AT80601000897AA [INTEL]

Microprocessor, 64-Bit, 2800MHz, CMOS, PBGA1366, HALOGEN FREE, FC-LGA-1366;
AT80601000897AA
型号: AT80601000897AA
厂家: INTEL    INTEL
描述:

Microprocessor, 64-Bit, 2800MHz, CMOS, PBGA1366, HALOGEN FREE, FC-LGA-1366

外围集成电路
文件: 总100页 (文件大小:963K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
Intel Core™ i7-900 Desktop  
Processor Extreme Edition Series  
®
and Intel Core™ i7-900 Desktop  
Processor Series  
Datasheet, Volume 1  
February 2010  
Document # 320834-004  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,  
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS  
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,  
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING  
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY  
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL,  
LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel  
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future  
changes to them.  
The Intel Core™ i7-900 desktop processor Extreme Edition series and Intel Core™ i7-900 desktop processor series may contain  
design defects or errors known as errata which may cause the product to deviate from published specifications.  
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor  
family, not across different processor families. See http://www.intel.com/products/processor_number for details. Over time  
processor numbers will increment based on changes in clock, speed, cache, FSB, or other features, and increments are not  
intended to represent proportional or quantitative increases in any particular feature. Current roadmap processor number  
progression is not necessarily representative of future roadmaps. See www.intel.com/products/processor_number for details.  
Hyper-Threading Technology requires a computer system with a processor supporting HT Technology and an HT Technology-  
enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use. For  
more information including details on which processors support HT Technology, see  
http://www.intel.com/products/ht/hyperthreading_more.htm  
®
Intel 64 requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications enabled  
®
for Intel 64. Processor will not operate (including 32-bit operation) without an Intel 64-enabled BIOS. Performance will vary  
depending on your hardware and software configurations. See www.intel.com/info/em64t for more information including details on  
®
which processors support Intel 64 or consult with your system vendor for more information.  
®
± Intel Virtualization Technology requires a computer system with a processor, chipset, BIOS, virtual machine monitor (VMM) and  
for some uses, certain platform software, enabled for it. Functionality, performance or other benefit will vary depending on  
hardware and software configurations. Intel Virtualization Technology-enabled VMM applications are currently in development.  
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting  
operating system. Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.  
Enhanced Intel® SpeedStep Technology. See the Processor Spec Finder or contact your Intel representative for more information.  
Intel® Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost  
Technology performance varies depending on hardware, software and overall system configuration. Check with your PC  
manufacturer on whether your system delivers Intel Turbo Boost Technology. For more information, see www.intel.com.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Intel, Intel SpeedStep, Intel Core, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its  
subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2008–2010 Intel Corporation.  
2
Datasheet  
Contents  
1
Introduction..............................................................................................................9  
1.1  
1.2  
Terminology ..................................................................................................... 10  
References ....................................................................................................... 11  
2
Electrical Specifications........................................................................................... 13  
2.1  
2.2  
2.3  
Intel® QPI Differential Signaling.......................................................................... 13  
Power and Ground Lands.................................................................................... 13  
Decoupling Guidelines........................................................................................ 13  
2.3.1 VCC, VTTA, VTTD, VDDQ Decoupling......................................................... 14  
Processor Clocking (BCLK_DP, BCLK_DN) ............................................................. 14  
2.4.1 PLL Power Supply................................................................................... 14  
Voltage Identification (VID) ................................................................................ 14  
Reserved or Unused Signals................................................................................ 17  
Signal Groups................................................................................................... 18  
Test Access Port (TAP) Connection....................................................................... 19  
Platform Environmental Control Interface (PECI) DC Specifications........................... 20  
2.9.1 DC Characteristics.................................................................................. 20  
2.9.2 Input Device Hysteresis .......................................................................... 21  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
2.10 Absolute Maximum and Minimum Ratings ............................................................. 21  
2.11 Processor DC Specifications ................................................................................ 22  
2.11.1 DC Voltage and Current Specification........................................................ 23  
2.11.2 VCC Overshoot Specification.................................................................... 29  
2.11.3 Die Voltage Validation............................................................................. 30  
3
Package Mechanical Specifications .......................................................................... 31  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Package Mechanical Drawing............................................................................... 31  
Processor Component Keep-Out Zones................................................................. 34  
Package Loading Specifications ........................................................................... 34  
Package Handling Guidelines............................................................................... 34  
Package Insertion Specifications.......................................................................... 34  
Processor Mass Specification............................................................................... 35  
Processor Materials............................................................................................ 35  
Processor Markings............................................................................................ 35  
Processor Land Coordinates................................................................................ 36  
4
5
6
Land Listing............................................................................................................. 37  
Signal Descriptions.................................................................................................. 67  
Thermal Specifications ............................................................................................ 71  
6.1  
Package Thermal Specifications........................................................................... 71  
6.1.1 Thermal Specifications ............................................................................ 71  
6.1.2 Thermal Metrology ................................................................................. 75  
Processor Thermal Features................................................................................ 76  
6.2.1 Processor Temperature ........................................................................... 76  
6.2.2 Adaptive Thermal Monitor........................................................................ 76  
6.2.3 THERMTRIP# Signal ............................................................................... 79  
Platform Environment Control Interface (PECI)...................................................... 79  
6.3.1 Introduction .......................................................................................... 79  
6.3.2 PECI Specifications................................................................................. 81  
Storage Conditions Specifications ........................................................................ 82  
6.2  
6.3  
6.4  
Datasheet  
3
7
8
Features ..................................................................................................................83  
7.1  
7.2  
Power-On Configuration (POC).............................................................................83  
Clock Control and Low Power States.....................................................................83  
7.2.1 Thread and Core Power State Descriptions .................................................84  
7.2.2 Package Power State Descriptions.............................................................85  
Sleep States .....................................................................................................86  
ACPI P-States (Intel® Turbo Boost Technology) .....................................................86  
Enhanced Intel® SpeedStep® Technology .............................................................87  
7.3  
7.4  
7.5  
Boxed Processor Specifications................................................................................89  
8.1  
8.2  
Introduction......................................................................................................89  
Mechanical Specifications....................................................................................90  
