AT80602002265AB [INTEL]

Microprocessor, 64-Bit, 2130MHz, CMOS, PBGA1366, HALOGEN FREE, FC-LGA8-1366;
AT80602002265AB
型号: AT80602002265AB
厂家: INTEL    INTEL
描述:

Microprocessor, 64-Bit, 2130MHz, CMOS, PBGA1366, HALOGEN FREE, FC-LGA8-1366

外围集成电路
文件: 总207页 (文件大小:6569K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intel® Xeon® Processor 5500 Series  
Datasheet, Volume 1  
June 2011  
Document Number: 321321-002  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,  
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS  
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,  
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING  
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY  
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or  
life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.Intel  
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future  
changes to them.  
The Intel® Xeon® Processor 5500 Series may contain design defects or errors known as errata which may cause the product to  
deviate from published specifications.Current characterized errata are available on request.  
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family,  
not across different processor families. See http://www.intel.com/products/processor_number for details. Over time processor  
numbers will increment based on changes in clock, speed, cache, FSB, or other features, and increments are not intended to  
represent proportional or quantitative increases in any particular feature. Current roadmap processor number progression is not  
necessarily representative of future roadmaps. See www.intel.com/products/processor_number for details.  
Hyper-Threading Technology requires a computer system with a processor supporting HT Technology and an HT Technology-  
enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use. For  
more information including details on which processors support HT Technology, see  
http://www.intel.com/products/ht/hyperthreading_more.htm  
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting  
operating system. Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.  
64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device  
drivers and applications enabled for Intel® 64 architecture. Performance will vary depending on your hardware and software  
configurations. Consult with your system vendor for more information.  
Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor  
(VMM) and, for some uses, certain computer system software enabled for it. Functionality, performance or other benefits will vary  
depending on hardware and software configurations and may require a BIOS update. Software applications may not be compatible  
with all operating systems. Please check with your application vendor.  
Intel® Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost  
Technology performance varies depending on hardware, software and overall system configuration. Check with your PC  
manufacturer on whether your system delivers Intel Turbo Boost Technology. For more information, see www.intel.com.  
Enhanced Intel SpeedStep® Technology. See the http://processorfinder.intel.com or contact your Intel representative for more  
information.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Intel, Xeon, Enhanced Intel SpeedStep Technology, and the Intel logo are trademarks of Intel Corporation in the United States and  
other countries.  
*Other brands and names are the property of their respective owners.  
Copyright © 2009-2011, Intel Corporation.  
®
®
2
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Contents  
1
Introduction..............................................................................................................9  
1.1  
1.2  
1.3  
Terminology ..................................................................................................... 10  
References ....................................................................................................... 12  
Statement of Volatility ....................................................................................... 12  
2
Intel® Xeon® Processors 5500 Series Electrical Specifications ............................... 13  
2.1  
Processor Signaling ........................................................................................... 13  
2.1.1 Intel® QuickPath Interconnect ................................................................. 13  
2.1.2 DDR3 Signal Groups ............................................................................... 13  
2.1.3 Platform Environmental Control Interface (PECI) ........................................ 14  
2.1.4 Processor Sideband Signals ..................................................................... 14  
2.1.5 System Reference Clock.......................................................................... 14  
2.1.6 Test Access Port (TAP) Signals ................................................................. 15  
2.1.7 Power / Other Signals............................................................................. 15  
2.1.8 Reserved or Unused Signals..................................................................... 23  
Signal Group Summary...................................................................................... 23  
Mixing Processors.............................................................................................. 25  
Flexible Motherboard Guidelines (FMB)................................................................. 26  
Absolute Maximum and Minimum Ratings ............................................................. 26  
Processor DC Specifications ................................................................................ 27  
2.6.1 VCC Overshoot Specifications................................................................... 31  
2.6.2 Die Voltage Validation............................................................................. 32  
2.2  
2.3  
2.4  
2.5  
2.6  
3
Package Mechanical Specifications .......................................................................... 43  
3.1  
Package Mechanical Specifications....................................................................... 43  
3.1.1 Package Mechanical Drawing.................................................................... 44  
3.1.2 Processor Component Keep-Out Zones...................................................... 47  
3.1.3 Package Loading Specifications ................................................................ 47  
3.1.4 Package Handling Guidelines.................................................................... 47  
3.1.5 Package Insertion Specifications............................................................... 47  
3.1.6 Processor Mass Specification.................................................................... 48  
3.1.7 Processor Materials................................................................................. 48  
3.1.8 Processor Markings................................................................................. 48  
3.1.9 Processor Land Coordinates..................................................................... 48  
4
Land Listing............................................................................................................. 49  
4.1  
Intel® Xeon® Processors 5500 Series Pin Assignments.......................................... 49  
4.1.1 Land Listing by Land Name...................................................................... 49  
4.1.2 Land Listing by Land Number................................................................... 67  
5
6
Signal Definitions .................................................................................................... 85  
5.1 Signal Definitions .............................................................................................. 85  
Thermal Specifications ............................................................................................ 89  
6.1  
Package Thermal Specifications........................................................................... 89  
6.1.1 Thermal Specifications ............................................................................ 89  
6.1.2 Thermal Metrology ............................................................................... 102  
Processor Thermal Features.............................................................................. 103  
6.2.1 Processor Temperature ......................................................................... 103  
6.2.2 Adaptive Thermal Monitor...................................................................... 103  
6.2.3 On-Demand Mode ................................................................................ 105  
6.2.4 PROCHOT# Signal................................................................................ 105  
6.2.5 THERMTRIP# Signal ............................................................................. 106  
Platform Environment Control Interface (PECI).................................................... 106  
6.3.1 PECI Client Capabilities ......................................................................... 107  
6.2  
6.3  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
3
6.3.2 Client Command Suite...........................................................................108  
6.3.3 Multi-Domain Commands.......................................................................124  
6.3.4 Client Responses ..................................................................................124  
6.3.5 Originator Responses ............................................................................125  
6.3.6 Temperature Data ................................................................................126  
6.3.7 Client Management...............................................................................127  
7
Features ................................................................................................................131  
7.1  
7.2  
Power-On Configuration (POC)...........................................................................131  
Clock Control and Low Power States...................................................................132  
7.2.1 Thread and Core Power State Descriptions ...............................................133  
7.2.2 Package Power State Descriptions...........................................................134  
7.2.3 Intel Xeon Processor 5500 Series C-State Power Specifications ...................135  
Sleep States ...................................................................................................136  
Intel® Turbo Boost Technology..........................................................................136  
Enhanced Intel SpeedStep® Technology .............................................................136  
7.3  
7.4  
7.5  
8
Boxed Processor Specifications..............................................................................137  
8.1  
Introduction....................................................................................................137  
8.1.1 Available Boxed Thermal Solution Configurations ......................................137  
8.1.2 An Intel “Combo” Boxed Passive / Active Combination Heat Sink Solution.....137  
8.1.3 Intel Boxed “Active” Heat Sink Solution ...................................................138  
8.1.4 Intel Boxed 25.5mm Tall Passive Heat Sink Solution..................................139  
Mechanical Specifications..................................................................................140  
8.2.1 Boxed Processor Heat Sink Dimensions and Baseboard Keepout Zones ........140  
8.2.2 Boxed Processor Retention Mechanism and Heat Sink  
8.2  
Support (URS)......................................................................................149  
Fan Power Supply (“Combo” and “Active” Solution) ..............................................150  
8.3.1 Boxed Processor Cooling Requirements....................................................151  
Boxed Processor Contents.................................................................................153  
8.3  
8.4  
®
®
4
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Figures  
2-1  
Active ODT for a Differential Link Example............................................................ 13  
Input Device Hysteresis ..................................................................................... 14  
VCC Static and Transient Tolerance Loadlines1,2,3,4.............................................. 31  
VCC Overshoot Example Waveform...................................................................... 32  
Load Current Versus Time (130W TDP Processor),2................................................ 33  
Load Current Versus Time (95W TDP Processor),2 ................................................. 34  
Load Current Versus Time (80W TDP Processor),2 ................................................. 35  
Load Current Versus Time (60W TDP Processor),2 ................................................. 36  
Load Current Versus Time (38W TDP Processor),2 ................................................. 37  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-8  
2-9  
2-10 VTT Static and Transient Tolerance Loadlines ........................................................ 39  
3-1  
3-2  
3-3  
3-4  
6-1  
6-2  
6-3  
6-4  
6-5  
6-6  
6-7  
6-8  
6-9  
Processor Package Assembly Sketch .................................................................... 43  
Processor Package Drawing (Sheet 1 of 2)............................................................ 45  
Processor Package Drawing (Sheet 2 of 2)............................................................ 46  
Processor Top-Side Markings .............................................................................. 48  
Intel® Xeon® Processor W5580 Thermal Profile.................................................... 91  
Intel® Xeon® Processor 5500 Series Advanced SKU Thermal Profile........................ 93  
Intel Xeon Processor 5500 Series Standard/Basic SKUs Thermal Profile .................... 95  
Intel Xeon Processor 5500 Series Low Power SKU Thermal Profile............................ 97  
Intel Xeon Processor L5518 Thermal Profile .......................................................... 99  
Intel Xeon Processor L5508 Thermal Profile ........................................................ 101  
Case Temperature (TCASE) Measurement Location .............................................. 102  
Frequency and Voltage Ordering........................................................................ 104  
Ping()............................................................................................................ 108  
6-10 Ping() Example ............................................................................................... 108  
6-11 GetDIB()........................................................................................................ 109  
6-12 Device Info Field Definition............................................................................... 109  
6-13 Revision Number Definition............................................................................... 109  
6-14 GetTemp() ..................................................................................................... 110  
6-15 GetTemp() Example......................................................................................... 110  
6-16 PCI Configuration Address ................................................................................ 111  
6-17 PCIConfigRd()................................................................................................. 112  
6-18 PCIConfigWr() ................................................................................................ 114  
6-19 Thermal Status Word....................................................................................... 116  
6-20 Thermal Data Configuration Register.................................................................. 117  
6-21 Machine Check Read MbxSend() Data Format...................................................... 117  
6-22 ACPI T-state Throttling Control Read / Write Definition......................................... 119  
6-23 MbxSend() Command Data Format.................................................................... 120  
6-24 MbxSend() ..................................................................................................... 120  
6-25 MbxGet() ....................................................................................................... 122  
6-26 Temperature Sensor Data Format...................................................................... 126  
6-27 PECI Power-up Timeline ................................................................................... 128  
7-1  
7-2  
8-1  
8-2  
8-3  
8-4  
8-5  
8-6  
8-7  
PROCHOT# POC Timing Requirements ............................................................... 132  
Power States .................................................................................................. 133  
Boxed Active Heat Sink.................................................................................... 138  
Boxed Passive / Active Combination Heat Sink (With Removable Fan) .................... 138  
Boxed Passive/Active Combination Heat Sink (with Fan Removed) ......................... 139  
Intel Boxed 25.5 mm Tall Passive Heat Sink Solution ........................................... 139  
Top Side Baseboard Keep-Out Zones ................................................................. 141  
Top Side Baseboard Mounting-Hole Keep-Out Zones ............................................ 142  
Bottom Side Baseboard Keep-Out Zones ............................................................ 143  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
5
8-8  
8-9  
Primary and Secondary Side 3D Height Restriction Zones......................................144  
Volumetric Height Keep-Ins...............................................................................145  
8-10 Volumetric Height Keep-Ins...............................................................................146  
8-11 4-Pin Fan Cable Connector (For Active Heat Sink) ................................................147  
8-12 4-Pin Base Baseboard Fan Header (For Active Heat Sink) ......................................148  
8-13 Thermal Solution Installation.............................................................................150  
8-14 Fan Cable Connector Pin Out For 4-Pin Active Thermal Solution..............................151  
Tables  
1-1  
Intel® Xeon® Processor 5500 Series Feature Set Overview ....................................10  
References........................................................................................................12  
Processor Power Supply Voltages1 .......................................................................15  
Voltage Identification Definition ...........................................................................17  
Power-On Configuration (POC[7:0]) Decode ..........................................................22  
VTT Voltage Identification Definition.....................................................................23  
Signal Groups ...................................................................................................23  
Signals With On-Die Termination (ODT)................................................................25  
Processor Absolute Minimum and Maximum Ratings ...............................................27  
Voltage and Current Specifications.......................................................................27  
VCC Static and Transient Tolerance.....................................................................30  
1-2  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-8  
2-9  
2-10 VCC Overshoot Specifications..............................................................................31  
2-11 VTT Static and Transient Tolerance .....................................................................37  
2-12 DDR3 Signal Group DC Specifications ...................................................................39  
2-13 PECI DC Electrical Limits.....................................................................................40  
2-14 RESET# Signal DC Specifications .........................................................................41  
2-15 TAP Signal Group DC Specifications......................................................................41  
2-16 PWRGOOD Signal Group DC Specifications ............................................................41  
2-17 Control Sideband Signal Group DC Specifications ...................................................42  
3-1  
3-2  
3-3  
4-1  
4-2  
5-1  
6-1  
6-2  
6-3  
6-4  
6-5  
6-6  
6-7  
6-8  
6-9  
Processor Loading Specifications..........................................................................47  
Package Handling Guidelines...............................................................................47  
Processor Materials ............................................................................................48  
Land Listing by Land Name .................................................................................49  
Land Listing by Land Number ..............................................................................67  
Signal Definitions...............................................................................................85  
Intel® Xeon® Processor W5580 Thermal Specifications..........................................91  
Intel Xeon Processor W5580 Thermal Profile..........................................................92  
Intel Xeon Processor 5500 Series Advanced SKU Thermal Specifications....................92  
Intel Xeon Processor 5500 Series Advanced SKU Thermal Profile A...........................94  
Intel Xeon Processor 5500 Series Advanced SKU Thermal Profile B...........................94  
Intel Xeon Processor 5500 Series Standard/Basic SKUs Thermal Specifications...........95  
Intel Xeon Processor 5500 Series Standard/Basic SKUs Thermal Profile.....................96  
Intel Xeon Processor 5500 Series Low Power SKU Thermal Specifications ..................96  
Intel Xeon Processor 5500 Series Low Power SKU Thermal Profile ............................98  
6-10 Intel Xeon Processor L5518 Thermal Specifications.................................................98  
6-11 Intel Xeon Processor L5518 Thermal Profile.........................................................100  
6-12 Intel Xeon Processor L5508 Thermal Specifications...............................................100  
6-13 Intel Xeon Processor L5508 Thermal Profile.........................................................101  
6-14 Summary of Processor-specific PECI Commands ..................................................107  
6-15 GetTemp() Response Definition .........................................................................111  
®
®
6
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
6-16 PCIConfigRd() Response Definition .................................................................... 112  
6-17 PCIConfigWr() Device/Function Support ............................................................. 113  
6-18 PCIConfigWr() Response Definition .................................................................... 114  
6-19 Mailbox Command Summary ............................................................................ 115  
6-20 Counter Definition ........................................................................................... 116  
6-21 Machine Check Bank Definitions ........................................................................ 118  
6-22 ACPI T-state Duty Cycle Definition..................................................................... 119  
6-23 MbxSend() Response Definition......................................................................... 121  
6-24 MbxGet() Response Definition........................................................................... 122  
6-25 Domain ID Definition ....................................................................................... 124  
6-26 Multi-Domain Command Code Reference ............................................................ 124  
6-27 Completion Code Pass/Fail Mask........................................................................ 124  
6-28 Device Specific Completion Code (CC) Definition.................................................. 125  
6-29 Originator Response Guidelines......................................................................... 125  
6-30 Error Codes and Descriptions ............................................................................ 127  
6-31 PECI Client Response During Power-Up (During ‘Data Not Ready’) ......................... 127  
6-32 Power Impact of PECI Commands versus C-states ............................................... 129  
6-33 PECI Client Response During S1........................................................................ 129  
7-1  
7-2  
7-3  
7-4  
8-1  
8-2  
8-3  
Power On Configuration Signal Options............................................................... 131  
Coordination of Thread Power States at the Core Level......................................... 133  
Processor C-State Power Specifications .............................................................. 135  
Processor S-States .......................................................................................... 136  
PWM Fan Frequency Specifications For 4-Pin Active Thermal Solution ..................... 151  
Fan Specifications For 4-Pin Active Thermal Solution ............................................ 151  
Fan Cable Connector Pin Out for 4-Pin Active Thermal Solution.............................. 151  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
7
Revision History  
Document  
Number  
Revision  
Number  
Description  
Date  
321321  
321321  
001  
002  
Initial release  
March 2009  
June 2011  
Added Section 1.3: Statement of Volatility  
§
®
®
8
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Introduction  
1 Introduction  
The Intel® Xeon® processor 5500 series is the first-generation server/workstation  
multi-core processor to implement key new technologies:  
• Integrated Memory Controller  
• Point-to-point link interface based on Intel® QuickPath Technology  
The processor is optimized for performance with the power efficiencies of a low-power  
microarchitecture to enable smaller, quieter systems.  
This document provides DC electrical specifications, differential signaling specifications,  
pinout and signal definitions, package mechanical specifications and thermal  
requirements, and additional features pertinent to implementation and operation of the  
processor. For information on register descriptions, refer to the Intel® Xeon® Processor  
5500 Series Datasheet, Volume 2.  
Intel Xeon processor 5500 series are multi-core processors, based on 45 nm process  
technology. The processor family features a range of thermal design power (TDP)  
envelopes from 38W TDP up to 130W TDP. These processors feature two Intel  
QuickPath Interconnect point-to-point links capable of up to 6.4 GT/s, up to 8 MB of  
shared cache, and an Integrated Memory Controller. The processors support all the  
existing Streaming SIMD Extensions 2 (SSE2), Streaming SIMD Extensions 3 (SSE3)  
and Streaming SIMD Extensions 4 (SSE4). The processors support several Advanced  
Technologies: Execute Disable Bit, Intel® 64 Technology, Enhanced Intel SpeedStep®  
Technology, Intel® Virtualization Technology (Intel® VT), Intel® Hyper-Threading  
Technology (Intel® HT Technology), and Intel® Turbo Boost Technology (Intel® TBT).  
The Intel Xeon processor 5500 series family supports multiple platform segments.  
• 2-Socket Workstation Platforms support Intel® Xeon® Processor W5580, a 130W  
Thermal Design Power (TDP) SKU. These platforms provide optimal overall  
performance and reliability, in addition to high-end graphics support. Note, specific  
platform usage conditions apply when implementing these processors.  
• 2-Socket High Performance Server and High Performance Computing (HPC)  
Platforms support Intel Xeon processor 5500 series Advanced SKU (95W TDP).  
These platforms provide optimal overall performance.  
• 2-Socket Volume Server Platforms support Intel Xeon processor 5500 series  
Standard/Basic SKUs (80W TDP). These platforms provide optimal performance per  
watt for rack-optimized platforms.  
• Ultra Dense Platforms implement Intel Xeon processor 5500 series Low Power SKU  
(60W TDP). These processors are intended for dual-processor server blades and  
embedded servers.  
• Intel® Xeon® Processor L5518 with 60W TDP and elevated case temperatures. The  
elevated case temperatures are intended to meet the short-term thermal profile  
requirements of NEBS Level 3. These 2-Socket processors are ideal for thermally-  
constrained form factors in embedded servers, comms and storage markets.  
• Intel® Xeon® Processor L5508 with 38W TDP and elevated case temperatures. The  
elevated case temperatures are intended to meet the short-term thermal profile  
requirements of NEBS Level 3. These 2-Socket processors are ideal for thermally-  
constrained form factors in embedded servers, comms and storage markets.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
9
Introduction  
• 1-Socket Workstation Platforms support Intel Xeon processor 5500 series SKUs.  
These platforms enable a wide range of options for either the performance, power,  
or cost sensitive customer.  
Note:  
All references to “chipset” in this document pertain to the Intel® 5520 chipset and  
Intel® 5500 chipset, unless specifically stated otherwise.  
Table 1-1.  
Intel® Xeon® Processor 5500 Series Feature Set Overview  
Feature  
Intel Xeon Processor 5500 Series  
Cache Sizes  
- Instruction Cache = 32 KB, per core  
- Data Cache = 32 KB, per core  
- 256 KB Mid-Level Cache per core  
- 8 MB shared among cores (up to 4)  
Data Transfer Rate  
Two (2) full-width Intel QuickPath Interconnect links, up to 6.4 GT/s in  
each direction  
Multi-Core Support  
Dual Processor Support  
Package  
Up to 4 Cores per processor  
Up to 2 processors per platform  
1366-land FCLGA  
1.1  
Terminology  
A ‘#’ symbol after a signal name refers to an active low signal, indicating a signal is in  
the active state when driven to a low level. For example, when RESET# is low, a reset  
has been requested.  
A ‘_N’ and ‘_P’ after a signal name refers to a differential pair.  
Commonly used terms are explained here for clarification:  
1366-land FC-LGA package — The Intel Xeon processor 5500 series is available  
in a Flip-Chip Land Grid Array (FC-LGA) package, consisting of processor mounted  
on a land grid array substrate with an integrated heat spreader (IHS).  
DDR3 — Double Data Rate 3 synchronous dynamic random access memory  
(SDRAM) is the name of the new DDR memory standard that is being developed as  
the successor to DDR2 SDRAM.  
Enhanced Intel SpeedStep Technology — Enhanced Intel SpeedStep  
Technology allows the operating system to reduce power consumption when  
performance is not needed.  
Intel Turbo Boost Technology — Intel Turbo Boost Technology is a way to  
automatically run the processor core faster than the marked frequency if the part is  
operating under power, temperature, and current specifications limits of the  
Thermal Design Power (TDP). This results in increased performance of both single  
and multi-threaded applications.  
Execute Disable Bit — Execute Disable allows memory to be marked as  
executable or non-executable, when combined with a supporting operating system.  
If code attempts to run in non-executable memory the processor raises an error to  
the operating system. This feature can prevent some classes of viruses or worms  
that exploit buffer over run vulnerabilities and can thus help improve the overall  
security of the system. See the Intel® 64 and IA-32 Architecture Software  
Developer's Manuals for more detailed information.  
Functional Operation — Refers to the normal operating conditions in which all  
processor specifications, including DC, AC, signal quality, mechanical, and thermal,  
are satisfied.  
®
®
10  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Introduction  
Intel Xeon Processor 5500 Series — Includes processor substrate and  
integrated heat spreader (IHS).  
Integrated Memory Controller (IMC) — As the term implies, the Memory  
Controller is integrated on the processor die.  
Intel QuickPath Interconnect (Intel® QPI) — A cache-coherent, link-based  
Interconnect specification for Intel processors, chipsets, and I/O bridge  
components.  
Intel® 64 Architecture — An enhancement to Intel's IA-32 architecture, allowing  
the processor to execute operating systems and applications written to take  
advantage of Intel® 64.  
Intel Virtualization Technology (Intel® VT) — A set of hardware  
enhancements to Intel server and client platforms that can improve virtualization  
solutions. VT provides a foundation for widely-deployed virtualization solutions and  
enables more robust hardware assisted virtualization solution.  
Integrated Heat Spreader (IHS) — A component of the processor package used  
to enhance the thermal performance of the package. Component thermal solutions  
interface with the processor at the IHS surface.  
Jitter — Any timing variation of a transition edge or edges from the defined Unit  
Interval (UI).  
LGA1366 Socket — The 1366-land FC-LGA package mates with the system board  
through this surface mount, 1366-contact socket.  
Server SKU — A processor Stock Keeping Unit (SKU) to be installed in either  
server or workstation platforms. Electrical, power and thermal specifications for  
these SKU’s are based on specific use condition assumptions. Server processors  
may be further categorized as Advanced, Standard/Basic, and Low Power SKUs. For  
further details on use condition assumptions, please refer to the latest Product  
Release Qualification (PRQ) Report available via your Customer Quality Engineer  
(CQE) contact.  
Storage Conditions — Refers to a non-operational state. The processor may be  
installed in a platform, in a tray, or loose. Processors may be sealed in packaging or  
exposed to free air. Under these conditions, processor lands should not be  
connected to any supply voltages, have any I/Os biased, or receive any clocks.  
Unit Interval (UI) — Signaling convention that is binary and unidirectional. In  
this binary signaling, one bit is sent for every edge of the forwarded clock, whether  
it be a rising edge or a falling edge. If a number of edges are collected at instances  
t1, t2, tn,...., tk then the UI at instance “n” is defined as:  
UI n = t n - t  
n - 1  
Workstation SKU — A processor SKU to be installed in workstation platforms  
only. Electrical, power and thermal specifications for these processors have been  
developed based on Intel’s reliability goals at a reference use condition. In addition,  
the processor validation and production test conditions have been optimized based  
on these conditions. Operating “Workstation” processors in a server environment or  
other application, could impact reliability performance, which means Intel’s  
reliability goals may not be met. For further details on use condition assumptions or  
reliability performance, please refer to the latest Product Release Qualification  
(PRQ) Report available via your Customer Quality Engineer (CQE) contact.  
NEBS — Network Equipment Building System. NEBS is the most common set of  
environmental design guidelines applied to telecommunications equipment in the  
United States.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
11  
Introduction  
1.2  
References  
Platform designers are strongly encouraged to maintain familiarity with the most up-to-  
date revisions of processor and platform collateral.  
Table 1-2.  
References  
Document  
Location  
Notes  
®
AP-485, Intel Processor Identification and the CPUID Instruction  
241618  
1
1
®
Intel 64 and IA-32 Architecture Software Developer's Manual  
253665  
253666  
253667  
253668  
253669  
Volume 1: Basic Architecture  
Volume 2A: Instruction Set Reference, A-M  
Volume 2B: Instruction Set Reference, N-Z  
Volume 3A: System Programming Guide, Part 1  
Volume 3B: Systems Programming Guide, Part 2  
®
Intel 64 and IA-32 Architectures Optimization Reference Manual  
248966  
1
1
®
Intel Virtualization Technology Specification for Directed I/O  
D51397-001  
Architecture Specification  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 2  
321322  
321323  
1
1
Intel® Xeon® Processor 5500/5600 Series Thermal/Mechanical  
Design Guide  
®
®
Intel Xeon Processor 5500 Series Specification Update  
321324  
1
Entry-Level Electronics-Bay Specifications: A Server System  
Infrastructure (SSI) Specification for Entry Pedestal Servers and  
Workstations  
www.ssiforum.org  
ACPI Specifications  
www.acpi.info  
Notes:  
1.  
Document is available publicly at http://www.intel.com.  
1.3  
Statement of Volatility  
No Intel Xeon processor 5500 series product family processors retain any end user data  
when powered down and/or when the parts are physically removed from the socket.  
§
®
®
12  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
2 Intel® Xeon® Processors 5500  
Series Electrical Specifications  
2.1  
Processor Signaling  
Intel Xeon processor 5500 series include 1366 lands, which utilize various signaling  
technologies. Signals are grouped by electrical characteristics and buffer type into  
various signal groups. These include Intel QuickPath Interconnect, DDR3 (Reference  
Clock, Command, Control and Data), Platform Environmental Control Interface (PECI),  
Processor Sideband, System Reference Clock, Test Access Port (TAP), and Power/Other  
signals. Refer to Table 2-5 for details.  
Detailed layout, routing, and termination guidelines corresponding to these signal  
groups can be found in the applicable platform design guide (Refer to Section 1.2).  
Intel strongly recommends performing analog simulations of all interfaces. Please refer  
to Section 1.2 for signal integrity model availability.  
®
2.1.1  
Intel QuickPath Interconnect  
Intel Xeon processor 5500 series provide two Intel QuickPath Interconnect ports for  
high speed serial transfer between other enabled components. Each port consists of  
two uni-directional links (for transmit and receive). A differential signaling scheme is  
utilized, which consists of opposite-polarity (D_P, D_N) signal pairs.  
On-die termination (ODT) is included on the processor silicon and terminated to VSS.  
Intel chipsets also provide ODT, thus eliminating the need to terminate on the system  
board. Figure 2-1 illustrates the active ODT.  
Figure 2-1. Active ODT for a Differential Link Example  
TX  
RX  
Signal  
Signal  
RTT  
RTT  
RTT  
RTT  
2.1.2  
DDR3 Signal Groups  
The memory interface utilizes DDR3 technology, which consists of numerous signal  
groups. These include: Reference Clocks, Command Signals, Control Signals, and Data  
Signals. Each group consists of numerous signals, which may utilize various signaling  
technologies. Please refer to Table 2-5 for further details.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
13  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
2.1.3  
Platform Environmental Control Interface (PECI)  
PECI is an Intel proprietary interface that provides a communication channel between  
Intel processors and chipset components to external thermal monitoring devices. The  
Intel Xeon Processor 5500 Series contains a Digital Thermal Sensor (DTS) that reports  
a relative die temperature as an offset from Thermal Control Circuit (TCC) activation  
temperature. Temperature sensors located throughout the die are implemented as  
analog-to-digital converters calibrated at the factory. PECI provides an interface for  
external devices to read processor temperature, perform processor manageability  
functions, and manage processor interface tuning and diagnostics. Please refer to  
Section 6 for processor specific implementation details for PECI.  
The PECI interface operates at a nominal voltage set by VTTD. The set of DC electrical  
specifications shown in Table 2-13 is used with devices normally operating from a VTTD  
interface supply.  
2.1.3.1  
Input Device Hysteresis  
The PECI client and host input buffers must use a Schmitt-triggered input design for  
improved noise immunity. Please refer to Figure 2-2 and Table 2-13.  
Figure 2-2. Input Device Hysteresis  
VTTD  
Maximum VP  
PECI High Range  
Minimum VP  
Maximum VN  
Minimum  
Hysteresis Signal Range  
Valid Input  
Minimum VN  
PECI Ground  
PECI Low Range  
2.1.4  
2.1.5  
Processor Sideband Signals  
Intel Xeon processor 5500 series include sideband signals that provide a variety of  
functions. Details can be found in Table 2-5 and the applicable platform design guide.  
All Asynchronous Processor Sideband signals are required to be asserted/deasserted  
for at least eight BCLKs in order for the processor to recognize the proper signal state.  
See Table 2-17 for DC specifications.  
System Reference Clock  
The processor core, processor uncore, Intel QuickPath Interconnect link, and DDR3  
memory interface frequencies are generated from BCLK_DP and BCLK_DN signals.  
There is no direct link between core frequency and Intel QuickPath Interconnect link  
frequency (for example, no core frequency to Intel QuickPath Interconnect multiplier).  
The processor maximum core frequency, Intel QuickPath Interconnect link frequency  
®
®
14  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
and DDR3 memory frequency are set during manufacturing. It is possible to override  
the processor core frequency setting using software. This permits operation at lower  
core frequencies than the factory set maximum core frequency.  
The processor core frequency is configured during reset by using values stored within  
the device during manufacturing. The stored value sets the lowest core multiplier at  
which the particular processor can operate. If higher speeds are desired, the  
appropriate ratio can be configured via the IA32_PERF_CTL MSR.  
Clock multiplying within the processor is provided by the internal phase locked loop  
(PLL), which requires a constant frequency BCLK_DP, BCLK_DN input, with exceptions  
for spread spectrum clocking.  
2.1.6  
Test Access Port (TAP) Signals  
Due to the voltage levels supported by other components in the Test Access Port (TAP)  
logic, it is recommended that the processor(s) be first in the TAP chain and followed by  
any other components within the system. A translation buffer should be used to  
connect to the rest of the chain unless one of the other components is capable of  
accepting an input of the appropriate voltage. Similar considerations must be made for  
TCK, TDO, TMS, and TRST#. Two copies of each signal may be required with each  
driving a different voltage level.  
Processor TAP signal DC specifications can be found in Table 2-17.  
Note:  
Note:  
While TDI, TMS and TRST# do not include On-Die Termination (ODT), these signals are  
weakly pulled-up via a 1-5 kΩ resistor to VTT.  
While TCK does not include ODT, this signal is weakly pulled-down via a 1-5 kΩ resistor  
to VSS.  
2.1.7  
Power / Other Signals  
Processors also include various other signals including power/ground, sense points, and  
analog inputs. Details can be found in Table 2-5 and the applicable platform design  
guide.  
Table 2-1 outlines the required voltage supplies necessary to support Intel Xeon  
processor 5500 series.  
Table 2-1. Processor Power Supply Voltages1  
Power Rail  
Nominal Voltage  
Notes  
See Table 2-9;  
Figure 2-3  
Each processor includes a dedicated VR11.1 regulator.  
VCC  
1.80 V  
1.50 V  
Each processor includes dedicated V  
and PLL circuits.  
VCCPLL  
VDDQ  
CCPLL  
Each processor and DDR3 stack shares a dedicated voltage regulator.  
Each processor includes a dedicated VR11.0 regulator.  
V
= V  
+ V  
; P1V1_Vtt is VID[4:2] controlled,  
TT  
TTA  
TTD  
See Table 2-11;  
Figure 2-10  
VID range is 1.0255-1.2000 V; 20 mV offset (see Table 2-4); V  
VTTA, VTTD  
TT  
represents a typical voltage. V  
31.5 mV offset from V (typ).  
and V  
loadlines represent a  
TT_MIN  
TT_MAX  
TT  
Note:  
1. Refer to Table 2-8 for voltage and current specifications.  
Further platform and processor power delivery details can be found in the Intel® Xeon®  
Processor 5500 Platform Design Guide (PDG).  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
15  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
2.1.7.1  
Power and Ground Lands  
For clean on-chip power distribution, processors include lands for all required voltage  
supplies. These include:  
• 210 each VCC (271 ea. VSS) lands must be supplied with the voltage determined by  
the VID[7:0] signals. Table 2-2 defines the voltage level associated with each core  
VID pattern. Table 2-9 and Figure 2-3 represent VCC static and transient limits.  
• 3 each VCCPLL lands, connected to a 1.8 V supply, power the Phase Lock Loop (PLL)  
clock generation circuitry. An on-die PLL filter solution is implemented within the  
Intel Xeon processor 5500 series.  
• 45 each VDDQ (17 ea. VSS) lands, connected to a 1.50 V supply, provide power to  
the processor DDR3 interface. This supply also powers the DDR3 memory  
subsystem.  
• 7 each VTTA (5 ea. VSS) and 26 ea. VTTD (17 ea. VSS) lands must be supplied with  
the voltage determined by the VTT_VID[4:2] signals. Coupled with a 20 mV offset,  
this corresponds to a VTT_VID pattern of ‘010xxx10. Table 2-4 specifies the  
voltage levels associated with each VTT_VID pattern. Table 2-11 and Figure 2-10  
represent VTT static and transient limits.  
All VCC, VCCPLL, VDDQ, VTTA, and VTTD lands must be connected to their respective  
processor power planes, while all VSS lands must be connected to the system ground  
plane. Refer to the Intel® Xeon® Processor 5500 Platform Design Guide (PDG) for  
decoupling, voltage plane and routing guidelines for each power supply voltage.  
2.1.7.2  
Decoupling Guidelines  
Due to its large number of transistors and high internal clock speeds, the Intel Xeon  
processor 5500 series is capable of generating large current swings between low and  
full power states. This may cause voltages on power planes to sag below their  
minimum values if bulk decoupling is not adequate. Larger bulk storage (CBULK), such  
as electrolytic capacitors, supply current during longer lasting changes in current  
demand, for example coming out of an idle condition. Similarly, they act as a storage  
well for current when entering an idle condition from a running condition. Care must be  
taken in the baseboard design to ensure that the voltages provided to the processor  
remains within the specifications listed in Table 2-8. Failure to do so can result in timing  
violations or reduced lifetime of the processor.  
2.1.7.3  
Processor V  
Voltage Identification (VID) Signals  
CC  
The voltage set by the VID signals is the maximum reference voltage regulator (VR)  
output to be delivered to the processor VCC lands. VID signals are CMOS push/pull  
outputs. Please refer to Table 2-17 for the DC specifications for these and other  
processor sideband signals.  
Individual processor VID values may be calibrated during manufacturing such that two  
processor units with the same core frequency may have different default VID settings.  
The Intel Xeon processor 5500 series uses eight voltage identification signals,  
VID[7:0], to support automatic selection of core power supply voltages. Table 2-2  
specifies the voltage level corresponding to the state of VID[7:0]. A ‘1’ in this table  
refers to a high voltage level and a ‘0’ refers to a low voltage level. If the processor  
socket is empty (SKTOCC# high), or the voltage regulation circuit cannot supply the  
voltage that is requested, the voltage regulator must disable itself.  
®
®
16  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
The Intel Xeon processor 5500 series provides the ability to operate while transitioning  
to an adjacent VID and its associated processor core voltage (VCC). This is represented  
by a DC shift in the loadline. It should be noted that a low-to-high or high-to-low  
voltage state change may result in as many VID transitions as necessary to reach the  
target core voltage. Transitions above the maximum specified VID are not permitted.  
Table 2-8 includes VID step sizes and DC shift ranges. Minimum and maximum voltages  
must be maintained as shown in Table 2-9.  
The VRM or EVRD utilized must be capable of regulating its output to the value defined  
by the new VID. DC specifications for dynamic VID transitions are included in Table 2-8  
and Table 2-9.  
Power source characteristics must be guaranteed to be stable whenever the supply to  
the voltage regulator is stable.  
Table 2-2.  
Voltage Identification Definition (Sheet 1 of 5)  
VID7  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
V
CC_MAX  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
OFF  
OFF  
1.60000  
1.59375  
1.58750  
1.58125  
1.57500  
1.56875  
1.56250  
1.55625  
1.55000  
1.54375  
1.53750  
1.53125  
1.52500  
1.51875  
1.51250  
1.50625  
1.50000  
1.49375  
1.48750  
1.48125  
1.47500  
1.46875  
1.46250  
1.45625  
1.45000  
1.44375  
1.43750  
1.43125  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
17  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
Table 2-2.  
Voltage Identification Definition (Sheet 2 of 5)  
VID7  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
V
CC_MAX  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.42500  
1.41875  
1.41250  
1.40625  
1.40000  
1.39375  
1.38750  
1.38125  
1.37500  
1.36875  
1.36250  
1.35625  
1.35000  
1.34375  
1.33750  
1.33125  
1.32500  
1.31875  
1.31250  
1.30625  
1.30000  
1.29375  
1.28750  
1.28125  
1.27500  
1.26875  
1.26250  
1.25625  
1.25000  
1.24375  
1.23750  
1.23125  
1.22500  
1.21875  
1.21250  
1.20625  
1.20000  
1.19375  
1.18750  
1.18125  
1.17500  
1.16875  
®
®
18  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
Table 2-2.  
Voltage Identification Definition (Sheet 3 of 5)  
VID7  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
V
CC_MAX  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.16250  
1.15625  
1.15000  
1.14375  
1.13750  
1.13125  
1.12500  
1.11875  
1.11250  
1.10625  
1.10000  
1.09375  
1.08750  
1.08125  
1.07500  
1.06875  
1.06250  
1.05625  
1.05000  
1.04375  
1.03750  
1.03125  
1.02500  
1.01875  
1.01250  
1.00625  
1.00000  
0.99375  
0.98750  
0.98125  
0.97500  
0.96875  
0.96250  
0.95625  
0.95000  
0.94375  
0.93750  
0.93125  
0.92500  
0.91875  
0.91250  
0.90625  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
19  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
Table 2-2.  
Voltage Identification Definition (Sheet 4 of 5)  
VID7  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
V
CC_MAX  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.90000  
0.89375  
0.88750  
0.88125  
0.87500  
0.86875  
0.86250  
0.85625  
0.85000  
0.84375  
0.83750  
0.83125  
0.82500  
0.81875  
0.81250  
0.80625  
0.80000  
0.79375  
0.78750  
0.78125  
0.77500  
0.76875  
0.76250  
0.75625  
0.75000  
0.74375  
0.73750  
0.73125  
0.72500  
0.71875  
0.71250  
0.70625  
0.70000  
0.69375  
0.68750  
0.68125  
0.67500  
0.66875  
0.66250  
0.65625  
0.65000  
0.64375  
®
®
20  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
Table 2-2.  
Voltage Identification Definition (Sheet 5 of 5)  
VID7  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
V
CC_MAX  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
0.63750  
0.63125  
0.62500  
0.61875  
0.61250  
0.60625  
0.60000  
0.59375  
0.58750  
0.58125  
0.57500  
0.56875  
0.56250  
0.55625  
0.55000  
0.54375  
0.53750  
0.53125  
0.52500  
0.51875  
0.51250  
0.50625  
0.50000  
OFF  
OFF  
Notes:  
1.  
When the “11111111” VID pattern is observed, or when the SKTOCC# pin is high, the voltage regulator  
output should be disabled.  
2.  
3.  
Shading denotes the expected VID range of the Intel Xeon processor 5500 series.  
The VID range includes VID transitions that may be initiated by thermal events, Extended HALT state  
transitions (see Section 7.2), higher C-States (see Section 7.2) or Enhanced Intel SpeedStep Technology  
®
transitions (see Section 7.5). The Extended HALT state must be enabled for the processor to  
remain within its specifications.  
Once the VRM/EVRD is operating after power-up, if either the Output Enable signal is de-asserted or a  
specific VID off code is received, the VRM/EVRD must turn off its output (the output should go to high  
impedance) within 500 ms and latch off until power is cycled.  
4.  
2.1.7.3.1  
Power-On Configuration (POC) Logic  
VID[7:0] signals also serve a second function. During power-up, Power-On  
Configuration POC[7:0] functionality is multiplexed onto these signals via 1-5 kΩ pull-  
up or pull down resistors located on the baseboard. These values provide voltage  
regulator keying (VID[7]), inform the processor of the platforms power delivery  
capabilities (MSID[2:0]), and program the gain applied to the ISENSE input  
(CSC[2:0]). Table 2-3 maps VID signals to the corresponding POC functionality.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
21  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
Table 2-3.  
Power-On Configuration (POC[7:0]) Decode  
Function  
Bits  
POC Settings  
Description  
VR_Key  
VID[7]  
0b for VR11.1  
Electronic safety key  
distinguishing VR11.1  
Spare  
VID[6]  
0b (default)  
Reserved for future use  
CSC[2:0]  
VID[5:3]  
-000  
-001  
-010  
-011  
-100  
-101  
-111  
Feature Disabled  
ICC_MAX = 40A  
Current Sensor Configuration  
(CSC) programs the gain  
applied to the ISENSE A/D  
output. ISENSE data is then  
used to dynamically calculate  
current and power.  
1
ICC_MAX = 50A  
ICC_MAX = 80A  
ICC_MAX = 100A  
ICC_MAX = 120A  
2
ICC_MAX = 150A  
MSID[2:0]  
VID[2:0]  
-001  
-011  
-100  
-101  
-110  
38W TDP / 40A ICC_MAX  
60W TDP / 80A ICC_MAX  
80W TDP / 100A ICC_MAX  
95W TDP / 120A ICC_MAX  
MSID[2:0] signals are provided  
to indicate the Market Segment  
for the processor and may be  
used for future processor  
compatibility or keying. See  
130W TDP / 150A ICC_MAX Figure 7-1 for platform timing  
