AV80577UG0091M/SLGSB [INTEL]

RISC Microprocessor, 64-Bit, 1200MHz, CMOS, PBGA956;
AV80577UG0091M/SLGSB
型号: AV80577UG0091M/SLGSB
厂家: INTEL    INTEL
描述:

RISC Microprocessor, 64-Bit, 1200MHz, CMOS, PBGA956

文件: 总98页 (文件大小:1636K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intel® Celeron® Mobile Processor  
Dual-Core on 45-nm Process  
Datasheet  
For Platforms Based on Mobile Intel® 4 Series Express Chipset Family  
September 2009  
Document Number: 321111-003  
Legal Lines and Disclaimers  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR  
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS  
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING  
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,  
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE  
FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.  
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics  
of any features or instructions marked “reserved” or “undefined.Intel reserves these for future definition and shall have no responsibility whatsoever for  
conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with  
this information.  
The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published  
specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system. Check  
with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.  
Enhanced Intel SpeedStep® Technology for specified units of this processor is available. See the Processor Spec Finder at http://  
processorfinder.intel.com or contact your Intel representative for more information.  
Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor (VMM) and, for some  
uses, certain platform software enabled for it. Functionality, performance or other benefits will vary depending on hardware and software configurations  
and may require a BIOS update. Software applications may not be compatible with all operating systems. Please check with your application vendor.  
This device is protected by U.S. patent numbers 5,315,448 and 6,516,132, and other intellectual property rights. The use of Macrovision's copy  
protection technology in the device must be authorized by Macrovision and is intended for home and other limited pay-per-view uses only, unless  
otherwise authorized in writing by Macrovision. Reverse engineering or disassembly is prohibited.  
64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications  
enabled for Intel® 64 architecture. Processors will not operate (including 32-bit operation) without an Intel® 64 architecture-enabled BIOS.  
Performance will vary depending on your hardware and software configurations. Consult with your system vendor for more information.  
Intel, Pentium, Intel Core, Intel Core 2, Intel SpeedStep and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2008, Intel Corporation. All rights reserved.  
2
Datasheet  
Contents  
1
Introduction..............................................................................................................7  
1.1  
1.2  
Terminology .......................................................................................................8  
References .........................................................................................................9  
2
Low Power Features................................................................................................ 11  
2.1  
Clock Control and Low Power States .................................................................... 11  
2.1.1 Core Low-Power States ........................................................................... 12  
2.1.2 Package Low-Power States ...................................................................... 13  
Low-Power FSB Features.................................................................................... 15  
Processor Power Status Indicator (PSI#) Signal..................................................... 15  
2.2  
2.3  
3
Electrical Specifications........................................................................................... 17  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Power and Ground Pins ...................................................................................... 17  
FSB Clock (BCLK[1:0]) and Processor Clocking...................................................... 17  
Voltage Identification......................................................................................... 17  
Catastrophic Thermal Protection.......................................................................... 20  
Reserved and Unused Pins.................................................................................. 20  
FSB Frequency Select Signals (BSEL[2:0])............................................................ 21  
FSB Signal Groups............................................................................................. 21  
CMOS Signals ................................................................................................... 23  
Maximum Ratings.............................................................................................. 23  
3.10 Processor DC Specifications ................................................................................ 24  
4
5
Package Mechanical Specifications and Pin Information.......................................... 29  
4.1  
4.2  
4.3  
Package Mechanical Specifications....................................................................... 29  
Processor Pinout and Pin List .............................................................................. 33  
Alphabetical Signals Reference............................................................................ 53  
Thermal Specifications and Design Considerations .................................................. 61  
5.1  
Monitoring Die Temperature ............................................................................... 61  
5.1.1 Thermal Diode ....................................................................................... 62  
5.1.2 Thermal Diode Offset.............................................................................. 64  
5.1.3 Intel® Thermal Monitor........................................................................... 65  
5.1.4 Digital Thermal Sensor............................................................................ 66  
5.1.5 Out of Specification Detection .................................................................. 67  
5.1.6 PROCHOT# Signal Pin............................................................................. 67  
Datasheet  
3
Figures  
1
2
3
4
5
6
Package-Level Low-Power States................................................................................11  
Core Low-Power States .............................................................................................12  
4-MB and Fused 2-MB Micro-FCPGA Processor Package Drawing (Sheet 1 of 2).................30  
4-MB and Fused 2-MB Micro-FCPGA Processor Package Drawing (Sheet 2 of 2).................31  
2-MB Micro-FCPGA Processor Package Drawing (Sheet 1 of 2) ........................................32  
2-MB Micro-FCPGA Processor Package Drawing (Sheet 2 of 2) ........................................33  
Tables  
1
2
3
4
5
6
7
8
9
Coordination of Core-Level Low-Power States at the Package Level .................................11  
Voltage Identification Definition..................................................................................17  
BSEL[2:0] Encoding for BCLK Frequency......................................................................21  
FSB Pin Groups ........................................................................................................22  
Processor Absolute Maximum Ratings..........................................................................23  
DC Voltage and Current Specifications.........................................................................25  
FSB Differential BCLK Specifications............................................................................26  
AGTL+ Signal Group DC Specifications ........................................................................27  
CMOS Signal Group DC Specifications..........................................................................28  
10 Open Drain Signal Group DC Specifications ..................................................................28  
11 The Coordinates of the Processor Pins as Viewed from the Top of the Package  
(Sheet 1 of 2)..........................................................................................................34  
12 The Coordinates of the Processor Pins as Viewed from the Top of the Package  
(Sheet 2 of 2)..........................................................................................................35  
13 Pin Listing by Pin Name.............................................................................................37  
14 Pin Listing by Pin Number..........................................................................................44  
15 Signal Description.....................................................................................................53  
16 Power Specifications for the Intel Celeron Dual-Core Processor - Standard Voltage............61  
17 Thermal Diode Interface............................................................................................62  
18 Thermal Diode Parameters Using Diode Model..............................................................63  
19 Thermal Diode Parameters Using Transistor Model ........................................................64  
20 Thermal Diode ntrim and Diode Correction Toffset ........................................................65  
4
Datasheet  
Revision History  
Document  
Number  
Revision  
Number  
Description  
Date  
321111  
321111  
-001  
-002  
• Initial Release  
November 2008  
June 2009  
• Added T3000, T3100, T3300, and T3500 processors  
• Added specifications for SFF processor SU2300  
• Added C4 state support information for SU2300 SFF  
processor  
• Added Speedstep technology suppport information for  
SU2300 SFF processor  
• details:  
Chapter 1: updated feature list for SFF processor  
Section 2.1: added C4/deeper sleep state information  
Figure 1: updated C4/deeper sleep state information  
Figure 2: updated C4/deeper sleep state information  
Table 1: Added C4/deeper sleep state information  
321111  
-003  
September 2009  
• Section Section 2.1.1.6, Section 2.1.2.6: Added C4/deeper  
sleep state information  
Section 2.2: Added information on Intel speedstep  
technology description  
Table 8: added table for SU2300 processor DC specifications  
Table 25: added table for SU2300 thermal specifications  
Figure 7, Table 19, Table 20, Table 17, Table 23 added  
SU2300 pin and package information  
§
Datasheet  
5
6
Datasheet  
Introduction  
1 Introduction  
This document provides electrical, mechanical, and thermal specifications for the  
Intel® Celeron® Mobile Processor Dual-Core T1x00, Intel(R) Celeron Processors T3x00  
and Intel(R) Celeron Dual-core SFF Processors. The processor supports the Mobile  
Intel® 4 Series Express Chipset and Intel® 82801IBM (ICH9M) Controller-Hub Based  
Systems.  
Note:  
In this document, the Celeron processor is referred to as the processor and Mobile  
Intel® 4 Series Express Chipset family is referred to as the (G)MCH.  
The following list provides some of the key features on this processor:  
• Dual-Core processor for mobile with enhanced performance  
• Intel architecture with Intel® Wide Dynamic Execution  
• L1 Cache to Cache (C2C) transfer  
• On-die, primary 32-KB instruction cache and 32-KB write-back data cache in each  
core  
• On-die, 1-MB second level shared cache with advanced transfer cache architecture  
• Streaming SIMD Extensions 2 (SSE2), Streaming SIMD Extensions 3 (SSE3) and  
Supplemental Streaming SIMD Extensions 3 (SSSE3)  
• 667-MHz Source-Synchronous Front Side Bus (FSB) for the T1x00 Series, and 800-  
MHz Source-Synchronous Front Side Bus (FSB) for the T3x00 Series processors  
and SFF processors  
• Digital Thermal Sensor (DTS)  
• Intel® 64 Technology  
• PSI2 functionality  
• Execute Disable Bit support for enhanced security  
• Half ratio support (N/2) for Core to Bus ratio  
• Supports enhanced Intel® Virtualization Technology (SFF processor only)  
• Intel® Deeper Sleep low-power state with P_LVL4 I/O Support (SFF processor  
only)  
• Advanced power management feature includes Enhanced Intel SpeedStep®  
Technology (SFF processor only)  
Datasheet  
7
Introduction  
1.1  
Terminology  
Term  
Definition  
A “#” symbol after a signal name refers to an active low signal, indicating a  
signal is in the active state when driven to a low level. For example, when  
RESET# is low, a reset has been requested. Conversely, when NMI is high,  
a nonmaskable interrupt has occurred. In the case of signals where the  
name does not imply an active state but describes part of a binary  
sequence (such as address or data), the “#” symbol implies that the signal  
is inverted. For example, D[3:0] = “HLHL” refers to a hex ‘A’, and D[3:0]#  
= “LHLH” also refers to a hex “A” (H= High logic level, L= Low logic level).  
XXXX means that the specification or value is yet to be determined.  
#
Front Side Bus  
(FSB)  
Refers to the interface between the processor and system core logic (also  
known as the chipset components).  
Advanced Gunning Transceiver Logic. Used to refer to Assisted GTL+  
signaling technology on some Intel processors.  
AGTL+  
Refers to a non-operational state. The processor may be installed in a  
platform, in a tray, or loose. Processors may be sealed in packaging or  
exposed to free air. Under these conditions, processor landings should not  
be connected to any supply voltages, have any I/Os biased or receive any  
clocks. Upon exposure to “free air” (i.e., unsealed packaging or a device  
removed from packaging material) the processor must be handled in  
accordance with moisture sensitivity labeling (MSL) as indicated on the  
packaging material.  
Storage  
Conditions  
Enhanced Intel  
SpeedStep®  
Technology  
Technology that provides power management capabilities to laptops.  
Processor core die with integrated L1 and L2 cache. All AC timing and  
signal integrity specifications are at the pads of the processor core.  
Processor Core  
Intel® 64  
Technology  
64-bit memory extensions to the IA-32 architecture.  
Intel®  
Virtualization  
Technology  
Processor virtualization which when used in conjunction with Virtual  
Machine Monitor software enables multiple, robust independent software  
environments inside a single platform.  
TDP  
VCC  
VSS  
Thermal Design Power  
The processor core power supply  
The processor ground  
8
Datasheet  
Introduction  
1.2  
References  
Material and concepts available in the following documents may be beneficial when  
reading this document.  
Document  
Document Number  
See http://  
www.intel.com/design/  
mobile/specupdt/  
319734.htm  
Intel® Celeron® Dual-Core T1x00 Processors Specification Update  
for Platforms Based on Mobile Intel® 4 Series Express Chipset Family  
Mobile Intel® 4 Series Express Chipset Family Datasheet  
355969  
320123  
Mobile Intel® 4 Series Express Chipset Family Specification Update  
See http://  
www.intel.com/Assets/  
PDF/datasheet/  
316972.pdf  
Intel® I/O Controller Hub 9(ICH9)/ I/O Controller Hub 9M (ICH9M)  
Datasheet  
See http://  
www.intel.com/Assets/  
PDF/specupdate/  
316973.pdf  
Intel® I/O Controller Hub 8 (ICH8)/ I/O Controller Hub 8M (ICH8M)  
Specification Update  
See http://  
www.intel.com/design/  
pentium4/manuals/  
index_new.htm  
Intel® 64 and IA-32 Architectures Software Developer’s Manual  
See http://  
Intel® 64 and IA-32 Architectures Software Developer's Manuals  
Documentation Change  
developer.intel.com/  
design/processor/  
specupdt/252046.htm  
Volume 1: Basic Architecture  
253665  
253666  
253667  
253668  
253669  
Volume 2A: Instruction Set Reference, A-M  
Volume 2B: Instruction Set Reference, N-Z  
Volume 3A: System Programming Guide  
Volume 3B: System Programming Guide  
Datasheet  
9
Introduction  
10  
Datasheet  
Low Power Features  
2 Low Power Features  
2.1  
Clock Control and Low Power States  
The processor supports the C1/AutoHALT, C1/MWAIT, C2, C3 and some support the C4  
core low-power states, along with their corresponding package-level states for power  
management. See Chapter 3 to see if C4 is supported. These package states include  
Normal, Stop Grant, Stop Grant Snoop, Sleep, and Deep Sleep. The processor’s central  
power management logic enters a package low-power state by initiating a P_LVLx  
(P_LVL2, P_LVL3, P_LVL4) I/O read to the (G)MCH. Figure 1 shows the package-level  
low-power states and Figure 2 shows the core low-power states. Refer to Table 1 for a  
mapping of core low-power states to package low-power states.  
The processor implements two software interfaces for requesting low-power states:  
MWAIT instruction extensions with sub-state hints and P_LVLx reads to the ACPI P_BLK  
register block mapped in the processor’s I/O address space. The P_LVLx I/O reads are  
converted to equivalent MWAIT C-state requests inside the processor and do not  
directly result in I/O reads on the processor FSB. The monitor address does not need to  
be setup before using the P_LVLx I/O read interface. The sub-state hints used for each  
P_LVLx read can be configured through the IA32_MISC_ENABLES Model Specific  
Register (MSR).  
If the processor encounters a chipset break event while STPCLK# is asserted, it asserts  
the PBE# output signal. Assertion of PBE# when STPCLK# is asserted indicates to  
system logic that the processor should return to the Normal state.  
Table 1.  
Coordination of Core-Level Low-Power States at the Package Level  
Core States  
Package States  
C0  
C1(1)  
C2  
Normal  
Normal  
Stop Grant  
Deep Sleep  
Deeper Sleep  
C3  
C4  
NOTE: AutoHALT or MWAIT/C1  
Figure 1.  
Package-Level Low-Power States  
SLP# asserted  
DPSLP# asserted  
DPRSTP# asserted  
STPCLK# asserted  
Stop  
Grant  
Deep  
Sleep  
Deeper  
Sleep†  
Normal  
Sleep  
STPCLK# deasserted  
SLP# deasserted  
DPSLP# deasserted  
DPRSTP# deasserted  
Snoop Snoop  
serviced occurs  
Stop Grant  
Snoop  
† — Deeper Sleep includes the Deeper Sleep state and Deep C4 sub-state  
Datasheet  
11  
Low Power Features  
Figure 2.  
Core Low-Power States  
Stop  
Grant  
STPCLK#  
asserted  
STPCLK#  
deasserted  
STPCLK#  
deasserted  
STPCLK#  
asserted  
STPCLK#  
deasserted  
STPCLK#  
asserted  
C1/Auto  
Halt  
C1/MWAIT  
Core state  
break  
HLT instruction  
MWAIT(C1)  
Halt break  
C0  
P_LVL2 or  
MWAIT(C2)  
Core State  
break  
Core state  
break  
P_LVL3 or  
C2†  
P_LVL4  
MWAIT(C4)  
Core  
state  
MWAIT(C3)  
C4† ‡  
break  
C3†  
break = A20M# transition, INIT#, INTR, NMI, PREQ#, RESET#, SMI#, or APIC interrupt  
e state break = (halt break OR Monitor event) AND STPCLK# high (not asserted)  
STPCLK# assertion and de-assertion have no effect if a core is in C2, C3, or C4.  
Core C4 state supports the package level Deep C4 sub-state.  
2.1.1  
Core Low-Power States  
2.1.1.1  
C0 State  
This is the normal operating state of the processor.  
2.1.1.2  
C1/AutoHALT Powerdown State  
C1/AutoHALT is a low-power state entered when the processor core executes the HALT  
instruction. The processor core transitions to the C0 state upon the occurrence of  
SMI#, INIT#, LINT[1:0] (NMI, INTR), or FSB interrupt message. RESET# causes the  
processor to immediately initialize itself.  
A System Management Interrupt (SMI) A System Management Interrupt (SMI) handler  
returns execution to either Normal state or the C1/AutoHALT Powerdown state. See the  
Intel® 64 and IA-32 Intel® Architecture Software Developer's Manual, Volume 3A/3B:  
System Programmer's Guide for more information.  
The system can generate a STPCLK# while the processor is in the C1/AutoHALT  
Powerdown state. When the system deasserts the STPCLK# interrupt, the processor  
returns execution to the HALT state.  
The processor in C1/AutoHALT powerdown state process only the bus snoops. The  
processor enters a snoopable sub-state (not shown in Figure 2) to process the snoop  
and then return to the C1/AutoHALT Powerdown state.  
12  
Datasheet  
Low Power Features  
2.1.1.3  
2.1.1.4  
C1/MWAIT Powerdown State  
C1/MWAIT is a low-power state entered when the processor core executes the MWAIT  
instruction. Processor behavior in the C1/MWAIT state is identical to the C1/AutoHALT  
state except that there is an additional event that can cause the processor core to  
return to the C0 state: the Monitor event. See the Intel® 64 and IA-32 Intel®  
Architecture Software Developer's Manual, Volume 2A/2B: Instruction Set Reference  
for more information.  
Core C2 State  
The core of the processor can enter the C2 state by initiating a P_LVL2 I/O read to the  
P_BLK or an MWAIT(C2) instruction, but the processor does not issue a Stop Grant  
Acknowledge special bus cycle unless the STPCLK# pin is also asserted.  
The processor in C2 state processes only the bus snoops. The processor enters a  
snoopable sub-state (not shown in Figure 2) to process the snoop and then return to  
the C2 state.  
2.1.1.5  
Core C3 State  
Core C3 state is a very low-power state the processor core can enter while maintaining  
context. The core of the processor can enter the C3 state by initiating a P_LVL3 I/O  
read to the P_BLK or an MWAIT(C3) instruction. Before entering the C3 state, the  
processor core flushes the contents of its L1 cache into the processor’s L2 cache.  
Except for the caches, the processor core maintains all its architectural state in the C3  
state. The Monitor remains armed if it is configured. All of the clocks in the processor  
core are stopped in the C3 state.  
Because the core’s caches are flushed, the processor keeps the core in the C3 state  
when the processor detects a snoop on the FSB. The processor core transitions to the  
C0 state upon the occurrence of a Monitor event, SMI#, INIT#, LINT[1:0] (NMI, INTR),  
or FSB interrupt message. RESET# causes the processor core to immediately initialize  
itself.  
2.1.1.6  
Core C4 State  
Individual cores of the dual-core processor that have C4 can enter the C4 state by  
initiating a P_LVL4 I/O read to the P_BLK or an MWAIT(C4) instruction. The processor  
core behavior in the C4 state is nearly identical to the behavior in the C3 state. The  
only difference is that if both processor cores are in C4, the central power management  
logic will request that the entire processor enter the Deeper Sleep package low-power  
state (see Section 2.1.2.6)  
2.1.2  
Package Low-Power States  
Package level low-power states are applicable to the processor.  
2.1.2.1  
Normal State  
This is the normal operating state for the processor. The processor enters the Normal  
state when the core is in the C0, C1/AutoHALT, or C1/MWAIT state.  
2.1.2.2  
Stop-Grant State  
When the STPCLK# pin is asserted the core of the processor enters the Stop-Grant  
state within 20 bus clocks after the response phase of the processor-issued Stop Grant  
Acknowledge special bus cycle. When the STPCLK# pin is deasserted the core returns  
to the previous core low-power state.  