8.2.1 Boxed Processor Cooling Solution Dimensions.............................................90  
8.2.2 Boxed Processor Fan Heatsink Weight .......................................................92  
8.2.3 Boxed Processor Retention Mechanism and Heatsink Attach Clip Assembly .....92  
Electrical Requirements ......................................................................................92  
8.3.1 Fan Heatsink Power Supply ......................................................................92  
Thermal Specifications........................................................................................93  
8.4.1 Boxed Processor Cooling Requirements......................................................93  
8.4.2 Variable Speed Fan.................................................................................95  
8.3  
8.4  
Figures  
1-1  
2-1  
2-2  
2-3  
2-4  
2-5  
3-1  
3-2  
3-3  
3-4  
3-5  
6-1  
6-2  
6-3  
7-1  
8-1  
8-2  
8-3  
8-4  
8-5  
8-6  
8-7  
8-8  
8-9  
High-Level View of Processor Interfaces................................................................. 9  
Active ODT for a Differential Link Example ............................................................13  
Input Device Hysteresis......................................................................................21  
VCC Static and Transient Tolerance Load Lines ......................................................25  
VTT Static and Transient Tolerance Load Line ........................................................27  
VCC Overshoot Example Waveform......................................................................30  
Processor Package Assembly Sketch.....................................................................31  
Processor Package Drawing (Sheet 1 of 2) ............................................................32  
Processor Package Drawing (Sheet 2 of 2) ............................................................33  
Processor Top-side Markings ...............................................................................35  
Processor Land Coordinates and Quadrants (Bottom View) ......................................36  
Processor Thermal Profile....................................................................................73  
Thermal Test Vehicle (TTV) Case Temperature (TCASE) Measurement Location..........75  
Frequency and Voltage Ordering..........................................................................77  
Power States.....................................................................................................84  
Mechanical Representation of the Boxed Processor .................................................89  
Space Requirements for the Boxed Processor (side view) ........................................90  
Space Requirements for the Boxed Processor (top view) .........................................91  
Space Requirements for the Boxed Processor (overall view) ....................................91  
Boxed Processor Fan Heatsink Power Cable Connector Description............................92  
Baseboard Power Header Placement Relative to Processor Socket.............................93  
Boxed Processor Fan Heatsink Airspace Keepout Requirements (top view).................94  
Boxed Processor Fan Heatsink Airspace Keepout Requirements (side view)................94  
Boxed Processor Fan Heatsink Set Points ..............................................................95  
4
Datasheet  
Tables  
1-1  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-8  
2-9  
References ....................................................................................................... 11  
Voltage Identification Definition........................................................................... 15  
Market Segment Selection Truth Table for MS_ID[2:0]........................................... 17  
Signal Groups................................................................................................... 18  
Signals with ODT............................................................................................... 19  
PECI DC Electrical Limits .................................................................................... 20  
Processor Absolute Minimum and Maximum Ratings............................................... 22  
Voltage and Current Specifications....................................................................... 23  
VCC Static and Transient Tolerance ..................................................................... 24  
VTT Voltage Identification (VID) Definition............................................................ 25  
2-10 VTT Static and Transient Tolerance...................................................................... 26  
2-11 DDR3 Signal Group DC Specifications................................................................... 27  
2-12 RESET# Signal DC Specifications......................................................................... 28  
2-13 TAP Signal Group DC Specifications ..................................................................... 28  
2-14 PWRGOOD Signal Group DC Specifications............................................................ 28  
2-15 Control Sideband Signal Group DC Specifications................................................... 29  
2-16 VCC Overshoot Specifications.............................................................................. 29  
3-1  
3-2  
3-3  
4-1  
4-2  
5-1  
6-1  
6-2  
6-3  
6-4  
6-5  
6-6  
7-1  
7-2  
7-3  
8-1  
8-2  
Processor Loading Specifications ......................................................................... 34  
Package Handling Guidelines............................................................................... 34  
Processor Materials............................................................................................ 35  
Land Listing by Land Name................................................................................. 37  
Land Listing by Land Number.............................................................................. 52  
Signal Definitions .............................................................................................. 67  
Processor Thermal Specifications......................................................................... 72  
Processor Thermal Profile ................................................................................... 73  
Thermal Solution Performance above TCONTROL................................................... 74  
Supported PECI Command Functions and Codes.................................................... 81  
GetTemp0() Error Codes .................................................................................... 81  
Storage Conditions ............................................................................................ 82  
Power On Configuration Signal Options................................................................. 83  
Coordination of Thread Power States at the Core Level........................................... 84  
Processor S-States ............................................................................................ 86  
Fan Heatsink Power and Signal Specifications........................................................ 93  
Fan Heatsink Power and Signal Specifications........................................................ 95  
Datasheet  
5
6
Datasheet  
Intel® Core™ i7-900 Desktop Processor Extreme Edition  
Series and Intel® Core™ i7-900 Desktop Processor Series  
Features  
• Available at 3.20 GHz, 3.06 GHz, 2.93 GHz,  
2.80 GHz, and 2.66 GHz (Intel Core™ i7-900  
desktop desktop processor series)  
• System Management mode  
• Multiple low-power states  
• 8-way cache associativity provides improved  
cache hit rate on load/store operations  
• Available at 3.33 GHz and 3.20 GHz (Intel  
Core™ i7-900 desktop processor Extreme  
Edition series)  
• System Memory Interface  
• Enhanced Intel Speedstep® Technology  
• Supports Intel® 64Architecture  
• Supports Intel® Virtualization Technology  
• Intel® Turbo Boost Technology  
— Memory controller integrated in  
processor package  
— 3 channels  
— 2 DIMMs/channel supported (6 total)  
— 24 GB maximum memory supported  
— Support unbuffered DIMMs only  
— Single Rank and Dual Rank DIMMs  
supported  
• Supports Execute Disable Bit capability  
• Binary compatible with applications running  
on previous members of the Intel  
microprocessor line  
• Intel® Wide Dynamic Execution  
• Very deep out-of-order execution  
• Enhanced branch prediction  
• Optimized for 32-bit applications running on  
advanced 32-bit operating systems  
• Intel® Smart Cache  
— DDR3 speeds of 800/1066 MHz  
supported  
— 512Mb, 1Gb, 2Gb,  
Technologies/Densities supported  
• Intel® QuickPath Interconnect (QPI)  
— Fast/narrow unidirectional links  
— Concurrent bi-directional traffic  
— Error detection using CRC  
— Error correction using Link level retry  
— Packet based protocol  
• 8 MB Level 3 cache  
• Intel® Advanced Digital Media Boost  
• Enhanced floating point and multimedia unit  
for enhanced video, audio, encryption, and  
3D performance  
• New accelerators for improved string and  
text processing operations  
— Point to point cache coherent  
interconnect  
— Intel® Interconnect Built In Self Test  
(Intel® IBIST) toolbox built-in  
• 1366-land Package  
• Power Management capabilities  
Datasheet  
7
Revision History  
Revision  
Number  
Description  
Date  
November 2008  
June 2009  
-001  
-002  
Initial release  
Added Intel Core™ i7 processor i7-950  
Added Intel Core™ i7 processor Extreme Edition i7-975  
-003  
-004  
Added Intel Core™ i7-900 desktop processor i7-960  
Added Intel Core™ i7-900 desktop processor i7-930  
October 2009  
February 2010  
§
8
Datasheet  
Introduction  
1 Introduction  
The Intel® Core™ i7-900 desktop processor Extreme Edition series and Intel® Core™  
i7-900 desktop processor series are intended for high performance high-end desktop,  
Uni-processor (UP) server, and workstation systems. Several architectural and  
microarchitectural enhancements have been added to this processor including four  
processor cores in the processor package and increased shared cache.  