requirements of the MSID[2:0]  
signals.  
Notes:  
1. This setting is defined for future use; no specific Intel Xeon processor 5500 series SKU is defined with ICC_MAX  
= 50A  
2. General rule: Set PWM IMON slope to: 900 mV=IMAX, where IMAX =IccMAX with one exception: for Intel Xeon  
Processor W5580 set IMON slope to 900 mV=180A, but for all other SKUs they have to match, as shown  
above. Consult your PWM data sheet for the IMON slope setting.  
Some POC signals include specific timing requirements. Please refer to Section 7.1 for  
further details.  
2.1.7.4  
Processor V Voltage Identification (VTT_VID) Signals  
TT  
The voltage set by the VTT_VID signals is the typical reference voltage regulator (VR)  
output to be delivered to the processor VTTA and VTTD lands. It is expected that one  
regulator will supply all VTTA and VTTD lands. VTT_VID signals are CMOS push/pull  
outputs. Please refer to Table 2-17 for the DC specifications for these signals.  
Individual processor VTT_VID values may be calibrated during manufacturing such that  
two processor units with the same core frequency may have different default VTT_VID  
settings.  
The Intel Xeon processor 5500 series utilizes three voltage identification signals to  
support automatic selection of power supply voltages. These correspond to  
VTT_VID[4:2]. The VTT voltage level delivered to the processor lands must also  
encompass a 20 mV offset (See Table 2-4; VTT_TYP) above the voltage level  
corresponding to the state of the VTT_VID[7:0] signals (See Table 2-4; VR 11.0  
Voltage). Table 2-11 and Figure 2-10 provide the resulting static and transient  
tolerances. Please note that the maximum and minimum electrical loadlines are defined  
by a 31.5 mV tolerance band above and below VTT_TYP values.  
Power source characteristics must be guaranteed to be stable whenever the supply to  
the voltage regulator is stable.  
®
®
22  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
Table 2-4.  
VTT Voltage Identification Definition  
VR 11.0  
Voltage  
V
TT_TYP  
(Voltage + Offset)  
VID7 VID6  
VID5  
VID4  
VID3 VID2 VID1 VID0  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1.200 V  
1.175 V  
1.150 V  
1.125 V  
1.100 V  
1.075 V  
1.050 V  
1.025 V  
1.220 V  
1.195 V  
1.170 V  
1.145 V  
1.120 V  
1.095 V  
1.070 V  
1.045 V  
2.1.8  
Reserved or Unused Signals  
All Reserved (RSVD) signals must remain unconnected. Connection of these signals to  
VCC, VTTA, VTTD, VDDQ, VSS, or any other signal (including each other) can result in  
component malfunction or incompatibility with future processors. See Section 4 for the  
land listing and the location of all Reserved signals.  
For reliable operation, connect unused inputs or bidirectional signals to an appropriate  
signal level. Unused Intel QuickPath Interconnect input and output pins can be left  
floating. Unused active high inputs should be connected through a resistor to ground  
(VSS). Unused outputs can be left unconnected; however, this may interfere with some  
TAP functions, complicate debug probing, and prevent boundary scan testing. A resistor  
must be used when tying bidirectional signals to power or ground. When tying any  
signal to power or ground, including a resistor will also allow for system testability.  
Resistor values should be within ± 20% of the impedance of the baseboard trace,  
unless otherwise noted in the appropriate platform design guidelines.  
TAP signals do not include on-die termination, however they may include resistors on  
package (refer to Section 2.1.6 for details). Inputs and utilized outputs must be  
terminated on the baseboard. Unused outputs may be terminated on the baseboard or  
left unconnected. Note that leaving unused outputs unterminated may interfere with  
some TAP functions, complicate debug probing, and prevent boundary scan testing.  
2.2  
Signal Group Summary  
Signals are combined in Table 2-5 by buffer type and characteristics. “Buffer Type”  
denotes the applicable signaling technology and specifications.  
Table 2-5.  
Signal Groups (Sheet 1 of 2)  
1
Signal Group  
Buffer Type  
Signals  
Intel QuickPath Interconnect Signals  
Differential  
Differential  
Single ended  
Intel QuickPath Interconnect Input  
QPI[0/1]_DRX_D[N/P][19:0],  
QPI[0/1]_CLKRX_DP, QPI[0/1]_CLKRX_DN  
Intel QuickPath Interconnect Output  
QPI[0/1]_DTX_D[N/P][19:0],  
QPI[0/1]_CLKTX_DP, QPI[0/1]_CLKTX_DN  
Analog Input  
2
QPI[0/1]_COMP  
DDR3 Reference Clocks  
Differential  
Output  
DDR{0/1/2}_CLK_[P/N][3:0]  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
23  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
Table 2-5.  
Signal Groups (Sheet 2 of 2)  
1
Signal Group  
Buffer Type  
Signals  
2
DDR3 Command Signals  
Single ended  
CMOS Output  
DDR{0/1/2}_RAS#, DDR{0/1/2}_CAS#,  
DDR{0/1/2}_WE#, DDR{0/1/2}_MA[15:0],  
DDR{0/1/2}_BA[2:0], DDR{0/1/2}_MA_PAR  
Single ended  
Asynchronous Output  
DDR{0/1/2}_RESET#  
2
DDR3 Control Signals  
Single ended  
Single ended  
CMOS Output  
DDR{0/1/2}_CS#[7:0], DDR{0/1/2}_ODT[5:0],  
DDR{0/1/2}_CKE[3:0]  
Analog Input  
DDR_VREF, DDR_COMP[2:0]  
2
DDR3 Data Signals  
Single ended  
Differential  
CMOS Input/Output  
DDR{0/1/2}_DQ[63:0], DDR{0/1/2}_ECC[7:0]  
DDR{0/1/2}_DQS_[N/P][17:0]  
CMOS Input/Output  
Asynchronous Input  
Single ended  
DDR{0/1/2}_PAR_ERR#[2:0],  
DDR_THERM#  
Platform Environmental Control Interface (PECI)  
Single ended Asynchronous Input/Output  
PECI  
Processor Sideband Signals  
Single ended  
Single ended  
Single ended  
Single ended  
Single ended  
Single ended  
Single ended  
GTL Input/Output  
BPM#[7:0], CAT_ERR#  
PECI_ID#  
Asynchronous Input  
Asynchronous GTL Output  
Asynchronous GTL Input  
Asynchronous GTL Input/Output  
Asynchronous CMOS Output  
CMOS Output  
PRDY#, THERMTRIP#  
PREQ#  
PROCHOT#  
PSI#  
VID[7:6],  
VID[5:3]/CSC[2:0],  
VID[2:0]/MSID[2:0],  
VTT_VID[4:2]  
System Reference Clock  
Differential Input  
Test Access Port (TAP) Signals  
BCLK_DP, BCLK_DN  
Differential  
Single ended  
Single ended  
CMOS Output  
Input  
BCLK_ITP_DP, BCLK_ITP_DN  
TCK, TDI, TMS, TRST#  
TDO  
GTL Output  
PWRGOOD Signals  
Single ended  
Asynchronous Input  
CCPWRGOOD, VDDPWRGOOD, VTTPWRGOOD  
RESET#  
RESET Signal  
Single ended  
Asynchronous Input  
Power/Other Signals  
Power / Ground  
V
, V  
, V  
, V , V  
, V  
TTD SS  
CC  
CCPLL  
DDQ  
TTA  
Analog Input  
Sense Points  
COMP0, ISENSE  
VCCSENSE, VSSSENSE, VSS_SENSE_VTTD,  
VTTD_SENSE  
Other  
SKTOCC#, DBR#  
®
®
24  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
Notes:  
1. Refer to Section 4 for land assignments and Section 5 for signal definitions.  
2. DDR{0/1/2} refers to DDR3 Channel 0, DDR3 Channel1 and DDR3 Channel 2.  
Signals that include on-die termination (ODT) are listed in Table 2-6.  
Table 2-6. Signals With On-Die Termination (ODT)  
1
Intel QuickPath Interface Signal Group  
QPI[1:0]_DRX_DP[19:0], QPI[1:0]_DRX_DN[19:0], QPI[1:0]_TRX_DP[19:0], QPI[1:0]_TRX_DN[19:0],  
QPI[0/1]_CLKRX_D[N/P], QPI[0/1]_CLKTX_D[N/P]  
2
DDR3 Signal Group  
DDR{0/1/2}_DQ[63:0], DDR{0/1/2}_DQS_[N/P][17:0], DDR{0/1/2}_ECC[7:0],  
3
DDR{0/1/2}_PAR_ERR#[2:0]  
Processor Sideband Signal Group  
6
7
6
BPM#[7:0] , PECI_ID# , PREQ#  
Test Access Port (TAP) Signal Group  
4
5
5
5
TCK , TDI , TMS , TRST#  
Power/Other Signal Group  
8
VCCPWRGOOD, VDDPWRGOOD, VTTPWRGOOD  
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
Unless otherwise specified, signals have ODT in the package with a 50 Ω pull-down to V  
.
SS  
Unless otherwise specified, all DDR3 signals are terminated to V  
DDR{0/1/2}_PAR_ERR#[2:0] are terminated to V  
/2.  
DDQ  
DDQ.  
TCK does not include ODT, this signal is weakly pulled-down via a 1-5 kΩ resistor to V  
.
SS  
TDI, TMS, TRST# do not include ODT, these signals are weakly pulled-up via 1-5kΩ resistor to V .  
TT  
BPM[7:0]# and PREQ# signals have ODT in package with 35 Ω pull-ups to V  
TT.  
PECI_ID# has ODT in package with a 1-5 kΩ pull-up to V .  
TT  
VCCPWRGOOD, VDDPWRGOOD, and VTTPWRGOOD have ODT in package with a 5-20 kΩ pull-down to V  
.
SS  
2.3  
Mixing Processors  
Intel supports dual processor (DP) configurations consisting of processors:  
1. from the same power optimization segment  
2. that support the same maximum Intel QuickPath Interconnect and DDR3 memory  
speeds  
3. that share symmetry across physical packages with respect to the number of  
logical processor per package, number of cores per package, number of Intel  
QuickPath interfaces, and cache topology  
4. that have identical Extended Family, Extended Model, Processor Type, Family Code  
and Model Number as indicated by the function 1 of the CPUID instruction  
Note:  
Processors must operate with the same Intel QuickPath Interconnect, DDR3 memory,  
and core frequency.  
While Intel does nothing to prevent processors from operating together, some  
combinations may not be supported due to limited validation, which may result in  
uncharacterized errata. Coupling this fact with the large number of Intel Xeon  
processor 5500 series attributes, the following population rules and stepping matrix  
have been developed to clearly define supported configurations.  
1. Processors must be of the same power-optimization segment. This insures  
processors include the same maximum Intel QuickPath Interconnect and DDR3  
operating speeds and cache sizes.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
25  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
2. Processors must operate at the same core frequency. Note, processors within the  
same power-optimization segment supporting different maximum core frequencies  
(for example, a 2.93 GHz / 95 W and 2.66 GHz / 95 W) can be operated within a  
system. However, both must operate at the highest frequency rating commonly  
supported. Mixing components operating at different internal clock frequencies is  
not supported and will not be validated by Intel.  
3. Processors must share symmetry across physical packages with respect to the  
number of logical processors per package, number of cores per package (but not  
necessarily the same subset of cores within the packages), number of Intel  
QuickPath Interconnect interfaces, and cache topology.  
4. Mixing dissimilar steppings is only supported with processors that have identical  
Extended Family, Extended Model, Processor Type, Family Code and Model Number  
as indicated by the function 1 of the CPUID instruction. Mixing processors of  
different steppings but the same model (as per CPUID instruction) is supported.  
Details regarding the CPUID instruction are provided in the AP-485,  
Intel® Processor Identification and the CPUID Instruction application note and the  
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.  
5. After AND’ing the feature flag and extended feature flags from the installed  
processors, any processor whose set of feature flags exactly matches the AND’ed  
feature flags can be selected by the BIOS as the BSP. If no processor exactly  
matches the AND’ed feature flag values, then the processor with the numerically  
lower CPUID should be selected as the BSP.  
6. Intel requires that the proper microcode update be loaded on each processor  
operating within the system. Any processor that does not have the proper  
microcode update loaded is considered by Intel to be operating out of specification.  
7. Customers are fully responsible for the validation of their system configuration.  
2.4  
2.5  
Flexible Motherboard Guidelines (FMB)  
The Flexible Motherboard (FMB) guidelines are estimates of the maximum values the  
Intel Xeon processor 5500 series will have over certain time periods. The values are  
only estimates and actual specifications for future processors may differ. Processors  
may or may not have specifications equal to the FMB value in the foreseeable future.  
System designers should meet the FMB values to ensure their systems will be  
compatible with future Intel Xeon processor 5500 series.  
Absolute Maximum and Minimum Ratings  
Table 2-7 specifies absolute maximum and minimum ratings which lie outside the  
functional limits of the processor. Only within specified operation limits, can  
functionality and long-term reliability be expected.  
At conditions outside functional operation condition limits, but within absolute  
maximum and minimum ratings, neither functionality nor long-term reliability can be  
expected. If a device is returned to conditions within functional operation limits after  
having been subjected to conditions outside these limits, but within the absolute  
maximum and minimum ratings, the device may be functional, but with its lifetime  
degraded depending on exposure to conditions exceeding the functional operation  
condition limits.  
®
®
26  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
At conditions exceeding absolute maximum and minimum ratings, neither functionality  
nor long-term reliability can be expected. Moreover, if a device is subjected to these  
conditions for any length of time then, when returned to conditions within the  
functional operating condition limits, it will either not function or its reliability will be  
severely degraded.  
Although the processor contains protective circuitry to resist damage from static  
electric discharge, precautions should always be taken to avoid high static voltages or  
electric fields.  
Table 2-7.  
Processor Absolute Minimum and Maximum Ratings  
1,2  
Symbol  
Parameter  
Min  
Nominal  
Max  
Unit  
Notes  
Processor core voltage with respect to V  
Processor PLL voltage with respect to V  
-0.300  
1.350  
V
V
V
VCC  
VCCPLL  
VDDQ  
SS  
1.800  
1.500  
4
4
SS  
Processor I/O supply voltage for DDR3  
with respect to V  
SS  
Processor uncore analog voltage with  
respect to V  
0.825  
0.825  
1.350  
1.350  
V
V
3
3
VTTA  
VTTD  
SS  
Processor uncore digital voltage with  
respect to V  
SS  
Processor case temperature  
See  
Section 6  
See  
Section 6  
°C  
TCASE  
Storage temperature  
-40  
85  
°C  
5,6,7  
TSTORAGE  
Analog input voltage with respect to Vss  
for sensing Core current consumption  
-0.30  
1.150  
V
VISENSE  
Notes:  
1.  
For functional operation, all processor electrical, signal quality, mechanical and thermal specifications must  
be satisfied.  
Excessive overshoot or undershoot on any signal will likely result in permanent damage to the processor.  
2.  
3.  
4.  
5.  
V
and V  
should be derived from the same voltage regulator (VR).  
TTA  
TTD  
5% tolerance.  
Storage temperature is applicable to storage conditions only. In this scenario, the processor must not  
receive a clock, and no lands can be connected to a voltage bias. Storage within these limits will not affect  
the long-term reliability of the device. For functional operation, please refer to the processor case  
temperature specifications.  
6.  
7.  
This rating applies to the processor and does not include any tray or packaging.  
Failure to adhere to this specification can affect the long-term reliability of the processor.  
2.6  
Processor DC Specifications  
DC specifications are defined at the processor pads, unless otherwise noted.  
DC specifications are only valid while meeting specifications for case temperature  
(TCASE specified in Section 6), clock frequency, and input voltages. Care should be  
taken to read all notes associated with each specification.  
Table 2-8.  
Voltage and Current Specifications (Sheet 1 of 3)  
Voltage  
Plane  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VID  
V
VID Range  
-
0.750  
1.350  
V
V
2,3  
CC  
V
Core Voltage  
(Launch - FMB)  
V
3,4,6,7,11  
CC  
CC  
See Table 2-9 and Figure 2-3  
6.250  
V
VID step size during a  
transition  
-
mV  
V
9
VID_STEP  
V
PLL Voltage  
(DC + AC specification)  
V
0.95*V  
1.800  
1.05*V  
CCPLL  
10  
CCPLL  
CCPLL  
CCPLL  
(Typ)  
(Typ)  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
27  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
Table 2-8.  
Voltage and Current Specifications (Sheet 2 of 3)  
Voltage  
Plane  
1
Symbol  
Parameter  
Min  
Typ  
Max  
1.05*V  
Unit  
Notes  
V
I/O Voltage for DDR3  
(DC + AC specification)  
V
0.95*V  
1.500  
V
10  
DDQ  
DDQ  
DDQ  
DDQ  
(Typ)  
(Typ)  
VTT_VID  
V
VID Range  
-
1.045  
1.220  
V
V
2,3  
TT  
V
Uncore Voltage  
(Launch - FMB)  
V
See Table 2-11 and Figure 2-10  
3,5,8,11  
TT  
TT  
I
Max. Processor Current:  
Intel Xeon Processor  
W5580  
(TDP = 130W)  
(Launch - FMB)  
V
150  
1.1  
9
6
22  
A
A
A
A
A
11  
CC_MAX  
CC  
®
®
I
CCPLL_MAX  
V
CCPLL  
I
DDQ_MAX  
I
V
DDQ  
TT_MAX  
V
TTA  
V
TTD  
Max. Processor Current:  
Intel Xeon Processor  
5500 Series Advanced  
SKU  
V
120  
1.1  
9
6
22  
A
A
A
A
A
11  
11  
11  
CC  
V
CCPLL  
V
DDQ  
V
TTA  
(TDP = 95W)  
V
TTD  
(Launch - FMB)  
Max. Processor Current:  
Intel Xeon Processor  
5500 Series  
Standard/Basic SKU  
(TDP = 80W)  
V
100  
1.1  
9
6
22  
A
A
A
A
A
CC  
V
CCPLL  
V
DDQ  
V
V
TTA  
TTD  
(Launch - FMB)  
Max. Processor Current:  
Intel Xeon Processor  
5500 Series Low Power  
SKU  
(TDP = 60W)  
(Launch - FMB)  
V
80  
1.1  
9
6
20  
A
A
A
A
A
CC  
V
CCPLL  
V
DDQ  
V
V
TTA  
TTD  
Max. Processor Current:  
Intel Xeon Processor  
L5518  
(TDP = 60W)  
(Launch - FMB)  
V
80  
1.1  
9
6
20  
A
A
A
A
A
11  
11  
CC  
®
®
V
CCPLL  
V
DDQ  
V
TTA  
V
TTD  
Max. Processor Current:  
V
40  
1.1  
9
6
20  
A
A
A
A
A
CC  
®
®
Intel Xeon Processor  
L5508  
V
CCPLL  
V
DDQ  
(TDP = 38W)  
V
TTA  
(Launch - FMB)  
V
TTD  
®
®
28  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
Table 2-8.  
Voltage and Current Specifications (Sheet 3 of 3)  
Voltage  
Plane  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
I
Thermal Design  
Current:  
Intel Xeon Processor  
W5580  
(TDP = 130W)  
V
110  
1.1  
9
6
22  
A
A
A
A
A
11,12  
CC_TDC  
CC  
I
CCPLL_TDC  
V
CCPLL  
I
DDQ_TDC  
I
V
DDQ  
TT_TDC  
V
TTA  
V
TTD  
(Launch - FMB)  
Thermal Design  
Current:  
Intel Xeon Processor  
5500 Series Advanced  
SKU  
V
85  
1.1  
9
6
22  
A
A
A
A
A
11,12  
CC  
V
CCPLL  
V
DDQ  
V
TTA  
(TDP = 95W)  
V
TTD  
(Launch - FMB)  
Thermal Design  
Current:  
Intel Xeon Processor  
5500 Series  
Standard/Basic SKU  
(TDP = 80W)  
(Launch - FMB)  
V
70  
1.1  
9
6
22  
A
A
A
A
A
11,12  
11,12  
CC  
V
CCPLL  
V
DDQ  
V
TTA  
V
TTD  
Thermal Design  
Current:  
V
60  
1.1  
9
6
20  
A
A
A
A
A
CC  
V
CCPLL  
Intel Xeon Processor  
5500 Series Low Power  
SKU  
V
DDQ  
V
TTA  
(TDP = 60W)  
V
TTD  
(Launch - FMB)  
Thermal Design  
Current:  
Intel Xeon Processor  
L5518  
(TDP = 60W)  
(Launch - FMB)  
V
60  
1.1  
9
6
20  
A
A
A
A
A
11,12  
11,12  
13,14  
CC  
V
CCPLL  
V
DDQ  
V
V
TTA  
TTD  
Thermal Design  
Current:  
Intel Xeon Processor  
L5508  
(TDP = 38W)  
V
28  
1.1  
9
6
20  
A
A
A
A
A
CC  
V
CCPLL  
V
DDQ  
V
TTA  
V
TTD  
(Launch - FMB)  
I
DDR3 System Memory  
Interface Supply  
Current in Standby  
State  
V
1.0  
A
DDQ_S3  
DDQ  
Notes:  
1. Unless otherwise noted, all specifications in this table apply to all processors. These specifications are based  
on pre-silicon characterization and will be updated as further data becomes available.  
2. Individual processor VID and/or VTT_VID values may be calibrated during manufacturing such that two  
devices at the same speed may have different settings.  
3. These voltages are targets only. A variable voltage source should exist on systems in the event that a  
different voltage is required.  
4. The V voltage specification requirements are measured across vias on the platform for the VCCSENSE and  
CC  
VSSSENSE pins close to the socket with a 100 MHz bandwidth oscilloscope, 1.5 pF maximum probe  
capacitance, and 1 MΩ minimum impedance. The maximum length of ground wire on the probe should be  
less than 5 mm. Ensure external noise from the system is not coupled in the scope probe.  
5. The V voltage specification requirements are measured across vias on the platform for the VTTD_SENSE  
TT  
and VSS_SENSE_VTTD lands close to the socket with a 100 MHz bandwidth oscilloscope, 1.5 pF maximum  
probe capacitance, and 1 MΩ minimum impedance. The maximum length of ground wire on the probe should  
be less than 5 mm. Ensure external noise from the system is not coupled in the scope probe.  
6. Refer to Table 2-9 and corresponding Figure 2-3. The processor should not be subjected to any static V  
CC  
level that exceeds the V  
associated with any particular current. Failure to adhere to this specification  
CC_MAX  
can shorten processor lifetime.  
7. Minimum V and maximum I are specified at the maximum processor case temperature (T ) shown in  
CC  
CC_MAX  
CC  
CASE  
Table 6-1. I  
is specified at the relative V  
point on the V load line. The processor is capable of  
CC_MAX CC  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
29  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
drawing I  
for up to 10 ms. Refer to Figure 2-5 through Figure 2-8 for further details on the average  
CC_MAX  
processor current draw over various time durations.  
8. Refer to Table 2-11 and corresponding Figure 2-10. The processor should not be subjected to any static V  
TT  
level that exceeds the V  
associated with any particular current. Failure to adhere to this specification  
TT_MAX  
can shorten processor lifetime.  
9. This specification represents the V reduction due to each VID transition. See Section 2.1.7.3.  
CC  
10.Baseboard bandwidth is limited to 20 MHz.  
11.FMB is the flexible motherboard guidelines. See Section 2.4 for FMB details.  
12.ICC_TDC (Thermal Design Current) is the sustained (DC equivalent) current that the processor is capable of  
drawing indefinitely and should be used for the voltage regulator temperature assessment. The voltage  
regulator is responsible for monitoring its temperature and asserting the necessary signal to inform the  
processor of a thermal excursion.  
13.Specification is at T  
= 50°C.  
CASE  
14.Characterized by design (not tested).  
Table 2-9.  
VCC Static and Transient Tolerance  
1,2,3,4  
I
(A)  
V
(V)  
V
(V)  
V (V)  
CC_MIN  
Notes  
CC  
CC_MAX  
CC_TYP  
0
VID - 0.000  
VID - 0.004  
VID - 0.008  
VID - 0.012  
VID - 0.016  
VID - 0.020  
VID - 0.024  
VID - 0.028  
VID - 0.032  
VID - 0.036  
VID - 0.040  
VID - 0.044  
VID - 0.048  
VID - 0.052  
VID - 0.056  
VID - 0.060  
VID - 0.064  
VID - 0.068  
VID - 0.072  
VID - 0.076  
VID - 0.080  
VID - 0.084  
VID - 0.088  
VID - 0.092  
VID - 0.096  
VID - 0.100  
VID - 0.104  
VID - 0.108  
VID - 0.112  
VID - 0.116  
VID - 0.120  
VID - 0.015  
VID - 0.019  
VID - 0.023  
VID - 0.027  
VID - 0.031  
VID - 0.035  
VID - 0.039  
VID - 0.043  
VID - 0.047  
VID - 0.051  
VID - 0.055  
VID - 0.059  
VID - 0.063  
VID - 0.067  
VID - 0.071  
VID - 0.075  
VID - 0.079  
VID - 0.083  
VID - 0.087  
VID - 0.091  
VID - 0.095  
VID - 0.099  
VID - 0.103  
VID - 0.107  
VID - 0.111  
VID - 0.115  
VID - 0.119  
VID - 0.123  
VID - 0.127  
VID - 0.131  
VID - 0.135  
VID - 0.030  
VID - 0.034  
VID - 0.038  
VID - 0.042  
VID - 0.046  
VID - 0.050  
VID - 0.054  
VID - 0.058  
VID - 0.062  
VID - 0.066  
VID - 0.070  
VID - 0.074  
VID - 0.078  
VID - 0.082  
VID - 0.086  
VID - 0.090  
VID - 0.094  
VID - 0.098  
VID - 0.102  
VID - 0.106  
VID - 0.110  
VID - 0.114  
VID - 0.118  
VID - 0.122  
VID - 0.126  
VID - 0.130  
VID - 0.134  
VID - 0.138  
VID - 0.142  
VID - 0.146  
VID - 0.150  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
105  
110  
115  
120  
125  
130  
135  
140  
145  
150  
Notes:  
1. The V  
and V  
loadlines represent static and transient limits. Please see Section 2.6.1 for V  
CC  
CC_MIN  
CC_MAX  
overshoot specifications.  
®
®
30  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
2.  
3.  
This table is intended to aid in reading discrete points on Figure 2-3.  
The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage  
regulation feedback for voltage regulator circuits must also be taken from processor VCC_SENSE and  
VSS_SENSE lands. Please refer to the appropriate platform design guide for further details on regulator and  
decoupling implementations.  
4.  
Processor core current (I ) ranges are valid up to I  
of the processor SKU as defined in Table 2-8,  
CC  
CC_MAX  
“Voltage and Current Specifications”.  
Figure 2-3. VCC Static and Transient Tolerance Loadlines1,2,3,4  
Icc [A]  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
VID - 0.000  
VID - 0.020  
VID - 0.040  
VID - 0.060  
VID - 0.080  
VID - 0.100  
VID - 0.120  
VID - 0.140  
VID - 0.160  
VID - 0.180  
Notes:  
1.  
The V  
and V  
loadlines represent static and transient limits. Please see Section 2.6.1 for V  
CC_MAX CC  
CC_MIN  
overshoot specifications.  
2.  
3.  
Refer to Table 2-9 for V Static and Transient Tolerance.  
CC  
The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage  
regulation feedback for voltage regulator circuits must also be taken from processor VCC_SENSE and  
VSS_SENSE lands. Please refer to the appropriate platform design guide for further details on regulator and  
decoupling implementations.  
4.  
Processor core current (I ) ranges are valid up to I  
of the processor SKU as defined in Table 2-8.  
CC  
CC_MAX  
2.6.1  
V
Overshoot Specifications  
CC  
The Intel Xeon Processor 5500 Series can tolerate short transient overshoot events  
where VCC exceeds the VID voltage when transitioning from a high-to-low current load  
condition. This overshoot cannot exceed VID + VOS_MAX (VOS_MAX is the maximum  
allowable overshoot above VID). These specifications apply to the processor die voltage  
as measured across the VCC_SENSE and VSS_SENSE lands.  
Table 2-10. VCC Overshoot Specifications  
Symbol  
Parameter  
Magnitude of V overshoot above VID  
Min  
Max  
Units  
Figure  
Notes  
V
-
-
50  
25  
mV  
µs  
2-4  
2-4  
OS_MAX  
CC  
T
Time duration of V overshoot above VID  
CC  
OS_MAX  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
31  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
Figure 2-4. VCC Overshoot Example Waveform  
Example Overshoot Waveform  
VOS  
VID + 0.050  
VID - 0.000  
TOS  
0
5
10  
15  
20  
25  
Time [us]  
TOS: Overshoot time above VID  
VOS: Overshoot above VID  
Notes:  
1.  
2.  
V
is the measured overshoot voltage.  
is the measured time duration above VID.  
OS  
OS  
T
2.6.2  
Die Voltage Validation  
Core voltage (VCC) overshoot events at the processor must meet the specifications in  
Table 2-10 when measured across the VCC_SENSE and VSS_SENSE lands. Overshoot  
events that are < 10 ns in duration may be ignored. These measurements of processor  
die level overshoot should be taken with a 100 MHz bandwidth limited oscilloscope.  
®
®
32  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
Figure 2-5. Load Current Versus Time (130W TDP Processor)1,2  
155  
150  
145  
140  
135  
130  
125  
120  
115  
110  
105  
0.01  
0.1  
1
10  
100  
1000  
Time Duration, (s)  
Notes:  
1.  
Processor or voltage regulator thermal protection circuitry should not trip for load currents greater than  
I
.
CC_TDC  
2.  
Not 100% tested. Specified by design characterization.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
33  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
Figure 2-6. Load Current Versus Time (95W TDP Processor)1,2  
125.0  
120.0  
115.0  
110.0  
105.0  
100.0  
95.0  
90.0  
85.0  
80.0  
0.01  
0.1  
1
10  
100  
1000  
Time Duration, (s)  
Notes:  
1.  
Processor or voltage regulator thermal protection circuitry should not trip for load currents greater than  
I
.
CC_TDC  
2.  
Not 100% tested. Specified by design characterization.  
®
®
34  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
Figure 2-7. Load Current Versus Time (80W TDP Processor)1,2  
105  
100  
95  
90  
85  
80  
75  
70  
65  
0.01  
0.1  
1
10  
100  
1000  
Time Duration, (s)  
Notes:  
1.  
Processor or voltage regulator thermal protection circuitry should not trip for load currents greater than  
I
.
CC_TDC  
2.  
Not 100% tested. Specified by design characterization.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
35  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
Figure 2-8. Load Current Versus Time (60W TDP Processor)1,2  
85  
80  
75  
70  
65  
60  
55  
0.01  
0.1  
1
10  
100  
1000  
Time Duration, (s)  
Notes:  
1.  
Processor or voltage regulator thermal protection circuitry should not trip for load currents greater than  
I
.
CC_TDC  
2.  
Not 100% tested. Specified by design characterization.  
®
®
36  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
Figure 2-9. Load Current Versus Time (38W TDP Processor)1,2  
45  
40  
35  
30  
25  
20  
0.01  
0.1  
1
10  
100  
1000  
Time Duration, (s)  
Notes:  
1.  
Processor or voltage regulator thermal protection circuitry should not trip for load currents greater than  
I
.
CC_TDC  
2.  
Not 100% tested. Specified by design characterization.  
Table 2-11. VTT Static and Transient Tolerance (Sheet 1 of 2)  
1,2,3,4  
I
(A)  
V
(V)  
V
(V)  
V (V)  
TT_Min  
Notes  
TT  
TT_Max  
TT_Typ  
0
VTT_VID + 0.0315  
VTT_VID + 0.0255  
VTT_VID + 0.0195  
VTT_VID + 0.0135  
VTT_VID + 0.0075  
VTT_VID + 0.0015  
VTT_VID - 0.0045  
VTT_VID - 0.0105  
VTT_VID - 0.0165  
VTT_VID - 0.0225  
VTT_VID - 0.0285  
VTT_VID - 0.0345  
VTT_VID - 0.0405  
VTT_VID - 0.0000  
VTT_VID - 0.0060  
VTT_VID - 0.0120  
VTT_VID - 0.0180  
VTT_VID - 0.0240  
VTT_VID - 0.0300  
VTT_VID - 0.0360  
VTT_VID - 0.0420  
VTT_VID - 0.0480  
VTT_VID - 0.0540  
VTT_VID - 0.0600  
VTT_VID - 0.0660  
VTT_VID - 0.0720  
VTT_VID - 0.0315  
VTT_VID - 0.0375  
VTT_VID - 0.0435  
VTT_VID - 0.0495  
VTT_VID - 0.0555  
VTT_VID - 0.0615  
VTT_VID - 0.0675  
VTT_VID - 0.0735  
VTT_VID - 0.0795  
VTT_VID - 0.0855  
VTT_VID - 0.0915  
VTT_VID - 0.0975  
VTT_VID - 0.1035  
1
2
3
4
5
6
7
8
9
10  
11  
12  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
37  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
Table 2-11. VTT Static and Transient Tolerance (Sheet 2 of 2)  
1,2,3,4  
I
(A)  
V
(V)  
V
(V)  
V (V)  
TT_Min  
Notes  
TT  
TT_Max  
TT_Typ  
13  
VTT_VID - 0.0465  
VTT_VID - 0.0525  
VTT_VID - 0.0585  
VTT_VID - 0.0645  
VTT_VID - 0.0705  
VTT_VID - 0.0765  
VTT_VID - 0.0825  
VTT_VID - 0.0885  
VTT_VID - 0.0945  
VTT_VID - 0.1005  
VTT_VID - 0.1065  
VTT_VID - 0.1125  
VTT_VID - 0.1185  
VTT_VID - 0.1245  
VTT_VID - 0.1305  
VTT_VID - 0.1365  
VTT_VID - 0.0780  
VTT_VID - 0.0840  
VTT_VID - 0.0900  
VTT_VID - 0.0960  
VTT_VID - 0.1020  
VTT_VID - 0.1080  
VTT_VID - 0.1140  
VTT_VID - 0.1200  
VTT_VID - 0.1260  
VTT_VID - 0.1320  
VTT_VID - 0.1380  
VTT_VID - 0.1440  
VTT_VID - 0.1500  
VTT_VID - 0.1560  
VTT_VID - 0.1620  
VTT_VID - 0.1680  
VTT_VID - 0.1095  
VTT_VID - 0.1155  
VTT_VID - 0.1215  
VTT_VID - 0.1275  
VTT_VID - 0.1335  
VTT_VID - 0.1395  
VTT_VID - 0.1455  
VTT_VID - 0.1515  
VTT_VID - 0.1575  
VTT_VID - 0.1635  
VTT_VID - 0.1695  
VTT_VID - 0.1755  
VTT_VID - 0.1815  
VTT_VID - 0.1875  
VTT_VID - 0.1935  
VTT_VID - 0.1995  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Note:  
1.  
2.  
3.  
I
listed in this table is the sum of I  
and I  
.
TTD  
TT  
TTA  
This table is intended to aid in reading discrete points on Figure 2-10.  
The V and V loadlines represent static and transient limits. Each is characterized by a 31.5 mV  
TT_MIN  
TT_MAX  
.
offset from V  
TT_TYP  
4.  
The loadlines specify voltage limits at the die measured at the VTTD_SENSE and VSS_SENSE_VTTD lands.  
Voltage regulation feedback for regulator circuits must also be taken from VTTD_SENSE and  
VSS_SENSE_VTTD lands.  
®
®
38  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
Figure 2-10. VTT Static and Transient Tolerance Loadlines  
ITT [A]  
0
5
10  
15  
20  
25  
0.0500  
0.0375  
0.0250  
0.0125  
0.0000  
-0.0125  
-0.0250  
-0.0375  
-0.0500  
-0.0625  
-0.0750  
-0.0875  
-0.1000  
-0.1125  
-0.1250  
-0.1375  
-0.1500  
-0.1625  
-0.1750  
-0.1875  
-0.2000  
-0.2125  
Notes:  
1.  
The V  
offset from V  
and V  
TT_TYP  
loadlines represent static and transient limits. Each is characterized by a 31.5 mV  
TT_MIN  
TT_MAX  
.
2.  
3.  
Refer to Table 2-4 for processor VTT_VID information.  
Refer to Table 2-11 for V Static and Transient Tolerance.  
TT  
Table 2-12. DDR3 Signal Group DC Specifications (Sheet 1 of 2)  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
V
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
0.43*V  
V
V
V
2,  
3, 4  
6
IL  
DDQ  
V
0.57*V  
IH  
DDQ  
(V  
/(R +R  
/ 2)* (R  
VTT_TERM  
DDQ  
ON  
ON  
V
OL  
OH  
ON  
))  
Output High  
Voltage  
V
- ((V  
/ 2)*  
DDQ  
V
Ω
Ω
4,6  
5
DDQ  
V
R
(R /(R +R  
))  
ON  
ON  
VTT_TERM  
DDR3 Clock Buffer  
On Resistance  
21  
16  
31  
24  
DDR3 Command  
Buffer On  
Resistance  
5
R
R
R
R
ON  
ON  
ON  
ON  
DDR3 Reset Buffer  
On Resistance  
25  
21  
75  
31  
Ω
Ω
5
5
DDR3 Control  
Buffer On  
Resistance  
DDR3 Data Buffer  
On Resistance  
21  
31  
Ω
Ω
5
7
On-Die Termination  
for Data Signals  
45  
90  
55  
110  
Data ODT  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
39  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
Table 2-12. DDR3 Signal Group DC Specifications (Sheet 2 of 2)  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
On-Die Termination  
for Parity Error bits  
60  
80  
Ω
ParErr ODT  
Input Leakage  
Current  
N/A  
N/A  
mA  
I
± 500  
LI  
DDR_COMP0 COMP Resistance  
DDR_COMP1 COMP Resistance  
DDR_COMP2 COMP Resistance  
99  
100  
24.9  
130  
101  
Ω
Ω
Ω
8
8
8
24.65  
128.7  
25.15  
131.3  
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
V
V
V
is the maximum voltage level at a receiving agent that will be interpreted as a logical low value.  
IL  
IH  
IH  
is the minimum voltage level at a receiving agent that will be interpreted as a logical high value.  
and V  
may experience excursions above V  
.
OH  
DDQ  
This is the pull down driver resistance. Refer to processor signal integrity models for I/V characteristics.  
VTT_TERM  
R
is the termination on the DIMM and not controlled by the Intel Xeon Processor 5500 Series.  
Please refer to the applicable DIMM datasheet.  
7.  
8.  
The minimum and maximum values for these signals are programmable by BIOS to one of the pairs.  
COMP resistance must be provided on the system board with 1% resistors. DDR_COMP[2:0] resistors are  
to Vss.  
Table 2-13. PECI DC Electrical Limits  
1
Symbol  
Definition and Conditions  
Min  
Max  
Units  
Notes  
V
V
V
V
R
Input Voltage Range  
Hysteresis  
-0.150  
0.100 * V  
0.275 * V  
0.550 * V  
V
+ 0.150  
V
V
V
V
In  
TTD  
Hysteresis  
TTD  
TTD  
TTD  
Negative-edge threshold voltage  
Positive-edge threshold voltage  
Pullup Resistance  
0.500 * V  
0.725 * V  
2,6  
2,6  
N
TTD  
TTD  
P
Pullup  
N/A  
N/A  
50  
50  
Ω
(V  
= 0.75 * V  
)
TTD  
OH  
I
I
High impedance state leakage to  
(V = V  
Leak+  
Leak-  
µA  
3
V
)
OL  
TTD  
leak  
High impedance leakage to GND  
(V = V  
N/A  
N/A  
25  
10  
µA  
pF  
3
)
OH  
leak  
C
V
Bus capacitance per node  
4,5  
Bus  
Signal noise immunity above  
300 MHz  
Noise  
0.100 * V  
N/A  
V
p-p  
TTD  
Note:  
1.  
2.  
V
supplies the PECI interface. PECI behavior does not affect V  
min/max specifications.  
TTD  
TTD  
It is expected that the PECI driver will take into account, the variance in the receiver input thresholds and  
consequently, be able to drive its output within safe limits (-0.150 V to 0.275*V for the low level and  
0.725*V  
TTD  
to V  
+0.150 for the high level).  
TTD  
TTD  
3.  
4.  
The leakage specification applies to powered devices on the PECI bus.  
One node is counted for each client and one node for the system host. Extended trace lengths might appear  
as additional nodes.  
5.  
6.  
Excessive capacitive loading on the PECI line may slow down the signal rise/fall times and consequently  
limit the maximum bit rate at which the interface can operate.  
Please refer to Figure 2-2 for further information.  
®
®
40  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
Table 2-14. RESET# Signal DC Specifications  
1
Symbol  
Parameter  
Min  
Typ  
Max  
0.60 V  
TTA  
Units  
Notes  
V
Input Low Voltage  
Input High Voltage  
V
V
Ω
2,3  
IL  
*
V
R
0.70  
V
TTA  
2,3,5  
IH  
*
Processor Sideband Buffer  
On Resistance  
10  
18  
± 200  
ON  
I
Input Leakage Current  
μA  
4
LI  
Notes:  
1.  
2.  
3.  
4.  
5.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
The V  
referred to in these specifications refers to instantaneous V  
.
TTA  
TTA  
Based on a test load of 50 Ω to V  
.
TTA  
For V between 0 V and V . Measured when the driver is tristated.  
IN  
TTA  
V
and V may experience excursions above V .  
IH  
OH TT  
Table 2-15. TAP Signal Group DC Specifications  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
V
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
0.40  
V
TTA  
V
V
V
2,3  
2,3,5  
2,6  
IL  
IH  
OL  
*
V
0.60  
V
TTA  
*
V
V
* R  
+ R  
/
TTA  
ON  
)
SYS_TERM  
(R  
ON  
V
R
Output High Voltage  
V
V
2,5  
OH  
TTA  
Processor Sideband Buffer  
On Resistance  
10  
18  
± 200  
Ω
ON  
I
Input Leakage Current  
μA  
4
LI  
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
The V referred to in these specifications refers to instantaneous V  
.
TTA  
TTA  
Based on a test load of 50 Ω to V  
.
TTA  
For V between 0 V and V . Measured when the driver is tristated.  
IN  
TTA  
V
R
and V may experience excursions above V .  
IH  
OH TT  
is the termination on the system and is not controlled by the Intel Xeon processor 5500 series  
SYS_TERM  
Table 2-16. PWRGOOD Signal Group DC Specifications  
1
Symbol  
Parameter  
Min  
Typ  
Max  
0.25 V  
TTA  
Units  
Notes  
V
V
Input Low Voltage for  
VTTPWRGOOD and  
VCCPWRGOOD signals  
V
2,3  
IL  
*
Input Low Voltage for  
VDDPWRGOOD signal  
0.29  
V
V
3
IL  
V
V
Input High Voltage for  
VTTPWRGOOD and  
VCCPWRGOOD signals  
0.75  
V
TTA  
2,3  
IH  
*
Input High Voltage for  
VDDPWRGOOD signal  
0.87  
V
3
4
IH  
ODT  
On-Die Termination  
45  
10  
55  
18  
R
Processor Sideband Buffer  
On Resistance  
Ω
ON  
I
Input Leakage Current  
± 200  
μA  
LI  
Notes:  
1.  
2.  
3.  
4.  
5.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
The V referred to in these specifications refers to instantaneous V  
.
TTA  
TTA  
Based on a test load of 50 Ω to V  
.
TTA  
For V between 0 V and V . Measured when the driver is tristated.  
IN  
TTA  
V
and V may experience excursions above V .  
IH  
OH TT  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
41  
Intel® Xeon® Processors 5500 Series Electrical Specifications  
Table 2-17. Control Sideband Signal Group DC Specifications  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
V
V
Input Low Voltage  
0.64  
0.15  
V
V
V
V
2,3  
2,3  
IL  
*
*
TTA  
TTA  
Input Low Voltage for  
PECI_ID signal  
IL  
V
V
Input High Voltage  
0.76  
V
V
V
2,3  
2,3  
IH  
IH  
*
*
TTA  
TTA  
Input High Voltage for  
PECI_ID signal  
0.85  
V
V
Output Low Voltage  
V
ON  
* R  
/
V
V
2,4  
OL  
TTA  
ON  
)
SYS_TERM  
(R  
+ R  
V
Output High Voltage  
On-Die Termination  
V
2
5
OH  
TTA  
ODT  
45  
10  
55  
R
Processor Sideband Buffer  
On Resistance  
18  
Ω
Ω
ON  
R
Buffer On Resistance for  
VID[7:0]  
100  
ON  
I
Input Leakage Current  
± 200  
± 50  
μA  
μA  
6
6
LI  
I
Input Leakage Current for  
DDR_THERM# signal  
LI  
COMP0  
COMP Resistance  
49.4  
49.9  
50.4  
Ω
7
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
The V referred to in these specifications refers to instantaneous V  
.
TTA  
TTA  
Based on a test load of 50 Ω to V  
TTA.  
R
is the termination on the system and is not controlled by the Intel Xeon processor 5500 series.  
SYS_TERM  
Applies to all Processor Sideband signals, unless otherwise mentioned in Table 2-5.  
For V between 0 V and V . Measured when the driver is tristated.  
IN  
TTA  
COMP resistance must be provided on the system board with 1% resistors. See the applicable platform  
design guide for implementation details. COMP0 resistors are to VSS.  
§
®
®
42  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Package Mechanical Specifications  
3 Package Mechanical  
Specifications  
3.1  
Package Mechanical Specifications  
The processor is packaged in a Flip-Chip Land Grid Array (FC-LGA6) package that  
interfaces with the motherboard via an LGA1366 socket. The package consists of a  
processor mounted on a substrate land-carrier. An integrated heat spreader (IHS) is  
attached to the package substrate and core and serves as the mating surface for  
processor component thermal solutions, such as a heatsink. Figure 3-1 shows a sketch  
of the processor package components and how they are assembled together. Refer to  
the Processors and Socket in the Intel® Xeon® Processor 5500/5600 Series  
Thermal/Mechanical Design Guide for complete details on the LGA1366 socket.  
The package components shown in Figure 3-1 include the following:  
1. Integrated Heat Spreader (IHS)  
2. Thermal Interface Material (TIM)  
3. Processor core (die)  
4. Package substrate  
5. Capacitors  
Figure 3-1. Processor Package Assembly Sketch  
TIM  
Die  
IHS  
Substrate  
Capacitors  
LGA1366 Socket  
System Board  
Note:  
1.  
Socket and motherboard are included for reference and are not part of processor package.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
43  
Package Mechanical Specifications  
3.1.1  
Package Mechanical Drawing  
The package mechanical drawings are shown in Figure 3-2 and Figure 3-3. The  
drawings include dimensions necessary to design a thermal solution for the processor.  
These dimensions include:  
1. Package reference with tolerances (total height, length, width, and so forth)  
2. IHS parallelism and tilt  
3. Land dimensions  
4. Top-side and back-side component keep-out dimensions  
5. Reference datums  
6. All drawing dimensions are in mm.  
7. Guidelines on potential IHS flatness variation with socket load plate actuation and  
installation of the cooling solution is available in the TMDG.  
®
®
44  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Package Mechanical Specifications  
Figure 3-2. Processor Package Drawing (Sheet 1 of 2)  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
45  
Package Mechanical Specifications  
Figure 3-3. Processor Package Drawing (Sheet 2 of 2)  
®
®
46  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Package Mechanical Specifications  
3.1.2  
Processor Component Keep-Out Zones  
The processor may contain components on the substrate that define component  
keep-out zone requirements. A thermal and mechanical solution design must not  
intrude into the required keep-out zones. Do not contact the Test Pad Area with  
conductive material. Decoupling capacitors are typically mounted to either the topside  
or land-side of the package substrate. See Figure 3-2 and Figure 3-3 for keep-out  
zones. The location and quantity of package capacitors may change due to  
manufacturing efficiencies but will remain within the component keep-in.  
3.1.3  
Package Loading Specifications  
Table 3-1 provides load specifications for the processor package. These maximum  
limits should not be exceeded during heatsink assembly, shipping conditions, or  
standard use condition. Exceeding these limits during test may result in component  
failure. The processor substrate should not be used as a mechanical reference or load-  
bearing surface for thermal solutions.  
.
Table 3-1.  
Processor Loading Specifications  
Parameter  
Maximum  
890 N [200 lbf]  
Notes  
Static Compressive Load  
1, 2, 3, 5  
1, 3, 4, 5  
Dynamic Compressive Load  
1779 N [400 lbf] [max static  
compressive + dynamic load]  
Notes:  
1.  
2.  
These specifications apply to uniform compressive loading in a direction normal to the processor IHS.  
This is the maximum static force that can be applied by the heatsink and Independent Loading Mechanism  
(ILM).  
3.  
4.  
5.  
These specifications are based on limited testing for design characterization. Loading limits are for the  
package constrained by the limits of the processor socket.  
Dynamic loading is defined as an 11 ms duration average load superimposed on the static load  
requirement.  
See Intel® Xeon® Processor 5500/5600 Series Thermal/Mechanical Design Guide for minimum socket load  
to engage processor within socket.  
3.1.4  
Package Handling Guidelines  
Table 3-2 includes a list of guidelines on package handling in terms of recommended  
maximum loading on the processor IHS relative to a fixed substrate. These package  
handling loads may be experienced during heatsink removal.  
Table 3-2.  
Package Handling Guidelines  
Parameter  
Maximum Recommended  
Notes  
Shear  
Tensile  
Torque  
70 lbs  
25 lbs  
-
-
-
35 in.lbs  
3.1.5  
Package Insertion Specifications  
The processor can be inserted into and removed from a LGA1366 socket 15 times. The  
socket should meet the LGA1366 requirements detailed in the TMDG.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
47  
Package Mechanical Specifications  
3.1.6  
Processor Mass Specification  
The typical mass of the processor is 35 grams. This mass [weight] includes all the  
components that are included in the package.  
3.1.7  
Processor Materials  
Table 3-3 lists some of the package components and associated materials.  
Table 3-3.  
Processor Materials  
Component  
Material  
Nickel Plated Copper  
Integrated Heat Spreader (IHS)  
Substrate  
Fiber Reinforced Resin  
Gold Plated Copper  
Substrate Lands  
3.1.8  
Processor Markings  
Figure 3-4 shows the topside markings on the processor. This diagram is to aid in the  
identification of the processor.  
Figure 3-4. Processor Top-Side Markings  
Legend:  
Mark Text (Engineering Mark):  
GRP1LINE1: INTEL{M}{C}’YY  
GRP1LINE2: INTEL CONFIDENTIAL  
GRP1LINE3: QDF ES XXXXX  
GRP1LINE4: FORECAST-NAME  
GRP1LINE5: {FPO} {e4}  
Legend:  
Mark Text (Production Mark):  
INTEL{M}{C}’YY PROC#  
SUB-BRAND  
SSPEC XXXXX  
SPEED/CACHE/INTC  
{FPO} {e4}  
GRP1LINE1:  
GRP1LINE2:  
GRP1LINE3:  
GRP1LINE4:  
GRP1LINE5:  
3.1.9  
Processor Land Coordinates  
Please refer to Figure 3-3 which shows the bottom view of the processor land  
coordinates. The coordinates are referred to throughout the document to identify  
processor lands.  
§
®
®
48  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Land Listing  
4 Land Listing  
4.1  
Intel® Xeon® Processors 5500 Series Pin  
Assignments  
This section provides sorted land list in Table 4-1 and Table 4-2. Table 4-1 is a listing of  
all processor lands ordered alphabetically by land name. Table 4-2 is a listing of all  
processor lands ordered by land number.  
Note: A land name prefixed with a FC denotes a Future Connect land.  
4.1.1  
Land Listing by Land Name  
Table 4-1.  
Land Listing by Land Name  
(Sheet 2 of 36)  
Table 4-1.  
Land Listing by Land Name  
(Sheet 1 of 36)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
QPI0_DRX_DN[16]  
QPI0_DRX_DN[17]  
QPI0_DRX_DN[18]  
QPI0_DRX_DN[19]  
QPI0_DRX_DN[2]  
QPI0_DRX_DN[3]  
QPI0_DRX_DN[4]  
QPI0_DRX_DN[5]  
QPI0_DRX_DN[6]  
QPI0_DRX_DN[7]  
QPI0_DRX_DN[8]  
QPI0_DRX_DN[9]  
QPI0_DRX_DP[0]  
QPI0_DRX_DP[1]  
QPI0_DRX_DP[10]  
QPI0_DRX_DP[11]  
QPI0_DRX_DP[12]  
QPI0_DRX_DP[13]  
QPI0_DRX_DP[14]  
QPI0_DRX_DP[15]  
QPI0_DRX_DP[16]  
QPI0_DRX_DP[17]  
QPI0_DRX_DP[18]  
QPI0_DRX_DP[19]  
QPI0_DRX_DP[2]  
QPI0_DRX_DP[3]  
QPI0_DRX_DP[4]  
AM41  
AP40  
AP39  
AR38  
AV37  
AY36  
BA37  
AW38  
AY38  
AT39  
AV40  
AU41  
AT37  
AU38  
AU42  
AT43  
AT40  
AP42  
AN43  
AN40  
AM42  
AP41  
AN39  
AP38  
AV36  
AW36  
BA36  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
BCLK_DN  
AH35  
AJ35  
AA4  
CMOS  
CMOS  
CMOS  
CMOS  
GTL  
I
BCLK_DP  
I
BCLK_ITP_DN  
BCLK_ITP_DP  
BPM#[0]  
O
AA5  
O
B3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
BPM#[1]  
A5  
GTL  
BPM#[2]  
C2  
GTL  
BPM#[3]  
B4  
GTL  
BPM#[4]  
D1  
GTL  
BPM#[5]  
C3  
GTL  
BPM#[6]  
D2  
GTL  
BPM#[7]  
E2  
GTL  
CAT_ERR#  
AC37  
AB41  
AR42  
AR41  
AF42  
AG42  
AL43  
AU37  
AV38  
AT42  
AR43  
AR40  
AN42  
AM43  
AM40  
GTL  
COMP0  
Analog  
QPI  
QPI0_CLKRX_DN  
QPI0_CLKRX_DP  
QPI0_CLKTX_DN  
QPI0_CLKTX_DP  
QPI0_COMP  
I
I
QPI  
QPI  
O
O
QPI  
Analog  
QPI  
QPI0_DRX_DN[0]  
QPI0_DRX_DN[1]  
QPI0_DRX_DN[10]  
QPI0_DRX_DN[11]  
QPI0_DRX_DN[12]  
QPI0_DRX_DN[13]  
QPI0_DRX_DN[14]  
QPI0_DRX_DN[15]  
I
I
I
I
I
I
I
I
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
49  
Land Listing  
Table 4-1.  
Land Listing by Land Name  
(Sheet 3 of 36)  
Table 4-1.  
Land Listing by Land Name  
(Sheet 4 of 36)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
QPI0_DRX_DP[5]  
QPI0_DRX_DP[6]  
QPI0_DRX_DP[7]  
QPI0_DRX_DP[8]  
QPI0_DRX_DP[9]  
QPI0_DTX_DN[0]  
QPI0_DTX_DN[1]  
QPI0_DTX_DN[10]  
QPI0_DTX_DN[11]  
QPI0_DTX_DN[12]  
QPI0_DTX_DN[13]  
QPI0_DTX_DN[14]  
QPI0_DTX_DN[15]  
QPI0_DTX_DN[16]  
QPI0_DTX_DN[17]  
QPI0_DTX_DN[18]  
QPI0_DTX_DN[19]  
QPI0_DTX_DN[2]  
QPI0_DTX_DN[3]  
QPI0_DTX_DN[4]  
QPI0_DTX_DN[5]  
QPI0_DTX_DN[6]  
QPI0_DTX_DN[7]  
QPI0_DTX_DN[8]  
QPI0_DTX_DN[9]  
QPI0_DTX_DP[0]  
QPI0_DTX_DP[1]  
QPI0_DTX_DP[10]  
QPI0_DTX_DP[11]  
QPI0_DTX_DP[12]  
QPI0_DTX_DP[13]  
QPI0_DTX_DP[14]  
QPI0_DTX_DP[15]  
QPI0_DTX_DP[16]  
QPI0_DTX_DP[17]  
QPI0_DTX_DP[18]  
QPI0_DTX_DP[19]  
QPI0_DTX_DP[2]  
QPI0_DTX_DP[3]  
QPI0_DTX_DP[4]  
AW37  
BA38  
AU39  
AW40  
AU40  
AH38  
AG39  
AE43  
AE41  
AC42  
AB43  
AD39  
AC40  
AC38  
AB38  
AE38  
AF40  
AK38  
AJ39  
AJ40  
AK41  
AH42  
AJ42  
AH43  
AG41  
AG38  
AF39  
AF43  
AE42  
AD42  
AC43  
AD40  
AC41  
AC39  
AB39  
AD38  
AE40  
AK37  
AJ38  
AH40  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
I
QPI0_DTX_DP[5]  
QPI0_DTX_DP[6]  
QPI0_DTX_DP[7]  
QPI0_DTX_DP[8]  
QPI0_DTX_DP[9]  
QPI1_CLKRX_DN  
QPI1_CLKRX_DP  
QPI1_CLKTX_DN  
QPI1_CLKTX_DP  
QPI1_COMP  
AK40  
AH41  
AK42  
AJ43  
AG40  
AR6  
AT6  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
Analog  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
O
O
O
O
O
I
I
I
I
I
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
AE6  
AF6  
O
O
AL6  
QPI1_DRX_DN[0]  
QPI1_DRX_DN[1]  
QPI1_DRX_DN[10]  
QPI1_DRX_DN[11]  
QPI1_DRX_DN[12]  
QPI1_DRX_DN[13]  
QPI1_DRX_DN[14]  
QPI1_DRX_DN[15]  
QPI1_DRX_DN[16]  
QPI1_DRX_DN[17]  
QPI1_DRX_DN[18]  
QPI1_DRX_DN[19]  
QPI1_DRX_DN[2]  
QPI1_DRX_DN[3]  
QPI1_DRX_DN[4]  
QPI1_DRX_DN[5]  
QPI1_DRX_DN[6]  
QPI1_DRX_DN[7]  
QPI1_DRX_DN[8]  
QPI1_DRX_DN[9]  
QPI1_DRX_DP[0]  
QPI1_DRX_DP[1]  
QPI1_DRX_DP[10]  
QPI1_DRX_DP[11]  
QPI1_DRX_DP[12]  
QPI1_DRX_DP[13]  
QPI1_DRX_DP[14]  
QPI1_DRX_DP[15]  
QPI1_DRX_DP[16]  
QPI1_DRX_DP[17]  
AV8  
AW7  
AR1  
AR5  
AN2  
AM1  
AM3  
AP4  
AN4  
AN6  
AM7  
AL8  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
BA8  
AW5  
BA6  
AY5  
AU6  
AW3  
AU3  
AT2  
AU8  
AV7  
AT1  
AR4  
AP2  
AN1  
AM2  
AP3  
AM4  
AN5  
®
®
50  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Land Listing  
Table 4-1.  
Land Listing by Land Name  
(Sheet 5 of 36)  
Table 4-1.  
Land Listing by Land Name  
(Sheet 6 of 36)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
QPI1_DRX_DP[18]  
QPI1_DRX_DP[19]  
QPI1_DRX_DP[2]  
QPI1_DRX_DP[3]  
QPI1_DRX_DP[4]  
QPI1_DRX_DP[5]  
QPI1_DRX_DP[6]  
QPI1_DRX_DP[7]  
QPI1_DRX_DP[8]  
QPI1_DRX_DP[9]  
QPI1_DTX_DN[0]  
QPI1_DTX_DN[1]  
QPI1_DTX_DN[10]  
QPI1_DTX_DN[11]  
QPI1_DTX_DN[12]  
QPI1_DTX_DN[13]  
QPI1_DTX_DN[14]  
QPI1_DTX_DN[15]  
QPI1_DTX_DN[16]  
QPI1_DTX_DN[17]  
QPI1_DTX_DN[18]  
QPI1_DTX_DN[19]  
QPI1_DTX_DN[2]  
QPI1_DTX_DN[3]  
QPI1_DTX_DN[4]  
QPI1_DTX_DN[5]  
QPI1_DTX_DN[6]  
QPI1_DTX_DN[7]  
QPI1_DTX_DN[8]  
QPI1_DTX_DN[9]  
QPI1_DTX_DP[0]  
QPI1_DTX_DP[1]  
QPI1_DTX_DP[10]  
QPI1_DTX_DP[11]  
QPI1_DTX_DP[12]  
QPI1_DTX_DP[13]  
QPI1_DTX_DP[14]  
QPI1_DTX_DP[15]  
QPI1_DTX_DP[16]  
QPI1_DTX_DP[17]  
AM6  
AM8  
AY8  
AV5  
BA7  
AY6  
AU7  
AW4  
AU4  
AT3  
AH8  
AJ7  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
I
QPI1_DTX_DP[18]  
QPI1_DTX_DP[19]  
QPI1_DTX_DP[2]  
QPI1_DTX_DP[3]  
QPI1_DTX_DP[4]  
QPI1_DTX_DP[5]  
QPI1_DTX_DP[6]  
QPI1_DTX_DP[7]  
QPI1_DTX_DP[8]  
QPI1_DTX_DP[9]  
DBR#  
AD5  
AC8  
AH6  
AK6  
AJ4  
AG7  
AJ3  
AK1  
AH3  
AH2  
AF10  
AA8  
Y7  
QPI  
QPI  
O
O
O
O
O
O
O
O
O
O
I
I
I
QPI  
I
QPI  
I
QPI  
I
QPI  
I
QPI  
I
QPI  
I
QPI  
I
QPI  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Asynch  
Analog  
Analog  
Analog  
CMOS  
Analog  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
DDR_COMP[0]  
DDR_COMP[1]  
DDR_COMP[2]  
DDR_THERM#  
DDR_VREF  
AF3  
AD1  
AD3  
AB3  
AE4  
AD4  
AC6  
AD7  
AE5  
AD8  
AJ6  
AC1  
AB5  
L23  
B16  
A16  
C28  
C12  
C29  
A30  
B30  
B31  
K19  
C19  
E18  
E19  
J19  
I
I
DDR0_BA[0]  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
DDR0_BA[1]  
DDR0_BA[2]  
DDR0_CAS#  
DDR0_CKE[0]  
DDR0_CKE[1]  
DDR0_CKE[2]  
DDR0_CKE[3]  
DDR0_CLK_N[0]  
DDR0_CLK_N[1]  
DDR0_CLK_N[2]  
DDR0_CLK_N[3]  
DDR0_CLK_P[0]  
DDR0_CLK_P[1]  
DDR0_CLK_P[2]  
DDR0_CLK_P[3]  
DDR0_CS#[0]  
DDR0_CS#[1]  
DDR0_CS#[2]  
DDR0_CS#[3]  
DDR0_CS#[4]  
DDR0_CS#[5]  
AK5  
AK4  
AG6  
AJ2  
AJ1  
AH4  
AG2  
AG8  
AJ8  
D19  
F18  
E20  
G15  
B10  
C13  
B9  
AF2  
AE1  
AD2  
AC3  
AE3  
AC4  
AB6  
AD6  
B15  
A7  
DDR0_CS#[6]/  
DDR0_ODT[4]  
C11  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
51  
Land Listing  
Table 4-1.  
Land Listing by Land Name  
(Sheet 7 of 36)  
Table 4-1.  
Land Listing by Land Name  
(Sheet 8 of 36)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
DDR0_CS#[7]/  
DDR0_ODT[5]  
B8  
CMOS  
O
DDR0_DQ[44]  
DDR0_DQ[45]  
DDR0_DQ[46]  
DDR0_DQ[47]  
DDR0_DQ[48]  
DDR0_DQ[49]  
DDR0_DQ[5]  
G1  
H3  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DDR0_DQ[0]  
DDR0_DQ[1]  
DDR0_DQ[10]  
DDR0_DQ[11]  
DDR0_DQ[12]  
DDR0_DQ[13]  
DDR0_DQ[14]  
DDR0_DQ[15]  
DDR0_DQ[16]  
DDR0_DQ[17]  
DDR0_DQ[18]  
DDR0_DQ[19]  
DDR0_DQ[2]  
DDR0_DQ[20]  
DDR0_DQ[21]  
DDR0_DQ[22]  
DDR0_DQ[23]  
DDR0_DQ[24]  
DDR0_DQ[25]  
DDR0_DQ[26]  
DDR0_DQ[27]  
DDR0_DQ[28]  
DDR0_DQ[29]  
DDR0_DQ[3]  
DDR0_DQ[30]  
DDR0_DQ[31]  
DDR0_DQ[32]  
DDR0_DQ[33]  
DDR0_DQ[34]  
DDR0_DQ[35]  
DDR0_DQ[36]  
DDR0_DQ[37]  
DDR0_DQ[38]  
DDR0_DQ[39]  
DDR0_DQ[4]  
DDR0_DQ[40]  
DDR0_DQ[41]  
DDR0_DQ[42]  
DDR0_DQ[43]  
W41  
V41  
K42  
K43  
P42  
P41  
L43  
L42  
H41  
H43  
E42  
E43  
R43  
J42  
J41  
F43  
F42  
D40  
C41  
A38  
D37  
D41  
D42  
R42  
C38  
B38  
B5  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L3  
L2  
N1  
N2  
W42  
T1  
DDR0_DQ[50]  
DDR0_DQ[51]  
DDR0_DQ[52]  
DDR0_DQ[53]  
DDR0_DQ[54]  
DDR0_DQ[55]  
DDR0_DQ[56]  
DDR0_DQ[57]  
DDR0_DQ[58]  
DDR0_DQ[59]  
DDR0_DQ[6]  
T2  
M3  
N3  
R4  
T3  
U4  
V1  
Y2  
Y3  
U41  
U1  
DDR0_DQ[60]  
DDR0_DQ[61]  
DDR0_DQ[62]  
DDR0_DQ[63]  
DDR0_DQ[7]  
U3  
V4  
W4  
T42  
N41  
N43  
U43  
M41  
M43  
G43  
C39  
D4  
DDR0_DQ[8]  
DDR0_DQ[9]  
DDR0_DQS_N[0]  
DDR0_DQS_N[1]  
DDR0_DQS_N[10]  
DDR0_DQS_N[11]  