Datasheet  
13  
Low Power Features  
Since the AGTL+ signal pins receive power from the FSB, these pins should not be  
driven (allowing the level to return to VCCP) for minimum power drawn by the  
termination resistors in this state. In addition, all other input pins on the FSB should be  
driven to the inactive state.  
RESET# causes the processor to immediately initialize itself, but the processor stays in  
Stop-Grant state. When RESET# is asserted by the system the STPCLK#, SLP#, and  
DPSLP# pins must be deasserted more than 480 µs prior to RESET# deassertion (AC  
Specification T45). When re-entering the Stop-Grant state from the Sleep state,  
STPCLK# should be deasserted ten or more bus clocks after the deassertion of SLP#  
(AC Specification T75).  
While in the Stop-Grant state, the processor services snoops and latch interrupts  
delivered on the FSB. The processor latches SMI#, INIT# and LINT[1:0] interrupts and  
services only upon return to the Normal state.  
The PBE# signal may be driven when the processor is in Stop-Grant state. PBE# is  
asserted if there is any pending interrupt or monitor event latched within the processor.  
Pending interrupts that are blocked by the EFLAGS.IF bit being clear still cause  
assertion of PBE#. Assertion of PBE# indicates to system logic that the processor  
should return to the Normal state.  
A transition to the Stop Grant Snoop state occurs when the processor detects a snoop  
on the FSB (see Section 2.1.2.3). A transition to the Sleep state (see Section 2.1.2.4)  
occurs with the assertion of the SLP# signal.  
2.1.2.3  
2.1.2.4  
Stop Grant Snoop State  
The processor responds to snoop or interrupt transactions on the FSB while in Stop-  
Grant state by entering the Stop-Grant Snoop state. The processor stays in this state  
until the snoop on the FSB has been serviced (whether by the processor or another  
agent on the FSB) or the interrupt has been latched. The processor returns to the Stop-  
Grant state once the snoop has been serviced or the interrupt has been latched.  
Sleep State  
The Sleep state is a low-power state in which the processor maintains its context,  
maintains the phase-locked loop (PLL), and stops all internal clocks. The Sleep state is  
entered through assertion of the SLP# signal while in the Stop-Grant state. The SLP#  
pin should only be asserted when the processor is in the Stop-Grant state. SLP#  
assertions while the processor is not in the Stop-Grant state is out of specification and  
may result in unapproved operation.  
In the Sleep state, the processor is incapable of responding to snoop transactions or  
latching interrupt signals. No transitions or assertions of signals (with the exception of  
SLP#, DPSLP# or RESET#) are allowed on the FSB while the processor is in Sleep  
state. Snoop events that occur while in Sleep state or during a transition into or out of  
Sleep state causes unpredictable behavior. Any transition on an input signal before the  
processor has returned to the Stop-Grant state results in unpredictable behavior.  
If RESET# is driven active while the processor is in the Sleep state, and held active as  
specified in the RESET# pin specification, then the processor resets itself, ignoring the  
transition through Stop-Grant state. If RESET# is driven active while the processor is in  
the Sleep state, the SLP# and STPCLK# signals should be deasserted immediately after  
RESET# is asserted to ensure the processor correctly executes the Reset sequence.  
While in the Sleep state, the processor is capable of entering an even lower power  
state, the Deep Sleep state, by asserting the DPSLP# pin. (See Section 2.1.2.5.) While  
the processor is in the Sleep state, the SLP# pin must be deasserted if another  
asynchronous FSB event needs to occur.  
14  
Datasheet  
Low Power Features  
2.1.2.5  
Deep Sleep State  
Deep Sleep state is a very low-power state the processor can enter while maintaining  
context. Deep Sleep state is entered by asserting the DPSLP# pin while in the Sleep  
state. BCLK may be stopped during the Deep Sleep state for additional platform level  
power savings. BCLK stop/restart timings on appropriate chipset based platforms with  
the CK505 clock chip are as follows:  
• Deep Sleep entry: the system clock chip may stop/tristate BCLK within 2 BCLKs of  
DPSLP# assertion. It is permissible to leave BCLK running during Deep Sleep.  
• Deep Sleep exit: the system clock chip must drive BCLK to differential DC levels  
within 2-3 ns of DPSLP# deassertion and start toggling BCLK within 10 BCLK  
periods.  
To re-enter the Sleep state, the DPSLP# pin must be deasserted. BCLK can be re-  
started after DPSLP# deassertion as described above. A period of 15 microseconds (to  
allow for PLL stabilization) must occur before the processor can be considered to be in  
the Sleep state. Once in the Sleep state, the SLP# pin must be deasserted to re-enter  
the Stop-Grant state.  
While in Deep Sleep state, the processor is incapable of responding to snoop  
transactions or latching interrupt signals. No transitions of signals are allowed on the  
FSB while the processor is in Deep Sleep state. Any transition on an input signal before  
the processor has returned to Stop-Grant state results in unpredictable behavior.  
2.1.2.6  
Deeper Sleep State  
The Deeper Sleep state is similar to the Deep Sleep state but further reduces core  
voltage levels. One of the potential lower core voltage levels is achieved by entering the  
base Deeper Sleep state. The Deeper Sleep state is entered through assertion of the  
DPRSTP# pin while in the Deep Sleep state. The following lower core voltage level is  
achieved by entering the Intel Enhanced Deeper Sleep state which is a sub-state of  
Deeper Sleep state. Intel Enhanced Deeper Sleep state is entered through assertion of  
the DPRSTP# pin while in the Deep Sleep only when the L2 cache has been completely  
shut down.  
Exit from Deeper Sleep is initiated by DPRSTP# deassertion when either core requests  
a core state other than C4 or either core requests a processor performance state other  
than the lowest operating point.  
2.2  
Enhanced Intel SpeedStep® Technology  
Some processors feature Enhanced Intel SpeedStep Technology. See each processor’s  
DCL to see if it supports Enhanced Intel SpeedStep Technology. Following are the key  
features of Enhanced Intel SpeedStep Technology:  
• Multiple voltage and frequency operating points provide optimal performance at the  
lowest power.  
• Voltage and frequency selection is software-controlled by writing to processor  
MSRs:  
— If the target frequency is higher than the current frequency, VCC is ramped up  
in steps by placing new values on the VID pins, and the PLL then locks to the  
new frequency.  
— If the target frequency is lower than the current frequency, the PLL locks to the  
new frequency and the VCC is changed through the VID pin mechanism.  
— Software transitions are accepted at any time. If a previous transition is in  
progress, the new transition is deferred until the previous transition completes.  
Datasheet  
15  
Low Power Features  
• The processor controls voltage ramp rates internally to ensure glitch-free  
transitions.  
• Low transition latency and large number of transitions possible per second:  
— Processor core (including L2 cache) is unavailable for up to 10 μs during the  
frequency transition.  
— The bus protocol (BNR# mechanism) is used to block snooping.  
• Improved Intel® Thermal Monitor mode:  
— When the on-die thermal sensor indicates that the die temperature is too high  
the processor can automatically perform a transition to a lower frequency and  
voltage specified in a software-programmable MSR.  
— The processor waits for a fixed time period. If the die temperature is down to  
acceptable levels, an up-transition to the previous frequency and voltage point  
occurs.  
— An interrupt is generated for the up and down Intel Thermal Monitor transitions  
enabling better system-level thermal management.  
• Enhanced thermal management features:  
— Digital Thermal Sensor and Out of Specification detection.  
— Intel Thermal Monitor 1 (TM1) in addition to Intel Thermal Monitor 2 (TM2) in  
case of unsuccessful TM2 transition.  
— Dual core thermal management synchronization.  
Each core in the dual-core processor implements an independent MSR for controlling  
Enhanced Intel SpeedStep Technology, but both cores must operate at the same  
frequency and voltage. The processor has performance state coordination logic to  
resolve frequency and voltage requests from the two cores into a single frequency and  
voltage request for the package as a whole. If both cores request the same frequency  
and voltage, then the processor will transition to the requested common frequency and  
voltage. If the two cores have different frequency and voltage requests, then the  
processor will take the highest of the two frequencies and voltages as the resolved  
request and transition to that frequency and voltage.  
Caution:  
Enhanced Intel SpeedStep Technology transitions are multistep processes  
that require clocked control. These transitions cannot occur when the processor is in  
the Sleep or Deep Sleep package low-power states since processor clocks are not  
active in these states.  
2.3  
Low-Power FSB Features  
The processor incorporates FSB low-power enhancements:  
• Dynamic On Die Termination disabling  
• Low VCCP (I/O termination voltage)  
The On Die Termination on the processor FSB buffers is disabled when the signals are  
driven low, resulting in power savings. The low I/O termination voltage is on a  
dedicated voltage plane independent of the core voltage, enabling low I/O switching  
power at all times.  
16  
Datasheet  
Low Power Features  
2.4  
Processor Power Status Indicator (PSI#) Signal  
The PSI# signal is asserted when the processor is in a reduced power consumption  
state. PSI# can be used to improve light load efficiency of the voltage regulator,  
resulting in platform power savings and extended battery life. The algorithm that the  
processor uses for determining when to assert PSI# is different from the algorithm  
used in previous processors.  
Datasheet  
17  
Low Power Features  
18  
Datasheet  
Electrical Specifications  
3 Electrical Specifications  
3.1  
Power and Ground Pins  
For clean, on-chip power distribution, the processor has a large number of VCC (power)  
and VSS (ground) inputs. All power pins must be connected to VCC power planes while  
all VSS pins must be connected to system ground planes. Use of multiple power and  
ground planes is recommended to reduce I*R drop. The processor VCC pins must be  
supplied the voltage determined by the VID (Voltage ID) pins.  
3.2  
FSB Clock (BCLK[1:0]) and Processor Clocking  
BCLK[1:0] directly controls the FSB interface speed as well as the core frequency of the  
processor. As in previous generation processors, the processor core frequency is a  
multiple of the BCLK[1:0] frequency. The processor uses a differential clocking  
implementation.  
3.3  
Voltage Identification  
The processor uses seven voltage identification pins,VID[6:0], to support automatic  
selection of power supply voltages. The VID pins for processor are CMOS outputs  
driven by the processor VID circuitry. Table 2 specifies the voltage level corresponding  
to the state of VID[6:0]. A 1 refers to a high-voltage level and a 0 refers to low-voltage  
level.  
Table 2.  
Voltage Identification Definition (Sheet 1 of 4)  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
VCC (V)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.5000  
1.4875  
1.4750  
1.4625  
1.4500  
1.4375  
1.4250  
1.4125  
1.4000  
1.3875  
1.3750  
1.3625  
1.3500  
1.3375  
1.3250  
1.3125  
1.3000  
1.2875  
1.2750  
1.2625  
1.2500  
1.2375  
Datasheet  
19  
Electrical Specifications  
Table 2.  
Voltage Identification Definition (Sheet 2 of 4)  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
VCC (V)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1.2250  
1.2125  
1.2000  
1.1875  
1.1750  
1.1625  
1.1500  
1.1375  
1.1250  
1.1125  
1.1000  
1.0875  
1.0750  
1.0625  
1.0500  
1.0375  
1.0250  
1.0125  
1.0000  
0.9875  
0.9750  
0.9625  
0.9500  
0.9375  
0.9250  
0.9125  
0.9000  
0.8875  
0.8750  
0.8625  
0.8500  
0.8375  
0.8250  
0.8125  
0.8000  
0.7875  
0.7750  
0.7625  
0.7500  
0.7375  
0.7250  
0.7125  
0.7000  
0.6875  
0.6750  
0.6625  
0.6500  
20  
Datasheet  
Electrical Specifications  
Table 2.  
Voltage Identification Definition (Sheet 3 of 4)  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
VCC (V)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.6375  
0.6250  
0.6125  
0.6000  
0.5875  
0.5750  
0.5625  
0.5500  
0.5375  
0.5250  
0.5125  
0.5000  
0.4875  
0.4750  
0.4625  
0.4500  
0.4375  
0.4250  
0.4125  
0.4000  
0.3875  
0.3750  
0.3625  
0.3500  
0.3375  
0.3250  
0.3125  
0.3000  
0.2875  
0.2750  
0.2625  
0.2500  
0.2375  
0.2250  
0.2125  
0.2000  
0.1875  
0.1750  
0.1625  
0.1500  
0.1375  
0.1250  
0.1125  
0.1000  
0.0875  
0.0750  
0.0625  
Datasheet  
21  
Electrical Specifications  
Table 2.  
Voltage Identification Definition (Sheet 4 of 4)  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
VCC (V)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0.0500  
0.0375  
0.0250  
0.0125  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
3.4  
3.5  
Catastrophic Thermal Protection  
The processor supports the THERMTRIP# signal for catastrophic thermal protection. An  
external thermal sensor should also be used to protect the processor and the system  
against excessive temperatures. Even with the activation of THERMTRIP#, which halts  
all processor internal clocks and activity, leakage current can be high enough that the  
processor cannot be protected in all conditions without power removal to the processor.  
If the external thermal sensor detects a catastrophic processor temperature of 125 °C  
(maximum), or if the THERMTRIP# signal is asserted, the VCC supply to the processor  
must be turned off within 500 ms to prevent permanent silicon damage due to thermal  
runaway of the processor. THERMTRIP# functionality is not guaranteed if the  
PWRGOOD signal is not asserted.  
Reserved and Unused Pins  
All RESERVED (RSVD) pins must remain unconnected. Connection of these pins to VCC  
,
VSS, or to any other signal (including each other) may result in component malfunction  
or incompatibility with future processors. See Section 4.2 for a pin listing of the  
processor and the location of all RSVD pins.  
For reliable operation, always connect unused inputs or bidirectional signals to an  
appropriate signal level. Unused active low AGTL+ inputs may be left as no connects if  
AGTL+ termination is provided on the processor silicon. Unused active high inputs  
should be connected through a resistor to ground (VSS). Unused outputs can be left  
unconnected.  
The TEST1 and TEST2 pins must have a stuffing option of separate pull-down resistors  
to VSS.  
For the purpose of testability, route the TEST3 and TEST5 signals through a ground-  
referenced Zo = 55-Ω trace that ends in a via that is near a GND via and is accessible  
through an oscilloscope connection.  
22  
Datasheet  
Electrical Specifications  
3.6  
FSB Frequency Select Signals (BSEL[2:0])  
The BSEL[2:0] signals are used to select the frequency of the processor input clock  
(BCLK[1:0]). These signals should be connected to the clock chip and the appropriate  
chipset on the platform. The BSEL encoding for BCLK[1:0] is shown in Table 3.  
Table 3.  
BSEL[2:0] Encoding for BCLK Frequency  
BSEL[2]  
BSEL[1] BSEL[0]  
BCLK Frequency  
L
L
L
L
L
H
H
L
RESERVED  
133 MHz  
L
H
H
H
H
L
RESERVED  
200 MHz  
L
H
H
H
H
L
RESERVED  
RESERVED  
RESERVED  
RESERVED  
H
H
L
L
3.7  
FSB Signal Groups  
The FSB signals have been combined into groups by buffer type in the following  
sections. AGTL+ input signals have differential input buffers, which use GTLREF as a  
reference level. In this document, the term “AGTL+ Input” refers to the AGTL+ input  
group as well as the AGTL+ I/O group when receiving. Similarly, “AGTL+ Output” refers  
to the AGTL+ output group as well as the AGTL+ I/O group when driving.  
With the implementation of a source synchronous data bus, two sets of timing  
parameters need to be specified. One set is for common clock signals, which are  
dependent upon the rising edge of BCLK0 (ADS#, HIT#, HITM#, etc.) and the second  
set is for the source synchronous signals, which are relative to their respective strobe  
lines (data and address) as well as the rising edge of BCLK0. Asychronous signals are  
still present (A20M#, IGNNE#, etc.) and can become active at any time during the  
clock cycle. Table 4 identifies which signals are common clock, source synchronous,  
and asynchronous.  
Datasheet  
23  
Electrical Specifications  
Table 4.  
FSB Pin Groups  
Signal Group  
Type  
Signals1  
Synchronous  
to BCLK[1:0]  
AGTL+ Common Clock Input  
AGTL+ Common Clock I/O  
BPRI#, DEFER#, PREQ#5, RESET#, RS[2:0]#, TRDY#  
Synchronous  
to BCLK[1:0]  
ADS#, BNR#, BPM[3:0]#3, BR0#, DBSY#, DRDY#, HIT#,  
HITM#, LOCK#, PRDY#3, DPWR#  
Signals  
Associated Strobe  
REQ[4:0]#,  
A[16:3]#  
ADSTB[0]#  
ADSTB[1]#  
A[35:17]#  
Synchronous  
to assoc.  
strobe  
D[15:0]#,  
DINV0#  
DSTBP0#,  
DSTBN0#  
AGTL+ Source Synchronous  
I/O  
D[31:16]#,  
DINV1#  
DSTBP1#,  
DSTBN1#  
D[47:32]#,  
DINV2#  
DSTBP2#,  
DSTBN2#  
D[63:48]#,  
DINV3#  
DSTBP3#,  
DSTBN3#  
Synchronous  
to BCLK[1:0]  
AGTL+ Strobes  
CMOS Input  
ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#  
A20M#, DPRSTP#, DPSLP#, IGNNE#, INIT#, LINT0/INTR,  
LINT1/NMI, PWRGOOD, SMI#, SLP#, STPCLK#  
Asynchronous  
Open Drain Output  
Open Drain I/O  
CMOS Output  
Asynchronous FERR#, IERR#, THERMTRIP#  
Asynchronous PROCHOT#4  
Asynchronous PSI#, VID[6:0], BSEL[2:0]  
Synchronous  
TCK, TDI, TMS, TRST#  
to TCK  
CMOS Input  
Synchronous  
TDO  
Open Drain Output  
FSB Clock  
to TCK  
Clock  
BCLK[1:0]  
COMP[3:0], DBR#2, GTLREF, RSVD, TEST2, TEST1, THERMDA,  
THERMDC, VCC, VCCA, VCCP, VCC_SENSE, VSS, VSS_SENSE  
Power/Other  
NOTES:  
1.  
2.  
Refer to Chapter 4 for signal descriptions and termination requirements.  
In processor systems where there is no debug port implemented on the system board, these signals are  
used to support a debug port interposer. In systems with the debug port implemented on the system  
board, these signals are no connects.  
3.  
4.  
5.  
BPM[2:1]# and PRDY# are AGTL+ output only signals.  
PROCHOT# signal type is open drain output and CMOS input.  
On die termination differs from other AGTL+ signals.  
24  
Datasheet  
Electrical Specifications  
3.8  
CMOS Signals  
CMOS input signals are shown in Table 4. Legacy output FERR#, IERR# and other non-  
AGTL+ signals (THERMTRIP# and PROCHOT#) utilize Open Drain output buffers. These  
signals do not have setup or hold time specifications in relation to BCLK[1:0]. However,  
all of the CMOS signals are required to be asserted for more than four BCLKs in order  
for the processor to recognize them. See Section 3.10 for the DC specifications for the  
CMOS signal groups.  
3.9  
Maximum Ratings  
Table 5 specifies absolute maximum and minimum ratings. If the processor stays within  
functional operation limits, functionality and long-term reliability can be expected.  
Caution:  
At conditions outside functional operation condition limits, but within absolute  
maximum and minimum ratings, neither functionality nor long term reliability can be  
expected. At conditions exceeding absolute maximum and minimum ratings, neither  
functionality nor long term reliability can be expected.  
Caution:  
Precautions should always be taken to avoid high-static voltages or electric fields.  
Table 5.  
Processor Absolute Maximum Ratings  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes1  
Processor storage  
temperature  
TSTORAGE  
-40  
85  
°C  
2, 3, 4  
Any processor supply voltage  
with respect to VSS  
VCC  
-0.3  
-0.1  
-0.1  
1.55  
1.55  
1.55  
V
V
V
AGTL+ buffer DC input  
voltage with respect to VSS  
VinAGTL+  
VinAsynch_CMOS  
NOTES:  
CMOS buffer DC input  
voltage with respect to VSS  
1.  
For functional operation, all processor electrical, signal quality, mechanical and thermal  
specifications must be satisfied.  
2.  
Storage temperature is applicable to storage conditions only. In this scenario, the  
processor must not receive a clock, and no lands can be connected to a voltage bias.  
Storage within these limits does not affect the long term reliability of the device. For  
functional operation, please refer to the processor case temperature specifications.  
This rating applies to the processor and does not include any tray or packaging.  
Failure to adhere to this specification can affect the long-term reliability of the processor.  
3.  
4.  
Datasheet  
25  
Electrical Specifications  
3.10  
Processor DC Specifications  
The processor DC specifications in this section are defined at the processor  
core (pads) unless noted otherwise. See Table 4 for the pin signal definitions and  
signal pin assignments.  
Table 7 through Table 10 list the DC specifications for the processor and are valid only  
while meeting specifications for junction temperature, clock frequency, and input  
voltages. The Highest Frequency Mode (HFM) and Super Low Frequency Mode  
(SuperLFM) refer to the highest and lowest core operating frequencies supported on  
the processor. Active mode load line specifications apply in all states except in the Deep  
Sleep and Deeper Sleep states. VCC,BOOT is the default voltage driven by the voltage  
regulator at power up in order to set the VID values. Unless specified otherwise, all  
specifications for the processor are at Tjunction = 100 °C. Care should be taken to read  
all notes associated with each parameter.  
26  
Datasheet  
Electrical Specifications  
Table 6.  
Symbol  
DC Voltage and Current Specifications for the T3x00 Celeron Processors  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VCC  
VCC of the Processor Core  
Default VCC Voltage for Initial Power Up  
AGTL+ Termination Voltage  
PLL Supply Voltage  
0.8  
1.25  
V
V
V
V
1, 2  
2, 8  
VCC,BOOT  
VCCP  
1.20  
1.05  
1.5  
1.00  
1.10  
VCCA  
1.425  
1.575  
ICC for processors  
ICCDES  
47  
A
A
5
Recommended Design Targets:  
ICC for processors  
Processor  
ICC  
Frequency  
Die Variant  
Number  
T3000  
T3100  
1.8 GHz  
1.9 GHz  
1 MB  
1 MB  
47  
47  
A
A
3, 4  
3, 4  
IAH  
ISGNT  
ISLP  
,
ICC Auto-Halt & Stop-Grant  
25.4  
A
3, 4  
ICC Sleep  
24.7  
22.9  
A
A
3, 4  
3, 4  
IDSLP  
ICC Deep Sleep  
VCC Power Supply Current Slew Rate at  
CPU Package Pin  
dICC/DT  
ICCA  
600  
130  
A/µs  
mA  
6, 7  
ICC for VCCA Supply  
ICC for VCCP Supply before VCC Stable  
ICC for VCCP Supply after VCC Stable  
4.5  
2.5  
A
A
9
ICCP  
10  
NOTES:  
1.  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing  
in such a way that two processors at the same frequency may have different settings within the VID range.  
Note that this differs from the VID employed by the processor during a power management event (Intel  
Thermal Monitor 2, or Extended Halt State).  
