Land Listing and Signal Descriptions  
4 Land Listing and Signal  
Descriptions  
This chapter contains the processor land assignments and signal descriptions.  
4.1  
Processor Land Assignments  
This section contains the land listings for the Celeron D processor in the 775-land package. The  
landout footprint is shown in Figure 4-1 and Figure 4-2. These figures show the physical location  
of each signal on the package landout footprint (top view). Table 4-1 is a listing of all processor  
lands ordered alphabetically by land (signal) name. Table 4-2 is also a listing of all processor lands;  
the ordering is by land number.  
Datasheet  
41  
Land Listing and Signal Descriptions  
Figure 4-1. Landout Diagram (Top View – Left Side)  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
AN  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
AM  
AL  
AK  
AJ  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
W
V
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
U
T
R
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
P
N
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
M
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
L
K
J
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
DP3#  
VSS  
DP0#  
DP2#  
VCC  
H
GTLREF  
_SEL  
BSEL1  
DP1#  
G
F
BSEL2 BSEL0 BCLK1 TESTHI4 TESTHI5 TESTHI3 TESTHI6 RESET# D47#  
D44# DSTBN2# DSTBP2# D35#  
D36#  
D37#  
VSS  
D32#  
VSS  
D31#  
D30#  
D33#  
VSS  
RSVD  
VSS  
BCLK0 VTT_SEL TESTHI0 TESTHI2 TESTHI7 RSVD  
VSS  
D45#  
D46#  
D43#  
D42#  
VSS  
D41#  
VSS  
VSS  
D40#  
DBI2#  
D38#  
D39#  
VSS  
E
D
VSS  
VTT  
VSS  
VTT  
VSS  
VTT  
VSS  
VTT  
RSVD  
VSS  
RSVD  
RSVD  
D34#  
RSVD  
VTT  
VTT  
VTT  
D48#  
D49#  
VCCIO  
PLL  
C
VTT  
VTT  
VTT  
VTT  
VTT  
VSS  
VSS  
D58#  
DBI3#  
VSS  
D54# DSTBP3#  
VSS  
D51#  
D53#  
B
A
VTT  
VTT  
30  
VTT  
VTT  
29  
VTT  
VTT  
28  
VTT  
VTT  
27  
VTT  
VTT  
26  
VTT  
VTT  
25  
VSS  
VSS  
24  
VSSA  
VCCA  
23  
D63#  
D62#  
22  
D59#  
VSS  
21  
VSS  
RSVD  
20  
D60#  
D61#  
19  
D57#  
VSS  
18  
VSS  
D56#  
17  
D55#  
DSTBN3# VSS  
16 15  
42  
Datasheet  
Land Listing and Signal Descriptions  
Figure 4-2. Landout Diagram (Top View – Right Side)  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
VID_  
VSS_MB_  
VCC_MB_  
VSS_  
VCC_  
SENSE  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VID0  
VSS  
VSS  
AN  
SELECT REGULATION REGULATION SENSE  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VID7  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VTTPWRGD  
VID3  
VID6  
VID1  
VSS  
VID5  
VID4  
VSS  
VID2  
VSS  
AM  
AL  
AK  
AJ  
PROCHOT# THERMDA  
VCC  
RSVD  
A35#  
VSS  
ITP_CLK0  
ITP_CLK1  
VSS  
VSS  
THERMDC  
BPM1#  
VSS  
VCC  
A34#  
A33#  
A31#  
A27#  
VSS  
BPM0#  
RSVD  
BPM3#  
BPM4#  
VSS  
VCC  
VSS  
A32#  
A30#  
A28#  
RSVD  
VSS  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
VCC  
A29#  
BPM5#  
VSS  
TRST#  
TDO  
VCC  
VSS  
SKTOCC#  
VCC  
RSVD  
A22#  
RSVD  
TCK  
ADSTB1#  
A25#  
A24#  
BINIT#  
VSS  
BPM2#  
DBR#  
IERR#  
TDI  
VCC  
VSS  
RSVD  
A26#  
TMS  
VCC  
A17#  
MCERR#  
VSS  
VTT_OUT_  
RIGHT  
VCC  
VCC  
VSS  
VSS  
VSS  
A23#  
VSS  
A21#  
A20#  
VSS  
LL_ID1  
VSS  
AA  
Y
BOOT  
SELECT  
A19#  
RSVD  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
A18#  
VSS  
A10#  
VSS  
A16#  
A14#  
A12#  
A9#  
VSS  
A15#  
A13#  
A11#  
TESTHI1 TESTHI12  
MS_ID0  
MS_ID1  
VSS  
W
V
VSS  
AP1#  
VSS  
LL_ID0  
AP0#  
U
T
COMP5  
COMP1  
FERR#/  
PBE#  
VCC  
VSS  
ADSTB0#  
VSS  
A8#  
VSS  
COMP3  
R
VCC  
VCC  
VSS  
VSS  
A4#  
RSVD  
RSVD  
VSS  
INIT#  
VSS  
SMI#  
TESTHI11  
P
N
VSS  
RSVD  
IGNNE# PWRGOOD  
THER-  
VSS  
VCC  
VSS  
REQ2#  
A5#  
A7#  
STPCLK#  
M
MTRIP#  
VCC  
VCC  
VSS  
VSS  
VSS  
A3#  
A6#  
VSS  
TESTHI13  
VSS  
LINT1  
LINT0  
L
REQ3#  
VSS  
REQ0#  
A20M#  
K
VTT_OUT_  
LEFT  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VSS  
REQ4#  
VSS  
REQ1#  
VSS  
RSVD  
VSS  
COMP4  
J
H
TESTHI10  
RSP#  
GTLREF1  
GTLREF0  
VSS  
D29#  
D28#  
VSS  
D27#  
VSS  
DSTBN1# DBI1# RSVD  
D16#  
D18#  
D19#  
VSS  
BPRI#  
D17#  
VSS  
DEFER#  
VSS  
RSVD  
RSVD  
RSVD  
VSS  
PC_REQ#  
RS1#  
TESTHI9 TESTHI8  
COMP2  
EDRDY#  
VSS  
G
F
D24#  
DSTBP1#  
VSS  
D23#  
VSS  
VSS  
D21#  
D22#  
VSS  
HITM#  
HIT#  
BR0#  
TRDY#  
VSS  
D26#  
D25#  
RSVD  
D20#  
RSVD  
VSS  
E
D
C
RSVD  
D15#  
D12#  
ADS#  
RSVD  
DRDY#  
VSS  
D52#  
VSS  
D14#  
D11#  
VSS  
RSVD  
DSTBN0#  
VSS  
D3#  
D1#  
VSS  
LOCK#  
BNR#  
VSS  
D50#  
14  
RSVD  
COMP0  
13  
D13#  
VSS  
12  
VSS  
D9#  
11  
D10# DSTBP0#  
VSS  
DBI0#  
8
D6#  
D7#  
7
D5#  
VSS  
6
VSS  
D4#  
5
D0#  
D2#  
4
RS0#  
RS2#  
3
DBSY#  
VSS  
2
B
A
D8#  
VSS  
10  
9
1
Datasheet  
43  
Land Listing and Signal Descriptions  
Table 4-1. Alphabetical Land  
Assignments  
Table 4-1. Alphabetical Land  
Assignments  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
A3#  
A4#  
L5  
P6  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
BPM0#  
BPM1#  
BPM2#  
BPM3#  
BPM4#  
BPM5#  
BPRI#  
BR0#  
BSEL0  
BSEL1  
BSEL2  
COMP0  
COMP1  
COMP2  
COMP3  
COMP4  
COMP5  
D0#  
AJ2  
AJ1  
AD2  
AG2  
AF2  
AG3  
G8  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
A5#  
M5  
A6#  
L4  
A7#  
M4  
A8#  
R4  
A9#  
T5  
Common Clock  
Input  
A10#  
U6  
F3  
Common Clock Input/Output  
A11#  
T4  
G29  
H30  
G30  
A13  
T1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
Output  
Output  
Input  
A12#  
U5  
A13#  
U4  
A14#  
V5  
A15#  
V4  
Input  
A16#  
W5  
AB6  
W6  
Y6  
G2  
Input  
A17#  
R1  
Input  
A18#  
J2  
Input  
A19#  
T2  
Input  
A20#  
Y4  
B4  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
A20M#  
A21#  
K3  
Asynch GTL+  
Input  
D1#  
C5  
AA4  
AD6  
AA5  
AB5  
AC5  
AB4  
AF5  
AF4  
AG6  
AG4  
AG5  
AH4  
AH5  
AJ5  
AJ6  
D2  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Common Clock Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
D2#  
A4  
A22#  
D3#  
C6  
A23#  
D4#  
A5  
A24#  
D5#  
B6  
A25#  
D6#  
B7  
A26#  
D7#  
A7  
A27#  
D8#  
A10  
A11  
B10  
C11  
D8  
A28#  
D9#  
A29#  
D10#  
D11#  
A30#  
A31#  
D12#  
D13#  
D14#  
D15#  
D16#  
D17#  
D18#  
D19#  
D20#  
D21#  
D22#  
D23#  
D24#  
D25#  
D26#  
A32#  
B12  
C12  
D11  
G9  
A33#  
A34#  
A35#  
ADS#  
ADSTB0#  
ADSTB1#  
AP0#  
AP1#  
BCLK0  
BCLK1  
BINIT#  
BNR#  
BOOTSELECT  
F8  
R6  
F9  
AD5  
U2  
E9  
D7  
U3  
E10  
D10  
F11  
F12  
D13  
E13  
F28  
G28  
AD3  
C2  
Clock  
Clock  
Input  
Input  
Common Clock Input/Output  
Common Clock Input/Output  
Y1  
Power/Other  
Input  
44  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-1. Alphabetical Land  
Assignments  
Table 4-1. Alphabetical Land  
Assignments  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
D27#  
D28#  
D29#  
D30#  
D31#  
D32#  
D33#  
D34#  
D35#  
D36#  
D37#  
D38#  
D39#  
D40#  
D41#  
D42#  
D43#  
D44#  
D45#  
D46#  
D47#  
D48#  
D49#  
D50#  
D51#  
D52#  
D53#  
D54#  
D55#  
D56#  
D57#  
D58#  
D59#  
D60#  
D61#  
D62#  
D63#  
DBI0#  
DBI1#  
DBI2#  
DBI3#  
DBR#  
DBSY#  
DEFER#  
G13  
F14  
G14  
F15  
G15  
G16  
E15  
E16  
G18  
G17  
F17  
F18  
E18  
E19  
F20  
E21  
F21  
G21  
E22  
D22  
G22  
D20  
D17  
A14  
C15  
C14  
B15  
C18  
B16  
A17  
B18  
C21  
B21  
B19  
A19  
A22  
B22  
A8  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
DP0#  
J16  
H15  
H16  
J17  
C1  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
DP1#  
DP2#  
DP3#  
DRDY#  
DSTBN0#  
DSTBN1#  
DSTBN2#  
DSTBN3#  
DSTBP0#  
DSTBP1#  
DSTBP2#  
DSTBP3#  
C8  
G12  
G20  
A16  
B9  
E12  
G19  
C17  
F2  
1
EDRDY#  
Common Clock  
Asynch GTL+  
Power/Other  
Power/Other  
Input  
Output  
FERR#/PBE#  
GTLREF_SEL  
GTLREF0  
GTLREF1  
HIT#  
R3  
H29  
H1  
Input  
H2  
D4  
Common Clock Input/Output  
Common Clock Input/Output  
HITM#  
E4  
IERR#  
AB2  
N2  
Asynch GTL+  
Asynch GTL+  
Asynch GTL+  
TAP  
Output  
Input  
IGNNE#  
INIT#  
P3  
Input  
ITP_CLK0  
ITP_CLK1  
LINT0  
AK3  
AJ3  
K1  
Input  
TAP  
Input  
Asynch GTL+  
Asynch GTL+  
Power/Other  
Power/Other  
Input  
LINT1  
L1  
Input  
LL_ID0  
V2  
Output  
Output  
LL_ID1  
AA2  
C3  
LOCK#  
Common Clock Input/Output  
Common Clock Input/Output  
MCERR#  
MS_ID0  
MS_ID1  
AB3  
W1  
V1  
Power/Other  
Power/Other  
Common Clock  
Asynch GTL+  
Power/Other  
Output  
Output  
1
PC_REQ#  
G5  
Output  
PROCHOT#  
PWRGOOD  
REQ0#  
AL2  
N1  
Input/Output  
Input  
K4  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
REQ1#  
J5  
G11  
D19  
C20  
AC2  
B2  
REQ2#  
M6  
K6  
REQ3#  
REQ4#  
J6  
Power/Other  
Common Clock Input/Output  
Common Clock Input  
Output  
RESERVED  
RESERVED  
RESERVED  
A20  
AC4  
AE3  
G7  
Datasheet  
45  
Land Listing and Signal Descriptions  
Table 4-1. Alphabetical Land  
Assignments  
Table 4-1. Alphabetical Land  
Assignments  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESET#  
AE4  
AE6  
AH2  
C9  
TESTHI8  
TESTHI9  
TESTHI10  
TESTHI11  
TESTHI12  
TESTHI13  
THERMDA  
THERMDC  
THERMTRIP#  
TMS  
G3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch GTL+  
TAP  
Input  
Input  
Input  
Input  
Input  
Input  
G4  
H5  
P1  
D1  
W2  
D14  
D16  
E23  
E24  
E5  
L2  
AL1  
AK1  
M2  
Output  
Input  
Input  
Input  
AC1  
E6  
TRDY#  
TRST#  
VCC  
E3  
Common Clock  
TAP  
E7  
AG1  
AA8  
F23  
F29  
F6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
AB8  
VCC  
AC23  
AC24  
AC25  
AC26  
AC27  
AC28  
AC29  
AC30  
AC8  
G10  
B13  
J3  
VCC  
VCC  
VCC  
N4  
VCC  
N5  
VCC  
P5  
VCC  
Y3  
VCC  
D23  
AK6  
G6  
VCC  
VCC  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AD8  
VCC  
G23  
B3  
Common Clock  
Common Clock  
Common Clock  
Common Clock  
Common Clock  
Power/Other  
Asynch GTL+  
Asynch GTL+  
TAP  
Input  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
VCC  
RS0#  
VCC  
RS1#  
F5  
VCC  
RS2#  
A3  
VCC  
RSP#  
H4  
VCC  
SKTOCC#  
SMI#  
AE8  
P2  
VCC  
VCC  
STPCLK#  
TCK  
M3  
VCC  
AE11  
AE12  
AE14  
AE15  
AE18  
AE19  
AE21  
AE22  
AE23  
AE9  
AE1  
AD1  
AF1  
F26  
W3  
F25  
G25  
G27  
G26  
G24  
F24  
VCC  
TDI  
TAP  
VCC  
TDO  
TAP  
VCC  
TESTHI0  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
TESTHI1  
VCC  
TESTHI2  
VCC  
TESTHI3  
VCC  
TESTHI4  
VCC  
TESTHI5  
VCC  
TESTHI6  
VCC  
AF11  
AF12  
TESTHI7  
VCC  
46  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-1. Alphabetical Land  
Assignments  
Table 4-1. Alphabetical Land  
Assignments  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AF14  
AF15  
AF18  
AF19  
AF21  
AF22  
AF8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AJ18  
AJ19  
AJ21  
AJ22  
AJ25  
AJ26  
AJ8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AF9  
AJ9  
AG11  
AG12  
AG14  
AG15  
AG18  
AG19  
AG21  
AG22  
AG25  
AG26  
AG27  
AG28  
AG29  
AG30  
AG8  
AK11  
AK12  
AK14  
AK15  
AK18  
AK19  
AK21  
AK22  
AK25  
AK26  
AK8  
AK9  
AL11  
AL12  
AL14  
AL15  
AL18  
AL19  
AL21  
AL22  
AL25  
AL26  
AL29  
AL30  
AL8  
AG9  
AH11  
AH12  
AH14  
AH15  
AH18  
AH19  
AH21  
AH22  
AH25  
AH26  
AH27  
AH28  
AH29  
AH30  
AH8  
AL9  
AM11  
AM12  
AM14  
AM15  
AM18  
AM19  
AM21  
AM22  
AM25  
AM26  
AH9  
AJ11  
AJ12  
AJ14  
AJ15  
Datasheet  
47  
Land Listing and Signal Descriptions  
Table 4-1. Alphabetical Land  
Assignments  
Table 4-1. Alphabetical Land  
Assignments  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AM29  
AM30  
AM8  
AM9  
AN11  
AN12  
AN14  
AN15  
AN18  
AN19  
AN21  
AN22  
AN25  
AN26  
AN29  
AN30  
AN8  
AN9  
J10  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
K28  
K29  
K30  
K8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
L8  
M23  
M24  
M25  
M26  
M27  
M28  
M29  
M30  
M8  
N23  
N24  
N25  
N26  
N27  
N28  
N29  
N30  
N8  
J11  
J12  
J13  
J14  
J15  
P8  
J18  
R8  
J19  
T23  
T24  
T25  
T26  
T27  
T28  
T29  
T30  
T8  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
J27  
J28  
U23  
U24  
U25  
U26  
U27  
U28  
U29  
U30  
U8  
J29  
J30  
J8  
J9  
K23  
K24  
K25  
K26  
K27  
V8  
48  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-1. Alphabetical Land  
Assignments  
Table 4-1. Alphabetical Land  
Assignments  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
W23  
W24  
W25  
W26  
W27  
W28  
W29  
W30  
W8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AA27  
AA28  
AA29  
AA3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AA30  
AA6  
AA7  
AB1  
AB23  
AB24  
AB25  
AB26  
AB27  
AB28  
AB29  
AB30  
AB7  
Y23  
Y24  
Y25  
Y26  
Y27  
Y28  
Y29  
Y30  
Y8  
AC3  
VCC_MB_  
REGULATION  
AC6  
AN5  
Power/Other  
Output  
AC7  
VCCA  
VCCIOPLL  
VCC_SENSE  
VID_SELECT  
VID0  
A23  
C23  
AN3  
AN7  
AM2  
AL5  
AM3  
AL6  
AK4  
AL4  
AM5  
AM7  
A12  
A15  
A18  
A2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AD4  
AD7  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
AE10  
AE13  
AE16  
AE17  
AE2  
VID1  
VID2  
VID3  
AE20  
AE24  
AE25  
AE26  
AE27  
AE28  
AE29  
AE30  
AE5  
VID4  
VID5  
VID6  
VID7  
VSS  
VSS  
VSS  
VSS  
VSS  
A21  
A24  
A6  
AE7  
VSS  
AF10  
AF13  
AF16  
AF17  
AF20  
AF23  
AF24  
VSS  
VSS  
A9  
VSS  
AA23  
AA24  
AA25  
AA26  
VSS  
VSS  
VSS  
Datasheet  
49  
Land Listing and Signal Descriptions  
Table 4-1. Alphabetical Land  
Assignments  
Table 4-1. Alphabetical Land  
Assignments  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AF25  
AF26  
AF27  
AF28  
AF29  
AF3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AK17  
AK2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AK20  
AK23  
AK24  
AK27  
AK28  
AK29  
AK30  
AK5  
AF30  
AF6  
AF7  
AG10  
AG13  
AG16  
AG17  
AG20  
AG23  
AG24  
AG7  
AK7  
AL10  
AL13  
AL16  
AL17  
AL20  
AL23  
AL24  
AL27  
AL28  
AL3  
AH1  
AH10  
AH13  
AH16  
AH17  
AH20  
AH23  
AH24  
AH3  
AL7  
AM1  
AM10  
AM13  
AM16  
AM17  
AM20  
AM23  
AM24  
AM27  
AM28  
AM4  
AH6  
AH7  
AJ10  
AJ13  
AJ16  
AJ17  
AJ20  
AJ23  
AJ24  
AJ27  
AJ28  
AJ29  
AJ30  
AJ4  
AN1  
AN10  
AN13  
AN16  
AN17  
AN2  
AN20  
AN23  
AN24  
AN27  
AN28  
AJ7  
AK10  
AK13  
AK16  
50  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-1. Alphabetical Land  
Assignments  
Table 4-1. Alphabetical Land  
Assignments  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
B1  
B11  
B14  
B17  
B20  
B24  
B5  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
H10  
H11  
H12  
H13  
H14  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