DDR0_DQS_N[12]  
DDR0_DQS_N[13]  
DDR0_DQS_N[14]  
DDR0_DQS_N[15]  
DDR0_DQS_N[16]  
DDR0_DQS_N[17]  
DDR0_DQS_N[2]  
DDR0_DQS_N[3]  
DDR0_DQS_N[4]  
DDR0_DQS_N[5]  
DDR0_DQS_N[6]  
C4  
F1  
G3  
J1  
B6  
P1  
C6  
V3  
F3  
B35  
G41  
B40  
E4  
F2  
W40  
H2  
H1  
K3  
L1  
R3  
M1  
®
®
52  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Land Listing  
Table 4-1.  
Land Listing by Land Name  
(Sheet 9 of 36)  
Table 4-1.  
Land Listing by Land Name  
(Sheet 10 of 36)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
DDR0_DQS_N[7]  
DDR0_DQS_N[8]  
DDR0_DQS_N[9]  
DDR0_DQS_P[0]  
DDR0_DQS_P[1]  
DDR0_DQS_P[10]  
DDR0_DQS_P[11]  
DDR0_DQS_P[12]  
DDR0_DQS_P[13]  
DDR0_DQS_P[14]  
DDR0_DQS_P[15]  
DDR0_DQS_P[16]  
DDR0_DQS_P[17]  
DDR0_DQS_P[2]  
DDR0_DQS_P[3]  
DDR0_DQS_P[4]  
DDR0_DQS_P[5]  
DDR0_DQS_P[6]  
DDR0_DQS_P[7]  
DDR0_DQS_P[8]  
DDR0_DQS_P[9]  
DDR0_ECC[0]  
W1  
D35  
V42  
T43  
L41  
N42  
H42  
D39  
D5  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
DDR0_MA[5]  
B24  
C24  
A25  
B25  
C26  
B20  
F12  
C9  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
Asynch  
Asynch  
Asynch  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
O
O
O
O
O
O
O
O
O
O
I
DDR0_MA[6]  
DDR0_MA[7]  
DDR0_MA[8]  
DDR0_MA[9]  
DDR0_MA_PAR  
DDR0_ODT[0]  
DDR0_ODT[1]  
DDR0_ODT[2]  
DDR0_ODT[3]  
DDR0_PAR_ERR#[0]  
DDR0_PAR_ERR#[1]  
DDR0_PAR_ERR#[2]  
DDR0_RAS#  
B11  
C7  
J2  
P2  
D25  
B28  
A27  
A15  
D32  
B13  
C18  
K13  
H27  
E14  
H28  
E27  
D27  
C27  
D21  
G20  
L18  
H19  
C21  
G19  
K18  
H18  
D12  
A8  
V2  
I
B36  
F41  
B39  
E3  
I
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
DDR0_RESET#  
DDR0_WE#  
K2  
DDR1_BA[0]  
R2  
DDR1_BA[1]  
W2  
DDR1_BA[2]  
D34  
V43  
C36  
A36  
F32  
C33  
C37  
A37  
B34  
C34  
A20  
B21  
B19  
A26  
B26  
A10  
A28  
B29  
C23  
D24  
B23  
DDR1_CAS#  
DDR1_CKE[0]  
DDR1_CKE[1]  
DDR1_CKE[2]  
DDR1_CKE[3]  
DDR1_CLK_N[0]  
DDR1_CLK_N[1]  
DDR1_CLK_N[2]  
DDR1_CLK_N[3]  
DDR1_CLK_P[0]  
DDR1_CLK_P[1]  
DDR1_CLK_P[2]  
DDR1_CLK_P[3]  
DDR1_CS#[0]  
DDR1_CS#[1]  
DDR1_CS#[2]  
DDR1_CS#[3]  
DDR1_CS#[4]  
DDR1_CS#[5]  
DDR0_ECC[1]  
DDR0_ECC[2]  
DDR0_ECC[3]  
DDR0_ECC[4]  
DDR0_ECC[5]  
DDR0_ECC[6]  
DDR0_ECC[7]  
DDR0_MA[0]  
DDR0_MA[1]  
O
DDR0_MA[10]  
O
DDR0_MA[11]  
O
DDR0_MA[12]  
O
DDR0_MA[13]  
O
E15  
E13  
C17  
E10  
C14  
DDR0_MA[14]  
O
DDR0_MA[15]  
O
DDR0_MA[2]  
O
DDR0_MA[3]  
O
DDR1_CS#[6]/  
DDR1_ODT[4]  
DDR0_MA[4]  
O
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
53  
Land Listing  
Table 4-1.  
Land Listing by Land Name  
(Sheet 11 of 36)  
Table 4-1.  
Land Listing by Land Name  
(Sheet 12 of 36)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
DDR1_CS#[7]/  
DDR1_ODT[5]  
E12  
CMOS  
O
DDR1_DQ[44]  
DDR1_DQ[45]  
DDR1_DQ[46]  
DDR1_DQ[47]  
DDR1_DQ[48]  
DDR1_DQ[49]  
DDR1_DQ[5]  
G9  
H9  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DDR1_DQ[0]  
DDR1_DQ[1]  
DDR1_DQ[10]  
DDR1_DQ[11]  
DDR1_DQ[12]  
DDR1_DQ[13]  
DDR1_DQ[14]  
DDR1_DQ[15]  
DDR1_DQ[16]  
DDR1_DQ[17]  
DDR1_DQ[18]  
DDR1_DQ[19]  
DDR1_DQ[2]  
DDR1_DQ[20]  
DDR1_DQ[21]  
DDR1_DQ[22]  
DDR1_DQ[23]  
DDR1_DQ[24]  
DDR1_DQ[25]  
DDR1_DQ[26]  
DDR1_DQ[27]  
DDR1_DQ[28]  
DDR1_DQ[29]  
DDR1_DQ[3]  
DDR1_DQ[30]  
DDR1_DQ[31]  
DDR1_DQ[32]  
DDR1_DQ[33]  
DDR1_DQ[34]  
DDR1_DQ[35]  
DDR1_DQ[36]  
DDR1_DQ[37]  
DDR1_DQ[38]  
DDR1_DQ[39]  
DDR1_DQ[4]  
DDR1_DQ[40]  
DDR1_DQ[41]  
DDR1_DQ[42]  
DDR1_DQ[43]  
AA37  
AA36  
P39  
N39  
R34  
R35  
N37  
N38  
M35  
M34  
K35  
J35  
Y35  
N34  
M36  
J36  
H36  
H33  
L33  
K32  
J32  
J34  
H34  
Y34  
L32  
K30  
E9  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
G5  
J5  
K4  
K5  
AB36  
R5  
DDR1_DQ[50]  
DDR1_DQ[51]  
DDR1_DQ[52]  
DDR1_DQ[53]  
DDR1_DQ[54]  
DDR1_DQ[55]  
DDR1_DQ[56]  
DDR1_DQ[57]  
DDR1_DQ[58]  
DDR1_DQ[59]  
DDR1_DQ[6]  
T5  
J4  
M6  
R8  
R7  
W6  
W7  
Y10  
W10  
Y40  
V9  
DDR1_DQ[60]  
DDR1_DQ[61]  
DDR1_DQ[62]  
DDR1_DQ[63]  
DDR1_DQ[7]  
W5  
AA7  
W9  
Y39  
P34  
P35  
Y37  
R37  
P37  
K37  
K33  
F7  
DDR1_DQ[8]  
DDR1_DQ[9]  
DDR1_DQS_N[0]  
DDR1_DQS_N[1]  
DDR1_DQS_N[10]  
DDR1_DQS_N[11]  
DDR1_DQS_N[12]  
DDR1_DQS_N[13]  
DDR1_DQS_N[14]  
DDR1_DQS_N[15]  
DDR1_DQS_N[16]  
DDR1_DQS_N[17]  
DDR1_DQS_N[2]  
DDR1_DQS_N[3]  
DDR1_DQS_N[4]  
DDR1_DQS_N[5]  
DDR1_DQS_N[6]  
E8  
E5  
F5  
J7  
F10  
G8  
M4  
Y5  
D6  
E35  
L36  
L31  
D7  
F6  
AA35  
H8  
J6  
G6  
G4  
L5  
H4  
®
®
54  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Land Listing  
Table 4-1.  
Land Listing by Land Name  
(Sheet 13 of 36)  
Table 4-1.  
Land Listing by Land Name  
(Sheet 14 of 36)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
DDR1_DQS_N[7]  
DDR1_DQS_N[8]  
DDR1_DQS_N[9]  
DDR1_DQS_P[0]  
DDR1_DQS_P[1]  
DDR1_DQS_P[10]  
DDR1_DQS_P[11]  
DDR1_DQS_P[12]  
DDR1_DQS_P[13]  
DDR1_DQS_P[14]  
DDR1_DQS_P[15]  
DDR1_DQS_P[16]  
DDR1_DQS_P[17]  
DDR1_DQS_P[2]  
DDR1_DQS_P[3]  
DDR1_DQS_P[4]  
DDR1_DQS_P[5]  
DDR1_DQS_P[6]  
DDR1_DQS_P[7]  
DDR1_DQS_P[8]  
DDR1_DQS_P[9]  
DDR1_ECC[0]  
Y9  
G34  
AA41  
Y38  
R38  
P36  
L37  
K34  
F8  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
DDR1_MA[5]  
F22  
J27  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
Asynch  
Asynch  
Asynch  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
O
O
O
O
O
O
O
O
O
O
I
DDR1_MA[6]  
DDR1_MA[7]  
D22  
E22  
G24  
D20  
D11  
C8  
DDR1_MA[8]  
DDR1_MA[9]  
DDR1_MA_PAR  
DDR1_ODT[0]  
DDR1_ODT[1]  
DDR1_ODT[2]  
DDR1_ODT[3]  
DDR1_PAR_ERR#[0]  
DDR1_PAR_ERR#[1]  
DDR1_PAR_ERR#[2]  
DDR1_RAS#  
D14  
F11  
C22  
E25  
F25  
G14  
D29  
G13  
A17  
F17  
L26  
F16  
J26  
H7  
M5  
Y4  
I
F35  
L35  
L30  
E7  
I
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
DDR1_RESET#  
DDR1_WE#  
H6  
DDR2_BA[0]  
L6  
DDR2_BA[1]  
Y8  
DDR2_BA[2]  
G33  
AA40  
D36  
F36  
E33  
G36  
E37  
F37  
E34  
G35  
J14  
J16  
H14  
E23  
E24  
B14  
H26  
F26  
J17  
L28  
K28  
DDR2_CAS#  
DDR2_CKE[0]  
DDR2_CKE[1]  
DDR2_CKE[2]  
DDR2_CKE[3]  
DDR2_CLK_N[0]  
DDR2_CLK_N[1]  
DDR2_CLK_N[2]  
DDR2_CLK_N[3]  
DDR2_CLK_P[0]  
DDR2_CLK_P[1]  
DDR2_CLK_P[2]  
DDR2_CLK_P[3]  
DDR2_CS#[0]  
DDR2_CS#[1]  
DDR2_CS#[2]  
DDR2_CS#[3]  
DDR2_CS#[4]  
DDR2_CS#[5]  
G26  
D26  
L27  
J21  
DDR1_ECC[1]  
DDR1_ECC[2]  
DDR1_ECC[3]  
DDR1_ECC[4]  
K20  
G21  
L21  
J22  
DDR1_ECC[5]  
DDR1_ECC[6]  
DDR1_ECC[7]  
DDR1_MA[0]  
L20  
H21  
L22  
G16  
K14  
D16  
H16  
E17  
D9  
DDR1_MA[1]  
O
DDR1_MA[10]  
O
DDR1_MA[11]  
O
DDR1_MA[12]  
O
DDR1_MA[13]  
O
DDR1_MA[14]  
O
DDR1_MA[15]  
O
DDR1_MA[2]  
O
DDR1_MA[3]  
O
DDR2_CS#[6]/  
DDR2_ODT[4]  
L17  
DDR1_MA[4]  
O
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
55  
Land Listing  
Table 4-1.  
Land Listing by Land Name  
(Sheet 15 of 36)  
Table 4-1.  
Land Listing by Land Name  
(Sheet 16 of 36)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
DDR2_CS#[7]/  
DDR2_ODT[5]  
J15  
CMOS  
O
DDR2_DQ[44]  
DDR2_DQ[45]  
DDR2_DQ[46]  
DDR2_DQ[47]  
DDR2_DQ[48]  
DDR2_DQ[49]  
DDR2_DQ[5]  
L11  
M10  
L8  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DDR2_DQ[0]  
DDR2_DQ[1]  
DDR2_DQ[10]  
DDR2_DQ[11]  
DDR2_DQ[12]  
DDR2_DQ[13]  
DDR2_DQ[14]  
DDR2_DQ[15]  
DDR2_DQ[16]  
DDR2_DQ[17]  
DDR2_DQ[18]  
DDR2_DQ[19]  
DDR2_DQ[2]  
DDR2_DQ[20]  
DDR2_DQ[21]  
DDR2_DQ[22]  
DDR2_DQ[23]  
DDR2_DQ[24]  
DDR2_DQ[25]  
DDR2_DQ[26]  
DDR2_DQ[27]  
DDR2_DQ[28]  
DDR2_DQ[29]  
DDR2_DQ[3]  
DDR2_DQ[30]  
DDR2_DQ[31]  
DDR2_DQ[32]  
DDR2_DQ[33]  
DDR2_DQ[34]  
DDR2_DQ[35]  
DDR2_DQ[36]  
DDR2_DQ[37]  
DDR2_DQ[38]  
DDR2_DQ[39]  
DDR2_DQ[4]  
DDR2_DQ[40]  
DDR2_DQ[41]  
DDR2_DQ[42]  
DDR2_DQ[43]  
W34  
W35  
R39  
T36  
W39  
V39  
T41  
R40  
M39  
M40  
J40  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
M8  
P7  
N6  
V34  
P9  
DDR2_DQ[50]  
DDR2_DQ[51]  
DDR2_DQ[52]  
DDR2_DQ[53]  
DDR2_DQ[54]  
DDR2_DQ[55]  
DDR2_DQ[56]  
DDR2_DQ[57]  
DDR2_DQ[58]  
DDR2_DQ[59]  
DDR2_DQ[6]  
P10  
N8  
N7  
R10  
R9  
J39  
U5  
V36  
P40  
N36  
L40  
K38  
G40  
F40  
J37  
U6  
T10  
U10  
V37  
T6  
DDR2_DQ[60]  
DDR2_DQ[61]  
DDR2_DQ[62]  
DDR2_DQ[63]  
DDR2_DQ[7]  
T7  
V8  
U9  
H37  
H39  
G39  
U36  
F38  
E38  
K12  
J12  
V38  
U38  
U39  
W36  
T38  
T40  
L38  
G38  
J11  
K8  
DDR2_DQ[8]  
DDR2_DQ[9]  
DDR2_DQS_N[0]  
DDR2_DQS_N[1]  
DDR2_DQS_N[10]  
DDR2_DQS_N[11]  
DDR2_DQS_N[12]  
DDR2_DQS_N[13]  
DDR2_DQS_N[14]  
DDR2_DQS_N[15]  
DDR2_DQS_N[16]  
DDR2_DQS_N[17]  
DDR2_DQS_N[2]  
DDR2_DQS_N[3]  
DDR2_DQS_N[4]  
DDR2_DQS_N[5]  
DDR2_DQS_N[6]  
H13  
L13  
G11  
G10  
H12  
L12  
U34  
L10  
K10  
M9  
P4  
V7  
G31  
K39  
E40  
J9  
K7  
P5  
N9  
®
®
56  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Land Listing  
Table 4-1.  
Land Listing by Land Name  
(Sheet 17 of 36)  
Table 4-1.  
Land Listing by Land Name  
(Sheet 18 of 36)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
DDR2_DQS_N[7]  
DDR2_DQS_N[8]  
DDR2_DQS_N[9]  
DDR2_DQS_P[0]  
DDR2_DQS_P[1]  
DDR2_DQS_P[10]  
DDR2_DQS_P[11]  
DDR2_DQS_P[12]  
DDR2_DQS_P[13]  
DDR2_DQS_P[14]  
DDR2_DQS_P[15]  
DDR2_DQS_P[16]  
DDR2_DQS_P[17]  
DDR2_DQS_P[2]  
DDR2_DQS_P[3]  
DDR2_DQS_P[4]  
DDR2_DQS_P[5]  
DDR2_DQS_P[6]  
DDR2_DQS_P[7]  
DDR2_DQS_P[8]  
DDR2_DQS_P[9]  
DDR2_ECC[0]  
T8  
G30  
T35  
W37  
T37  
U40  
M38  
H38  
H11  
K9  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
DDR2_MA[5]  
DDR2_MA[6]  
DDR2_MA[7]  
DDR2_MA[8]  
DDR2_MA[9]  
DDR2_MA_PAR  
DDR2_ODT[0]  
DDR2_ODT[1]  
DDR2_ODT[2]  
DDR2_ODT[3]  
DDR2_PAR_ERR#[0]  
DDR2_PAR_ERR#[1]  
DDR2_PAR_ERR#[2]  
DDR2_RAS#  
DDR2_RESET#  
DDR2_WE#  
FC_AH5  
K23  
K22  
J24  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
Asynch  
Asynch  
Asynch  
CMOS  
CMOS  
CMOS  
O
O
O
O
O
O
O
O
O
O
I
L25  
H22  
B18  
L16  
F13  
D15  
D10  
F21  
N4  
V6  
J25  
I
H31  
K40  
E39  
J10  
L7  
F23  
I
D17  
E32  
C16  
AH5  
AJ37  
AK8  
AH36  
AK35  
B41  
C42  
AG35  
AP7  
AL39  
A31  
A40  
AF1  
O
O
O
P6  
GTLREF  
Analog  
Analog  
Asynch  
Asynch  
GTL  
I
I
U8  
ISENSE  
G29  
U35  
H32  
F33  
E29  
E30  
J31  
J30  
F31  
F30  
A18  
K17  
H17  
H23  
G23  
F15  
H24  
G25  
G18  
J20  
F20  
PECI  
I/O  
I
PECI_ID#  
PRDY#  
O
I
DDR2_ECC[1]  
PREQ#  
GTL  
DDR2_ECC[2]  
PROCHOT#  
PSI#  
GTL  
I/O  
O
I
DDR2_ECC[3]  
CMOS  
Asynch  
DDR2_ECC[4]  
RESET#  
DDR2_ECC[5]  
RSVD  
DDR2_ECC[6]  
RSVD  
DDR2_ECC[7]  
RSVD  
DDR2_MA[0]  
RSVD  
AF4  
DDR2_MA[1]  
O
RSVD  
AG1  
AG4  
AG5  
AK2  
AK7  
AK36  
AL3  
DDR2_MA[10]  
O
RSVD  
DDR2_MA[11]  
O
RSVD  
DDR2_MA[12]  
O
RSVD  
DDR2_MA[13]  
O
RSVD  
DDR2_MA[14]  
O
RSVD  
DDR2_MA[15]  
O
RSVD  
DDR2_MA[2]  
O
RSVD  
AL38  
AL4  
DDR2_MA[3]  
O
RSVD  
DDR2_MA[4]  
O
RSVD  
AL40  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
57  
Land Listing  
Table 4-1.  
Land Listing by Land Name  
(Sheet 19 of 36)  
Table 4-1.  
Land Listing by Land Name  
(Sheet 20 of 36)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
AL41  
AL5  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
SKTOCC#  
TCK  
K15  
K24  
AM36  
AM38  
AN36  
AN38  
AR36  
AR37  
AT36  
AT4  
K25  
K27  
K29  
L15  
U11  
V11  
AG36  
AH10  
AJ9  
GTL  
TAP  
O
I
AT5  
TDI  
TAP  
I
AU2  
TDO  
AJ10  
AG37  
AG10  
AH9  
TAP  
O
O
I
AV1  
THERMTRIP#  
TMS  
GTL  
AV2  
TAP  
AV35  
AV42  
AV43  
AW2  
AW39  
AW41  
AW42  
AY3  
TRST#  
VCC  
TAP  
I
AH11  
AH33  
AJ11  
AJ33  
AK11  
AK12  
AK13  
AK15  
AK16  
AK18  
AK19  
AK21  
AK24  
AK25  
AK27  
AK28  
AK30  
AK31  
AK33  
AL12  
AL13  
AL15  
AL16  
AL18  
AL19  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AY35  
AY39  
AY4  
VCC  
VCC  
VCC  
AY40  
AY41  
B33  
VCC  
VCC  
VCC  
BA4  
VCC  
BA40  
C31  
VCC  
VCC  
C32  
VCC  
D30  
VCC  
D31  
VCC  
E28  
VCC  
F27  
VCC  
F28  
VCC  
G28  
VCC  
H29  
VCC  
J29  
VCC  
®
®
58  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Land Listing  
Table 4-1.  
Land Listing by Land Name  
(Sheet 21 of 36)  
Table 4-1.  
Land Listing by Land Name  
(Sheet 22 of 36)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AL21  
AL24  
AL25  
AL27  
AL28  
AL30  
AL31  
AL33  
AL34  
AM12  
AM13  
AM15  
AM16  
AM18  
AM19  
AM21  
AM24  
AM25  
AM27  
AM28  
AM30  
AM31  
AM33  
AM34  
AN12  
AN13  
AN15  
AN16  
AN18  
AN19  
AN21  
AN24  
AN25  
AN27  
AN28  
AN30  
AN31  
AN33  
AN34  
AP12  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AP13  
AP15  
AP16  
AP18  
AP19  
AP21  
AP24  
AP25  
AP27  
AP28  
AP30  
AP31  
AP33  
AP34  
AR10  
AR12  
AR13  
AR15  
AR16  
AR18  
AR19  
AR21  
AR24  
AR25  
AR27  
AR28  
AR30  
AR31  
AR33  
AR34  
AT10  
AT12  
AT13  
AT15  
AT16  
AT18  
AT19  
AT21  
AT24  
AT25  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
59  
Land Listing  
Table 4-1.  
Land Listing by Land Name  
(Sheet 23 of 36)  
Table 4-1.  
Land Listing by Land Name  
(Sheet 24 of 36)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AT27  
AT28  
AT30  
AT31  
AT33  
AT34  
AT9  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AV9  
AW10  
AW12  
AW13  
AW15  
AW16  
AW18  
AW19  
AW21  
AW24  
AW25  
AW27  
AW28  
AW30  
AW31  
AW33  
AW34  
AW9  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
AU10  
AU12  
AU13  
AU15  
AU16  
AU18  
AU19  
AU21  
AU24  
AU25  
AU27  
AU28  
AU30  
AU31  
AU33  
AU34  
AU9  
AY10  
AY12  
AY13  
AY15  
AY16  
AY18  
AY19  
AY21  
AY24  
AY25  
AY27  
AY28  
AY30  
AY31  
AY33  
AY34  
AY9  
AV10  
AV12  
AV13  
AV15  
AV16  
AV18  
AV19  
AV21  
AV24  
AV25  
AV27  
AV28  
AV30  
AV31  
AV33  
AV34  
BA10  
BA12  
BA13  
BA15  
BA16  
®
®
60  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Land Listing  
Table 4-1.  
Land Listing by Land Name  
(Sheet 25 of 36)  
Table 4-1.  
Land Listing by Land Name  
(Sheet 26 of 36)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
VCC  
BA18  
BA19  
BA24  
BA25  
BA27  
BA28  
BA30  
BA9  
M11  
M13  
M15  
M19  
M21  
M23  
M25  
M29  
M31  
M33  
N11  
N33  
R11  
R33  
T11  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
Analog  
PWR  
PWR  
PWR  
Asynch  
Asynch  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VDDQ  
B32  
B7  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
CMOS  
CMOS  
CMOS  
CMOS  
VCC  
VDDQ  
VCC  
VDDQ  
C10  
C15  
C20  
C25  
C30  
D13  
D18  
D23  
D28  
E11  
E16  
E21  
E26  
E31  
F14  
F19  
F24  
G17  
G22  
G27  
H15  
H20  
H25  
J18  
VCC  
VDDQ  
VCC  
VDDQ  
VCC  
VDDQ  
VCC  
VDDQ  
VCC  
VDDQ  
VCC  
VDDQ  
VCC  
VDDQ  
VCC  
VDDQ  
VCC  
VDDQ  
VCC  
VDDQ  
VCC  
VDDQ  
VCC  
VDDQ  
VCC  
VDDQ  
VCC  
VDDQ  
VCC  
VDDQ  
VCC  
VDDQ  
VCC  
VDDQ  
VCC  
VDDQ  
VCC  
VDDQ  
VCC  
VDDQ  
VCC  
T33  
VDDQ  
VCC  
W11  
AR9  
U33  
V33  
W33  
AR7  
AA6  
A14  
A19  
A24  
A29  
A9  
VDDQ  
VCC_SENSE  
VCCPLL  
VCCPLL  
VCCPLL  
VCCPWRGOOD  
VDDPWRGOOD  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
J23  
VDDQ  
J28  
VDDQ  
K16  
K21  
K26  
L14  
L19  
L24  
M17  
M27  
AL10  
AL9  
AN9  
AM10  
I
I
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
B12  
B17  
B22  
B27  
VID[0]/MSID[0]  
VID[1]/MSID[1]  
VID[2]/MSID[2]  
VID[3]/CSC[0]  
O
O
O
O
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
61  
Land Listing  
Table 4-1.  
Land Listing by Land Name  
(Sheet 27 of 36)  
Table 4-1.  
Land Listing by Land Name  
(Sheet 28 of 36)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
VID[4]/CSC[1]  
VID[5]/CSC[2]  
VID[6]  
VID[7]  
VSS  
AN10  
AP9  
CMOS  
CSMO  
CMOS  
CMOS  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
O
O
O
O
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AG9  
AH1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
AP8  
AH34  
AH37  
AH39  
AH7  
AN8  
A35  
VSS  
A39  
VSS  
A4  
AJ34  
AJ36  
AJ41  
AJ5  
VSS  
A41  
VSS  
A6  
VSS  
AA3  
VSS  
AA34  
AA38  
AA39  
AA9  
AK10  
AK14  
AK17  
AK20  
AK22  
AK23  
AK26  
AK29  
AK3  
VSS  
VSS  
VSS  
VSS  
AB37  
AB4  
VSS  
VSS  
AB40  
AB42  
AB7  
VSS  
VSS  
VSS  
AC2  
AK32  
AK34  
AK39  
AK43  
AK9  
VSS  
AC36  
AC5  
VSS  
VSS  
AC7  
VSS  
AC9  
VSS  
AD11  
AD33  
AD37  
AD41  
AD43  
AE2  
AL1  
VSS  
AL11  
AL14  
AL17  
AL2  
VSS  
VSS  
VSS  
VSS  
AL20  
AL22  
AL23  
AL26  
AL29  
AL32  
AL35  
AL36  
AL37  
AL42  
AL7  
VSS  
AE39  
AE7  
VSS  
VSS  
AF35  
AF38  
AF41  
AF5  
VSS  
VSS  
VSS  
VSS  
AG11  
AG3  
AG33  
AG43  
VSS  
VSS  
VSS  
®
®
62  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Land Listing  
Table 4-1.  
Land Listing by Land Name  
(Sheet 29 of 36)  
Table 4-1.  
Land Listing by Land Name  
(Sheet 30 of 36)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AM11  
AM14  
AM17  
AM20  
AM22  
AM23  
AM26  
AM29  
AM32  
AM35  
AM37  
AM39  
AM5  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AP36  
AP37  
AP43  
AP5  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
AP6  
AR11  
AR14  
AR17  
AR2  
AR20  
AR22  
AR23  
AR26  
AR29  
AR3  
AM9  
AN11  
AN14  
AN17  
AN20  
AN22  
AN23  
AN26  
AN29  
AN3  
AR32  
AR35  
AR39  
AT11  
AT14  
AT17  
AT20  
AT22  
AT23  
AT26  
AT29  
AT32  
AT35  
AT38  
AT41  
AT7  
AN32  
AN35  
AN37  
AN41  
AN7  
AP1  
AP10  
AP11  
AP14  
AP17  
AP20  
AP22  
AP23  
AP26  
AP29  
AP32  
AP35  
AT8  
AU1  
AU11  
AU14  
AU17  
AU20  
AU22  
AU23  
AU26  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
63  
Land Listing  
Table 4-1.  
Land Listing by Land Name  
(Sheet 31 of 36)  
Table 4-1.  
Land Listing by Land Name  
(Sheet 32 of 36)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AU29  
AU32  
AU35  
AU36  
AU43  
AU5  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AY32  
AY37  
AY42  
AY7  
B2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
B37  
B42  
BA11  
BA14  
BA17  
BA20  
BA26  
BA29  
BA3  
BA35  
BA39  
BA5  
C35  
C40  
C43  
C5  
AV11  
AV14  
AV17  
AV20  
AV22  
AV23  
AV26  
AV29  
AV32  
AV39  
AV4  
AV41  
AW1  
AW11  
AW14  
AW17  
AW20  
AW22  
AW23  
AW26  
AW29  
AW32  
AW35  
AW6  
D3  
D33  
D38  
D43  
D8  
E1  
E36  
E41  
E6  
AW8  
F29  
F34  
F39  
F4  
AY11  
AY14  
AY17  
AY2  
F9  
AY20  
AY22  
AY23  
AY26  
AY29  
G12  
G2  
G32  
G37  
G42  
®
®
64  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Land Listing  
Table 4-1.  
Land Listing by Land Name  
(Sheet 33 of 36)  
Table 4-1.  
Land Listing by Land Name  
(Sheet 34 of 36)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
G7  
H10  
H30  
H35  
H40  
H5  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VSS  
N40  
N5  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Analog  
Analog  
CMOS  
CMOS  
CMOS  
PWR  
VSS  
VSS  
P11  
P3  
VSS  
VSS  
P33  
P38  
P43  
P8  
VSS  
J13  
J3  
VSS  
VSS  
J33  
J38  
J43  
J8  
VSS  
R1  
VSS  
R36  
R41  
R6  
VSS  
VSS  
K1  
VSS  
T34  
T39  
T4  
K11  
K31  
K36  
K41  
K6  
VSS  
VSS  
VSS  
T9  
VSS  
U2  
VSS  
U37  
U42  
U7  
L29  
L34  
L39  
L4  
VSS  
VSS  
VSS  
V10  
V35  
V40  
V5  
VSS  
L9  
VSS  
M12  
M14  
M16  
M18  
M2  
VSS  
VSS  
W3  
VSS  
W38  
W43  
W8  
VSS  
VSS  
M20  
M22  
M24  
M26  
M28  
M30  
M32  
M37  
M42  
M7  
VSS  
Y1  
VSS  
Y11  
Y33  
Y36  
Y41  
Y6  
VSS  
VSS  
VSS  
VSS  
VSS_SENSE  
VSS_SENSE_VTTD  
VTT_VID2  
VTT_VID3  
VTT_VID4  
VTTA  
AR8  
AE37  
AV3  
AF7  
AV6  
AD10  
O
O
O
N10  
N35  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
65  
Land Listing  
Table 4-1.  
Land Listing by Land Name  
(Sheet 35 of 36)  
Table 4-1.  
Land Listing by Land Name  
(Sheet 36 of 36)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
VTTA  
VTTA  
VTTA  
VTTA  
VTTA  
VTTA  
VTTA  
VTTD  
VTTD  
VTTD  
VTTD  
VTTD  
VTTD  
VTTD  
VTTD  
VTTD  
VTTD  
AE10  
AE11  
AE33  
AF11  
AF33  
AF34  
AG34  
AA10  
AA11  
AA33  
AB10  
AB11  
AB33  
AB34  
AB8  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VTTD  
AC11  
AC33  
AC34  
AC35  
AD34  
AD35  
AD36  
AD9  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
Analog  
Asynch  
VTTD  
VTTD  
VTTD  
VTTD  
VTTD  
VTTD  
VTTD  
VTTD  
AE34  
AE35  
AE8  
VTTD  
VTTD  
VTTD  
AE9  
VTTD  
AF36  
AF37  
AF8  
VTTD  
VTTD  
AB9  
VTTD  
AF9  
AC10  
VTTD_SENSE  
VTTPWRGOOD  
AE36  
AB35  
I
®
®
66  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Land Listing  
4.1.2  
Land Listing by Land Number  
Table 4-2.  
Land Listing by Land Number  
(Sheet 2 of 35)  
Table 4-2.  
Land Listing by Land Number  
(Sheet 1 of 35)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
AA34  
AA35  
AA36  
AA37  
AA38  
AA39  
AA40  
AA41  
AB3  
VSS  
GND  
CMOS  
CMOS  
CMOS  
GND  
GND  
CMOS  
CMOS  
QPI  
A4  
A5  
VSS  
GND  
GTL  
DDR1_DQ[4]  
DDR1_DQ[1]  
DDR1_DQ[0]  
VSS  
I/O  
I/O  
I/O  
BPM#[1]  
I/O  
A6  
VSS  
GND  
A7  
DDR0_CS#[5]  
DDR1_CS#[1]  
VDDQ  
CMOS  
CMOS  
PWR  
O
O
A8  
VSS  
A9  
DDR1_DQS_P[9]  
DDR1_DQS_N[9]  
QPI1_DTX_DN[13]  
VSS  
I/O  
I/O  
O
A10  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
A35  
A36  
A37  
A38  
A39  
A40  
A41  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
AA9  
AA10  
AA11  
AA33  
DDR0_MA[13]  
VDDQ  
CMOS  
PWR  
O
DDR0_RAS#  
DDR0_BA[1]  
DDR2_BA[0]  
DDR2_MA[0]  
VDDQ  
CMOS  
CMOS  
CMOS  
CMOS  
PWR  
O
O
O
O
AB4  
GND  
CMOS  
QPI  
AB5  
DDR_THERM#  
QPI1_DTX_DP[16]  
VSS  
I
AB6  
O
AB7  
GND  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
Asynch  
CMOS  
GND  
QPI  
AB8  
VTTD  
DDR0_MA[0]  
VDDQ  
CMOS  
PWR  
O
AB9  
VTTD  
AB10  
AB11  
AB33  
AB34  
AB35  
AB36  
AB37  
AB38  
AB39  
AB40  
AB41  
AB42  
AB43  
AC1  
VTTD  
DDR0_MA[7]  
DDR0_MA[11]  
DDR0_PAR_ERR#[2]  
DDR0_MA[14]  
VDDQ  
CMOS  
CMOS  
Asynch  
CMOS  
PWR  
O
O
I
VTTD  
VTTD  
VTTD  
O
VTTPWRGOOD  
DDR1_DQ[5]  
VSS  
I
I/O  
DDR0_CKE[1]  
RSVD  
CMOS  
O
QPI0_DTX_DN[17]  
QPI0_DTX_DP[17]  
VSS  
O
O
VSS  
GND  
CMOS  
CMOS  
CMOS  
GND  
QPI  
DDR0_ECC[1]  
DDR0_ECC[5]  
DDR0_DQ[26]  
VSS  
I/O  
I/O  
I/O  
GND  
Analog  
GND  
QPI  
COMP0  
VSS  
QPI0_DTX_DN[13]  
DDR_COMP[2]  
VSS  
O
RSVD  
Analog  
GND  
QPI  
VSS  
GND  
GND  
AC2  
VSS  
AC3  
QPI1_DTX_DP[13]  
QPI1_DTX_DP[15]  
VSS  
O
O
BCLK_ITP_DN  
BCLK_ITP_DP  
VDDPWRGOOD  
DDR1_DQ[62]  
DDR_COMP[0]  
VSS  
CMOS  
CMOS  
Asynch  
CMOS  
Analog  
GND  
O
O
AC4  
QPI  
AC5  
GND  
QPI  
I
AC6  
QPI1_DTX_DN[16]  
VSS  
O
O
I/O  
AC7  
GND  
QPI  
AC8  
QPI1_DTX_DP[19]  
VSS  
AC9  
GND  
PWR  
PWR  
VTTD  
PWR  
AC10  
AC11  
VTTD  
VTTD  
PWR  
VTTD  
VTTD  
PWR  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
67  
Land Listing  
Table 4-2.  
Land Listing by Land Number  
(Sheet 3 of 35)  
Table 4-2.  
Land Listing by Land Number  
(Sheet 4 of 35)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
AC33  
AC34  
AC35  
AC36  
AC37  
AC38  
AC39  
AC40  
AC41  
AC42  
AC43  
AD1  
VTTD  
VTTD  
VTTD  
VSS  
PWR  
PWR  
PWR  
GND  
GTL  
QPI  
AE8  
AE9  
VTTD  
VTTD  
VTTA  
VTTA  
VTTA  
VTTD  
VTTD  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
Analog  
Analog  
QPI  
AE10  
AE11  
AE33  
AE34  
AE35  
AE36  
AE37  
AE38  
AE39  
AE40  
AE41  
AE42  
AE43  
AF1  
CAT_ERR#  
I/O  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
QPI0_DTX_DN[16]  
QPI0_DTX_DP[16]  
QPI0_DTX_DN[15]  
QPI0_DTX_DP[15]  
QPI0_DTX_DN[12]  
QPI0_DTX_DP[13]  
QPI1_DTX_DN[11]  
QPI1_DTX_DP[12]  
QPI1_DTX_DN[12]  
QPI1_DTX_DN[15]  
QPI1_DTX_DP[18]  
QPI1_DTX_DP[17]  
QPI1_DTX_DN[17]  
QPI1_DTX_DN[19]  
VTTD  
QPI  
QPI  
VTTD_SENSE  
VSS_SENSE_VTTD  
QPI0_DTX_DN[18]  
VSS  
QPI  
QPI  
O
QPI  
GND  
QPI  
QPI  
QPI0_DTX_DP[19]  
QPI0_DTX_DN[11]  
QPI0_DTX_DP[11]  
QPI0_DTX_DN[10]  
RSVD  
O
O
O
O
AD2  
QPI  
QPI  
AD3  
QPI  
QPI  
AD4  
QPI  
QPI  
AD5  
QPI  
AD6  
QPI  
AF2  
QPI1_DTX_DP[10]  
QPI1_DTX_DN[10]  
RSVD  
QPI  
QPI  
O
O
AD7  
QPI  
AF3  
AD8  
QPI  
AF4  
AD9  
PWR  
PWR  
GND  
GND  
PWR  
PWR  
PWR  
GND  
QPI  
AF5  
VSS  
GND  
QPI  
AD10  
AD11  
AD33  
AD34  
AD35  
AD36  
AD37  
AD38  
AD39  
AD40  
AD41  
AD42  
AD43  
AE1  
VTTA  
AF6  
QPI1_CLKTX_DP  
VTT_VID3  
VTTD  
O
O
VSS  
AF7  
CMOS  
PWR  
PWR  
Asynch  
PWR  
PWR  
PWR  
GND  
PWR  
VSS  
AF8  
VTTD  
AF9  
VTTD  
VTTD  
AF10  
AF11  
AF33  
AF34  
AF35  
AF36  
AF37  
AF38  
AF39  
AF40  
AF41  
AF42  
AF43  
AG1  
DBR#  
I
VTTD  
VTTA  
VSS  
VTTA  
QPI0_DTX_DP[18]  
QPI0_DTX_DN[14]  
QPI0_DTX_DP[14]  
VSS  
O
O
O
VTTA  
QPI  
VSS  
QPI  
VTTD  
GND  
QPI  
VTTD  
QPI0_DTX_DP[12]  
VSS  
O
O
VSS  
GND  
QPI  
QPI  
GND  
QPI  
QPI  
GND  
QPI  
QPI0_DTX_DP[1]  
QPI0_DTX_DN[19]  
VSS  
O
O
QPI1_DTX_DP[11]  
VSS  
AE2  
GND  
QPI  
AE3  
QPI1_DTX_DP[14]  
QPI1_DTX_DN[14]  
QPI1_DTX_DN[18]  
QPI1_CLKTX_DN  
VSS  
O
O
O
O
QPI0_CLKTX_DN  
QPI0_DTX_DP[10]  
RSVD  
O
O
AE4  
QPI  
AE5  
QPI  
AE6  
QPI  
AG2  
QPI1_DTX_DN[9]  
VSS  
QPI  
O
AE7  
GND  
AG3  
GND  
®
®
68  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Land Listing  
Table 4-2.  
Land Listing by Land Number  
(Sheet 5 of 35)  
Table 4-2.  
Land Listing by Land Number  
(Sheet 6 of 35)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
AG4  
AG5  
RSVD  
RSVD  
AH43  
AJ1  
QPI0_DTX_DN[8]  
QPI1_DTX_DN[7]  
QPI1_DTX_DN[6]  
QPI1_DTX_DP[6]  
QPI1_DTX_DP[4]  
VSS  
QPI  
QPI  
O
O
O
O
O
AG6  
QPI1_DTX_DN[5]  
QPI1_DTX_DP[5]  
QPI1_DTX_DP[0]  
VSS  
QPI  
QPI  
QPI  
GND  
TAP  
GND  
GND  
PWR  
GTL  
GTL  
GTL  
QPI  
QPI  
QPI  
QPI  
QPI  
GND  
GND  
QPI  
QPI  
QPI  
O
O
O
AJ2  
QPI  
AG7  
AJ3  
QPI  
AG8  
AJ4  
QPI  
AG9  
AJ5  
GND  
QPI  
AG10  
AG11  
AG33  
AG34  
AG35  
AG36  
AG37  
AG38  
AG39  
AG40  
AG41  
AG42  
AG43  
AH1  
TMS  
I
AJ6  
QPI1_DTX_DN[2]  
QPI1_DTX_DN[1]  
QPI1_DTX_DP[1]  
TDI  
O
O
O
I
VSS  
AJ7  
QPI  
VSS  
AJ8  
QPI  
VTTA  
AJ9  
TAP  
PROCHOT#  
SKTOCC#  
I/O  
O
AJ10  
AJ11  
AJ33  
AJ34  
AJ35  
AJ36  
AJ37  
AJ38  
AJ39  
AJ40  
AJ41  
AJ42  
AJ43  
AK1  
TDO  
TAP  
O
VCC  
PWR  
PWR  
GND  
CMOS  
GND  
Analog  
QPI  
THERMTRIP#  
QPI0_DTX_DP[0]  
QPI0_DTX_DN[1]  
QPI0_DTX_DP[9]  
QPI0_DTX_DN[9]  
QPI0_CLKTX_DP  
VSS  
O
VCC  
O
VSS  
O
BCLK_DP  
VSS  
I
O
O
GTLREF  
I
O
QPI0_DTX_DP[3]  
QPI0_DTX_DN[3]  
QPI0_DTX_DN[4]  
VSS  
O
O
O
QPI  
VSS  
QPI  
AH2  
QPI1_DTX_DP[9]  
QPI1_DTX_DP[8]  
QPI1_DTX_DN[8]  
FC_AH5  
O
O
O
GND  
QPI  
AH3  
QPI0_DTX_DN[7]  
QPI0_DTX_DP[8]  
QPI1_DTX_DP[7]  
RSVD  
O
O
O
AH4  
QPI  
AH5  
QPI  
AH6  
QPI1_DTX_DP[2]  
VSS  
QPI  
GND  
QPI  
O
AK2  
AH7  
AK3  
VSS  
GND  
QPI  
QPI  
QPI  
AH8  
QPI1_DTX_DN[0]  
TRST#  
O
I
AK4  
QPI1_DTX_DN[4]  
QPI1_DTX_DN[3]  
QPI1_DTX_DP[3]  
RSVD  
O
O
O
AH9  
TAP  
AK5  
AH10  
AH11  
AH33  
AH34  
AH35  
AH36  
AH37  
AH38  
AH39  
AH40  
AH41  
AH42  
TCK  
TAP  
I
AK6  
VCC  
PWR  
PWR  
GND  
CMOS  
Asynch  
GND  
QPI  
AK7  
VCC  
AK8  
ISENSE  
Analog  
GND  
GND  
PWR  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
I
VSS  
AK9  
VSS  
BCLK_DN  
I
AK10  
AK11  
AK12  
AK13  
AK14  
AK15  
AK16  
AK17  
VSS  
PECI  
I/O  
VCC  
VSS  
VCC  
QPI0_DTX_DN[0]  
VSS  
O
VCC  
GND  
QPI  
VSS  
QPI0_DTX_DP[4]  
QPI0_DTX_DP[6]  
QPI0_DTX_DN[6]  
O
O
O
VCC  
QPI  
VCC  
QPI  
VSS  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
69  
Land Listing  
Table 4-2.  
Land Listing by Land Number  
(Sheet 7 of 35)  
Table 4-2.  
Land Listing by Land Number  
(Sheet 8 of 35)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
AK18  
AK19  
AK20  
AK21  
AK22  
AK23  
AK24  
AK25  
AK26  
AK27  
AK28  
AK29  
AK30  
AK31  
AK32  
AK33  
AK34  
AK35  
AK36  
AK37  
AK38  
AK39  
AK40  
AK41  
AK42  
AK43  
AL1  
VCC  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
PWR  
PWR  
GND  
PWR  
GND  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
GND  
Asynch  
AL15  
AL16  
AL17  
AL18  
AL19  
AL20  
AL21  
AL22  
AL23  
AL24  
AL25  
AL26  
AL27  
AL28  
AL29  
AL30  
AL31  
AL32  
AL33  
AL34  
AL35  
AL36  
AL37  
AL38  
AL39  
AL40  
AL41  
AL42  
AL43  
AM1  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
RSVD  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
GND  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
GND  
GND  
PECI_ID#  
RSVD  
I
QPI0_DTX_DP[2]  
QPI0_DTX_DN[2]  
VSS  
QPI  
QPI  
O
O
GND  
QPI  
QPI0_DTX_DP[5]  
QPI0_DTX_DN[5]  
QPI0_DTX_DP[7]  
VSS  
O
O
O
QPI  
QPI  
RESET#  
Asynch  
I
GND  
GND  
GND  
RSVD  
VSS  
RSVD  
AL2  
VSS  
VSS  
GND  
Analog  
QPI  
AL3  
RSVD  
QPI0_COMP  
QPI1_DRX_DN[13]  
QPI1_DRX_DP[14]  
QPI1_DRX_DN[14]  
QPI1_DRX_DP[16]  
VSS  
AL4  
RSVD  
I
I
I
I
AL5  
RSVD  
AM2  
QPI  
AL6  
QPI1_COMP  
VSS  
Analog  
GND  
QPI  
AM3  
QPI  
AL7  
AM4  
QPI  
AL8  
QPI1_DRX_DN[19]  
VID[1]/MSID[1]  
VID[0]/MSID[0]  
VSS  
I
AM5  
GND  
QPI  
AL9  
CMOS  
CMOS  
GND  
O
O
AM6  
QPI1_DRX_DP[18]  
QPI1_DRX_DN[18]  
QPI1_DRX_DP[19]  
VSS  
I
I
I
AL10  
AL11  
AL12  
AL13  
AL14  
AM7  
QPI  
AM8  
QPI  
VCC  
PWR  
AM9  
GND  
CMOS  
GND  
VCC  
PWR  
AM10  
AM11  
VID[3]/CSC[0]  
VSS  
O
VSS  
GND  
®
®
70  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Land Listing  
Table 4-2.  
Land Listing by Land Number  
(Sheet 9 of 35)  
Table 4-2.  
Land Listing by Land Number  
(Sheet 10 of 35)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
AM12  
AM13  
AM14  
AM15  
AM16  
AM17  
AM18  
AM19  
AM20  
AM21  
AM22  
AM23  
AM24  
AM25  
AM26  
AM27  
AM28  
AM29  
AM30  
AM31  
AM32  
AM33  
AM34  
AM35  
AM36  
AM37  
AM38  
AM39  
AM40  
AM41  
AM42  
AM43  
AN1  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
RSVD  
VSS  
RSVD  
VSS  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
GND  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
AN9  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AN16  
AN17  
AN18  
AN19  
AN20  
AN21  
AN22  
AN23  
AN24  
AN25  
AN26  
AN27  
AN28  
AN29  
AN30  
AN31  
AN32  
AN33  
AN34  
AN35  
AN36  
AN37  
AN38  
AN39  
AN40  
AN41  
AN42  
AN43  
AP1  
VID[2]/MSID[2]  
CMOS  
CMOS  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
GND  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
O
O
VID[4]/CSC[1]  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
GND  
VCC  
VSS  
GND  
QPI  
RSVD  
QPI0_DRX_DN[15]  
QPI0_DRX_DN[16]  
QPI0_DRX_DP[16]  
QPI0_DRX_DN[14]  
QPI1_DRX_DP[13]  
QPI1_DRX_DN[12]  
VSS  
I
I
I
I
I
I
VSS  
GND  
QPI  
RSVD  
QPI  
QPI0_DRX_DP[18]  
QPI0_DRX_DP[15]  
VSS  
QPI  
QPI  
GND  
QPI  
QPI  
GND  
QPI  
QPI  
QPI  
GND  
I
I
QPI  
QPI  
AN2  
QPI  
QPI0_DRX_DN[13]  
QPI0_DRX_DP[14]  
VSS  
I
I
AN3  
GND  
QPI  
AN4  
QPI1_DRX_DN[16]  
QPI1_DRX_DP[17]  
QPI1_DRX_DN[17]  
VSS  
I
I
I
AN5  
QPI  
AP2  
QPI1_DRX_DP[12]  
QPI1_DRX_DP[15]  
QPI1_DRX_DN[15]  
VSS  
I
I
I
AN6  
QPI  
AP3  
AN7  
GND  
CMOS  
AP4  
AN8  
VID[7]  
O
AP5  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
71  
Land Listing  
Table 4-2.  
Land Listing by Land Number  
(Sheet 11 of 35)  
Table 4-2.  
Land Listing by Land Number  
(Sheet 12 of 35)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
AP6  
VSS  
GND  
CMOS  
CMOS  
CMOS  
GND  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
GND  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
GND  
GND  
QPI  
AR3  
AR4  
VSS  
GND  
QPI  
AP7  
PSI#  
VID[6]  
O
O
O
QPI1_DRX_DP[11]  
I
I
I
I
AP8  
AR5  
QPI1_DRX_DN[11]  
QPI  
AP9  
VID[5]/CSC[2]  
AR6  
QPI1_CLKRX_DN  
QPI  
AP10  
AP11  
AP12  
AP13  
AP14  
AP15  
AP16  
AP17  
AP18  
AP19  
AP20  
AP21  
AP22  
AP23  
AP24  
AP25  
AP26  
AP27  
AP28  
AP29  
AP30  
AP31  
AP32  
AP33  
AP34  
AP35  
AP36  
AP37  
AP38  
AP39  
AP40  
AP41  
AP42  
AP43  
AR1  
VSS  
AR7  
VCCPWRGOOD  
Asynch  
Analog  
Analog  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
GND  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
VSS  
AR8  
VSS_SENSE  
VCC  
AR9  
VCC_SENSE  
VCC  
AR10  
AR11  
AR12  
AR13  
AR14  
AR15  
AR16  
AR17  
AR18  
AR19  
AR20  
AR21  
AR22  
AR23  
AR24  
AR25  
AR26  
AR27  
AR28  
AR29  
AR30  
AR31  
AR32  
AR33  
AR34  
AR35  
AR36  
AR37  
AR38  
AR39  
AR40  
AR41  
AR42  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VSS  
VCC  
QPI0_DRX_DP[19]  
QPI0_DRX_DN[18]  
QPI0_DRX_DN[17]  
QPI0_DRX_DP[17]  
QPI0_DRX_DP[13]  
VSS  
I
I
I
I
I
VSS  
QPI  
RSVD  
QPI  
RSVD  
QPI  
QPI0_DRX_DN[19]  
VSS  
QPI  
GND  
QPI  
QPI  
QPI  
I
QPI  
GND  
QPI  
QPI0_DRX_DN[12]  
QPI0_CLKRX_DP  
QPI0_CLKRX_DN  
I
I
I
QPI1_DRX_DN[10]  
VSS  
I
AR2  
GND  
®
®
72  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Land Listing  
Table 4-2.  
Land Listing by Land Number  
(Sheet 13 of 35)  
Table 4-2.  
Land Listing by Land Number  
(Sheet 14 of 35)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
AR43  
AT1  
QPI0_DRX_DN[11]  
QPI  
QPI  
QPI  
QPI  
I
I
I
I
AT40  
AT41  
AT42  
AT43  
AU1  
QPI0_DRX_DP[12]  
QPI  
GND  
QPI  
I
QPI1_DRX_DP[10]  
VSS  
AT2  
QPI1_DRX_DN[9]  
QPI0_DRX_DN[10]  
I
I
AT3  
QPI1_DRX_DP[9]  
QPI0_DRX_DP[11]  
QPI  
AT4  
RSVD  
VSS  
GND  
AT5  
RSVD  
AU2  
RSVD  
AT6  
QPI1_CLKRX_DP  
QPI  
I
AU3  
QPI1_DRX_DN[8]  
QPI  
QPI  
I
I
AT7  
VSS  
GND  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
GND  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
AU4  
QPI1_DRX_DP[8]  
AT8  
VSS  
AU5  
VSS  
GND  
QPI  
AT9  
VCC  
AU6  
QPI1_DRX_DN[6]  
I
I
I
AT10  
AT11  
AT12  
AT13  
AT14  
AT15  
AT16  
AT17  
AT18  
AT19  
AT20  
AT21  
AT22  
AT23  
AT24  
AT25  
AT26  
AT27  
AT28  
AT29  
AT30  
AT31  
AT32  
AT33  
AT34  
AT35  
AT36  
AT37  
AT38  
AT39  
VCC  
AU7  
QPI1_DRX_DP[6]  
QPI  
VSS  
AU8  
QPI1_DRX_DP[0]  
VCC  
QPI  
VCC  
AU9  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
GND  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
GND  
VCC  
AU10  
AU11  
AU12  
AU13  
AU14  
AU15  
AU16  
AU17  
AU18  
AU19  
AU20  
AU21  
AU22  
AU23  
AU24  
AU25  
AU26  
AU27  
AU28  
AU29  
AU30  
AU31  
AU32  
AU33  
AU34  
AU35  
AU36  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
RSVD  
QPI0_DRX_DP[0]  
VSS  
VCC  
QPI  
GND  
QPI  
I
I
VCC  
VSS  
QPI0_DRX_DN[7]  
VSS  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
73  
Land Listing  
Table 4-2.  
Land Listing by Land Number  
(Sheet 15 of 35)  
Table 4-2.  
Land Listing by Land Number  
(Sheet 16 of 35)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
AU37  
AU38  
AU39  
AU40  
AU41  
AU42  
AU43  
AV1  
QPI0_DRX_DN[0]  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
GND  
I
I
I
I
I
I
AV34  
AV35  
AV36  
AV37  
AV38  
AV39  
AV40  
AV41  
AV42  
AV43  
AW1  
AW2  
AW3  
AW4  
AW5  
AW6  
AW7  
AW8  
AW9  
VCC  
PWR  
QPI0_DRX_DP[1]  
RSVD  
QPI0_DRX_DP[7]  
QPI0_DRX_DP[2]  
QPI0_DRX_DN[2]  
QPI0_DRX_DN[1]  
VSS  
QPI  
QPI  
I
I
I
QPI0_DRX_DP[9]  
QPI0_DRX_DN[9]  
QPI  
QPI0_DRX_DP[10]  
GND  
QPI  
VSS  
QPI0_DRX_DN[8]  
VSS  
I
RSVD  
GND  
AV2  
RSVD  
RSVD  
AV3  
VTT_VID2  
CMOS  
GND  
QPI  
O
RSVD  
AV4  
VSS  
VSS  
GND  
AV5  
QPI1_DRX_DP[3]  
I
O
I
RSVD  
AV6  
VTT_VID4  
CMOS  
QPI  
QPI1_DRX_DN[7]  
QPI1_DRX_DP[7]  
QPI1_DRX_DN[3]  
VSS  
QPI  
QPI  
I
I
I
AV7  
QPI1_DRX_DP[1]  
AV8  
QPI1_DRX_DN[0]  
VCC  
QPI  
I
QPI  
AV9  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
GND  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
GND  
QPI  
AV10  
AV11  
AV12  
AV13  
AV14  
AV15  
AV16  
AV17  
AV18  
AV19  
AV20  
AV21  
AV22  
AV23  
AV24  
AV25  
AV26  
AV27  
AV28  
AV29  
AV30  
AV31  
AV32  
AV33  
VCC  
QPI1_DRX_DN[1]  
VSS  
I
VSS  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
GND  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
VCC  
VCC  
VCC  
AW10 VCC  
AW11 VSS  
AW12 VCC  
AW13 VCC  
AW14 VSS  
AW15 VCC  
AW16 VCC  
AW17 VSS  
AW18 VCC  
AW19 VCC  
AW20 VSS  
AW21 VCC  
AW22 VSS  
AW23 VSS  
AW24 VCC  
AW25 VCC  
AW26 VSS  
AW27 VCC  
AW28 VCC  
AW29 VSS  
AW30 VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
®
®
74  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Land Listing  
Table 4-2.  
Land Listing by Land Number  
(Sheet 17 of 35)  
Table 4-2.  
Land Listing by Land Number  
(Sheet 18 of 35)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
AW31 VCC  
AW32 VSS  
AW33 VCC  
AW34 VCC  
AW35 VSS  
PWR  
GND  
PWR  
PWR  
GND  
QPI  
AY30  
AY31  
AY32  
AY33  
AY34  
AY35  
AY36  
AY37  
AY38  
AY39  
AY40  
AY41  
AY42  
B2  
VCC  
VCC  
VSS  
VCC  
VCC  
RSVD  
PWR  
PWR  
GND  
PWR  
PWR  
AW36 QPI0_DRX_DP[3]  
AW37 QPI0_DRX_DP[5]  
AW38 QPI0_DRX_DN[5]  
AW39 RSVD  
I
I
I
QPI  
QPI0_DRX_DN[3]  
VSS  
QPI  
GND  
QPI  
I
I
QPI  
QPI0_DRX_DN[6]  
RSVD  
AW40 QPI0_DRX_DP[8]  
AW41 RSVD  
QPI  
I
RSVD  
AW42 RSVD  
RSVD  
AY2  
AY3  
VSS  
GND  
VSS  
GND  
GND  
RSVD  
VSS  
AY4  
RSVD  
B3  
BPM#[0]  
BPM#[3]  
DDR0_DQ[32]  
DDR0_DQ[36]  
VDDQ  
GTL  
I/O  
I/O  
I/O  
I/O  
AY5  
QPI1_DRX_DN[5]  
QPI  
QPI  
I
I
B4  
GTL  
AY6  
QPI1_DRX_DP[5]  
B5  
CMOS  
CMOS  
PWR  
AY7  
VSS  
GND  
QPI  
B6  
AY8  
QPI1_DRX_DP[2]  
VCC  
I
B7  
AY9  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
GND  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
B8  
DDR0_CS#[7]/  
DDR0_ODT[5]  
CMOS  
O
AY10  
AY11  
AY12  
AY13  
AY14  
AY15  
AY16  
AY17  
AY18  
AY19  
AY20  
AY21  
AY22  
AY23  
AY24  
AY25  
AY26  
AY27  
AY28  
AY29  
VCC  
B9  
DDR0_CS#[3]  
DDR0_CS#[1]  
DDR0_ODT[2]  
VDDQ  
CMOS  
CMOS  
CMOS  
PWR  
O
O
O
VSS  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
VCC  
VCC  
VSS  
DDR0_WE#  
DDR1_MA[13]  
DDR0_CS#[4]  
DDR0_BA[0]  
VDDQ  
CMOS  
CMOS  
CMOS  
CMOS  
PWR  
O
O
O
O
VCC  
VCC  
VSS  
VCC  
VCC  
DDR2_MA_PAR  
DDR0_MA[10]  
DDR0_MA_PAR  
DDR0_MA[1]  
VDDQ  
CMOS  
CMOS  
CMOS  
CMOS  
PWR  
O
O
O
O
VSS  
VCC  
VSS  
VSS  
VCC  
DDR0_MA[4]  
DDR0_MA[5]  
DDR0_MA[8]  
DDR0_MA[12]  
VDDQ  
CMOS  
CMOS  
CMOS  
CMOS  
PWR  
O
O
O
O
VCC  
VSS  
VCC  
VCC  
VSS  
DDR0_PAR_ERR#[1]  
Asynch  
I
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
75  
Land Listing  
Table 4-2.  
Land Listing by Land Number  
(Sheet 19 of 35)  
Table 4-2.  
Land Listing by Land Number  
(Sheet 20 of 35)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
B29  
B30  
DDR0_MA[15]  
DDR0_CKE[2]  
CMOS  
CMOS  
CMOS  
PWR  
O
O
O
BA36  
BA37  
BA38  
BA39  
BA40  
C2  
QPI0_DRX_DP[4]  
QPI0_DRX_DN[4]  
QPI0_DRX_DP[6]  
VSS  
QPI  
QPI  
QPI  
GND  
I
I
I
B31  
DDR0_CKE[3]  
B32  
VDDQ  
B33  
RSVD  
RSVD  
B34  
DDR0_ECC[6]  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
BPM#[2]  
GTL  
GTL  
I/O  
I/O  
I/O  
B35  
DDR0_DQS_N[17]  
C3  
BPM#[5]  
B36  
DDR0_DQS_P[17]  
C4  
DDR0_DQ[33]  
VSS  
CMOS  
GND  
B37  
VSS  
C5  
B38  
DDR0_DQ[31]  
CMOS  
CMOS  
CMOS  
GTL  
I/O  
I/O  
I/O  
O
C6  
DDR0_DQ[37]  
DDR0_ODT[3]  
DDR1_ODT[1]  
DDR0_ODT[1]  
VDDQ  
CMOS  
CMOS  
CMOS  
CMOS  
PWR  
I/O  
O
B39  
DDR0_DQS_P[3]  
C7  
B40  
DDR0_DQS_N[3]  
C8  
O
B41  
PRDY#  
C9  
O
B42  
VSS  
GND  
C10  
C11  
BA3  
VSS  
GND  
DDR0_CS#[6]/  
DDR0_ODT[4]  
CMOS  
O
BA4  
RSVD  
C12  
C13  
C14  
DDR0_CAS#  
CMOS  
CMOS  
CMOS  
O
O
O
BA5  
VSS  
GND  
QPI  
DDR0_CS#[2]  
BA6  
QPI1_DRX_DN[4]  
I
I
I
DDR1_CS#[6]/  
DDR1_ODT[4]  
BA7  
QPI1_DRX_DP[4]  
QPI  
BA8  
QPI1_DRX_DN[2]  
VCC  
QPI  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
C31  
C32  
C33  
C34  
C35  
VDDQ  
PWR  
CMOS  
CMOS  
CMOS  
CLOCK  
PWR  
BA9  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
GND  
DDR2_WE#  
DDR1_CS#[4]  
DDR1_BA[0]  
DDR0_CLK_N[1]  
VDDQ  
O
O
O
O
BA10  
BA11  
BA12  
BA13  
BA14  
BA15  
BA16  
BA17  
BA18  
BA19  
BA20  
BA24  
BA25  
BA26  
BA27  
BA28  
BA29  
BA30  
BA35  
VCC  
VSS  
VCC  
VCC  
VSS  
DDR1_CLK_P[0]  
DDR1_PAR_ERR#[0]  
DDR0_MA[2]  
DDR0_MA[6]  
VDDQ  
CLOCK  
Asynch  
CMOS  
CMOS  
PWR  
O
I
VCC  
VCC  
O
O
VSS  
VCC  
VCC  
DDR0_MA[9]  
DDR1_CKE[3]  
DDR0_BA[2]  
DDR0_CKE[0]  
VDDQ  
CMOS  
CMOS  
CMOS  
CMOS  
PWR  
O
O
O
O
VSS  
VCC  
VCC  
VSS  
VCC  
RSVD  
VCC  
RSVD  
VSS  
DDR0_ECC[3]  
DDR0_ECC[7]  
VSS  
CMOS  
CMOS  
GND  
I/O  
I/O  
VCC  
VSS  
®
®
76  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Land Listing  
Table 4-2.  
Land Listing by Land Number  
(Sheet 21 of 35)  
Table 4-2.  
Land Listing by Land Number  
(Sheet 22 of 35)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
C36  
C37  
C38  
C39  
C40  
C41  
C42  
C43  
D1  
DDR0_ECC[0]  
DDR0_ECC[4]  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
D33  
D34  
D35  
D36  
D37  
D38  
D39  
D40  
D41  
D42  
D43  
E1  
VSS  
GND  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
DDR0_DQS_P[8]  
DDR0_DQS_N[8]  
DDR1_ECC[0]  
DDR0_DQ[27]  
VSS  
I/O  
I/O  
I/O  
I/O  
DDR0_DQ[30]  
DDR0_DQS_N[12]  
VSS  
DDR0_DQ[25]  
PREQ#  
CMOS  
GTL  
I/O  
I
DDR0_DQS_P[12]  
DDR0_DQ[24]  
DDR0_DQ[28]  
DDR0_DQ[29]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
VSS  
GND  
BPM#[4]  
GTL  
I/O  
I/O  
D2  
BPM#[6]  
GTL  
D3  
VSS  
GND  
D4  
DDR0_DQS_N[13]  
DDR0_DQS_P[13]  
DDR1_DQ[38]  
DDR1_DQS_N[4]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
VSS  
GND  
D5  
E2  
BPM#[7]  
GTL  
I/O  
I/O  
I/O  
I/O  
D6  
E3  
DDR0_DQS_P[4]  
DDR0_DQS_N[4]  
DDR1_DQ[34]  
VSS  
CMOS  
CMOS  
CMOS  
GND  
D7  
E4  
D8  
E5  
D9  
DDR2_CS#[5]  
DDR2_ODT[3]  
DDR1_ODT[0]  
DDR1_CS#[0]  
VDDQ  
CMOS  
CMOS  
CMOS  
CMOS  
PWR  
O
O
O
O
E6  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
D31  
D32  
E7  
DDR1_DQS_P[4]  
DDR1_DQ[33]  
DDR1_DQ[32]  
DDR1_CS#[5]  
VDDQ  
CMOS  
CMOS  
CMOS  
CMOS  
PWR  
I/O  
I/O  
I/O  
O
E8  
E9  
E10  
E11  
E12  
DDR1_ODT[2]  
DDR2_ODT[2]  
DDR2_CS#[2]  
DDR2_RAS#  
VDDQ  
CMOS  
CMOS  
CMOS  
CMOS  
PWR  
O
O
O
O
DDR1_CS#[7]/  
DDR1_ODT[5]  
CMOS  
O
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
E27  
E28  
E29  
DDR1_CS#[3]  
DDR1_CAS#  
DDR1_CS#[2]  
VDDQ  
CMOS  
CMOS  
CMOS  
PWR  
O
O
O
DDR0_CLK_P[1]  
DDR1_MA_PAR  
DDR1_CLK_N[0]  
DDR1_MA[7]  
VDDQ  
CLOCK  
CMOS  
CLOCK  
CMOS  
PWR  
O
O
O
O
DDR2_CS#[4]  
DDR0_CLK_N[2]  
DDR0_CLK_N[3]  
DDR0_CLK_P[3]  
VDDQ  
CMOS  
CLOCK  
CLOCK  
CLOCK  
PWR  
O
O
O
O
DDR0_MA[3]  
DDR0_PAR_ERR#[0]  
DDR2_CKE[2]  
DDR1_CKE[2]  
VDDQ  
CMOS  
Asynch  
CMOS  
CMOS  
PWR  
O
I
DDR1_MA[8]  
DDR1_MA[11]  
DDR1_MA[12]  
DDR1_PAR_ERR#[1]  
VDDQ  
CMOS  
CMOS  
CMOS  
Asynch  
PWR  
O
O
O
I
O
O
DDR1_RESET#  
RSVD  
CMOS  
O
O
DDR1_CKE[1]  
RSVD  
CMOS  
O
RSVD  
DDR0_RESET#  
CMOS  
DDR2_ECC[2]  
CMOS  
I/O  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
77  
Land Listing  
Table 4-2.  
Land Listing by Land Number  
(Sheet 23 of 35)  
Table 4-2.  
Land Listing by Land Number  
(Sheet 24 of 35)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
E30  
E31  
E32  
E33  
E34  
E35  
E36  
E37  
E38  
E39  
E40  
E41  
E42  
E43  
F1  
DDR2_ECC[3]  
VDDQ  
CMOS  
PWR  
I/O  
F27  
F28  
F29  
F30  
F31  
F32  
F33  
F34  
F35  
F36  
F37  
F38  
F39  
F40  
F41  
F42  
F43  
G1  
RSVD  
RSVD  
VSS  
DDR2_RESET#  
DDR1_ECC[2]  
DDR1_ECC[6]  
DDR1_DQS_N[17]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
O
GND  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
DDR2_ECC[7]  
DDR2_ECC[6]  
DDR0_ECC[2]  
DDR2_ECC[1]  
VSS  
I/O  
I/O  
I/O  
I/O  
DDR1_ECC[4]  
DDR2_DQ[31]  
DDR2_DQS_P[3]  
DDR2_DQS_N[3]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
DDR1_DQS_P[17]  
DDR1_ECC[1]  
DDR1_ECC[5]  
DDR2_DQ[30]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
DDR0_DQ[18]  
DDR0_DQ[19]  
DDR0_DQ[34]  
DDR0_DQ[39]  
DDR0_DQ[38]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
DDR2_DQ[25]  
DDR0_DQS_P[2]  
DDR0_DQ[23]  
DDR0_DQ[22]  
DDR0_DQ[44]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
F2  
F3  
F4  
F5  
DDR1_DQ[35]  
DDR1_DQ[39]  
DDR1_DQS_N[13]  
DDR1_DQS_P[13]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
G2  
F6  
G3  
DDR0_DQ[35]  
DDR1_DQ[42]  
DDR1_DQ[46]  
DDR1_DQS_N[5]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
F7  
G4  
F8  
G5  
F9  
G6  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
F25  
F26  
DDR1_DQ[36]  
DDR1_ODT[3]  
DDR0_ODT[0]  
DDR2_ODT[1]  
VDDQ  
CMOS  
CMOS  
CMOS  
CMOS  
PWR  
I/O  
O
G7  
G8  
DDR1_DQ[37]  
DDR1_DQ[44]  
DDR2_DQ[37]  
DDR2_DQ[36]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
O
G9  
O
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
G23  
DDR2_MA[13]  
DDR2_CAS#  
DDR2_BA[1]  
DDR0_CLK_P[2]  
VDDQ  
CMOS  
CMOS  
CMOS  
CLOCK  
PWR  
O
O
O
O
DDR1_WE#  
DDR1_RAS#  
DDR0_CS#[0]  
DDR2_CS#[0]  
VDDQ  
CMOS  
CMOS  
CMOS  
CMOS  
PWR  
O
O
O
O
DDR2_MA[4]  
DDR2_PAR_ERR#[0]  
DDR1_MA[5]  
DDR2_PAR_ERR#[2]  
VDDQ  
CMOS  
Asynch  
CMOS  
Asynch  
PWR  
O
I
DDR2_MA[2]  
DDR1_CLK_P[1]  
DDR1_CLK_N[1]  
DDR2_CLK_N[2]  
VDDQ  
CMOS  
CLOCK  
CLOCK  
CLOCK  
PWR  
O
O
O
O
O
I
DDR1_PAR_ERR#[2]  
DDR1_MA[15]  
Asynch  
CMOS  
I
O
DDR2_MA[12]  
CMOS  
O
®
®
78  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Land Listing  
Table 4-2.  
Land Listing by Land Number  
(Sheet 25 of 35)  
Table 4-2.  
Land Listing by Land Number  
(Sheet 26 of 35)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
G24  
G25  
G26  
G27  
G28  
G29  
G30  
G31  
G32  
G33  
G34  
G35  
G36  
G37  
G38  
G39  
G40  
G41  
G42  
G43  
H1  
DDR1_MA[9]  
DDR2_MA[15]  
CMOS  
CMOS  
CMOS  
PWR  
O
O
O
H21  
H22  
H23  
H24  
H25  
H26  
H27  
H28  
H29  
H30  
H31  
H32  
H33  
H34  
H35  
H36  
H37  
H38  
H39  
H40  
H41  
H42  
H43  
J1  
DDR2_CLK_P[2]  
DDR2_MA[9]  
DDR2_MA[11]  
DDR2_MA[14]  
VDDQ  
CLOCK  
CMOS  
CMOS  
CMOS  
PWR  
O
O
O
O
DDR2_CKE[1]  
VDDQ  
RSVD  
DDR2_DQS_P[8]  
DDR2_DQS_N[8]  
DDR2_DQS_N[17]  
VSS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
DDR1_MA[14]  
DDR1_BA[2]  
DDR1_CKE[0]  
RSVD  
CMOS  
CMOS  
CMOS  
O
O
O
DDR1_DQS_P[8]  
DDR1_DQS_N[8]  
DDR1_ECC[7]  
DDR1_ECC[3]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
VSS  
GND  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
DDR2_DQS_P[17]  
DDR2_ECC[0]  
DDR1_DQ[24]  
DDR1_DQ[29]  
VSS  
I/O  
I/O  
I/O  
I/O  
DDR2_DQS_N[12]  
DDR2_DQ[29]  
DDR2_DQ[24]  
DDR0_DQS_N[2]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
DDR1_DQ[23]  
DDR2_DQ[27]  
DDR2_DQS_P[12]  
DDR2_DQ[28]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
DDR0_DQS_N[11]  
DDR0_DQ[41]  
DDR0_DQ[40]  
DDR0_DQ[45]  
DDR1_DQ[43]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
DDR0_DQ[16]  
DDR0_DQS_P[11]  
DDR0_DQ[17]  
DDR0_DQS_N[14]  
DDR0_DQS_P[14]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
H2  
H3  
H4  
H5  
J2  
H6  
DDR1_DQS_P[5]  
DDR1_DQS_P[14]  
DDR1_DQ[40]  
DDR1_DQ[45]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
J3  
H7  
J4  
DDR1_DQ[52]  
DDR1_DQ[47]  
DDR1_DQ[41]  
DDR1_DQS_N[14]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
H8  
J5  
H9  
J6  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
J7  
DDR2_DQS_P[13]  
DDR2_DQ[38]  
DDR2_DQ[34]  
DDR1_MA[10]  
VDDQ  
CMOS  
CMOS  
CMOS  
CMOS  
PWR  
I/O  
I/O  
I/O  
O
J8  
J9  
DDR2_DQS_N[4]  
DDR2_DQS_P[4]  
DDR2_DQS_N[13]  
DDR2_DQ[33]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
J10  
J11  
J12  
J13  
J14  
J15  
DDR2_CS#[3]  
DDR2_MA[10]  
DDR1_CLK_P[3]  
DDR1_CLK_N[3]  
VDDQ  
CMOS  
CMOS  
CLOCK  
CLOCK  
PWR  
O
O
O
O
DDR1_MA[0]  
CMOS  
CMOS  
O
O
DDR2_CS#[7]/  
DDR2_ODT[5]  
J16  
J17  
DDR1_MA[1]  
DDR1_MA[2]  
CMOS  
CMOS  
O
O
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
79  
Land Listing  
Table 4-2.  
Land Listing by Land Number  
(Sheet 27 of 35)  
Table 4-2.  
Land Listing by Land Number  
(Sheet 28 of 35)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
J18  
J19  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
J27  
J28  
J29  
J30  
J31  
J32  
J33  
J34  
J35  
J36  
J37  
J38  
J39  
J40  
J41  
J42  
J43  
K1  
VDDQ  
PWR  
CLOCK  
CMOS  
CLOCK  
CLOCK  
PWR  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
K23  
K24  
K25  
K26  
K27  
K28  
K29  
K30  
K31  
K32  
K33  
K34  
K35  
K36  
K37  
K38  
K39  
K40  
K41  
K42  
K43  
L1  
RSVD  
VDDQ  
DDR0_CLK_P[0]  
DDR2_MA[3]  
DDR2_CLK_N[0]  
DDR2_CLK_P[0]  
VDDQ  
O
O
O
O
PWR  
CMOS  
CLOCK  
CLOCK  
CLOCK  
PWR  
DDR2_MA[1]  
DDR1_CLK_P[2]  
DDR0_CLK_N[0]  
DDR2_CLK_N[1]  
VDDQ  
O
O
O
O
DDR2_MA[7]  
DDR2_PAR_ERR#[1]  
DDR2_CKE[0]  
DDR1_MA[6]  
VDDQ  
CMOS  
Asynch  
CMOS  
CMOS  
PWR  
O
I
DDR2_MA[6]  
DDR2_MA[5]  
RSVD  
CMOS  
CMOS  
O
O
O
O
RSVD  
RSVD  
VDDQ  
PWR  
DDR2_ECC[5]  
DDR2_ECC[4]  
DDR1_DQ[27]  
VSS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
RSVD  
DDR1_MA[4]  
RSVD  
CMOS  
O
DDR1_DQ[31]  
VSS  
CMOS  
GND  
I/O  
DDR1_DQ[28]  
DDR1_DQ[19]  
DDR1_DQ[22]  
DDR2_DQ[26]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
DDR1_DQ[26]  
DDR1_DQS_N[12]  
DDR1_DQS_P[12]  
DDR1_DQ[18]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
DDR2_DQ[19]  
DDR2_DQ[18]  
DDR0_DQ[21]  
DDR0_DQ[20]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
DDR1_DQS_N[11]  
DDR2_DQ[23]  
DDR2_DQS_N[2]  
DDR2_DQS_P[2]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
VSS  
GND  
K2  
DDR0_DQS_P[5]  
DDR0_DQS_N[5]  
DDR1_DQ[48]  
DDR1_DQ[49]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
DDR0_DQ[10]  
DDR0_DQ[11]  
DDR0_DQ[42]  
DDR0_DQ[47]  
DDR0_DQ[46]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
K3  
K4  
K5  
L2  
K6  
L3  
K7  
DDR2_DQS_N[5]  
DDR2_DQS_N[14]  
DDR2_DQS_P[14]  
DDR2_DQ[41]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
L4  
K8  
L5  
DDR1_DQS_N[6]  
DDR1_DQS_P[6]  
DDR2_DQS_P[5]  
DDR2_DQ[46]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
K9  
L6  
K10  
K11  
K12  
K13  
K14  
L7  
L8  
DDR2_DQ[32]  
DDR1_BA[1]  
DDR2_CS#[1]  
CMOS  
CMOS  
CMOS  
I/O  
O
L9  
L10  
L11  
DDR2_DQ[40]  
DDR2_DQ[44]  
CMOS  
CMOS  
I/O  
I/O  
O
®
®
80  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Land Listing  
Table 4-2.  
Land Listing by Land Number  
(Sheet 29 of 35)  
Table 4-2.  
Land Listing by Land Number  
(Sheet 30 of 35)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
L12  
L13  
L14  
L15  
L16  
L17  
DDR2_DQ[39]  
DDR2_DQ[35]  
CMOS  
CMOS  
PWR  
I/O  
I/O  
M9  
DDR2_DQ[42]  
DDR2_DQ[45]  
CMOS  
CMOS  
PWR  
I/O  
I/O  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
M23  
M24  
M25  
M26  
M27  
M28  
M29  
M30  
M31  
M32  
M33  
M34  
M35  
M36  
M37  
M38  
M39  
M40  
M41  
M42  
M43  
N1  
VDDQ  
VCC  
RSVD  
VSS  
GND  
DDR2_ODT[0]  
CMOS  
CMOS  
O
O
VCC  
PWR  
DDR2_CS#[6]/  
DDR2_ODT[4]  
VSS  
GND  
VCC  
PWR  
L18  
L19  
L20  
L21  
L22  
L23  
L24  
L25  
L26  
L27  
L28  
L29  
L30  
L31  
L32  
L33  
L34  
L35  
L36  
L37  
L38  
L39  
L40  
L41  
L42  
L43  
M1  
DDR1_CLK_N[2]  
VDDQ  
CLOCK  
PWR  
O
VSS  
GND  
VDDQ  
PWR  
DDR2_CLK_P[1]  
DDR2_CLK_N[3]  
DDR2_CLK_P[3]  
DDR_VREF  
CLOCK  
CLOCK  
CLOCK  
Analog  
PWR  
O
O
O
I
VSS  
GND  
VCC  
PWR  
VSS  
GND  
VCC  
PWR  
VDDQ  
VSS  
GND  
DDR2_MA[8]  
DDR2_BA[2]  
DDR2_CKE[3]  
DDR1_MA[3]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
O
O
O
O
VCC  
PWR  
VSS  
GND  
VCC  
PWR  
VSS  
GND  
VDDQ  
PWR  
DDR1_DQS_P[3]  
DDR1_DQS_N[3]  
DDR1_DQ[30]  
DDR1_DQ[25]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
VSS  
GND  
VCC  
PWR  
VSS  
GND  
VCC  
PWR  
VSS  
GND  
DDR1_DQS_P[2]  
DDR1_DQS_N[2]  
DDR1_DQS_P[11]  
DDR2_DQS_N[11]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
VCC  
PWR  
DDR1_DQ[17]  
DDR1_DQ[16]  
DDR1_DQ[21]  
VSS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
DDR2_DQ[22]  
DDR0_DQS_P[1]  
DDR0_DQ[15]  
DDR0_DQ[14]  
DDR0_DQ[43]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
DDR2_DQS_P[11]  
DDR2_DQ[16]  
DDR2_DQ[17]  
DDR0_DQS_N[1]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
M2  
DDR0_DQS_N[10]  
DDR0_DQ[48]  
DDR0_DQ[49]  
DDR0_DQ[53]  
DDR2_DQS_P[15]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
M3  
DDR0_DQ[52]  
DDR1_DQS_N[15]  
DDR1_DQS_P[15]  
DDR1_DQ[53]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
M4  
N2  
M5  
N3  
M6  
N4  
M7  
N5  
M8  
DDR2_DQ[47]  
CMOS  
I/O  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
81  
Land Listing  
Table 4-2.  
Land Listing by Land Number  
(Sheet 31 of 35)  
Table 4-2.  
Land Listing by Land Number  
(Sheet 32 of 35)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
N6  
N7  
DDR2_DQ[49]  
DDR2_DQ[53]  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
R2  
R3  
DDR0_DQS_P[6]  
DDR0_DQS_N[6]  
DDR0_DQ[54]  
DDR1_DQ[50]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
N8  
DDR2_DQ[52]  
DDR2_DQ[43]  
VSS  
R4  
N9  
R5  
N10  
N11  
N33  
N34  
N35  
N36  
N37  
N38  
N39  
N40  
N41  
N42  
N43  
P1  
R6  
VCC  
PWR  
R7  
DDR1_DQ[55]  
DDR1_DQ[54]  
DDR2_DQ[55]  
DDR2_DQ[54]  
VCC  
CMOS  
CMOS  
CMOS  
CMOS  
PWR  
I/O  
I/O  
I/O  
I/O  
VCC  
PWR  
R8  
DDR1_DQ[20]  
VSS  
CMOS  
GND  
I/O  
R9  
R10  
R11  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
T1  
DDR2_DQ[21]  
DDR1_DQ[14]  
DDR1_DQ[15]  
DDR1_DQ[11]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
VCC  
PWR  
DDR1_DQ[12]  
DDR1_DQ[13]  
VSS  
CMOS  
CMOS  
GND  
I/O  
I/O  
DDR0_DQ[8]  
DDR0_DQS_P[10]  
DDR0_DQ[9]  
DDR0_DQS_N[15]  
DDR0_DQS_P[15]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
DDR1_DQS_N[1]  
DDR1_DQS_P[1]  
DDR2_DQ[10]  
DDR2_DQ[15]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
P2  
P3  
DDR0_DQ[3]  
DDR0_DQ[2]  
DDR0_DQ[50]  
DDR0_DQ[51]  
DDR0_DQ[55]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
P4  
DDR2_DQS_N[15]  
DDR2_DQS_N[6]  
DDR2_DQS_P[6]  
DDR2_DQ[48]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
P5  
P6  
T2  
P7  
T3  
P8  
T4  
P9  
DDR2_DQ[50]  
DDR2_DQ[51]  
VSS  
CMOS  
CMOS  
GND  
I/O  
I/O  
T5  
DDR1_DQ[51]  
DDR2_DQ[60]  
DDR2_DQ[61]  
DDR2_DQS_N[7]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
P10  
P11  
P33  
P34  
P35  
P36  
P37  
P38  
P39  
P40  
P41  
P42  
P43  
R1  
T6  
T7  
VSS  
GND  
T8  
DDR1_DQ[8]  
DDR1_DQ[9]  
DDR1_DQS_P[10]  
DDR1_DQS_N[10]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
T9  
T10  
T11  
T33  
T34  
T35  
T36  
T37  
T38  
T39  
T40  
DDR2_DQ[58]  
VCC  
CMOS  
PWR  
I/O  
VCC  
PWR  
VSS  
GND  
DDR1_DQ[10]  
DDR2_DQ[20]  
DDR0_DQ[13]  
DDR0_DQ[12]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
DDR2_DQS_N[9]  
DDR2_DQ[11]  
DDR2_DQS_P[1]  
DDR2_DQS_N[1]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
VSS  
GND  
DDR2_DQS_N[10]  
CMOS  
I/O  
®
®
82  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Land Listing  
Table 4-2.  
Land Listing by Land Number  
(Sheet 33 of 35)  
Table 4-2.  
Land Listing by Land Number  
(Sheet 34 of 35)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
T41  
T42  
T43  
U1  
DDR2_DQ[14]  
DDR0_DQ[7]  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
V37  
V38  
V39  
V40  
V41  
V42  
V43  
W1  
DDR2_DQ[6]  
DDR2_DQ[7]  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
DDR0_DQS_P[0]  
DDR0_DQ[60]  
VSS  
DDR2_DQ[13]  
VSS  
U2  
DDR0_DQ[1]  
DDR0_DQS_N[9]  
DDR0_DQS_P[9]  
DDR0_DQS_N[7]  
DDR0_DQS_P[7]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
U3  
DDR0_DQ[61]  
DDR0_DQ[56]  
DDR2_DQ[56]  
DDR2_DQ[57]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
U4  
U5  
U6  
W2  
U7  
W3  
U8  
DDR2_DQS_P[7]  
DDR2_DQ[63]  
DDR2_DQ[59]  
RSVD  
CMOS  
CMOS  
CMOS  
I/O  
I/O  
I/O  
W4  
DDR0_DQ[63]  
DDR1_DQ[61]  
DDR1_DQ[56]  
DDR1_DQ[57]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
U9  
W5  
U10  
U11  
U33  
U34  
U35  
U36  
U37  
U38  
U39  
U40  
U41  
U42  
U43  
V1  
W6  
W7  
VCCPLL  
PWR  
CMOS  
CMOS  
CMOS  
GND  
W8  
DDR2_DQ[4]  
DDR2_DQS_P[9]  
DDR2_DQ[3]  
VSS  
I/O  
I/O  
I/O  
W9  
DDR1_DQ[63]  
DDR1_DQ[59]  
VCC  
CMOS  
CMOS  
PWR  
I/O  
I/O  
W10  
W11  
W33  
W34  
W35  
W36  
W37  
W38  