The Intel® Core™ i7-900 desktop processor Extreme Edition series and Intel® Core™  
i7-900 desktop processor series are the first desktop multi-core processor to  
implement key new technologies:  
• Integrated memory controller  
• Point-to-point link interface based on Intel QPI  
Figure 1-1 shows the interfaces used with these new technologies.  
Figure 1-1. High-Level View of Processor Interfaces  
CH 0  
System  
CH 1  
Processor  
Memory  
(DDR3)  
CH 2  
Intel® QuickPath  
Interconnect (Intel® QPI)  
Note:  
Note:  
Note:  
In this document the Intel® Core™ i7-900 desktop processor Extreme Edition series  
and Intel® Core™ i7-900 desktop processor series will be referred to as “the processor.”  
The Intel Core™ i7-900 desktop processor series refers to the Intel Core™ i7-900  
desktop processors i7-960, i7-950, i7-940, i7-930, and i7-920.  
The Intel Core™ i7-900 desktop processor Extreme Edition series refers to the Intel  
Core™ i7-900 desktop processor Extreme Edition i7-975 and i7-965.  
The processor is optimized for performance with the power efficiencies of a low-power  
microarchitecture.  
This document provides DC electrical specifications, differential signaling specifications,  
pinout and signal definitions, package mechanical specifications and thermal  
requirements, and additional features pertinent to the implementation and operation of  
the processor. For information on register descriptions, refer to the Intel® Core™ i7-  
900 Desktop Processor Extreme Edition Series and Intel® Core™ i7-900 Desktop  
Processor Series Datasheet, Volume 2.  
Datasheet  
9
Introduction  
The processor is a multi-core processor built on the 45 nm process technology, that  
uses up to 130 W thermal design power (TDP). The processor features an Intel QPI  
point-to-point link capable of up to 6.4 GT/s, 8 MB Level 3 cache, and an integrated  
memory controller.  
The processor supports all the existing Streaming SIMD Extensions 2 (SSE2),  
Streaming SIMD Extensions 3 (SSE3) and Streaming SIMD Extensions 4 (SSE4). The  
processor supports several Advanced Technologies: Intel® 64 Technology (Intel® 64),  
Enhanced Intel SpeedStep® Technology, Intel® Virtualization Technology (Intel® VT),  
Intel® Turbo Boost Technology, and Intel® Hyper-Threading Technology.  
1.1  
Terminology  
A ‘#’ symbol after a signal name refers to an active low signal, indicating a signal is in  
the active state when driven to a low level. For example, when RESET# is low, a reset  
has been requested. Conversely, when VTTPWRGOOD is high, the VTT power rail is  
stable.  
‘_N’ and ‘_P’ after a signal name refers to a differential pair.  
Commonly used terms are explained here for clarification:  
Intel® Core™ i7-900 Desktop Processor Extreme Edition Series and Intel®  
Core™ i7-900 Desktop Processor Series — The entire product, including  
processor substrate and integrated heat spreader (IHS).  
1366-land LGA package — The Intel Core™ i7-900 desktop processor Extreme  
Edition series and Intel Core™ i7-900 desktop processor series are available in a  
Flip-Chip Land Grid Array (FC-LGA) package, consisting of the processor mounted  
on a land grid array substrate with an integrated heat spreader (IHS).  
LGA1366 Socket — The processor (in the LGA 1366 package) mates with the  
system board through this surface mount, 1366-contact socket.  
DDR3 — Double Data Rate 3 Synchronous Dynamic Random Access Memory  
(SDRAM) is the name of the new DDR memory standard that is being developed as  
the successor to DDR2 SRDRAM.  
Intel® QuickPath Interconnect (Intel QPI)— Intel QPI is a cache-coherent,  
point-to-point link based electrical interconnect specification for Intel processors  
and chipsets.  
Integrated Memory Controller — A memory controller that is integrated into the  
processor die.  
Integrated Heat Spreader (IHS) — A component of the processor package used  
to enhance the thermal performance of the package. Component thermal solutions  
interface with the processor at the IHS surface.  
Functional Operation — Refers to the normal operating conditions in which all  
processor specifications, including DC, AC, signal quality, mechanical, and thermal,  
are satisfied.  
Enhanced Intel SpeedStep® Technology — Enhanced Intel SpeedStep  
Technology allows the operating system to reduce power consumption when  
performance is not needed.  
Execute Disable Bit — Execute Disable allows memory to be marked as  
executable or non-executable, when combined with a supporting operating system.  
If code attempts to run in non-executable memory the processor raises an error to  
the operating system. This feature can prevent some classes of viruses or worms  
that exploit buffer overrun vulnerabilities and can thus help improve the overall  
10  
Datasheet  
Introduction  
security of the system. See the Intel® Architecture Software Developer's Manual  
for more detailed information. Refer to http://developer.intel.com/ for future  
reference on up to date nomenclatures.  
Intel® 64 Architecture — An enhancement to Intel's IA-32 architecture, allowing  
the processor to execute operating systems and applications written to take  
advantage of Intel® 64. Further details on Intel® 64 architecture and programming  
model can be found at http://developer.intel.com/technology/intel64/.  
Intel® Virtualization Technology (Intel® VT) — A set of hardware  
enhancements to Intel server and client platforms that can improve virtualization  
solutions. Intel® VT provides a foundation for widely-deployed virtualization  
solutions and enables a more robust hardware assisted virtualization solution. More  
information can be found at: http://www.intel.com/technology/virtualization/  
Unit Interval (UI) — Signaling convention that is binary and unidirectional. In  
this binary signaling, one bit is sent for every edge of the forwarded clock, whether  
it is a rising edge or a falling edge. If a number of edges are collected at instances  
t1, t2, tn,...., tk then the UI at instance “n” is defined as:  
UI n = t n – t  
n – 1  
Jitter — Any timing variation of a transition edge or edges from the defined Unit  
Interval.  
Storage Conditions — Refers to a non-operational state. The processor may be  
installed in a platform, in a tray, or loose. Processors may be sealed in packaging or  
exposed to free air. Under these conditions, processor lands should not be  
connected to any supply voltages, have any I/Os biased, or receive any clocks.  
OEM — Original Equipment Manufacturer.  
1.2  
References  
Material and concepts available in the following documents may be beneficial when  
reading this document.  
Table 1-1.  