H25  
H26  
H27  
H28  
H3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
B8  
C10  
C13  
C16  
C19  
C22  
C24  
C4  
C7  
D12  
D15  
D18  
D21  
D24  
D3  
H6  
H7  
H8  
H9  
D5  
J4  
D6  
J7  
D9  
K2  
E11  
E14  
E17  
E2  
K5  
K7  
L23  
L24  
L25  
L26  
L27  
L28  
L29  
L3  
E20  
E25  
E26  
E27  
E28  
E29  
E8  
L30  
L6  
F10  
F13  
F16  
F19  
F22  
F4  
L7  
M1  
M7  
N3  
N6  
F7  
N7  
G1  
P23  
Datasheet  
51  
Land Listing and Signal Descriptions  
Table 4-1. Alphabetical Land  
Assignments  
Table 4-1. Alphabetical Land  
Assignments  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
P4  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS_SENSE  
VTT  
AN4  
A25  
A26  
A27  
A28  
A29  
A30  
B25  
B26  
B27  
B28  
B29  
B30  
C25  
C26  
C27  
C28  
C29  
C30  
D25  
D26  
D27  
D28  
D29  
D30  
J1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
P7  
VTT  
R2  
VTT  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R5  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
R7  
VTT  
T3  
VTT  
T6  
VTT  
T7  
VTT  
U1  
VTT  
U7  
VTT  
V23  
V24  
V25  
V26  
V27  
V28  
V29  
V3  
VTT_OUT_LEFT  
Output  
VTT_OUT_  
RIGHT  
AA1  
Power/Other  
Output  
VTT_SEL  
VTTPWRGD  
NOTES:  
F27  
Power/Other  
Power/Other  
Output  
Input  
AM6  
1. EDRDY# and PC_REQ# are not features of the  
Celeron D processor in the 775-land package.  
They are included here for future processor com-  
patibility.  
V30  
V6  
V7  
W4  
W7  
Y2  
Y5  
Y7  
VSS_MB_  
AN6  
B23  
Power/Other  
Power/Other  
Output  
REGULATION  
VSSA  
52  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-2. Numerical Land Assignments  
Table 4-2. Numerical Land Assignments  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
A2  
A3  
VSS  
RS2#  
D2#  
Power/Other  
Common Clock  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
C1  
D55#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/Output  
Input  
A4  
Input/Output  
D57#  
D60#  
VSS  
Input/Output  
A5  
D4#  
Input/Output  
Input/Output  
A6  
VSS  
A7  
D7#  
Input/Output  
D59#  
D63#  
VSSA  
VSS  
Input/Output  
A8  
DBI0#  
VSS  
Input/Output  
Input/Output  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
B1  
D8#  
Input/Output  
D9#  
Input/Output  
VTT  
VSS  
VTT  
COMP0  
D50#  
VSS  
Input  
VTT  
Input/Output  
VTT  
VTT  
DSTBN3#  
D56#  
VSS  
Input/Output  
VTT  
Input/Output  
DRDY#  
BNR#  
LOCK#  
VSS  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
C2  
D61#  
RESERVED  
VSS  
Input/Output  
C3  
C4  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
C5  
D1#  
Input/Output  
D62#  
VCCA  
VSS  
Input/Output  
C6  
D3#  
Input/Output  
C7  
VSS  
C8  
DSTBN0#  
RESERVED  
VSS  
Input/Output  
VTT  
C9  
VTT  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VTT  
D11#  
D14#  
VSS  
Input/Output  
VTT  
Input/Output  
VTT  
VTT  
D52#  
D51#  
VSS  
Input/Output  
VSS  
Input/Output  
B2  
DBSY#  
RS0#  
D0#  
Common Clock Input/Output  
B3  
Common Clock  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Input  
Input/Output  
DSTBP3#  
D54#  
VSS  
Input/Output  
B4  
Input/Output  
B5  
VSS  
B6  
D5#  
Input/Output  
Input/Output  
DBI3#  
D58#  
VSS  
Input/Output  
B7  
D6#  
Input/Output  
B8  
VSS  
B9  
DSTBP0#  
D10#  
VSS  
Input/Output  
Input/Output  
VCCIOPLL  
VSS  
B10  
B11  
B12  
B13  
B14  
B15  
VTT  
D13#  
RESERVED  
VSS  
Input/Output  
VTT  
VTT  
Power/Other  
Source Synch  
VTT  
D53#  
Input/Output  
VTT  
Datasheet  
53  
Land Listing and Signal Descriptions  
Table 4-2. Numerical Land Assignments  
Table 4-2. Numerical Land Assignments  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
C30  
D1  
VTT  
RESERVED  
ADS#  
VSS  
Power/Other  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
E27  
E28  
E29  
F2  
D33#  
D34#  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Input/Output  
Input/Output  
D2  
Common Clock Input/Output  
Power/Other  
Common Clock Input/Output  
VSS  
D3  
D39#  
Input/Output  
D4  
HIT#  
D40#  
Input/Output  
D5  
VSS  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
VSS  
D6  
VSS  
D42#  
Input/Output  
D7  
D20#  
Input/Output  
D45#  
Input/Output  
D8  
D12#  
Input/Output  
RESERVED  
RESERVED  
VSS  
D9  
VSS  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
E2  
D22#  
Input/Output  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clock  
D15#  
Input/Output  
VSS  
VSS  
VSS  
D25#  
Input/Output  
VSS  
RESERVED  
VSS  
VSS  
1
Power/Other  
EDRDY#  
Input  
RESERVED  
D49#  
F3  
BR0#  
VSS  
Common Clock Input/Output  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Input/Output  
F4  
Power/Other  
Common Clock  
Input  
VSS  
F5  
RS1#  
DBI2#  
D48#  
Input/Output  
F6  
RESERVED  
VSS  
Input/Output  
F7  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
VSS  
F8  
D17#  
Input/Output  
Input/Output  
D46#  
Input/Output  
F9  
D18#  
RESERVED  
VSS  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
F25  
F26  
F27  
F28  
F29  
G1  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clock  
D23#  
Input/Output  
Input/Output  
VTT  
D24#  
VTT  
VSS  
VTT  
D28#  
Input/Output  
Input/Output  
VTT  
D30#  
VTT  
VSS  
VTT  
D37#  
Input/Output  
Input/Output  
VSS  
D38#  
E3  
TRDY#  
HITM#  
RESERVED  
RESERVED  
RESERVED  
VSS  
Input  
VSS  
E4  
Common Clock Input/Output  
D41#  
Input/Output  
Input/Output  
E5  
D43#  
E6  
VSS  
E7  
RESERVED  
TESTHI7  
TESTHI2  
TESTHI0  
VTT_SEL  
BCLK0  
RESERVED  
VSS  
E8  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Clock  
Input  
E9  
D19#  
Input/Output  
Input/Output  
Input  
E10  
E11  
E12  
E13  
E14  
D21#  
Input  
VSS  
Output  
Input  
DSTBP1#  
D26#  
Input/Output  
Input/Output  
VSS  
Power/Other  
54  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-2. Numerical Land Assignments  
Table 4-2. Numerical Land Assignments  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
G2  
G3  
COMP2  
TESTHI8  
TESTHI9  
Power/Other  
Power/Other  
Power/Other  
Common Clock  
Input  
Input  
H16  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
H25  
H26  
H27  
H28  
H29  
H30  
J1  
DP2#  
VSS  
Common Clock Input/Output  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
G4  
Input  
VSS  
1
G5  
PC_REQ#  
Output  
VSS  
G6  
RESERVED  
DEFER#  
BPRI#  
D16#  
VSS  
G7  
Common Clock  
Common Clock  
Source Synch  
Input  
VSS  
G8  
Input  
VSS  
G9  
Input/Output  
VSS  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
G23  
G24  
G25  
G26  
G27  
G28  
G29  
G30  
H1  
RESERVED  
DBI1#  
VSS  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Common Clock  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Clock  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input  
VSS  
DSTBN1#  
D27#  
VSS  
VSS  
D29#  
VSS  
D31#  
GTLREF_SEL  
BSEL1  
VTT_OUT_LEFT  
COMP4  
RESERVED  
VSS  
D32#  
Output  
D36#  
Output  
D35#  
J2  
Input  
DSTBP2#  
DSTBN2#  
D44#  
J3  
J4  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
J5  
REQ1#  
REQ4#  
VSS  
Input/Output  
D47#  
J6  
Input/Output  
RESET#  
TESTHI6  
TESTHI3  
TESTHI5  
TESTHI4  
BCLK1  
BSEL0  
BSEL2  
GTLREF0  
GTLREF1  
VSS  
J7  
Input  
J8  
VCC  
Input  
J9  
VCC  
Input  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
J27  
J28  
J29  
VCC  
Input  
VCC  
Input  
VCC  
Power/Other  
Power/Other  
Power/Other  
Output  
Output  
Input  
VCC  
VCC  
VCC  
H2  
DP0#  
DP3#  
VCC  
Common Clock Input/Output  
Common Clock Input/Output  
H3  
Power/Other  
Common Clock  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
H4  
RSP#  
Input  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
H5  
TESTHI10  
VSS  
Input  
VCC  
H6  
VCC  
H7  
VSS  
VCC  
H8  
VSS  
VCC  
H9  
VSS  
VCC  
H10  
H11  
H12  
H13  
H14  
H15  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
DP1#  
Common Clock Input/Output  
VCC  
Datasheet  
55  
Land Listing and Signal Descriptions  
Table 4-2. Numerical Land Assignments  
Table 4-2. Numerical Land Assignments  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
J30  
K1  
VCC  
LINT0  
VSS  
Power/Other  
Asynch GTL+  
Power/Other  
Asynch GTL+  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch GTL+  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch GTL+  
Asynch GTL+  
Source Synch  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
M26  
M27  
M28  
M29  
M30  
N1  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch GTL+  
Power/Other  
Input  
K2  
VCC  
K3  
A20M#  
REQ0#  
VSS  
Input  
VCC  
K4  
Input/Output  
VCC  
K5  
PWRGOOD  
IGNNE#  
VSS  
Input  
K6  
REQ3#  
VSS  
Input/Output  
N2  
Input  
K7  
N3  
K8  
VCC  
N4  
RESERVED  
RESERVED  
VSS  
K23  
K24  
K25  
K26  
K27  
K28  
K29  
K30  
L1  
VCC  
N5  
VCC  
N6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch GTL+  
Asynch GTL+  
Power/Other  
VCC  
N7  
VSS  
VCC  
N8  
VCC  
VCC  
N23  
N24  
N25  
N26  
N27  
N28  
N29  
N30  
P1  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
LINT1  
TESTHI13  
VSS  
Input  
VCC  
L2  
Input  
VCC  
L3  
VCC  
L4  
A6#  
Input/Output  
VCC  
L5  
A3#  
Input/Output  
TESTHI11  
SMI#  
Input  
L6  
VSS  
P2  
Input  
L7  
VSS  
P3  
INIT#  
VSS  
Input  
L8  
VCC  
P4  
L23  
L24  
L25  
L26  
L27  
L28  
L29  
L30  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M23  
M24  
M25  
VSS  
P5  
RESERVED  
A4#  
VSS  
P6  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch GTL+  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Input/Output  
VSS  
P7  
VSS  
VSS  
P8  
VCC  
VSS  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
R1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
THERMTRIP#  
STPCLK#  
A7#  
Output  
VSS  
Input  
VSS  
Input/Output  
VSS  
Input  
A5#  
Input/Output  
COMP3  
VSS  
REQ2#  
VSS  
Input/Output  
R2  
R3  
FERR#/PBE#  
A8#  
Output  
Input/Output  
VCC  
R4  
VCC  
R5  
VSS  
VCC  
R6  
ADSTB0#  
VSS  
Input/Output  
VCC  
R7  
56  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-2. Numerical Land Assignments  
Table 4-2. Numerical Land Assignments  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
R8  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
T1  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
V4  
V5  
A15#  
A14#  
VSS  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/Output  
Input/Output  
VSS  
V6  
VSS  
V7  
VSS  
VSS  
V8  
VCC  
VSS  
V23  
V24  
V25  
V26  
V27  
V28  
V29  
V30  
W1  
W2  
W3  
W4  
W5  
W6  
W7  
W8  
W23  
W24  
W25  
W26  
W27  
W28  
W29  
W30  
Y1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
COMP1  
COMP5  
VSS  
Input  
VSS  
T2  
Input  
VSS  
T3  
VSS  
T4  
A11#  
A9#  
Input/Output  
VSS  
T5  
Input/Output  
MS_ID0  
TESTHI12  
TESTHI1  
VSS  
Output  
T6  
VSS  
Input  
T7  
VSS  
Input  
T8  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
T23  
T24  
T25  
T26  
T27  
T28  
T29  
T30  
U1  
A16#  
A18#  
VSS  
Input/Output  
Input/Output  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
U2  
AP0#  
AP1#  
A13#  
A12#  
A10#  
VSS  
Common Clock Input/Output  
Common Clock Input/Output  
VCC  
U3  
VCC  
U4  
Source Synch  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/Output  
VCC  
U5  
Input/Output  
BOOTSELECT  
VSS  
Input  
U6  
Input/Output  
Y2  
U7  
Y3  
RESERVED  
A20#  
VSS  
U8  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
MS_ID1  
LL_ID0  
VSS  
Y4  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/Output  
U23  
U24  
U25  
U26  
U27  
U28  
U29  
U30  
V1  
Y5  
Y6  
A19#  
VSS  
Input/Output  
Y7  
Y8  
VCC  
Y23  
Y24  
Y25  
Y26  
Y27  
Y28  
Y29  
VCC  
VCC  
VCC  
VCC  
Output  
Output  
VCC  
V2  
VCC  
V3  
VCC  
Datasheet  
57  
Land Listing and Signal Descriptions  
Table 4-2. Numerical Land Assignments  
Table 4-2. Numerical Land Assignments  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
Y30  
AA1  
VCC  
Power/Other  
Power/Other  
AC26  
AC27  
AC28  
AC29  
AC30  
AD1  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TAP  
VTT_OUT_  
RIGHT  
Output  
VCC  
AA2  
AA3  
LL_ID1  
VSS  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch GTL+  
Output  
VCC  
VCC  
AA4  
A21#  
A23#  
VSS  
Input/Output  
TDI  
Input  
AA5  
Input/Output  
AD2  
BPM2#  
BINIT#  
VSS  
Common Clock Input/Output  
Common Clock Input/Output  
AA6  
AD3  
AA7  
VSS  
AD4  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TAP  
AA8  
VCC  
VSS  
AD5  
ADSTB1#  
A22#  
VSS  
Input/Output  
AA23  
AA24  
AA25  
AA26  
AA27  
AA28  
AA29  
AA30  
AB1  
AD6  
Input/Output  
VSS  
AD7  
VSS  
AD8  
VCC  
VSS  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AE1  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
AB2  
IERR#  
MCERR#  
A26#  
A24#  
A17#  
VSS  
Output  
VCC  
AB3  
Common Clock Input/Output  
VCC  
AB4  
Source Synch  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TAP  
Input/Output  
TCK  
Input  
AB5  
Input/Output  
AE2  
VSS  
Power/Other  
AB6  
Input/Output  
AE3  
RESERVED  
RESERVED  
VSS  
AB7  
AE4  
AB8  
VCC  
VSS  
AE5  
Power/Other  
AB23  
AB24  
AB25  
AB26  
AB27  
AB28  
AB29  
AB30  
AC1  
AE6  
RESERVED  
VSS  
VSS  
AE7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
AE8  
SKTOCC#  
VCC  
Output  
VSS  
AE9  
VSS  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
TMS  
DBR#  
VSS  
Input  
VCC  
AC2  
Power/Other  
Power/Other  
Output  
VCC  
AC3  
VSS  
AC4  
RESERVED  
A25#  
VSS  
VSS  
AC5  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/Output  
VCC  
AC6  
VCC  
AC7  
VSS  
VSS  
AC8  
VCC  
VCC  
VCC  
VCC  
VCC  
AC23  
AC24  
AC25  
VCC  
VCC  
58  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-2. Numerical Land Assignments  
Table 4-2. Numerical Land Assignments  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
AE24  
AE25  
AE26  
AE27  
AE28  
AE29  
AE30  
AF1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
TDO  
BPM4#  
VSS  
A28#  
A27#  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
TRST#  
BPM3#  
BPM5#  
A30#  
A31#  
A29#  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TAP  
AG8  
AG9  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
RESERVED  
VSS  
A32#  
A33#  
VSS  
VSS  
VCC  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AG10  
AG11  
AG12  
AG13  
AG14  
AG15  
AG16  
AG17  
AG18  
AG19  
AG20  
AG21  
AG22  
AG23  
AG24  
AG25  
AG26  
AG27  
AG28  
AG29  
AG30  
AH1  
Output  
AF2  
Common Clock Input/Output  