W39  
W40  
W41  
W42  
W43  
Y1  
VCCPLL  
PWR  
DDR2_DQ[8]  
DDR2_DQ[9]  
DDR2_DQS_P[10]  
DDR0_DQ[6]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
DDR2_DQ[0]  
DDR2_DQ[1]  
DDR2_DQS_N[0]  
DDR2_DQS_P[0]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
DDR0_DQS_N[0]  
DDR0_DQ[57]  
DDR0_DQS_P[16]  
DDR0_DQS_N[16]  
DDR0_DQ[62]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
DDR2_DQ[12]  
DDR0_DQ[4]  
DDR0_DQ[0]  
DDR0_DQ[5]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
V2  
V3  
V4  
V5  
VSS  
GND  
V6  
DDR2_DQS_P[16]  
DDR2_DQS_N[16]  
DDR2_DQ[62]  
DDR1_DQ[60]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
Y2  
DDR0_DQ[58]  
DDR0_DQ[59]  
DDR1_DQS_P[16]  
DDR1_DQS_N[16]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
V7  
Y3  
V8  
Y4  
V9  
Y5  
V10  
V11  
V33  
V34  
V35  
V36  
Y6  
RSVD  
Y7  
DDR_COMP[1]  
DDR1_DQS_P[7]  
DDR1_DQS_N[7]  
DDR1_DQ[58]  
VSS  
Analog  
CMOS  
CMOS  
CMOS  
GND  
VCCPLL  
PWR  
CMOS  
GND  
Y8  
I/O  
I/O  
I/O  
DDR2_DQ[5]  
VSS  
I/O  
I/O  
Y9  
Y10  
Y11  
DDR2_DQ[2]  
CMOS  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
83  
Land Listing  
Table 4-2.  
Land Listing by Land Number  
(Sheet 35 of 35)  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Y33  
Y34  
Y35  
Y36  
Y37  
Y38  
Y39  
Y40  
Y41  
VSS  
GND  
CMOS  
CMOS  
GND  
DDR1_DQ[3]  
DDR1_DQ[2]  
VSS  
I/O  
I/O  
DDR1_DQS_N[0]  
DDR1_DQS_P[0]  
DDR1_DQ[7]  
DDR1_DQ[6]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
§
®
®
84  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Signal Definitions  
5 Signal Definitions  
5.1  
Signal Definitions  
Table 5-1.  
Signal Definitions (Sheet 1 of 4)  
Name  
Type  
Description  
Differential bus clock input to the processor.  
Notes  
BCLK_DN  
BCLK_DP  
I
BCLK_ITP_DN  
BCLK_ITP_DP  
O
Buffered differential bus clock pair to ITP.  
BPM#[7:0]  
CAT_ERR#  
I/O  
BPM#[7:0] are breakpoint and performance monitor signals. They are outputs from  
the processor which indicate the status of breakpoints and programmable counters  
used for monitoring processor performance. BPM#[7:0] should be connected in a  
wired OR topology between all packages on a platform.  
I/O  
Indicates that the system has experienced a catastrophic error and cannot continue  
to operate. The processor will set this for non-recoverable machine check errors  
other internal unrecoverable error. It is expected that every processor in the  
system will have this hooked up in a wired-OR configuration. Since this is an I/O  
pin, external agents are allowed to assert this pin which will cause the processor to  
take a machine check exception.  
On Intel Xeon processor 5500 series, CAT_ERR# is used for signalling the following  
types of errors:  
Legacy MCERR’s, CAT_ERR# is pulsed for 16 BCLKs.  
Legacy IERR’s, CAT_ERR remains asserted until warm or cold reset.  
COMP0  
I
Impedance Compensation must be terminated on the system board using precision  
resistor.  
QPI0_CLKRX_DN  
QPI0_CLKRX_DP  
Intel QuickPath Interconnect received clock is the input clock that corresponds to  
Intel QuickPath Interconnect port0 received data.  
I
I
QPI0_CLKTX_DN  
QPI0_CLKTX_DP  
O
O
Intel QuickPath Interconnect forwarded clock sent with Intel QuickPath  
Interconnect port 0 outbound data.  
QPI0_COMP  
I
Must be terminated on the system board using precision resistor.  
QPI0_DRX_DN[19:0]  
QPI0_DRX_DP[19:0]  
I
I
QPI0_DRX_DN[19:0] and QPI0_DRX_DP[19:0] comprise the differential receive  
data for Intel QuickPath Interconnect port0. The inbound 20 lanes are connected to  
another component’s outbound lanes.  
QPI0_DTX_DN[19:0]  
QPI0_DTX_DP[19:0]  
O
O
QPI0_DTX_DN[19:0] and QPI0_DTX_DP[19:0] comprise the differential transmit  
data for Intel QuickPath Interconnect port0. The outbound 20 lanes are connected  
to another component’s inbound lanes.  
QPI1_CLKRX_DN  
QPI1_CLKRX_DP  
I
I
Intel QuickPath Interconnect received clock is the input clock that corresponds to  
Intel QuickPath Interconnect 1 port received data.  
QPI1_CLKTX_DN  
QPI1_CLKTX_DP  
O
O
Intel QuickPath Interconnect forwarded clock sent with Intel QuickPath  
Interconnect port1 outbound data.  
QPI1_COMP  
I
I
Must be terminated on the system board using precision resistor.  
QPI1_DRX_DN[19:0]  
QPI1_DRX_DP[19:0]  
QPI1_DRX_DN[19:0] and QPI1_DRX_DP[19:0] comprise the differential receive  
data for Intel QuickPath Interconnect port1. The inbound 20 lanes are connected to  
another component’s outbound lanes.  
I
QPI1_DTX_DN[19:0]  
QPI1_DTX_DP[19:0]  
O
QPI1_DTX_DN[19:0] and QPI1_DTX_DP[19:0] comprise the differential transmit  
data for Intel QuickPath Interconnect port1. The outbound 20 lanes are connected  
to another component’s inbound lanes.  
O
I
DBR#  
DBR# is used only in systems where no debug port is implemented on the system  
board. DBR# is used by a debug port interposer so that an in-target probe can  
drive system reset.  
DDR_COMP[2:0]  
I
Must be terminated on the system board using precision resistors.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
85  
Signal Definitions  
Table 5-1.  
Signal Definitions (Sheet 2 of 4)  
Name  
Type  
Description  
Notes  
DDR_THERM#  
I
DDR_THERM# is used for imposing duty cycle throttling on all memory channels.  
The platform should ensure that DDR_THERM# is exerted when any DIMM is over  
T64 (85 °C)  
1
DDR{0/1/2}_BA[2:0]  
O
Defines the bank which is the destination for the current Activate, Read, Write, or  
Precharge command.  
DDR{0/1/2}_CAS#  
O
O
O
Column Address Strobe.  
Clock Enable.  
DDR{0/1/2}_CKE[3:0]  
DDR{0/1/  
2}_CLK_N[3:0]  
Differential clocks to the DIMM. All command and control signals are valid on the  
rising edge of clock.  
DDR{0/1/  
2}_CLK_P[3:0]  
DDR{0/1/2}_CS[7:0]#  
DDR{0/1/2}_DQ[63:0]  
O
Each signal selects one rank as the target of the command and address.  
DDR3 Data bits.  
I/O  
I/O  
DDR{0/1/  
2}_DQS_N[17:0]  
DDR{0/1/  
2}_DQS_P[17:0]  
Differential pair, Data/ECC Strobe. Differential strobes latch data/ECC for each  
DRAM. Different numbers of strobes are used depending on whether the connected  
DRAMs are x4,x8. Driven with edges in center of data, receive edges are aligned  
with data edges.  
DDR{0/1/2}_ECC[7:0]  
I/O  
O
Check Bits - An Error Correction Code is driven along with data on these lines for  
DIMMs that support that capability.  
DDR{0/1/2}_MA[15:0]  
Selects the Row address for Reads and writes, and the column address for  
activates. Also used to set values for DRAM configuration registers.  
DDR{0/1/2}_MA_PAR  
DDR{0/1/2}_ODT[3:0]  
O
O
Odd parity across Address and Command.  
Enables various combinations of termination resistance in the target and non-target  
DIMMs when data is read or written  
DDR{0/1/  
2}_PAR_ERR#[2:0]  
I
Parity Error detected by Registered DIMM (one for each DIMM).  
DDR{0/1/2}_RAS#  
O
O
Row Address Strobe.  
DDR{0/1/2}_RESET#  
Resets DRAMs. Held low on power up, held high during self refresh, otherwise  
controlled by configuration register.  
DDR_VREF  
DDR{0/1/2}_WE#  
GTLREF  
I
O
Voltage reference for DDR3.  
Write Enable.  
I
Voltage reference for GTL signals.  
Current sense for VRD11.1.  
ISENSE  
I
PECI  
I/O  
PECI (Platform Environment Control Interface) is the serial sideband interface to  
the processor and is used primarily for thermal, power and error management.  
PECI_ID#  
PRDY#  
I
PECI_ID# is the PECI client address identifier. Assertion of this pin results in a PECI  
client address of 0x31 (versus the default 0x30 client address). This pin is primarily  
useful for PECI client address differentiation in DP platforms. One of the two  
processors must be pulled down to VSS to strap to the address of 0x31.  
O
PRDY# is a processor output used by debug tools to determine processor debug  
readiness.  
PREQ#  
I/O  
I/O  
PREQ# is used by debug tools to request debug operation of the processor.  
PROCHOT#  
PROCHOT# will go active when the processor temperature monitoring sensor  
detects that the processor has reached its maximum safe operating temperature.  
This indicates that the processor Thermal Control Circuit has been activated, if  
enabled. This signal can also be driven to the processor to activate the Thermal  
Control Circuit.  
If PROCHOT# is asserted at the deassertion of RESET#, the processor will tri-state  
its outputs. This signal does not have on-die termination and must be terminated  
on the system board.  
®
®
86  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Signal Definitions  
Table 5-1.  
Signal Definitions (Sheet 3 of 4)  
Name  
Type  
Description  
Notes  
PSI#  
O
Processor Power Status Indicator signal. This signal is asserted when maximum  
possible processor core current consumption is less than 20A, Assertion of this  
signal is an indication that the VR controller does not currently need to be able to  
provide ICC above 20A, and the VR controller can use this information to move to  
more efficient operation point. This signal will de-assert at least 3.3 µs before the  
current consumption will exceed 20A. The minimum PSI# assertion time is 1 BCLK.  
The minimum PSI# de-assertion time is 3.3 us.  
This pin does not require a pull-down. For platforms which could experience false  
PSI# assertions during power-up if this pin is left floating, a pull-up may be used  
(1K-5K). Otherwise, it can be left floating. For boards currently pulling this signal to  
Vss, this is not a critical change to make immediately, but it is recommended for  
production builds.  
RESET#  
I
Asserting the RESET# signal resets the processor to a known state and invalidates  
its internal caches without writing back any of their contents. Note some PLL, Intel  
QuickPath Interconnect and error states are not effected by reset and only  
VCCPWRGOOD forces them to a known state. For a power-on Reset, RESET# must  
stay active for at least one millisecond after VCC and BCLK have reached their  
proper specifications. RESET# must not be kept asserted for more than 10 ms  
while VCCPWRGOOD is asserted. RESET# must be held deasserted for at least one  
millisecond before it is asserted again. RESET# must be held asserted before  
VCCPWRGOOD is asserted. This signal does not have on-die termination and must  
be terminated on the system board. RESET# is a common clock signal.  
SKTOCC#  
TCK  
O
I
Socket occupied, platform must sense a VSS at this pin to enable POWER_ON.  
TCK (Test Clock) provides the clock input for the processor Test Bus (also known as  
the Test Access Port).  
TDI  
I
TDI (Test Data In) transfers serial test data into the processor. TDI provides the  
serial input needed for JTAG specification support.  
TDO  
O
O
TDO (Test Data Out) transfers serial test data out of the processor. TDO provides  
the serial output needed for JTAG specification support.  
THERMTRIP#  
Assertion of THERMTRIP# (Thermal Trip) indicates the processor junction  
temperature has reached a level beyond which permanent silicon damage may  
occur. Measurement of the temperature is accomplished through an internal  
thermal sensor. Once activated, the processor will stop all execution and shut down  
all PLLs. To further protect the processor, its core voltage (V ), V  
V
and V  
CC  
TTA TTD DDQ  
must be removed following the assertion of THERMTRIP#. Once activated,  
THERMTRIP# remains latched until RESET# is asserted. While the assertion of the  
RESET# signal may de-assert THERMTRIP#, if the processor's junction temperature  
remains at or above the trip level, THERMTRIP# will again be asserted after  
RESET# is de-asserted.  
TMS  
I
I
TMS (Test Mode Select) is a JTAG specification support signal used by debug tools.  
TRST#  
TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST# must be driven  
low during power on Reset.  
V
V
O
O
V
and V  
provide an isolated, low impedance connection to the  
SS_SENSE  
CC_SENSE  
SS_SENSE  
CC_SENSE  
processor core voltage and ground. They can used to sense or measure power near  
the silicon with little noise.  
V
I
I
Power for processor core.  
CC  
VCCPWRGOOD  
VCCPWRGOOD (Power Good) is a processor input. The processor requires this  
signal to be a clean indication that BCLK, V , V  
, V  
and V  
supplies are  
CC  
CCPLL  
TTA  
TTD  
stable and within their specifications. 'Clean' implies that the signal will remain low  
(capable of sinking leakage current), without glitches, from the time that the power  
supplies are turned on until they come within specification. The signal must then  
transition monotonically to a high state. VCCPWRGOOD can be driven inactive at  
any time, but BCLK and power must again be stable before a subsequent rising  
edge of VCCPWRGOOD. In addition at the time VCCPWRGOOD is asserted RESET#  
must be active. The PWRGOOD signal must be supplied to the processor; it is used  
to protect internal circuits against voltage sequencing issues. It should be driven  
high throughout boundary scan operation.  
V
V
I
I
Analog Power for Clocks.  
CCPLL  
DDQ  
Power supply for the DDR3 interface.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
87  
Signal Definitions  
Table 5-1.  
Signal Definitions (Sheet 4 of 4)  
Name  
VTT_VID[4:2]  
Type  
Description  
Notes  
O
VTT_VID[4:2] is used to support automatic selection of power supply voltages  
(V ). The voltage supply for this signal must be valid before the VR can supply V  
TT  
TT  
to the processor. Conversely, the VR output must be disabled until the voltage  
supply for the VID signal become valid. The VID signal is needed to support the  
processor voltage specification variations. The VR must supply the voltage that is  
requested by the signal.  
V
V
I
I
I
Power for the analog portion of the Intel QuickPath Interconnect and Shared Cache.  
Power for the digital portion of the Intel QuickPath Interconnect and Shared Cache.  
TTA  
TTD  
VDDPWRGOOD  
VDDPWRGOOD is an input that indicates the Vddq power supply is good. The  
processor requires this signal to be a clean indication that the Vddq power supply is  
stable and within their specifications. "Clean" implies that the signal will remain low  
(capable of sinking leakage current), without glitches, from the time that the Vddq  
supply is turned on until it come within specification. The signals must then  
transition monotonically to a high state.  
The PwrGood signal must be supplied to the processor, This signal is used to protect  
internal circuits against voltage sequencing issues.  
2
VID[7:6]  
VID[5:3]/CSC[2:0]  
VID[2:0]/MSID[2:0]  
I/O  
VID[7:0] (Voltage ID) are output signals that are used to support automatic  
selection of power supply voltages (V ). The voltage supply for these signals must  
CC  
be valid before the VR can supply V to the processor. Conversely, the VR output  
CC  
must be disabled until the voltage supply for the VID signals become valid. The VID  
signals are needed to support the processor voltage specification variations. The VR  
must supply the voltage that is requested by the signals, or disable itself.  
VID7 and VID6 should be tied separately to V via 1kOhm resistors during reset  
SS  
(this value is latched on the rising edge of VTTPWRGOOD).  
MSID[2:0] - Market Segment ID, or MSID are provided to indicate the Market  
Segment for the processor and may be used for future processor compatibility or  
for keying. In addition, MSID protects the platform by preventing a higher power  
processor from booting in a platform designed for lower power processors. This  
value is latched from the platform in to the CPU, on the rising edge of  
VTTPWRGOOD, during the cold boot power up sequence.  
CSC[2:0] - Current Sense Configuration bits are output signals for ISENSE gain  
setting. This value is latched on the rising edge of VTTPWRGOOD.  
V
V
O
O
V
and V  
provide an isolated, low impedance connection to the  
SS_SENSE_VTT  
TTD_SENSE  
TTD_SENSE  
processor power and ground. They can used to sense or measure power near the  
silicon.  
SS_SENSE_VTT  
VTTPWRGOOD  
I
The processor requires this input signal to be a clean indication that the VTT power  
supply is stable and within their specifications. 'Clean' implies that the signal will  
remain low (capable of sinking leakage current), without glitches, from the time  
that the power supplies are turned on until they come within specification. The  
signal must then transition monotonically to a high state. to determine that the VTT  
voltage is stable and within specification. Note it is not valid for VTTPWRGOOD to  
be deasserted while VCCPWRGOOD is asserted.  
V
The processor ground.  
SS  
Notes:  
1. DDR{0/1/2} refers to DDR3 Channel 0, DDR3 Channel 1, and DDR3 Channel 2.  
2. VID[7:0] is an Input only during Power On Configuration. It is an Output signal during normal operation.  
§
®
®
88  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Thermal Specifications  
6 Thermal Specifications  
6.1  
Package Thermal Specifications  
The Intel® Xeon® processor 5500 series requires a thermal solution to maintain  
temperatures within operating limits. Any attempt to operate the processor outside  
these limits may result in permanent damage to the processor and potentially other  
components within the system. Maintaining the proper thermal environment is key to  
reliable, long-term system operation.  
A complete solution includes both component and system level thermal management  
features. Component level thermal solutions can include active or passive heatsinks  
attached to the processor integrated heat spreader (IHS). Typical system level thermal  
solutions may consist of system fans combined with ducting and venting.  
This section provides data necessary for developing a complete thermal solution. For  
more information on designing a component level thermal solution, refer to the Intel®  
Xeon® Processor 5500/5600 Series Thermal/Mechanical Design Guide.  
Note:  
The boxed processor will ship with a component thermal solution. Refer to Section 8 for  
details on the boxed processor.  
6.1.1  
Thermal Specifications  
To allow optimal operation and long-term reliability of Intel processor-based systems,  
the processor must remain within the minimum and maximum case temperature  
(TCASE) specifications as defined by the applicable thermal profile. See Table 6-2 and  
Figure 6-1 for Intel® Xeon® Processor W5580 (130W TDP); Table 6-4 and Table 6-5,  
and Figure 6-2 for Intel Xeon processor 5500 series Advanced SKU (95W TDP);  
Table 6-7 and Figure 6-3 for Intel Xeon processor 5500 series Standard/Basic SKUs  
(80W TDP); Table 6-9 and Figure 6-4 for Intel Xeon processor 5500 series Low Power  
SKU (60W TDP); Table 6-11 and Figure 6-5 for Intel® Xeon® Processor L5518 (60W  
TDP) supporting NEBS thermals; Table 6-13 and Figure 6-6 for Intel® Xeon® Processor  
L5508 (38W TDP) supporting NEBS thermals. Thermal solutions not designed to  
provide this level of thermal capability may affect the long-term reliability of the  
processor and system. For more details on thermal solution design, please refer to this  
processor’s TMDG.  
The Intel Xeon processor 5500 series implement a methodology for managing  
processor temperatures which is intended to support acoustic noise reduction through  
fan speed control and to assure processor reliability. Selection of the appropriate fan  
speed is based on the relative temperature data reported by the processor’s Platform  
Environment Control Interface (PECI) as described in Section 6.3. If PECI is less than  
TCONTROL, then the case temperature is permitted to exceed the Thermal Profile, but  
PECI must remain at or below TCONTROL. If PECI >= TCONTROL, then the case  
temperature must meet the Thermal Profile. The temperature reported over PECI is  
always a negative value and represents a delta below the onset of thermal control  
circuit (TCC) activation, as indicated by PROCHOT# (see Section 6.2, Processor  
Thermal Features). Systems that implement fan speed control must be designed to use  
this data. Systems that do not alter the fan speed only need to guarantee the case  
temperature meets the thermal profile specifications.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
89  
Thermal Specifications  
The Intel Xeon Processor W5580 (see Figure 6-1; Table 6-2) supports a single Thermal  
Profile. For this processor, it is expected that the Thermal Control Circuit (TCC) would  
only be activated for very brief periods of time when running the most power-intensive  
applications. Refer to the Intel® Xeon® Processor 5500/5600 Series Thermal /  
Mechanical Design Guide for details on system thermal solution design, thermal profiles  
and environmental considerations.  
The Intel Xeon processor 5500 series Advanced SKU supports two thermal profiles,  
either of which can be implemented. Both ensure adherence to Intel reliability  
requirements. Thermal Profile A (see Figure 6-2; Table 6-4) is representative of a  
volumetrically unconstrained thermal solution (that is, industry enabled 2U heatsink).  
In this scenario, it is expected that the Thermal Control Circuit (TCC) would only be  
activated for very brief periods of time when running the most power intensive  
applications. Thermal Profile B (see Figure 6-2; Table 6-5) is indicative of a constrained  
thermal environment (that is, 1U form factor). Because of the reduced cooling  
capability represented by this thermal solution, the probability of TCC activation and  
performance loss is increased. Additionally, utilization of a thermal solution that does  
not meet Thermal Profile B will violate the thermal specifications and may result in  
permanent damage to the processor. Refer to this processor’s TMDG for details on  
system thermal solution design, thermal profiles and environmental considerations.  
The upper point of the thermal profile consists of the Thermal Design Power (TDP) and  
the associated TCASE value. It should be noted that the upper point associated with the  
Intel Xeon processor 5500 series Advanced SKU Thermal Profile B (x = TDP and  
y = TCASE_MAX_B @ TDP) represents a thermal solution design point. In actuality the  
processor case temperature will not reach this value due to TCC activation (see  
Figure 6-2 for Intel Xeon processor 5500 series Advanced SKU).  
The Intel Xeon processor 5500 series Standard/Basic SKUs (see Figure 6-3; Table 6-7)  
support a single Thermal Profile. For this processor, it is expected that the Thermal  
Control Circuit (TCC) would only be activated for very brief periods of time when  
running the most power-intensive applications. Refer to this processor’s TMDG for  
details on system thermal solution design, thermal profiles and environmental  
considerations.  
The Intel Xeon processor 5500 series Low Power SKU (see Figure 6-4; Table 6-9)  
supports a single Thermal Profile. For this processor, it is expected that the Thermal  
Control Circuit (TCC) would only be activated for very brief periods of time when  
running the most power-intensive applications. Refer to this processor’s TMDG for  
details on system thermal solution design, thermal profiles and environmental  
considerations.  
The Intel Xeon Processor L5518 and Intel Xeon Processor L5508 both support Thermal  
Profiles with nominal and short-term conditions designed to meet NEBS level 3  
compliance (see Figure 6-5 and Figure 6-6 respectively). For these SKU’s operation at  
either the nominal or short-term thermal profiles should result in virtually no TCC  
activation.  
Analysis indicates that real applications are unlikely to cause the processor to consume  
maximum power dissipation for sustained time periods. Intel recommends that  
complete thermal solution designs target the Thermal Design Power (TDP), instead of  
the maximum processor power consumption. The Adaptive Thermal Monitor feature is  
intended to help protect the processor in the event that an application exceeds the TDP  
recommendation for a sustained time period. For more details on this feature, refer to  
Section 6.2. To ensure maximum flexibility for future requirements, systems should be  
®
®
90  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Thermal Specifications  
designed to the Flexible Motherboard (FMB) guidelines, even if a processor with lower  
power dissipation is currently planned. The Adaptive Thermal Monitor feature  
must be enabled for the processor to remain within its specifications.  
Table 6-1.  
Intel® Xeon® Processor W5580 Thermal Specifications  
ThermalDesign  
Power  
Minimum  
TCASE  
(°C)  
Maximum  
TCASE  
Core  
Frequency  
Notes  
(W)  
(°C)  
Launch to FMB  
130  
5
See Figure 6-2; Table 6-4 1, 2, 3, 4, 5  
Notes:  
1.  
These values are specified at V  
for all processor frequencies. Systems must be designed to ensure  
CC_MAX  
the processor is not to be subjected to any static V and I combination wherein V exceeds V at  
CC  
CC  
CC  
CC_MAX  
specified ICC. Please refer to the loadline specifications in Section 2.6.  
Thermal Design Power (TDP) should be used for processor thermal solution design targets. TDP is not the  
maximum power that the processor can dissipate. TDP is measured at maximum T  
These specifications are based on initial silicon characterization. These specifications may be further  
updated as more characterization data becomes available.  
Power specifications are defined at all VIDs found in Table 2-2. The Intel Xeon processor 5500 series may  
be shipped under multiple VIDs for each frequency.  
FMB, or Flexible Motherboard, guidelines provide a design target for meeting all planned processor  
frequency requirements.  
2.  
3.  
4.  
5.  
.
CASE  
Figure 6-1. Intel® Xeon® Processor W5580 Thermal Profile  
Notes:  
1.  
Intel Xeon Processor W5580 Thermal Profile is representative of a volumetrically unconstrained platform.  
Please refer to Table 6-2 for discrete points that constitute the thermal profile.  
Implementation of Intel Xeon Processor W5580 Thermal Profile should result in virtually no TCC activation.  
Refer to the Intel® Xeon® Processor 5500/5600 Series Thermal / Mechanical Design Guide for system and  
environmental implementation details.  
2.  
3.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
91  
Thermal Specifications  
Table 6-2.  
Intel Xeon Processor W5580 Thermal Profile  
Power (W)  
T
(°C)  
CASE_MAX  
43.5  
44.4  
45.3  
46.2  
47.1  
48.0  
48.9  
49.9  
50.7  
51.6  
52.6  
53.5  
54.4  
55.3  
56.2  
57.1  
58.0  
58.9  
59.8  
60.7  
61.6  
62.5  
63.4  
64.3  
65.2  
66.1  
67.0  
0
5
10  
15  
20  
25  
30  
35.6  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
105  
110  
115  
120  
125  
130  
Table 6-3.  
Intel Xeon Processor 5500 Series Advanced SKU Thermal Specifications  
Thermal Design  
Power  
Minimum  
TCASE  
(°C)  
Maximum  
TCASE  
Core  
Frequency  
Notes  
(W)  
(°C)  
Launch to FMB  
95  
5
See Figure 6-2; Table 6-4  
1, 2, 3, 4, 5  
Notes:  
1.  
These values are specified at V  
for all processor frequencies. Systems must be designed to ensure  
CC_MAX  
the processor is not to be subjected to any static V and I combination wherein V exceeds V at  
CC  
CC  
CC  
CC_MAX  
specified ICC. Please refer to the loadline specifications in Section 2.6.  
Thermal Design Power (TDP) should be used for processor thermal solution design targets. TDP is not the  
maximum power that the processor can dissipate. TDP is measured at maximum T  
These specifications are based on initial silicon characterization. These specifications may be further  
updated as more characterization data becomes available.  
Power specifications are defined at all VIDs found in Table 2-2. The Intel Xeon processor 5500 series may  
be shipped under multiple VIDs for each frequency.  
FMB or Flexible Motherboard guidelines provide a design target for meeting all planned processor frequency  
requirements.  
2.  
3.  
4.  
5.  
.
CASE  
®
®
92  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Thermal Specifications  
Figure 6-2. Intel® Xeon® Processor 5500 Series Advanced SKU Thermal Profile  
85  
80  
TCASE_M AX is a therm al solution design  
point. In actuality, units will not significantly  
exceed TCASE_M AX_A due to TCC activation.  
75  
70  
65  
60  
55  
50  
45  
40  
Thermal Profile B  
Y = 0.244*p + 57.8  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95  
Power [W]  
Notes:  
1.  
Intel Xeon processor 5500 series Advanced SKU Thermal Profile A is representative of a volumetrically  
unconstrained platform. Please refer to Table 6-4 for discrete points that constitute thermal profile A.  
Implementation of Intel Xeon processor 5500 series Advanced SKU Thermal Profile A should result in  
virtually no TCC activation. Furthermore, utilization of thermal solutions that do not meet Profile A will  
result in increased probability of TCC activation and may incur measurable performance loss.  
Intel Xeon processor 5500 series Advanced SKU Thermal Profile B is representative of a volumetrically  
constrained platform. Please refer to Table 6-5 for discrete points that constitute thermal profile B.  
Refer to the Intel® Xeon® Processor 5500/5600 Series Thermal / Mechanical Design Guide for system and  
environmental implementation details.  
2.  
3.  
4.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
93  
Thermal Specifications  
Table 6-4.  
Intel Xeon Processor 5500 Series Advanced SKU Thermal Profile A  
Power (W)  
T
(°C)  
CASE_MAX  
57.8  
58.7  
59.6  
60.5  
61.4  
62.3  
63.2  
64.2  
65.0  
65.9  
66.9  
67.8  
68.7  
69.6  
70.5  
71.4  
72.3  
73.2  
74.1  
75.0  
0
5
10  
15  
20  
25  
30  
35.6  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
Table 6-5.  
Intel Xeon Processor 5500 Series Advanced SKU Thermal Profile B  
Power (W)  
T
(°C)  
CASE_MAX  
57.8  
59.0  
60.2  
61.5  
62.7  
63.9  
65.1  
66.3  
67.6  
68.8  
70.0  
71.2  
72.4  
73.7  
74.9  
76.1  
77.3  
78.5  
79.8  
81.0  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
®
®
94  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Thermal Specifications  
Table 6-6.  
Intel Xeon Processor 5500 Series Standard/Basic SKUs Thermal Specifications  
Thermal  
Design Power  
(W)  
Minimum  
TCASE  
(°C)  
Maximum  
TCASE  
Core  
Frequency  
Notes  
(°C)  
Launch to FMB  
80  
5
See Figure 6-3;  
Table 6-7;  
1, 2, 3, 4, 5  
Notes:  
1.  
These values are specified at V  
for all processor frequencies. Systems must be designed to ensure  
CC_MAX  
the processor is not to be subjected to any static V and I combination wherein V exceeds V at  
specified I . Please refer to the loadline specifications in Section 2.6.  
CC  
CC  
CC  
CC_MAX  
CC  
2.  
3.  
4.  
5.  
Thermal Design Power (TDP) should be used for processor thermal solution design targets. TDP is not the  
maximum power that the processor can dissipate. TDP is measured at maximum T  
These specifications are based on initial silicon characterization. These specifications may be further  
updated as more characterization data becomes available.  
Power specifications are defined at all VIDs found in Table 2-2. The Intel Xeon processor 5500 series may  
be shipped under multiple VIDs for each frequency.  
FMB, or Flexible Motherboard, guidelines provide a design target for meeting all planned processor  
frequency requirements.  
.
CASE  
Figure 6-3. Intel Xeon Processor 5500 Series Standard/Basic SKUs Thermal Profile  
Notes:  
1.  
Intel Xeon processor 5500 series Standard/Basic SKUs processor Thermal Profile is representative of a  
volumetrically constrained platform. Please refer to Table 6-7 for discrete points that constitute the thermal  
profile.  
2.  
3.  
Implementation of Intel Xeon processor 5500 series Standard/Basic SKUs Thermal Profile should result in  
virtually no TCC activation.  
Refer to the Intel® Xeon® Processor 5500/5600 Series Thermal / Mechanical Design Guide for system and  
environmental implementation details.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
95  
Thermal Specifications  
Table 6-7.  
Intel Xeon Processor 5500 Series Standard/Basic SKUs Thermal Profile  
Power (W)  
T
(°C)  
CASE_MAX  
51.8  
53.3  
54.8  
56.3  
57.9  
59.4  
60.9  
62.4  
63.9  
65.4  
67.0  
68.5  
70.0  
71.5  
73.0  
74.5  
76.0  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
Table 6-8. Intel Xeon Processor 5500 Series Low Power SKU Thermal Specifications  
Core  
Frequency  
Thermal Design Power  
(W)  
Minimum TCASE  
(°C)  
Maximum TCASE  
(°C)  
Notes  
Launch to FMB  
60  
5
See Figure 6-4;  
Table 6-9  
1, 2, 3, 4, 5  
Notes:  
1.  
These values are specified at V  
for all processor frequencies. Systems must be designed to ensure  
CC_MAX  
the processor is not to be subjected to any static V and I combination wherein V exceeds V at  
specified I . Please refer to the loadline specifications in Section 2.6.  
CC  
CC  
CC  
CC_MAX  
CC  
2.  
3.  
4.  
5.  
Thermal Design Power (TDP) should be used for processor thermal solution design targets. TDP is not the  
maximum power that the processor can dissipate. TDP is measured at maximum T  
These specifications are based on initial silicon characterization. These specifications may be further  
updated as more characterization data becomes available.  
Power specifications are defined at all VIDs found in Table 2-2. The Intel Xeon processor 5500 series Low  
Power SKU may be shipped under multiple VIDs for each frequency.  
FMB, or Flexible Motherboard, guidelines provide a design target for meeting all planned processor  
frequency requirements.  
.
CASE  
®
®
96  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Thermal Specifications  
Figure 6-4. Intel Xeon Processor 5500 Series Low Power SKU Thermal Profile  
Notes:  
1.  
Intel Xeon processor 5500 series Low Power SKU Thermal Profile is representative of a volumetrically  
constrained platform. Please refer to Table 6-9 for discrete points that constitute the thermal profile.  
Implementation of Intel Xeon processor 5500 series Low Power SKU Thermal Profile should result in  
virtually no TCC activation. Furthermore, utilization of thermal solutions that do not meet Intel Xeon  
processor 5500 series Low Power SKU Thermal Profile will result in increased probability of TCC activation  
and may incur measurable performance loss.  
2.  
3.  
Refer to the Intel® Xeon® Processor 5500 Series Thermal / Mechanical Design Guide for system and  
environmental implementation details.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
97  
Thermal Specifications  
Table 6-9.  
Intel Xeon Processor 5500 Series Low Power SKU Thermal Profile  
Power (W)  
T
(°C)  
CASE_MAX  
51.9  
53.4  
54.9  
56.4  
57.9  
59.5  
61.0  
62.5  
64.0  
65.5  
67.0  
68.5  
70.0  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
Notes:  
1.  
These values are specified at V  
for all processor frequencies. Systems must be designed to ensure  
CC_MAX  
the processor is not to be subjected to any static V and I combination wherein V exceeds V at  
specified I . Please refer to the loadline specifications in Section 2.6.  
CC  
CC  
CC  
CC_MAX  
CC  
2.  
3.  
4.  
5.  
Thermal Design Power (TDP) should be used for processor thermal solution design targets. TDP is not the  
maximum power that the processor can dissipate. TDP is measured at maximum T  
These specifications are based on initial silicon characterization. These specifications may be further  
updated as more characterization data becomes available.  
Power specifications are defined at all VIDs found in Table 2-2. The Intel Xeon processor 5500 series may  
be shipped under multiple VIDs for each frequency.  
FMB, or Flexible Motherboard, guidelines provide a design target for meeting all planned processor  
frequency requirements.  
.
CASE  
Table 6-10. Intel Xeon Processor L5518 Thermal Specifications  
Core  
Frequency  
Thermal Design Power  
(W)  
Minimum TCASE  
(°C)  
Maximum TCASE  
(°C)  
Notes  
Launch to FMB  
60  
5
See Figure 6-5;  
Table 6-11  
1, 2, 3, 4, 5  
Notes:  
1.  
These values are specified at V  
for all processor frequencies. Systems must be designed to ensure  
CC_MAX  
the processor is not to be subjected to any static V and I combination wherein V exceeds V at  
specified I . Please refer to the loadline specifications in Section 2.6.  
CC  
CC  
CC  
CC_MAX  
CC  
2.  
3.  
4.  
5.  
Thermal Design Power (TDP) should be used for processor thermal solution design targets. TDP is not the  
maximum power that the processor can dissipate. TDP is measured at maximum T  
These specifications are based on initial silicon characterization. These specifications may be further  
updated as more characterization data becomes available.  
Power specifications are defined at all VIDs found in Table 2-2. The Intel Xeon Processor L5518 may be  
shipped under multiple VIDs for each frequency.  
FMB, or Flexible Motherboard, guidelines provide a design target for meeting all planned processor  
frequency requirements  
.
CASE  
®
®
98  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Thermal Specifications  
Figure 6-5. Intel Xeon Processor L5518 Thermal Profile  
Notes:  
1.  
Intel Xeon Processor L5518 Thermal Profile is representative of a volumetrically constrained platform.  
Please refer to Table 6-11 for discrete points that constitute the thermal profile.  
Implementation of Intel Xeon Processor L5518 nominal and short-term thermal profiles should result in  
virtually no TCC activation. Furthermore, utilization of thermal solutions that do not meet this Thermal  
Profile will result in increased probability of TCC activation and may incur measurable performance loss.  
The Nominal Thermal Profile must be used for all normal operating conditions, or for products that do not  
require NEBS Level 3 compliance.  
The Short-Term Thermal Profile may only be used for short-term excursions to higher ambient operating  
temperatures, not to exceed 96 hours per instance, 360 hours per year, and a maximum of 15 instances  
per year, as compliant with NEBS Level 3. Operation at the Short-Term Thermal Profile for durations  
exceeding 360 hours per year violate the processor thermal specifications and may result in permanent  
damage to the processor.  
2.  
3.  
4.  
5.  
Refer to the Intel® Xeon® Processor 5500/5600 Series Thermal / Mechanical Design Guide for system and  
environmental implementation details.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
99  
Thermal Specifications  
Table 6-11. Intel Xeon Processor L5518 Thermal Profile  
Power (W)  
Nominal T  
(°C)  
Short-term T  
(°C)  
CASE_MAX  
CASE_MAX  
0
51.9  
53.4  
54.9  
56.4  
57.9  
59.5  
61.0  
62.5  
64.0  
65.5  
67.0  
68.5  
70.0  
66.9  
5
68.4  
69.9  
71.4  
72.9  
74.5  
76.0  
77.5  
79.0  
80.5  
82.0  
83.5  
85.0  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
Notes:  
1.  
These values are specified at V  
for all processor frequencies. Systems must be designed to ensure  
CC_MAX  
the processor is not to be subjected to any static V and I combination wherein V exceeds V at  
specified I . Please refer to the loadline specifications in Section 2.6.  
CC  
CC  
CC  
CC_MAX  
CC  
2.  
3.  
4.  
5.  
Thermal Design Power (TDP) should be used for processor thermal solution design targets. TDP is not the  
maximum power that the processor can dissipate. TDP is measured at maximum T  
These specifications are based on initial silicon characterization. These specifications may be further  
updated as more characterization data becomes available.  
Power specifications are defined at all VIDs found in Table 2-2. The Intel Xeon Processor L5518 may be  
shipped under multiple VIDs for each frequency.  
FMB, or Flexible Motherboard, guidelines provide a design target for meeting all planned processor  
frequency requirements.  
.
CASE  
Table 6-12. Intel Xeon Processor L5508 Thermal Specifications  
Core  
Frequency  
Thermal Design Power  
(W)  
Minimum TCASE  
(°C)  
Maximum TCASE  
(°C)  
Notes  
Launch to FMB  
38  
5
See Figure 6-6;  
Table 6-13  
1, 2, 3, 4, 5, 6  
Notes:  
1.  
These values are specified at V  
for all processor frequencies. Systems must be designed to ensure  
CC_MAX  
the processor is not to be subjected to any static V and I combination wherein V exceeds V at  
specified I . Please refer to the loadline specifications in Section 2.6.  
CC  
CC  
CC  
CC_MAX  
CC  
2.  
3.  
4.  
5.  
Thermal Design Power (TDP) should be used for processor thermal solution design targets. TDP is not the  
maximum power that the processor can dissipate. TDP is measured at maximum T  
These specifications are based on initial silicon characterization. These specifications may be further  
updated as more characterization data becomes available.  
Power specifications are defined at all VIDs found in Table 2-2. The Intel Xeon Processor L5508 may be  
shipped under multiple VIDs for each frequency.  
FMB, or Flexible Motherboard, guidelines provide a design target for meeting all planned processor  
frequency requirements.  
.
CASE  
®
®
100  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Thermal Specifications  
Figure 6-6. Intel Xeon Processor L5508 Thermal Profile  
Notes:  
1.  
Intel Xeon Processor L5508 Thermal Profile is representative of a volumetrically constrained platform.  
Please refer to Table 6-13 for discrete points that constitute the thermal profile.  
Implementation of Intel Xeon Processor L5508 nominal and short-term thermal profiles should result in  
virtually no TCC activation. Furthermore, utilization of thermal solutions that do not meet this Thermal  
Profile will result in increased probability of TCC activation and may incur measurable performance loss.  
The Nominal Thermal Profile must be used for all normal operating conditions, or for products that do not  
require NEBS Level 3 compliance.  
The Short-Term Thermal Profile may only be used for short-term excursions to higher ambient operating  
temperatures, not to exceed 96 hours per instance, 360 hours per year, and a maximum of 15 instances  
per year, as compliant with NEBS Level 3. Operation at the Short-Term Thermal Profile for durations  
exceeding 360 hours per year violate the processor thermal specifications and may result in permanent  
damage to the processor.  
2.  
3.  
4.  
5.  
Refer to the Intel® Xeon® Processor 5500 Series Thermal / Mechanical Design Guide for system and  
environmental implementation details.  
Table 6-13. Intel Xeon Processor L5508 Thermal Profile  
Power (W)  
Nominal T  
(°C)  
Short-Term T  
(°C)  
CASE_MAX  
CASE_MAX  
0
50.0  
52.7  
55.3  
58.0  
60.6  
63.3  
66.0  
68.6  
70.2  
65.0  
5
67.7  
70.3  
73.0  
75.6  
78.3  
81.0  
83.6  
85.2  
10  
15  
20  
25  
30  
35  
38  
Notes:  
1. These values are specified at V  
for all processor frequencies. Systems must be designed to ensure  
CC_MAX  
the processor is not to be subjected to any static V and I combination wherein V exceeds V at  
CC  
CC  
CC  
CC_MAX  
specified I . Please refer to the loadline specifications in Section 2.6.  
CC  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
101  
Thermal Specifications  
2.  
3.  
4.  
5.  
Thermal Design Power (TDP) should be used for processor thermal solution design targets. TDP is not the  
maximum power that the processor can dissipate. TDP is measured at maximum T  
.
CASE  
These specifications are based on initial silicon characterization. These specifications may be further  
updated as more characterization data becomes available.  
Power specifications are defined at all VIDs found in Table 2-2. The Intel Xeon Processor L5508 may be  
shipped under multiple VIDs for each frequency.  
FMB, or Flexible Motherboard, guidelines provide a design target for meeting all planned processor  
frequency requirements.  
6.1.2  
Thermal Metrology  
The minimum and maximum case temperatures (TCASE) are specified in Table 6-6,  
through Table 6-13 and are measured at the geometric top center of the processor  
integrated heat spreader (IHS). Figure 6-7 illustrates the location where TCASE  
temperature measurements should be made. For detailed guidelines on temperature  
measurement methodology, refer to the Intel® Xeon® Processor 5500/5600 Series  
Thermal / Mechanical Design Guide.  
Figure 6-7. Case Temperature (TCASE) Measurement Location  
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
Figure is not to scale and is for reference only.  
B1: Max = 45.07 mm, Min = 44.93 mm.  
B2: Max = 42.57 mm, Min = 42.43 mm.  
C1: Max = 39.1 mm, Min = 38.9 mm.  
C2: Max = 36.6 mm, Min = 36.4 mm.  
C3: Max = 2.3 mm, Min = 2.2 mm  
C4: Max = 2.3 mm, Min = 2.2 mm.  
®
®
102  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Thermal Specifications  
6.2  
Processor Thermal Features  
6.2.1  
Processor Temperature  
A new feature in the Intel Xeon processor 5500 series is a software readable field in the  
IA32_TEMPERATURE_TARGET register that contains the minimum temperature at  
which the TCC will be activated and PROCHOT# will be asserted. The TCC activation  
temperature is calibrated on a part-by-part basis and normal factory variation may  
result in the actual TCC activation temperature being higher than the value listed in the  
register. TCC activation temperatures may change based on processor stepping,  
frequency or manufacturing efficiencies.  
Note:  
There is no specified correlation between DTS temperatures and processor case  
temperatures; therefore it is not possible to use this feature to ensure the processor  
case temperature meets the Thermal Profile specifications.  
6.2.2  
Adaptive Thermal Monitor  
The Adaptive Thermal Monitor feature provides an enhanced method for controlling the  
processor temperature when the processor silicon reaches its maximum operating  
temperature. Adaptive Thermal Monitor uses Thermal Control Circuit (TCC) activation  
to reduce processor power via a combination of methods. The first method  
(Frequency/VID control) involves the processor adjusting its operating frequency (via  
the core ratio multiplier) and input voltage (via the VID signals). This combination of  
reduced frequency and VID results in a reduction to the processor power consumption.  
The second method (clock modulation) reduces power consumption by modulating  
(starting and stopping) the internal processor core clocks. The processor intelligently  
selects the appropriate TCC method to use on a dynamic basis. BIOS is not required to  
select a specific method (as with previous-generation processors supporting TM1 or  
TM2).  
The Adaptive Thermal Monitor feature must be enabled for the processor to be  
operating within specifications. The temperature at which Adaptive Thermal  
Monitor activates the Thermal Control Circuit is not user configurable and is not  
software visible. Snooping and interrupt processing are performed in the normal  
manner while the TCC is active.  
With a properly designed and characterized thermal solution, it is anticipated that the  
TCC would only be activated for very short periods of time when running the most  
power intensive applications. The processor performance impact due to these brief  
periods of TCC activation is expected to be so minor that it would be immeasurable. An  
under-designed thermal solution that is not able to prevent excessive activation of the  
TCC in the anticipated ambient environment may cause a noticeable performance loss,  
and in some cases may result in a TC that exceeds the specified maximum temperature  
which may affect the long-term reliability of the processor. In addition, a thermal  
solution that is significantly under-designed may not be capable of cooling the  
processor even when the TCC is active continuously. Refer to the appropriate  
Thermal/Mechanical Design Guide for information on designing a compliant thermal  
solution.  
The duty cycle for the TCC, when activated by the Thermal Monitor, is factory  
configured and cannot be modified. The Thermal Monitor does not require any  
additional hardware, software drivers, or interrupt handling routines.  
The following sections provide more details on the different TCC mechanisms used by  
Intel Xeon processor 5500 series.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
103  
Thermal Specifications  
6.2.2.1  
Frequency/VID Control  
The processor uses Frequency/VID control whereby TCC activation causes the  
processor to adjust its operating frequency (via the core ratio multiplier) and input  
voltage (via the VID signals). This combination of reduced frequency and VID results in  
a reduction to the processor power consumption.  
This method includes multiple operating points, each consisting of a specific operating  
frequency and voltage. The first operating point represents the normal operating  
condition for the processor. The remaining points consist of both lower operating  
frequencies and voltages. When the TCC is activated, the processor automatically  
transitions to the new operating frequency. This transition occurs very rapidly (on the  
order of 2 µs).  
Once the new operating frequency is engaged, the processor will transition to the new  
core operating voltage by issuing a new VID code to the voltage regulator. The voltage  
regulator must support dynamic VID steps to support this method. During the voltage  
change, it will be necessary to transition through multiple VID codes to reach the target  
operating voltage. Each step will be one VID table entry (see Table 2-2). The processor  
continues to execute instructions during the voltage transition. Operation at the lower  
voltages reduces the power consumption of the processor.  
A small amount of hysteresis has been included to prevent rapid active/inactive  
transitions of the TCC when the processor temperature is near its maximum operating  
temperature. Once the temperature has dropped below the maximum operating  
temperature, and the hysteresis timer has expired, the operating frequency and  
voltage transition back to the normal system operating point via the intermediate  
VID/frequency points. Transition of the VID code will occur first, to insure proper  
operation once the processor reaches its normal operating frequency. Refer to  
Figure 6-8 for an illustration of this ordering.  
Figure 6-8. Frequency and Voltage Ordering  
Temperature  
Frequency  
fMAX  
f1  
f2  
VIDfMAX  
VIDf1  
VIDf2  
VID  
PROCHOT#  
Time  
®
®
104  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Thermal Specifications  
6.2.2.2  
Clock Modulation  
Clock modulation is performed by alternately turning the clocks off and on at a duty  
cycle specific to the processor (factory configured to 37.5% on and 62.5% off). The  
period of the duty cycle is configured to 32 microseconds when the TCC is active. Cycle  
times are independent of processor frequency. A small amount of hysteresis has been  
included to prevent rapid active/inactive transitions of the TCC when the processor  
temperature is near its maximum operating temperature. Once the temperature has  
dropped below the maximum operating temperature, and the hysteresis timer has  
expired, the TCC goes inactive and clock modulation ceases. Clock modulation is  
automatically engaged as part of the TCC activation when the Frequency/VID targets  
are at their minimum settings. It may also be initiated by software at a configurable  
duty cycle.  
6.2.3  
On-Demand Mode  
The processor provides an auxiliary mechanism that allows system software to force  
the processor to reduce its power consumption. This mechanism is referred to as “On-  
Demand” mode and is distinct from the Adaptive Thermal Monitor feature. On-Demand  
mode is intended as a means to reduce system level power consumption. Systems  
utilizing the Intel Xeon processor 5500 series must not rely on software usage of this  
mechanism to limit the processor temperature. If bit 4 of the  
IA32_CLOCK_MODULATION MSR is set to a ‘1, the processor will immediately reduce  
its power consumption via modulation (starting and stopping) of the internal core clock,  
independent of the processor temperature. When using On-Demand mode, the duty  
cycle of the clock modulation is programmable via bits 3:1 of the same  
IA32_CLOCK_MODULATION MSR. In On-Demand mode, the duty cycle can be  
programmed from 12.5% on/ 87.5% off to 87.5% on/12.5% off in 12.5% increments.  
On-Demand mode may be used in conjunction with the Adaptive Thermal Monitor;  
however, if the system tries to enable On-Demand mode at the same time the TCC is  
engaged, the factory configured duty cycle of the TCC will override the duty cycle  
selected by the On-Demand mode.  
6.2.4  
PROCHOT# Signal  
An external signal, PROCHOT# (processor hot), is asserted when the processor core  
temperature has reached its maximum operating temperature. If Adaptive Thermal  
Monitor is enabled (note it must be enabled for the processor to be operating within  
specification), the TCC will be active when PROCHOT# is asserted. The processor can  
be configured to generate an interrupt upon the assertion or de-assertion of  
PROCHOT#.  
The PROCHOT# signal is bi-directional in that it can either signal when the processor  
(any core) has reached its maximum operating temperature or be driven from an  
external source to activate the TCC. The ability to activate the TCC via PROCHOT# can  
provide a means for thermal protection of system components.  
As an output, PROCHOT# will go active when the processor temperature monitoring  
sensor detects that one or more cores has reached its maximum safe operating  
temperature. This indicates that the processor Thermal Control Circuit (TCC) has been  
activated, if enabled. As an input, assertion of PROCHOT# by the system will activate  
the TCC, if enabled, for all cores. TCC activation due to PROCHOT# assertion by the  
system will result in the processor immediately transitioning to the minimum frequency  
and corresponding voltage (using Freq/VID control). Clock modulation is not activated  
in this case. The TCC will remain active until the system de-asserts PROCHOT#.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
105  
Thermal Specifications  
PROCHOT# can allow VR thermal designs to target maximum sustained current instead  
of maximum current. Systems should still provide proper cooling for the VR, and rely  
on PROCHOT# only as a backup in case of system cooling failure. The system thermal  
design should allow the power delivery circuitry to operate within its temperature  
specification even while the processor is operating at its Thermal Design Power.  
With a properly designed and characterized thermal solution, it is anticipated that  
PROCHOT# will only be asserted for very short periods of time when running the most  
power intensive applications. An under-designed thermal solution that is not able to  