2.  
The voltage specifications are assumed to be measured across VCC_SENSE and VSS_SENSE pins at socket with  
a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-mΩ minimum impedance.  
The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from  
the system is not coupled in the scope probe.  
3.  
4.  
5.  
6.  
Specified at 105 °C Tj.  
Specified at the nominal VCC  
800-MHz FSB supported  
Instantaneous current ICC_CORE_INST of 55 A has to be sustained for short time (tINST) of 10 µs. Average  
current is less than maximum specified ICCDES. VR OCP threshold should be high enough to support current  
levels described herein.  
.
7.  
8.  
Measured at the bulk capacitors on the motherboard.  
Based on simulations and averaged over the duration of any change in current. Specified by design/  
characterization at nominal VCC. Not 100% tested.  
9.  
10.  
This is a power-up peak current specification, which is applicable when VCCP is high and VCC_CORE is low.  
This is a steady-state ICC current specification, which is applicable when both VCCP and VCC_CORE are high.  
1-MB L2 cache.  
Datasheet  
27  
Electrical Specifications  
Table 7.  
Symbol  
DC Voltage and Current Specifications for the T1x00 Celeron Mobile  
Processors  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VCC  
VCC of the Processor Core  
Default VCC Voltage for Initial Power Up  
AGTL+ Termination Voltage  
PLL Supply Voltage  
0.95  
1.15  
1.20  
1.05  
1.5  
1.30  
V
V
V
V
1, 2  
2, 8  
VCC,BOOT  
VCCP  
1.00  
1.10  
VCCA  
1.425  
1.575  
ICC for processors  
ICCDES  
36  
A
A
5
Recommended Design Targets:  
ICC for processors  
Processor  
ICC  
Frequency  
Die Variant  
Number  
T1600  
T1700  
1.66 GHz  
1.83 GHz  
1 MB  
1 MB  
41  
41  
A
A
3, 4  
3, 4  
IAH  
ISGNT  
ISLP  
,
ICC Auto-Halt & Stop-Grant  
ICC Sleep  
21  
A
3, 4  
20.5  
18.6  
A
A
3, 4  
3, 4  
IDSLP  
ICC Deep Sleep  
VCC Power Supply Current Slew Rate at  
CPU Package Pin  
dICC/DT  
ICCA  
600  
130  
A/µs  
mA  
6, 7  
ICC for VCCA Supply  
ICC for VCCP Supply before VCC Stable  
ICC for VCCP Supply after VCC Stable  
4.5  
2.5  
A
A
9
ICCP  
10  
NOTES:  
1.  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing  
in such a way that two processors at the same frequency may have different settings within the VID range.  
Note that this differs from the VID employed by the processor during a power management event (Intel  
Thermal Monitor 2, or Extended Halt State).  
2.  
The voltage specifications are assumed to be measured across VCC_SENSE and VSS_SENSE pins at socket with  
a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-mΩ minimum impedance.  
The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from  
the system is not coupled in the scope probe.  
3.  
4.  
5.  
6.  
Specified at 100 °C Tj.  
Specified at the nominal VCC  
667-MHz FSB supported  
Instantaneous current ICC_CORE_INST of 55 A has to be sustained for short time (tINST) of 10 µs. Average  
current is less than maximum specified ICCDES. VR OCP threshold should be high enough to support current  
levels described herein.  
.
7.  
8.  
Measured at the bulk capacitors on the motherboard.  
Based on simulations and averaged over the duration of any change in current. Specified by design/  
characterization at nominal VCC. Not 100% tested.  
9.  
10.  
11.  
This is a power-up peak current specification, which is applicable when VCCP is high and VCC_CORE is low.  
This is a steady-state ICC current specification, which is applicable when both VCCP and VCC_CORE are high.  
512-KB L2 cache.  
28  
Datasheet  
Electrical Specifications  
Table 8 lists the DC specifications for the processor and are valid only while meeting  
specifications for junction temperature, clock frequency, and input voltages. The  
Highest Frequency Mode (HFM) and Lowest Frequency Mode (LFM) refer to the highest  
and lowest core operating frequencies supported on the Genuine Intel Processor. Unless  
specified otherwise, all specifications for the processor are at Tjunction =100 ºC. Care  
should be taken to read all notes associated with each parameter.  
Table 8.  
Voltage and Current Specifications for the Ultra Low Voltage Dual-Core 1M  
Cache Intel Celeron SFF Genuine Intel Processor  
Symbol  
Parameter  
VCC of the Processor Core  
Min  
Typ  
Max  
Unit  
Notes  
VCC  
0.8  
1.1  
V
1, 2  
2, 8  
VCC,BOOT  
VCCP  
Default VCC Voltage for Initial Power Up  
1.00  
1.425  
1.20  
1.05  
1.5  
1.10  
1.575  
18  
V
V
V
A
A
AGTL+ Termination Voltage  
VCCA  
PLL Supply Voltage  
ICCDES  
ICC for Processors Recommended Design Target  
5
ICC for processors  
Processor  
ICC  
Frequency  
1.2GHz  
Die Variant  
1MB  
Number  
SU2300  
17.6  
A
A
3, 4  
3, 4  
IAH,  
ICC Auto-Halt & Stop-Grant  
ICC Sleep  
6.3  
5.9  
ISGNT  
ISLP  
A
A
3, 4  
3, 4  
IDSLP  
ICC Deep Sleep  
5.0  
IDPRSLP  
dICC/DT  
ICCA  
ICC Deeper Sleep  
3.2  
600  
130  
A
3, 4  
7
VCC Power Supply Current Slew Rate at  
Processor Package Pin  
A/µs  
mA  
ICC for VCCA Supply  
ICC for VCCP Supply before VCC Stable  
ICC for VCCPSupply after VCC Stable  
8
9
4.5  
2.5  
A
A
ICCP  
NOTES:  
1.  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and can not be altered. Individual maximum VID values are calibrated during  
manufacturing such that two processors at the same frequency may have different settings within the VID  
range. Note that this differs from the VID employed by the processor during a power management event  
(ex: Extended Halt State).  
2.  
The voltage specifications are assumed to be measured across VCCSENSE and VSSSENSE pins at socket with a  
100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-mΩ minimum impedance.  
The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from  
the system is not coupled in the scope probe.  
3.  
4.  
Specified at 100°C Tj.  
Specified at nominal VCC  
.
Datasheet  
29  
Electrical Specifications  
5.  
6.  
7.  
800-MHz FSB supported  
Measured at the bulk capacitors on the motherboard.  
Based on simulations and averaged over the duration of any change in current. Specified by design/  
characterization at nominal VCC. Not 100% tested.  
8.  
9.  
10.  
This is a power-up peak current specification, which is applicable when VCCP is high and VCC core is low.  
This is a steady-state Icc current specification, which is applicable when both VCCP and VCC core are high.  
SU2300 processor operates at same core frequency in HFM and LFM.  
Table 9.  
FSB Differential BCLK Specifications  
Symbol  
Parameter  
Crossing Voltage  
Min  
Typ  
Max  
Unit  
Notes1  
VCROSS  
ΔVCROSS  
VSWING  
ILI  
0.3  
0.55  
140  
V
2, 7, 8  
Range of Crossing Points  
Differential Output Swing  
Input Leakage Current  
Pad Capacitance  
mV  
mV  
µA  
pF  
2, 7, 5  
300  
-5  
6
3
4
+5  
Cpad  
0.95  
1.2  
1.45  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
Crossing Voltage is defined as absolute voltage where rising edge of BCLK0 is equal to the  
falling edge of BCLK1.  
3.  
4.  
5.  
6.  
7.  
8.  
For Vin between 0 V and VIH.  
Cpad includes die capacitance only. No package parasitics are included.  
ΔVCROSS is defined as the total variation of all crossing voltages as defined in Note 2.  
Measurement taken from differential waveform.  
Measurement taken from single-ended waveform.  
Only applies to the differential rising edge (Clock rising and Clock# falling).  
30  
Datasheet  
Electrical Specifications  
Table 10.  
AGTL+ Signal Group DC Specifications  
Symbol  
Parameter  
I/O Voltage  
Min  
Typ  
Max  
Unit Notes1  
VCCP  
1.00  
1.05  
2/3 VCCP  
27.5  
55  
1.10  
V
GTLREF Reference Voltage  
V
6
10  
11  
3,6  
2,4  
6
RCOMP  
RODT  
VIH  
Compensation Resistor  
Termination Resistor  
Input High Voltage  
Input Low Voltage  
27.23  
27.78  
Ω
Ω
V
V
GTLREF+0.10  
-0.10  
VCCP  
0
VCCP+0.10  
GTLREF-0.10  
VCCP  
VIL  
VOH  
RTT  
Output High Voltage  
Termination Resistance  
VCCP-0.10  
50  
VCCP  
55  
61  
7
Ω
RON  
ILI  
Buffer On Resistance  
Input Leakage Current  
Pad Capacitance  
22  
25  
28  
5
8
9
Ω
±100  
2.55  
µA  
pF  
Cpad  
1.6  
2.1  
NOTES:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
IL is defined as the maximum voltage level at a receiving agent that is interpreted as a  
logical low value.  
IH is defined as the minimum voltage level at a receiving agent that is interpreted as a  
logical high value.  
IH and VOH may experience excursions above VCCP. However, input signal drivers must  
V
3.  
4.  
5.  
V
V
comply with the signal quality specifications.  
This is the pull-down driver resistance. Measured at 0.31*VCCP. RON (min) = 0.4*RTT, RON  
(typ) = 0.455*RTT, RON (max) = 0.51*RTT. RTT typical value of 55 Ω is used for RON typ/  
min/max calculations.  
6.  
7.  
GTLREF should be generated from VCCP with a 1%-tolerance resistor divider. The VCCP  
referred to in these specifications is the instantaneous VCCP  
TT is the on-die termination resistance measured at VOL of the AGTL+ output driver.  
Measured at 0.31*VCCP. RTT is connected to VCCP on die.  
Specified with on die RTT and RON turned off. Vin between 0 and VCCP  
.
R
8.  
.
9.  
10.  
11.  
Cpad includes die capacitance only. No package parasitics are included.  
This is the external resistor on the comp pins.  
On die termination resistance measured at 0.33*VCCP  
.
Datasheet  
31  
Electrical Specifications  
Table 11.  
CMOS Signal Group DC Specifications  
Symbol  
Parameter  
I/O Voltage  
Min  
Typ  
Max  
Unit Notes1  
VCCP  
VIH  
1.00  
1.05  
VCCP  
1.10  
V
Input High Voltage  
0.7*VCCP  
VCCP+0.1  
V
V
2
2
Input Low Voltage  
CMOS  
VIL  
-0.10  
0.00  
0.3*VCCP  
VOH  
VOL  
Output High Voltage  
Output Low Voltage  
Output High Current  
Output Low Current  
Input Leakage Current  
Pad Capacitance  
0.9*VCCP  
-0.10  
1.5  
VCCP  
0
VCCP+0.1  
0.1*VCCP  
4.1  
V
2
2
5
4
6
7
V
IOH  
mA  
mA  
µA  
pF  
IOL  
1.5  
4.1  
ILI  
±100  
2.55  
Cpad1  
1.6  
2.1  
1.2  
Pad Capacitance for  
CMOS Input  
Cpad2  
0.95  
1.45  
3
NOTES:  
1.  
2.  
3.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
The VCCP referred to in these specifications refers to instantaneous VCCP  
Cpad2 includes die capacitance for all other CMOS input signals. No package parasitics are  
included.  
.
4.  
5.  
6.  
7.  
Measured at 0.1*VCCP  
.
Measured at 0.9*VCCP  
.
For Vin between 0 V and VCCP. Measured when the driver is tristated.  
Cpad1 includes die capacitance only for DPRSTP#, DPSLP#, PWRGOOD. No package  
parasitics are included.  
Table 12.  
Open Drain Signal Group DC Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit Notes1  
VOH  
VOL  
IOL  
Output High Voltage  
Output Low Voltage  
Output Low Current  
Output Leakage Current  
Pad Capacitance  
VCCP-5%  
VCCP  
VCCP+5%  
0.20  
V
V
3
0
16  
50  
mA  
µA  
pF  
2
4
5
ILO  
±200  
2.45  
Cpad  
1.9  
2.2  
NOTES:  
1.  
2.  
3.  
4.  
5.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
Measured at 0.2 V.  
V
OH is determined by value of the external pull-up resistor to VCCP  
.
For Vin between 0 V and VOH  
.
Cpad includes die capacitance only. No package parasitics are included.  
§
32  
Datasheet  
Package Mechanical Specifications and Pin Information  
4 Package Mechanical  
Specifications and Pin  
Information  
4.1  
Package Mechanical Specifications  
The processor is available in a 1-MB, 478-pin Micro-FCPGA package. The package  
mechanical dimensions, keep-out zones, processor mass specifications, and package  
loading specifications are shown in Figure 3 through Figure 6.  
The SFF processor (ULV DC) is available 956-ball Micro-FCBGA packages. The package  
mechanical dimensions are shown in Figure 7.  
The maximum outgoing co-planarity is 0.2 mm (8 mils) for SFF Package  
The mechanical package pressure specifications are in a direction normal to the surface  
of the processor. This requirement is to protect the processor die from fracture risk due  
to uneven die pressure distribution under tilt, stack-up tolerances and other similar  
conditions. These specifications assume that a mechanical attach is designed  
specifically to load one type of processor.  
Moreover, the processor package substrate should not be used as a mechanical  
reference or load-bearing surface for the thermal or mechanical solution. Please refer  
to the Santa Rosa Platform Mechanical Design Guide for more details.  
Note:  
For M-step based processors refer to the 2-MB package drawings.  
Datasheet  
33  
Package Mechanical Specifications and Pin Information  
Figure 3.  
4-MB and Fused 2-MB Micro-FCPGA Processor Package Drawing (Sheet 1 of 2)  
h
34  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 4.  
4-MB and Fused 2-MB Micro-FCPGA Processor Package Drawing (Sheet 2 of 2)  
Datasheet  
35  
Package Mechanical Specifications and Pin Information  
Figure 5.  
2-MB Micro-FCPGA Processor Package Drawing (Sheet 1 of 2)  
36  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 6.  
2-MB Micro-FCPGA Processor Package Drawing (Sheet 2 of 2)  
Datasheet  
37  
Package Mechanical Specifications and Pin Information  
Figure 7.  
SFF (ULV DC) Die Micro-FCBGA Processor Package Drawing  
38  
Datasheet  
Package Mechanical Specifications and Pin Information  
4.2  
Processor Pinout and Pin List  
Table 13 shows the top view pinout of the Intel Celeron Dual-Core processor. The pin  
list, arranged in two different formats, is shown in the following pages.  
Table 13.  
The Coordinates of the Processor Pins as Viewed from the Top of the Package  
(Sheet 1 of 2)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
A
B
VSS  
RSVD  
SMI#  
INIT#  
VSS  
FERR#  
DPSLP#  
A20M#  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
A
B
LINT1  
IGNNE  
#
THERM  
TRIP#  
C
D
E
RESET#  
VSS  
VSS  
RSVD  
RSVD  
VSS  
VSS  
LINT0  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
C
D
E
STPCLK  
#
PWRGO  
OD  
RSVD  
BNR#  
VSS  
SLP#  
DPRSTP  
#
DBSY#  
HITM#  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
F
BR0#  
VSS  
VSS  
RS[0]#  
RS[2]#  
RS[1]#  
VSS  
VSS  
RSVD  
HIT#  
F
G
TRDY#  
BPRI#  
G
REQ[1]  
#
H
J
ADS#  
A[9]#  
VSS  
LOCK#  
A[3]#  
DEFER#  
VSS  
VSS  
H
J
REQ[3]  
#
VSS  
VCCP  
REQ[2]  
#
REQ[0]  
#
K
L
VSS  
VSS  
A[6]#  
A[4]#  
VSS  
VCCP  
VSS  
K
L
REQ[4]#  
A[13]#  
VSS  
VSS  
A[5]#  
RSVD  
ADSTB[0  
]#  
M
A[7]#  
VCCP  
M
N
P
R
T
VSS  
A[8]#  
A[12]#  
VSS  
A[10]#  
VSS  
VSS  
RSVD  
A[11]#  
VSS  
VCCP  
VSS  
N
P
R
T
A[15]#  
A[16]#  
VSS  
A[14]#  
A[24]#  
VSS  
A[19]#  
A[26]#  
VSS  
VCCP  
VCCP  
VSS  
RSVD  
A[25]#  
A[18]#  
U
A[23]#  
A[30]#  
A[21]#  
U
ADSTB[1  
]#  
V
VSS  
RSVD  
A[31]#  
VSS  
VCCP  
V
W
Y
VSS  
COMP[3]  
COMP[2]  
VSS  
A[27]#  
A[17]#  
VSS  
A[32]#  
VSS  
VSS  
A[29]#  
A[33]#  
VSS  
A[28]#  
A[22]#  
VSS  
A[20]#  
VSS  
W
Y
AA  
AB  
A[35]#  
TDO  
TDI  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
AA  
AB  
A[34]#  
TMS  
TRST#  
BPM[3]  
#
AC  
AD  
AE  
AF  
PREQ#  
BPM[2]#  
VSS  
PRDY#  
VSS  
VSS  
TCK  
VSS  
VSS  
VID[0]  
PSI#  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
AC  
AD  
AE  
AF  
BPM[1]  
#
BPM[0]  
#
VSS  
SENSE  
VID[6]  
VID[4]  
VSS  
VID[2]  
VCC  
SENSE  
TEST5  
VSS  
VID[5]  
VID[3]  
VID[1]  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
Datasheet  
39  
Package Mechanical Specifications and Pin Information  
Table 14.  
The Coordinates of the Processor Pins as Viewed from the Top of the Package  
(Sheet 2 of 2)  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
THRMDA  
VSS  
25  
26  
A
B
C
VSS  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
BCLK[1]  
VSS  
BCLK[0]  
BSEL[0]  
VSS  
VSS  
VSS  
TEST6  
VCCA  
VCCA  
A
B
C
VCC  
BSEL[1]  
TEST1  
THRMDC  
VSS  
DBR#  
BSEL[2]  
TEST3  
PROCHO  
T#  
D
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
IERR#  
RSVD  
VSS  
DPWR#  
TEST2  
VSS  
D
E
F
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
DRDY#  
VCCP  
D[0]#  
VSS  
D[7]#  
D[4]#  
VSS  
VSS  
D[6]#  
VSS  
D[2]#  
D[13]#  
VSS  
E
F
D[1]#  
D[9]#  
G
D[3]#  
D[5]#  
G
DSTBP[  
0]#  
H
VSS  
D[12]#  
D[15]#  
VSS  
DINV[0]#  
H
DSTBN[  
0]#  
J
K
L
VCCP  
VCCP  
VSS  
VSS  
D[11]#  
VSS  
D[10]#  
D[8]#  
VSS  
VSS  
J
K
L
D[14]#  
D[22]#  
D[17]#  
D[29]#  
VSS  
DSTBN[  
1]#  
D[20]#  
DSTBP[  
1]#  
M
VCCP  
VSS  
D[23]#  
D[21]#  
VSS  
M
N
P
VCCP  
VSS  
D[16]#  
D[26]#  
VSS  
DINV[1]#  
VSS  
D[31]#  
D[24]#  
VSS  
N
P
D[25]#  
D[18]#  
COMP[0  
]
R
T
VCCP  
VCCP  
VSS  
VSS  
D[19]#  
VSS  
D[28]#  
D[27]#  
VSS  
VSS  
R
T
D[37]#  
DINV[2]#  
D[30]#  
D[38]#  
VSS  
COMP[1  
]
U
D[39]#  
U
V
VCCP  
VCCP  
VSS  
D[36]#  
VSS  
D[34]#  
D[43]#  
VSS  
D[35]#  
VSS  
V
W
D[41]#  
D[44]#  
W
DSTBN[  
2]#  
Y
VSS  
D[32]#  
VSS  
D[42]#  
D[45]#  
VSS  
D[40]#  
VSS  
Y
DSTBP[  
2]#  
A
A
AA  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
D[50]#  
D[46]#  
A
B
AB  
AC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
D[52]#  
VSS  
D[51]#  
D[60]#  
VSS  
VSS  
D[63]#  
D[61]#  
VSS  
D[33]#  
VSS  
D[47]#  
D[57]#  
VSS  
VSS  
DINV[3  
]#  
D[53]# AC  
A
D
A
GTLREF  
D
D[54]#  
VCC  
D[59]#  
D[58]#  
D[49]#  
D[48]#  
DSTBN[3]  
#
AE  
AF  
D[55]#  
VSS  
AE  
AF  
DSTBP[3]  
#
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
D[62]#  
D[56]#  
VSS  
TEST4  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
40  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 15.  
SFF Processor Top View Upper Left Side  
BD BC BB BA AY AW AV AU AT AR AP AN AM AL AK AJ AH AG AF AE AD AC  
COMP[  
2]  
VSS  
VSS  
VSS  
TMS  
TDI  
TDO  
A[35]#  
A[17]#  
A[31]#  
A[30]#  
A[19]#  
A[16]#  
1
BPM[3]  
#
COMP[  
3]  
VSS  
VID[5]  
VSS  
PREQ#  
TCK  
A[22]#  
A[20]#  
VSS  
A[34]#  
A[28]#  
VSS  
A[32]#  
A[27]#  
VSS  
A[21]#  
A[18]#  
VSS  
A[23]#  
A[26]#  
VSS  
A[11]#  
A[12]#  
VSS  
2
VSS  
VID[4]  
VID[1]  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
3
VSS  
VSS  
VID[6]  
VSS  
A[24]#  
VSS  
4
BPM[2]  
#
ADSTB  
[1]#  
RSVD0  
4
RSVD0  
3
A[33]#  
VSS  
A[29]#  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
A[25]#  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
A[14]#  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
A[10]#  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
5
VSS  
6
BPM[1]  
#
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
7
BPM[0]  
#
VID[0]  
PSI#  
VID[3]  
VID[2]  
VSS  
TRST#  
PRDY#  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
8
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
9
TEST5  
VSS  
VSS  
VCCP  
VCCP  
VCC  
VSS  
VCCP  
VCCP  
VCCP  
VCC  
VSS  
VCCP  
VCCP  
VCCP  
VCC  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
VSS  
VCCP  
VCCP  
VSS  
VCCS  
ENSE  
VSS  
VSS  
VSS  
VSS  
VSSSE  
NSE  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCCP  
VCC  
VCC  
VCC  
VCC  
VCCP  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
Datasheet  
41  
Package Mechanical Specifications and Pin Information  
Table 16.  
SFF Processor Top View Upper Right Side  
AB AA  
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
REQ[2]  
#
REQ[0]  
#
A[7]#  
A[5]#  
LOCK#  
TRDY#  
DBSY#  
VSS  
VSS  
1
RSVD0  
2
RSVD0  
1
A[15]#  
VSS  
A[9]#  
A[3]#  
BR0#  
RS[0]#  
HIT#  
HITM#  
VSS  
2
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
BPRI#  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
VSS  
BNR#  
DBR#  
VSS  
VSS  
VSS  
LINT1  
A20M#  
LINT0  
VSS  
3
ADSTB  
[0]#  
REQ[3]  
#
RSVD0  
6
A[8]#  
A[13]#  
VSS  
A[4]#  
VSS  
A[6]#  
VSS  
VSS  
VSS  
VSS  
VCCP  
VCC  
VCC  
VCC  
VCC  
ADS#  
VSS  
VSS  
VSS  
VSS  
VCCP  
VCC  
VCC  
VCC  
VCC  
RS[2]#  
VSS  
RS[1]#  
VSS  
FERR#  
VSS  
VSS  
VSS  
4
REQ[4]  
#
REQ[1]  
#
DEFER  
#
RESET  
#
SMI#  
VSS  
VSS  
VSS  
VSS  
VCCP  
VSS  
VSS  
VSS  
VSS  
5
VSS  
VSS  
VSS  
VSS  
VCCP  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
6
DPRST  
P#  
PWRG  
OOD  
VCCP  
VSS  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
7
RSVD0  
7
STPCL  
K#  
DPSLP  
#
VSS  
VSS  
INIT#  
SLP#  
VCCP  
VCCP  
VCC  
8
RSVD0  
5
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
VSS  
VCCP  
VCCP  
VSS  
VSS  
VCCP  
VCCP  
VSS  
9
THER  
MTRIP  
#
IGNNE  
#
VCCP  
VCCP  
VCCP  
VCC  
VCCP  
VCCP  
VCCP  
VCC  
VCCP  
VCCP  
VCCP  
VCC  
VSS  
VCCP  
VCCP  
VCC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VCC  
VCCP  
VCCP  
VCC  
VCCP  
VSS  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
42  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 17.  
SFF Processor Top View Lower Left Side  
BD BC BB BA AY AW AV AU AT AR AP AN AM AL AK AJ AH AG AF AE AD AC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
D[52]#  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
D[26]#  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VCCP  
VCCP  
VSS  
VCC  
VCCP  
VCCP  
VSS  
VCC  
VCC  
VCC  
THRM  
DC  
THRM  
DA  
VSS  
VSS  
VSS  
D[58]#  
D[62]#  
D[54]#  
VSS  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VSS  
VSS  
VSS  
VSS  
VSS  
D[55]#  
D[61]#  
VSS  
D[56]#  
VSS  
VCCP  
VCCP  
D[45]#  
VSS  
VSS  
VCCP  
VCCP  
D[43]#  
VSS  
VSS  
VCCP  
VCCP  
D[35]#  
VSS  
DINV[3  
]#  
VSS  
VSS  
DSTBP  
[3]#  
D[48]#  
D[50]#  
VSS  
VSS  
VSS  
VSS  
D[59]#  
VSS  
VSS  
VSS  
DSTBN  
[3]#  
D[57]#  
VSS  
D[42]#  
VSS  
D[34]#  
VSS  
DINV[2  
]#  
D[60]#  
VSS  
D[51]#  
D[63]#  
D[53]#  
D[33]#  
D[46]#  
D[41]#  
D[47]#  
D[37]#  
D[44]#  
TEST4  
D[27]#  
TEST6  
VSS  
VSS  
GTLRE  
F
DSTBP  
[2]#  
COMP[  
0]  
D[36]#  
DSTBN  
[2]#  
COMP[  
1]  
VSS  
D[49]#  
D[32]#  
D[40]#  
D[39]#  
D[38]#  
Datasheet  
43  
Package Mechanical Specifications and Pin Information  
Table 18.  
SFF Processor Top View Lower Right Side  
AB AA  
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCCP  
VCCA  
VSS  
VCCP  
VCCA  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCCP  
VCCP  
VSS  
VCC  
VCCP  
VSS  
VCCP  
VCCP  
TEST1  
VSS  
VCCP  
VCCP  
VSS  
VSS  
VSS  
VSS  
VCCP  
VCCP  
DRDY#  
D[0]#  
VSS  
BCLK[  
1]  
BCLK[  
0]  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VSS  
VSS  
VCCP  
VCCP  
D[17]#  
VSS  
VSS  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VCCP  
VSS  
BSEL[1  
]
BSEL[0  
]
PROC  
HOT#  
BSEL[2  
]
VSS  
VSS  
VSS  
D[6]#  
D[13]#  
D[1]#  
VSS  
VSS  
VSS  
DINV[0  
]#  
DSTBN  
[0]#  
D[25]#  
D[24]#  
VSS  
D[29]#  
VSS  
D[11]#  
VSS  
D[12]#  
VSS  
D[4]#  
VSS  
TEST2  
VSS  
IERR#  
VSS  
DSTBP  
[0]#  
DPWR  
#
D[21]#  
D[23]#  
D[20]#  
D[10]#  
D[22]#  
D[8]#  
D[15]#  
D[7]#  
D[2]#  
VSS  
VSS  
DSTBP  
[1]#  
DSTBN  
[1]#  
DINV[1  
]#  
D[28]#  
D[19]#  
D[3]#  
TEST3  
D[30]#  
D[18]#  
D[31]#  
D[16]#  
D[14]#  
D[9]#  
D[5]#  
VSS  
VSS  
44  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 19.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 2 of 16)  
Table 19.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 1 of 16)  
Pin  
Number  
Signal Buffer  
Type  
Direction  
Pin  
Number  
Signal Buffer  
Type  
Direction  
Input/  
Output  
A[24]#  
A[25]#  
A[26]#  
A[27]#  
A[28]#  
A[29]#  
A[30]#  
A[31]#  
A[32]#  
A[33]#  
A[34]#  
R4  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Input/  
Output  
A[3]#  
J4  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Input/  
Output  
T5  
Input/  
Output  
A[4]#  
L5  
L4  
K5  
M3  
N2  
J1  
Input/  
Output  
T3  
Input/  
Output  
A[5]#  
Input/  
Output  