AF3  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TAP  
AF4  
Input/Output  
AF5  
Input/Output  
AF6  
Input  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
AF22  
AF23  
AF24  
AF25  
AF26  
AF27  
AF28  
AF29  
AF30  
AG1  
AH2  
AH3  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AH4  
Input/Output  
AH5  
Input/Output  
AH6  
AH7  
AH8  
AH9  
AH10  
AH11  
AH12  
AH13  
AH14  
AH15  
AH16  
AH17  
AH18  
AH19  
AH20  
AH21  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
AG2  
Common Clock Input/Output  
Common Clock Input/Output  
AG3  
VSS  
AG4  
Source Synch  
Source Synch  
Source Synch  
Power/Other  
Input/Output  
Input/Output  
Input/Output  
VCC  
VCC  
VSS  
AG5  
AG6  
AG7  
VCC  
Datasheet  
59  
Land Listing and Signal Descriptions  
Table 4-2. Numerical Land Assignments  
Table 4-2. Numerical Land Assignments  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
AH22  
AH23  
AH24  
AH25  
AH26  
AH27  
AH28  
AH29  
AH30  
AJ1  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AK6  
AK7  
RESERVED  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch GTL+  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
AK8  
VCC  
VCC  
VSS  
VCC  
AK9  
VCC  
AK10  
AK11  
AK12  
AK13  
AK14  
AK15  
AK16  
AK17  
AK18  
AK19  
AK20  
AK21  
AK22  
AK23  
AK24  
AK25  
AK26  
AK27  
AK28  
AK29  
AK30  
AL1  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
BPM1#  
BPM0#  
ITP_CLK1  
VSS  
Common Clock Input/Output  
Common Clock Input/Output  
AJ2  
AJ3  
TAP  
Input  
VSS  
AJ4  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TAP  
VCC  
VCC  
VSS  
AJ5  
A34#  
A35#  
VSS  
Input/Output  
AJ6  
Input/Output  
AJ7  
VCC  
VCC  
VSS  
AJ8  
VCC  
AJ9  
VCC  
AJ10  
AJ11  
AJ12  
AJ13  
AJ14  
AJ15  
AJ16  
AJ17  
AJ18  
AJ19  
AJ20  
AJ21  
AJ22  
AJ23  
AJ24  
AJ25  
AJ26  
AJ27  
AJ28  
AJ29  
AJ30  
AK1  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VSS  
VSS  
THERMDA  
PROCHOT#  
VSS  
VCC  
AL2  
Input/Output  
VCC  
AL3  
Output  
Output  
Output  
VSS  
AL4  
VID5  
VID1  
VID3  
VSS  
VCC  
AL5  
VCC  
AL6  
VSS  
AL7  
VSS  
AL8  
VCC  
VCC  
VSS  
VCC  
AL9  
VCC  
AL10  
AL11  
AL12  
AL13  
AL14  
AL15  
AL16  
AL17  
AL18  
AL19  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VSS  
THERMDC  
VSS  
AK2  
AK3  
ITP_CLK0  
VID4  
VSS  
Input  
Output  
VSS  
AK4  
Power/Other  
Power/Other  
VCC  
VCC  
AK5  
60  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-2. Numerical Land Assignments  
Table 4-2. Numerical Land Assignments  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
AL20  
AL21  
AL22  
AL23  
AL24  
AL25  
AL26  
AL27  
AL28  
AL29  
AL30  
AM1  
VSS  
VCC  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AN4  
AN5  
VSS_SENSE  
Power/Other  
Power/Other  
Output  
Output  
VCC_MB_  
REGULATION  
VSS_MB_  
REGULATION  
AN6  
Power/Other  
Output  
VSS  
AN7  
AN8  
VID_SELECT  
VCC  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
VCC  
VCC  
VSS  
AN9  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AN16  
AN17  
AN18  
AN19  
AN20  
AN21  
AN22  
AN23  
AN24  
AN25  
AN26  
AN27  
AN28  
AN29  
AN30  
NOTES:  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
AM2  
VID0  
VID2  
VSS  
Output  
Output  
AM3  
AM4  
VSS  
AM5  
VID6  
VTTPWRGD  
VID7  
VCC  
VCC  
VSS  
Output  
Input  
Output  
VCC  
VCC  
VSS  
AM6  
AM7  
AM8  
VCC  
VCC  
VSS  
AM9  
AM10  
AM11  
AM12  
AM13  
AM14  
AM15  
AM16  
AM17  
AM18  
AM19  
AM20  
AM21  
AM22  
AM23  
AM24  
AM25  
AM26  
AM27  
AM28  
AM29  
AM30  
AN1  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
1. EDRDY# and PC_REQ# are not features of the  
Celeron D processor in the 775-land package.  
They are included here for future processor com-  
patibility.  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
AN2  
VSS  
AN3  
VCC_SENSE  
Output  
Datasheet  
61  
Land Listing and Signal Descriptions  
4.2  
Alphabetical Signals Reference  
Table 4-3. Signal Description (Sheet 1 of 9)  
Name  
Type  
Description  
A[35:3]# (Address) define a 236-byte physical memory address space. In  
sub-phase 1 of the address phase, these signals transmit the address of a  
transaction. In sub-phase 2, these signals transmit transaction type  
information. These signals must connect the appropriate pins/lands of all  
agents on the processor FSB. A[35:3]# are protected by parity signals  
AP[1:0]#. A[35:3]# are source synchronous signals and are latched into the  
receiving buffers by ADSTB[1:0]#.  
Input/  
Output  
A[35:3]#  
On the active-to-inactive transition of RESET#, the processor samples a  
subset of the A[35:3]# signals to determine power-on configuration. See  
Section 6.1 for more details.  
If A20M# (Address-20 Mask) is asserted, the processor masks physical  
address bit 20 (A20#) before looking up a line in any internal cache and  
before driving a read/write transaction on the bus. Asserting A20M#  
emulates the 8086 processor's address wrap-around at the 1-MB  
boundary. Assertion of A20M# is only supported in real mode.  
A20M#  
ADS#  
Input  
A20M# is an asynchronous signal. However, to ensure recognition of this  
signal following an Input/Output write instruction, it must be valid along with  
the TRDY# assertion of the corresponding Input/Output Write bus  
transaction.  
ADS# (Address Strobe) is asserted to indicate the validity of the transaction  
address on the A[35:3]# and REQ[4:0]# signals. All bus agents observe the  
ADS# activation to begin parity checking, protocol checking, address  
decode, internal snoop, or deferred reply ID match operations associated  
with the new transaction.  
Input/  
Output  
Address strobes are used to latch A[35:3]# and REQ[4:0]# on their rising  
and falling edges. Strobes are associated with signals as shown below.  
Signals  
Associated Strobe  
Input/  
Output  
ADSTB[1:0]#  
REQ[4:0]#, A[16:3]#  
A[35:17]#  
ADSTB0#  
ADSTB1#  
AP[1:0]# (Address Parity) are driven by the request initiator along with  
ADS#, A[35:3]#, and the transaction type on the REQ[4:0]#. A correct  
parity signal is high if an even number of covered signals are low and low if  
an odd number of covered signals are low. This allows parity to be high  
when all the covered signals are high. AP[1:0]# should connect the  
appropriate pins/lands of all Celeron D processor in the 775-land package  
FSB agents. The following table defines the coverage model of these  
signals.  
Input/  
Output  
AP[1:0]#  
Request Signals  
Subphase 1  
Subphase 2  
A[35:24]#  
A[23:3]#  
AP0#  
AP1#  
AP1#  
AP1#  
AP0#  
AP0#  
REQ[4:0]#  
62  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-3. Signal Description (Sheet 2 of 9)  
Name  
Type  
Description  
The differential pair BCLK (Bus Clock) determines the FSB frequency. All  
processor FSB agents must receive these signals to drive their outputs and  
latch their inputs.  
BCLK[1:0]  
Input  
All external timing parameters are specified with respect to the rising edge  
of BCLK0 crossing VCROSS  
.
BINIT# (Bus Initialization) may be observed and driven by all processor  
FSB agents and if used, must connect the appropriate pins/lands of all  
such agents. If the BINIT# driver is enabled during power-on configuration,  
BINIT# is asserted to signal any bus condition that prevents reliable future  
operation.  
If BINIT# observation is enabled during power-on configuration, and  
BINIT# is sampled asserted, symmetric agents reset their bus LOCK#  
activity and bus request arbitration state machines. The bus agents do not  
reset their IOQ and transaction tracking state machines upon observation  
of BINIT# activation. Once the BINIT# assertion has been observed, the  
bus agents will re-arbitrate for the FSB and attempt completion of their bus  
queue and IOQ entries.  
Input/  
Output  
BINIT#  
If BINIT# observation is disabled during power-on configuration, a central  
agent may handle an assertion of BINIT# as appropriate to the error  
handling architecture of the system.  
BNR# (Block Next Request) is used to assert a bus stall by any bus agent  
who is unable to accept new bus transactions. During a bus stall, the  
current bus owner cannot issue any new transactions.  
Input/  
Output  
BNR#  
This input is required to determine whether the processor is installed in a  
platform that supports the Celeron D processor in the 775-land package.  
The Celeron D processor in the 775-land package will not operate if this  
BOOTSELECT  
Input  
signal is low. This input has a weak internal pull-up to VTT  
.
BPM[5:0]# (Breakpoint Monitor) are breakpoint and performance monitor  
signals. They are outputs from the processor that indicate the status of  
breakpoints and programmable counters used for monitoring processor  
performance. BPM[5:0]# should connect the appropriate pins/lands of all  
processor FSB agents.  
BPM4# provides PRDY# (Probe Ready) functionality for the TAP port.  
PRDY# is a processor output used by debug tools to determine processor  
debug readiness.  
Input/  
Output  
BPM[5:0]#  
BPM5# provides PREQ# (Probe Request) functionality for the TAP port.  
PREQ# is used by debug tools to request debug operation of the  
processor.  
These signals do not have on-die termination. Refer to Section 2.5 for  
termination requirements.  
BPRI# (Bus Priority Request) is used to arbitrate for ownership of the  
processor FSB. It must connect the appropriate pins/lands of all processor  
FSB agents. Observing BPRI# active (as asserted by the priority agent)  
causes all other agents to stop issuing new requests, unless such requests  
are part of an ongoing locked operation. The priority agent keeps BPRI#  
asserted until all of its requests are completed, then releases the bus by  
de-asserting BPRI#.  
BPRI#  
Input  
BR0# drives the BREQ0# signal in the system and is used by the  
processor to request the bus. During power-on configuration this signal is  
sampled to determine the agent ID = 0.  
Input/  
Output  
BR0#  
This signal does not have on-die termination and must be terminated.  
The BCLK[1:0] frequency select signals BSEL[2:0] are used to select the  
processor input clock frequency. Table 2-6 defines the possible  
combinations of the signals and the frequency associated with each  
combination. The required frequency is determined by the processor,  
chipset, and clock synthesizer. All agents must operate at the same  
frequency. For more information about these signals, refer to Section 2.9.  
BSEL[2:0]  
Output  
Datasheet  
63  
Land Listing and Signal Descriptions  
Table 4-3. Signal Description (Sheet 3 of 9)  
Name  
COMP[1:0]  
Type  
Description  
COMP[1:0] must be terminated to VSS on the system board using precision  
resistors.  
Analog  
For future processor compatibility COMP[3:2] must be terminated to VTT on  
the system board using precision resistors.  
COMP[3:2]  
COMP[5:4]  
Analog  
Analog  
For future processor compatibility, COMP[5:4] must be terminated to VTT  
on the system board using precision resistors.  
D[63:0]# (Data) are the data signals. These signals provide a 64-bit data  
path between the processor FSB agents, and must connect the appropriate  
pins/lands on all such agents. The data driver asserts DRDY# to indicate a  
valid data transfer.  
D[63:0]# are quad-pumped signals and will thus be driven four times in a  
common clock period. D[63:0]# are latched off the falling edge of both  
DSTBP[3:0]# and DSTBN[3:0]#. Each group of 16 data signals correspond  
to a pair of one DSTBP# and one DSTBN#. The following table shows the  
grouping of data signals to data strobes and DBI#.  
Quad-Pumped Signal Groups  
Input/  
Output  
DSTBN#/  
DSTBP#  
D[63:0]#  
Data Group  
DBI#  
D[15:0]#  
D[31:16]#  
D[47:32]#  
D[63:48]#  
0
1
2
3
0
1
2
3
Furthermore, the DBI# signals determine the polarity of the data signals.  
Each group of 16 data signals corresponds to one DBI# signal. When the  
DBI# signal is active, the corresponding data group is inverted and  
therefore sampled active high.  
DBI[3:0]# (Data Bus Inversion) are source synchronous and indicate the  
polarity of the D[63:0]# signals.The DBI[3:0]# signals are activated when  
the data on the data bus is inverted. If more than half the data bits, within a  
16-bit group, would have been asserted electrically low, the bus agent may  
invert the data bus signals for that particular sub-phase for that 16-bit  
group.  
DBI[3:0] Assignment To Data Bus  
Input/  
DBI[3:0]#  
Output  
Bus Signal  
Data Bus Signals  
DBI3#  
DBI2#  
DBI1#  
DBI0#  
D[63:48]#  
D[47:32]#  
D[31:16]#  
D[15:0]#  
DBR# is used only in processor systems where no debug port is  
implemented on the system board. DBR# is used by a debug port  
DBR#  
Output interposer so that an in-target probe can drive system reset. If a debug port  
is implemented in the system, DBR# is a no connect in the system. DBR#  
is not a processor signal.  
DBSY# (Data Bus Busy) is asserted by the agent responsible for driving  
Input/ data on the processor FSB to indicate that the data bus is in use. The data  
Output bus is released after DBSY# is de-asserted. This signal must connect the  
appropriate pins/lands on all processor FSB agents.  
DBSY#  
64  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-3. Signal Description (Sheet 4 of 9)  
Name  
Type  
Description  
DEFER# is asserted by an agent to indicate that a transaction cannot be  
guaranteed in-order completion. Assertion of DEFER# is normally the  
responsibility of the addressed memory or Input/Output agent. This signal  
must connect the appropriate pins/lands of all processor FSB agents.  
DEFER#  
Input  
DP[3:0]# (Data Parity) provide parity protection for the D[63:0]# signals.  
They are driven by the agent responsible for driving D[63:0]#, and must  
connect the appropriate pins/lands of all processor FSB agents.  
Input/  
Output  
DP[3:0]#  
DRDY#  
DRDY# (Data Ready) is asserted by the data driver on each data transfer,  
Input/ indicating valid data on the data bus. In a multi-common clock data  
Output transfer, DRDY# may be de-asserted to insert idle clocks. This signal must  
connect the appropriate pins/lands of all processor FSB agents.  
Data strobe used to latch in D[63:0]#.  
Signals  
Associated Strobe  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBN0#  
DSTBN1#  
DSTBN2#  
DSTBN3#  
Input/  
Output  
DSTBN[3:0]#  
Data strobe used to latch in D[63:0]#.  
Signals  
Associated Strobe  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBP0#  
DSTBP1#  