prevent excessive assertion of PROCHOT# in the anticipated ambient environment may  
cause a noticeable performance loss. Refer to the appropriate platform design guide  
and for details on implementing the bi-directional PROCHOT# feature.  
6.2.5  
THERMTRIP# Signal  
Regardless of whether Adaptive Thermal Monitor is enabled, in the event of a  
catastrophic cooling failure, the processor will automatically shut down when the silicon  
has reached an elevated temperature (refer to the THERMTRIP# definition in  
Table 5-1). THERMTRIP# activation is independent of processor activity and does not  
generate any Intel® QuickPath Interconnect transactions. The temperature at which  
THERMTRIP# asserts is not user configurable and is not software visible.  
6.3  
Platform Environment Control Interface (PECI)  
The Platform Environment Control Interface (PECI) uses a single wire for self-clocking  
and data transfer. The bus requires no additional control lines. The physical layer is a  
self-clocked one-wire bus that begins each bit with a driven, rising edge from an idle  
level near zero volts. The duration of the signal driven high depends on whether the bit  
value is a logic ‘0’ or logic ‘1. PECI also includes variable data transfer rate established  
with every message. In this way, it is highly flexible even though underlying logic is  
simple.  
The interface design was optimized for interfacing to Intel processor and chipset  
components in both single processor and multiple processor environments. The single  
wire interface provides low board routing overhead for the multiple load connections in  
the congested routing area near the processor and chipset components. Bus speed,  
error checking, and low protocol overhead provides adequate link bandwidth and  
reliability to transfer critical device operating conditions and configuration information.  
The PECI bus offers:  
• A wide speed range from 2 Kbps to 2 Mbps  
• CRC check byte used to efficiently and atomically confirm accurate data delivery  
• Synchronization at the beginning of every message minimizes device timing  
accuracy requirements  
Note that the PECI commands described in this document apply to the Intel  
Xeon processor 5500 series only. Refer to Table 6-14 for the list of PECI  
commands supported by the Intel Xeon processor 5500 series PECI client.  
®
®
106  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Thermal Specifications  
Table 6-14. Summary of Processor-specific PECI Commands  
Supported on Intel Xeon Processor  
Command  
5500 Series CPU  
Ping()  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
GetDIB()  
GetTemp()  
PCIConfigRd()  
PCIConfigWr()  
MbxSend() 1  
MbxGet() 1  
Note:  
1.  
Refer to Table 6-19 for a summary of mailbox commands supported by the Intel Xeon processor 5500  
series CPU.  
6.3.1  
PECI Client Capabilities  
The Intel Xeon processor 5500 series PECI client is designed to support the following  
sideband functions:  
• Processor and DRAM thermal management  
• Platform manageability functions including thermal, power and electrical error  
monitoring  
• Processor interface tuning and diagnostics capabilities (Intel® Interconnect BIST  
[Intel® IBIST]).  
6.3.1.1  
Thermal Management  
Processor fan speed control is managed by comparing PECI thermal readings against  
the processor-specific fan speed control reference point, or TCONTROL. Both TCONTROL  
and PECI thermal readings are accessible via the processor PECI client. These variables  
are referenced to a common temperature, the TCC activation point, and are both  
defined as negative offsets from that reference. Algorithms for fan speed management  
using PECI thermal readings and the TCONTROL reference are documented in  
Section 6.3.2.6.  
PECI-based access to DRAM thermal readings and throttling control coefficients provide  
a means for Board Management Controllers (BMCs) or other platform management  
devices to feed hints into on-die memory controller throttling algorithms. These control  
coefficients are accessible using PCI configuration space writes via PECI. The PECI-  
based configuration write functionality is defined in Section 6.3.2.5, and the DRAM  
throttling coefficient control functions are documented in the Intel® Xeon® Processor  
5500 Series Datasheet, Volume 2.  
6.3.1.2  
Platform Manageability  
PECI allows full read access to error and status monitoring registers within the  
processor’s PCI configuration space. It also provides insight into thermal monitoring  
functions such as TCC activation timers and thermal error logs.  
The exact list of RAS-related registers in the PCI configuration space can be found in  
the Intel® Xeon® Processor 5500 Series Datasheet, Volume 2.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
107  
Thermal Specifications  
6.3.1.3  
Processor Interface Tuning and Diagnostics  
Intel Xeon processor 5500 series Intel IBIST allows for in-field diagnostic capabilities in  
Intel QuickPath Interconnect and memory controller interfaces. PECI provides a port to  
execute these diagnostics via its PCI Configuration read and write capabilities.  
6.3.2  
Client Command Suite  
6.3.2.1  
Ping()  
Ping() is a required message for all PECI devices. This message is used to enumerate  
devices or determine if a device has been removed, been powered-off, etc. A Ping()  
sent to a device address always returns a non-zero Write FCS if the device at the  
targeted address is able to respond.  
6.3.2.1.1  
Command Format  
The Ping() format is as follows:  
Write Length: 0  
Read Length: 0  
Figure 6-9. Ping()  
Byte #  
0
1
2
3
Write Length  
0x00  
Read Length  
0x00  
Client Address  
FCS  
Byte  
Definition  
An example Ping() command to PECI device address 0x30 is shown below.  
Figure 6-10. Ping() Example  
Byte #  
0
1
2
3
Byte  
0x30  
0x00  
0x00  
0xe1  
Definition  
6.3.2.2  
GetDIB()  
The processor PECI client implementation of GetDIB() includes an 8-byte response and  
provides information regarding client revision number and the number of supported  
domains. All processor PECI clients support the GetDIB() command.  
6.3.2.2.1  
Command Format  
The GetDIB() format is as follows:  
Write Length: 1  
Read Length: 8  
Command: 0xf7  
®
®
108  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Thermal Specifications  
Figure 6-11. GetDIB()  
Byte #  
0
1
2
3
4
Write Length  
0x01  
Read Length  
0x08  
Cmd Code  
0xf7  
Client Address  
FCS  
Byte  
Definition  
5
6
7
8
9
Revision  
Number  
Device Info  
Reserved  
Reserved  
Reserved  
10  
11  
12  
13  
Reserved  
Reserved  
Reserved  
FCS  
6.3.2.2.2  
Device Info  
The Device Info byte gives details regarding the PECI client configuration. At a  
minimum, all clients supporting GetDIB will return the number of domains inside the  
package via this field. With any client, at least one domain (Domain 0) must exist.  
Therefore, the Number of Domains reported is defined as the number of domains in  
addition to Domain 0. For example, if the number 0b1 is returned, that would indicate  
that the PECI client supports two domains.  
Figure 6-12. Device Info Field Definition  
7
6 5 4 3 2 1 0  
Reserved  
# of Domains  
Reserved  
6.3.2.2.3  
Revision Number  
All clients that support the GetDIB command also support Revision Number reporting.  
The revision number may be used by a host or originator to manage different command  
suites or response codes from the client. Revision Number is always reported in the  
second byte of the GetDIB() response. The Revision Number always maps to the  
revision number of this document.  
Figure 6-13. Revision Number Definition  
7
4
0
3
Major Revision#  
Minor Revision#  
For a client that is designed to meet the specification, the Revision Number it returns  
will be ‘0010 0000b.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
109  
Thermal Specifications  
6.3.2.3  
GetTemp()  
The GetTemp() command is used to retrieve the temperature from a target PECI  
address. The temperature is used by the external thermal management system to  
regulate the temperature on the die. The data is returned as a negative value  
representing the number of degrees centigrade below the Thermal Control Circuit  
Activation temperature of the PECI device. Note that a value of zero represents the  
temperature at which the Thermal Control Circuit activates. The actual value that the  
thermal management system uses as a control set point (Tcontrol) is also defined as a  
negative number below the Thermal Control Circuit Activation temperature. TCONTROL  
may be extracted from the processor by issuing a PECI Mailbox MbxGet() (see  
Section 6.3.2.8), or using a RDMSR instruction.  
Please refer to Section 6.3.6 for details regarding temperature data formatting.  
6.3.2.3.1  
Command Format  
The GetTemp() format is as follows:  
Write Length: 1  
Read Length: 2  
Command: 0x01  
Multi-Domain Support: Yes (see Table 6-26)  
Description: Returns the current temperature for addressed processor PECI client.  
Figure 6-14. GetTemp()  
Byte #  
0
1
2
3
Write Length  
0x01  
Read Length  
0x02  
Cmd Code  
0x01  
Client Address  
Byte  
Definition  
4
5
6
7
FCS  
Temp[7:0]  
Temp[15:8]  
FCS  
Example bus transaction for a thermal sensor device located at address 0x30 returning  
a value of negative 10°C:  
Figure 6-15. GetTemp() Example  
Byte #  
0
1
2
3
Byte  
0x30  
0x01  
0x02  
0x01  
Definition  
4
5
6
7
0xef  
0x80  
0xfd  
0x4b  
®
®
110  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Thermal Specifications  
6.3.2.3.2  
Supported Responses  
The typical client response is a passing FCS and good thermal data. Under some  
conditions, the client’s response will indicate a failure.  
Table 6-15. GetTemp() Response Definition  
Response  
Meaning  
General Sensor Error (GSE)  
0x0000  
Thermal scan did not complete in time. Retry is appropriate.  
Processor is running at its maximum temperature or is currently being reset.  
All other data  
Valid temperature reading, reported as a negative offset from the TCC  
activation temperature.  
6.3.2.4  
PCIConfigRd()  
The PCIConfigRd() command gives sideband read access to the entire PCI configuration  
space maintained in the processor. This capability does not include support for route-  
through to downstream devices or sibling processors. The exact listing of supported  
devices, functions, and registers can be found in the Intel® Xeon® Processor 5500  
Series Datasheet, Volume 2. PECI originators may conduct a device/function/register  
enumeration sweep of this space by issuing reads in the same manner that BIOS  
would. A response of all 1’s indicates that the device/function/register is  
unimplemented.  
PCI configuration addresses are constructed as shown in the following diagram. Under  
normal in-band procedures, the Bus number (including any reserved bits) would be  
used to direct a read or write to the proper device. Since there is a one-to-one mapping  
between any given client address and the bus number, any request made with a bad  
Bus number is ignored and the client will respond with a ‘pass’ completion code but all  
0’s in the data. The only legal bus number is 0x00. The client will return all 1’s in the  
data response and ‘pass’ for the completion code for all of the following conditions:  
• Unimplemented Device  
• Unimplemented Function  
• Unimplemented Register  
Figure 6-16. PCI Configuration Address  
31  
28 27  
20 19  
15 14  
12 11  
0
Reserved  
Bus  
Device  
Function  
Register  
PCI configuration reads may be issued in byte, word, or dword granularities.  
6.3.2.4.1  
Command Format  
The PCIConfigRd() format is as follows:  
Write Length: 5  
Read Length: 2 (byte data), 3 (word data), 5 (dword data)  
Command: 0xc1  
Multi-Domain Support: Yes (see Table 6-26)  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
111  
Thermal Specifications  
Description: Returns the data maintained in the PCI configuration space at the PCI  
configuration address sent. The Read Length dictates the desired data return size. This  
command supports byte, word, and dword responses as well as a completion code. All  
command responses are prepended with a completion code that includes additional  
pass/fail status information. Refer to Section 6.3.4.2 for details regarding completion  
codes.  
Figure 6-17. PCIConfigRd()  
Byte #  
0
1
2
3
Write Length  
0x05  
Read Length  
{0x02,0x03,0x05}  
Cmd Code  
0xc1  
Client Address  
Byte  
Definition  
4
5
6
7
8
LSB  
PCI Configuration Address  
MSB  
FCS  
9
10  
8+RL  
9+RL  
FCS  
Completion  
Code  
Data 0  
...  
Data N  
Note that the 4-byte PCI configuration address defined above is sent in standard PECI  
ordering with LSB first and MSB last.  
6.3.2.4.2  
Supported Responses  
The typical client response is a passing FCS, a passing Completion Code (CC) and valid  
Data. Under some conditions, the client’s response will indicate a failure.  
Table 6-16. PCIConfigRd() Response Definition  
Response  
Meaning  
Abort FCS  
CC: 0x40  
CC: 0x80  
Illegal command formatting (mismatched RL/WL/Command Code)  
Command passed, data is valid  
Error causing a response timeout. Either due to a rare, internal timing condition or a  
processor RESET or processor S1 state. Retry is appropriate outside of the RESET or  
S1 states.  
6.3.2.5  
PCIConfigWr()  
The PCIConfigWr() command gives sideband write access to the PCI configuration  
space maintained in the processor. The exact listing of supported devices, functions is  
defined below in Table 6-17. PECI originators may conduct a device/function/register  
enumeration sweep of this space by issuing reads in the same manner that BIOS  
would.  
®
®
112  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Thermal Specifications  
Table 6-17. PCIConfigWr() Device/Function Support  
Writable  
Description  
Device  
Function  
2
1
5
4
3
3
3
Intel QuickPath Interconnect Link 0 Intel IBIST  
Intel QuickPath Interconnect Link 1 Intel IBIST  
2
1
3
Memory Controller Intel IBIST  
4
Memory Controller Channel 0 Thermal Control / Status  
Memory Controller Channel 1 Thermal Control / Status  
Memory Controller Channel 2 Thermal Control / Status  
5
6
Notes:  
1. Currently not available for access through the PECI PCIConfigWr() command.  
PCI configuration addresses are constructed as shown in Figure 6-16, and this  
command is subject to the same address configuration rules as defined in  
Section 6.3.2.4. PCI configuration reads may be issued in byte, word, or dword  
granularities.  
Because a PCIConfigWr() results in an update to potentially critical registers inside the  
processor, it includes an Assured Write FCS (AW FCS) byte as part of the write data  
payload. In the event that the AW FCS mismatches with the client-calculated FCS, the  
client will abort the write and will always respond with a bad Write FCS.  
6.3.2.5.1  
Command Format  
The PCIConfigWr() format is as follows:  
Write Length: 7 (byte), 8 (word), 10 (dword)  
Read Length: 1  
Command: 0xc5  
Multi-Domain Support: Yes (see Table 6-26)  
Description: Writes the data sent to the requested register address. Write Length  
dictates the desired write granularity. The command always returns a completion code  
indicating the pass/fail status information. Write commands issued to illegal Bus  
Numbers, or unimplemented Device / Function / Register addresses are ignored but  
return a passing completion code. Refer to Section 6.3.4.2 for details regarding  
completion codes.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
113  
Thermal Specifications  
Figure 6-18. PCIConfigWr()  
Byte #  
0
1
2
3
Write Length  
{0x07,0x08,0x10}  
Read Length  
0x01  
Cmd Code  
0xc5  
Client Address  
Byte  
Definition  
4
5
6
7
LSB  
PCI Configuration Address  
Data (1, 2 or 4 bytes)  
MSB  
8
WL-1  
MSB  
LSB  
WL  
WL+1  
FCS  
WL+2  
WL+3  
FCS  
Completion  
Code  
AW FCS  
Note that the 4-byte PCI configuration address and data defined above are sent in  
standard PECI ordering with LSB first and MSB last.  
6.3.2.5.2  
Supported Responses  
The typical client response is a passing FCS, a passing Completion Code and valid Data.  
Under some conditions, the client’s response will indicate a failure.  
Table 6-18. PCIConfigWr() Response Definition  
Response  
Meaning  
Bad FCS  
Electrical error or AW FCS failure  
Abort FCS  
CC: 0x40  
CC: 0x80  
Illegal command formatting (mismatched RL/WL/Command Code)  
Command passed, data is valid  
Error causing a response timeout. Either due to a rare, internal timing condition or a  
processor RESET condition or processor S1 state. Retry is appropriate outside of the RESET  
or S1 states.  
6.3.2.6  
Mailbox  
The PECI mailbox (“Mbx”) is a generic interface to access a wide variety of internal  
processor states. A Mailbox request consists of sending a 1-byte request type and  
4-byte data to the processor, followed by a 4-byte read of the response data. The  
following sections describe the Mailbox capabilities as well as the usage semantics for  
the MbxSend and MbxGet commands which are used to send and receive data.  
®
®
114  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Thermal Specifications  
6.3.2.6.1  
Capabilities  
Table 6-19. Mailbox Command Summary  
Request  
MbxSend  
Data  
(dword)  
MbxGet  
Data  
(dword)  
Command  
Name  
Type  
Code  
(byte)  
Description  
Ping  
0x00  
0x01  
0x00  
0x00  
Verify the operability / existence of the Mailbox.  
Thermal  
Status  
Read/Clear  
Log bit clear Thermal  
mask  
Read the thermal status register and optionally clear any log bits.  
The thermal status has status and log bits indicating the state of  
processor TCC activation, external PROCHOT# assertion, and  
Critical Temperature threshold crossings.  
Status  
Register  
Counter  
Snapshot  
0x03  
0x00  
0x00  
0x00  
Snapshots all PECI-based counters  
Counter Clear  
Counter Read  
0x04  
0x05  
0x00  
Concurrently clear and restart all counters.  
Counter  
Number  
Counter Data  
Returns the counter number requested.  
0: Total reference time  
1: Total TCC Activation time counter  
Icc-TDC Read  
0x06  
0x07  
0x00  
0x00  
Icc-TDC  
Returns the specified Icc-TDC of this part, in Amps.  
Reads the thermal averaging constant.  
Thermal Config  
Data Read  
Thermal  
config data  
Thermal Config  
Data Write  
0x08  
0x09  
0x0A  
Thermal  
0x00  
Writes the thermal averaging constant.  
Config Data  
Tcontrol Read  
0x00  
Tcontrol  
Reads the fan speed control reference temperature, Tcontrol, in  
PECI temperature format.  
Machine Check  
Read  
Bank  
Number /  
Index  
Register Data  
Read CPU Machine Check Banks.  
T-state  
Throttling  
Control Read  
0xB  
0xC  
0x00  
ACPI T-state  
Control Word  
Reads the PECI ACPI T-state throttling control word.  
Writes the PECI ACPI T-state throttling control word.  
T-state  
Throttling  
Control Write  
ACPI T-  
state  
Control  
Word  
0x00  
Any MbxSend request with a request type not defined in Table 6-19 will result in a  
failing completion code.  
More detailed command definitions follow.  
6.3.2.6.2  
6.3.2.6.3  
Ping  
The Mailbox interface may be checked by issuing a Mailbox ‘Ping’ command. If the  
command returns a passing completion code, it is functional. Under normal operating  
conditions, the Mailbox Ping command should always pass.  
Thermal Status Read / Clear  
The Thermal Status Read provides information on package level thermal status. Data  
includes:  
• The status of TCC activation  
• Bidirectional PROCHOT# assertion  
• Critical Temperature  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
115  
Thermal Specifications  
These status bits are a subset of the bits defined in the IA32_THERM_STATUS MSR on  
the processor, and more details on the meaning of these bits may be found in the  
Intel64 and IA-32 Architectures Software Developer’s Manual, Vol. 3B.  
Both status and sticky log bits are managed in this status word. All sticky log bits are  
set upon a rising edge of the associated status bit, and the log bits are cleared only by  
Thermal Status reads or a processor reset. A read of the Thermal Status Word always  
includes a log bit clear mask that allows the host to clear any or all log bits that it is  
interested in tracking.  
A bit set to 0b0 in the log bit clear mask will result in clearing the associated log bit. If  
a mask bit is set to 0b0 and that bit is not a legal mask, a failing completion code will  
be returned. A bit set to 0b1 is ignored and results in no change to any sticky log bits.  
For example, to clear the TCC Activation Log bit and retain all other log bits, the  
Thermal Status Read should send a mask of 0xFFFFFFFD.  
Figure 6-19. Thermal Status Word  
3
1
6 5 4 3 2 1 0  
Reserved  
Critical Temperature Log  
Critical Temperature Status  
Bidirectional PROCHOT# Log  
Bidirectional PROCHOT#  
Status  
TCC Activation Log  
TCC Activation Status  
6.3.2.6.4  
Counter Snapshot / Read / Clear  
A reference time and ‘Thermally Constrained’ time are managed in the processor. These  
two counters are managed via the Mailbox. These counters are valuable for detecting  
thermal runaway conditions where the TCC activation duty cycle reaches excessive  
levels.  
The counters may be simultaneously snapshot, simultaneously cleared, or  
independently read. The simultaneous snapshot capability is provided in order to  
guarantee concurrent reads even with significant read latency over the PECI bus. Each  
counter is 32-bits wide.  
Table 6-20. Counter Definition  
Counter  
Number  
Counter Name  
Definition  
Total Time  
0x00  
0x01  
Counts the total time the processor has been executing with a  
resolution of approximately 1ms. This counter wraps at 32 bits.  
Thermally Constrained Time  
Counts the total time the processor has been operating at a  
lowered performance due to TCC activation. This timer includes  
the time required to ramp back up to the original P-state target  
after TCC activation expires. This timer does not include TCC  
activation time as a result of an external assertion of  
PROCHOT#.  
®
®
116  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Thermal Specifications  
6.3.2.6.5  
Icc-TDC Read  
Icc-TDC is the Intel Xeon processor 5500 series TDC current draw specification. This  
data may be used to confirm matching Icc profiles of processors in DP configurations. It  
may also be used during the processor boot sequence to verify processor compatibility  
with motherboard Icc delivery capabilities.  
This command returns Icc-TDC in units of 1 Amp.  
6.3.2.6.6  
6.3.2.6.7  
TCONTROL Read  
TCONTROL is used for fan speed control management. The TCONTROL limit may be  
read over PECI using this Mailbox function. Unlike the in-band MSR interface, this  
TCONTROL value is already adjusted to be in the native PECI temperature format of a  
2-byte, 2’s complement number.  
Thermal Data Config Read / Write  
The Thermal Data Configuration register allows the PECI host to control the window  
over which thermal data is filtered. The default window is 256 ms. The host may  
configure this window by writing a Thermal Filtering Constant as a power of two. For  
example, sending a value of 9 results in a filtering window of 29 or 512 ms.  
Figure 6-20. Thermal Data Configuration Register  
3
1
4 3  
0
Reserved  
Thermal Filter Const  
6.3.2.6.8  
Machine Check Read  
PECI offers read access to processor machine check banks 0, 1, 6 and 8.  
Because machine check bank reads must be delivered through the Intel Xeon processor  
5500 series Power Control Unit, it is possible that a fatal error in that unit will prevent  
access to other machine check banks. Host controllers may read Power Control Unit  
errors directly by issuing a PCIConfigRd() command of address 0x000000B0.  
Figure 6-21. Machine Check Read MbxSend() Data Format  
Byte #  
Data  
0
1
2
3
4
0x0A  
Bank Index  
Bank Number  
Reserved  
Request Type  
Data[31:0]  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
117  
Thermal Specifications  
Table 6-21. Machine Check Bank Definitions  
Bank Number  
Bank Index  
Meaning  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
8
8
8
8
8
8
8
8
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
MC0_CTL[31:0]  
MC0_CTL[63:32]  
MC0_STATUS[31:0]  
MC0_STATUS[63:32]  
MC0_ADDR[31:0]  
MC0_ADDR[63:32]  
MC0_MISC[31:0]  
MC0_MISC[63:32]  
MC1_CTL[31:0]  
MC1_CTL[63:32]  
MC1_STATUS[31:0]  
MC1_STATUS[63:32]  
MC1_ADDR[31:0]  
MC1_ADDR[63:32]  
MC1_MISC[31:0]  
MC1_MISC[63:32]  
MC6_CTL[31:0]  
MC6_CTL[63:32]  
MC6_STATUS[31:0]  
MC6_STATUS[63:32]  
MC6_ADDR[31:0]  
MC6_ADDR[63:32]  
MC6_MISC[31:0]  
MC6_MISC[63:32]  
MC8_CTL[31:0]  
MC8_CTL[63:32]  
MC8_STATUS[31:0]  
MC8_STATUS[63:32]  
MC8_ADDR[31:0]  
MC8_ADDR[63:32]  
MC8_MISC[31:0]  
MC8_MISC[63:32]  
6.3.2.6.9  
T-state Throttling Control Read / Write  
PECI offers the ability to enable and configure ACPI T-state (core clock modulation)  
throttling. ACPI T-state throttling forces all CPU cores into duty cycle clock modulation  
where the core toggles between C0 (clocks on) and C1 (clocks off) states at the  
specified duty cycle. This throttling reduces CPU performance to the duty cycle  
specified and, more importantly, results in processor power reduction.  
The Intel Xeon processor 5500 series software initiated T-state throttling and automatic  
T-state throttling as part of the internal Thermal Monitor response mechanism (upon  
TCC activation). The PECI T-state throttling control register read/write capability is  
®
®
118  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Thermal Specifications  
managed only in the PECI domain. In-band software may not manipulate or read the  
PECI T-state control setting. In the event that multiple agents are requesting T-state  
throttling simultaneously, the CPU always gives priority to the lowest power setting, or  
the numerically lowest duty cycle.  
On Intel Xeon processor 5500 series, the only supported duty cycle is 12.5% (12.5%  
clocks on, 87.5% clocks off). It is expected that T-state throttling will be engaged only  
under emergency thermal or power conditions. Future products may support more duty  
cycles, as defined in the following table:  
Table 6-22. ACPI T-state Duty Cycle Definition  
Duty Cycle Code  
0x0  
Definition  
Undefined  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
12.5% clocks on / 87.5% clocks off  
25% clocks on / 75% clocks off  
37.5% clocks on / 62.5% clocks off  
50% clocks on / 50% clocks off  
62.5% clocks on / 37.5% clocks off  
75% clocks on / 25% clocks off  
87.5% clocks on / 12.5% clocks off  
The T-state control word is defined as follows:  
Figure 6-22. ACPI T-state Throttling Control Read / Write Definition  
\
Byte #  
0
1
2
3
4
Request Type  
Request Data  
7
5 4 3  
1 0  
7
0
0xB / 0xC  
Reserved  
Data  
Enable  
Duty Cycle  
6.3.2.7  
MbxSend()  
The MbxSend() command is utilized for sending requests to the generic Mailbox  
interface. Those requests are in turn serviced by the processor with some nominal  
latency and the result is deposited in the mailbox for reading. MbxGet() is used to  
retrieve the response and details are documented in Section 6.3.2.8.  
The details of processor mailbox capabilities are described in Section 6.3.2.6.1, and  
many of the fundamental concepts of Mailbox ownership, release, and management are  
discussed in Section 6.3.2.9.  
6.3.2.7.1  
Write Data  
Regardless of the function of the mailbox command, a request type modifier and 4-byte  
data payload must be sent. For Mailbox commands where the 4-byte data field is not  
applicable (for example, the command is a read), the data written should be all zeroes.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
119  
Thermal Specifications  
Figure 6-23. MbxSend() Command Data Format  
0
1
2
3
4
Byte #  
Byte  
Definition  
Request Type  
Data[31:0]  
Because a particular MbxSend() command may specify an update to potentially critical  
registers inside the processor, it includes an Assured Write FCS (AW FCS) byte as part  
of the write data payload. In the event that the AW FCS mismatches with the client-  
calculated FCS, the client will abort the write and will always respond with a bad Write  
FCS.  
6.3.2.7.2  
Command Format  
The MbxSend() format is as follows:  
Write Length: 7  
Read Length: 1  
Command: 0xd1  
Multi-Domain Support: Yes (see Table 6-26)  
Description: Deposits the Request Type and associated 4-byte data in the Mailbox  
interface and returns a completion code byte with the details of the execution results.  
Refer to Section 6.3.4.2 for completion code definitions.  
Figure 6-24. MbxSend()  
Byte #  
0
1
2
3
Byte  
Definition  
Write Length  
0x07  
Read Length  
0x01  
Cmd Code  
0xd1  
Client Address  
4
5
6
7
8
Request Type  
LSB  
Data[31:0]  
MSB  
9
10  
11  
12  
Completion  
Code  
AW FCS  
FCS  
FCS  
Note that the 4-byte data defined above is sent in standard PECI ordering with LSB first  
and MSB last.  
®
®
120  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Thermal Specifications  
Table 6-23. MbxSend() Response Definition  
Response  
Meaning  
Bad FCS  
CC: 0x4X  
CC: 0x80  
Electrical error  
Semaphore is granted with a Transaction ID of ‘X’  
Error causing a response timeout. Either due to a rare, internal timing condition or a  
processor RESET condition or processor S1 state. Retry is appropriate outside of the  
RESET or S1 states.  
CC: 0x86  
Mailbox interface is unavailable or busy  
If the MbxSend() response returns a bad Read FCS, the completion code can't be  
trusted and the semaphore may or may not be taken. In order to clean out the  
interface, an MbxGet() must be issued and the response data should be discarded.  
6.3.2.8  
MbxGet()  
The MbxGet() command is utilized for retrieving response data from the generic  
Mailbox interface as well as for unlocking the acquired mailbox. Please refer to  
Section 6.3.2.7 for details regarding the MbxSend() command. Many of the  
fundamental concepts of Mailbox ownership, release, and management are discussed  
in Section 6.3.2.9.  
6.3.2.8.1  
Write Data  
The MbxGet() command is designed to retrieve response data from a previously  
deposited request. In order to guarantee alignment between the temporally separated  
request (MbxSend) and response (MbxGet) commands, the originally granted  
Transaction ID (sent as part of the passing MbxSend() completion code) must be issued  
as part of the MbxGet() request.  
Any mailbox request made with an illegal or unlocked Transaction ID will get a failed  
completion code response. If the Transaction ID matches an outstanding transaction ID  
associated with a locked mailbox, the command will complete successfully and the  
response data will be returned to the originator.  
Unlike MbxSend(), no Assured Write protocol is necessary for this command because  
this is a read-only function.  
6.3.2.8.2  
Command Format  
The MbxGet() format is as follows:  
Write Length: 2  
Read Length: 5  
Command: 0xd5  
Multi-Domain Support: Yes (see Table 6-26)  
Description: Retrieves response data from mailbox and unlocks / releases that  
mailbox resource.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
121  
Thermal Specifications  
Figure 6-25. MbxGet()  
Byte #  
0
1
2
3
Byte  
Definition  
Write Length  
0x02  
Read Length  
0x05  
Cmd Code  
0xd5  
Client Address  
4
5
6
Completion  
Code  
Transaction ID  
FCS  
7
8
9
10  
MSB  
11  
LSB  
Response Data[31:0]  
FCS  
Note that the 4-byte data response defined above is sent in standard PECI ordering  
with LSB first and MSB last.  
Table 6-24. MbxGet() Response Definition  
Response  
Meaning  
Aborted Write FCS Response data is not ready. Command retry is appropriate.  
CC: 0x40  
CC: 0x80  
Command passed, data is valid  
Error causing a response timeout. Either due to a rare, internal timing condition or a  
processor RESET condition or processor S1 state. Retry is appropriate outside of the  
RESET or S1 states.  
CC: 0x81  
CC: 0x82  
CC: 0x83  
CC: 0x84  
CC: 0x85  
CC: 0x86  
CC: 0xFF  
Thermal configuration data was malformed or exceeded limits.  
Thermal status mask is illegal  
Invalid counter select  
Invalid Machine Check Bank or Index  
Failure due to lack of Mailbox lock or invalid Transaction ID  
Mailbox interface is unavailable or busy  
Unknown/Invalid Mailbox Request  
6.3.2.9  
Mailbox Usage Definition  
Acquiring the Mailbox  
6.3.2.9.1  
The MbxSend() command is used to acquire control of the PECI mailbox and issue  
information regarding the specific request. The completion code response indicates  
whether or not the originator has acquired a lock on the mailbox, and that completion  
code always specifies the Transaction ID associated with that lock (see  
Section 6.3.2.9.2).  
Once a mailbox has been acquired by an originating agent, future requests to acquire  
that mailbox will be denied with an ‘interface busy’ completion code response.  
The lock on a mailbox is not achieved until the last bit of the MbxSend() Read FCS is  
transferred (in other words, it is not committed until the command completes). If the  
host aborts the command at any time prior to that bit transmission, the mailbox lock  
will be lost and it will remain available for any other agent to take control.  
®
®
122  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Thermal Specifications  
6.3.2.9.2  
Transaction ID  
For all MbxSend() commands that complete successfully, the passing completion code  
(0x4X) includes a 4-bit Transaction ID (‘X’). That ID is the key to the mailbox and must  
be sent when retrieving response data and releasing the lock by using the MbxGet()  
command.  
The Transaction ID is generated internally by the processor and has no relationship to  
the originator of the request. On Intel Xeon processor 5500 series, only a single  
outstanding Transaction ID is supported. Therefore, it is recommended that all devices  
requesting actions or data from the Mailbox complete their requests and release their  
semaphore in a timely manner.  
In order to accommodate future designs, software or hardware utilizing the PECI  
mailbox must be capable of supporting Transaction IDs between 0 and 15.  
6.3.2.9.3  
6.3.2.9.4  
Releasing the Mailbox  
The mailbox associated with a particular Transaction ID is only unlocked / released  
upon successful transmission of the last bit of the Read FCS. If the originator aborts the  
transaction prior to transmission of this bit (presumably due to an FCS failure), the  
semaphore is maintained and the MbxGet() command may be retried.  
Mailbox Timeouts  
The mailbox is a shared resource that can result in artificial bandwidth conflicts among  
multiple querying processes that are sharing the same originator interface. The  
interface response time is quick, and with rare exception, back to back MbxSend() and  
MbxGet() commands should result in successful execution of the request and release of  
the mailbox. In order to guarantee timely retrieval of response data and mailbox  
release, the mailbox semaphore has a timeout policy. If the PECI bus has a cumulative  
‘0 time of 1ms since the semaphore was acquired, the semaphore is automatically  
cleared. In the event that this timeout occurs, the originating agent will receive a failed  
completion code upon issuing a MbxGet() command, or even worse, it may receive  
corrupt data if this MbxGet() command so happens to be interleaved with an  
MbxSend() from another process. Please refer to Table 6-24 for more information  
regarding failed completion codes from MbxGet() commands.  
Timeouts are undesirable, and the best way to avoid them and guarantee valid data is  
for the originating agent to always issue MbxGet() commands immediately following  
MbxSend() commands.  
Alternately, mailbox timeout can be disabled. BIOS may write MSR  
MISC_POWER_MGMT (0x1AA), bit 11 to 0b1 in order to force a disable of this  
automatic timeout.  
6.3.2.9.5  
Response Latency  
The PECI mailbox interface is designed to have response data available within plenty of  
margin to allow for back-to-back MbxSend() and MbxGet() requests. However, under  
rare circumstances that are out of the scope of this specification, it is possible that the  
response data is not available when the MbxGet() command is issued. Under these  
circumstances, the MbxGet() command will respond with an Abort FCS and the  
originator should re-issue the MbxGet() request.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
123  
Thermal Specifications  
6.3.3  
Multi-Domain Commands  
The Intel Xeon processor 5500 series does not support multiple domains, but it is  
possible that future products will, and the following tables are included as a reference  
for domain-specific definitions.  
Table 6-25. Domain ID Definition  
Domain ID  
Domain Number  
0b01  
0
0b10  
1
Table 6-26. Multi-Domain Command Code Reference  
Domain 0  
Domain 1  
Code  
Command Name  
Code  
GetTemp()  
PCIConfigRd()  
PCIConfigWr()  
MbxSend()  
0x01  
0xC1  
0xC5  
0xD1  
0xD5  
0x02  
0xC2  
0xC6  
0xD2  
0xD6  
MbxGet()  
6.3.4  
Client Responses  
6.3.4.1  
Abort FCS  
The Client responds with an Abort FCS under the following conditions:  
• The decoded command is not understood or not supported on this processor (this  
includes good command codes with bad Read Length or Write Length bytes).  
• Data is not ready.  
• Assured Write FCS (AW FCS) failure. Note that under most circumstances, an  
Assured Write failure will appear as a bad FCS. However, when an originator issues  
a poorly formatted command with a miscalculated AW FCS, the client will  
intentionally abort the FCS in order to guarantee originator notification.  
6.3.4.2  
Completion Codes  
Some PECI commands respond with a completion code byte. These codes are designed  
to communicate the pass/fail status of the command and also provide more detailed  
information regarding the class of pass or fail. For all commands listed in Section 6.3.2  
that support completion codes, each command’s completion codes is listed in its  
respective section. What follows are some generalizations regarding completion codes.  
An originator that is decoding these commands can apply a simple mask to determine  
pass or fail. Bit 7 is always set on a failed command, and is cleared on a passing  
command.  
Table 6-27. Completion Code Pass/Fail Mask  
0xxx xxxxb  
1xxx xxxxb  
Command passed  
Command failed  
®
®
124  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Thermal Specifications  
Table 6-28. Device Specific Completion Code (CC) Definition  
Completion  
Description  
Code  
0x00..0x3F  
0x40  
Device specific pass code  
Command Passed  
0x4X  
Command passed with a transaction ID of ‘X’ (0x40 | Transaction_ID[3:0])  
Device specific pass code  
0x50..0x7F  
CC: 0x80  
Error causing a response timeout. Either due to a rare, internal timing condition or a  
processor RESET condition or processor S1 state. Retry is appropriate outside of the RESET  
or S1 states.  
CC: 0x81  
CC: 0x82  
CC: 0x83  
CC: 0x84  
CC: 0x85  
CC: 0x86  
CC:0xFF  
Thermal configuration data was malformed or exceeded limits.  
Thermal status mask is illegal  
Invalid counter select  
Invalid Machine Check Bank or Index  
Failure due to lack of Mailbox lock or invalid Transaction ID  
Mailbox interface is unavailable or busy  
Unknown/Invalid Mailbox Request  
Note:  
The codes explicitly defined in this table may be useful in PECI originator response  
algorithms. All reserved or undefined codes may be generated by a PECI client device,  
and the originating agent must be capable of tolerating any code. The Pass/Fail mask  
defined in Table 6-27 applies to all codes and general response policies may be based  
on that limited information.  
6.3.5  
Originator Responses  
The simplest policy that an originator may employ in response to receipt of a failing  
completion code is to retry the request. However, certain completion codes or FCS  
responses are indicative of an error in command encoding and a retry will not result in  
a different response from the client. Furthermore, the message originator must have a  
response policy in the event of successive failure responses.  
Please refer to the definition of each command in Section 6.3.2 for a specific definition  
of possible command codes or FCS responses for a given command. The following  
response policy definition is generic, and more advanced response policies may be  
employed at the discretion of the originator developer.  
Table 6-29. Originator Response Guidelines  
Response  
After 1 Attempt  
After 3 attempts  
Fail with PECI client device error  
Bad FCS  
Abort FCS  
CC: Fail  
Retry  
Retry  
Retry  
Fail with PECI client device error. May be due to illegal command codes.  
Either the PECI client doesn’t support the current command code, or it has  
failed in its attempts to construct a response.  
None (all 0’s) Force bus idle  
(1ms low), retry  
Fail with PECI client device error. Client may be dead or otherwise non-  
responsive (in RESET or S1, for example).  
CC: Pass  
Pass  
Pass  
n/a  
n/a  
Good FCS  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
125  
Thermal Specifications  
6.3.6  
Temperature Data  
6.3.6.1  
Format  
The temperature is formatted in a 16-bit, 2’s complement value representing a number  
of 1/64 degrees centigrade. This format allows temperatures in a range of ±512°C to  
be reported to approximately a 0.016°C resolution.  
Figure 6-26. Temperature Sensor Data Format  
MSB  
MSB  
LSB  
LSB  
Upper nibble  
Lower nibble  
Upper nibble  
Lower nibble  
S
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Sign  
Integer Value (0-511)  
Fractional Value (~0.016)  
6.3.6.2  
Interpretation  
The resolution of the processor’s Digital Thermal Sensor (DTS) is approximately 1°C,  
which can be confirmed by a RDMSR from IA32_THERM_STATUS MSR (0x19C) where it  
is architecturally defined. PECI temperatures are sent through a configurable low-pass  
filter prior to delivery in the GetTemp() response data. The output of this filter produces  
temperatures at the full 1/64°C resolution even though the DTS itself is not this  
accurate.  
Temperature readings from the processor are always negative in a 2’s complement  
format, and imply an offset from the reference TCC activation temperature. As an  
example, assume that the TCC activation temperature reference is 100°C. A PECI  
thermal reading of -10 indicates that the processor is running approximately 10°C  
below the TCC activation temperature, or 90°C. PECI temperature readings are not  
reliable at temperatures above TCC activation (since the processor is operating out of  
specification at this temperature). Therefore, the readings are never positive.  
6.3.6.3  
Temperature Filtering  
The processor digital thermal sensor (DTS) provides an improved capability to monitor  
device hot spots, which inherently leads to more varying temperature readings over  
short time intervals. Coupled with the fact that typical fan speed controllers may only  
read temperatures at 4 Hz, it is necessary for the thermal readings to reflect thermal  
trends and not instantaneous readings. Therefore, PECI supports a configurable low-  
pass temperature filtering function. By default, this filter results in a thermal reading  
that is a moving average of 256 samples taken at approximately 1msec intervals. This  
filter’s depth, or smoothing factor, may be configured to between 1 sample and 1024  
samples, in powers of 2. See the equation below for reference where the configurable  
variable is ‘X.  
TN = TN-1 + 1/2X * (TSAMPLE - TN-1  
)
Please refer to Section 6.3.2.6.7 for the definition of the thermal configuration  
command.  
®
®
126  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Thermal Specifications  
6.3.6.4  
Reserved Values  
Several values well out of the operational range are reserved to signal temperature  
sensor errors. These are summarized in the table below:  
Table 6-30. Error Codes and Descriptions  
Error Code  
Description  
0x8000  
General Sensor Error (GSE)  
6.3.7  
Client Management  
6.3.7.1  
Power-up Sequencing  
The PECI client is fully reset during processor RESET# assertion. This means that any  
transactions on the bus will be completely ignored, and the host will read the response  
from the client as all zeroes. After processor RESET# deassertion, the Intel Xeon  
processor 5500 series PECI client is operational enough to participate in timing  
negotiations and respond with reasonable data. However, the client data is not  
guaranteed to be fully populated until approximately 500 µS after processor RESET# is  
deasserted. Until that time, data may not be ready for all commands. The client  
responses to each command are as follows:  
Table 6-31. PECI Client Response During Power-Up (During ‘Data Not Ready’)  
Command  
Ping()  
Response  
Fully functional  
Fully functional  
GetDIB()  
GetTemp()  
PCIConfigRd()  
PCIConfigWr()  
MbxSend()  
MbxGet()  
Client responds with a ‘hot’ reading, or 0x0000  
Fully functional  
Fully functional  
Fully functional  
Client responds with Abort FCS (if MbxSend() has been previously issued)  
In the event that the processor is tri-stated using power-on-configuration controls, the  
PECI client will also be tri-stated. Processor tri-state controls are described in  
Section 7.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
127  
Thermal Specifications  
Figure 6-27. PECI Power-up Timeline  
Vtt  
VttPwrGd  
SupplyVcc  
Bclk  
VccPwrGd  
RESET#  
Mclk  
CSI pins  
CSI training  
idle  
running  
Reset uCode  
Boot BIOS  
uOp execution  
In Reset  
Data Not Rdy  
Fully Operational  
PECI Client Status  
x
PECI Node ID  
0b1 or 0b0  
6.3.7.2  
6.3.7.3  
Device Discovery  
The PECI client is available on all processors, and positive identification of the PECI  
revision number can be achieved by issuing the GetDIB() command. Please refer to  
Section 6.3.2.2 for details on GetDIB response formatting.  
Client Addressing  
The PECI client assumes a default address of 0x30. If nothing special is done to the  
processor, all PECI clients will boot with this address. For DP enabled parts, a special  
PECI_ID# pin is available to strap each PECI socket to a different node ID. The package  
pin strap is evaluated at the assertion of VCCPWRGOOD (as depicted in Figure 6-27).  
Since PECI_ID# is active low, tying the pin to ground results in a client address of  
0x31, and tying it to VTT results in a client address of 0x30.  
The client address may not be changed after VCCPWRGOOD assertion, until the next  
power cycle on the processor. Removal of a processor from its socket or tri-stating a  
processor in a DP configuration will have no impact to the remaining non-tri-stated  
PECI client address.  
6.3.7.4  
C-States  
The Intel Xeon processor 5500 series PECI client is fully functional under all core and  
package C-states. Support for package C-states is a function of processor SKU and  
platform capabilities. All package C-states (C1/C1E, C3, and C6) are annotated here for  
completeness, but actual processor support for these C-states may vary.  
Because the Intel Xeon processor 5500 series takes aggressive power savings actions  
under the deepest C-states (C1/C1E, C3, and C6), PECI requests may have an impact  
to platform power. The impact is documented below:  
• Ping(), GetDIB(), GetTemp() and MbxGet() have no measurable impact on  
processor power under C-states.  
®
®
128  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Thermal Specifications  
• MbxSend(), PCIConfigRd() and PCIConfigWr() usage under package C-states may  
result in increased power consumption because the processor must temporarily  
return to a C0 state in order to execute the request. The exact power impact of a  
pop-up to C0 varies by product SKU, the C-state from which the pop-up is initiated,  
and the negotiated TBIT  
.
Table 6-32. Power Impact of PECI Commands versus C-states  
Command  
Ping()  
Power Impact  
Not measurable  
GetDIB()  
Not measurable  
GetTemp()  
PCIConfigRd()  
PCIConfigWr()  
MbxSend()  
MbxGet()  
Not measurable  
Requires a package ‘pop-up’ to a C0 state  
Requires a package ‘pop-up’ to a C0 state  
Requires a package ‘pop-up’ to a C0 state  
Not measurable  
6.3.7.5  
S-States  
The PECI client is always guaranteed to be operational under S0 and S1 sleep states.  
Under S3 and deeper sleep states, the PECI client response is undefined and therefore  
unreliable.  
Table 6-33. PECI Client Response During S1  
Command  
Response  
Ping()  
Fully functional  
Fully functional  
Fully functional  
Fully functional  
Fully functional  
Fully functional  
Fully functional  
GetDIB()  
GetTemp()  
PCIConfigRd()  
PCIConfigWr()  
MbxSend()  
MbxGet()  
6.3.7.6  
Processor Reset  
The Intel Xeon processor 5500 series PECI client is fully reset on all RESET# assertions.  
Upon deassertion of RESET#, where power is maintained to the processor (otherwise  
known as a ‘warm reset’), the following are true:  
• The PECI client assumes a bus Idle state.  
• The Thermal Filtering Constant is retained.  
• PECI Node ID is retained.  
• GetTemp() reading resets to 0x0000.  
• Any transaction in progress is aborted by the client (as measured by the client no  
longer participating in the response).  
• The processor client is otherwise reset to a default configuration.  
§
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
129  
Thermal Specifications  
®
®
130  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Features  
7 Features  
7.1  
Power-On Configuration (POC)  
Several options can be configured by hardware. Power-On configuration (POC)  
functionality is provided by strapping VID signals (see Table 2-3) or sampled on the  
active-to-inactive transition of RESET#. For specifics on these options, please refer to  
Table 7-1.  
Please note that requests to execute Built-In Self Test (BIST) are not selected by  
hardware, but rather passed across the Intel QuickPath Interconnect link during  
initialization.  
Processors sample VID[2:0]/MSID[2:0] and VID[5:3]/CSC[2:0] around the asserting  
edge VTTPWRGOOD.  
Table 7-1.  
Power On Configuration Signal Options  
Configuration Option  
Output tristate  
Signal  
Reference  
Section 6.2.4  
1
PROCHOT#  
2, 3  
PECI ID  
MSID  
ODT/PECI_ID#  
Section 6.3.7.3  
Table 2-3  
2, 3  
VID[2:0]/MSID[2:0]  
2, 3  
CSC  
VID[5:3]/CSC[2:0]  
Table 2-3  
Notes:  
1. Asserting this signal during RESET# de-assertion will select the corresponding option. Once selected, this  
option cannot be changed except via another reset. The processor does not distinguish between a "warm"  
reset and a "power-on" reset. Output tri-state via the PROCHOT# power-on configuration option is referred  
to as Fault Resilient Boot (FRB).  
2. Latched when VTTPWRGOOD is asserted and all internal power good conditions are met.  
3. See the signal definitions in Table 5-1 for the description of PECI_ID#, MSID, and CSC.  
Assertion of the PROCHOT# signal through RESET# de-assertion (also referred to as  
Fault Resilient Boot (FRB)) will tri-state processor outputs. Figure 7-1 outlines timing  
requirements when utilizing PROCHOT# as a power-on configuration option. In the  
event an FRB is desired, PROCHOT# and RESET# should be asserted simultaneously.  
Furthermore, once asserted, PROCHOT# should remain low long enough to meet the  
Power-On Configuration Hold Time (PROCHOT#). Failure to do so may result in false  
tri-state.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
131  
Features  
Figure 7-1. PROCHOT# POC Timing Requirements  
Min Setup (2)  
Min Hold (106)  
BCLK  
CPURESET#  
Tri-State POC  
(xxPROCHOT#)  
Non-FRB assertion of  
xxPROCHOT# during this window  
can trigger false tri-state  
xxPROCHOT# deassertion is not required for FRB  
Power-On Configuration (POC) logic levels are MUX-ed onto the VID[7:0] signals with  
1-5 KΩ pull-up and pull-down resistors located on the baseboard. These include:  
• VID[2:0] / MSID[2:0] = Market Segment ID  
• VID[5:3] / CSC[2:0] = Current Sense Configuration  
• VID[6] = Reserved  
• VID[7] = VR11.1 Select  
Pull-up and pull-down resistors on the baseboard eliminate the need for timing  
specifications After the voltage regulator’s OUTEN signal is asserted, the VID[7:0]  
CMOS drivers (typically 50Ω up / down impedance) override the POC pull-up / down  
resistors located on the baseboard and drive the necessary VID pattern. Please refer to  
Table 2-3 for further details.  
7.2  
Clock Control and Low Power States  
The processor supports low power states at the individual thread, core, and package  
level for optimal power management. The processor implements software interfaces for  
requesting low power states: MWAIT instruction extensions with sub-state hints, the  
HLT instruction (for C1 and C1E) and P_LVLx reads to the ACPI P_BLK register block  
mapped in the processor’s I/O address space. The P_LVLx I/O reads are converted to  
equivalent MWAIT C-state requests inside the processor and do not directly result in  
I/O reads to the system. The P_LVLx I/O Monitor address does not need to be set up  
before using the P_LVLx I/O read interface.  
Note:  
Software may make C-state requests by using a legacy method involving I/O reads  
from the ACPI-defined processor clock control registers, referred to as P_LVLx. This  
feature is designed to provide legacy support for operating systems that initiate C-state  
transitions via access to pre-defined ICH registers. The base P_LVLx register is P_LVL2,  
corresponding to a C3 request. P_LVL3 is C6, and all P_LVL4+ are demoted to a C6.  
P_LVLx is limited to a subset of C-states supported on the processor (for example,  
P_LVL8 is not supported and will not cause an I/O redirection to a C8 request. Instead,  
it will fall through like a normal I/O instruction). The range of I/O addresses that may  
be converted into C-state requests is also defined in the PMG_IO_CAPTURE MSR, in the  
®
®
132  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Features  
‘C-state Range’ field. This field maybe written by BIOS to restrict the range of I/O  
addresses that are trapped and redirected to MWAIT instructions. Note that when I/O  
instructions are used, no MWAIT substates can be defined, as therefore the request  
defaults to have a sub-state or zero, but always assumes the ‘break on EFLAGS.IF==0’  
control that can be selected using ECX with an MWAIT instruction.  
Figure 7-2. Power States  
C0  
MWAIT C1,  
HLT  
MWAIT C6,  
I/O C6  
2
2
2
2
MWAIT C1,  
HLT (C1E  
enabled)  
MWAIT C3,  
I/O C3  
C E1  
C11  
1
C3  
C6  
1. No transition to C0 is needed to service a snoop when in C1 or C1E.  
,
.