References  
Document  
Location  
®
®
Intel Core™ i7-900 Desktop Processor Extreme Edition Series and Intel  
Core™ i7-900 Desktop Processor Series Specification Update  
http://download.intel.com/design/  
processor/specupdt/320836.pdf  
®
®
Intel Core™ i7-900 Desktop Processor Extreme Edition and Intel  
http://download.intel.com/design/  
processor/datashts/320835.pdf  
Core™ i7-900 Desktop Processor Series Datasheet Volume 2  
®
®
Intel Core™ i7-900 Desktop Processor Extreme Edition Series and Intel  
http://download.intel.com/design/  
processor/designex/320837.pdf  
Core™ i7-900 Desktop Processor Series and LGA1366 Socket Thermal and  
Mechanical Design Guide  
Intel X58 Express Chipset Datasheet  
http://www.intel.com/Assets/PDF/  
datasheet/320838.pdf  
®
AP-485, Intel Processor Identification and the CPUID Instruction  
http://www.intel.com/design/proc  
essor/applnots/241618.htm  
®
IA-32 Intel Architecture Software Developer's Manual  
Volume 1: Basic Architecture  
Volume 2A: Instruction Set Reference, A-M  
Volume 2B: Instruction Set Reference, N-Z  
Volume 3A: System Programming Guide, Part 1  
Volume 3B: Systems Programming Guide, Part 2  
http://www.intel.com/products/pr  
ocessor/manuals/  
Datasheet  
11  
Introduction  
§
12  
Datasheet  
Electrical Specifications  
2 Electrical Specifications  
2.1  
Intel® QPI Differential Signaling  
The processor provides an Intel QPI port for high speed serial transfer between other  
Intel QPI-enabled components. The Intel QPI port consists of two unidirectional links  
(for transmit and receive). Intel QPI uses a differential signalling scheme where pairs of  
opposite-polarity (D_P, D_N) signals are used.  
On-die termination (ODT) is provided on the processor silicon and termination is to VSS.  
Intel chipsets also provide ODT; thus, eliminating the need to terminate the Intel QPI  
links on the system board.  
Intel strongly recommends performing analog simulations of the Intel® QPI interface.  
Figure 2-1 illustrates the active ODT. Signal listings are included in Table 2-3 and  
Table 2-4. See Chapter 5 for the pin signal definitions. All Intel QPI signals are in the  
differential signal group.  
Figure 2-1. Active ODT for a Differential Link Example  
TX  
RX  
Signal  
Signal  
RTT  
RTT  
RTT  
RTT  
2.2  
2.3  
Power and Ground Lands  
For clean on-chip processor core power distribution, the processor has 210 VCC pads  
and 119 VSS pads associated with VCC; 8 VTTA pads and 5 VSS pads associated with  
VTTA; 28 VTTD pads and 17 VSS pads associated with VTTD, 28 VDDQ pads and 17 VSS  
pads associated with VDDQ; and 3 VCCPLL pads. All VCCP, VTTA, VTTD, VDDQ and  
VCCPLL lands must be connected to their respective processor power planes, while all  
VSS lands must be connected to the system ground plane. The processor VCC lands  
must be supplied with the voltage determined by the processor Voltage IDentification  
(VID) signals. Table 2-1 specifies the voltage level for the various VIDs.  
Decoupling Guidelines  
Due to its large number of transistors and high internal clock speeds, the processor is  
capable of generating large current swings between low and full power states. This may  
cause voltages on power planes to sag below their minimum values if bulk decoupling is  
not adequate. Larger bulk storage (CBULK), such as electrolytic capacitors, supply  
current during longer lasting changes in current demand; such as, coming out of an idle  
condition. Similarly, capacitors act as a storage well for current when entering an idle  
condition from a running condition. Care must be taken in the baseboard design to  
Datasheet  
13  
Electrical Specifications  
ensure that the voltage provided to the processor remains within the specifications  
listed in Table 2-7. Failure to do so can result in timing violations or reduced lifetime of  
the processor.  
2.3.1  
V , V  
, V  
, V  
Decoupling  
DDQ  
CC  
TTA  
TTD  
Voltage regulator solutions need to provide bulk capacitance and the baseboard  
designer must assure a low interconnect resistance from the regulator to the LGA1366  
socket. Bulk decoupling must be provided on the baseboard to handle large current  
swings. The power delivery solution must insure the voltage and current specifications  
are met (as defined in Table 2-7).  
2.4  
Processor Clocking (BCLK_DP, BCLK_DN)  
The processor core, Intel QPI, and integrated memory controller frequencies are  
generated from BCLK_DP and BCLK_DN. Unlike previous processors based on front side  
bus architecture, there is no direct link between core frequency and Intel QPI link  
frequency (such as, no core frequency to Intel QPI multiplier). The processor maximum  
core frequency, Intel QPI link frequency and integrated memory controller frequency,  
are set during manufacturing. It is possible to override the processor core frequency  
setting using software. This permits operation at lower core frequencies than the  
factory set maximum core frequency.  
The processor’s maximum non-turbo core frequency is configured during power-on  
reset by using values stored internally during manufacturing. The stored value sets the  
highest core multiplier at which the particular processor can operate. If lower max non-  
turbo speeds are desired, the appropriate ratio can be configured using the  
CLOCK_FLEX_MAX MSR.  
The processor uses differential clocks (BCLK_DP, BCLK_DN). Clock multiplying within  
the processor is provided by the internal phase locked loop (PLL), which requires a  
constant frequency BCLK_DP, BCLK_DN input, with exceptions for spread spectrum  
clocking. The processor core frequency is determined by multiplying the ratio by  
133 MHz.  
2.4.1  
PLL Power Supply  
An on-die PLL filter solution is implemented on the processor. Refer to Table 2-7 for DC  
specifications.  
2.5  
Voltage Identification (VID)  
The voltage set by the VID signals is the reference voltage regulator output voltage to  
be delivered to the processor VCC pins. VID signals are CMOS push/pull drivers. Refer  
to Table 2-15 for the DC specifications for these signals. The VID codes will change due  
to temperature and/or current load changes in order to minimize the power of the part.  
A voltage range is provided in Table 2-7. The specifications have been set such that one  
voltage regulator can operate with all supported frequencies.  
Individual processor VID values may be set during manufacturing such that two devices  
at the same core frequency may have different default VID settings. This is reflected by  
the VID range values provided in Table 2-1.  
14  
Datasheet  
Electrical Specifications  
The processor uses eight voltage identification signals, VID[7:0], to support automatic  
selection of voltages. Table 2-1 specifies the voltage level corresponding to the state of  
VID[7:0]. A ‘1’ in this table refers to a high voltage level and a ‘0’ refers to a low  
voltage level. If the processor socket is empty (VID[7:0] = 11111111), or the voltage  
regulation circuit cannot supply the voltage that is requested, the voltage regulator  
must disable itself.  
The processor provides the ability to operate while transitioning to an adjacent VID and  
its associated processor core voltage (VCC). This will represent a DC shift in the  
loadline. It should be noted that a low-to-high or high-to-low voltage state change will  
result in as many VID transitions as necessary to reach the target core voltage.  