DSTBP2#  
DSTBP3#  
Input/  
Output  
DSTBP[3:0]#  
This signal indicates to the processor that the memory controller is about to  
drive data on the bus based on a read request. The signal is driven from  
the memory controller one BCLK[1:0] prior to data being driven on the bus.  
EDRDY# is not a feature of the Celeron D processor in the 775-land  
package. It is included here for future processor compatibility.  
EDRDY#  
Input  
FERR#/PBE# (Floating Point Error/Pending Break Event) is a multiplexed  
signal and its meaning is qualified by STPCLK#. When STPCLK# is not  
asserted, FERR#/PBE# indicates a floating-point error and will be asserted  
when the processor detects an unmasked floating-point error. When  
STPCLK# is not asserted, FERR#/PBE# is similar to the ERROR# signal  
on the Intel 387 coprocessor, and is included for compatibility with systems  
using MS-DOS*-type floating-point error reporting. When STPCLK# is  
FERR#/PBE#  
Output asserted, an assertion of FERR#/PBE# indicates that the processor has a  
pending break event waiting for service. The assertion of FERR#/PBE#  
indicates that the processor should be returned to the Normal state. For  
additional information on the pending break event functionality, including  
the identification of support of the feature and enable/disable information,  
refer to volume 3 of the Intel Architecture Software Developer's Manual and  
the Intel Processor Identification and the CPUID Instruction application  
note.  
GTLREF0 determines the signal reference level for GTL+ input signals.  
GTLREF1 is not a feature of the Celeron D processor in the 775-Land  
GTLREF[1:0]  
Input  
package. It is included here for future processor compatibility. GTLREF0 is  
used by the GTL+ receivers to determine if a signal is a logical 0 or logical  
1.  
Datasheet  
65  
Land Listing and Signal Descriptions  
Table 4-3. Signal Description (Sheet 5 of 9)  
Name  
Type  
Description  
GTLREF_SEL  
Output GTLREF_SEL is used to select the appropriate chipset GTLREF voltage.  
Input/ HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction snoop  
Output operation results. Any FSB agent may assert both HIT# and HITM#  
together to indicate that it requires a snoop stall, which can be continued by  
HIT#  
reasserting HIT# and HITM# together.  
HITM#  
Input/  
Output  
IERR# (Internal Error) is asserted by a processor as the result of an  
internal error. Assertion of IERR# is usually accompanied by a  
SHUTDOWN transaction on the processor FSB. This transaction may  
optionally be converted to an external error signal (e.g., NMI) by system  
IERR#  
Output  
core logic. The processor will keep IERR# asserted until the assertion of  
RESET#.  
This signal does not have on-die termination. Refer to Section 2.5 for  
termination requirements.  
IGNNE# (Ignore Numeric Error) is asserted to force the processor to ignore  
a numeric error and continue to execute noncontrol floating-point  
instructions. If IGNNE# is de-asserted, the processor generates an  
exception on a noncontrol floating-point instruction if a previous floating-  
point instruction caused an error. IGNNE# has no effect when the NE bit in  
IGNNE#  
Input  
control register 0 (CR0) is set.  
IGNNE# is an asynchronous signal. However, to ensure recognition of this  
signal following an input/output write instruction, it must be valid along with  
the TRDY# assertion of the corresponding Input/Output Write bus  
transaction.  
INIT# (Initialization), when asserted, resets integer registers inside the  
processor without affecting its internal caches or floating-point registers.  
The processor then begins execution at the power-on Reset vector  
configured during power-on configuration. The processor continues to  
handle snoop requests during INIT# assertion. INIT# is an asynchronous  
signal and must connect the appropriate pins/lands of all processor FSB  
agents.  
INIT#  
Input  
Input  
If INIT# is sampled active on the active to inactive transition of RESET#,  
then the processor executes its Built-in Self-Test (BIST).  
ITP_CLK[1:0] are copies of BCLK that are used only in processor systems  
where no debug port is implemented on the system board. ITP_CLK[1:0]  
are used as BCLK[1:0] references for a debug port implemented on an  
interposer. If a debug port is implemented in the system, ITP_CLK[1:0] are  
no connects in the system. These are not processor signals.  
ITP_CLK[1:0]  
LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins/lands of  
all APIC Bus agents. When the APIC is disabled, the LINT0 signal  
becomes INTR, a maskable interrupt request signal, and LINT1 becomes  
NMI, a nonmaskable interrupt. INTR and NMI are backward compatible  
with the signals of those names on the Pentium processor. Both signals are  
asynchronous.  
LINT[1:0]  
Input  
Both of these signals must be software configured via BIOS programming  
of the APIC register space to be used either as NMI/INTR or LINT[1:0].  
Because the APIC is enabled by default after Reset, operation of these  
signals as LINT[1:0] is the default configuration.  
The LL_ID[1:0] signals are used to select the correct loadline slope for the  
processor.  
LL_ID[1:0]  
Output  
66  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-3. Signal Description (Sheet 6 of 9)  
Name  
Type  
Description  
LOCK# indicates to the system that a transaction must occur atomically.  
This signal must connect the appropriate pins/lands of all processor FSB  
agents. For a locked sequence of transactions, LOCK# is asserted from  
the beginning of the first transaction to the end of the last transaction.  
Input/  
Output  
LOCK#  
When the priority agent asserts BPRI# to arbitrate for ownership of the  
processor FSB, it will wait until it observes LOCK# de-asserted. This  
enables symmetric agents to retain ownership of the processor FSB  
throughout the bus locked operation and ensure the atomicity of lock.  
MCERR# (Machine Check Error) is asserted to indicate an unrecoverable  
error without a bus protocol violation. It may be driven by all processor FSB  
agents.  
MCERR# assertion conditions are configurable at a system level. Assertion  
options are defined by the following options:  
Enabled or disabled.  
Input/  
Output  
MCERR#  
Asserted, if configured, for internal errors along with IERR#.  
Asserted, if configured, by the request initiator of a bus transaction  
after it observes an error.  
Asserted by any bus agent when it observes an error in a bus  
transaction.  
For more details regarding machine check architecture, refer to the IA-32  
Software Developer’s Manual, Volume 3: System Programming Guide.  
These signals are provided to indicate the Market Segment for the  
processor and may be used for future processor compatibility or for keying.  
MS_ID[1:0]  
PC_REQ#  
Output  
Output  
This signal provides an external bus indicator that the processor is done  
with the DRAM page and that the DRAM page could/should be closed.  
PC_REQ# is not a feature of the Celeron D processor in the 775-land  
package. It is included here for future processor compatibility.  
As an output, PROCHOT# (Processor Hot) will go active when the  
processor temperature monitoring sensor detects that the processor has  
reached its maximum safe operating temperature. This indicates that the  
processor Thermal Control Circuit (TCC) has been activated, if enabled. As  
an input, assertion of PROCHOT# by the system will activate the TCC, if  
enabled. The TCC will remain active until the system de-asserts  
PROCHOT#. See Section 5.2.4 for more details.  
Input/  
Output  
PROCHOT#  
PWRGOOD (Power Good) is a processor input. The processor requires  
this signal to be a clean indication that the clocks and power supplies are  
stable and within their specifications. ‘Clean’ implies that the signal will  
remain low (capable of sinking leakage current), without glitches, from the  
time that the power supplies are turned on until they come within  
specification. The signal must then transition monotonically to a high state.  
PWRGOOD can be driven inactive at any time, but clocks and power must  
again be stable before a subsequent rising edge of PWRGOOD.  
PWRGOOD  
Input  
The PWRGOOD signal must be supplied to the processor; it is used to  
protect internal circuits against voltage sequencing issues. It should be  
driven high throughout boundary scan operation.  
REQ[4:0]# (Request Command) must connect the appropriate pins/lands  
of all processor FSB agents. They are asserted by the current bus owner to  
define the currently active transaction type. These signals are source  
synchronous to ADSTB0#. Refer to the AP[1:0]# signal description for a  
details on parity checking of these signals.  
Input/  
Output  
REQ[4:0]#  
Datasheet  
67  
Land Listing and Signal Descriptions  
Table 4-3. Signal Description (Sheet 7 of 9)  
Name  
Type  
Description  
Asserting the RESET# signal resets the processor to a known state and  
invalidates its internal caches without writing back any of their contents. For  
a power-on Reset, RESET# must stay active for at least one millisecond  
after VCC and BCLK have reached their proper specifications. On  
observing active RESET#, all FSB agents will de-assert their outputs within  
two clocks. RESET# must not be kept asserted for more than 10 ms while  
PWRGOOD is asserted.  
RESET#  
Input  
A number of bus signals are sampled at the active-to-inactive transition of  
RESET# for power-on configuration. These configuration options are  
described in the Section 6.1.  
This signal does not have on-die termination and must be terminated on  
the system board.  
RS[2:0]# (Response Status) are driven by the response agent (the agent  
responsible for completion of the current transaction), and must connect  
the appropriate pins/lands of all processor FSB agents.  
RS[2:0]#  
RSP#  
Input  
Input  
RSP# (Response Parity) is driven by the response agent (the agent  
responsible for completion of the current transaction) during assertion of  
RS[2:0]#, the signals for which RSP# provides parity protection. It must  
connect to the appropriate pins/lands of all processor FSB agents.  
A correct parity signal is high if an even number of covered signals are low  
and low if an odd number of covered signals are low. While RS[2:0]# = 000,  
RSP# is also high, since this indicates it is not being driven by any agent  
guaranteeing correct parity.  
SKTOCC# (Socket Occupied) will be pulled to ground by the processor.  
SKTOCC#  
SMI#  
Output System board designers may use this signal to determine if the processor  
is present.  
SMI# (System Management Interrupt) is asserted asynchronously by  
system logic. On accepting a System Management Interrupt, the processor  
saves the current state and enter System Management Mode (SMM). An  
SMI Acknowledge transaction is issued, and the processor begins program  
execution from the SMM handler.  
Input  
If SMI# is asserted during the de-assertion of RESET# the processor will  
tristate its outputs.  
STPCLK# (Stop Clock), when asserted, causes the processor to enter a  
low power Stop-Grant state. The processor issues a Stop-Grant  
Acknowledge transaction, and stops providing internal clock signals to all  
processor core units except the FSB and APIC units. The processor  
continues to snoop bus transactions and service interrupts while in Stop-  
Grant state. When STPCLK# is de-asserted, the processor restarts its  
internal clock to all units and resumes execution. The assertion of  
STPCLK# has no effect on the bus clock; STPCLK# is an asynchronous  
input.  
STPCLK#  
Input  
TCK (Test Clock) provides the clock input for the processor Test Bus (also  
known as the Test Access Port).  
TCK  
Input  
Input  
TDI (Test Data In) transfers serial test data into the processor. TDI provides  
the serial input needed for JTAG specification support.  
TDI  
TDO (Test Data Out) transfers serial test data out of the processor. TDO  
provides the serial output needed for JTAG specification support.  
TDO  
Output  
Input  
TESTHI[13:0] must be connected to a VTT power source through a resistor  
for proper processor operation. See Section 2.5 for more details.  
TESTHI[13:0]  
THERMDA  
THERMDC  
Other Thermal Diode Anode. See Section 5.2.7.  
Other Thermal Diode Cathode. See Section 5.2.7.  
68  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-3. Signal Description (Sheet 8 of 9)  
Name  
Type  
Description  
In the event of a catastrophic cooling failure, the processor will  
automatically shut down when the silicon has reached a temperature  
approximately 20 °C above the maximum TC. Assertion of THERMTRIP#  
(Thermal Trip) indicates the processor junction temperature has reached a  
level beyond which permanent silicon damage may occur. Upon assertion  
of THERMTRIP#, the processor will shut off its internal clocks (thus halting  
program execution) in an attempt to reduce the processor junction  
temperature. To protect the processor, its core voltage (VCC) must be  
removed following the assertion of THERMTRIP#. Driving of the  
THERMTRIP# signal is enabled within 10 μs of the assertion of  
PWRGOOD and is disabled on de-assertion of PWRGOOD. Once  
activated, THERMTRIP# remains latched until PWRGOOD is de-asserted.  
While the de-assertion of the PWRGOOD signal will de-assert  
THERMTRIP#, if the processor’s junction temperature remains at or above  
the trip level, THERMTRIP# will again be asserted within 10 μs of the  
assertion of PWRGOOD.  
THERMTRIP#  
Output  
TMS (Test Mode Select) is a JTAG specification support signal used by  
debug tools.  
TMS  
Input  
Input  
Input  
TRDY# (Target Ready) is asserted by the target to indicate that it is ready  
to receive a write or implicit writeback data transfer. TRDY# must connect  
the appropriate pins/lands of all FSB agents.  
TRDY#  
TRST#  
TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST# must  
be driven low during power on Reset.  
VCC are the power pins for the processor. The voltage supplied to these  
pins is determined by the VID[5:0] pins.  
VCC  
Input  
Input  
Input  
VCCA  
VCCA provides isolated power for the internal processor core PLLs.  
VCCIOPLL provides isolated power for internal processor FSB PLLs.  
Follow the guidelines for VCCA.  
VCCIOPLL  
VCC_SENSE is an isolated low impedance connection to processor core  
VCC_SENSE  
Output power (VCC). It can be used to sense or measure voltage near the silicon  