2. Transitions back to C0 occur on an interrupt or on access to monitored address (if state was entered via MWAIT).  
.
7.2.1  
Thread and Core Power State Descriptions  
Individual threads may request low power states as described below. Core power states  
are automatically resolved by the processor as shown in Table 7-2.  
Table 7-2.  
Coordination of Thread Power States at the Core Level  
Core State  
Thread 1 State  
1
Thread 0 State  
C0  
C1  
C3  
C6  
C0  
C11  
C3  
C0  
C0  
C0  
C11  
C3  
C0  
C11  
C3  
C11  
C11  
C11  
C0  
C0  
C0  
C6  
C3  
C6  
Notes:  
1.  
If enabled, state will be C1E.  
7.2.1.1  
C0 State  
This is the normal operating state in the processor.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
133  
Features  
7.2.1.2  
C1/C1E State  
C1/C1E is a low power state entered when all threads within a core execute a HLT or  
MWAIT(C1E) instruction. The processor thread will transition to the C0 state upon  
occurrence of an interrupt or an access to the monitored address if the state was  
entered via the MWAIT instruction. RESET# will cause the processor to initialize itself  
and return to C0.  
A System Management Interrupt (SMI) handler will return execution to either Normal  
state or the C1/C1E state. See the Intel® 64 and IA-32 Architectures Software  
Developer's Manual, Volume III: System Programmer's Guide for more information.  
While in C1/C1E state, the processor will process bus snoops and snoops from the  
other threads.  
To operate within specification, BIOS must enable the C1E feature for all installed  
processors.  
7.2.1.3  
C3 State  
Individual threads of the processor can enter the C3 state by initiating a P_LVL2 I/O  
read to the P_BLK or an MWAIT(C3) instruction. Before entering core C3, the core  
flushes the contents of its caches. Except for the caches, the processor core maintains  
all its architectural state while in the C3 state. All of the clocks in the processor core are  
stopped in the C3 state.  
Because the core’s caches are flushed, the processor keeps the core in the C3 state  
when the processor detects a snoop on the Intel QuickPath Interconnect Link or when  
another logical processor in the same package accesses cacheable memory. The  
processor core will transition to the C0 state upon occurrence of an interrupt. RESET#  
will cause the processor core to initialize itself.  
7.2.1.4  
C6 State  
Individual threads of the processor can enter the C6 state by initiating a P_LVL3 read to  
the P_BLK or an MWAIT(C6) instruction. Before entering core C6, the processor saves it  
state. The processor achieves additional power savings in the core C6 state.  
7.2.2  
Package Power State Descriptions  
The package supports C0, C1/C1E, C3, and C6 power states. The package power state  
is automatically resolved by the processor depending on the core power states and  
permission from the rest of the system as described below.  
7.2.2.1  
Package C0 State  
This is the normal operating state for the processor. The processor remains in the  
Normal state when at least one of its cores is in the C0 or C1 state or when another  
component in the system has not granted permission to the processor to go into a low  
power state. Individual components of the processor may be in low power states while  
the package in C0.  
7.2.2.2  
Package C1/C1E State  
The package will enter the C1/C1E low power state when at least one core is in the  
C1/C1E state and the rest of the cores are in the C1/C1E or lower power state. The  
processor will also enter the C1/C1E state when all cores are in a power state lower  
®
®
134  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Features  
than C1/C1E but the package low power state is limited to C1/C1E via the  
PMG_CST_CONFIG_CONTROL MSR. In the C1E state, the processor will automatically  
transition to the lowest power operating point (lowest supported voltage and associated  
frequency). When entering the C1E state, the processor will first switch to the lowest  
bus ratio and then transition to the lower VID. No notification to the system occurs  
upon entry to C1/C1E.  
To operate within specification, BIOS must enable the C1E feature for all installed  
processors.  
7.2.2.3  
Package C3 State  
The package will enter the C3 low power state when all cores are in the C3 or lower  
power state and the processor has been granted permission by the other component(s)  
in the system to enter the C3 state. The package will also enter the C3 state when all  
cores are in an idle state lower than C3 but other component(s) in the system have  
only granted permission to enter C3.  
If Intel QuickPath Interconnect L1 has been granted, the processor will disable some  
clocks and PLLs and for processors with an Integrated Memory Controller, the DRAM  
will be put into self-refresh.  
7.2.2.4  
Package C6 State  
The package will enter the C6 low power state when all cores are in the C6 or lower  
power state and the processor has been granted permission by the other component(s)  
in the system to enter the C6 state. The package will also enter the C6 state when all  
cores are in an idle state lower than C6 but the other component(s) have only granted  
permission to enter C6.  
If Intel QuickPath Interconnect L1 has been granted, the processor will disable some  
clocks and PLLs and the shared cache will enter a deep sleep state. Additionally, for  
processors with an Integrated Memory Controller, the DRAM will be put into self-  
refresh.  
7.2.3  
Intel Xeon Processor 5500 Series C-State Power  
Specifications  
Table 7-3 lists C-State power specifications for various Intel Xeon processor 5500 series  
SKUs.  
Table 7-3.  
Processor C-State Power Specifications  
Package  
C-State  
2
3
130W  
95W  
80W  
60W  
38W  
1
C1E  
C3  
35 W  
30 W  
12 W  
30 W  
26 W  
10 W  
30/40 W  
26/35 W  
10/15 W  
22 W  
18 W  
8 W  
16 W  
12 W  
8 W  
C6  
Notes:  
1. Specifications are at T  
2. Standard/Basic SKUs.  
= 50C with all cores in the specified C-State.  
case  
®
®
3. Applies to Low Power SKU and Intel Xeon Processor L5518.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
135  
Features  
7.3  
Sleep States  
The processor supports the ACPI sleep states S0, S1, S3, and S4/S5 as shown in. For  
information on ACPI S-states and related terminology, refer to ACPI Specification. The  
S-state transitions are coordinated by the processor in response PM Request (PMReq)  
messages from the chipset. The processor itself will never request a particular S-state.  
Table 7-4.  
Processor S-States  
S-State  
Power Reduction  
Normal Code Execution  
Allowed Transitions  
S1 (via PMReq)  
S0  
S1  
Cores in C1E like state, processor responds with  
CmpD(S1) message.  
S0 (via reset or PMReq)  
S3, S4 (via PMReq)  
S3  
Memory put into self-refresh, processor responds with  
CmpD(S3) message.  
S0 (via reset)  
S4/S5  
Processor responds with CmpD(S4/S5) message.  
S0 (via reset)  
Notes:  
1.  
If the chipset requests an S-state transition which is not allowed, a machine check error  
will be generated by the processor.  
7.4  
7.5  
Intel® Turbo Boost Technology  
The processor supports ACPI Performance States (P-States). The P-state referred to as  
P0 will be a request for Intel® Turbo Boost Technology (Intel® TBT). Intel TBT  
opportunistically, and automatically, allows the processor to run faster than the marked  
frequency if the part is operating below power, temperature and current limits. Max  
Turbo Boost frequency is dependent on the number of active cores and varies by  
processor line item configuration. Intel TBT doesn’t need special hardware support, and  
can be enabled or disabled by BIOS.  
Enhanced Intel SpeedStep® Technology  
The processor features Enhanced Intel SpeedStep® Technology. Following are the key  
features of Enhanced Intel SpeedStep Technology:  
• Multiple voltage and frequency operating points provide optimal performance at the  
lowest power.  
• Voltage and frequency selection is software controlled by writing to processor  
MSRs:  
— If the target frequency is higher than the current frequency, VCC is ramped up  
in steps by placing new values on the VID pins and the PLL then locks to the  
new frequency.  
— If the target frequency is lower than the current frequency, the PLL locks to the  
new frequency and the VCC is changed through the VID pin mechanism.  
— Software transitions are accepted at any time. If a previous transition is in  
progress, the new transition is deferred until the previous transition completes.  
• The processor controls voltage ramp rates internally to ensure smooth transitions.  
• Low transition latency and large number of transitions possible per second:  
— Processor core (including shared cache) is unavailable for less than 2µs during  
the frequency transition.  
§
®
®
136  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Boxed Processor Specifications  
8 Boxed Processor Specifications  
8.1  
Introduction  
Intel boxed processors are intended for system integrators who build systems from  
components available through distribution channels. The Intel Xeon processor 5500  
series will be offered as an Intel boxed processor, however the thermal solution will be  
sold separately.  
Unlike previous-generation boxed processors, Intel Xeon processor 5500 series boxed  
processors will not include thermal solution in the box. Intel will offer boxed thermal  
solutions separately through the same distribution channels. Please reference  
Section 8.1.1 - Section 8.1.4 for more details on Boxed Processor Thermal Solutions.  
8.1.1  
Available Boxed Thermal Solution Configurations  
Intel will offer three different Boxed Heat Sink solutions to support the boxed  
Processors.  
• Boxed Intel “Combo” Thermal Solution. The Passive / Active Combination Heat Sink  
Solution is intended for processors with a TDP up to 130W in a pedestal or 2U+  
chassis with appropriate ducting)  
• Boxed Intel “Active” Thermal Solution. The Active Heat Sink Solution is intended for  
processors with a TDP of 80W or lower in pedestal chassis  
• Boxed Intel “Passive” Thermal Solution. The 25.5 mm tall Passive Heat Sink  
Solution is intended for processors with a TDP of 95W or lower in Blades, 1U, or 2U  
chassis with appropriate ducting.  
8.1.2  
An Intel “Combo” Boxed Passive / Active Combination  
Heat Sink Solution  
The Passive / Active combination solution, based on a 2U passive heat sink with a  
removable fan, is intended for use with processors with TDP’s up to 130 W. This heat  
pipe based solution is intended to be used as either a passive heat sink in a 2U or  
larger chassis, or as an active heat sink for pedestal chassis. Figure 8-2 and Figure 8-3  
are representations of the heat sink solution. Although the active combination solution  
with the removable fan installed mechanically fits into a 2U keepout, its use has not  
been validated in that configuration.  
The Passive / Active combination solution in the active fan configuration is primarily  
designed to be used in a pedestal chassis where sufficient air inlet space is present. The  
Passive / Active combination solution with the fan removed, as with any passive  
thermal solution, will require the use of chassis ducting and are targeted for use in rack  
mount or ducted pedestal servers. The retention solution used for these products is  
called Unified Retention System (URS).  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
137  
Boxed Processor Specifications  
8.1.3  
Intel Boxed “Active” Heat Sink Solution  
The Boxed Active solution will be available for purchase for processors with TDP’s of  
80W and lower and will be an aluminum extrusion. This heat sink solution is intended  
to be used as an active heat sink only for pedestal chassis. Figure 8-1 is a  
representation of the heat sink solution.  
Both active solutions will utilize a fan capable of 4-pin pulse width modulated (PWM)  
control. Use of a 4-pin PWM controlled active thermal solution helps customers meet  
acoustic targets in pedestal platforms through the baseboard’s ability to directly control  
the RPM of the processor heat sink fan. See Section 8.3 for more details on fan speed  
control, also see Section 6.3 for more on the PWM and PECI interface along with Digital  
Thermal Sensors (DTS).  
Figure 8-1. Boxed Active Heat Sink  
Figure 8-2. Boxed Passive / Active Combination Heat Sink (With Removable Fan)  
®
®
138  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Boxed Processor Specifications  
Figure 8-3. Boxed Passive/Active Combination Heat Sink (with Fan Removed)  
Figure 8-4. Intel Boxed 25.5 mm Tall Passive Heat Sink Solution  
8.1.4  
Intel Boxed 25.5mm Tall Passive Heat Sink Solution  
The boxed 25.5 mm Tall heatsink solution will be available for use with boxed  
processors that have TDP’s of 95 W and lower. The 25.5 mm Tall passive solution is  
designed to be used in Blades, 1U, and 2U chassis where ducting is present. The use of  
a 25.5 mm Tall heatsink in a 2U chassis is recommended to achieve a lower heatsink  
TLA and a more optimized heatsink design. Figure 8-4 is a representation of the heat  
sink solution. The retention solution used for these products is called Unified Retention  
System (URS).  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
139  
Boxed Processor Specifications  
8.2  
Mechanical Specifications  
This section documents the mechanical specifications of the boxed processor solution.  
8.2.1  
Boxed Processor Heat Sink Dimensions and Baseboard  
Keepout Zones  
The boxed processor and boxed thermal solution will be sold separately. Clearance is  
required around the thermal solution to ensure unimpeded airflow for proper cooling.  
Baseboard keepout zones are shown in Figure 8-5 through Figure 8-8. Physical space  
requirements and dimensions for the boxed processor and assembled heat sink are  
shown in Figure 8-9. Mechanical drawings for the 4-pin fan header and 4-pin connector  
used for the active fan heat sink solution are represented in Figure 8-11 and  
Figure 8-12.  
None of the heat sink solutions exceed a mass of 550 grams. Note that this is per  
processor, a dual processor system will have up to 1100 grams total mass in the heat  
sinks.  
See Section 3 for details on the processor mass.  
®
®
140  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Boxed Processor Specifications  
Figure 8-5. Top Side Baseboard Keep-Out Zones  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
141  
Boxed Processor Specifications  
Figure 8-6. Top Side Baseboard Mounting-Hole Keep-Out Zones  
3 . [ 3 4 6  
8 5 . 0 0  
]
3 . [ 1 5 0  
]
2 X 8 0 . 0 0  
2 . [ 8 5 4  
]
2 X 7 2 . 5 0  
2 . [ 6 6 5  
6 7 . 7 0  
]
2 . [ 2 8 3 5  
5 8 . 0 0 0  
]
1 . [ 8 5 6  
4 7 . 1 5  
]
1 . [ 2 9 3  
3 2 . 8 5  
]
]
0 . [ 8 6 6 1  
2 2 . 0 0 0  
]
4
B A L L 1  
0 . [ 7 5 5  
1 9 . 1 7  
0 . [ 4 8 4  
1 2 . 3 0  
]
]
0 . [ 3 7 8  
9 . 6 0  
0 . [ 2 9 5  
]
2 X 7 . 5 0  
0 [ . 0 0 0 ]  
2 X 0 . 0 0  
0 . [ 1 9 7  
5 . 0 0  
]
®
®
142  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Boxed Processor Specifications  
Figure 8-7. Bottom Side Baseboard Keep-Out Zones  
0 . [ 1 9 7  
5 . 0 0  
]
0 [ . 0 0 0 ]  
0 . 0 0  
0 . [ 3 7 4  
9 . 5 0  
]
1 . [ 2 9 3  
3 2 . 8 5  
]
1 . [ 8 5 6  
4 7 . 1 5  
]
2 . [ 7 7 6  
7 0 . 5 0  
]
3 . [ 3 4 6  
8 5 . 0 0  
]
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
143  
Boxed Processor Specifications  
Figure 8-8. Primary and Secondary Side 3D Height Restriction Zones  
®
®
144  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Boxed Processor Specifications  
Figure 8-9. Volumetric Height Keep-Ins  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
145  
Boxed Processor Specifications  
Figure 8-10. Volumetric Height Keep-Ins  
®
®
146  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Boxed Processor Specifications  
Figure 8-11. 4-Pin Fan Cable Connector (For Active Heat Sink)  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
147  
Boxed Processor Specifications  
Figure 8-12. 4-Pin Base Baseboard Fan Header (For Active Heat Sink)  
®
®
148  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Boxed Processor Specifications  
8.2.2  
Boxed Processor Retention Mechanism and Heat Sink  
Support (URS)  
Baseboards designed for use by a system integrator should include holes that are in  
proper alignment with each other to support the boxed processor. Refer to Figure 8-5  
for mounting hole dimensions.  
Figure 8-13 illustrates the Unified Retention System (URS) and the Unified Backplate  
Assembly. The URS is designed to extend air-cooling capability through the use of  
larger heat sinks with minimal airflow blockage and bypass. URS retention transfers  
load to the baseboard via the Unified Backplate Assembly. The URS spring, captive in  
the heatsink, provides the necessary compressive load for the thermal interface  
material. For specific design details on the URS and the Unified Backplate please refer  
to the Intel® Xeon® Processor 5500 Series Thermal / Mechanical Design Guide.  
All components of the URS heat sink solution will be captive to the heat sink and will  
only require a Phillips screwdriver to attach to the Unified Backplate Assembly. When  
installing the URS the screws should be tightened until they will no longer turn easily.  
This should represent approximately 8 inch-pounds of torque. More than that may  
damage the retention mechanism components.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
149  
Boxed Processor Specifications  
Figure 8-13. Thermal Solution Installation  
8.3  
Fan Power Supply (“Combo” and “Active”  
Solution)  
The 4-pin PWM controlled thermal solution is being offered to help provide better  
control over pedestal chassis acoustics. This is achieved though more accurate  
measurement of processor die temperature through the processor’s Digital Thermal  
Sensors. Fan RPM is modulated through the use of an ASIC located on the baseboard  
that sends out a PWM control signal to the 4th pin of the connector labeled as Control.  
This thermal solution requires a constant +12 V supplied to pin 2 of the active thermal  
solution and does not support variable voltage control or 3-pin PWM control. See  
Table 8-1 through Table 8-3 for details on the 4-pin active heat sink solution  
connectors.  
®
®
150  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Boxed Processor Specifications  
The fan power header on the baseboard must be positioned to allow the fan heat sink  
power cable to reach it. The fan power header identification and location must be  
documented in the suppliers platform documentation, or on the baseboard itself. The  
baseboard fan power header should be positioned within 177.8 mm [7 in.] from the  
center of the processor socket.  
Table 8-1.  
Table 8-2.  
PWM Fan Frequency Specifications For 4-Pin Active Thermal Solution  
Description  
Min Frequency  
Nominal Frequency  
Max Frequency  
Unit  
PWM Control  
Frequency Range  
21,000  
25,000  
28,000  
Hz  
Fan Specifications For 4-Pin Active Thermal Solution  
Typ  
Steady  
Max  
Steady  
Max  
Startup  
Description  
Min  
Unit  
+12 V: 12 volt fan power supply  
IC: Fan Current Draw  
10.8  
N/A  
12  
12  
13.2  
2.2  
V
A
1.25  
1.5  
Pulses per fan  
revolution  
SENSE: SENSE frequency  
2
2
2
2
Figure 8-14. Fan Cable Connector Pin Out For 4-Pin Active Thermal Solution  
Table 8-3.  
Fan Cable Connector Pin Out for 4-Pin Active Thermal Solution  
Pin Number  
Signal  
Color  
1
2
3
4
Ground  
Black  
Yellow  
Green  
Blue  
Power: (+12 V)  
Sense: 2 pulses per revolution  
Control: 21 KHz-28 KHz  
8.3.1  
Boxed Processor Cooling Requirements  
As previously stated the boxed processor will have three cooling solutions available.  
Each configuration will require unique design considerations. Meeting the processor’s  
temperature specifications is also the function of the thermal design of the entire  
system, and ultimately the responsibility of the system integrator. The processor  
temperature specifications are found in Section 6 of this document.  
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
151  
Boxed Processor Specifications  
8.3.1.1  
2U Passive / Active Combination Heat Sink Solution  
Active Configuration:  
The active configuration of the combination solution is designed to help pedestal  
chassis users to meet the thermal processor requirements without the use of chassis  
ducting. It may be still be necessary to implement some form of chassis air guide or air  
duct to meet the TLA temperature of 40°C depending on the pedestal chassis layout.  
Use of the active configuration in a 2U rackmount chassis is not recommended.  
It is recommended that the ambient air temperature outside of the chassis be kept at  
or below 35°C. The air passing directly over the processor thermal solution should not  
be preheated by other system components. Meeting the processor’s temperature  
specification is the responsibility of the system integrator.  
This thermal solution is for use with 95 W and 130 W TDP processor SKUs.  
Passive Configuration:  
In the passive configuration it is assumed that a chassis duct will be implemented.  
Processors with a TDP of 130 W or 95 W must provide a minimum airflow of 30 CFM at  
0.205 in. H2O (51 m3/hr at 51.1 Pa) of flow impedance. For processors with a TDP of  
130 W it is assumed that a 40°C TLA is met. This requires a superior chassis design to  
limit the TRISE at or below 5°C with an external ambient temperature of 35°C. For  
processors with a TDP of 95W it is assumed that a 55°C TLA is met.  
8.3.1.2  
Active Heat Sink Solution (Pedestal only)  
This active solution is designed to help pedestal chassis users to meet the thermal  
processor requirements without the use of chassis ducting. It may be still be necessary  
to implement some form of chassis air guide or air duct to meet the TLA temperature of  
49°C depending on the pedestal chassis layout. Use of this active solution in a 2U  
rackmount chassis has not been validated.  
It is recommended that the ambient air temperature outside of the chassis be kept at  
or below 35°C. The air passing directly over the processor thermal solution should not  
be preheated by other system components. Meeting the processor’s temperature  
specification is the responsibility of the system integrator.  
This thermal solution is for use with processor SKUs no higher than 80W.  
8.3.1.3  
25.5 mm Tall Passive Heat Sink Solution (Blade + 1U + 2U Rack)  
Note:  
95 W SKU’s using the 25.5 mm Tall passive HS are only intended for use in 1U rack  
configurations (Thermal Profile B). For use in 2U configurations see Section 8.3.1.2 for  
details.  
In the Blade, 1U and 2U configurations it is assumed that a chassis duct will be  
implemented. Due to the complexity of the number of chassis and baseboard  
configurations, several airflow and flow impedance values exist. Please refer to the  
Intel® Xeon® Processor 5500/5600 Series Thermal / Mechanical Design Guide for  
detailed mechanical drawings and specific airflow and impedance values applicable to  
your use conditions. It is recommended that the ambient air temperature outside of the  
chassis be kept at or below 35°C.  
®
®
152  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Boxed Processor Specifications  
8.4  
Boxed Processor Contents  
The Boxed Processor and Boxed Thermal Solution contents are outlined below.  
• Boxed Processor Contents  
— Intel Xeon processor 5500 series  
— Installation and warranty manual  
— Intel Inside Logo  
• Boxed Thermal Solution  
— Heat sink assembly solution  
— Thermal interface material (pre-applied on heat sink, if included)  
— Installation and warranty manual  
§
®
®
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
153  
Boxed Processor Specifications  
®
®
154  
Intel Xeon Processor 5500 Series Datasheet, Volume 1  
Intel® Xeon® Processor E5503 (4M Cache, 2.00 GHz, 4.80 GT/s Intel®...  
http://ark.intel.com/products/37094  
Language:  
Type Here to Search Products  
Compare Queue (0)  
Send Feedback  
Product Specs  
Intel® Processors  
Intel® Xeon® Processor 5000 Sequence  
Intel® Xeon® Processor 5500 Series  
E5503  
Intel® Xeon® Processor E5503  
(4M Cache, 2.00 GHz, 4.80 GT/s Intel® QPI)  
Add to Compare  
Compare Now (0)  
Additional Information  
Products formerly Nehalem-EP  
Download Datasheet  
Software Downloads >  
Quick Links  
PCN/MDDS Information  
Search Distributors  
Support Overview >  
1 of 4  
07-Sep-2011 7:08 PM  
Intel® Xeon® Processor E5503 (4M Cache, 2.00 GHz, 4.80 GT/s Intel®...  
http://ark.intel.com/products/37094  
Ordering and Spec Information  
Ordering and Spec Information  
Intel® Xeon® Processor E5503 (4M Cache, 2.00 GHz, 4.80 GT/s Intel® QPI) FC-LGA8, Tray  
Socket  
Step  
Step TDP  
Ordering Code  
Spec Code  
Low Halogen  
VT-x  
Yes  
FCLGA1366  
80 W  
AT80602003636AA  
SLBKD  
Yes  
Boxed Intel® Xeon® Processor E5503 (4M Cache, 2.00 GHz, 4.80 GT/s Intel® QPI) FC-LGA8  
Socket  
Step  
Step TDP  
Ordering Code  
Spec Code  
Low Halogen  
VT-x  
Yes  
FCLGA1366  
80 W  
BX80602E5503  
SLBKD  
Yes  
Compatible Products  
Intel® Server Board S5520UR  
Intel® Server Board S5520HC  
Intel® Server Board S5500HV  
Intel® Server Board S5500BC  
Intel® Workstation Board S5520SC  
Intel® Server Board S5500HCV  
Intel® Server Board S5520HCT  
Server/Workstation Board  
System  
Chipsets  
Block Diagrams  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
2 of 4  
07-Sep-2011 7:08 PM  
Intel® Xeon® Processor E5503 (4M Cache, 2.00 GHz, 4.80 GT/s Intel®...  
http://ark.intel.com/products/37094  
Menu  
Communities Find Content  
Disclaimers  
“Announced” SKUs are not yet available. Please refer to the Launch Date for market availability.  
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating  
system. Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.  
64-bit computing on Intel® architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and  
applications enabled for Intel® 64 architecture. Processors will not operate (including 32-bit operation) without an Intel 64 architecture-  
enabled BIOS. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for more  
information.  
Hyper-Threading Technology (HT Technology) requires a computer system with an Intel® processor supporting HT Technology and an HT  
Technology enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use.  
See www.intel.com/products/ht/hyperthreading_more.htm for more information including details on which processors support HT Technology.  
Intel® Virtualization Technology requires a computer system with a processor, chipset, BIOS, virtual machine monitor (VMM) and for some  
uses, certain platform software, enabled for it. Functionality, performance or other benefit will vary depending on hardware and software  
configurations. Intel Virtualization Technology-enabled VMM applications are currently in development.  
Note: Prices subject to change without notice. Prices are for direct Intel customers in 1000-unit bulk quantities and, unless specified,  
represent the latest technology versions of the products. Taxes and shipping, etc. not included. Prices may vary for other package types and  
shipment quantities, and special promotional arrangements may apply.  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
3 of 4  
07-Sep-2011 7:08 PM  
Intel® Xeon® Processor E5503 (4M Cache, 2.00 GHz, 4.80 GT/s Intel®...  
http://ark.intel.com/products/37094  
Menu  
Communities Find Content  
and product descriptions at any time, without notice. The information herein is provided "as-is" and Intel does not make any representations  
or warranties whatsoever regarding accuracy of the information, nor on the product features, availability, functionality, or compatibility of the  
products listed. Please contact system vendor for more information on specific products or systems.  
Low Halogen implies the following:  
Bromine and/or chlorine in materials that may be used during processing, but do not remain within the final product are not included in this  
definition. The halogens fluorine (F), iodine (I), and astatine (At) are not restricted by this standard.  
“BFR/CFR and PVC-Free” Definition: :  
All PCB laminates must meet Br and Cl requirements for low halogen as defined in IPC-4101B  
For components other than PCB laminates, all homogeneous materials must contain < 900 ppm (0.09%) of Bromine [if the Bromine (Br)  
source is from BFRs] and < 900 ppm (0.09%) of Chlorine [if the Chlorine (Cl) source is from CFRs or PVC. Higher concentrations of Br and Cl  
are allowed in homogenous materials of components other than PCB laminates as long as their sources are not BFRs, CFRs, PVC.  
Although the elemental analysis for Br and Cl in homogeneous materials can be performed by any analytical method with sufficient sensitivity  
and selectivity, the presence or absence of BFRs, CFRs or PVC must be verified by any acceptable analytical techniques that allow for the  
unequivocal identification of the specific Br or Cl compounds, or by appropriate material declarations agreed to between customer and  
supplier.  
Max Turbo Frequency refers to the maximum single-core frequency that can be achieved with Intel® Turbo Boost Technology, which requires  
a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost Technology performance varies depending on hardware,  
software, and overall system configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo Boost Technology.  
See www.intel.com/technology/turboboost/ for more information.  
Some products can support AES New Instructions with a Processor Configuration update, in particular, i7-2630QM/i7-2635QM,  
i7-2670QM/i7-2675QM, i5-2430M/i5-2435M, i5-2410M/i5-2415M. Please contact OEM for the BIOS that includes the latest Processor  
configuration update.  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
4 of 4  
07-Sep-2011 7:08 PM  
Intel® Xeon® Processor L5506 (4M Cache, 2.13 GHz, 4.80 GT/s Intel® QPI) http://ark.intel.com/products/40712/Intel-Xeon-Processor-L5506-(4M-Ca...  
Language:  
Type Here to Search Products  
Compare Queue (0)  
L5506  
Send Feedback  
Product Specs  
Intel® Processors  
Intel® Xeon® Processor 5000 Sequence  
Intel® Xeon® Processor 5500 Series  
Intel® Xeon® Processor L5506  
(4M Cache, 2.13 GHz, 4.80 GT/s Intel® QPI)  
Add to Compare  
Compare Now (0)  
Additional Information  
Products formerly Nehalem-EP  
Download Datasheet  
Software Downloads >  
Quick Links  
PCN/MDDS Information  
Search Distributors  
Support Overview >  
1 of 4  
07-Sep-2011 7:08 PM  
Intel® Xeon® Processor L5506 (4M Cache, 2.13 GHz, 4.80 GT/s Intel® QPI) http://ark.intel.com/products/40712/Intel-Xeon-Processor-L5506-(4M-Ca...  
Ordering and Spec Information  
Ordering and Spec Information  
Intel® Xeon® Processor L5506 (4M Cache, 2.13 GHz, 4.80 GT/s Intel® QPI) FC-LGA8, Tray  
Socket  
Step  
Step TDP  
Ordering Code  
Spec Code  
Low Halogen  
Low Halogen  
VT-x  
Yes  
FCLGA1366  
60 W  
AT80602002712AA  
SLBFH  
Yes  
Boxed Intel® Xeon® Processor L5506 (4M Cache, 2.13 GHz, 4.80 GT/s Intel® QPI) FC-LGA8  
Socket  
Step  
Step TDP  
Ordering Code  
Spec Code  
VT-x  
Yes  
FCLGA1366  
60 W  
BX80602L5506  
SLBFH  
Yes  
Compatible Products  
Intel® Server Board S5520UR  
Intel® Server Board S5520HC  
Intel® Server Board S5500HCV  
Intel® Server Board S5500HV  
Intel® Server Board S5500BC  
Intel® Server Board S5500WB  
Intel® Server Board S5500WB12V  
Intel® Server Board S5520HCT  
Intel® Workstation Board S5520SC  
Intel® Compute Module MFS5520VIR  
Server/Workstation Board  
System  
Chipsets  
Block Diagrams  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
2 of 4  
07-Sep-2011 7:08 PM  
Intel® Xeon® Processor L5506 (4M Cache, 2.13 GHz, 4.80 GT/s Intel® QPI) http://ark.intel.com/products/40712/Intel-Xeon-Processor-L5506-(4M-Ca...  
Menu  
Communities Find Content  
Disclaimers  
“Announced” SKUs are not yet available. Please refer to the Launch Date for market availability.  
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating  
system. Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.  
64-bit computing on Intel® architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and  
applications enabled for Intel® 64 architecture. Processors will not operate (including 32-bit operation) without an Intel 64 architecture-  
enabled BIOS. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for more  
information.  
Hyper-Threading Technology (HT Technology) requires a computer system with an Intel® processor supporting HT Technology and an HT  
Technology enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use.  
See www.intel.com/products/ht/hyperthreading_more.htm for more information including details on which processors support HT Technology.  
Intel® Virtualization Technology requires a computer system with a processor, chipset, BIOS, virtual machine monitor (VMM) and for some  
uses, certain platform software, enabled for it. Functionality, performance or other benefit will vary depending on hardware and software  
configurations. Intel Virtualization Technology-enabled VMM applications are currently in development.  
Note: Prices subject to change without notice. Prices are for direct Intel customers in 1000-unit bulk quantities and, unless specified,  
represent the latest technology versions of the products. Taxes and shipping, etc. not included. Prices may vary for other package types and  
shipment quantities, and special promotional arrangements may apply.  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
3 of 4  
07-Sep-2011 7:08 PM  
Intel® Xeon® Processor L5506 (4M Cache, 2.13 GHz, 4.80 GT/s Intel® QPI) http://ark.intel.com/products/40712/Intel-Xeon-Processor-L5506-(4M-Ca...  
Menu  
Communities Find Content  
and product descriptions at any time, without notice. The information herein is provided "as-is" and Intel does not make any representations  
or warranties whatsoever regarding accuracy of the information, nor on the product features, availability, functionality, or compatibility of the  
products listed. Please contact system vendor for more information on specific products or systems.  
Low Halogen implies the following:  
Bromine and/or chlorine in materials that may be used during processing, but do not remain within the final product are not included in this  
definition. The halogens fluorine (F), iodine (I), and astatine (At) are not restricted by this standard.  
“BFR/CFR and PVC-Free” Definition: :  
All PCB laminates must meet Br and Cl requirements for low halogen as defined in IPC-4101B  
For components other than PCB laminates, all homogeneous materials must contain < 900 ppm (0.09%) of Bromine [if the Bromine (Br)  
source is from BFRs] and < 900 ppm (0.09%) of Chlorine [if the Chlorine (Cl) source is from CFRs or PVC. Higher concentrations of Br and Cl  
are allowed in homogenous materials of components other than PCB laminates as long as their sources are not BFRs, CFRs, PVC.  
Although the elemental analysis for Br and Cl in homogeneous materials can be performed by any analytical method with sufficient sensitivity  
and selectivity, the presence or absence of BFRs, CFRs or PVC must be verified by any acceptable analytical techniques that allow for the  
unequivocal identification of the specific Br or Cl compounds, or by appropriate material declarations agreed to between customer and  
supplier.  
Max Turbo Frequency refers to the maximum single-core frequency that can be achieved with Intel® Turbo Boost Technology, which requires  
a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost Technology performance varies depending on hardware,  
software, and overall system configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo Boost Technology.  
See www.intel.com/technology/turboboost/ for more information.  
Some products can support AES New Instructions with a Processor Configuration update, in particular, i7-2630QM/i7-2635QM,  
i7-2670QM/i7-2675QM, i5-2430M/i5-2435M, i5-2410M/i5-2415M. Please contact OEM for the BIOS that includes the latest Processor  
configuration update.  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
4 of 4  
07-Sep-2011 7:08 PM  
Intel® Xeon® Processor L5508 (8M Cache, 2.00 GHz, 5.86 GT/s Intel® QPI)  
http://ark.intel.com/products/40726  
Language:  
Type Here to Search Products  
Compare Queue (0)  
Send Feedback  
Product Specs  
Intel® Processors  
Intel® Xeon® Processor 5000 Sequence  
Intel® Xeon® Processor 5500 Series  
L5508  
Intel® Xeon® Processor L5508  
(8M Cache, 2.00 GHz, 5.86 GT/s Intel® QPI)  
Add to Compare  
Compare Now (0)  
Additional Information  
Products formerly Nehalem-EP  
Download Datasheet  
Software Downloads >  
Quick Links  
Embedded  
PCN/MDDS Information  
Search Distributors  
Support Overview >  
1 of 4  
07-Sep-2011 7:08 PM  
Intel® Xeon® Processor L5508 (8M Cache, 2.00 GHz, 5.86 GT/s Intel® QPI)  
http://ark.intel.com/products/40726  
Ordering and Spec Information  
Ordering and Spec Information  
Intel® Xeon® Processor L5508 (8M Cache, 2.00 GHz, 5.86 GT/s Intel® QPI) FC-LGA8, Tray  
Socket  
Step  
Step TDP  
Ordering Code  
Spec Code  
Low Halogen  
VT-x  
Yes  
FCLGA1366  
38 W  
AT80602002697AC  
SLBGK  
Yes  
Compatible Products  
Intel® Server Board S5520UR  
Intel® Server Board S5500HCV  
Intel® Server Board S5500BC  
Intel® Server Board S5520HC  
Intel® Workstation Board S5520SC  
Intel® Server Board S5500HV  
Intel® Server Board S5500WB12V  
Intel® Server Board S5520HCT  
Intel® Server Board S5500WB  
Server/Workstation Board  
System  
Chipsets  
Block Diagrams  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
2 of 4  
07-Sep-2011 7:08 PM  
Intel® Xeon® Processor L5508 (8M Cache, 2.00 GHz, 5.86 GT/s Intel® QPI)  
http://ark.intel.com/products/40726  
Menu  
Communities Find Content  
Disclaimers  
“Announced” SKUs are not yet available. Please refer to the Launch Date for market availability.  
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating  
system. Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.  
64-bit computing on Intel® architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and  
applications enabled for Intel® 64 architecture. Processors will not operate (including 32-bit operation) without an Intel 64 architecture-  
enabled BIOS. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for more  
information.  
Hyper-Threading Technology (HT Technology) requires a computer system with an Intel® processor supporting HT Technology and an HT  
Technology enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use.  
See www.intel.com/products/ht/hyperthreading_more.htm for more information including details on which processors support HT Technology.  
Intel® Virtualization Technology requires a computer system with a processor, chipset, BIOS, virtual machine monitor (VMM) and for some  
uses, certain platform software, enabled for it. Functionality, performance or other benefit will vary depending on hardware and software  
configurations. Intel Virtualization Technology-enabled VMM applications are currently in development.  
Note: Prices subject to change without notice. Prices are for direct Intel customers in 1000-unit bulk quantities and, unless specified,  
represent the latest technology versions of the products. Taxes and shipping, etc. not included. Prices may vary for other package types and  
shipment quantities, and special promotional arrangements may apply.  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
3 of 4  
07-Sep-2011 7:08 PM  
Intel® Xeon® Processor L5508 (8M Cache, 2.00 GHz, 5.86 GT/s Intel® QPI)  
http://ark.intel.com/products/40726  
Menu  
Communities Find Content  
and product descriptions at any time, without notice. The information herein is provided "as-is" and Intel does not make any representations  
or warranties whatsoever regarding accuracy of the information, nor on the product features, availability, functionality, or compatibility of the  
products listed. Please contact system vendor for more information on specific products or systems.  
Low Halogen implies the following:  
Bromine and/or chlorine in materials that may be used during processing, but do not remain within the final product are not included in this  
definition. The halogens fluorine (F), iodine (I), and astatine (At) are not restricted by this standard.  
“BFR/CFR and PVC-Free” Definition: :  
All PCB laminates must meet Br and Cl requirements for low halogen as defined in IPC-4101B  
For components other than PCB laminates, all homogeneous materials must contain < 900 ppm (0.09%) of Bromine [if the Bromine (Br)  
source is from BFRs] and < 900 ppm (0.09%) of Chlorine [if the Chlorine (Cl) source is from CFRs or PVC. Higher concentrations of Br and Cl  
are allowed in homogenous materials of components other than PCB laminates as long as their sources are not BFRs, CFRs, PVC.  
Although the elemental analysis for Br and Cl in homogeneous materials can be performed by any analytical method with sufficient sensitivity  
and selectivity, the presence or absence of BFRs, CFRs or PVC must be verified by any acceptable analytical techniques that allow for the  
unequivocal identification of the specific Br or Cl compounds, or by appropriate material declarations agreed to between customer and  
supplier.  
Max Turbo Frequency refers to the maximum single-core frequency that can be achieved with Intel® Turbo Boost Technology, which requires  
a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost Technology performance varies depending on hardware,  
software, and overall system configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo Boost Technology.  
See www.intel.com/technology/turboboost/ for more information.  
Some products can support AES New Instructions with a Processor Configuration update, in particular, i7-2630QM/i7-2635QM,  
i7-2670QM/i7-2675QM, i5-2430M/i5-2435M, i5-2410M/i5-2415M. Please contact OEM for the BIOS that includes the latest Processor  
configuration update.  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
4 of 4  
07-Sep-2011 7:08 PM  
Intel® Xeon® Processor L5518 (8M Cache, 2.13 GHz, 5.86 GT/s Intel® QPI)  
http://ark.intel.com/products/40727  
Language:  
Type Here to Search Products  
Compare Queue (0)  
Send Feedback  
Product Specs  
Intel® Processors  
Intel® Xeon® Processor 5000 Sequence  
Intel® Xeon® Processor 5500 Series  
L5518  
Intel® Xeon® Processor L5518  
(8M Cache, 2.13 GHz, 5.86 GT/s Intel® QPI)  
Add to Compare  
Compare Now (0)  
Additional Information  
Products formerly Nehalem-EP  
Download Datasheet  
Software Downloads >  
Quick Links  
Embedded  
PCN/MDDS Information  
Search Distributors  
Support Overview >  
1 of 4  
07-Sep-2011 7:08 PM  
Intel® Xeon® Processor L5518 (8M Cache, 2.13 GHz, 5.86 GT/s Intel® QPI)  
http://ark.intel.com/products/40727  
Ordering and Spec Information  
Ordering and Spec Information  
Intel® Xeon® Processor L5518 (8M Cache, 2.13 GHz, 5.86 GT/s Intel® QPI) FC-LGA8, Tray  
Socket  
Step  
Step TDP  
Ordering Code  
Spec Code  
Low Halogen  
VT-x  
Yes  
FCLGA1366  
60 W  
AT80602002265AB  
SLBFW  
Yes  
Compatible Products  
Intel® Server Board S5520UR  
Intel® Server Board S5500WB  
Intel® Server Board S5520HC  
Intel® Server Board S5500HCV  
Intel® Workstation Board S5520SC  
Intel® Server Board S5500BC  
Intel® Server Board S5500HV  
Intel® Server Board S5500WB12V  
Intel® Server Board S5520HCT  
Server/Workstation Board  
System  
Chipsets  
Block Diagrams  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
2 of 4  
07-Sep-2011 7:08 PM  
Intel® Xeon® Processor L5518 (8M Cache, 2.13 GHz, 5.86 GT/s Intel® QPI)  
http://ark.intel.com/products/40727  
Menu  
Communities Find Content  
Disclaimers  
“Announced” SKUs are not yet available. Please refer to the Launch Date for market availability.  
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating  
system. Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.  
64-bit computing on Intel® architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and  
applications enabled for Intel® 64 architecture. Processors will not operate (including 32-bit operation) without an Intel 64 architecture-  
enabled BIOS. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for more  
information.  
Hyper-Threading Technology (HT Technology) requires a computer system with an Intel® processor supporting HT Technology and an HT  
Technology enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use.  
See www.intel.com/products/ht/hyperthreading_more.htm for more information including details on which processors support HT Technology.  
Intel® Virtualization Technology requires a computer system with a processor, chipset, BIOS, virtual machine monitor (VMM) and for some  
uses, certain platform software, enabled for it. Functionality, performance or other benefit will vary depending on hardware and software  
configurations. Intel Virtualization Technology-enabled VMM applications are currently in development.  
Note: Prices subject to change without notice. Prices are for direct Intel customers in 1000-unit bulk quantities and, unless specified,  
represent the latest technology versions of the products. Taxes and shipping, etc. not included. Prices may vary for other package types and  
shipment quantities, and special promotional arrangements may apply.  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
3 of 4  
07-Sep-2011 7:08 PM  
Intel® Xeon® Processor L5518 (8M Cache, 2.13 GHz, 5.86 GT/s Intel® QPI)  
http://ark.intel.com/products/40727  
Menu  
Communities Find Content  
and product descriptions at any time, without notice. The information herein is provided "as-is" and Intel does not make any representations  
or warranties whatsoever regarding accuracy of the information, nor on the product features, availability, functionality, or compatibility of the  
products listed. Please contact system vendor for more information on specific products or systems.  
Low Halogen implies the following:  
Bromine and/or chlorine in materials that may be used during processing, but do not remain within the final product are not included in this  
definition. The halogens fluorine (F), iodine (I), and astatine (At) are not restricted by this standard.  
“BFR/CFR and PVC-Free” Definition: :  
All PCB laminates must meet Br and Cl requirements for low halogen as defined in IPC-4101B  
For components other than PCB laminates, all homogeneous materials must contain < 900 ppm (0.09%) of Bromine [if the Bromine (Br)  
source is from BFRs] and < 900 ppm (0.09%) of Chlorine [if the Chlorine (Cl) source is from CFRs or PVC. Higher concentrations of Br and Cl  
are allowed in homogenous materials of components other than PCB laminates as long as their sources are not BFRs, CFRs, PVC.  
Although the elemental analysis for Br and Cl in homogeneous materials can be performed by any analytical method with sufficient sensitivity  
and selectivity, the presence or absence of BFRs, CFRs or PVC must be verified by any acceptable analytical techniques that allow for the  
unequivocal identification of the specific Br or Cl compounds, or by appropriate material declarations agreed to between customer and  
supplier.  
Max Turbo Frequency refers to the maximum single-core frequency that can be achieved with Intel® Turbo Boost Technology, which requires  
a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost Technology performance varies depending on hardware,  
software, and overall system configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo Boost Technology.  
See www.intel.com/technology/turboboost/ for more information.  
Some products can support AES New Instructions with a Processor Configuration update, in particular, i7-2630QM/i7-2635QM,  
i7-2670QM/i7-2675QM, i5-2430M/i5-2435M, i5-2410M/i5-2415M. Please contact OEM for the BIOS that includes the latest Processor  
configuration update.  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
4 of 4  
07-Sep-2011 7:08 PM  
Intel® Xeon® Processor L5530 (8M Cache, 2.40 GHz, 5.86 GT/s Intel® QPI)  
http://ark.intel.com/products/41755  
Language:  
Type Here to Search Products  
Compare Queue (0)  
Send Feedback  
Product Specs  
Intel® Processors  
Intel® Xeon® Processor 5000 Sequence  
Intel® Xeon® Processor 5500 Series  
L5530  
Intel® Xeon® Processor L5530  
(8M Cache, 2.40 GHz, 5.86 GT/s Intel® QPI)  
Add to Compare  
Compare Now (0)  
Additional Information  
Products formerly Nehalem-EP  
Download Datasheet  
Software Downloads >  
Quick Links  
PCN/MDDS Information  
Search Distributors  
Support Overview >  
1 of 4  
07-Sep-2011 7:09 PM  
Intel® Xeon® Processor L5530 (8M Cache, 2.40 GHz, 5.86 GT/s Intel® QPI)  
http://ark.intel.com/products/41755  
Ordering and Spec Information  
Ordering and Spec Information  
Intel® Xeon® Processor L5530 (8M Cache, 2.40 GHz, 5.86 GT/s Intel® QPI) FC-LGA8, Tray  
Socket  
Step  
Step TDP  
Ordering Code  
Spec Code  
Low Halogen  
VT-x  
Yes  
FCLGA1366  
60 W  
AT80602002937AB  
SLBGF  
Yes  
Boxed Intel® Xeon® Processor L5530 (8M Cache, 2.40 GHz, 5.86 GT/s Intel® QPI) FC-LGA8  
Socket  
Step  
Step TDP  
Ordering Code  
Spec Code  
Low Halogen  
VT-x  
Yes  
FCLGA1366  
60 W  
BX80602L5530  
SLBGF  
Yes  
Compatible Products  
Intel® Server System SR1690WB  
Intel® Server System SR1670HV  
Intel® Server System SR2625URLX  
Intel® Server System SR2600URBRP  
Intel® Server System SR2625URLXR  
Intel® Server System SR1625URR  
Intel® Server System SR2612UR  
Intel® Server System SR1680MV  
Intel® Server System SR1625URSAS  
Intel® Server System SR2600URLXR  
Intel® Server System SR1630BC  
Intel® Server System SC5650HCBRPR  
Intel® Server System SR2625URBRP  
Intel® Server System SC5650HCBRP  
Intel® Server System SR1600UR  
Intel® Server System SR1630BCR  
Intel® Server System SR1695WBDC  
Intel® Server System SR1690WBR  
Intel® Server System SR1625URSASR  
Intel® Server System SR2600URBRPR  
Intel® Server System SR2600URSATAR  
Intel® Server System SR2625URLXT  
Support
System  
Server/Workstation Board  
Chipsets  
© Intel Corporation  
Company Information  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
2 of 4  
07-Sep-2011 7:09 PM  
Intel® Xeon® Processor L5530 (8M Cache, 2.40 GHz, 5.86 GT/s Intel® QPI)  
http://ark.intel.com/products/41755  
Menu  
Communities Find Content  
Intel® Server System SR2600URSATA  
Intel® Server System SR1625UR  
Intel® Workstation System SC5650SCWS  
Intel® Server System SR2612URR  
Intel® Server System SR1600URR  
Block Diagrams  
Disclaimers  
“Announced” SKUs are not yet available. Please refer to the Launch Date for market availability.  
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating  
system. Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.  
64-bit computing on Intel® architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
3 of 4  
07-Sep-2011 7:09 PM  
Intel® Xeon® Processor L5530 (8M Cache, 2.40 GHz, 5.86 GT/s Intel® QPI)  
http://ark.intel.com/products/41755  
Menu  
Communities Find Content  
Intel® Virtualization Technology requires a computer system with a processor, chipset, BIOS, virtual machine monitor (VMM) and for some  
uses, certain platform software, enabled for it. Functionality, performance or other benefit will vary depending on hardware and software  
configurations. Intel Virtualization Technology-enabled VMM applications are currently in development.  
Note: Prices subject to change without notice. Prices are for direct Intel customers in 1000-unit bulk quantities and, unless specified,  
represent the latest technology versions of the products. Taxes and shipping, etc. not included. Prices may vary for other package types and  
shipment quantities, and special promotional arrangements may apply.  
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not  
across different processor families. See http://www.intel.com/products/processor_number for details.  
System and Maximum TDP is based on worst case scenarios. Actual TDP may be lower if not all I/Os for chipsets are used.  
All information provided is subject to change at any time, without notice. Intel may make changes to manufacturing life cycle, specifications,  
and product descriptions at any time, without notice. The information herein is provided "as-is" and Intel does not make any representations  
or warranties whatsoever regarding accuracy of the information, nor on the product features, availability, functionality, or compatibility of the  
products listed. Please contact system vendor for more information on specific products or systems.  
Low Halogen implies the following:  
Bromine and/or chlorine in materials that may be used during processing, but do not remain within the final product are not included in this  
definition. The halogens fluorine (F), iodine (I), and astatine (At) are not restricted by this standard.  
“BFR/CFR and PVC-Free” Definition: :  
All PCB laminates must meet Br and Cl requirements for low halogen as defined in IPC-4101B  
For components other than PCB laminates, all homogeneous materials must contain < 900 ppm (0.09%) of Bromine [if the Bromine (Br)  
source is from BFRs] and < 900 ppm (0.09%) of Chlorine [if the Chlorine (Cl) source is from CFRs or PVC. Higher concentrations of Br and Cl  
are allowed in homogenous materials of components other than PCB laminates as long as their sources are not BFRs, CFRs, PVC.  
Although the elemental analysis for Br and Cl in homogeneous materials can be performed by any analytical method with sufficient sensitivity  
and selectivity, the presence or absence of BFRs, CFRs or PVC must be verified by any acceptable analytical techniques that allow for the  
unequivocal identification of the specific Br or Cl compounds, or by appropriate material declarations agreed to between customer and  
supplier.  
Max Turbo Frequency refers to the maximum single-core frequency that can be achieved with Intel® Turbo Boost Technology, which requires  
a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost Technology performance varies depending on hardware,  
software, and overall system configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo Boost Technology.  
See www.intel.com/technology/turboboost/ for more information.  
Some products can support AES New Instructions with a Processor Configuration update, in particular, i7-2630QM/i7-2635QM,  
i7-2670QM/i7-2675QM, i5-2430M/i5-2435M, i5-2410M/i5-2415M. Please contact OEM for the BIOS that includes the latest Processor  
configuration update.  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
4 of 4  
07-Sep-2011 7:09 PM  
Intel® Xeon® Processor L5530 (8M Cache, 2.40 GHz, 5.86 GT/s Intel® QPI)  
http://ark.intel.com/products/41755?wapkw=at80602002937ab slbgf  
Language:  