Transitions above the maximum specified VID are not permitted. Table 2-8 includes VID  
step sizes and DC shift ranges. Minimum and maximum voltages must be maintained  
as shown in Table 2-8.  
The VR used must be capable of regulating its output to the value defined by the new  
VID. DC specifications for dynamic VID transitions are included in Table 2-7 and  
Table 2-8  
Table 2-1.  
Voltage Identification Definition (Sheet 1 of 3)  
VID VID VID VID VID VID VID VID  
VID VID VID VID VID VID VID VID  
VCC_MAX  
VCC_MAX  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
OFF  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.04375  
1.03750  
1.03125  
1.02500  
1.01875  
1.01250  
1.00625  
1.00000  
0.99375  
0.98750  
0.98125  
0.97500  
0.96875  
0.96250  
0.95626  
0.95000  
0.94375  
0.93750  
0.93125  
0.92500  
0.91875  
0.91250  
0.90625  
0.90000  
0.89375  
0.88750  
0.88125  
0.87500  
0.86875  
0.86250  
0.85625  
OFF  
1.60000  
1.59375  
1.58750  
1.58125  
1.57500  
1.56875  
1.56250  
1.55625  
1.55000  
1.54375  
1.53750  
1.53125  
1.52500  
1.51875  
1.51250  
1.50625  
1.50000  
1.49375  
1.48750  
1.48125  
1.47500  
1.46875  
1.46250  
1.45625  
1.45000  
1.44375  
1.43750  
1.43125  
1.42500  
Datasheet  
15  
Electrical Specifications  
Table 2-1.  
Voltage Identification Definition (Sheet 2 of 3)  
VID VID VID VID VID VID VID VID  
VID VID VID VID VID VID VID VID  
VCC_MAX  
VCC_MAX  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1.41875  
1.41250  
1.40625  
1.40000  
1.39375  
1.38750  
1.38125  
1.37500  
1.36875  
1.36250  
1.35625  
1.35000  
1.34375  
1.33750  
1.33125  
1.32500  
1.31875  
1.31250  
1.30625  
1.30000  
1.29375  
1.28750  
1.28125  
1.27500  
1.26875  
1.26250  
1.25625  
1.25000  
1.24375  
1.23750  
1.23125  
1.22500  
1.21875  
1.21250  
1.20625  
1.20000  
1.19375  
1.18750  
1.18125  
1.17500  
1.16875  
1.16250  
1.15625  
1.15000  
1.14375  
1.13750  
1.13125  
1.12500  
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.85000  
0.84374  
0.83750  
0.83125  
0.82500  
0.81875  
0.81250  
0.80625  
0.80000  
0.79375  
0.78750  
0.78125  
0.77500  
0.76875  
0.76250  
0.75625  
0.75000  
0.74375  
0.73750  
0.73125  
0.72500  
0.71875  
0.71250  
0.70625  
0.70000  
0.69375  
0.68750  
0.68125  
0.67500  
0.66875  
0.66250  
0.65625  
0.65000  
0.64375  
0.63750  
0.63125  
0.62500  
0.61875  
0.61250  
0.60625  
0.60000  
0.59375  
0.58750  
0.58125  
0.57500  
0.56875  
0.56250  
0.55625  
16  
Datasheet  
Electrical Specifications  
Table 2-1.  
Voltage Identification Definition (Sheet 3 of 3)  
VID VID VID VID VID VID VID VID  
VID VID VID VID VID VID VID VID  
VCC_MAX  
VCC_MAX  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1.11875  
1.11250  
1.10625  
1.10000  
1.09375  
1.08750  
1.08125  
1.07500  
1.06875  
1.06250  
1.05625  
1.05000  
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
0
0
1
1
1
1
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
0
1
0.55000  
0.54375  
0.53750  
0.53125  
0.52500  
0.51875  
0.51250  
0.50625  
0.50000  
OFF  
OFF  
Table 2-2.  
Market Segment Selection Truth Table for MS_ID[2:0]  
1
MSID2  
MSID1  
MSID0  
Description  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Intel Core™ i7-900 desktop processor Extreme Edition series and  
Intel Core™ i7-900 desktop processor series  
1
1
1
Reserved  
Notes:  
1. The MSID[2:0] signals are provided to indicate the Market Segment for the processor and may be used for  
future processor compatibility or for keying.  
2.6  
Reserved or Unused Signals  
All Reserved (RSVD) signals must remain unconnected. Connection of these signals to  
VCC, VTTA, VTTD, VDDQ, VCCPLL, VSS, or to any other signal (including each other) can  
result in component malfunction or incompatibility with future processors. See  
Chapter 4 for a land listing of the processor and the location of all Reserved signals.  
For reliable operation, always connect unused inputs or bi-directional signals to an  
appropriate signal level, except for unused integrated memory controller inputs,  
outputs, and bi-directional pins which may be left floating. Unused active high inputs  
should be connected through a resistor to ground (VSS). Unused outputs maybe left  
unconnected; however, this may interfere with some Test Access Port (TAP) functions,  
complicate debug probing, and prevent boundary scan testing. A resistor must be used  
when tying bi-directional signals to power or ground. When tying any signal to power or  
ground, a resistor will also allow for system testability.  
Datasheet  
17  
Electrical Specifications  
2.7  
Signal Groups  
Signals are grouped by buffer type and similar characteristics as listed in Table 2-3. The  
buffer type indicates which signaling technology and specifications apply to the signals.  
All the differential signals, and selected DDR3 and Control Sideband signals have On-  
Die Termination (ODT) resistors. There are some signals that do not have ODT and  
need to be terminated on the board. The signals that have ODT are listed in Table 2-4.  
Table 2-3.  