with little noise.  
This land is provided as a voltage regulator feedback sense point for VCC  
.
It is connected internally in the processor package to the sense point land  
U27 as described in the Voltage Regulator-Down (VRD) 10.1 Design Guide  
for Desktop Socket 775.  
VCC_MB_REGULATION  
Output  
VID[7:6] (Voltage ID) are not used by the Celeron D processor in the 775-  
Land package. These signals are included here for future processor  
compatibility.  
VID[5:0] (Voltage ID) signals are used to support automatic selection of  
power supply voltages (VCC). These are open drain signals that are driven  
by the Celeron D processor in the 775-land package and must be pulled up  
on the motherboard. Refer to the Voltage Regulator-Down (VRD) 10.1  
Design Guide for Desktop Socket 775 for more information. The voltage  
supply for these signals must be valid before the VR can supply VCC to the  
processor. Conversely, the VR output must be disabled until the voltage  
supply for the VID signals becomes valid. The VID signals are needed to  
support the processor voltage specification variations. See Table 2-2 for  
definitions of these signals. The VR must supply the voltage that is  
requested by the signals, or disable itself.  
VID[7:0]  
Output  
VID_SELECT is used to select the VID table that is to be used by the  
voltage regulator.  
VID_SELECT  
VR Table Used  
VID_SELECT  
Output  
L
VRD10.1  
VRD11  
H
Datasheet  
69  
Land Listing and Signal Descriptions  
Table 4-3. Signal Description (Sheet 9 of 9)  
Name  
Type  
Description  
VSS are the ground pins for the processor and should be connected to the  
system ground plane.  
VSS  
Input  
Input  
VSSA  
VSSA is the isolated ground for internal PLLs.  
VSS_SENSE is an isolated low impedance connection to processor core  
VSS_SENSE  
Output  
Output  
VSS. It can be used to sense or measure ground near the silicon with little  
noise.  
This land is provided as a voltage regulator feedback sense point for VSS. It  
is connected internally in the processor package to the sense point land  
V27 as described in the Voltage Regulator-Down (VRD) 10.1 Design Guide  
for Desktop Socket 775.  
VSS_MB_REGULATION  
VTT  
FSB termination voltage.  
The VTT_OUT_LEFT and VTT_OUT_RIGHT signals are included to  
provide a local VTT for some signals that require termination to VTT on the  
motherboard.  
For future processor compatibility some signals are required to be pulled  
up to VTT_OUT_LEFT or VTT_OUT_RIGHT. Refer to the following table  
for the signals that should be pulled up to VTT_OUT_LEFT and  
VTT_OUT_RIGHT.  
VTT_OUT_LEFT  
VTT_OUT_RIGHT  
Output  
Pull Up Signal  
Signals to be Pulled Up  
VTT_PWRGOOD, VID[5:0], GTLREF, TMS,  
TDI, TDO, BPM[5:0], other VRD components  
VTT_OUT_RIGHT  
RESET#, BR0#, PWRGOOD, TESTHI1,  
TESTHI8, TESTHI9, TESTHI10, TESTHI11,  
TESTHI12, TESTHI13  
VTT_OUT_LEFT  
The VTT_SEL signal is used to select the correct VTT voltage level for the  
processor.  
VTT_SEL  
Output  
Input  
The processor requires this input to determine that the VTT voltages are  
stable and within specification.  
VTTPWRGD  
§
70  
Datasheet  
Thermal Specifications and Design Considerations  
5 Thermal Specifications and  
Design Considerations  
5.1  
Processor Thermal Specifications  
The Celeron D processor in the 775-land package requires a thermal solution to maintain  
temperatures within operating limits as set forth in Section 5.1.1. Any attempt to operate the  
processor outside these operating limits may result in permanent damage to the processor and  
potentially other components within the system. As processor technology changes, thermal  
management becomes increasingly crucial when building computer systems. Maintaining the  
proper thermal environment is key to reliable, long-term system operation.  
A complete thermal solution includes both component and system level thermal management  
features. Component level thermal solutions can include active or passive heatsinks attached to the  
processor Integrated Heat Spreader (IHS). Typical system level thermal solutions may consist of  
system fans combined with ducting and venting.  
®
For more information on designing a component level thermal solution, refer to the Intel  
®
Pentium 4 Processor on 90 nm Process in the 775-Land LGA Package Thermal Design Guide.  
Note: The boxed processor will ship with a component thermal solution. Refer to Chapter 7 for details on  
the boxed processor.  
5.1.1  
Thermal Specifications  
To allow for the optimal operation and long-term reliability of Intel processor-based systems, the  
system/processor thermal solution should be designed such that the processor remains within the  
minimum and maximum case temperature (T ) specifications when operating at or below the  
C
Thermal Design Power (TDP) value listed per frequency in Table 5-1. Thermal solutions not  
designed to provide this level of thermal capability may affect the long-term reliability of the  
processor and system. For more details on thermal solution design, refer to the appropriate  
processor thermal design guidelines.  
The Celeron D processor in the 775-land package introduces a new methodology for managing  
processor temperatures that is intended to support acoustic noise reduction through fan speed  
control. Selection of the appropriate fan speed will be based on the temperature reported by the  
processor’s Thermal Diode. If the diode temperature is greater than or equal to T  
then the  
CONTROL  
processor case temperature must remain at or below the temperature as specified by the thermal  
profile. If the diode temperature is less than T , then the case temperature is permitted to  
CONTROL  
exceed the thermal profile; however, the diode temperature must remain at or below T  
.
CONTROL  
Systems that implement fan speed control must be designed to take these conditions into account.  
Systems that do not alter the fan speed only need to guarantee the case temperature meets the  
thermal profile specifications.  
To determine a processor's case temperature specification based on the thermal profile, it is  
necessary to accurately measure processor power dissipation. Intel has developed a methodology  
for accurate power measurement that correlates to Intel test temperature and voltage conditions.  
Datasheet  
71  
Thermal Specifications and Design Considerations  
®
®
Refer to the Intel Pentium 4 Processor on 90 nm Process in the 775-Land LGA Package  
Thermal Design Guide and the Processor Power Characterization Methodology for the details of  
this methodology.  
The case temperature is defined at the geometric top center of the processor IHS. Analysis  
indicates that real applications are unlikely to cause the processor to consume maximum power  
dissipation for sustained periods of time. Intel recommends that complete thermal solution designs  
target the Thermal Design Power (TDP) indicated in Table 5-1 instead of the maximum processor  
power consumption. The Thermal Monitor feature is intended to help protect the processor in the  
unlikely event that an application exceeds the TDP recommendation for a sustained period of time.  
For more details on the usage of this feature, refer to Section 5.2. To ensure maximum flexibility  
for future requirements, systems should be designed to the Platform Compatibility Guide ‘04 A  
guidelines, even if a processor with a lower thermal dissipation is currently planned. In all cases,  
the Thermal Monitor feature must be enabled for the processor to remain within  
specification.  
Table 5-1. Processor Thermal Specifications  
Processor  
Number  
Processor Core  
Frequency (GHz)  
ThermalDesign Minimum TC  
Maximum TC (°C)  
Notes  
Power (W)  
(°C)  
See Table 5-2 and  
Figure 5-1  
1, 2  
325J/326  
330J/331  
335J/336  
340J/341  
345J/346  
351  
2.53  
2.66  
2.80  
2.93  
3.06  
3.20  
3.33  
84  
5
See Table 5-2 and  
Figure 5-1  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
84  
84  
84  
84  
84  
84  
5
5
5
5
5
5
See Table 5-2 and  
Figure 5-1  
See Table 5-2 and  
Figure 5-1  
See Table 5-2 and  
Figure 5-1  
See Table 5-2 and  
Figure 5-1  
See Table 5-2 and  
Figure 5-1  
355  
NOTES:  
1.  
Thermal Design Power (TDP) should be used for processor thermal solution design targets. The TDP is not the maxi-  
mum power that the processor can dissipate.  
2.  
This table shows the maximum TDP for a given frequency range. Individual processors may have a lower TDP. There-  
fore, the maximum T will vary depending on the TDP of the individual processor. Refer to thermal profile figure and  
C
associated table for the allowed combinations of power and T .  
C
72  
Datasheet  
Thermal Specifications and Design Considerations  
Table 5-2. Thermal Profile for Processors  
Power (W) Maximum TC (°C)  
Power (W)  
Maximum TC (°C)  
Power (W)  
Maximum TC (°C)  
0
44.2  
44.8  
45.3  
45.9  
46.4  
47.0  
47.6  
48.1  
48.7  
49.2  
49.8  
50.4  
50.9  
51.5  
52.0  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
52.6  
53.2  
53.7  
54.3  
54.8  
55.4  
56.0  
56.5  
57.1  
57.6  
58.2  
58.8  
59.3  
59.9  
60.4  
60  
62  
64  
66  
68  
70  
72  
74  
76  
78  
80  
82  
84  
61.0  
61.6  
62.1  
62.7  
63.2  
63.8  
64.4  
64.9  
65.5  
66.0  
66.6  
67.2  
67.7  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
Figure 5-1. Thermal Profile for Platform Compatibility Guide ‘04 A Processors  
70.0  
65.0  
y = 0.28x + 44.2  
60.0  
55.0  
50.0  
45.0  
40.0  
0
10  
20  
30  
40  
50  
60  
70  
80  
Power (W)  
Datasheet  
73  
Thermal Specifications and Design Considerations  
5.1.2  
Thermal Metrology  
The maximum and minimum case temperatures (T ) are specified in Table 5-1. These temperature  
C
specifications are meant to help ensure proper operation of the processor. Figure 5-2 illustrates  
where Intel recommends T thermal measurements should be made. For detailed guidelines on  
C
®
®
temperature measurement methodology, refer to the Intel Pentium 4 Processor on 90 nm  
Process in the 775-Land LGA Package Thermal Design Guide.  
Figure 5-2. Case Temperature (T ) Measurement Location  
C
Measure from edge of top surface of processor IHS  
14.35 mm  
Measure TC at this point  
(geometric center of the  
top surface of the IHS)  
14.35 mm  
37.5 mm x 37.5 mm Substrate  
5.2  
Processor Thermal Features  
5.2.1  
Thermal Monitor  
The Thermal Monitor feature helps control the processor temperature by activating the TCC when  
the processor silicon reaches its maximum operating temperature. The TCC reduces processor  
power consumption as needed by modulating (starting and stopping) the internal processor core  
clocks. The Thermal Monitor feature must be enabled for the processor to be operating  
within specifications. The temperature at which Thermal Monitor activates the thermal control  
circuit is not user configurable and is not software visible. Bus traffic is snooped in the normal  
manner, and interrupt requests are latched (and serviced during the time that the clocks are on)  
while the TCC is active.  
When the Thermal Monitor feature is enabled, and a high temperature situation exists (i.e., TCC is  
active), the clocks will be modulated by alternately turning the clocks off and on at a duty cycle  
specific to the processor (typically 30–50%). Clocks often will not be off for more than 3.0 µs  
when the TCC is active. Cycle times are processor speed dependent and will decrease as processor  
core frequencies increase. A small amount of hysteresis has been included to prevent rapid active/  
inactive transitions of the TCC when the processor temperature is near its maximum operating  
temperature. Once the temperature has dropped below the maximum operating temperature, and  
the hysteresis timer has expired, the TCC goes inactive and clock modulation ceases.  
With a properly designed and characterized thermal solution, it is anticipated that the TCC would  
only be activated for very short periods of time when running the most power intensive  
applications. The processor performance impact due to these brief periods of TCC activation is  
74  
Datasheet  
Thermal Specifications and Design Considerations  
expected to be so minor that it would be immeasurable. An under-designed thermal solution that is  
not able to prevent excessive activation of the TCC in the anticipated ambient environment may  
cause a noticeable performance loss, and in some cases may result in a TC that exceeds the  
specified maximum temperature and may affect the long-term reliability of the processor. In  
addition, a thermal solution that is significantly under-designed may not be capable of cooling the  
®
®
processor even when the TCC is active continuously. Refer to the Intel Pentium 4 Processor on  
90 nm Process in the 775-Land LGA Package Thermal Design Guide for information on designing  
a thermal solution.  
The duty cycle for the TCC, when activated by the Thermal Monitor, is factory configured and  
cannot be modified. The Thermal Monitor does not require any additional hardware, software  
drivers, or interrupt handling routines.  
5.2.2  
Thermal Monitor 2  
The Celeron D processor in the 775-land package also supports a power management capability  
known as Thermal Monitor 2. This mechanism provides an efficient mechanism for limiting the  
processor temperature by reducing power consumption within the processor.  
When Thermal Monitor 2 is enabled, and a high temperature situation is detected, the enhanced  
Thermal Control Circuit (TCC) will be activated. This enhanced TCC causes the processor to  
adjust its operating frequency (bus multiplier) and input voltage (VID). This combination of  
reduced frequency and VID results in a decrease in processor power consumption.  
A processor enabled for Thermal Monitor 2 includes two operating points, each consisting of a  
specific operating frequency and voltage. The first point represents the normal operating conditions  
for the processor.  
The second point consists of both a lower operating frequency and voltage. When the enhanced  
TCC is activated, the processor automatically transitions to the new frequency. This transition  
occurs very rapidly (on the order of 5 μs). During the frequency transition, the processor is unable  
to service any bus requests, and consequently, all bus traffic is blocked. Edge-triggered interrupts  
will be latched and kept pending until the processor resumes operation at the new frequency.  