Type Here to Search Products  
Compare Queue (0)  
L5530  
Send Feedback  
Product Specs  
Intel® Processors  
Intel® Xeon® Processor 5000 Sequence  
Intel® Xeon® Processor 5500 Series  
Intel® Xeon® Processor L5530  
(8M Cache, 2.40 GHz, 5.86 GT/s Intel® QPI)  
Add to Compare  
Compare Now (0)  
Additional Information  
Products formerly Nehalem-EP  
Download Datasheet  
Software Downloads >  
Quick Links  
PCN/MDDS Information  
Search Distributors  
Support Overview >  
1 of 4  
07-Sep-2011 7:09 PM  
Intel® Xeon® Processor L5530 (8M Cache, 2.40 GHz, 5.86 GT/s Intel® QPI)  
http://ark.intel.com/products/41755?wapkw=at80602002937ab slbgf  
Ordering and Spec Information  
Ordering and Spec Information  
Intel® Xeon® Processor L5530 (8M Cache, 2.40 GHz, 5.86 GT/s Intel® QPI) FC-LGA8, Tray  
Socket  
Step  
Step TDP  
Ordering Code  
Spec Code  
Low Halogen  
Low Halogen  
VT-x  
Yes  
FCLGA1366  
60 W  
AT80602002937AB  
SLBGF  
Yes  
Boxed Intel® Xeon® Processor L5530 (8M Cache, 2.40 GHz, 5.86 GT/s Intel® QPI) FC-LGA8  
Socket  
Step  
Step TDP  
Ordering Code  
Spec Code  
VT-x  
Yes  
FCLGA1366  
60 W  
BX80602L5530  
SLBGF  
Yes  
Compatible Products  
Intel® Server Board S5520HC  
Intel® Server Board S5500HCV  
Intel® Server Board S5500HV  
Intel® Server Board S5500BC  
Intel® Server Board S5500WB  
Intel® Server Board S5500WB12V  
Intel® Server Board S5520HCT  
Server/Workstation Board  
System  
Chipsets  
Block Diagrams  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
2 of 4  
07-Sep-2011 7:09 PM  
Intel® Xeon® Processor L5530 (8M Cache, 2.40 GHz, 5.86 GT/s Intel® QPI)  
http://ark.intel.com/products/41755?wapkw=at80602002937ab slbgf  
Menu  
Communities Find Content  
Disclaimers  
“Announced” SKUs are not yet available. Please refer to the Launch Date for market availability.  
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating  
system. Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.  
64-bit computing on Intel® architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and  
applications enabled for Intel® 64 architecture. Processors will not operate (including 32-bit operation) without an Intel 64 architecture-  
enabled BIOS. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for more  
information.  
Hyper-Threading Technology (HT Technology) requires a computer system with an Intel® processor supporting HT Technology and an HT  
Technology enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use.  
See www.intel.com/products/ht/hyperthreading_more.htm for more information including details on which processors support HT Technology.  
Intel® Virtualization Technology requires a computer system with a processor, chipset, BIOS, virtual machine monitor (VMM) and for some  
uses, certain platform software, enabled for it. Functionality, performance or other benefit will vary depending on hardware and software  
configurations. Intel Virtualization Technology-enabled VMM applications are currently in development.  
Note: Prices subject to change without notice. Prices are for direct Intel customers in 1000-unit bulk quantities and, unless specified,  
represent the latest technology versions of the products. Taxes and shipping, etc. not included. Prices may vary for other package types and  
shipment quantities, and special promotional arrangements may apply.  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
3 of 4  
07-Sep-2011 7:09 PM  
Intel® Xeon® Processor L5530 (8M Cache, 2.40 GHz, 5.86 GT/s Intel® QPI)  
http://ark.intel.com/products/41755?wapkw=at80602002937ab slbgf  
Menu  
Communities Find Content  
and product descriptions at any time, without notice. The information herein is provided "as-is" and Intel does not make any representations  
or warranties whatsoever regarding accuracy of the information, nor on the product features, availability, functionality, or compatibility of the  
products listed. Please contact system vendor for more information on specific products or systems.  
Low Halogen implies the following:  
Bromine and/or chlorine in materials that may be used during processing, but do not remain within the final product are not included in this  
definition. The halogens fluorine (F), iodine (I), and astatine (At) are not restricted by this standard.  
“BFR/CFR and PVC-Free” Definition: :  
All PCB laminates must meet Br and Cl requirements for low halogen as defined in IPC-4101B  
For components other than PCB laminates, all homogeneous materials must contain < 900 ppm (0.09%) of Bromine [if the Bromine (Br)  
source is from BFRs] and < 900 ppm (0.09%) of Chlorine [if the Chlorine (Cl) source is from CFRs or PVC. Higher concentrations of Br and Cl  
are allowed in homogenous materials of components other than PCB laminates as long as their sources are not BFRs, CFRs, PVC.  
Although the elemental analysis for Br and Cl in homogeneous materials can be performed by any analytical method with sufficient sensitivity  
and selectivity, the presence or absence of BFRs, CFRs or PVC must be verified by any acceptable analytical techniques that allow for the  
unequivocal identification of the specific Br or Cl compounds, or by appropriate material declarations agreed to between customer and  
supplier.  
Max Turbo Frequency refers to the maximum single-core frequency that can be achieved with Intel® Turbo Boost Technology, which requires  
a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost Technology performance varies depending on hardware,  
software, and overall system configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo Boost Technology.  
See www.intel.com/technology/turboboost/ for more information.  
Some products can support AES New Instructions with a Processor Configuration update, in particular, i7-2630QM/i7-2635QM,  
i7-2670QM/i7-2675QM, i5-2430M/i5-2435M, i5-2410M/i5-2415M. Please contact OEM for the BIOS that includes the latest Processor  
configuration update.  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
4 of 4  
07-Sep-2011 7:09 PM  
Intel® Xeon® Processor E7530 (12M Cache, 1.86 GHz, 5.86 GT/s Intel...  
http://ark.intel.com/products/46491  
Language:  
Type Here to Search Products  
Compare Queue (0)  
Send Feedback  
Product Specs  
Intel® Processors  
Intel® Xeon® Processor 7000 Sequence  
Intel® Xeon® Processor 7500 Series  
E7530  
Intel® Xeon® Processor E7530  
(12M Cache, 1.86 GHz, 5.86 GT/s Intel® QPI)  
Add to Compare  
Compare Now (0)  
Additional Information  
Products formerly Nehalem EX  
Download Datasheet  
Software Downloads >  
Quick Links  
PCN/MDDS Information  
Search Distributors  
Support Overview >  
1 of 4  
07-Sep-2011 7:09 PM  
Intel® Xeon® Processor E7530 (12M Cache, 1.86 GHz, 5.86 GT/s Intel...  
http://ark.intel.com/products/46491  
Ordering and Spec Information  
Ordering and Spec Information  
Intel® Xeon® Processor E7530 (12M Cache, 1.86 GHz, 5.86 GT/s Intel® QPI) FC-LGA8, Tray  
Socket  
Step  
Step TDP  
Ordering Code  
Spec Code  
Low Halogen  
VT-x  
Yes  
FCLGA1567  
105 W  
AT80604004884AA  
SLBRJ  
Yes  
Compatible Products  
Intel® 7500 Chipset (Configurations: 6)  
Intel® 7500 Chipset with 82801JB I/O  
Controller Hub (ICH10)  
Chipsets  
Intel® 7500 Chipset with 82801JB I/O  
Controller Hub (ICH10)  
# of CPUs: 4  
# of CPUs: 2  
Embedded: No  
Embedded: No  
System Price: $3005  
System TDP: 214.5W  
System Price: $5897  
System TDP: 424.5W  
Intel® 7500 Chipset with 82801JB I/O  
Intel® 7500 Chipset with Intel® 82801JR I/O  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
2 of 4  
07-Sep-2011 7:09 PM  
Intel® Xeon® Processor E7530 (12M Cache, 1.86 GHz, 5.86 GT/s Intel...  
http://ark.intel.com/products/46491  
Menu  
Communities Find Content  
Controller Hub (ICH10R)  
# of CPUs: 4  
Controller Hub (ICH10R)  
# of CPUs: 1  
Embedded: No  
Embedded: No  
System Price: $5900  
System Price: $1562  
System TDP: 424.5W  
System TDP: 109.5W  
Block Diagrams  
Disclaimers  
“Announced” SKUs are not yet available. Please refer to the Launch Date for market availability.  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
3 of 4  
07-Sep-2011 7:09 PM  
Intel® Xeon® Processor E7530 (12M Cache, 1.86 GHz, 5.86 GT/s Intel...  
http://ark.intel.com/products/46491  
Menu  
Communities Find Content  
enabled BIOS. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for more  
information.  
Hyper-Threading Technology (HT Technology) requires a computer system with an Intel® processor supporting HT Technology and an HT  
Technology enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use.  
See www.intel.com/products/ht/hyperthreading_more.htm for more information including details on which processors support HT Technology.  
Intel® Virtualization Technology requires a computer system with a processor, chipset, BIOS, virtual machine monitor (VMM) and for some  
uses, certain platform software, enabled for it. Functionality, performance or other benefit will vary depending on hardware and software  
configurations. Intel Virtualization Technology-enabled VMM applications are currently in development.  
Note: Prices subject to change without notice. Prices are for direct Intel customers in 1000-unit bulk quantities and, unless specified,  
represent the latest technology versions of the products. Taxes and shipping, etc. not included. Prices may vary for other package types and  
shipment quantities, and special promotional arrangements may apply.  
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not  
across different processor families. See http://www.intel.com/products/processor_number for details.  
System and Maximum TDP is based on worst case scenarios. Actual TDP may be lower if not all I/Os for chipsets are used.  
All information provided is subject to change at any time, without notice. Intel may make changes to manufacturing life cycle, specifications,  
and product descriptions at any time, without notice. The information herein is provided "as-is" and Intel does not make any representations  
or warranties whatsoever regarding accuracy of the information, nor on the product features, availability, functionality, or compatibility of the  
products listed. Please contact system vendor for more information on specific products or systems.  
Low Halogen implies the following:  
Bromine and/or chlorine in materials that may be used during processing, but do not remain within the final product are not included in this  
definition. The halogens fluorine (F), iodine (I), and astatine (At) are not restricted by this standard.  
“BFR/CFR and PVC-Free” Definition: :  
All PCB laminates must meet Br and Cl requirements for low halogen as defined in IPC-4101B  
For components other than PCB laminates, all homogeneous materials must contain < 900 ppm (0.09%) of Bromine [if the Bromine (Br)  
source is from BFRs] and < 900 ppm (0.09%) of Chlorine [if the Chlorine (Cl) source is from CFRs or PVC. Higher concentrations of Br and Cl  
are allowed in homogenous materials of components other than PCB laminates as long as their sources are not BFRs, CFRs, PVC.  
Although the elemental analysis for Br and Cl in homogeneous materials can be performed by any analytical method with sufficient sensitivity  
and selectivity, the presence or absence of BFRs, CFRs or PVC must be verified by any acceptable analytical techniques that allow for the  
unequivocal identification of the specific Br or Cl compounds, or by appropriate material declarations agreed to between customer and  
supplier.  
Max Turbo Frequency refers to the maximum single-core frequency that can be achieved with Intel® Turbo Boost Technology, which requires  
a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost Technology performance varies depending on hardware,  
software, and overall system configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo Boost Technology.  
See www.intel.com/technology/turboboost/ for more information.  
Some products can support AES New Instructions with a Processor Configuration update, in particular, i7-2630QM/i7-2635QM,  
i7-2670QM/i7-2675QM, i5-2430M/i5-2435M, i5-2410M/i5-2415M. Please contact OEM for the BIOS that includes the latest Processor  
configuration update.  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
4 of 4  
07-Sep-2011 7:09 PM  
Intel® Xeon® Processor L7555 (24M Cache, 1.86 GHz, 5.86 GT/s Intel...  
http://ark.intel.com/products/46494  
Language:  
Type Here to Search Products  
Compare Queue (0)  
Send Feedback  
Product Specs  
Intel® Processors  
Intel® Xeon® Processor 7000 Sequence  
Intel® Xeon® Processor 7500 Series  
L7555  
Intel® Xeon® Processor L7555  
(24M Cache, 1.86 GHz, 5.86 GT/s Intel® QPI)  
Add to Compare  
Compare Now (0)  
Additional Information  
Products formerly Nehalem EX  
Download Datasheet  
Software Downloads >  
Quick Links  
PCN/MDDS Information  
Search Distributors  
Support Overview >  
1 of 4  
07-Sep-2011 7:09 PM  
Intel® Xeon® Processor L7555 (24M Cache, 1.86 GHz, 5.86 GT/s Intel...  
http://ark.intel.com/products/46494  
Ordering and Spec Information  
Ordering and Spec Information  
Intel® Xeon® Processor L7555 (24M Cache, 1.86 GHz, 5.86 GT/s Intel® QPI) FC-LGA8, Tray  
Socket  
Step  
Step TDP  
Ordering Code  
Spec Code  
Low Halogen  
VT-x  
Yes  
FCLGA1567  
95 W  
AT80604004875AA  
SLBRF  
Yes  
Compatible Products  
Intel® 7500 Chipset (Configurations: 6)  
Intel® 7500 Chipset with 82801JB I/O  
Controller Hub (ICH10)  
Chipsets  
Intel® 7500 Chipset with 82801JB I/O  
Controller Hub (ICH10)  
# of CPUs: 4  
# of CPUs: 2  
Embedded: No  
Embedded: No  
System Price: $6677  
System TDP: 194.5W  
System Price: $13241  
System TDP: 384.5W  
Intel® 7500 Chipset with 82801JB I/O  
Intel® 7500 Chipset with Intel® 82801JR I/O  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
2 of 4  
07-Sep-2011 7:09 PM  
Intel® Xeon® Processor L7555 (24M Cache, 1.86 GHz, 5.86 GT/s Intel...  
http://ark.intel.com/products/46494  
Menu  
Communities Find Content  
Controller Hub (ICH10R)  
# of CPUs: 4  
Controller Hub (ICH10R)  
# of CPUs: 1  
Embedded: No  
Embedded: No  
System Price: $13244  
System Price: $3398  
System TDP: 384.5W  
System TDP: 99.5W  
Block Diagrams  
Disclaimers  
“Announced” SKUs are not yet available. Please refer to the Launch Date for market availability.  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
3 of 4  
07-Sep-2011 7:09 PM  
Intel® Xeon® Processor L7555 (24M Cache, 1.86 GHz, 5.86 GT/s Intel...  
http://ark.intel.com/products/46494  
Menu  
Communities Find Content  
enabled BIOS. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for more  
information.  
Hyper-Threading Technology (HT Technology) requires a computer system with an Intel® processor supporting HT Technology and an HT  
Technology enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use.  
See www.intel.com/products/ht/hyperthreading_more.htm for more information including details on which processors support HT Technology.  
Intel® Virtualization Technology requires a computer system with a processor, chipset, BIOS, virtual machine monitor (VMM) and for some  
uses, certain platform software, enabled for it. Functionality, performance or other benefit will vary depending on hardware and software  
configurations. Intel Virtualization Technology-enabled VMM applications are currently in development.  
Note: Prices subject to change without notice. Prices are for direct Intel customers in 1000-unit bulk quantities and, unless specified,  
represent the latest technology versions of the products. Taxes and shipping, etc. not included. Prices may vary for other package types and  
shipment quantities, and special promotional arrangements may apply.  
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not  
across different processor families. See http://www.intel.com/products/processor_number for details.  
System and Maximum TDP is based on worst case scenarios. Actual TDP may be lower if not all I/Os for chipsets are used.  
All information provided is subject to change at any time, without notice. Intel may make changes to manufacturing life cycle, specifications,  
and product descriptions at any time, without notice. The information herein is provided "as-is" and Intel does not make any representations  
or warranties whatsoever regarding accuracy of the information, nor on the product features, availability, functionality, or compatibility of the  
products listed. Please contact system vendor for more information on specific products or systems.  
Low Halogen implies the following:  
Bromine and/or chlorine in materials that may be used during processing, but do not remain within the final product are not included in this  
definition. The halogens fluorine (F), iodine (I), and astatine (At) are not restricted by this standard.  
“BFR/CFR and PVC-Free” Definition: :  
All PCB laminates must meet Br and Cl requirements for low halogen as defined in IPC-4101B  
For components other than PCB laminates, all homogeneous materials must contain < 900 ppm (0.09%) of Bromine [if the Bromine (Br)  
source is from BFRs] and < 900 ppm (0.09%) of Chlorine [if the Chlorine (Cl) source is from CFRs or PVC. Higher concentrations of Br and Cl  
are allowed in homogenous materials of components other than PCB laminates as long as their sources are not BFRs, CFRs, PVC.  
Although the elemental analysis for Br and Cl in homogeneous materials can be performed by any analytical method with sufficient sensitivity  
and selectivity, the presence or absence of BFRs, CFRs or PVC must be verified by any acceptable analytical techniques that allow for the  
unequivocal identification of the specific Br or Cl compounds, or by appropriate material declarations agreed to between customer and  
supplier.  
Max Turbo Frequency refers to the maximum single-core frequency that can be achieved with Intel® Turbo Boost Technology, which requires  
a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost Technology performance varies depending on hardware,  
software, and overall system configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo Boost Technology.  
See www.intel.com/technology/turboboost/ for more information.  
Some products can support AES New Instructions with a Processor Configuration update, in particular, i7-2630QM/i7-2635QM,  
i7-2670QM/i7-2675QM, i5-2430M/i5-2435M, i5-2410M/i5-2415M. Please contact OEM for the BIOS that includes the latest Processor  
configuration update.  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
4 of 4  
07-Sep-2011 7:09 PM  
Intel® Xeon® Processor X7542 (18M Cache, 2.66 GHz, 5.86 GT/s Intel...  
http://ark.intel.com/products/46497  
Language:  
Type Here to Search Products  
Compare Queue (0)  
Send Feedback  
Product Specs  
Intel® Processors  
Intel® Xeon® Processor 7000 Sequence  
Intel® Xeon® Processor 7500 Series  
X7542  
Intel® Xeon® Processor X7542  
(18M Cache, 2.66 GHz, 5.86 GT/s Intel® QPI)  
Add to Compare  
Compare Now (0)  
Additional Information  
Products formerly Nehalem EX  
Download Datasheet  
Software Downloads >  
Quick Links  
PCN/MDDS Information  
Search Distributors  
Support Overview >  
1 of 4  
07-Sep-2011 7:09 PM  
Intel® Xeon® Processor X7542 (18M Cache, 2.66 GHz, 5.86 GT/s Intel...  
http://ark.intel.com/products/46497  
Menu  
Communities Find Content  
Ordering and Spec Information  
Intel® Xeon® Processor X7542 (18M Cache, 2.66 GHz, 5.86 GT/s Intel® QPI) FC-LGA8, Tray  
Socket  
Step  
Step TDP  
Ordering Code  
Spec Code  
Low Halogen  
VT-x  
Yes  
FCLGA1567  
130 W  
AT80604005280AA  
SLBRM  
Yes  
Compatible Products  
Intel® 7500 Chipset (Configurations: 6)  
Intel® 7500 Chipset with 82801JB I/O  
Controller Hub (ICH10)  
Chipsets  
Intel® 7500 Chipset with 82801JB I/O  
Controller Hub (ICH10)  
# of CPUs: 4  
# of CPUs: 2  
Embedded: No  
Embedded: No  
System Price: $4231  
System Price: $8349  
System TDP: 264.5W  
System TDP: 524.5W  
Intel® 7500 Chipset with 82801JB I/O  
Controller Hub (ICH10)  
# of CPUs: 1  
Intel® 7500 Chipset with Intel® 82801JR I/O  
Controller Hub (ICH10R)  
# of CPUs: 2  
Embedded: No  
Embedded: No  
System Price: $2172  
System Price: $4234  
System TDP: 134.5W  
System TDP: 264.5W  
Intel® 7500 Chipset with Intel® 82801JR I/O  
Controller Hub (ICH10R)  
# of CPUs: 4  
Intel® 7500 Chipset with Intel® 82801JR I/O  
Controller Hub (ICH10R)  
# of CPUs: 1  
Embedded: No  
Embedded: No  
System Price: $8352  
System Price: $2175  
System TDP: 524.5W  
System TDP: 134.5W  
Block Diagrams  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
2 of 4  
07-Sep-2011 7:09 PM  
Intel® Xeon® Processor X7542 (18M Cache, 2.66 GHz, 5.86 GT/s Intel...  
http://ark.intel.com/products/46497  
Menu  
Communities Find Content  
Disclaimers  
“Announced” SKUs are not yet available. Please refer to the Launch Date for market availability.  
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating  
system. Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.  
64-bit computing on Intel® architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and  
applications enabled for Intel® 64 architecture. Processors will not operate (including 32-bit operation) without an Intel 64 architecture-  
enabled BIOS. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for more  
information.  
Hyper-Threading Technology (HT Technology) requires a computer system with an Intel® processor supporting HT Technology and an HT  
Technology enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use.  
See www.intel.com/products/ht/hyperthreading_more.htm for more information including details on which processors support HT Technology.  
Intel® Virtualization Technology requires a computer system with a processor, chipset, BIOS, virtual machine monitor (VMM) and for some  
uses, certain platform software, enabled for it. Functionality, performance or other benefit will vary depending on hardware and software  
configurations. Intel Virtualization Technology-enabled VMM applications are currently in development.  
Note: Prices subject to change without notice. Prices are for direct Intel customers in 1000-unit bulk quantities and, unless specified,  
represent the latest technology versions of the products. Taxes and shipping, etc. not included. Prices may vary for other package types and  
shipment quantities, and special promotional arrangements may apply.  
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not  
across different processor families. See http://www.intel.com/products/processor_number for details.  
System and Maximum TDP is based on worst case scenarios. Actual TDP may be lower if not all I/Os for chipsets are used.  
All information provided is subject to change at any time, without notice. Intel may make changes to manufacturing life cycle, specifications,  
and product descriptions at any time, without notice. The information herein is provided "as-is" and Intel does not make any representations  
or warranties whatsoever regarding accuracy of the information, nor on the product features, availability, functionality, or compatibility of the  
products listed. Please contact system vendor for more information on specific products or systems.  
Low Halogen implies the following:  
Bromine and/or chlorine in materials that may be used during processing, but do not remain within the final product are not included in this  
definition. The halogens fluorine (F), iodine (I), and astatine (At) are not restricted by this standard.  
“BFR/CFR and PVC-Free” Definition: :  
All PCB laminates must meet Br and Cl requirements for low halogen as defined in IPC-4101B  
For components other than PCB laminates, all homogeneous materials must contain < 900 ppm (0.09%) of Bromine [if the Bromine (Br)  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
3 of 4  
07-Sep-2011 7:09 PM  
Intel® Xeon® Processor X7542 (18M Cache, 2.66 GHz, 5.86 GT/s Intel...  
http://ark.intel.com/products/46497  
Menu  
Communities Find Content  
supplier.  
Max Turbo Frequency refers to the maximum single-core frequency that can be achieved with Intel® Turbo Boost Technology, which requires  
a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost Technology performance varies depending on hardware,  
software, and overall system configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo Boost Technology.  
See www.intel.com/technology/turboboost/ for more information.  
Some products can support AES New Instructions with a Processor Configuration update, in particular, i7-2630QM/i7-2635QM,  
i7-2670QM/i7-2675QM, i5-2430M/i5-2435M, i5-2410M/i5-2415M. Please contact OEM for the BIOS that includes the latest Processor  
configuration update.  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
4 of 4  
07-Sep-2011 7:09 PM  
Intel® Xeon® Processor X7550 (18M Cache, 2.00 GHz, 6.40 GT/s Intel...  
http://ark.intel.com/products/46498  
Language:  
Type Here to Search Products  
Compare Queue (0)  
Send Feedback  
Product Specs  
Intel® Processors  
Intel® Xeon® Processor 7000 Sequence  
Intel® Xeon® Processor 7500 Series  
X7550  
Intel® Xeon® Processor X7550  
(18M Cache, 2.00 GHz, 6.40 GT/s Intel® QPI)  
Add to Compare  
Compare Now (0)  
Additional Information  
Products formerly Nehalem EX  
Download Datasheet  
Software Downloads >  
Quick Links  
PCN/MDDS Information  
Search Distributors  
Support Overview >  
1 of 4  
07-Sep-2011 7:09 PM  
Intel® Xeon® Processor X7550 (18M Cache, 2.00 GHz, 6.40 GT/s Intel...  
http://ark.intel.com/products/46498  
Ordering and Spec Information  
Ordering and Spec Information  
Intel® Xeon® Processor X7550 (18M Cache, 2.00 GHz, 6.40 GT/s Intel® QPI) FC-LGA8, Tray  
Socket  
Step  
Step TDP  
Ordering Code  
Spec Code  
Low Halogen  
VT-x  
Yes  
FCLGA1567  
130 W  
AT80604004872AA  
SLBRE  
Yes  
Compatible Products  
Intel® 7500 Chipset (Configurations: 6)  
Intel® 7500 Chipset with 82801JB I/O  
Controller Hub (ICH10)  
Chipsets  
Intel® 7500 Chipset with 82801JB I/O  
Controller Hub (ICH10)  
# of CPUs: 4  
# of CPUs: 2  
Embedded: No  
Embedded: No  
System Price: $5787  
System TDP: 264.5W  
System Price: $11461  
System TDP: 524.5W  
Intel® 7500 Chipset with 82801JB I/O  
Intel® 7500 Chipset with Intel® 82801JR I/O  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
2 of 4  
07-Sep-2011 7:09 PM  
Intel® Xeon® Processor X7550 (18M Cache, 2.00 GHz, 6.40 GT/s Intel...  
http://ark.intel.com/products/46498  
Menu  
Communities Find Content  
Controller Hub (ICH10R)  
# of CPUs: 4  
Controller Hub (ICH10R)  
# of CPUs: 1  
Embedded: No  
Embedded: No  
System Price: $11464  
System Price: $2953  
System TDP: 524.5W  
System TDP: 134.5W  
Block Diagrams  
Disclaimers  
“Announced” SKUs are not yet available. Please refer to the Launch Date for market availability.  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
3 of 4  
07-Sep-2011 7:09 PM  
Intel® Xeon® Processor X7550 (18M Cache, 2.00 GHz, 6.40 GT/s Intel...  
http://ark.intel.com/products/46498  
Menu  
Communities Find Content  
enabled BIOS. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for more  
information.  
Hyper-Threading Technology (HT Technology) requires a computer system with an Intel® processor supporting HT Technology and an HT  
Technology enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use.  
See www.intel.com/products/ht/hyperthreading_more.htm for more information including details on which processors support HT Technology.  
Intel® Virtualization Technology requires a computer system with a processor, chipset, BIOS, virtual machine monitor (VMM) and for some  
uses, certain platform software, enabled for it. Functionality, performance or other benefit will vary depending on hardware and software  
configurations. Intel Virtualization Technology-enabled VMM applications are currently in development.  
Note: Prices subject to change without notice. Prices are for direct Intel customers in 1000-unit bulk quantities and, unless specified,  
represent the latest technology versions of the products. Taxes and shipping, etc. not included. Prices may vary for other package types and  
shipment quantities, and special promotional arrangements may apply.  
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not  
across different processor families. See http://www.intel.com/products/processor_number for details.  
System and Maximum TDP is based on worst case scenarios. Actual TDP may be lower if not all I/Os for chipsets are used.  
All information provided is subject to change at any time, without notice. Intel may make changes to manufacturing life cycle, specifications,  
and product descriptions at any time, without notice. The information herein is provided "as-is" and Intel does not make any representations  
or warranties whatsoever regarding accuracy of the information, nor on the product features, availability, functionality, or compatibility of the  
products listed. Please contact system vendor for more information on specific products or systems.  
Low Halogen implies the following:  
Bromine and/or chlorine in materials that may be used during processing, but do not remain within the final product are not included in this  
definition. The halogens fluorine (F), iodine (I), and astatine (At) are not restricted by this standard.  
“BFR/CFR and PVC-Free” Definition: :  
All PCB laminates must meet Br and Cl requirements for low halogen as defined in IPC-4101B  
For components other than PCB laminates, all homogeneous materials must contain < 900 ppm (0.09%) of Bromine [if the Bromine (Br)  
source is from BFRs] and < 900 ppm (0.09%) of Chlorine [if the Chlorine (Cl) source is from CFRs or PVC. Higher concentrations of Br and Cl  
are allowed in homogenous materials of components other than PCB laminates as long as their sources are not BFRs, CFRs, PVC.  
Although the elemental analysis for Br and Cl in homogeneous materials can be performed by any analytical method with sufficient sensitivity  
and selectivity, the presence or absence of BFRs, CFRs or PVC must be verified by any acceptable analytical techniques that allow for the  
unequivocal identification of the specific Br or Cl compounds, or by appropriate material declarations agreed to between customer and  
supplier.  
Max Turbo Frequency refers to the maximum single-core frequency that can be achieved with Intel® Turbo Boost Technology, which requires  
a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost Technology performance varies depending on hardware,  
software, and overall system configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo Boost Technology.  
See www.intel.com/technology/turboboost/ for more information.  
Some products can support AES New Instructions with a Processor Configuration update, in particular, i7-2630QM/i7-2635QM,  
i7-2670QM/i7-2675QM, i5-2430M/i5-2435M, i5-2410M/i5-2415M. Please contact OEM for the BIOS that includes the latest Processor  
configuration update.  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
4 of 4  
07-Sep-2011 7:09 PM  
Intel® Xeon® Processor LC5528 (8M Cache, 2.13 GHz, 4.80 GT/s Intel...  
http://ark.intel.com/products/47641  
Language:  
Type Here to Search Products  
Compare Queue (0)  
Send Feedback  
Product Specs  
Intel® Processors  
Intel® Xeon® Processor 5000 Sequence  
Intel® Xeon® Processor C5500 series  
LC5528  
Intel® Xeon® Processor LC5528  
(8M Cache, 2.13 GHz, 4.80 GT/s Intel® QPI)  
Add to Compare  
Compare Now (0)  
Additional Information  
Products formerly Jasper Forest  
Download Datasheet  
Software Downloads >  
Quick Links  
Embedded  
PCN/MDDS Information  
Search Distributors  
Support Overview >  
1 of 3  
07-Sep-2011 7:10 PM  
Intel® Xeon® Processor LC5528 (8M Cache, 2.13 GHz, 4.80 GT/s Intel...  
http://ark.intel.com/products/47641  
Ordering and Spec Information  
Ordering and Spec Information  
Intel® Xeon® Processor LC5528 (8M Cache, 2.13 GHz, 4.80 GT/s Intel® QPI) LGA1366, Tray  
Socket  
Step  
Step TDP  
Ordering Code  
Spec Code  
Low Halogen  
VT-x  
Yes  
FCLGA1366  
60 W  
AT80612003858AA  
SLBWK  
Yes  
Compatible Products  
Intel® 3420 Chipset  
Chipsets  
Intel® 3420 Platform Controller Hub  
# of CPUs: 1  
Embedded: Yes  
System Price: $550  
System TDP: 60W  
Block Diagrams  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
2 of 3  
07-Sep-2011 7:10 PM  
Intel® Xeon® Processor LC5528 (8M Cache, 2.13 GHz, 4.80 GT/s Intel...  
http://ark.intel.com/products/47641  
Menu  
Communities Find Content  
system. Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.  
64-bit computing on Intel® architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and  
applications enabled for Intel® 64 architecture. Processors will not operate (including 32-bit operation) without an Intel 64 architecture-  
enabled BIOS. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for more  
information.  
Hyper-Threading Technology (HT Technology) requires a computer system with an Intel® processor supporting HT Technology and an HT  
Technology enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use.  
See www.intel.com/products/ht/hyperthreading_more.htm for more information including details on which processors support HT Technology.  
Intel® Virtualization Technology requires a computer system with a processor, chipset, BIOS, virtual machine monitor (VMM) and for some  
uses, certain platform software, enabled for it. Functionality, performance or other benefit will vary depending on hardware and software  
configurations. Intel Virtualization Technology-enabled VMM applications are currently in development.  
Note: Prices subject to change without notice. Prices are for direct Intel customers in 1000-unit bulk quantities and, unless specified,  
represent the latest technology versions of the products. Taxes and shipping, etc. not included. Prices may vary for other package types and  
shipment quantities, and special promotional arrangements may apply.  
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not  
across different processor families. See http://www.intel.com/products/processor_number for details.  
System and Maximum TDP is based on worst case scenarios. Actual TDP may be lower if not all I/Os for chipsets are used.  
All information provided is subject to change at any time, without notice. Intel may make changes to manufacturing life cycle, specifications,  
and product descriptions at any time, without notice. The information herein is provided "as-is" and Intel does not make any representations  
or warranties whatsoever regarding accuracy of the information, nor on the product features, availability, functionality, or compatibility of the  
products listed. Please contact system vendor for more information on specific products or systems.  
Low Halogen implies the following:  
Bromine and/or chlorine in materials that may be used during processing, but do not remain within the final product are not included in this  
definition. The halogens fluorine (F), iodine (I), and astatine (At) are not restricted by this standard.  
“BFR/CFR and PVC-Free” Definition: :  
All PCB laminates must meet Br and Cl requirements for low halogen as defined in IPC-4101B  
For components other than PCB laminates, all homogeneous materials must contain < 900 ppm (0.09%) of Bromine [if the Bromine (Br)  
source is from BFRs] and < 900 ppm (0.09%) of Chlorine [if the Chlorine (Cl) source is from CFRs or PVC. Higher concentrations of Br and Cl  
are allowed in homogenous materials of components other than PCB laminates as long as their sources are not BFRs, CFRs, PVC.  
Although the elemental analysis for Br and Cl in homogeneous materials can be performed by any analytical method with sufficient sensitivity  
and selectivity, the presence or absence of BFRs, CFRs or PVC must be verified by any acceptable analytical techniques that allow for the  
unequivocal identification of the specific Br or Cl compounds, or by appropriate material declarations agreed to between customer and  
supplier.  
Max Turbo Frequency refers to the maximum single-core frequency that can be achieved with Intel® Turbo Boost Technology, which requires  
a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost Technology performance varies depending on hardware,  
software, and overall system configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo Boost Technology.  
See www.intel.com/technology/turboboost/ for more information.  
Some products can support AES New Instructions with a Processor Configuration update, in particular, i7-2630QM/i7-2635QM,  
i7-2670QM/i7-2675QM, i5-2430M/i5-2435M, i5-2410M/i5-2415M. Please contact OEM for the BIOS that includes the latest Processor  
configuration update.  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
3 of 3  
07-Sep-2011 7:10 PM  
Intel® Xeon® Processor X5680 (12M Cache, 3.33 GHz, 6.40 GT/s Intel...  
http://ark.intel.com/products/47916  
Language:  
Type Here to Search Products  
Compare Queue (0)  
Send Feedback  
Product Specs  
Intel® Processors  
Intel® Xeon® Processor 5000 Sequence  
Intel® Xeon® Processor 5600 Series  
X5680  
Intel® Xeon® Processor X5680  
(12M Cache, 3.33 GHz, 6.40 GT/s Intel® QPI)  
Add to Compare  
Compare Now (0)  
Additional Information  
Products formerly Westmere-EP  
Download Datasheet  
Software Downloads >  
Quick Links  
PCN/MDDS Information  
Search Distributors  
Support Overview >  
1 of 3  
07-Sep-2011 7:10 PM  
Intel® Xeon® Processor X5680 (12M Cache, 3.33 GHz, 6.40 GT/s Intel...  
http://ark.intel.com/products/47916  
Ordering and Spec Information  
Ordering and Spec Information  
Intel® Xeon® Processor X5680 (12M Cache, 3.33 GHz, 6.40 GT/s Intel® QPI) FC-LGA10, Tray  
Socket  
Step  
Step TDP  
Ordering Code  
Spec Code  
Low Halogen  
VT-x  
Yes  
FCLGA1366  
B1  
130 W  
AT80614005124AA  
SLBV5  
Yes  
Boxed Intel® Xeon® Processor X5680 (12M Cache, 3.33 GHz, 6.40 GT/s Intel® QPI) FC-LGA10  
Socket  
Step  
Step TDP  
Ordering Code  
Spec Code  
Low Halogen  
VT-x  
Yes  
FCLGA1366  
B1  
130 W  
BX80614X5680  
SLBV5  
Yes  
Compatible Products  
Intel® Workstation Board S5520SC  
Intel® Server Board S5520UR  
Intel® Server Board S5520HC  
Intel® Server Board S5500HV  
Intel® Server Board S5500HCV  
Intel® Server Board S5520HCT  
Server/Workstation Board  
System  
Disclaimers  
“Announced” SKUs are not yet available. Please refer to the Launch Date for market availability.  
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating  
system. Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.  
64-bit computing on Intel® architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
2 of 3  
07-Sep-2011 7:10 PM  
Intel® Xeon® Processor X5680 (12M Cache, 3.33 GHz, 6.40 GT/s Intel...  
http://ark.intel.com/products/47916  
Menu  
Communities Find Content  
See www.intel.com/products/ht/hyperthreading_more.htm for more information including details on which processors support HT Technology.  
Intel® Virtualization Technology requires a computer system with a processor, chipset, BIOS, virtual machine monitor (VMM) and for some  
uses, certain platform software, enabled for it. Functionality, performance or other benefit will vary depending on hardware and software  
configurations. Intel Virtualization Technology-enabled VMM applications are currently in development.  
Note: Prices subject to change without notice. Prices are for direct Intel customers in 1000-unit bulk quantities and, unless specified,  
represent the latest technology versions of the products. Taxes and shipping, etc. not included. Prices may vary for other package types and  
shipment quantities, and special promotional arrangements may apply.  
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not  
across different processor families. See http://www.intel.com/products/processor_number for details.  
System and Maximum TDP is based on worst case scenarios. Actual TDP may be lower if not all I/Os for chipsets are used.  
All information provided is subject to change at any time, without notice. Intel may make changes to manufacturing life cycle, specifications,  
and product descriptions at any time, without notice. The information herein is provided "as-is" and Intel does not make any representations  
or warranties whatsoever regarding accuracy of the information, nor on the product features, availability, functionality, or compatibility of the  
products listed. Please contact system vendor for more information on specific products or systems.  
Low Halogen implies the following:  
Bromine and/or chlorine in materials that may be used during processing, but do not remain within the final product are not included in this  
definition. The halogens fluorine (F), iodine (I), and astatine (At) are not restricted by this standard.  
“BFR/CFR and PVC-Free” Definition: :  
All PCB laminates must meet Br and Cl requirements for low halogen as defined in IPC-4101B  
For components other than PCB laminates, all homogeneous materials must contain < 900 ppm (0.09%) of Bromine [if the Bromine (Br)  
source is from BFRs] and < 900 ppm (0.09%) of Chlorine [if the Chlorine (Cl) source is from CFRs or PVC. Higher concentrations of Br and Cl  
are allowed in homogenous materials of components other than PCB laminates as long as their sources are not BFRs, CFRs, PVC.  
Although the elemental analysis for Br and Cl in homogeneous materials can be performed by any analytical method with sufficient sensitivity  
and selectivity, the presence or absence of BFRs, CFRs or PVC must be verified by any acceptable analytical techniques that allow for the  
unequivocal identification of the specific Br or Cl compounds, or by appropriate material declarations agreed to between customer and  
supplier.  
Max Turbo Frequency refers to the maximum single-core frequency that can be achieved with Intel® Turbo Boost Technology, which requires  
a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost Technology performance varies depending on hardware,  
software, and overall system configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo Boost Technology.  
See www.intel.com/technology/turboboost/ for more information.  
Some products can support AES New Instructions with a Processor Configuration update, in particular, i7-2630QM/i7-2635QM,  
i7-2670QM/i7-2675QM, i5-2430M/i5-2435M, i5-2410M/i5-2415M. Please contact OEM for the BIOS that includes the latest Processor  
configuration update.  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
3 of 3  
07-Sep-2011 7:10 PM  
Intel® Xeon® Processor E5620 (12M Cache, 2.40 GHz, 5.86 GT/s Intel...  
http://ark.intel.com/products/47925  
Language:  
Type Here to Search Products  
Compare Queue (0)  
Send Feedback  
Product Specs  
Intel® Processors  
Intel® Xeon® Processor 5000 Sequence  
Intel® Xeon® Processor 5600 Series  
E5620  
Intel® Xeon® Processor E5620  
(12M Cache, 2.40 GHz, 5.86 GT/s Intel® QPI)  
Add to Compare  
Compare Now (0)  
Additional Information  
Products formerly Westmere-EP  
Download Datasheet  
Software Downloads >  
Quick Links  
Embedded  
PCN/MDDS Information  
Search Distributors  
Support Overview >  
1 of 4  
07-Sep-2011 7:10 PM  
Intel® Xeon® Processor E5620 (12M Cache, 2.40 GHz, 5.86 GT/s Intel...  
http://ark.intel.com/products/47925  
Ordering and Spec Information  
Ordering and Spec Information  
Intel® Xeon® Processor E5620 (12M Cache, 2.40 GHz, 5.86 GT/s Intel® QPI) FC-LGA10, Tray  
Socket  
Step  
Step TDP  
Ordering Code  
Spec Code  
Low Halogen  
VT-x  
Yes  
FCLGA1366  
B1  
80 W  
AT80614005073AB  
SLBV4  
Yes  
Boxed Intel® Xeon® Processor E5620 (12M Cache, 2.40 GHz, 5.86 GT/s Intel® QPI) FC-LGA10  
Socket  
Step  
Step TDP  
Ordering Code  
Spec Code  
Low Halogen  
VT-x  
Yes  
FCLGA1366  
B1  
80 W  
BX80614E5620  
SLBV4  
Yes  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
2 of 4  
07-Sep-2011 7:10 PM  
Intel® Xeon® Processor E5620 (12M Cache, 2.40 GHz, 5.86 GT/s Intel...  
http://ark.intel.com/products/47925  
Menu  
Communities Find Content  
Intel® Server System SR1670HV  
System  
Server/Workstation Board  
Intel® Server System SC5650BCDPR  
Intel® Server System SR2625URLXT  
Intel® Server System SR1600URR  
Intel® Server System SR1680MV  
Intel® Server System SR1600URHSR  
Intel® Server System SR1625URR  
Intel® Server System SR2612URR  
Intel® Server System SR1630BCR  
Intel® Server System SR2600URBRPR  
Intel® Server System SR2600URSATAR  
Intel® Server System SR2625URLXR  
Intel® Server System SR1695WBAC  
Intel® Server System SR2625URBRPR  
Intel® Server System SR1695WBDC  
Intel® Server System SR1625URSASR  
Intel® Server System SR1690WBR  
Intel® Workstation System SC5650SCWS  
Intel® Server System SC5650HCBRPR  
Intel® Server System SR2600URLXR  
Disclaimers  
“Announced” SKUs are not yet available. Please refer to the Launch Date for market availability.  
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating  
system. Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.  
64-bit computing on Intel® architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and  
applications enabled for Intel® 64 architecture. Processors will not operate (including 32-bit operation) without an Intel 64 architecture-  
enabled BIOS. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for more  
information.  
Hyper-Threading Technology (HT Technology) requires a computer system with an Intel® processor supporting HT Technology and an HT  
Technology enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use.  
See www.intel.com/products/ht/hyperthreading_more.htm for more information including details on which processors support HT Technology.  
Intel® Virtualization Technology requires a computer system with a processor, chipset, BIOS, virtual machine monitor (VMM) and for some  
uses, certain platform software, enabled for it. Functionality, performance or other benefit will vary depending on hardware and software  
configurations. Intel Virtualization Technology-enabled VMM applications are currently in development.  
Note: Prices subject to change without notice. Prices are for direct Intel customers in 1000-unit bulk quantities and, unless specified,  
represent the latest technology versions of the products. Taxes and shipping, etc. not included. Prices may vary for other package types and  
shipment quantities, and special promotional arrangements may apply.  
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not  
across different processor families. See http://www.intel.com/products/processor_number for details.  
System and Maximum TDP is based on worst case scenarios. Actual TDP may be lower if not all I/Os for chipsets are used.  
All information provided is subject to change at any time, without notice. Intel may make changes to manufacturing life cycle, specifications,  
and product descriptions at any time, without notice. The information herein is provided "as-is" and Intel does not make any representations  
or warranties whatsoever regarding accuracy of the information, nor on the product features, availability, functionality, or compatibility of the  
products listed. Please contact system vendor for more information on specific products or systems.  
Low Halogen implies the following:  
Bromine and/or chlorine in materials that may be used during processing, but do not remain within the final product are not included in this  
definition. The halogens fluorine (F), iodine (I), and astatine (At) are not restricted by this standard.  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
3 of 4  
07-Sep-2011 7:10 PM  
Intel® Xeon® Processor E5620 (12M Cache, 2.40 GHz, 5.86 GT/s Intel...  
http://ark.intel.com/products/47925  
Menu  
Communities Find Content  
are allowed materials of components other than PCB laminates as long as
Although the elemental analysis for Br and Cl in homogeneous materials can be performed by any analytical method with sufficient sensitivity  
and selectivity, the presence or absence of BFRs, CFRs or PVC must be verified by any acceptable analytical techniques that allow for the  
unequivocal identification of the specific Br or Cl compounds, or by appropriate material declarations agreed to between customer and  
supplier.  
Max Turbo Frequency refers to the maximum single-core frequency that can be achieved with Intel® Turbo Boost Technology, which requires  
a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost Technology performance varies depending on hardware,  
software, and overall system configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo Boost Technology.  
See www.intel.com/technology/turboboost/ for more information.  
Some products can support AES New Instructions with a Processor Configuration update, in particular, i7-2630QM/i7-2635QM,  
i7-2670QM/i7-2675QM, i5-2430M/i5-2435M, i5-2410M/i5-2415M. Please contact OEM for the BIOS that includes the latest Processor  
configuration update.  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
4 of 4  
07-Sep-2011 7:10 PM  
Intel® Xeon® Processor L5640 (12M Cache, 2.26 GHz, 5.86 GT/s Intel...  
http://ark.intel.com/products/47926  
Language:  
Type Here to Search Products  
Compare Queue (0)  
Send Feedback  
Product Specs  
Intel® Processors  
Intel® Xeon® Processor 5000 Sequence  
Intel® Xeon® Processor 5600 Series  
L5640  
Intel® Xeon® Processor L5640  
(12M Cache, 2.26 GHz, 5.86 GT/s Intel® QPI)  
Add to Compare  
Compare Now (0)  
Additional Information  
Products formerly Westmere-EP  
Download Datasheet  
Software Downloads >  
Quick Links  
PCN/MDDS Information  
Search Distributors  
Support Overview >  
1 of 3  
07-Sep-2011 7:10 PM  
Intel® Xeon® Processor L5640 (12M Cache, 2.26 GHz, 5.86 GT/s Intel...  
http://ark.intel.com/products/47926  
Ordering and Spec Information  
Ordering and Spec Information  
Intel® Xeon® Processor L5640 (12M Cache, 2.26 GHz, 5.86 GT/s Intel® QPI) FC-LGA10, Tray  
Socket  
Step  
Step TDP  
Ordering Code  
Spec Code  
Low Halogen  
VT-x  
Yes  
FCLGA1366  
B1  
60 W  
AT80614005133AB  
SLBV8  
Yes  
Boxed Intel® Xeon® Processor L5640 (12M Cache, 2.26 GHz, 5.86 GT/s Intel® QPI) FC-LGA10  
Socket  
Step  
Step TDP  
Ordering Code  
Spec Code  
Low Halogen  
VT-x  
Yes  
FCLGA1366  
B1  
60 W  
BX80614L5640  
SLBV8  
Yes  
Compatible Products  
Intel® Server Board S5520UR  
Intel® Server Board S5520HC  
Intel® Server Board S5500BC  
Intel® Server Board S5500HV  
Intel® Workstation Board S5520SC  
Intel® Server Board S5500HCV  
Intel® Compute Module MFS5520VIR  
Intel® Server Board S5520HCT  
Server/Workstation Board  
System  
Disclaimers  
“Announced” SKUs are not yet available. Please refer to the Launch Date for market availability.  
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating  
system. Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
2 of 3  
07-Sep-2011 7:10 PM  
Intel® Xeon® Processor L5640 (12M Cache, 2.26 GHz, 5.86 GT/s Intel...  
http://ark.intel.com/products/47926  
Menu  
Communities Find Content  
Hyper-Threading Technology (HT Technology) requires a computer system with an Intel® processor supporting HT Technology and an HT  
Technology enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use.  
See www.intel.com/products/ht/hyperthreading_more.htm for more information including details on which processors support HT Technology.  
Intel® Virtualization Technology requires a computer system with a processor, chipset, BIOS, virtual machine monitor (VMM) and for some  
uses, certain platform software, enabled for it. Functionality, performance or other benefit will vary depending on hardware and software  
configurations. Intel Virtualization Technology-enabled VMM applications are currently in development.  
Note: Prices subject to change without notice. Prices are for direct Intel customers in 1000-unit bulk quantities and, unless specified,  
represent the latest technology versions of the products. Taxes and shipping, etc. not included. Prices may vary for other package types and  
shipment quantities, and special promotional arrangements may apply.  
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not  
across different processor families. See http://www.intel.com/products/processor_number for details.  
System and Maximum TDP is based on worst case scenarios. Actual TDP may be lower if not all I/Os for chipsets are used.  
All information provided is subject to change at any time, without notice. Intel may make changes to manufacturing life cycle, specifications,  
and product descriptions at any time, without notice. The information herein is provided "as-is" and Intel does not make any representations  
or warranties whatsoever regarding accuracy of the information, nor on the product features, availability, functionality, or compatibility of the  
products listed. Please contact system vendor for more information on specific products or systems.  
Low Halogen implies the following:  
Bromine and/or chlorine in materials that may be used during processing, but do not remain within the final product are not included in this  
definition. The halogens fluorine (F), iodine (I), and astatine (At) are not restricted by this standard.  
“BFR/CFR and PVC-Free” Definition: :  
All PCB laminates must meet Br and Cl requirements for low halogen as defined in IPC-4101B  
For components other than PCB laminates, all homogeneous materials must contain < 900 ppm (0.09%) of Bromine [if the Bromine (Br)  
source is from BFRs] and < 900 ppm (0.09%) of Chlorine [if the Chlorine (Cl) source is from CFRs or PVC. Higher concentrations of Br and Cl  
are allowed in homogenous materials of components other than PCB laminates as long as their sources are not BFRs, CFRs, PVC.  
Although the elemental analysis for Br and Cl in homogeneous materials can be performed by any analytical method with sufficient sensitivity  
and selectivity, the presence or absence of BFRs, CFRs or PVC must be verified by any acceptable analytical techniques that allow for the  
unequivocal identification of the specific Br or Cl compounds, or by appropriate material declarations agreed to between customer and  
supplier.  
Max Turbo Frequency refers to the maximum single-core frequency that can be achieved with Intel® Turbo Boost Technology, which requires  
a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost Technology performance varies depending on hardware,  
software, and overall system configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo Boost Technology.  
See www.intel.com/technology/turboboost/ for more information.  
Some products can support AES New Instructions with a Processor Configuration update, in particular, i7-2630QM/i7-2635QM,  
i7-2670QM/i7-2675QM, i5-2430M/i5-2435M, i5-2410M/i5-2415M. Please contact OEM for the BIOS that includes the latest Processor  
configuration update.  
© Intel Corporation  
Company Information  
Support  
Contact Us  
Jobs  
Investor Relations  
Terms of Use  
*Trademarks  
Privacy  
Newsroom  
USA (English)  
3 of 3  
07-Sep-2011 7:10 PM  