Signal Groups (Sheet 1 of 2)  
1,2  
Signal Group  
Type  
Signals  
System Reference Clock  
Differential  
Clock Input  
BCLK_DP, BCLK_DN  
®
Intel QPI Signal Groups  
Differential  
Differential  
Intel QPI Input  
Intel QPI Output  
QPI_DRX_D[N/P][19:0], QPI_CLKRX_DP,  
QPI_CLKRX_DN  
QPI_DTX_D[N/P][19:0], QPI_CLKTX_DP,  
QPI_CLKTX_DN  
DDR3 Reference Clocks  
DDR3 Output  
DDR{0/1/2}_CLK[D/P][3:0]  
Differential  
DDR3 Command Signals  
Single ended  
CMOS Output  
DDR{0/1/2}_RAS#, DDR{0/1/2}_CAS#,  
DDR{0/1/2}_WE#, DDR{0/1/2}_MA[15:0],  
DDR{0/1/2}_BA[2:0]  
Single ended  
Asynchronous Output  
CMOS Output  
DDR{0/1/2}_RESET#  
DDR3 Control Signals  
Single ended  
DDR{0/1/2}_CS#[5:4], DDR{0/1/2}_CS#[1:0],  
DDR{0/1/2}_ODT[3:0], DDR{0/1/2}_CKE[3:0]  
DDR3 Data Signals  
Single ended  
Differential  
CMOS Bi-directional  
CMOS Bi-directional  
DDR{0/1/2}_DQ[63:0]  
DDR{0/1/2}_DQS_[N/P][7:0]  
TAP  
Single ended  
Single ended  
TAP Input  
TCK, TDI, TMS, TRST#  
TDO  
GTL Output  
Control Sideband  
Single ended  
Single ended  
Single ended  
Single Ended  
Single Ended  
Single ended  
Asynchronous GTL Output  
Asynchronous GTL Input  
GTL Bi-directional  
PRDY#  
PREQ#  
CAT_ERR#, BPM#[7:0]  
Asynchronous Bi-directional  
Analog Input  
PECI  
COMP0, QPI_CMP[0], DDR_COMP[2:0]  
PROCHOT#  
Asynchronous GTL Bi-  
directional  
Single ended  
Single ended  
Asynchronous GTL Output  
CMOS Input/Output  
THERMTRIP#  
VID[7:6]  
VID[5:3]/CSC[2:0]  
VID[2:0]/MSID[2:0]  
VTT_VID[4:2]  
18  
Datasheet  
Electrical Specifications  
Table 2-3.  
Signal Groups (Sheet 2 of 2)  
1,2  
Signal Group  
Single ended  
Type  
CMOS Output  
Signals  
VTT_VID[4:2]  
ISENSE  
Single ended  
Analog Input  
Reset Signal  
Single ended  
Reset Input  
RESET#  
PWRGOOD Signals  
Single ended  
Asynchronous Input  
VCCPWRGOOD, VTTPWRGOOD, VDDPWRGOOD  
Power/Other  
Power  
VCC, VTTA, VTTD, VCCPLL, VDDQ  
PSI#  
Asynchronous CMOS Output  
Sense Points  
VCC_SENSE, VSS_SENSE  
SKTOCC#, DBR#  
Other  
Notes:  
1.  
2.  
Refer to Chapter 5 for signal descriptions.  
DDR{0/1/2} refers to DDR3 Channel 0, DDR3 Channel 1, and DDR3 Channel 2.  
Table 2-4.  
Signals with ODT  
QPI_DRX_DP[19:0], QPI_DRX_DN[19:0], QPI_DTX_DP[19:0], QPI_DTX_DN[19:0], QPI_CLKRX_D[N/P],  
QPI_CLKTX_D[N/P]  
DDR{0/1/2}_DQ[63:0], DDR{0/1/2}_DQS_[N/P][7:0], DDR{0/1/2}_PAR_ERR#[0:2], VDDPWRGOOD  
BCLK_ITP_D[N/P]  
PECI  
BPM#[7:0], PREQ#, TRST#, VCCPWRGOOD, VTTPWRGOOD  
Notes:  
1.  
2.  
3.  
Unless otherwise specified, signals have ODT in the package with 50 pulldown to V  
.
SS  
PREQ#, BPM[7:0], TDI, TMS and BCLK_ITP_D[N/P] have ODT in package with 35 pullup to V  
VCCPWRGOOD, VDDPWRGOOD, and VTTPWRGOOD have ODT in package with a 10 kto 20 kpulldown  
to V  
.
TT  
.
SS  
4.  
5.  
6.  
7.  
TRST# has ODT in package with a 1 kto 5 kpullup to V .  
TT  
All DDR signals are terminated to VDDQ/2  
DDR{0/1/2} refers to DDR3 Channel 0, DDR3 Channel 1, and DDR3 Channel 2.  
While TMS and TDI do not have On-Die Termination, these signals are weakly pulled up using a 1–5 k  
resistor to V  
TT  
8.  
While TCK does not have On-Die Termination, this signal is weakly pulled down using a 1–5 kresistor to  
V
.
SS  
All Control Sideband Asynchronous signals are required to be asserted/de-asserted for  
at least eight BCLKs for the processor to recognize the proper signal state. See  
Section 2.11 for the DC specifications. See Chapter 6 for additional timing  
requirements for entering and leaving the low power states.  
2.8  
Test Access Port (TAP) Connection  
Due to the voltage levels supported by other components in the Test Access Port (TAP)  
logic, it is recommended that the processor be first in the TAP chain and followed by  
any other components within the system. A translation buffer should be used to  
connect to the rest of the chain unless one of the other components is capable of  
accepting an input of the appropriate voltage. Two copies of each signal may be  
required with each driving a different voltage level.  
Datasheet  
19  
Electrical Specifications  
2.9  
Platform Environmental Control Interface (PECI)  
DC Specifications  
PECI is an Intel proprietary interface that provides a communication channel between  
Intel processors and chipset components to external thermal monitoring devices. The  
processor contains a Digital Thermal Sensor (DTS) that reports a relative die  
temperature as an offset from Thermal Control Circuit (TCC) activation temperature.  
Temperature sensors located throughout the die are implemented as analog-to-digital  
converters calibrated at the factory. PECI provides an interface for external devices to  
read the DTS temperature for thermal management and fan speed control. More  
detailed information may be found in the Platform Environment Control Interface  
(PECI) Specification.  
2.9.1  
DC Characteristics  
The PECI interface operates at a nominal voltage set by VTTD. The set of DC electrical  
specifications shown in Table 2-5 is used with devices normally operating from a VTTD  
interface supply. VTTD nominal levels will vary between processor families. All PECI  
devices will operate at the VTTD level determined by the processor installed in the  
system. For specific nominal VTTD levels, refer to Table 2-7.  
Table 2-5.  
PECI DC Electrical Limits  
1
Symbol  
Definition and Conditions  
Input Voltage Range  
Min  
Max  
Units  
Notes  
V
-0.150  
V
V
V
V
V
in  
TTD  
V
Hysteresis  
0.1 * V  
N/A  
hysteresis  
TTD  
V
V
Negative-edge threshold voltage  
Positive-edge threshold voltage  
High level output source  
0.275 * V  
0.550 * V  
0.500 * V  
n
TTD  
TTD  
TTD  
TTD  
0.725 * V  
p
I
-6.0  
0.5  
N/A  
1.0  
mA  
mA  
µA  
source  
(V  
= 0.75 * V  
)
TTD  
OH  
Low level output sink  
(V = 0.25 * V  
I
sink  
)
TTD  
OL  
High impedance state leakage to V  
TTD  
I
N/A  
100  
100  
2
2
leak+  
(V  
= V  
)
OL  
leak  
High impedance leakage to GND  
(V = V  
I
N/A  
N/A  
µA  
pF  
leak-  
)
OH  
leak  
C
Bus capacitance per node  
Signal noise immunity above 300 MHz  
10  
bus  
V
0.1 * V  
N/A  
V
p-p  
noise  
TTD  
Notes:  
1.  