W2  
W5  
Y4  
Input/  
Output  
A[6]#  
Input/  
Output  
Input/  
Output  
A[7]#  
Input/  
Output  
Input/  
Output  
A[8]#  
Input/  
Output  
U2  
Input/  
Output  
A[9]#  
Input/  
Output  
V4  
Input/  
Output  
A[10]#  
A[11]#  
A[12]#  
A[13]#  
A[14]#  
A[15]#  
A[16]#  
A[17]#  
A[18]#  
A[19]#  
A[20]#  
A[21]#  
A[22]#  
A[23]#  
N3  
P5  
P2  
L2  
P4  
P1  
R1  
Y2  
U5  
R3  
W6  
U4  
Y5  
U1  
Input/  
Output  
W3  
AA4  
AB2  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
A[35]#  
A20M#  
ADS#  
AA3  
A6  
Source Synch  
CMOS  
Input/  
Output  
Input  
Input/  
Output  
Input/  
Output  
H1  
Common Clock  
Input/  
Output  
Input/  
Output  
ADSTB[0]# M1  
ADSTB[1]# V1  
Source Synch  
Source Synch  
Input/  
Output  
Input/  
Output  
BCLK[0]  
BCLK[1]  
A22  
A21  
Bus Clock  
Bus Clock  
Input  
Input  
Input/  
Output  
Input/  
Output  
Input/  
Output  
BNR#  
E2  
Common Clock  
Common Clock  
Input/  
Output  
Input/  
Output  
BPM[0]#  
AD4  
Input/  
Output  
BPM[1]#  
BPM[2]#  
AD3  
AD1  
Common Clock Output  
Common Clock Output  
Input/  
Output  
Input/  
Common Clock  
Output  
BPM[3]#  
BPRI#  
AC4  
G5  
Input/  
Output  
Common Clock Input  
Datasheet  
45  
Package Mechanical Specifications and Pin Information  
Table 19.  
Pin Listing by Pin Name  
(Sheet 3 of 16)  
Table 19.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 4 of 16)  
Pin  
Signal Buffer  
Type  
Pin  
Signal Buffer  
Type  
Pin Name  
Direction  
Direction  
Number  
Number  
Input/  
Output  
Input/  
Output  
BR0#  
F1  
Common Clock  
D[15]#  
D[16]#  
D[17]#  
D[18]#  
D[19]#  
D[20]#  
D[21]#  
D[22]#  
D[23]#  
D[24]#  
D[25]#  
D[26]#  
D[27]#  
D[28]#  
D[29]#  
D[30]#  
D[31]#  
D[32]#  
D[33]#  
D[34]#  
D[35]#  
D[36]#  
H23  
N22  
K25  
P26  
R23  
L23  
M24  
L22  
M23  
P25  
P23  
P22  
T24  
R24  
L25  
T25  
N25  
Y22  
AB24  
V24  
V26  
V23  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
BSEL[0]  
BSEL[1]  
BSEL[2]  
B22  
B23  
C21  
CMOS  
CMOS  
CMOS  
Output  
Output  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
COMP[0]  
COMP[1]  
COMP[2]  
COMP[3]  
D[0]#  
R26  
U26  
AA1  
Y1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
E22  
F24  
E26  
G22  
F23  
G25  
E25  
E23  
K24  
G24  
J24  
J23  
H22  
F26  
K22  
Input/  
Output  
Input/  
Output  
D[1]#  
Input/  
Output  
Input/  
Output  
D[2]#  
Input/  
Output  
Input/  
Output  
D[3]#  
Input/  
Output  
Input/  
Output  
D[4]#  
Input/  
Output  
Input/  
Output  
D[5]#  
Input/  
Output  
Input/  
Output  
D[6]#  
Input/  
Output  
Input/  
Output  
D[7]#  
Input/  
Output  
Input/  
Output  
D[8]#  
Input/  
Output  
Input/  
Output  
D[9]#  
Input/  
Output  
Input/  
Output  
D[10]#  
D[11]#  
D[12]#  
D[13]#  
D[14]#  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
46  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 19.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 5 of 16)  
Table 19.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 6 of 16)  
Pin  
Signal Buffer  
Type  
Pin  
Signal Buffer  
Type  
Direction  
Direction  
Number  
Number  
Input/  
Output  
Input/  
Output  
D[37]#  
D[38]#  
D[39]#  
D[40]#  
D[41]#  
D[42]#  
D[43]#  
D[44]#  
D[45]#  
D[46]#  
D[47]#  
D[48]#  
D[49]#  
D[50]#  
D[51]#  
D[52]#  
D[53]#  
D[54]#  
D[55]#  
D[56]#  
D[57]#  
D[58]#  
T22  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
D[59]#  
D[60]#  
D[61]#  
D[62]#  
AD21  
AC22  
AD23  
AF22  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Input/  
Output  
Input/  
Output  
U25  
Input/  
Output  
Input/  
Output  
U23  
Input/  
Output  
Input/  
Output  
Y25  
Input/  
Output  
Input/  
Output  
W22  
Y23  
D[63]#  
DBR#  
AC23  
C20  
E1  
Source Synch  
CMOS  
Input/  
Output  
Output  
Input/  
Output  
DBSY#  
DEFER#  
DINV[0]#  
Common Clock  
Input/  
Output  
W24  
W25  
AA23  
AA24  
AB25  
AE24  
AD24  
AA21  
AB22  
AB21  
AC26  
AD20  
AE22  
AF23  
AC25  
AE21  
H5  
Common Clock Input  
Input/  
Output  
Input/  
Source Synch  
Output  
H25  
Input/  
Output  
Input/  
Source Synch  
Output  
DINV[1]#  
DINV[2]#  
DINV[3]#  
N24  
U22  
Input/  
Output  
Input/  
Source Synch  
Output  
Input/  
Output  
Input/  
Source Synch  
Output  
AC20  
Input/  
Output  
DPRSTP#  
DPSLP#  
E5  
B5  
CMOS  
CMOS  
Input  
Input  
Input/  
Output  
Input/  
Output  
DPWR#  
DRDY#  
D24  
F21  
Common Clock  
Common Clock  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
DSTBN[0]# J26  
DSTBN[1]# L26  
DSTBN[2]# Y26  
DSTBN[3]# AE25  
DSTBP[0]# H26  
DSTBP[1]# M26  
DSTBP[2]# AA26  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Datasheet  
47  
Package Mechanical Specifications and Pin Information  
Table 19.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 7 of 16)  
Table 19.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 8 of 16)  
Pin  
Signal Buffer  
Type  
Pin  
Signal Buffer  
Type  
Direction  
Direction  
Number  
Number  
Input/  
Output  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
SLP#  
SMI#  
STPCLK#  
TCK  
F6  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
Open Drain  
Test  
DSTBP[3]# AF24  
Source Synch  
M4  
FERR#  
A5  
Open Drain  
Output  
Input  
N5  
GTLREF  
AD26  
Power/Other  
T2  
Input/  
Output  
HIT#  
G6  
E4  
Common Clock  
Common Clock  
V3  
D7  
Input  
Input  
Input  
Input  
Input  
Output  
Input/  
Output  
HITM#  
A3  
IERR#  
IGNNE#  
INIT#  
LINT0  
LINT1  
D20  
C4  
Open Drain  
CMOS  
Output  
Input  
Input  
Input  
Input  
D5  
AC5  
AA6  
AB3  
C23  
D25  
C24  
AF26  
AF1  
A26  
B3  
CMOS  
TDI  
C6  
CMOS  
TDO  
B4  
CMOS  
TEST1  
TEST2  
TEST3  
TEST4  
TEST5  
TEST6  
Input/  
Output  
Test  
LOCK#  
H4  
Common Clock  
Test  
PRDY#  
PREQ#  
AC2  
AC1  
Common Clock Output  
Common Clock Input  
Test  
Test  
Input/  
Open Drain  
PROCHOT# D21  
Test  
Output  
THERMTRIP  
#
PSI#  
AE6  
D6  
CMOS  
CMOS  
Output  
Input  
C7  
Open Drain  
Output  
Input  
PWRGOOD  
THRMDA  
THRMDC  
TMS  
A24  
B25  
AB5  
G2  
Power/Other  
Power/Other  
CMOS  
Input/  
Output  
REQ[0]#  
REQ[1]#  
REQ[2]#  
REQ[3]#  
REQ[4]#  
K3  
H2  
K2  
J3  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Input/  
Output  
TRDY#  
TRST#  
VCC  
Common Clock Input  
Input/  
Output  
AB6  
A7  
CMOS  
Input  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/  
Output  
VCC  
A9  
VCC  
A10  
A12  
A13  
A15  
A17  
A18  
A20  
AA7  
AA9  
AA10  
AA12  
Input/  
Output  
L1  
VCC  
RESET#  
RS[0]#  
RS[1]#  
RS[2]#  
RSVD  
C1  
F3  
Common Clock Input  
Common Clock Input  
Common Clock Input  
Common Clock Input  
Reserved  
VCC  
VCC  
F4  
VCC  
G3  
B2  
C3  
D2  
D3  
D22  
VCC  
VCC  
RSVD  
Reserved  
VCC  
RSVD  
Reserved  
VCC  
RSVD  
Reserved  
VCC  
RSVD  
Reserved  
VCC  
48  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 19.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 9 of 16)  
Table 19.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 10 of 16)  
Pin  
Signal Buffer  
Type  
Pin  
Signal Buffer  
Type  
Direction  
Direction  
Number  
Number  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AA13  
AA15  
AA17  
AA18  
AA20  
AB7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AE18  
AE20  
AF9  
AF10  
AF12  
AF14  
AF15  
AF17  
AF18  
AF20  
B7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AB9  
AB10  
AB12  
AB14  
AB15  
AB17  
AB18  
AB20  
AC7  
B9  
B10  
B12  
B14  
B15  
B17  
B18  
B20  
C9  
AC9  
AC10  
AC12  
AC13  
AC15  
AC17  
AC18  
AD7  
C10  
C12  
C13  
C15  
C17  
C18  
D9  
AD9  
AD10  
AD12  
AD14  
AD15  
AD17  
AD18  
AE9  
D10  
D12  
D14  
D15  
D17  
D18  
E7  
AE10  
AE12  
AE13  
AE15  
AE17  
E9  
E10  
Datasheet  
49  
Package Mechanical Specifications and Pin Information  
Table 19.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 11 of 16)  
Table 19.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 12 of 16)  
Pin  
Signal Buffer  
Type  
Pin  
Signal Buffer  
Type  
Direction  
Direction  
Number  
Number  
VCC  
E12  
E13  
E15  
E17  
E18  
E20  
F7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
CMOS  
VID[2]  
VID[3]  
VID[4]  
VID[5]  
VID[6]  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AE5  
CMOS  
Output  
Output  
Output  
Output  
Output  
VCC  
AF4  
CMOS  
VCC  
AE3  
CMOS  
VCC  
AF3  
CMOS  
VCC  
AE2  
CMOS  
VCC  
A2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
A4  
VCC  
F9  
A8  
VCC  
F10  
F12  
F14  
F15  
F17  
F18  
F20  
B26  
C26  
G21  
J6  
A11  
VCC  
A14  
VCC  
A16  
VCC  
A19  
VCC  
A23  
VCC  
A25  
VCC  
AA2  
AA5  
AA8  
AA11  
AA14  
AA16  
AA19  
AA22  
AA25  
AB1  
AB4  
AB8  
AB11  
AB13  
AB16  
AB19  
AB23  
AB26  
AC3  
AC6  
AC8  
AC11  
VCCA  
VCCA  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCSENSE  
VID[0]  
VID[1]  
J21  
K6  
K21  
M6  
M21  
N6  
N21  
R6  
R21  
T6  
T21  
V6  
V21  
W21  
AF7  
AD6  
AF5  
Output  
Output  
CMOS  
50  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 19.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 13 of 16)  
Table 19.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 14 of 16)  
Pin  
Signal Buffer  
Type  
Pin  
Signal Buffer  
Type  
Direction  
Direction  
Number  
Number  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AC14  
AC16  
AC19  
AC21  
AC24  
AD2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
B16  
B19  
B21  
B24  
C2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
C5  
AD5  
C8  
AD8  
C11  
C14  
C16  
C19  
C22  
C25  
D1  
AD11  
AD13  
AD16  
AD19  
AD22  
AD25  
AE1  
D4  
AE4  
D8  
AE8  
D11  
D13  
D16  
D19  
D23  
D26  
E3  
AE11  
AE14  
AE16  
AE19  
AE23  
AE26  
AF2  
E6  
AF6  
E8  
AF8  
E11  
E14  
E16  
E19  
E21  
E24  
F2  
AF11  
AF13  
AF16  
AF19  
AF21  
AF25  
B6  
F5  
B8  
F8  
B11  
F11  
F13  
B13  
Datasheet  
51  
Package Mechanical Specifications and Pin Information  
Table 19.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 15 of 16)  
Table 19.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 16 of 16)  
Pin  
Signal Buffer  
Type  
Pin  
Signal Buffer  
Type  
Direction  
Direction  
Number  
Number  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
F16  
F19  
F22  
F25  
G1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSSSENSE  
R2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
R5  
R22  
R25  
T1  
G4  
T4  
G23  
G26  
H3  
T23  
T26  
U3  
H6  
U6  
H21  
H24  
J2  
U21  
U24  
V2  
J5  
V5  
J22  
J25  
K1  
V22  
V25  
W1  
W4  
W23  
W26  
Y3  
K4  
K23  
K26  
L3  
L6  
Y6  
L21  
L24  
M2  
Y21  
Y24  
AE7  
Output  
M5  
M22  
M25  
N1  
Table 20.  
Pin Name  
Pin Listing by Pin Number  
(Sheet 1 of 17)  
Pin  
Signal  
Direction  
N4  
Number Buffer Type  
N23  
N26  
P3  
VSS  
A2  
A3  
A4  
A5  
A6  
A7  
Power/Other  
CMOS  
SMI#  
VSS  
Input  
Power/Other  
Open Drain  
CMOS  
P6  
FERR#  
A20M#  
VCC  
Output  
Input  
P21  
P24  
Power/Other  
52  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 20.  
Pin Name  
Pin Listing by Pin Number  
(Sheet 2 of 17)  
Table 20.  
Pin Name  
Pin Listing by Pin Number  
(Sheet 3 of 17)  
Pin  
Signal  
Pin  
Signal  
Direction  
Direction  
Number Buffer Type  
Number Buffer Type  
VSS  
A8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Bus Clock  
VSS  
VCC  
VCC  
VSS  
VCC  
AA16  
AA17  
AA18  
AA19  
AA20  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
A9  
VCC  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
VSS  
VCC  
VCC  
Input/  
Output  
D[50]#  
VSS  
AA21  
AA22  
AA23  
Source Synch  
Power/Other  
Source Synch  
VSS  
VCC  
Input/  
Output  
VSS  
D[45]#  
VCC  
Input/  
Output  
D[46]#  
VSS  
AA24  
AA25  
AA26  
AB1  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
VCC  
VSS  
VCC  
Input/  
Output  
DSTBP[2]#  
VSS  
BCLK[1]  
BCLK[0]  
VSS  
Input  
Input  
Bus Clock  
Input/  
Output  
Power/Other  
Power/Other  
Power/Other  
Test  
A[34]#  
AB2  
THRMDA  
VSS  
TDO  
VSS  
TMS  
TRST#  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
AB3  
Open Drain  
Power/Other  
CMOS  
Output  
AB4  
TEST6  
AB5  
Input  
Input  
Input/  
Output  
COMP[2]  
VSS  
AA1  
AA2  
AA3  
Power/Other  
Power/Other  
Source Synch  
AB6  
CMOS  
AB7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AB8  
Input/  
Output  
A[35]#  
AB9  
Input/  
Output  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
A[33]#  
AA4  
Source Synch  
VSS  
TDI  
AA5  
Power/Other  
CMOS  
AA6  
Input  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
AA7  
Power/Other  
Power/other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AA8  
AA9  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
Input/  
Output  
D[52]#  
AB21  
Source Synch  
Datasheet  
53  
Package Mechanical Specifications and Pin Information  
Table 20.  
Pin Name  
Pin Listing by Pin Number  
(Sheet 4 of 17)  
Table 20.  
Pin Listing by Pin Number  
(Sheet 5 of 17)  
Pin  
Signal  
Pin  
Signal  
Direction  
Pin Name  
Direction  
Number Buffer Type  
Number Buffer Type  
Input/  
Output  
Input/  
Output  
D[51]#  
VSS  
AB22  
AB23  
AB24  
Source Synch  
Power/Other  
Source Synch  
D[53]#  
AC26  
Source Synch  
Common  
Clock  
BPM[2]#  
VSS  
AD1  
AD2  
AD3  
Output  
Input/  
Output  
D[33]#  
Power/Other  
Input/  
Output  
Common  
Clock  
D[47]#  
VSS  
AB25  
AB26  
AC1  
Source Synch  
Power/Other  
BPM[1]#  
Output  
Common  
Clock  
Input/  
Output  
BPM[0]#  
AD4  
Common  
Clock  
PREQ#  
Input  
VSS  
VID[0]  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
AD5  
Power/Other  
CMOS  
Common  
Clock  
AD6  
Output  
PRDY#  
VSS  
AC2  
AC3  
AC4  
Output  
AD7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AD8  
Common  
Clock  
Input/  
Output  
BPM[3]#  
AD9  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
TCK  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
AC5  
CMOS  
Input  
AC6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AC7  
AC8  
AC9  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
Input/  
Output  
D[54]#  
AD20  
Source Synch  
Input/  
Output  
D[59]#  
VSS  
AD21  
AD22  
AD23  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
D[61]#  
Input/  
Output  
DINV[3]#  
VSS  
AC20  
AC21  
AC22  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
D[49]#  
AD24  
Source Synch  
VSS  
AD25  
AD26  
AE1  
Power/Other  
Power/Other  
Power/Other  
CMOS  
Input/  
Output  
D[60]#  
GTLREF  
VSS  
Input  
Input/  
Output  
D[63]#  
VSS  
AC23  
AC24  
AC25  
Source Synch  
Power/Other  
Source Synch  
VID[6]  
VID[4]  
VSS  
AE2  
Output  
Output  
AE3  
CMOS  
Input/  
Output  
D[57]#  
AE4  
Power/Other  
54  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 20.  
Pin Name  
Pin Listing by Pin Number  
(Sheet 6 of 17)  
Table 20.  
Pin Name  
Pin Listing by Pin Number  
(Sheet 7 of 17)  
Pin  
Signal  
Pin  
Signal  
Direction  
Direction  
Number Buffer Type  
Number Buffer Type  
VID[2]  
PSI#  
VSSSENSE  
VSS  
AE5  
CMOS  
Output  
Output  
Output  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AE6  
CMOS  
AE7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AE8  
VCC  
AE9  
VCC  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
VSS  
VCC  
VCC  
VSS  
Input/  
Output  
D[62]#  
AF22  
AF23  
AF24  
Source Synch  
Source Synch  
Source Synch  
VCC  
Input/  
Output  
VSS  
D[56]#  
VCC  
Input/  
Output  
DSTBP[3]#  
VCC  
VSS  
VSS  
AF25  
AF26  
B2  
Power/Other  
Test  
VCC  
TEST4  
RSVD  
INIT#  
LINT1  
DPSLP#  
VSS  
Input/  
Output  
Reserved  
D[58]#  
AE21  
Source Synch  
B3  
CMOS  
Input  
Input  
Input  
Input/  
Output  
D[55]#  
VSS  
AE22  
AE23  
AE24  
Source Synch  
Power/Other  
Source Synch  
B4  
CMOS  
B5  
CMOS  
B6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/  
Output  
D[48]#  
VCC  
B7  
Input/  
Output  
VSS  
B8  
DSTBN[3]# AE25  
Source Synch  
VCC  
B9  
VSS  
AE26  
AF1  
Power/Other  
Test  
VCC  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
TEST5  
VSS  
VSS  
AF2  
Power/Other  
CMOS  
VCC  
VID[5]  
VID[3]  
VID[1]  
VSS  
AF3  
Output  
Output  
Output  
VSS  
AF4  
CMOS  
VCC  
AF5  
CMOS  
VCC  
AF6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VCCSENSE  
VSS  
AF7  
VCC  
AF8  
VCC  
VCC  
AF9  
VSS  
VCC  
AF10  
AF11  
AF12  
VCC  
VSS  
VSS  
VCC  
Datasheet  
55  
Package Mechanical Specifications and Pin Information  
Table 20.  
Pin Name  
Pin Listing by Pin Number  
(Sheet 8 of 17)  
Table 20.  
Pin Name  
Pin Listing by Pin Number  
(Sheet 9 of 17)  
Pin  
Signal  
Pin  
Signal  
Direction  
Direction  
Number Buffer Type  
Number Buffer Type  
BSEL[0]  
BSEL[1]  
VSS  
B22  
B23  
B24  
B25  
B26  
CMOS  
Output  
Output  
STPCLK#  
PWRGOOD  
SLP#  
VSS  
D5  
CMOS  
Input  
Input  
Input  
CMOS  
D6  
CMOS  
Power/Other  
Power/Other  
Power/Other  
D7  
CMOS  
THRMDC  
VCCA  
D8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Open Drain  
VCC  
D9  
Common  
Clock  
VCC  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
RESET#  
C1  
Input  
Input  
VSS  
VSS  
C2  
C3  
C4  
C5  
C6  
Power/Other  
Reserved  
CMOS  
VCC  
RSVD  
IGNNE#  
VSS  
VSS  
VCC  
Power/Other  
CMOS  
VCC  
LINT0  
Input  
VSS  
THERMTRIP  
#
C7  
Open Drain  
Output  
VCC  
VCC  
VSS  
C8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
CMOS  
VSS  
VCC  
C9  
IERR#  
Output  
VCC  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
D1  
Input/  
Output  
VSS  
PROCHOT#  
D21  
Open Drain  
VCC  
RSVD  
VSS  
D22  
D23  
Reserved  
VCC  
Power/Other  
VSS  
Common  
Clock  
Input/  
Output  
DPWR#  
D24  
VCC  
VSS  
TEST2  
VSS  
D25  
D26  
Test  
VCC  
Power/Other  
VCC  
Common  
Clock  
Input/  
Output  
DBSY#  
E1  
VSS  
Common  
Clock  
Input/  
Output  
DBR#  
BSEL[2]  
VSS  
Output  
Output  
BNR#  
VSS  
E2  
E3  
E4  
CMOS  
Power/Other  
Power/Other  
Test  
Common  
Clock  
Input/  
Output  
HITM#  
TEST1  
TEST3  
VSS  
Test  
DPRSTP#  
VSS  
E5  
CMOS  
Input  
Power/Other  
Power/Other  
Power/Other  
Reserved  
E6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCCA  
VSS  
VCC  
E7  
VSS  
E8  
RSVD  
RSVD  
VSS  
D2  
VCC  
E9  
D3  
Reserved  
VCC  
E10  
E11  
D4  
Power/Other  
VSS  
56  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 20.  
Pin Name  
Pin Listing by Pin Number  
(Sheet 10 of 17)  
Table 20.  
Pin Name  
Pin Listing by Pin Number  
(Sheet 11 of 17)  
Pin  
Signal  
Pin  
Signal  
Direction  
Direction  
Number Buffer Type  
Number Buffer Type  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VSS  
VCC  
F18  
F19  
F20  
Power/Other  
Power/Other  
Power/Other  
Common  
Clock  
Input/  
Output  
DRDY#  
VSS  
F21  
F22  
F23  
Power/Other  
Source Synch  
Input/  
Output  
D[4]#  
Input/  
Output  
D[1]#  
VSS  
F24  
F25  
F26  
G1  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Input/  
Output  
Input/  
Output  
D[0]#  
E22  
Source Synch  
D[13]#  
VSS  
Input/  
Output  
D[7]#  
VSS  
E23  
E24  
E25  
Source Synch  
Power/Other  
Source Synch  
Common  
Clock  
TRDY#  
G2  
Input  
Input  
Input/  
Output  
Common  
Clock  
D[6]#  
RS[2]#  
VSS  
G3  
G4  
G5  
Input/  
Output  
Power/Other  
D[2]#  
E26  
Source Synch  
Common  
Clock  
BPRI#  
Input  
Common  
Clock  
Input/  
Output  
BR0#  
VSS  
F1  
F2  
F3  
Common  
Clock  
Input/  
Output  
HIT#  
VCCP  
D[3]#  
VSS  
G6  
Power/Other  
Common  
Clock  
G21  
G22  
G23  
G24  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
RS[0]#  
Input  
Input  
Input/  
Output  
Common  
Clock  
RS[1]#  
F4  
VSS  
RSVD  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
F5  
Power/Other  
Reserved  
Input/  
Output  
D[9]#  
F6  
F7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/  
Output  
D[5]#  
VSS  
G25  
G26  
H1  
Source Synch  
Power/Other  
F8  
F9  
Common  
Clock  
Input/  
Output  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
ADS#  
Input/  
Output  
REQ[1]#  
VSS  
H2  
H3  
H4  
Source Synch  
Power/Other  
Common  
Clock  
Input/  
Output  
LOCK#  
Common  
Clock  
DEFER#  
H5  
Input  
Datasheet  
57  
Package Mechanical Specifications and Pin Information  
Table 20.  
Pin Name  
Pin Listing by Pin Number  
(Sheet 12 of 17)  
Table 20.  
Pin Name  
Pin Listing by Pin Number  
(Sheet 13 of 17)  
Pin  
Signal  
Pin  
Signal  
Direction  
Direction  
Number Buffer Type  
Number Buffer Type  
VSS  
VSS  
H6  
Power/Other  
Power/Other  
VSS  
K23  
K24  
Power/Other  
Source Synch  
H21  
Input/  
Output  
D[8]#  
Input/  
Output  
D[12]#  
H22  
Source Synch  
Input/  
Output  
D[17]#  
VSS  
K25  
K26  
L1  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
D[15]#  
VSS  
H23  
H24  
H25  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
REQ[4]#  
Input/  
Output  
DINV[0]#  
Input/  
Output  
A[13]#  
VSS  
L2  
L3  
L4  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
DSTBP[0]#  
H26  
Source Synch  
Input/  
Output  
Input/  
Output  
A[9]#  
VSS  
J1  
J2  
J3  
Source Synch  
Power/Other  
Source Synch  
A[5]#  
Input/  
Output  
A[4]#  
L5  
Source Synch  
Input/  
Output  
REQ[3]#  
VSS  
VSS  
L6  
Power/Other  
Power/Other  
Input/  
Output  
L21  
A[3]#  
J4  
Source Synch  
Input/  
Output  
D[22]#  
L22  
Source Synch  
VSS  
J5  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCCP  
VCCP  
VSS  
J6  
Input/  
Output  
D[20]#  
VSS  
L23  
L24  
L25  
Source Synch  
Power/Other  
Source Synch  
J21  
J22  
Input/  
Output  
Input/  
Output  
D[29]#  
D[11]#  
J23  
Source Synch  
Input/  
Output  
Input/  
Output  
DSTBN[1]# L26  
Source Synch  
D[10]#  
VSS  
J24  
J25  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
ADSTB[0]#  
VSS  
M1  
M2  
M3  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
DSTBN[0]# J26  
Input/  
Output  
VSS  
K1  
K2  
A[7]#  
Input/  
Output  
REQ[2]#  
RSVD  
VSS  
M4  
Reserved  
M5  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/  
Output  
REQ[0]#  
VSS  
K3  
K4  
K5  
Source Synch  
Power/Other  
Source Synch  
VCCP  
VCCP  
VSS  
M6  
M21  
M22  
Input/  
Output  
A[6]#  
Input/  
Output  
D[23]#  
M23  
Source Synch  
VCCP  
VCCP  
K6  
Power/Other  
Power/Other  
K21  
Input/  
Output  
D[21]#  
VSS  
M24  
M25  
Source Synch  
Power/Other  
Input/  
Output  
D[14]#  
K22  
Source Synch  
58  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 20.  
Pin Name  
Pin Listing by Pin Number  
(Sheet 14 of 17)  
Table 20.  
Pin Name  
Pin Listing by Pin Number  
(Sheet 15 of 17)  
Pin  
Signal  
Pin  
Signal  
Direction  
Direction  
Number Buffer Type  
Number Buffer Type  
Input/  
Output  
VSS  
R2  
R3  
Power/Other  
Source Synch  
DSTBP[1]#  
VSS  
M26  
N1  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
A[19]#  
Input/  
Output  
Input/  
Output  
A[8]#  
N2  
A[24]#  
R4  
Source Synch  
Input/  
Output  
VSS  
R5  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
A[10]#  
N3  
Source Synch  
VCCP  
VCCP  
VSS  
R6  
VSS  
N4  
Power/Other  
Reserved  
R21  
R22  
RSVD  
VCCP  
VCCP  
N5  
N6  
Power/Other  
Power/Other  
Input/  
Output  
D[19]#  
R23  
Source Synch  
N21  
Input/  
Output  
Input/  
Output  
D[16]#  
VSS  
N22  
N23  
N24  
Source Synch  
Power/Other  
Source Synch  
D[28]#  
VSS  
R24  
R25  
R26  
Source Synch  
Power/Other  
Power/Other  
Input/  
Output  
Input/  
Output  
DINV[1]#  
COMP[0]  
Input/  
Output  
VSS  
T1  