相关型号:

AT80602002265AB/SLBFW

RISC Microprocessor, 64-Bit, 2130MHz, CMOS, PBGA1366,
INTEL

AT80602002697AC

Microprocessor, 64-Bit, 2000MHz, CMOS, PBGA1366, HALOGEN FREE, FC-LGA8-1366
INTEL

AT80602002697AC/SLBGK

RISC Microprocessor, 64-Bit, 2000MHz, CMOS, PBGA1366,
INTEL

AT80602002712AA

Microprocessor, 64-Bit, 2130MHz, CMOS, PBGA1366, HALOGEN FREE, FC-LGA8-1366
INTEL

AT80602002712AA/SLBFH

RISC Microprocessor, 64-Bit, 2130MHz, CMOS, PBGA1366
INTEL

AT80602002937AB

Microprocessor, 64-Bit, 2400MHz, CMOS, PBGA1366, HALOGEN FREE, FC-LGA8-1366
INTEL

AT80602002937AB/SLBGF

RISC Microprocessor, 64-Bit, 2400MHz, CMOS, PBGA1366
INTEL

AT80602003636AA

Microprocessor, 64-Bit, 2000MHz, CMOS, PBGA1366, HALOGEN FREE, FC-LGA8-1366
INTEL

AT806074004872AA

Microprocessor, 64-Bit, 2000MHz, CMOS, PBGA1567, HALOGEN FREE, FC-LGA8-1567
INTEL

AT80612003858AA

Microprocessor, 64-Bit, 2130MHz, CMOS, PBGA1366, HALOGEN FREE, LGA-1366
INTEL

AT80614003591AB/SLBWY

RISC Microprocessor, 64-Bit, 2000MHz, CMOS, PBGA1366,
INTEL

AT80614004320AD

Microprocessor, 64-Bit, 2660MHz, CMOS, 42.50 X 45 MM, FCLGA-1366
INTEL