2.  
V
supplies the PECI interface. PECI behavior does not affect V  
min/max specifications.  
TTD  
TTD  
The leakage specification applies to powered devices on the PECI bus.  
20  
Datasheet  
Electrical Specifications  
2.9.2  
Input Device Hysteresis  
The input buffers in both client and host models must use a Schmitt-triggered input  
design for improved noise immunity. Use Figure 2-2 as a guide for input buffer design.  
Figure 2-2. Input Device Hysteresis  
VTTD  
Maximum VP  
PECI High Range  
Minimum VP  
Maximum VN  
Minimum  
Hysteresis Signal Range  
Valid Input  
Minimum VN  
PECI Ground  
PECI Low Range  
2.10  
Absolute Maximum and Minimum Ratings  
Table 2-6 specifies absolute maximum and minimum ratings, which lie outside the  
functional limits of the processor. Only within specified operation limits can functionality  
and long-term reliability be expected.  
At conditions outside functional operation condition limits, but within absolute  
maximum and minimum ratings, neither functionality nor long-term reliability can be  
expected. If a device is returned to conditions within functional operation limits after  
having been subjected to conditions outside these limits, but within the absolute  
maximum and minimum ratings, the device may be functional, but with its lifetime  
degraded depending on exposure to conditions exceeding the functional operation  
condition limits.  
At conditions exceeding absolute maximum and minimum ratings, neither functionality  
nor long-term reliability can be expected. Moreover, if a device is subjected to these  
conditions for any length of time then, when returned to conditions within the  
functional operating condition limits, it will either not function or its reliability will be  
severely degraded.  
Although the processor contains protective circuitry to resist damage from Electro-  
Static Discharge (ESD), precautions should always be taken to avoid high static  
voltages or electric fields.  
Datasheet  
21  
Electrical Specifications  
.
Table 2-6.  
Processor Absolute Minimum and Maximum Ratings  
1, 2  
Symbol  
Parameter  
Min  
Max  
Unit Notes  
V
Processor Core voltage with respect to V  
-0.3  
1.55  
1.35  
V
CC  
SS  
Voltage for the analog portion of the integrated  
memory controller, QPI link and Shared Cache  
V
V
V
3
3
V
TTA  
with respect to V  
SS  
Voltage for the digital portion of the integrated  
memory controller, QPI link and Shared Cache  
1.35  
V
TTD  
with respect to V  
SS  
Processor I/O supply voltage for DDR3 with  
respect to V  
1.875  
1.89  
V
DDQ  
SS  
V
Processor PLL voltage with respect to V  
Processor case temperature  
1.65  
V
CCPLL  
SS  
See  
Chapter 6  
See  
Chapter 6  
C  
T
CASE  
Storage temperature  
See  
Chapter 6  
See  
Chapter 6  
C  
T
STORAGE  
Notes:  
1.  
For functional operation, all processor electrical, signal quality, mechanical and thermal specifications must  
be satisfied.  
2.  
3.  
Excessive overshoot or undershoot on any signal will likely result in permanent damage to the processor.  
V
and V  
should be derived from the same VR.  
TTA  
TTD  
2.11  
Processor DC Specifications  
The processor DC specifications in this section are defined at the processor  
pads, unless noted otherwise. See Chapter 4 for the processor land listings and  
Chapter 5 for signal definitions. Voltage and current specifications are detailed in  
Table 2-7. For platform planning, refer to Table 2-8, which provides VCC static and  
transient tolerances. This same information is presented graphically in Figure 2-3.  
The DC specifications for the DDR3 signals are listed in Table 2-11. Control Sideband  
and Test Access Port (TAP) are listed in Table 2-12 through Table 2-15.  
Table 2-7 through Table 2-15 list the DC specifications for the processor and are valid  
only while meeting specifications for case temperature (TCASE as specified in Chapter 6,  
“Thermal Specifications”), clock frequency, and input voltages. Care should be taken to  
read all notes associated with each parameter.  
22  
Datasheet  
Electrical Specifications  
2.11.1  
DC Voltage and Current Specification  
Table 2-7.  
Voltage and Current Specifications  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
2
VID  
VID range  
0.8  
1.375  
V
Processor  
Number  
V
for processor core  
CC  
i7-975  
i7-965  
i7-960  
i7-950  
i7-940  
i7-930  
i7-920  
3.33 GHz  
3.20 GHz  
3.20 GHz  
3.06 GHz  
2.93 GHz  
2.80 GHz  
2.66 GHz  
3,4  
V
See Table 2-8 and Figure 2-3  
V
CC  
Voltage for the analog portion of the  
integrated memory controller, QPI link  
and Shared Cache  
5
V
See Table 2-10 and Figure 2-4  
See Table 2-9 and Figure 2-4  
V
V
TTA  
Voltage for the digital portion of the  
integrated memory controller, QPI link  
and Shared Cache  
V
5
TTD  
V
Processor I/O supply voltage for DDR3  
1.425  
1.71  
1.5  
1.8  
1.575  
1.89  
V
V
DDQ  
PLL supply voltage (DC + AC  
specification)  
V
CCPLL  
Processor  
Number  
I
for processor  
CC  
i7-975  
i7-965  
i7-960  
i7-950  
i7-940  
i7-930  
i7-920  
3.33 GHz  
145  
145  
145  
145  
145  
145  
145  
3.20 GHz  
3.20 GHz  
3.06 GHz  
2.93 GHz  
2.80 GHz  
2.66 GHz  
6
I
A
CC  
Current for the analog portion of the  
integrated memory controller, QPI link  
and Shared Cache  
I
5
A
A
TTA  
Current for the digital portion of the  
integrated memory controller, QPI link  
and Shared Cache  
I
23  
TTD  
I
Processor I/O supply current for DDR3  
6
1
A
A
A
DDQ  
Processor I/O supply current for DDR3  
while in S3  
7
I
S3  
DDQ  
I
PLL supply current (DC + AC specification)  
1.1  
CC_VCCPLL  
Notes:  
1.  
Unless otherwise noted, all specifications in this table are based on estimates and simulations or empirical  
data. These specifications will be updated with characterized data from silicon measurements at a later date  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and can not be altered. Individual maximum VID values are calibrated during manufacturing  
such that two processors at the same frequency may have different settings within the VID range. Please  
note this differs from the VID employed by the processor during a power management event (Adaptive  
2.  
®
Thermal Monitor, Enhanced Intel SpeedStep Technology, or Low Power States).  
3.  