T2  
Power/Other  
Reserved  
D[31]#  
VSS  
N25  
N26  
P1  
Source Synch  
Power/Other  
Source Synch  
RSVD  
Input/  
Output  
A[26]#  
VSS  
T3  
T4  
T5  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
A[15]#  
Input/  
Output  
A[12]#  
VSS  
P2  
P3  
P4  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
A[25]#  
VCCP  
VCCP  
T6  
Power/Other  
Power/Other  
Input/  
Output  
A[14]#  
T21  
Input/  
Output  
Input/  
Output  
D[37]#  
VSS  
T22  
T23  
T24  
Source Synch  
Power/Other  
Source Synch  
A[11]#  
P5  
Source Synch  
VSS  
VSS  
P6  
Power/Other  
Power/Other  
Input/  
Output  
P21  
D[27]#  
Input/  
Output  
D[26]#  
P22  
Source Synch  
Input/  
Output  
D[30]#  
VSS  
T25  
T26  
U1  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
D[25]#  
VSS  
P23  
P24  
P25  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
A[23]#  
Input/  
Output  
D[24]#  
Input/  
Output  
A[30]#  
VSS  
U2  
U3  
U4  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
D[18]#  
A[16]#  
P26  
R1  
Source Synch  
Source Synch  
Input/  
Output  
Input/  
Output  
A[21]#  
Datasheet  
59  
Package Mechanical Specifications and Pin Information  
Table 20.  
Pin Listing by Pin Number  
(Sheet 16 of 17)  
Table 20.  
Pin Name  
Pin Listing by Pin Number  
(Sheet 17 of 17)  
Pin  
Signal  
Pin  
Signal  
Pin Name  
Direction  
Direction  
Number Buffer Type  
Number Buffer Type  
Input/  
Output  
Input/  
Output  
A[18]#  
U5  
Source Synch  
D[41]#  
VSS  
W22  
W23  
W24  
Source Synch  
Power/Other  
Source Synch  
VSS  
VSS  
U6  
Power/Other  
Power/Other  
U21  
Input/  
Output  
D[43]#  
Input/  
Output  
DINV[2]#  
U22  
Source Synch  
Input/  
Output  
D[44]#  
VSS  
W25  
W26  
Y1  
Source Synch  
Power/Other  
Power/Other  
Input/  
Output  
D[39]#  
VSS  
U23  
U24  
U25  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
COMP[3]  
Input/  
Output  
D[38]#  
Input/  
Output  
A[17]#  
VSS  
Y2  
Y3  
Y4  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
COMP[1]  
U26  
V1  
Power/Other  
Source Synch  
Input/  
Output  
Input/  
Output  
ADSTB[1]#  
A[29]#  
VSS  
V2  
V3  
Power/Other  
Reserved  
Input/  
Output  
A[22]#  
Y5  
Source Synch  
RSVD  
VSS  
VSS  
Y6  
Power/Other  
Power/Other  
Input/  
Output  
A[31]#  
V4  
Source Synch  
Y21  
VSS  
V5  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/  
Output  
D[32]#  
Y22  
Source Synch  
VCCP  
VCCP  
VSS  
V6  
Input/  
Output  
V21  
V22  
D[42]#  
VSS  
Y23  
Y24  
Y25  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
D[36]#  
V23  
Source Synch  
Input/  
Output  
D[40]#  
Input/  
Output  
D[34]#  
VSS  
V24  
V25  
V26  
W1  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
DSTBN[2]# Y26  
Source Synch  
Input/  
Output  
D[35]#  
VSS  
Input/  
Output  
A[27]#  
W2  
Input/  
Output  
A[32]#  
VSS  
W3  
W4  
W5  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
A[28]#  
Input/  
Output  
A[20]#  
VCCP  
W6  
Source Synch  
Power/Other  
W21  
60  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 21.  
SFF Listing by Ball Name  
Ball  
Number  
Signal Name  
Ball  
Number  
Signal Name  
ADSTB[1]#  
BCLK[0]  
BCLK[1]  
BNR#  
AN5  
A35  
C35  
J5  
A[3]#  
A[4]#  
P2  
V4  
A[5]#  
W1  
A[6]#  
T4  
BPM[0]#  
BPM[1]#  
BPM[2]#  
BPM[3]#  
BPRI#  
AY8  
BA7  
BA5  
AY2  
L5  
A[7]#  
AA1  
AB4  
T2  
A[8]#  
A[9]#  
A[10]#  
A[11]#  
A[12]#  
A[13]#  
A[14]#  
A[15]#  
A[16]#  
A[17]#  
A[18]#  
A[19]#  
A[20]#  
A[21]#  
A[22]#  
A[23]#  
A[24]#  
A[25]#  
A[26]#  
A[27]#  
A[28]#  
A[29]#  
A[30]#  
A[31]#  
A[32]#  
A[33]#  
A[34]#  
A[35]#  
A20M#  
ADS#  
AC5  
AD2  
AD4  
AA5  
AE5  
AB2  
AC1  
AN1  
AK4  
AG1  
AT4  
AK2  
AT2  
AH2  
AF4  
AJ5  
AH4  
AM4  
AP4  
AR5  
AJ1  
AL1  
AM2  
AU5  
AP2  
AR1  
C7  
BR0#  
M2  
BSEL[0]  
BSEL[1]  
BSEL[2]  
COMP[0]  
COMP[1]  
COMP[2]  
COMP[3]  
D[0]#  
A37  
C37  
B38  
AE43  
AD44  
AE1  
AF2  
F40  
G43  
E43  
J43  
D[1]#  
D[2]#  
D[3]#  
D[4]#  
H40  
H44  
G39  
E41  
L41  
K44  
N41  
T40  
M40  
G41  
M44  
L43  
P44  
V40  
V44  
AB44  
D[5]#  
D[6]#  
D[7]#  
D[8]#  
D[9]#  
D[10]#  
D[11]#  
D[12]#  
D[13]#  
D[14]#  
D[15]#  
D[16]#  
D[17]#  
D[18]#  
D[19]#  
M4  
ADSTB[0]#  
Y4  
Datasheet  
61  
Package Mechanical Specifications and Pin Information  
Ball  
Number  
Ball  
Signal Name  
Signal Name  
Number  
D[20]#  
D[21]#  
D[22]#  
D[23]#  
D[24]#  
D[25]#  
D[26]#  
D[27]#  
D[28]#  
D[29]#  
D[30]#  
D[31]#  
D[32]#  
D[33]#  
D[34]#  
D[35]#  
D[36]#  
D[37]#  
D[38]#  
D[39]#  
D[40]#  
D[41]#  
D[42]#  
D[43]#  
D[44]#  
D[45]#  
D[46]#  
D[47]#  
D[48]#  
D[49]#  
D[50]#  
D[51]#  
D[52]#  
D[53]#  
D[54]#  
D[55]#  
D[56]#  
D[57]#  
R41  
W41  
D[58]#  
D[59]#  
BC35  
BC39  
BA41  
BB40  
BA35  
AU43  
J7  
N43  
D[60]#  
U41  
D[61]#  
AA41  
AB40  
AD40  
AC41  
AA43  
Y40  
D[62]#  
D[63]#  
DBR#  
DBSY#  
J1  
DEFER#  
DINV[0]#  
DINV[1]#  
DINV[2]#  
DINV[3]#  
DPRSTP#  
DPSLP#  
DPWR#  
N5  
P40  
R43  
AJ41  
BC37  
G7  
Y44  
T44  
AP44  
AR43  
AH40  
AF40  
AJ43  
AG41  
AF44  
AH44  
AM44  
AN43  
AM40  
AK40  
AG43  
AP40  
AN41  
AL41  
AV38  
AT44  
AV40  
AU41  
AW41  
AR41  
BA37  
BB38  
AY36  
AT40  
B8  
C41  
F38  
K40  
U43  
AK44  
AY40  
J41  
DRDY#  
DSTBN[0]#  
DSTBN[1]#  
DSTBN[2]#  
DSTBN[3]#  
DSTBP[0]#  
DSTBP[1]#  
DSTBP[2]#  
DSTBP[3]#  
FERR#  
W43  
AL43  
AY38  
D4  
GTLREF  
AW43  
H2  
HIT#  
HITM#  
F2  
IERR#  
B40  
F10  
D8  
IGNNE#  
INIT#  
LINT0  
C9  
LINT1  
C5  
LOCK#  
N1  
PRDY#  
AV10  
AV2  
D38  
PREQ#  
PROCHOT#  
62  
Datasheet  
Package Mechanical Specifications and Pin Information  
Ball  
Number  
Ball  
Number  
Signal Name  
Signal Name  
PSI#  
PWRGOOD  
REQ[0]#  
REQ[1]#  
REQ[2]#  
REQ[3]#  
REQ[4]#  
RESET#  
RS[0]#  
RS[1]#  
RS[2]#  
RSVD01  
RSVD02  
RSVD03  
RSVD04  
RSVD05  
RSVD06  
RSVD07  
SLP#  
BD10  
E7  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AB18  
AB20  
AB22  
AB24  
AB26  
AB28  
AB30  
AB32  
AC33  
AD16  
AD18  
AD20  
AD22  
AD24  
AD26  
AD28  
AD30  
AD32  
AE33  
AF16  
AF18  
AF20  
AF22  
AF24  
AF26  
AF28  
AF30  
AF32  
AG33  
AH16  
AH18  
AH20  
AH22  
AH24  
AH26  
AH28  
AH30  
AH32  
R1  
R5  
U1  
P4  
W5  
G5  
K2  
H4  
K4  
V2  
Y2  
AG5  
AL5  
J9  
F4  
H8  
D10  
E5  
SMI#  
STPCLK#  
TCK  
F8  
AV4  
AW7  
AU1  
E37  
D40  
C43  
AE41  
AY10  
AC43  
B10  
BB34  
BD34  
AW5  
L1  
TDI  
TDO  
TEST1  
TEST2  
TEST3  
TEST4  
TEST5  
TEST6  
THERMTRIP#  
THRMDA  
THRMDC  
TMS  
TRDY#  
TRST#  
VCC  
AV8  
AA33  
AB16  
VCC  
Datasheet  
63  
Package Mechanical Specifications and Pin Information  
Ball  
Number  
Ball  
Signal Name  
Signal Name  
Number  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AJ33  
AK16  
AK18  
AK20  
AK22  
AK24  
AK26  
AK28  
AK30  
AK32  
AL33  
AM14  
AM16  
AM18  
AM20  
AM22  
AM24  
AM26  
AM28  
AM30  
AM32  
AN33  
AP14  
AP16  
AP18  
AP20  
AP22  
AP24  
AP26  
AP28  
AP30  
AP32  
AR33  
AT14  
AT16  
AT18  
AT20  
AT22  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AT24  
AT26  
AT28  
AT30  
AT32  
AT34  
AU33  
AV14  
AV16  
AV18  
AV20  
AV22  
AV24  
AV26  
AV28  
AV30  
AV32  
AY14  
AY16  
AY18  
AY20  
AY22  
AY24  
AY26  
AY28  
AY30  
AY32  
B16  
B18  
B20  
B22  
B24  
B26  
B28  
B30  
BB14  
BB16  
BB18  
64  
Datasheet  
Package Mechanical Specifications and Pin Information  
Ball  
Number  
Ball  
Number  
Signal Name  
Signal Name  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
BB20  
BB22  
BB24  
BB26  
BB28  
BB30  
BB32  
BD14  
BD16  
BD18  
BD20  
BD22  
BD24  
BD26  
BD28  
BD30  
BD32  
D16  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
H22  
H24  
H26  
H28  
H30  
H32  
J33  
K16  
K18  
K20  
K22  
K24  
K26  
K28  
K30  
K32  
L33  
M16  
M18  
M20  
M22  
M24  
M26  
M28  
M30  
M32  
N33  
P16  
P18  
P20  
P22  
P24  
P26  
P28  
P30  
P32  
R33  
T16  
D18  
D20  
D22  
D24  
D26  
D28  
D30  
F16  
F18  
F20  
F22  
F24  
F26  
F28  
F30  
F32  
G33  
H16  
H18  
H20  
Datasheet  
65  
Package Mechanical Specifications and Pin Information  
Ball  
Number  
Ball  
Signal Name  
Signal Name  
Number  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCCA  
VCCA  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
T18  
T20  
T22  
T24  
T26  
T28  
T30  
T32  
U33  
V16  
V18  
V20  
V22  
V24  
V26  
V28  
V30  
V32  
W33  
Y16  
Y18  
Y20  
Y22  
Y24  
Y26  
Y28  
Y30  
Y32  
B34  
D34  
A13  
A33  
AA7  
AA9  
AA11  
AA13  
AA35  
AA37  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
AB10  
AB12  
AB14  
AB36  
AB38  
AC7  
AC9  
AC11  
AC13  
AC35  
AC37  
AD14  
AE7  
AE9  
AE11  
AE13  
AE35  
AE37  
AF10  
AF12  
AF14  
AF36  
AF38  
AG7  
AG9  
AG11  
AG13  
AG35  
AG37  
AH14  
AJ7  
AJ9  
AJ11  
AJ13  
AJ35  
AJ37  
AK10  
AK12  
66  
Datasheet  
Package Mechanical Specifications and Pin Information  
Ball  
Number  
Ball  
Number  
Signal Name  
Signal Name  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
AK14  
AK36  
AK38  
AL7  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
F14  
F34  
F36  
G11  
G13  
G35  
H12  
H14  
H36  
J11  
J13  
J35  
J37  
K10  
K12  
K14  
K36  
K38  
L7  
AL9  
AL11  
AL13  
AL35  
AL37  
AN7  
AN9  
AN11  
AN13  
AN35  
AN37  
AP10  
AP12  
AP36  
AP38  
AR7  
L9  
AR9  
L11  
L13  
L35  
L37  
M14  
N7  
AR11  
AR13  
AU11  
AU13  
B12  
B14  
N9  
B32  
N11  
N13  
N35  
N37  
P10  
P12  
P14  
P36  
P38  
R7  
C13  
C33  
D12  
D14  
D32  
E11  
E13  
E33  
E35  
F12  
R9  
Datasheet  
67  
Package Mechanical Specifications and Pin Information  
Ball  
Number  
Ball  
Signal Name  
Signal Name  
Number  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCSENSE  
VID[0]  
VID[1]  
VID[2]  
VID[3]  
VID[4]  
VID[5]  
VID[6]  
VSS  
R11  
R13  
R35  
R37  
T14  
U7  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A21  
A23  
A25  
A27  
A29  
A31  
U9  
A39  
U11  
U13  
U35  
U37  
V10  
V12  
V14  
V36  
V38  
W7  
A41  
AA3  
AA15  
AA17  
AA19  
AA21  
AA23  
AA25  
AA27  
AA29  
AA31  
AA39  
AB6  
W9  
W11  
W13  
W35  
W37  
Y14  
BD12  
BD8  
BC7  
BB10  
BB8  
BC5  
BB4  
AY4  
A5  
AB8  
AB34  
AB42  
AC3  
AC15  
AC17  
AC19  
AC21  
AC23  
AC25  
AC27  
AC29  
AC31  
AC39  
AD6  
VSS  
A7  
VSS  
A9  
VSS  
A11  
A15  
A17  
A19  
VSS  
AD8  
VSS  
AD10  
AD12  
VSS  
68  
Datasheet  
Package Mechanical Specifications and Pin Information  
Ball  
Number  
Ball  
Number  
Signal Name  
Signal Name  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AD34  
AD36  
AD38  
AD42  
AE3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AJ3  
AJ15  
AJ17  
AJ19  
AJ21  
AJ23  
AJ25  
AJ27  
AJ29  
AJ31  
AJ39  
AK6  
AE15  
AE17  
AE19  
AE21  
AE23  
AE25  
AE27  
AE29  
AE31  
AE39  
AF6  
AK8  
AK34  
AK42  
AL3  
AF8  
AL15  
AL17  
AL19  
AL21  
AL23  
AL25  
AL27  
AL29  
AL31  
AL39  
AM6  
AF34  
AF42  
AG3  
AG15  
AG17  
AG19  
AG21  
AG23  
AG25  
AG27  
AG29  
AG31  
AG39  
AH6  
AM8  
AM10  
AM12  
AM34  
AM36  
AM38  
AM42  
AN3  
AH8  
AH10  
AH12  
AH34  
AH36  
AH38  
AH42  
AN15  
AN17  
AN19  
Datasheet  
69  
Package Mechanical Specifications and Pin Information  
Ball  
Number  
Ball  
Signal Name  
Signal Name  
Number  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AN21  
AN23  
AN25  
AN27  
AN29  
AN31  
AN39  
AP6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AU23  
AU25  
AU27  
AU29  
AU31  
AU35  
AU37  
AU39  
AV6  
AP8  
AP34  
AP42  
AR3  
AV12  
AV34  
AV36  
AV42  
AV44  
AW1  
AR15  
AR17  
AR19  
AR21  
AR23  
AR25  
AR27  
AR29  
AR31  
AR35  
AR37  
AR39  
AT6  
AW3  
AW9  
AW11  
AW13  
AW15  
AW17  
AW19  
AW21  
AW23  
AW25  
AW27  
AW29  
AW31  
AW33  
AW35  
AW37  
AW39  
AY6  
AT8  
AT10  
AT12  
AT36  
AT38  
AT42  
AU3  
AU7  
AU9  
AY12  
AY34  
AY42  
AY44  
B4  
AU15  
AU17  
AU19  
AU21  
70  
Datasheet  
Package Mechanical Specifications and Pin Information  
Ball  
Number  
Ball  
Number  
Signal Name  
Signal Name  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
B6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
BC41  
BD4  
BD6  
BD36  
BD38  
BD40  
C3  
B36  
B42  
BA1  
BA3  
BA9  
BA11  
BA13  
BA15  
BA17  
BA19  
BA21  
BA23  
BA25  
BA27  
BA29  
BA31  
BA33  
BA39  
BA43  
BB2  
C11  
C15  
C17  
C19  
C21  
C23  
C25  
C27  
C29  
C31  
C39  
D2  
D6  
D36  
D42  
D44  
E1  
BB6  
BB12  
BB36  
BB42  
BC3  
E3  
E9  
BC9  
E15  
E17  
E19  
E21  
E23  
E25  
E27  
E29  
E31  
E39  
F6  
BC11  
BC15  
BC17  
BC19  
BC21  
BC23  
BC25  
BC27  
BC29  
BC31  
BC33  
F42  
Datasheet  
71  
Package Mechanical Specifications and Pin Information  
Ball  
Number  
Ball  
Signal Name  
Signal Name  
Number  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
F44  
G1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
L21  
L23  
L25  
L27  
L29  
L31  
L39  
M6  
G3  
G9  
G15  
G17  
G19  
G21  
G23  
G25  
G27  
G29  
G31  
G37  
H6  
M8  
M10  
M12  
M34  
M36  
M38  
M42  
N3  
H10  
H34  
H38  
H42  
J3  
N15  
N17  
N19  
N21  
N23  
N25  
N27  
N29  
N31  
N39  
P6  
J15  
J17  
J19  
J21  
J23  
J25  
J27  
J29  
J31  
J39  
K6  
P8  
P34  
P42  
R3  
K8  
R15  
R17  
R19  
R21  
R23  
R25  
R27  
K34  
K42  
L3  
L15  
L17  
L19  
72  
Datasheet  
Package Mechanical Specifications and Pin Information  
Ball  
Number  
Ball  
Number  
Signal Name  
Signal Name  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
R29  
R31  
R39  
T6  
VSS  
VSS  
Y6  
Y8  
VSS  
Y10  
Y12  
Y34  
Y36  
Y38  
Y42  
BC13  
VSS  
T8  
VSS  
T10  
T12  
T34  
T36  
T38  
T42  
U3  
VSS  
VSS  
VSS  
VSSSENSE  
U5  
U15  
U17  
U19  
U21  
U23  
U25  
U27  
U29  
U31  
U39  
V6  
V8  
V34  
V42  
W3  
W15  
W17  
W19  
W21  
W23  
W25  
W27  
W29  
W31  
W39  
Datasheet  
73  
Package Mechanical Specifications and Pin Information  
74  
Datasheet  
Package Mechanical Specifications and Pin Information  
4.3  
Alphabetical Signals Reference  
Table 22.  
Name  
Signal Description (Sheet 1 of 7)  
Type  
Description  
A[35:3]# (Address) define a 236-byte physical memory address space. In sub-  
phase 1 of the address phase, these pins transmit the address of a transaction. In  
sub-phase 2, these pins transmit transaction type information. These signals must  
connect the appropriate pins of both agents on the processor FSB. A[35:3]# are  
source synchronous signals and are latched into the receiving buffers by  
ADSTB[1:0]#. Address signals are used as straps which are sampled before  
RESET# is deasserted.  
Input/  
Output  
A[35:3]#  
If A20M# (Address-20 Mask) is asserted, the processor masks physical address bit  
20 (A20#) before looking up a line in any internal cache and before driving a read/  
write transaction on the bus. Asserting A20M# emulates the 8086 processor's  
address wrap-around at the 1-Mbyte boundary. Assertion of A20M# is only  
supported in real mode.  
A20M#  
Input  
A20M# is an asynchronous signal. However, to ensure recognition of this signal  
following an Input/Output write instruction, it must be valid along with the TRDY#  
assertion of the corresponding Input/Output Write bus transaction.  
ADS# (Address Strobe) is asserted to indicate the validity of the transaction  
address on the A[35:3]# and REQ[4:0]# pins. All bus agents observe the ADS#  
activation to begin parity checking, protocol checking, address decode, internal  
snoop, or deferred reply ID match operations associated with the new transaction.  
Input/  
Output  
ADS#  
Address strobes are used to latch A[35:3]# and REQ[4:0]# on their rising and  
falling edges. Strobes are associated with signals as shown below.  
Input/  
Output  
Signals  
REQ[4:0]#, A[16:3]# ADSTB[0]#  
A[35:17]# ADSTB[1]#  
Associated Strobe  
ADSTB[1:0]#  
The differential pair BCLK (Bus Clock) determines the FSB frequency. All FSB  
agents must receive these signals to drive their outputs and latch their inputs.  
BCLK[1:0]  
BNR#  
Input  
All external timing parameters are specified with respect to the rising edge of  
BCLK0 crossing VCROSS  
.
BNR# (Block Next Request) is used to assert a bus stall by any bus agent who is  
unable to accept new bus transactions. During a bus stall, the current bus owner  
cannot issue any new transactions.  
Input/  
Output  
BPM[3:0]# (Breakpoint Monitor) are breakpoint and performance monitor signals.  
They are outputs from the processor which indicate the status of breakpoints and  
programmable counters used for monitoring processor performance. BPM[3:0]#  
should connect the appropriate pins of all processor FSB agents.This includes  
debug or performance monitoring tools.  
Output  
BPM[2:1]#  
BPM[3,0]#  
Input/  
Output  
BPRI# (Bus Priority Request) is used to arbitrate for ownership of the FSB. It must  
connect the appropriate pins of both FSB agents. Observing BPRI# active (as  
asserted by the priority agent) causes the other agent to stop issuing new  
requests, unless such requests are part of an ongoing locked operation. The  
priority agent keeps BPRI# asserted until all of its requests are completed, then  
releases the bus by deasserting BPRI#.  
BPRI#  
BR0#  
Input  
Input/  
Output  
BR0# is used by the processor to request the bus. The arbitration is done between  
processor (Symmetric Agent) and (G)MCH (High Priority Agent).  
Datasheet  
75  
Package Mechanical Specifications and Pin Information  
Table 22.  
Name  
Signal Description (Sheet 2 of 7)  
Type  
Description  
BSEL[2:0] (Bus Select) are used to select the processor input clock frequency.  
Table 3 defines the possible combinations of the signals and the frequency  
associated with each combination. The required frequency is determined by the  
processor, chipset and clock synthesizer. All agents must operate at the same  
frequency.  
BSEL[2:0]  
COMP[3:0]  
Output  
COMP[3:0] must be terminated on the system board using precision (1%  
tolerance) resistors.  
Analog  
D[63:0]# (Data) are the data signals. These signals provide a 64-bit data path  
between the FSB agents, and must connect the appropriate pins on both agents.  
The data driver asserts DRDY# to indicate a valid data transfer.  
D[63:0]# are quad-pumped signals and are driven four times in a common clock  
period. D[63:0]# are latched off the falling edge of both DSTBP[3:0]# and  
DSTBN[3:0]#. Each group of 16 data signals corresponds to a pair of one DSTBP#  
and one DSTBN#. The following table shows the grouping of data signals to data  
strobes and DINV#.  
Quad-Pumped Signal Groups  
Data  
Group  
DSTBN#/  
DSTBP#  
Input/  
Output  
DINV#  
D[63:0]#  
D[15:0]#  
D[31:16]#  
D[47:32]#  
D[63:48]#  
0
1
2
3
0
1
2
3
Furthermore, the DINV# pins determine the polarity of the data signals. Each  
group of 16 data signals corresponds to one DINV# signal. When the DINV# signal  
is active, the corresponding data group is inverted and therefore sampled active  
high.  
DBR# (Data Bus Reset) is used only in processor systems where no debug port is  
implemented on the system board. DBR# is used by a debug port interposer so  
that an in-target probe can drive system reset. If a debug port is implemented in  
the system, DBR# is a no-connect in the system. DBR# is not a processor signal.  
DBR#  
Output  
DBSY# (Data Bus Busy) is asserted by the agent responsible for driving data on  
the FSB to indicate that the data bus is in use. The data bus is released after  
DBSY# is deasserted. This signal must connect the appropriate pins on both FSB  
agents.  
Input/  
Output  
DBSY#  
DEFER#  
DEFER# is asserted by an agent to indicate that a transaction cannot be  
guaranteed in-order completion. Assertion of DEFER# is normally the responsibility  
of the addressed memory or Input/Output agent. This signal must connect the  
appropriate pins of both FSB agents.  
Input  
76  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 22.  
Name  
Signal Description (Sheet 3 of 7)  
Type  
Description  
DINV[3:0]# (Data Bus Inversion) are source synchronous and indicate the polarity  
of the D[63:0]# signals. The DINV[3:0]# signals are activated when the data on  
the data bus is inverted. The bus agent inverts the data bus signals if more than  
half the bits, within the covered group, would change level in the next cycle.  
DINV[3:0]# Assignment To Data Bus  
Data Bus  
Bus Signal  
Input/  
Output  
DINV[3:0]#  
Signals  
DINV[3]#  
DINV[2]#  
DINV[1]#  
DINV[0]#  
D[63:48]#  
D[47:32]#  
D[31:16]#  
D[15:0]#  
DPRSTP# when asserted on the platform causes the processor to transition from  
the Deep Sleep State to the Deeper Sleep state. In order to return to the Deep  
Sleep State, DPRSTP# must be deasserted. DPRSTP# is driven by the Intel  
82801HBM ICH8M I/O Controller Hub-based chipset.  
DPRSTP#  
Input  
Input  
DPSLP# when asserted on the platform causes the processor to transition from the  
Sleep State to the Deep Sleep state. In order to return to the Sleep State, DPSLP#  
must be deasserted. DPSLP# is driven by the Intel 82801HBM ICH8M chipset.  
DPSLP#  
DPWR#  
DPWR# is a control signal used by the chipset to reduce power on the processor  
data bus input buffers. The processor drives this pin during dynamic FSB frequency  
switching.  
Input/  
Output  
DRDY# (Data Ready) is asserted by the data driver on each data transfer,  
indicating valid data on the data bus. In a multi-common clock data transfer,  
DRDY# may be deasserted to insert idle clocks. This signal must connect the  
appropriate pins of both FSB agents.  
Input/  
Output  
DRDY#  
Data strobe used to latch in D[63:0]#.  
Signals  
Associated  
Strobe  
Input/  
Output  
D[15:0]#, DINV[0]#  
DSTBN[0]#  
DSTBN[3:0]#  
D[31:16]#, DINV[1]# DSTBN[1]#  
D[47:32]#, DINV[2]# DSTBN[2]#  
D[63:48]#, DINV[3]# DSTBN[3]#  
Data strobe used to latch in D[63:0]#.  
Signals  
Associated Strobe  
D[15:0]#, DINV[0]#  
D[31:16]#, DINV[1]#  
D[47:32]#, DINV[2]#  
D[63:48]#, DINV[3]#  
DSTBP[0]#  
DSTBP[1]#  
DSTBP[2]#  
DSTBP[3]#  
Input/  
Output  
DSTBP[3:0]#  
Datasheet  
77  
Package Mechanical Specifications and Pin Information  
Table 22.  
Name  
Signal Description (Sheet 4 of 7)  
Type  
Description  
FERR# (Floating-point Error)/PBE#(Pending Break Event) is a multiplexed signal  
and its meaning is qualified with STPCLK#. When STPCLK# is not asserted, FERR#/  
PBE# indicates a floating point when the processor detects an unmasked floating-  
point error. FERR# is similar to the ERROR# signal on the Intel 387 coprocessor,  
and is included for compatibility with systems using MS-DOS*-type floating-point  
error reporting. When STPCLK# is asserted, an assertion of FERR#/PBE# indicates  
that the processor has a pending break event waiting for service. The assertion of  
FERR#/PBE# indicates that the processor should be returned to the Normal state.  
When FERR#/PBE# is asserted, indicating a break event, it remains asserted until  
STPCLK# is deasserted. Assertion of PREQ# when STPCLK# is active also causes  
an FERR# break event.  
FERR#/PBE#  
Output  
For additional information on the pending break event functionality, including  
identification of support of the feature and enable/disable information, refer to  
Volumes 3A and 3B of the Intel® 64 and IA-32 Architectures Software Developer’s  
Manual and the InteProcessor Identification and CPUID Instruction application  
note.  
GTLREF determines the signal reference level for AGTL+ input pins. GTLREF should  