Once the new operating frequency is engaged, the processor will transition to the new core  
operating voltage by issuing a new VID code to the voltage regulator. The voltage regulator must  
support VID transitions to support Thermal Monitor 2. During the voltage change, it will be  
necessary to transition through multiple VID codes to reach the target operating voltage. Each step  
will be one VID table entry (i.e., 12.5 mV steps). The processor continues to execute instructions  
during the voltage transition. Operation at this lower voltage reduces both the dynamic and leakage  
power consumption of the processor, providing a reduction in power consumption at a minimum  
performance impact.  
Once the processor has sufficiently cooled and a minimum activation time has expired, the  
operating frequency and voltage transition back to the normal system operating point. Transition of  
the VID code will occur first, to insure proper operation once the processor reaches its normal  
operating frequency. Refer to Figure 5-3 for an illustration of this ordering.  
Datasheet  
75  
Thermal Specifications and Design Considerations  
Figure 5-3. Thermal Monitor 2 Frequency and Voltage Ordering  
T
TM2  
Temperature  
f
MAX  
fTM2  
Frequency  
VID  
VID  
TM2  
VID  
PROCHOT#  
Time  
The PROCHOT# signal is asserted when a high temperature situation is detected, regardless of  
whether or not Thermal Monitor or Thermal Monitor 2 is enabled.  
It should be noted that the Thermal Monitor 2 TCC can not be activated via the on demand mode.  
The Thermal Monitor TCC, however, can be activated through the use of the on-demand mode.  
5.2.3  
On-Demand Mode  
The Celeron D processor in the 775-land package provides an auxiliary mechanism that allows  
system software to force the processor to reduce its power consumption. This mechanism is  
referred to as "On-Demand" mode and is distinct from the Thermal Monitor feature. On-Demand  
mode is intended as a means to reduce system level power consumption. Systems using the Celeron  
D processor in the 775-land package must not rely on software usage of this mechanism to limit the  
processor temperature.  
If bit 4 of the ACPI P_CNT Control Register (located in the processor IA32_THERM_CONTROL  
MSR) is written to a '1', the processor will immediately reduce its power consumption via  
modulation (starting and stopping) of the internal core clock, independent of the processor  
temperature. When using On-Demand mode, the duty cycle of the clock modulation is  
programmable via bits 3:1 of the same ACPI P_CNT Control Register. In On-Demand mode, the  
duty cycle can be programmed from 12.5% on/ 87.5% off, to 87.5% on/12.5% off in 12.5%  
increments. On-Demand mode may be used in conjunction with the Thermal Monitor. If the system  
tries to enable On-Demand mode at the same time the TCC is engaged, the factory configured duty  
cycle of the TCC will override the duty cycle selected by the On-Demand mode.  
76  
Datasheet  
Thermal Specifications and Design Considerations  
5.2.4  
PROCHOT# Signal  
An external signal, PROCHOT# (processor hot), is asserted when the processor die temperature  
has reached its maximum operating temperature. If the Thermal Monitor is enabled (note that the  
Thermal Monitor must be enabled for the processor to be operating within specification), the TCC  
will be active when PROCHOT# is asserted. The processor can be configured to generate an  
interrupt upon the assertion or de-assertion of PROCHOT#. Refer to the Intel Architecture  
Software Developer's Manuals for specific register and programming details.  
The Celeron D processor in the 775-land package implements a bi-directional PROCHOT#  
capability to allow system designs to protect various components from over-temperature situations.  
The PROCHOT# signal is bi-directional in that it can either signal when the processor has reached  
its maximum operating temperature or be driven from an external source to activate the TCC. The  
ability to activate the TCC via PROCHOT# can provide a means for thermal protection of system  
components.  
One application is the thermal protection of voltage regulators (VR). System designers can create a  
circuit to monitor the VR temperature and activate the TCC when the temperature limit of the VR  
is reached. By asserting PROCHOT# (pulled-low) and activating the TCC, the VR can cool down  
as a result of reduced processor power consumption. Bi-directional PROCHOT# can allow VR  
thermal designs to target maximum sustained current instead of maximum current. Systems should  
still provide proper cooling for the VR, and rely on bi-directional PROCHOT# only as a backup in  
case of system cooling failure. The system thermal design should allow the power delivery  
circuitry to operate within its temperature specification even while the processor is operating at its  
Thermal Design Power. With a properly designed and characterized thermal solution, it is  
anticipated that bi-directional PROCHOT# would only be asserted for very short periods of time  
when running the most power intensive applications. An under-designed thermal solution that is  
not able to prevent excessive assertion of PROCHOT# in the anticipated ambient environment may  
cause a noticeable performance loss. Refer to the Voltage Regulator-Down (VRD) 10.1 Design  
Guide for Desktop Socket 775 for details on implementing the bi-directional PROCHOT# feature.  
5.2.5  
5.2.6  
THERMTRIP# Signal  
Regardless of whether or not the Thermal Monitor feature is enabled, in the event of a catastrophic  
cooling failure, the processor will automatically shut down when the silicon has reached an  
elevated temperature (refer to the THERMTRIP# definition in Table 4-3). At this point, the FSB  
signal THERMTRIP# will go active and stay active as described in Table 4-3. THERMTRIP#  
activation is independent of processor activity and does not generate any bus cycles.  
TCONTROL and Fan Speed Reduction  
T
is a temperature specification based on a temperature reading from the thermal diode.  
CONTROL  
The value for T  
will be calibrated in manufacturing and configured for each processor.  
CONTROL  
When T  
is above T  
, then T must be at or below T  
as defined by the thermal  
DIODE  
CONTROL  
C
C-MAX  
profile in Table 5-2 and Figure 5-1. Otherwise, the processor temperature can be maintained at  
(or lower) as measured by the thermal diode.  
T
CONTROL  
The purpose of this feature is to support acoustic optimization through fan speed control. Contact  
your Intel representative for further details and documentation.  
Datasheet  
77  
Thermal Specifications and Design Considerations  
5.2.7  
Thermal Diode  
The processor incorporates an on-die thermal diode. A thermal sensor located on the system board  
may monitor the die temperature of the processor for thermal management/long term die  
temperature change purposes. Table 5-3 and Table 5-4 provide the diode parameter and interface  
specifications. This thermal diode is separate from the Thermal Monitor’s thermal sensor and  
cannot be used to predict the behavior of the Thermal Monitor.  
Table 5-3. Thermal Diode Parameters  
Symbol  
IFW  
Parameter  
Forward Bias Current  
Min  
Typ  
Max  
Unit  
Notes  
1
11  
187  
µA  
Ω
2, 3, 4, 5  
2, 3, 6  
n
Diode Ideality Factor  
Series Resistance  
1.0083  
3.242  
1.011  
3.33  
1.023  
3.594  
RT  
NOTES:  
1.  
2.  
3.  
4.  
Intel does not support or recommend operation of the thermal diode under reverse bias.  
Characterized at 75 °C.  
Not 100% tested. Specified by design characterization.  
The ideality factor, n, represents the deviation from ideal diode behavior as exemplified by the diode equation:  
qV /nkT  
I
= I * (e  
D
–1)  
FW  
S
where I = saturation current, q = electronic charge, V = voltage across the diode, k = Boltzmann Constant, and  
S
D
T = absolute temperature (Kelvin).  
5.  
6.  
Devices found to have an ideality factor in the range of +3 n to +5 n will create a temperature error approximately 2° C higher  
than the actual temperature. To minimize any potential acoustic impact of this temperature error, T  
by 2° C on these parts. Processors with an ideality between ±3 n will not be affected.  
will be increased  
CONTROL  
The series resistance, R , is provided to allow for a more accurate measurement of the diode temperature. R , as defined,  
T
T
includes the lands of the processor but does not include any socket resistance or board trace resistance between the socket  
and the external remote diode thermal sensor. R can be used by remote diode thermal sensors with automatic series re-  
T
sistance cancellation to calibrate out this error term. Another application is that a temperature offset can be manually calcu-  
lated and programmed into an offset register in the remote diode thermal sensors as exemplified by the equation:  
T
= [R * (N-1) * I  
] / [nk/q * ln N]  
error  
T
FWmin  
where T  
= sensor temperature error, N = sensor current ratio, k = Boltzmann Constant, q = electronic charge.  
error  
Table 5-4. Thermal Diode Interface  
Signal Name  
Land Number  
Signal Description  
THERMDA  
THERMDC  
AL1  
AK1  
diode anode  
diode cathode  
§
78  
Datasheet  
Features  
6 Features  
This chapter contains power-on configuration options and clock control/low power state  
descriptions.  
6.1  
Power-On Configuration Options  
Several configuration options can be configured by hardware. The Celeron D processor in the  
775-land package samples the hardware configuration at reset, on the active-to-inactive transition  
of RESET#. For specifications on these options, refer to Table 6-1.  
The sampled information configures the processor for subsequent operation. These configuration  
options cannot be changed except by another reset. All resets reconfigure the processor; for reset  
purposes, the processor does not distinguish between a "warm" reset and a "power-on" reset.  
Table 6-1. Power-On Configuration Option Signals  
Configuration Option  
Signal1, 2  
Output tristate  
SMI#  
Execute BIST  
INIT#  
In Order Queue pipelining (set IOQ depth to 1)  
Disable MCERR# observation  
Disable BINIT# observation  
APIC Cluster ID (0-3)  
Disable bus parking  
A7#  
A9#  
A10#  
A[12:11]#  
A15#  
BR0#  
Symmetric agent arbitration ID  
RESERVED  
A[6:3]#, A8#, A[14:13]#, A[16:30]#, A[32:35]#  
NOTES:  
1.  
2.  
Asserting this signal during RESET# will select the corresponding option.  
Address signals not identified in this table as configuration options should not be asserted during RESET#.  
6.2  
Clock Control and Low Power States  
The processor allows the use of AutoHALT and Stop-Grant to reduce power consumption by  
stopping the clock to internal sections of the processor, depending on each particular state. See  
Figure 6-1 for a visual representation of the processor low power states.  
Datasheet  
79  
Features  
Figure 6-1. Processor Low Power State Machine  
HALT or MWAIT Instruction and  
HALT Bus Cycle Generated  
HALT State  
BCLK running  
Snoops and interrupts allow ed  
Norm al State  
Normal execution  
INIT#, BINIT#, INTR, NMI, SMI#,  
RESET#, FSB interrupts  
Snoop  
Event  
Occurs  
Snoop  
Event  
Serviced  
STPCLK#  
Asserted  
STPCLK#  
De-asserted  
HALT Snoop State  
BCLK running  
Service snoops to caches  
Snoop Event Occurs  
Snoop Event Serviced  
Stop-GrantState  
Grant Snoop State  
BCLK running  
BCLK running  
Snoops and interrupts allow ed  
Service snoops to caches  
6.2.1  
6.2.2  
Normal State  
This is the normal operating state for the processor.  
HALT Powerdown State  
HALT is a low power state entered when all the logical processors have executed the HALT or  
MWAIT instructions. When one of the logical processors executes the HALT instruction, that  
logical processor is halted; however, the other processor continues normal operation. The processor  
will transition to the Normal state upon the occurrence of SMI#, BINIT#, INIT#, or LINT[1:0]  
(NMI, INTR). RESET# will cause the processor to immediately initialize itself.  
The return from a System Management Interrupt (SMI) handler can be to either Normal Mode or  
the HALT Power Down state. See the Intel Architecture Software Developer's Manual, Volume III:  
System Programmer's Guide for more information.  
The system can generate a STPCLK# while the processor is in the HALT Power Down state. When  
the system de-asserts the STPCLK# interrupt, the processor will return execution to the HALT  
state.  
While in HALT Power Down state, the processor will process bus snoops.  
80  
Datasheet  
Features  
6.2.3  
Stop-Grant States  
When the STPCLK# signal is asserted, the Stop-Grant state of the processor is entered 20 bus  
clocks after the response phase of the processor-issued Stop Grant Acknowledge special bus cycle.  
Since the GTL+ signals receive power from the FSB, these signals should not be driven (allowing  
the level to return to V ) for minimum power drawn by the termination resistors in this state. In  
TT  
addition, all other input signals on the FSB should be driven to the inactive state.  
BINIT# will not be serviced while the processor is in Stop-Grant state. The event will be latched  
and can be serviced by software upon exit from the Stop Grant state.  
RESET# will cause the processor to immediately initialize itself, but the processor will stay in  
Stop-Grant state. A transition back to the Normal state will occur with the de-assertion of the  
STPCLK# signal.  
A transition to the HALT/Grant Snoop state will occur when the processor detects a snoop on the  
FSB (see Section 6.2.4).  
While in the Stop-Grant state, SMI#, INIT#, BINIT# and LINT[1:0] will be latched by the  
processor, and only serviced when the processor returns to the Normal state. Only one occurrence  
of each event will be recognized upon return to the Normal state.  
While in Stop-Grant state, the processor will process a FSB snoop.  
6.2.4  
HALT Snoop State, Grant Snoop State  
The processor will respond to snoop transactions on the FSB while in Stop-Grant state or in HALT  
Power Down state. During a snoop transaction, the processor enters the HALT:Grant Snoop state.  
The processor will stay in this state until the snoop on the FSB has been serviced (whether by the  
processor or another agent on the FSB). After the snoop is serviced, the processor will return to the  
Stop-Grant state or HALT Power Down state, as appropriate.  
§
Datasheet  
81  
Features  
82  
Datasheet  
Boxed Processor Specifications  