be set at 2/3 VCCP. GTLREF is used by the AGTL+ receivers to determine if a signal  
is a logical 0 or logical 1.  
GTLREF  
Input  
Input/  
Output  
HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction snoop operation  
results. Either FSB agent may assert both HIT# and HITM# together to indicate  
that it requires a snoop stall, which can be continued by reasserting HIT# and  
HITM# together.  
HIT#  
Input/  
Output  
HITM#  
IERR# (Internal Error) is asserted by a processor as the result of an internal error.  
Assertion of IERR# is usually accompanied by a SHUTDOWN transaction on the  
FSB. This transaction may optionally be converted to an external error signal (e.g.,  
NMI) by system core logic. The processor keeps IERR# asserted until the assertion  
of RESET#, BINIT#, or INIT#.  
IERR#  
Output  
Input  
IGNNE# (Ignore Numeric Error) is asserted to force the processor to ignore a  
numeric error and continue to execute noncontrol floating-point instructions. If  
IGNNE# is deasserted, the processor generates an exception on a noncontrol  
floating-point instruction if a previous floating-point instruction caused an error.  
IGNNE# has no effect when the NE bit in control register 0 (CR0) is set.  
IGNNE#  
IGNNE# is an asynchronous signal. However, to ensure recognition of this signal  
following an Input/Output write instruction, it must be valid along with the TRDY#  
assertion of the corresponding Input/Output Write bus transaction.  
INIT# (Initialization), when asserted, resets integer registers inside the processor  
without affecting its internal caches or floating-point registers. The processor then  
begins execution at the power-on Reset vector configured during power-on  
configuration. The processor continues to handle snoop requests during INIT#  
assertion. INIT# is an asynchronous signal. However, to ensure recognition of this  
signal following an Input/Output Write instruction, it must be valid along with the  
TRDY# assertion of the corresponding Input/Output Write bus transaction. INIT#  
must connect the appropriate pins of both FSB agents.  
INIT#  
Input  
If INIT# is sampled active on the active to inactive transition of RESET#, then the  
processor executes its Built-in Self-Test (BIST)  
78  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 22.  
Name  
Signal Description (Sheet 5 of 7)  
Type  
Description  
LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins of all APIC Bus  
agents. When the APIC is disabled, the LINT0 signal becomes INTR, a maskable  
interrupt request signal, and LINT1 becomes NMI, a nonmaskable interrupt. INTR  
and NMI are backward compatible with the signals of those names on the Intel®  
Pentium® processor. Both signals are asynchronous.  
LINT[1:0]  
Input  
Both of these signals must be software configured via BIOS programming of the  
APIC register space to be used either as NMI/INTR or LINT[1:0]. Because the APIC  
is enabled by default after Reset, operation of these pins as LINT[1:0] is the default  
configuration.  
LOCK# indicates to the system that a transaction must occur atomically. This signal  
must connect the appropriate pins of both FSB agents. For a locked sequence of  
transactions, LOCK# is asserted from the beginning of the first transaction to the  
end of the last transaction.  
Input/  
Output  
LOCK#  
When the priority agent asserts BPRI# to arbitrate for ownership of the FSB, it  
waits until it observes LOCK# deasserted. This enables symmetric agents to retain  
ownership of the FSB throughout the bus locked operation and ensure the  
atomicity of lock.  
PRDY#  
PREQ#  
Output  
Input  
Probe Ready signal used by debug tools to determine processor debug readiness.  
Probe Request signal used by debug tools to request debug operation of the  
processor.  
As an output, PROCHOT# (Processor Hot) goes active when the processor  
temperature monitoring sensor detects that the processor has reached its  
maximum safe operating temperature. This indicates that the processor Thermal  
Control Circuit (TCC) has been activated, if enabled. As an input, assertion of  
PROCHOT# by the system activates the TCC, if enabled. The TCC remains active  
until the system deasserts PROCHOT#.  
Input/  
Output  
PROCHOT#  
By default PROCHOT# is configured as an output. The processor must be enabled  
via the BIOS for PROCHOT# to be configured as bidirectional.  
This signal may require voltage translation on the motherboard.  
Processor Power Status Indicator signal. This signal is asserted when the processor  
is in both in the Normal state (HFM to LFM) and in lower power states (Deep Sleep  
and Deeper Sleep).  
PSI#  
Output  
Input  
PWRGOOD (Power Good) is a processor input. The processor requires this signal to  
be a clean indication that the clocks and power supplies are stable and within their  
specifications. ‘Clean’ implies that the signal remains low (capable of sinking  
leakage current), without glitches, from the time that the power supplies are  
turned on until they come within specification. The signal must then transition  
monotonically to a high state. PWRGOOD can be driven inactive at any time, but  
clocks and power must again be stable before a subsequent rising edge of  
PWRGOOD.  
PWRGOOD  
REQ[4:0]#  
The PWRGOOD signal must be supplied to the processor; it is used to protect  
internal circuits against voltage sequencing issues. It should be driven high  
throughout boundary scan operation.  
REQ[4:0]# (Request Command) must connect the appropriate pins of both FSB  
agents. They are asserted by the current bus owner to define the currently active  
transaction type. These signals are source synchronous to ADSTB[0]#.  
Input/  
Output  
Datasheet  
79  
Package Mechanical Specifications and Pin Information  
Table 22.  
Name  
Signal Description (Sheet 6 of 7)  
Type  
Description  
Asserting the RESET# signal resets the processor to a known state and invalidates  
its internal caches without writing back any of their contents. For a power-on  
Reset, RESET# must stay active for at least two milliseconds after VCC and BCLK  
have reached their proper specifications. On observing active RESET#, both FSB  
agents deasserts their outputs within two clocks. All processor straps must be valid  
within the specified setup time before RESET# is deasserted. There is a 55-Ω  
(nominal) on die pull-up resistor on this signal.  
RESET#  
Input  
RS[2:0]# (Response Status) are driven by the response agent (the agent  
responsible for completion of the current transaction), and must connect the  
appropriate pins of both FSB agents.  
RS[2:0]#  
RSVD  
Input  
Reserved These pins are RESERVED and must be left unconnected on the board. However, it  
/No is recommended that routing channels to these pins on the board be kept open for  
Connect possible future use.  
SLP# (Sleep), when asserted in Stop-Grant state, causes the processor to enter  
the Sleep state. During Sleep state, the processor stops providing internal clock  
signals to all units, leaving only the Phase-Locked Loop (PLL) still operating.  
Processors in this state does not recognize snoops or interrupts. The processor  
recognizes only assertion of the RESET# signal, deassertion of SLP#, and removal  
of the BCLK input while in Sleep state. If SLP# is deasserted, the processor exits  
Sleep state and returns to Stop-Grant state, restarting its internal clock signals to  
the bus and processor core units. If DPSLP# is asserted while in the Sleep state,  
the processor exits the Sleep state and transition to the Deep Sleep state.  
SLP#  
Input  
SMI# (System Management Interrupt) is asserted asynchronously by system logic.  
On accepting a System Management Interrupt, the processor saves the current  
state and enters System Management Mode (SMM). An SMI Acknowledge  
transaction is issued and the processor begins program execution from the SMM  
handler.  
SMI#  
Input  
Input  
If an SMI# is asserted during the deassertion of RESET#, then the processor  
tristates its outputs.  
STPCLK# (Stop Clock), when asserted, causes the processor to enter a low power  
Stop-Grant state. The processor issues a Stop-Grant Acknowledge transaction, and  
stops providing internal clock signals to all processor core units except the FSB and  
APIC units. The processor continues to snoop bus transactions and service  
interrupts while in Stop-Grant state. When STPCLK# is deasserted, the processor  
restarts its internal clock to all units and resumes execution. The assertion of  
STPCLK# has no effect on the bus clock; STPCLK# is an asynchronous input.  
STPCLK#  
TCK (Test Clock) provides the clock input for the processor Test Bus (also known as  
the Test Access Port).  
TCK  
TDI  
Input  
Input  
TDI (Test Data In) transfers serial test data into the processor. TDI provides the  
serial input needed for JTAG specification support.  
TDO (Test Data Out) transfers serial test data out of the processor. TDO provides  
the serial output needed for JTAG specification support.  
TDO  
Output  
TEST1, TEST2,  
TEST3,  
TEST1 and TEST2 must have a stuffing option of separate pulldown resistors to  
V
SS. For the purpose of testability, route the TEST3 and TEST5 signals through a  
TEST4,  
Input  
ground-referenced Zo=55 Ω trace that ends in a via that is near a GND via and is  
accessible through an oscilloscope connection.  
TEST5,  
TEST6  
THRMDA  
THRMDC  
Other  
Other  
Thermal Diode Anode.  
Thermal Diode Cathode.  
80  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 22.  
Name  
Signal Description (Sheet 7 of 7)  
Type  
Description  
The processor protects itself from catastrophic overheating by use of an internal  
thermal sensor. This sensor is set well above the normal operating temperature to  
ensure that there are no false trips. The processor stops all execution when the  
junction temperature exceeds approximately 125 °C. This is signalled to the  
system by the THERMTRIP# (Thermal Trip) pin.  
THERMTRIP#  
Output  
TMS  
Input  
Input  
TMS (Test Mode Select) is a JTAG specification support signal used by debug tools.  
TRDY# (Target Ready) is asserted by the target to indicate that it is ready to  
receive a write or implicit writeback data transfer. TRDY# must connect the  
appropriate pins of both FSB agents.  
TRDY#  
TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST# must be driven  
low during power on Reset.  
TRST#  
Input  
VCC  
Input  
Input  
Input  
Input  
Processor core power supply.  
VSS  
Processor core ground node.  
VCCA  
VCCP  
VCCA provides isolated power for the internal processor core PLL’s.  
Processor I/O Power Supply.  
VCC_SENSE together with VSS_SENSE are voltage feedback signals to Intel® MVP-6  
that control the 2.1-mΩ loadline at the processor die. It should be used to sense  
voltage near the silicon with little noise.  
VCC_SENSE  
VID[6:0]  
VSS_SENSE  
Output  
Output  
Output  
VID[6:0] (Voltage ID) pins are used to support automatic selection of power supply  
voltages (VCC). Unlike some previous generations of processors, these are CMOS  
signals that are driven by the processor. The voltage supply for these pins must be  
valid before the VR can supply Vcc to the processor. Conversely, the VR output  
must be disabled until the voltage supply for the VID pins becomes valid. The VID  
pins are needed to support the processor voltage specification variations. See  
Table 2 for definitions of these pins. The VR must supply the voltage that is  
requested by the pins, or disable itself.  
VSS_SENSE together with VCC_SENSE are voltage feedback signals to Intel MVP-6  
that control the 2.1-mΩ loadline at the processor die. It should be used to sense  
ground near the silicon with little noise.  
§
Datasheet  
81  
Package Mechanical Specifications and Pin Information  
82  
Datasheet  
Thermal Specifications and Design Considerations  
5 Thermal Specifications and  
Design Considerations  
Maintaining the proper thermal environment is key to reliable, long-term system  
operation. A complete thermal solution includes both component and system level  
thermal management features. The system/processor thermal solution should be  
designed so that the processor remains within the minimum and maximum junction  
temperature (Tj) specifications at the corresponding thermal design power (TDP) value  
listed in Table 24 through Table 26.  
Caution:  
Operating the processor outside these limits may result in permanent damage to the  
processor and potentially other components in the system.  
Table 23.  
Symbol  
Power Specifications for the 3x00 Celeron Processors  
Processor  
Number  
Thermal Design  
Power  
Core Frequency & Voltage  
Unit  
Notes  
TDP  
TDP  
T1600  
T1700  
1.66 GHz  
35  
35  
W
W
1, 4, 5, 6, 9  
1, 4, 5, 6, 9  
1.83 GHz  
Symbol  
Parameter  
Min Typ Max  
Unit  
PAH,  
Auto Halt, Stop Grant Power at HFM VCC  
13.9  
W
2, 5, 7  
PSGNT  
PSLP  
PDSLP  
TJ  
Sleep Power at VCC  
13.1  
5.5  
W
W
°C  
2, 5, 7  
2, 5, 8  
3, 4  
Deep Sleep Power at VCC  
Junction Temperature  
0
105  
Table 24.  
Symbol  
Power Specifications for the Intel Celeron Dual-Core Processor - Standard  
Voltage  
Processor  
Number  
Thermal Design  
Power  
Core Frequency & Voltage  
Unit  
Notes  
TDP  
TDP  
T1600  
T1700  
1.66 GHz  
35  
35  
W
W
1, 4, 5, 6, 9  
1, 4, 5, 6, 9  
1.83 GHz  
Symbol  
Parameter  
Min Typ Max  
Unit  
PAH,  
Auto Halt, Stop Grant Power at HFM VCC  
13.5  
W
2, 5, 7  
PSGNT  
PSLP  
PDSLP  
TJ  
Sleep Power at VCC  
12.9  
7.7  
W
W
°C  
2, 5, 7  
2, 5, 8  
3, 4  
Deep Sleep Power at VCC  
Junction Temperature  
0
100  
NOTES:  
1.  
The TDP specification should be used to design the processor thermal solution. The TDP is not the  
maximum theoretical power the processor can generate.  
2.  
Not 100% tested. These power specifications are determined by characterization of the processor currents  
at higher temperatures and extrapolating the values for the temperature indicated.  
Datasheet  
83  
Thermal Specifications and Design Considerations  
3.  
4.  
As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal Monitor’s automatic  
mode is used to indicate that the maximum TJ has been reached. Refer to Section 5.1 for details.  
The Intel Thermal Monitor automatic mode must be enabled for the processor to operate within  
specifications.  
At Tj of 100 oC  
At Tj of 50 oC  
At Tj of 35 oC  
512-KB L2 cache  
5.  
6.  
7.  
8.  
Table 25.  
Power Specifications for the Ultra Low Voltage Dual-Core 1M Cache Intel  
Celeron (SFF) Genuine Intel Processor  
Processor  
Number  
Thermal Design  
Power  
Symbol  
Core Frequency  
Unit  
Notes  
TDP  
SU2300  
1.2 GHz  
Parameter  
10  
Min Typ Max  
2.9  
W
Unit  
W
1, 4, 5  
Notes  
2, 6  
Symbol  
PAH,  
Auto Halt, Stop Grant Power  
PSGNT  
PSLP  
Sleep Power  
2.9  
1.3  
0.6  
W
W
W
°C  
2, 6  
2,7  
PDSLP  
PDPRSLP  
TJ  
Deep Sleep Power  
Deeper Sleep Power  
Junction Temperature  
2, 7  
3,4  
0
100  
NOTES:  
1.  
2.  
3.  
4.  
The TDP specification should be used to design the processor thermal solution. The TDP is not the  
maximum theoretical power the processor can generate.  
Not 100% tested. These power specifications are determined by characterization of the processor currents  
at higher temperatures and extrapolating the values for the temperature indicated.  
As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal Monitor’s automatic  
mode is used to indicate that the maximum TJ has been reached. Refer to Section 5.1 for more details.  
The Intel Thermal Monitor automatic mode must be enabled for the processor to operate within  
specifications.  
5.  
6.  
At Tj of 100 oC  
At Tj of 50 °C  
7.  
At Tj of 35 oC  
5.1  
Monitoring Die Temperature  
The processor incorporates three methods of monitoring die temperature:  
• Thermal Diode  
• Intel Thermal Monitor  
• Digital Thermal Sensor  
84  
Datasheet  
Thermal Specifications and Design Considerations  
5.1.1  
Thermal Diode  
The processor incorporates an on-die PNP transistor whose base emitter junction is  
used as a thermal diode, with its collector shorted to ground. The thermal diode can be  
read by an off-die analog/digital converter (a thermal sensor) located on the  
motherboard or a stand-alone measurement kit. The thermal diode may be used to  
monitor the die temperature of the processor for thermal management or  
instrumentation purposes but is not a reliable indication that the maximum operating  
temperature of the processor has been reached. When using the thermal diode, a  
temperature offset value must be read from a processor MSR and applied. See  
Section 5.1.2 for more details. Please see Section 5.1.3 for thermal diode usage  
recommendation when the PROCHOT# signal is not asserted.  
The reading of the external thermal sensor (on the motherboard) connected  
to the processor thermal diode signals does not reflect the temperature of the  
hottest location on the die. This is due to inaccuracies in the external thermal  
sensor, on-die temperature gradients between the location of the thermal diode and the  
hottest location on the die, and time based variations in the die temperature  
measurement. Time-based variations can occur when the sampling rate of the thermal  
diode (by the thermal sensor) is slower than the rate at which the TJ temperature can  
change.  
Offset between the thermal diode-based temperature reading and the Intel Thermal  
Monitor reading may be characterized using the Intel Thermal Monitor’s Automatic  
mode activation of the thermal control circuit. This temperature offset must be taken  
into account when using the processor thermal diode to implement power management  
events. This offset is different than the diode Toffset value programmed into the  
processor Model Specific Register (MSR).  
Table 26 to Table 29 provide the diode interface and specifications. The diode model  
parameters apply to the traditional thermal sensors that use the diode equation to  
determine the processor temperature. Transistor model parameters have been added  
to support thermal sensors that use the transistor equation method. The Transistor  
model may provide more accurate temperature measurements when the diode ideality  
factor is closer to the maximum or minimum limits. Contact your external sensor  
supplier for recommendations. The thermal diode is separate from the Intel Thermal  
Monitor’s thermal sensor and cannot be used to predict the behavior of the Intel  
Thermal Monitor.  
Table 26.  
Thermal Diode Interface  
Signal Name  
Pin/Ball Number  
Signal Description  
THERMDA  
THERMDC  
A24  
A25  
Thermal diode anode  
Thermal diode cathode  
Datasheet  
85  
Thermal Specifications and Design Considerations  
Table 27.  
Thermal Diode Parameters Using Diode Model  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
IFW  
n
Forward Bias Current  
Diode Ideality Factor  
Series Resistance  
5
200  
1.050  
6.24  
µA  
1
1.000  
2.79  
1.009  
4.52  
2, 3, 4  
2, 3, 5  
RT  
Ω
NOTES:  
1.  
Intel does not support or recommend operation of the thermal diode under reverse bias.  
Intel does not support or recommend operation of the thermal diode when the processor  
power supplies are not within their specified tolerance range.  
Characterized across a temperature range of 50-100°C.  
Not 100% tested. Specified by design characterization.  
The ideality factor, n, represents the deviation from ideal diode behavior as exemplified by  
the diode equation:  
2.  
3.  
4.  
qV /nkT  
IFW = IS * (e  
D
–1)  
where IS = saturation current, q = electronic charge, VD = voltage across the diode, k =  
Boltzmann Constant, and T = absolute temperature (Kelvin).  
5.  
The series resistance, RT, is provided to allow for a more accurate measurement of the  
junction temperature. RT, as defined, includes the lands of the processor but does not  
include any socket resistance or board trace resistance between the socket and the  
external remote diode thermal sensor. RT can be used by remote diode thermal sensors  
with automatic series resistance cancellation to calibrate out this error term. Another  
application is that a temperature offset can be manually calculated and programmed into  
an offset register in the remote diode thermal sensors as exemplified by the equation:  
Terror = [RT * (N-1) * IFWmin] / [nk/q * ln N]  
where Terror = sensor temperature error, N = sensor current ratio, k = Boltzmann  
Constant, q = electronic charge.  
86  
Datasheet  
Thermal Specifications and Design Considerations  
Table 28.  
Thermal Diode Parameters Using Transistor Model  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
IFW  
IE  
Forward Bias Current  
Emitter Current  
5
5
200  
200  
μA  
μA  
1,2  
1
nQ  
Transistor Ideality  
0.997  
0.3  
1.001  
4.52  
1.005  
0.760  
6.24  
3,4,5  
3,4  
3,6  
Beta  
RT  
Series Resistance  
2.79  
Ω
NOTES:  
1.  
2.  
3.  
4.  
5.  
Intel does not support or recommend operation of the thermal diode under reverse bias.  
Same as IFW in Table 27.  
Characterized across a temperature range of 50-100°C.  
Not 100% tested. Specified by design characterization.  
The ideality factor, nQ, represents the deviation from ideal transistor model behavior as  
exemplified by the equation for the collector current:  
qV /n kT  
IC = IS * (e  
BE  
Q
–1)  
where IS = saturation current, q = electronic charge, VBE = voltage across the transistor  
base emitter junction (same nodes as VD), k = Boltzmann Constant, and T = absolute  
temperature (Kelvin).  
6.  
The series resistance, RT, provided in the Diode Model Table (Table 27) can be used for  
more accurate readings as needed.  
When calculating a temperature based on the thermal diode measurements, a number  
of parameters must be either measured or assumed. Most devices measure the diode  
ideality and assume a series resistance and ideality trim value, although are capable of  
also measuring the series resistance. Calculating the temperature is then accomplished  
using the equations listed under Table 27. In most sensing devices, an expected value  
for the diode ideality is designed-in to the temperature calculation equation. If the  
designer of the temperature sensing device assumes a perfect diode, the ideality value  
(also called ntrim) is 1.000. Given that most diodes are not perfect, the designers  
usually select an ntrim value that more closely matches the behavior of the diodes in  
the processor. If the processor diode ideality deviates from that of the ntrim, each  
calculated temperature offsets by a fixed amount. This temperature offset can be  
calculated with the equation:  
Terror(nf) = Tmeasured * (1 - nactual/ntrim  
)
where Terror(nf) is the offset in degrees C, Tmeasured is in Kelvin, nactual is the measured  
ideality of the diode, and ntrim is the diode ideality assumed by the temperature  
sensing device.  
5.1.2  
Thermal Diode Offset  
In order to improve the accuracy of the diode-based temperature measurements, a  
temperature offset value (specified as Toffset) is programmed in the processor MSR  
which contains thermal diode characterization data. During manufacturing each  
processor thermal diode is evaluated for its behavior relative to the theoretical diode.  
Using the equation above, the temperature error created by the difference ntrim and the  