7 Boxed Processor Specifications  
The Celeron D processor in the 775-land package will also be offered as an boxed Intel processor.  
Boxed Intel processors are intended for system integrators who build systems from baseboards and  
standard components. The boxed Celeron D processor in the 775-land package will be supplied  
with a cooling solution. This chapter documents baseboard and system requirements for the  
cooling solution that will be supplied with the boxed Celeron D processor in the 775-land package.  
This chapter is particularly important for OEMs that manufacture baseboards for system  
integrators. Figure 7-1 shows a mechanical representation of a boxed Celeron D processor in the  
775-land package.  
Note: Unless otherwise noted, all figures in this chapter are dimensioned in millimeters and  
inches [in brackets].  
Note: Drawings in this section reflect only the specifications on the boxed Intel processor product. These  
dimensions should not be used as a generic keep-out zone for all cooling solutions. It is the system  
designer’s responsibility to consider their proprietary cooling solution when designing to the  
®
®
required keep-out zone on their system platforms and chassis. Refer to the Intel Pentium 4  
Processor on 90 nm Process in the 775-Land LGA Package Thermal Design Guide for further  
guidance.  
Figure 7-1. Mechanical Representation of the Boxed Processor  
NOTE: The airflow of the fan heatsink is into the center and out of the sides of the fan heatsink.  
Datasheet  
83  
Boxed Processor Specifications  
7.1  
Mechanical Specifications  
7.1.1  
Boxed Processor Cooling Solution Dimensions  
This section documents the mechanical specifications of the boxed Celeron D processor in the  
775- land package fan heatsink. The boxed processor will be shipped with an unattached fan  
heatsink. Figure 7-1 shows a mechanical representation of the boxed Pentium 4 processor in the  
775-land package.  
Clearance is required around the fan heatsink to ensure unimpeded airflow for proper cooling. The  
physical space requirements and dimensions for the boxed processor with assembled fan heatsink  
are shown in Figure 7-2 (Side View), and Figure 7-3 (Top View). The airspace requirements for the  
boxed processor fan heatsink must also be incorporated into new baseboard and system designs.  
Airspace requirements are shown in Figure 7-7 and Figure 7-8. Note that some figures have  
centerlines shown (marked with alphabetic designations) to clarify relative dimensioning.  
Figure 7-2. Space Requirements for the Boxed Processor (Side View)  
95.0  
[3.74]  
81.3  
[3.2]  
10.0  
[0.39]  
25.0  
[0.98]  
84  
Datasheet  
Boxed Processor Specifications  
Figure 7-3. Space Requirements for the Boxed Processor (Top View)  
95.0  
[3.74]  
95.0  
[3.74]  
NOTES:  
1. Diagram does not show the attached hardware for the clip design and is provided only as a mechanical  
representation.  
Figure 7-4. Space Requirements for the Boxed Processor (Overall View)  
Datasheet  
85  
Boxed Processor Specifications  
7.1.2  
7.1.3  
Boxed Processor Fan Heatsink Weight  
The boxed processor fan heatsink will not weigh more than 450 grams. Refer to Chapter 5 and the  
®
®
Intel Pentium 4 Processor on 90 nm Process in the 775-Land LGA Package Thermal Design  
Guide for details on the processor weight and heatsink requirements.  
Boxed Processor Retention Mechanism and Heatsink  
Attach Clip Assembly  
The boxed processor thermal solution requires a heatsink attach clip assembly to secure the  
processor and fan heatsink in the baseboard socket. The boxed processor will ship with the heatsink  
attach clip assembly.  
7.2  
Electrical Requirements  
7.2.1  
Fan Heatsink Power Supply  
The boxed processor's fan heatsink requires a +12 V power supply. A fan power cable will be  
shipped with the boxed processor to draw power from a power header on the baseboard. The power  
cable connector and pinout are shown in Figure 7-5. Baseboards must provide a matched power  
header to support the boxed processor. Table 7-1 contains specifications for the input and output  
signals at the fan heatsink connector.  
The fan heatsink outputs a SENSE signal that is an open- collector output that pulses at a rate of  
2 pulses per fan revolution. A baseboard pull-up resistor provides V to match the system board-  
OH  
mounted fan speed monitor requirements, if applicable. Use of the SENSE signal is optional. If the  
SENSE signal is not used, pin 3 of the connector should be tied to GND.  
th  
The fan heatsink receives a PWM signal from the motherboard from the 4 pin of the connector  
labeled as CONTROL.  
Note: The boxed processor’s fan heatsink requires a constant +12 V supplied to pin 2 and does not  
support variable voltage control or 3-pin PWM control.  
The power header on the baseboard must be positioned to allow the fan heatsink power cable to  
reach it. The power header identification and location should be documented in the platform user’s  
manual, or on the system board itself. Figure 7-6 shows the location of the fan power connector  
relative to the processor socket. The baseboard power header should be positioned within  
4.33 inches from the center of the processor socket.  
86  
Datasheet  
Boxed Processor Specifications  
Figure 7-5. Boxed Processor Fan Heatsink Power Cable Connector Description  
Signal  
Pin  
Straight square pin, 4-pin terminal housing with  
polarizing ribs and friction locking ramp.  
1
2
3
4
GND  
+12 V  
0.100" pitch, 0.025" square pin width.  
SENSE  
CONTROL  
Match with straight pin, friction lock header on  
mainboard.  
3 4  
1 2  
Table 7-1. Fan Heatsink Power and Signal Specifications  
Description  
Min  
Typ  
Max  
Unit  
Notes  
+12V: 12 volt fan power supply  
10.2  
12  
13.8  
V
IC:  
Peak Fan current draw  
Fan start-up current draw  
Fan start-up current draw maximum duration  
1.1  
1.5  
2.2  
1.0  
A
A
Second  
pulses per  
fan revolution  
1
SENSE: SENSE frequency  
2
2,3  
CONTROL  
2100  
2500  
2800  
Hz  
NOTES:  
1.  
2.  
3.  
Baseboard should pull this pin up to 5 V with a resistor.  
Open Drain Type, Pulse Width Modulated.  
Fan will have a pull-up resistor to 4.75 V (maximum 5.25 V).  
Figure 7-6. Baseboard Power Header Placement Relative to Processor Socket  
R110  
[4.33]  
B
C
Datasheet  
87  
Boxed Processor Specifications  
7.3  
Thermal Specifications  
This section describes the cooling requirements of the fan heatsink solution used by the boxed  
processor.  
7.3.1  
Boxed Processor Cooling Requirements  
The boxed processor may be directly cooled with a fan heatsink. However, meeting the processor's  
temperature specification is also a function of the thermal design of the entire system, and  
ultimately the responsibility of the system integrator. For the processor temperature specification,  
refer to Chapter 5. The boxed processor fan heatsink is able to keep the processor temperature  
within the specifications listed in Table 5-1 for chassis that provide good thermal management. For  
the boxed processor fan heatsink to operate properly, it is critical that the airflow provided to the  
fan heatsink is unimpeded. Airflow of the fan heatsink is into the center and out of the sides of the  
fan heatsink. Airspace is required around the fan to ensure that the airflow through the fan heatsink  
is not blocked. Blocking the airflow to the fan heatsink reduces the cooling efficiency and  
decreases fan life. Figure 7-7 and Figure 7-8 illustrate an acceptable airspace clearance for the fan  
heatsink. The air temperature entering the fan should be kept below 38 °C. Again, meeting the  
processor's temperature specification is the responsibility of the system integrator.  
88  
Datasheet  
Boxed Processor Specifications  
Figure 7-7. Boxed Processor Fan Heatsink Airspace Keep-out Requirements (Top View)  
Figure 7-8. Boxed Processor Fan Heatsink Airspace Keep-out Requirements (Side View)  
Datasheet  
89  
Boxed Processor Specifications  
7.3.2  
Variable Speed Fan  
If the boxed processor fan heatsink 4-pin connector is connected to a 3-pin motherboard header, it  
will operate as follows:  
The boxed processor fan will operate at different speeds over a short range of internal chassis  
temperatures. This allows the processor fan to operate at a lower speed and noise level, while  
internal chassis temperatures are low. If internal chassis temperature increases beyond a lower  
set point, the fan speed will rise linearly with the internal temperature until the higher set point  
is reached. At that point, the fan speed is at its maximum. As fan speed increases, so does fan  
noise levels. Systems should be designed to provide adequate air around the boxed processor  
fan heatsink that remains cooler than the lower set point. These set points, represented in  
Figure 7-9 and Table 7-2, can vary by a few degrees from fan heatsink to fan heatsink. The  
internal chassis temperature should be kept below 38 ºC. Meeting the processor’s temperature  
specification (see Chapter 5) is the responsibility of the system integrator.  
Note: The motherboard must supply a constant +12 V to the processor’s power header to ensure proper  
operation of the variable speed fan for the boxed processor (refer to Table 7-1) for the specific  
requirements.  
Figure 7-9. Boxed Processor Fan Heatsink Set Points  
Higher Set Point  
Highest Noise Level  
Increasing Fan  
Speed & Noise  
Lower Set Point  
Lowest Noise Level  
X
Y
Z
Internal Chassis Temperature (Degrees C)  
90  
Datasheet  
Boxed Processor Specifications  
Table 7-2. Boxed Processor Fan Heatsink Set Points  
Boxed Processor  
Fan Heatsink Set  
Point (ºC)  
Boxed Processor Fan Speed  
Notes  
When the internal chassis temperature is below or equal to this set  
point, the fan operates at its lowest speed. Recommended maximum  
internal chassis temperature for nominal operating environment.  
1
X 30  
When the internal chassis temperature is at this point, the fan operates  
between its lowest and highest speeds. Recommended maximum  
internal chassis temperature for worst-case operating environment.  
Y = 34  
When the internal chassis temperature is above or equal to this set  
point, the fan operates at its highest speed.  
1
Z 38  
NOTES:  
1.  
Set point variance is approximately ±1°C from fan heatsink to fan heatsink.  
If the boxed processor fan heatsink 4-pin connector is connected to a 4-pin motherboard header and  
the motherboard is designed with a fan speed controller with PWM output (see CONTROL in  
Table 7-1) and remote thermal diode measurement capability, the boxed processor will operate as  
follows:  
As processor power has increased the required thermal solutions have generated increasingly more  
noise. Intel has added an option to the boxed processor that allows system integrators to have a  
quieter system in the most common usage.  
th  
The 4 wire PWM solution provides better control over chassis acoustics. This is achieved by  
more accurate measurement of processor die temperature through the processor’s temperature  
diode (T  
). Fan RPM is modulated through the use of an ASIC located on the motherboard  
DIODE  
th  
that sends out a PWM control signal to the 4 pin of the connector labeled as CONTROL. The fan  
speed is based on actual processor temperature instead of internal ambient chassis temperatures.  
If the new 4-pin active fan heat sink solution is connected to an older 3-pin baseboard, processor  
fan header, it will default back to a thermistor controlled mode, allowing compatibility with  
existing 3-pin baseboard designs. Under thermistor controlled mode, the fan RPM is automatically  
varied based on the inlet temperature measured by a thermistor located at the fan inlet.  
Note: For more details on specific motherboard requirements for 4-wire based fan speed control, see the  
®
®
Intel Pentium 4 Processor on 90 nm Process in the 775-Land LGA Package Thermal Design  
Guide.  
§
Datasheet  
91  
Boxed Processor Specifications  
92  
Datasheet  
Debug Tools Specifications  
8 Debug Tools Specifications  
Refer to the ITP700 Debug Port Design Guide for information regarding debug tools  
specifications. The ITP700 Debug Port Design Guide is located on http://developer.intel.com.  
8.1  
Logic Analyzer Interface (LAI)  
Intel is working with two logic analyzer vendors to provide logic analyzer interfaces (LAIs) for use  
in debugging Celeron D processor in the 775-land package systems. Tektronix* and Agilent*  
should be contacted to get specific information about their logic analyzer interfaces. The following  
information is general in nature. Specific information must be obtained from the logic analyzer  
vendor.  
Due to the complexity of Celeron D processor in the 775-land package systems, the LAI is critical  
in providing the ability to probe and capture FSB signals. There are two sets of considerations to  
keep in mind when designing a Celeron D processor in the 775-land package system that can make  
use of an LAI: mechanical and electrical.  
8.1.1  
Mechanical Considerations  
The LAI is installed between the processor socket and the Celeron D processor in the 775-land  
package. The LAI lands plug into the socket, while the Celeron D processor in the 775-land  
package lands plug into a socket on the LAI. Cabling that is part of the LAI egresses the system to  
allow an electrical connection between the Celeron D processor in the 775-land package and a  
logic analyzer. The maximum volume occupied by the LAI, known as the keep-out volume, as well  
as the cable egress restrictions, should be obtained from the logic analyzer vendor. System  
designers must make sure that the keep-out volume remains unobstructed inside the system. Note  
that it is possible that the keep-out volume reserved for the LAI may differ from the space normally  
occupied by the Celeron D processor in the 775-land package heatsink. If this is the case, the logic  
analyzer vendor will provide a cooling solution as part of the LAI.  
8.1.2  
Electrical Considerations  
The LAI will also affect the electrical performance of the FSB; therefore, it is critical to obtain  
electrical load models from each of the logic analyzers to be able to run system level simulations to  
prove that their tool will work in the system. Contact the logic analyzer vendor for electrical  
specifications and load models for the LAI solution they provide.  
§
Datasheet  
93  
Debug Tools Specifications  
94  
Datasheet  

相关型号:

BX80547RE2667CN

Microprocessor, 32-Bit, 2600MHz, CMOS, PBGA775, FLIP CHIP, LGA-775
INTEL

BX80547RE2667CN/SL7TV

RISC Microprocessor, 32-Bit, 2660MHz, CMOS, PBGA775
INTEL

BX80547RE2667CN/SL8H7

RISC Microprocessor, 32-Bit, 2660MHz, CMOS, PBGA775
INTEL

BX80547RE2667CN/SL98V

RISC Microprocessor, 32-Bit, 2660MHz, CMOS, PBGA775
INTEL

BX80547RE2800C

Microprocessor, 32-Bit, 2800MHz, CMOS, PBGA775, FLIP CHIP, LGA-775
INTEL

BX80547RE2800C/SL7SU

RISC Microprocessor, 32-Bit, 2800MHz, CMOS, PBGA775
INTEL

BX80547RE2800C/SL7TN

RISC Microprocessor, 32-Bit, 2800MHz, CMOS, PBGA775
INTEL

BX80547RE2800C/SL7VT

RISC Microprocessor, 32-Bit, 2800MHz, CMOS, PBGA775
INTEL

BX80547RE2800CN

Microprocessor, 32-Bit, 2930MHz, CMOS, PBGA775, FLIP CHIP, LGA-775
INTEL

BX80547RE2800CN/SL7TW

RISC Microprocessor, 32-Bit, 2800MHz, CMOS, PBGA775
INTEL

BX80547RE2800CN/SL8H9

RISC Microprocessor, 32-Bit, 2800MHz, CMOS, PBGA775
INTEL

BX80547RE2800CN/SL98W

RISC Microprocessor, 32-Bit, 2800MHz, CMOS, PBGA775
INTEL