actual ideality of the particular processor is calculated.  
Datasheet  
87  
Thermal Specifications and Design Considerations  
If the ntrim value used to calculate the Toffset differs from the ntrim value used to in a  
temperature sensing device, the Terror(nf) may not be accurate. If desired, the Toffset  
can be adjusted by calculating nactual and then recalculating the offset using the ntrim as  
defined in the temperature sensor manufacturer’s datasheet.  
The ntrim used to calculate the Diode Correction Toffset are listed in Table 29.  
Table 29.  
Thermal Diode ntrim and Diode Correction Toffset  
Symbol  
Parameter  
Value  
ntrim  
Diode Ideality used to calculate Toffset  
1.01  
5.1.3  
Intel® Thermal Monitor  
The Intel Thermal Monitor helps control the processor temperature by activating the  
TCC (Thermal Control Circuit) when the processor silicon reaches its maximum  
operating temperature. The temperature at which the Intel Thermal Monitor activates  
the TCC is not user configurable. Bus traffic is snooped in the normal manner and  
interrupt requests are latched (and serviced during the time that the clocks are on)  
while the TCC is active.  
With a properly designed and characterized thermal solution, it is anticipated that the  
TCC would only be activated for very short periods of time when running the most  
power intensive applications. The processor performance impact due to these brief  
periods of TCC activation is expected to be minor and hence not detectable. An under-  
designed thermal solution that is not able to prevent excessive activation of the TCC in  
the anticipated ambient environment may cause a noticeable performance loss and  
may affect the long-term reliability of the processor. In addition, a thermal solution that  
is significantly under-designed may not be capable of cooling the processor even when  
the TCC is active continuously.  
The Intel Thermal Monitor controls the processor temperature by modulating (starting  
and stopping) the processor core clocks when the processor silicon reaches its  
maximum operating temperature. The Intel Thermal Monitor uses two modes to  
activate the TCC: automatic mode and on-demand mode. If both modes are activated,  
automatic mode takes precedence.  
There are two automatic modes called Intel Thermal Monitor 1 and Intel Thermal  
Monitor 2. These modes are selected by writing values to the MSRs of the processor.  
After automatic mode is enabled, the TCC activates only when the internal die  
temperature reaches the maximum allowed value for operation.  
When Intel Thermal Monitor 1 is enabled and a high temperature situation exists, the  
clocks modulates by alternately turning the clocks off and on at a 50% duty cycle.  
Cycle times are processor speed dependent and decreases linearly as processor core  
frequencies increase. Once the temperature has returned to a non-critical level,  
modulation ceases and TCC goes inactive. A small amount of hysteresis has been  
included to prevent rapid active/inactive transitions of the TCC when the processor  
temperature is near the trip point. The duty cycle is factory configured and cannot be  
modified. Also, automatic mode does not require any additional hardware, software  
drivers, or interrupt handling routines. Processor performance decreases by the same  
amount as the duty cycle when the TCC is active.  
Note:  
Intel Thermal Monitor 1 and Intel Thermal Monitor 2 features are collectively referred  
to as Adaptive Thermal Monitoring features. Intel recommends Intel Thermal Monitor 1  
and 2 be enabled on the processors.  
88  
Datasheet  
Thermal Specifications and Design Considerations  
Intel Thermal Monitor 1 and 2 can co-exist within the processor. If both Intel Thermal  
Monitor 1 and 2 bits are enabled in the auto-throttle MSR, Intel Thermal Monitor 2  
takes precedence over Intel Thermal Monitor 1. However, if Force Intel Thermal Monitor  
1 over Intel Thermal Monitor 2 is enabled in MSRs via BIOS and Intel Thermal Monitor  
2 is not sufficient to cool the processor below the maximum operating temperature,  
then Intel Thermal Monitor 1 also activates to help cool down the processor.  
The TCC may also be activated via on-demand mode. If Bit 4 of the ACPI Intel Thermal  
Monitor control register is written to a 1, the TCC activates immediately independent of  
the processor temperature. When using on-demand mode to activate the TCC, the duty  
cycle of the clock modulation is programmable via bits 3:1 of the same ACPI Intel  
Thermal Monitor control register. In automatic mode, the duty cycle is fixed at 50% on,  
50% off, however in on-demand mode, the duty cycle can be programmed from 12.5%  
on/ 87.5% off, to 87.5% on/12.5% off in 12.5% increments. On-demand mode may be  
used at the same time automatic mode is enabled, however, if the system tries to  
enable the TCC via on-demand mode at the same time automatic mode is enabled and  
a high temperature condition exists, automatic mode takes precedence.  
An external signal, PROCHOT# (processor hot) is asserted when the processor detects  
that its temperature is above the thermal trip point. Bus snooping and interrupt  
latching are also active while the TCC is active.  
Besides the thermal sensor and thermal control circuit, the Intel Thermal Monitor also  
includes one ACPI register, one performance counter register, three MSR, and one I/O  
pin (PROCHOT#). All are available to monitor and control the state of the Intel Thermal  
Monitor feature. The Intel Thermal Monitor can be configured to generate an interrupt  
upon the assertion or deassertion of PROCHOT#.  
PROCHOT# is not be asserted when the processor is in the Stop Grant, Sleep, Deep  
Sleep, and Deeper Sleep low power states, hence the thermal diode reading must be  
used as a safeguard to maintain the processor junction temperature within maximum  
specification. If the platform thermal solution is not able to maintain the processor  
junction temperature within the maximum specification, the system must initiate an  
orderly shutdown to prevent damage. If the processor enters one of the above low  
power states with PROCHOT# already asserted, PROCHOT# will remain asserted until  
the processor exits the low power state and the processor junction temperature drops  
below the thermal trip point.  
If Intel Thermal Monitor automatic mode is disabled, the processor will be operating out  
of specification. Regardless of enabling the automatic or on-demand modes, in the  
event of a catastrophic cooling failure, the processor will automatically shut down when  
the silicon has reached a temperature of approximately 125°C. At this point the  
THERMTRIP# signal will go active. THERMTRIP# activation is independent of processor  
activity and does not generate any bus cycles. When THERMTRIP# is asserted, the  
processor core voltage must be shut down within the time specified in Chapter 3.  
In all cases, the Intel Thermal Monitor feature must be enabled for the processor to  
remain within specification.  
5.1.4  
Digital Thermal Sensor  
The processor also contains an on die Digital Thermal Sensor (DTS) that can be read  
via an MSR (no I/O interface). Each core of the processor will have a unique digital  
thermal sensor whose temperature is accessible via the processor MSRs. The DTS is the  
preferred method of reading the processor die temperature since it can be located  
much closer to the hottest portions of the die and can thus more accurately track the  
die temperature and potential activation of processor core clock modulation via the  
Intel Thermal Monitor. The DTS is only valid while the processor is in the normal  
operating state (the Normal package level low-power state).  
Datasheet  
89  
Thermal Specifications and Design Considerations  
Unlike traditional thermal devices, the DTS will output a temperature relative to the  
maximum supported operating temperature of the processor (TJ,max). It is the  
responsibility of software to convert the relative temperature to an absolute  
temperature. The temperature returned by the DTS will always be at or below TJ,max  
.
Catastrophic temperature conditions are detectable via an Out Of Spec status bit. This  
bit is also part of the DTS MSR. When this bit is set, the processor is operating out of  
specification and immediate shutdown of the system should occur. The processor  
operation and code execution is not guaranteed once the activation of the Out of Spec  
status bit is set.  
The DTS-relative temperature readout corresponds to the Intel Thermal Monitor 1/Intel  
Thermal Monitor 2 trigger point. When the DTS indicates maximum processor core  
temperature has been reached, the Intel Thermal Monitor 1 or 2 hardware thermal  
control mechanism will activate. The DTS and Intel Thermal Monitor 1/Intel Thermal  
Monitor 2 temperature may not correspond to the thermal diode reading because the  
thermal diode is located in a separate portion of the die and thermal gradient between  
the individual core DTS. Additionally, the thermal gradient from DTS to thermal diode  
can vary substantially due to changes in processor power, mechanical and thermal  
attach, and software application. The system designer is required to use the DTS to  
guarantee proper operation of the processor within its temperature operating  
specifications.  
Changes to the temperature can be detected via two programmable thresholds located  
in the processor MSRs. These thresholds have the capability of generating interrupts  
via the core's local APIC. Refer to the Intel® 64 and IA-32 Architectures Software  
Developer’s Manual for specific register and programming details.  
5.1.5  
5.1.6  
Out of Specification Detection  
Overheat detection is performed by monitoring the processor temperature and  
temperature gradient. This feature is intended for graceful shut down before the  
THERMTRIP# is activated. If the processor’s Intel Thermal Monitor 1 or 2 are triggered  
and the temperature remains high, an “Out Of Spec” status and sticky bit are latched in  
the status MSR register and generates thermal interrupt.  
PROCHOT# Signal Pin  
An external signal, PROCHOT# (processor hot), is asserted when the processor die  
temperature has reached its maximum operating temperature. If Intel Thermal Monitor  
1 or 2 is enabled, then the TCC will be active when PROCHOT# is asserted. The  
processor can be configured to generate an interrupt upon the assertion or deassertion  
of PROCHOT#. Refer to the Intel® 64 and IA-32 Architectures Software Developer’s  
Manual for specific register and programming details.  
The processor implements a bi-directional PROCHOT# capability to allow system  
designs to protect various components from overheating situations. The PROCHOT#  
signal is bi-directional in that it can either signal when the processor has reached its  
maximum operating temperature or be driven from an external source to activate the  
TCC. The ability to activate the TCC via PROCHOT# can provide a means for thermal  
protection of system components.  
Only a single PROCHOT# pin exists at a package level of the processor. When either  
core's thermal sensor trips, the PROCHOT# signal will be driven by the processor  
package. If only Intel Thermal Monitor 1 is enabled, PROCHOT# will be asserted and  
only the core that is above TCC temperature trip point will have its core clocks  
modulated. If Intel Thermal Monitor 2 is enabled, then regardless of which core(s) are  
above TCC temperature trip point, both cores will enter the lowest programmed Intel  
Thermal Monitor 2 performance state. It is important to note that Intel recommends  
both Intel Thermal Monitor 1 and 2 to be enabled.  
90  
Datasheet  
Thermal Specifications and Design Considerations  
When PROCHOT# is driven by an external agent, if only Intel Thermal Monitor 1 is  
enabled on both cores, then both processor cores will have their core clocks modulated.  
If Intel Thermal Monitor 2 is enabled on both cores, then both processor cores will  
enter the lowest programmed Intel Thermal Monitor 2 performance state. It should be  
noted that Force Intel Thermal Monitor 1 on Intel Thermal Monitor 2, enabled via BIOS,  
does not have any effect on external PROCHOT#. If PROCHOT# is driven by an external  
agent when Intel Thermal Monitor 1, Intel Thermal Monitor 2, and Force Intel Thermal  
Monitor 1 on Intel Thermal Monitor 2 are all enabled, then the processor will still apply  
only Intel Thermal Monitor 2.  
PROCHOT# may be used for thermal protection of voltage regulators (VR). System  
designers can create a circuit to monitor the VR temperature and activate the TCC  
when the temperature limit of the VR is reached. By asserting PROCHOT# (pulled-low)  
and activating the TCC, the VR will cool down as a result of reduced processor power  
consumption. Bi-directional PROCHOT# can allow VR thermal designs to target  
maximum sustained current instead of maximum current. Systems should still provide  
proper cooling for the VR and rely on bi-directional PROCHOT# only as a backup in case  
of system cooling failure. The system thermal design should allow the power delivery  
circuitry to operate within its temperature specification even while the processor is  
operating at its TDP. With a properly designed and characterized thermal solution, it is  
anticipated that bi-directional PROCHOT# would only be asserted for very short periods  
of time when running the most power intensive applications. An under-designed  
thermal solution that is not able to prevent excessive assertion of PROCHOT# in the  
anticipated ambient environment may cause a noticeable performance loss.  
§
Datasheet  
91  
Thermal Specifications and Design Considerations  
92  
Datasheet  
1
2
3
4
5
6
7
8
Coordination of Core-Level Low-Power States at the Package Level................................. 11  
Voltage Identification Definition ................................................................................ 19  
BSEL[2:0] Encoding for BCLK Frequency ..................................................................... 23  
FSB Pin Groups........................................................................................................ 24  
Processor Absolute Maximum Ratings ......................................................................... 25  
DC Voltage and Current Specifications for the T3x00 Celeron Processors ......................... 27  
DC Voltage and Current Specifications for the T1x00 Celeron Mobile Processors................ 28  
Voltage and Current Specifications for the Ultra Low Voltage Dual-Core 1M Cache Intel  
Celeron SFF Genuine Intel Processor........................................................................... 29  
FSB Differential BCLK Specifications ........................................................................... 30  
9
10 AGTL+ Signal Group DC Specifications........................................................................ 31  
11 CMOS Signal Group DC Specifications......................................................................... 32  
12 Open Drain Signal Group DC Specifications.................................................................. 32  
13 The Coordinates of the Processor Pins as Viewed from the Top of the Package  
(Sheet 1 of 2).......................................................................................................... 39  
14 The Coordinates of the Processor Pins as Viewed from the Top of the Package (Sheet 2 of  
2).......................................................................................................................... 40  
15 SFF Processor Top View Upper Left Side...................................................................... 41  
16 SFF Processor Top View Upper Right Side.................................................................... 42  
17 SFF Processor Top View Lower Left Side...................................................................... 43  
18 SFF Processor Top View Lower Right Side.................................................................... 44  
19 Pin Listing by Pin Name............................................................................................. 45  
20 Pin Listing by Pin Number.......................................................................................... 52  
21 SFF Listing by Ball Name........................................................................................... 61  
22 Signal Description .................................................................................................... 75  
23 Power Specifications for the 3x00 Celeron Processors.................................................... 83  
24 Power Specifications for the Intel Celeron Dual-Core Processor - Standard Voltage............ 83  
25 Power Specifications for the Ultra Low Voltage Dual-Core 1M Cache Intel Celeron (SFF)  
Genuine Intel Processor ............................................................................................ 84  
26 Thermal Diode Interface ........................................................................................... 85  
27 Thermal Diode Parameters Using Diode Model.............................................................. 86  
28 Thermal Diode Parameters Using Transistor Model........................................................ 87  
29 Thermal Diode ntrim and Diode Correction Toffset........................................................ 88  
Datasheet  
1
2
Datasheet  
1
2
3
4
5
6
7
Package-Level Low-Power States ............................................................................... 11  
Core Low-Power States............................................................................................. 12  
4-MB and Fused 2-MB Micro-FCPGA Processor Package Drawing (Sheet 1 of 2) ................ 34  
4-MB and Fused 2-MB Micro-FCPGA Processor Package Drawing (Sheet 2 of 2) ................ 35  
2-MB Micro-FCPGA Processor Package Drawing (Sheet 1 of 2)........................................ 36  
2-MB Micro-FCPGA Processor Package Drawing (Sheet 2 of 2)........................................ 37  
SFF (ULV DC) Die Micro-FCBGA Processor Package Drawing........................................... 38  
Datasheet  
1
2
Datasheet  
1
2
Introduction..............................................................................................................7  
1.1  
1.2  
Terminology .......................................................................................................8  
References .........................................................................................................9  
Low Power Features................................................................................................ 11  
2.1  
Clock Control and Low Power States .................................................................... 11  
2.1.1 Core Low-Power States ........................................................................... 12  
2.1.1.1 C0 State.................................................................................. 12  
2.1.1.2 C1/AutoHALT Powerdown State .................................................. 12  
2.1.1.3 C1/MWAIT Powerdown State ...................................................... 13  
2.1.1.4 Core C2 State........................................................................... 13  
2.1.1.5 Core C3 State........................................................................... 13  
2.1.1.6 Core C4 State........................................................................... 13  
2.1.2 Package Low-Power States ...................................................................... 13  
2.1.2.1 Normal State............................................................................ 13  
2.1.2.2 Stop-Grant State ...................................................................... 13  
2.1.2.3 Stop Grant Snoop State............................................................. 14  
2.1.2.4 Sleep State.............................................................................. 14  
2.1.2.5 Deep Sleep State...................................................................... 15  
2.1.2.6 Deeper Sleep State................................................................... 15  
Enhanced Intel SpeedStep® Technology .............................................................. 15  
Low-Power FSB Features.................................................................................... 16  
Processor Power Status Indicator (PSI#) Signal..................................................... 17  
2.2  
2.3  
2.4  
3
Electrical Specifications........................................................................................... 19  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Power and Ground Pins ...................................................................................... 19  
FSB Clock (BCLK[1:0]) and Processor Clocking...................................................... 19  
Voltage Identification......................................................................................... 19  
Catastrophic Thermal Protection.......................................................................... 22  
Reserved and Unused Pins.................................................................................. 22  
FSB Frequency Select Signals (BSEL[2:0])............................................................ 23  
FSB Signal Groups............................................................................................. 23  
CMOS Signals ................................................................................................... 25  
Maximum Ratings.............................................................................................. 25  
3.10 Processor DC Specifications ................................................................................ 26  
4
5
Package Mechanical Specifications and Pin Information.......................................... 33  
4.1  
4.2  
4.3  
Package Mechanical Specifications....................................................................... 33  
Processor Pinout and Pin List .............................................................................. 39  
Alphabetical Signals Reference............................................................................ 75  
Thermal Specifications and Design Considerations .................................................. 83  
5.1  
Monitoring Die Temperature ............................................................................... 84  
5.1.1 Thermal Diode ....................................................................................... 85  
5.1.2 Thermal Diode Offset.............................................................................. 87  
5.1.3 Intel® Thermal Monitor........................................................................... 88  
5.1.4 Digital Thermal Sensor............................................................................ 89  
5.1.5 Out of Specification Detection .................................................................. 90  
5.1.6 PROCHOT# Signal Pin............................................................................. 90  
Datasheet  
1
2
Datasheet  

相关型号:

AV80577UG0091ML/SLGYW

RISC Microprocessor, 64-Bit, 1200MHz, CMOS, PBGA956
INTEL

AV80577UG0093M

Microprocessor, 64-Bit, 1200MHz, CMOS, PBGA956, FCBGA-956
INTEL

AV80577UG0093M/SLB5Q

RISC Microprocessor, 64-Bit, 1200MHz, CMOS, PBGA956
INTEL

AV80577UG0093M/SLGAL

RISC Microprocessor, 64-Bit, 1200MHz, CMOS, PBGA956,
INTEL

AV80577UG0173M/SLB5V

RISC Microprocessor, 64-Bit, 1400MHz, PBGA956
INTEL

AV80577UG0173M/SLGAK

RISC Microprocessor, 64-Bit, 1400MHz, PBGA956
INTEL

AV80577UG0173M/SLGS5

RISC Microprocessor, 64-Bit, 1400MHz, PBGA956
INTEL

AV80577UG0253M/SLGFN

RISC Microprocessor, 64-Bit, 1600MHz, PBGA956
INTEL

AV80577VG0253M/SLGEX

RISC Microprocessor, 64-Bit, 1600MHz, PBGA956
INTEL

AV80585UG0093M/SLGAJ

RISC Microprocessor, 64-Bit, 1400MHz, PBGA956
INTEL

AV80585UG0093M/SLGAR

RISC Microprocessor, 64-Bit, 1400MHz, PBGA956
INTEL

AV80585UG0133M/SLGFM

RISC Microprocessor, 64-Bit, 1300MHz, CMOS, PBGA956
INTEL