The voltage specification requirements are measured across VCC_SENSE and VSS_SENSE lands at the  
socket with a 100 MHz bandwidth oscilloscope, 1.5 pF maximum probe capacitance, and 1 Mminimum  
impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external  
noise from the system is not coupled into the oscilloscope probe.  
4.  
5.  
Refer to Table 2-8 and Figure 2-3 for the minimum, typical, and maximum VCC allowed for a given current.  
The processor should not be subjected to any VCC and ICC combination wherein VCC exceeds VCC_MAX for  
a given current.  
See Table 2-9 for details on V Voltage Identification and Table 2-9 and Figure 2-4 for details on the V  
TT  
TT  
Loadline.  
6. ICC_MAX specification is based on the VCC_MAX loadline. Refer to Figure 2-3 for details.  
7.  
This specification is based on a processor temperature, as reported by the DTS, of less than or equal to  
–25.  
T
CONTROL  
Datasheet  
23  
Electrical Specifications  
Table 2-8.  
VCC Static and Transient Tolerance  
I
(A)  
V
(V)  
V
(V)  
V (V)  
CC_Min  
Notes  
CC  
CC_Max  
CC_Typ  
0
VID - 0.000  
VID - 0.004  
VID - 0.008  
VID - 0.012  
VID - 0.016  
VID - 0.020  
VID - 0.024  
VID - 0.028  
VID - 0.032  
VID - 0.036  
VID - 0.040  
VID - 0.044  
VID - 0.048  
VID - 0.052  
VID - 0.056  
VID - 0.060  
VID - 0.062  
VID - 0.068  
VID - 0.072  
VID - 0.076  
VID - 0.080  
VID - 0.084  
VID - 0.088  
VID - 0.092  
VID - 0.096  
VID - 0.100  
VID - 0.104  
VID - 0.108  
VID - 0.112  
VID - 0.019  
VID - 0.023  
VID - 0.027  
VID - 0.031  
VID - 0.035  
VID - 0.039  
VID - 0.043  
VID - 0.047  
VID - 0.051  
VID - 0.055  
VID - 0.059  
VID - 0.063  
VID - 0.067  
VID - 0.071  
VID - 0.075  
VID - 0.079  
VID - 0.081  
VID - 0.087  
VID - 0.091  
VID - 0.095  
VID - 0.099  
VID - 0.103  
VID - 0.107  
VID - 0.111  
VID - 0.115  
VID - 0.119  
VID - 0.123  
VID - 0.127  
VID - 0.131  
VID - 0.038  
VID - 0.042  
VID - 0.046  
VID - 0.050  
VID - 0.054  
VID - 0.058  
VID - 0.062  
VID - 0.066  
VID - 0.070  
VID - 0.074  
VID - 0.078  
VID - 0.082  
VID - 0.086  
VID - 0.090  
VID - 0.094  
VID - 0.098  
VID - 0.100  
VID - 0.106  
VID - 0.110  
VID - 0.114  
VID - 0.118  
VID - 0.122  
VID - 0.126  
VID - 0.130  
VID - 0.134  
VID - 0.138  
VID - 0.142  
VID - 0.146  
VID - 0.150  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
78  
85  
90  
95  
100  
105  
110  
115  
120  
125  
130  
135  
140  
Notes:  
1.  
The V  
and V  
loadlines represent static and transient limits. See Section 2.11.2 for V  
CC_MIN  
CC_MAX CC  
overshoot specifications.  
This table is intended to aid in reading discrete points on Figure 2-3.  
The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage  
regulation feedback for voltage regulator circuits must also be taken from processor VCC_SENSE and  
VSS_SENSE lands.  
2.  
3.  
24  
Datasheet  
Electrical Specifications  
Figure 2-3. VCC Static and Transient Tolerance Load Lines  
Icc [A]  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
VID - 0.000  
VID - 0.013  
VID - 0.025  
VID - 0.038  
VID - 0.050  
VID - 0.063  
VID - 0.075  
VID - 0.088  
VID - 0.100  
VID - 0.113  
VID - 0.125  
VID - 0.138  
VID - 0.150  
VID - 0.163  
VID - 0.175  
Vcc Maximum  
Vcc Typical  
V
c
c
V
Vcc Minimum  
Table 2-9.  
VTT Voltage Identification (VID) Definition  
VTT VR - VID Input  
V
TT_Typ  
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1.220 V  
1.195 V  
1.170 V  
1.145 V  
1.120 V  
1.095 V  
1.070 V  
1.045 V  
Note:  
1.  
This is a typical voltage, see Table 2-10 for VTT_Max and VTT_Min voltage.  
Datasheet  
25  
Electrical Specifications  
Table 2-10. VTT Static and Transient Tolerance  
1
I
(A)  
V
(V)  
V
(V)  
V (V)  
TT_Min  
Notes  
TT  
TT_Max  
TT_Typ  
0
VID + 0.0315  
VID + 0.0255  
VID + 0.0195  
VID + 0.0135  
VID + 0.0075  
VID + 0.0015  
VID – 0.0045  
VID – 0.0105  
VID – 0.0165  
VID – 0.0225  
VID – 0.0285  
VID – 0.0345  
VID – 0.0405  
VID – 0.0465  
VID – 0.0525  
VID – 0.0585  
VID – 0.0645  
VID – 0.0705  
VID – 0.0765  
VID – 0.0825  
VID – 0.0885  
VID – 0.0945  
VID – 0.1005  
VID – 0.1065  
VID – 0.1125  
VID – 0.1185  
VID – 0.1245  
VID – 0.1305  
VID – 0.1365  
VID – 0.0000  
VID – 0.0060  
VID – 0.0120  
VID – 0.0180  
VID – 0.0240  
VID – 0.0300  
VID – 0.0360  
VID – 0.0420  
VID – 0.0480  
VID – 0.0540  
VID – 0.0600  
VID – 0.0660  
VID – 0.0720  
VID – 0.0780  
VID – 0.0840  
VID – 0.0900  
VID – 0.0960  
VID – 0.1020  
VID – 0.1080  
VID – 0.1140  
VID – 0.1200  
VID – 0.1260  
VID – 0.1320  
VID – 0.1380  
VID – 0.1440  
VID – 0.1500  
VID – 0.1560  
VID – 0.1620  
VID – 0.1680  
VID – 0.0315  
VID – 0.0375  
VID – 0.0435  
VID – 0.0495  
VID – 0.0555  
VID – 0.0615  
VID – 0.0675  
VID – 0.0735  
VID – 0.0795  
VID – 0.0855  
VID – 0.0915  
VID – 0.0975  
VID – 0.1035  
VID – 0.1095  
VID – 0.1155  
VID – 0.1215  
VID – 0.1275  
VID – 0.1335  
VID – 0.1395  
VID – 0.1455  
VID – 0.1515  
VID – 0.1575  
VID – 0.1635  
VID – 0.1695  
VID – 0.1755  
VID – 0.1815  
VID – 0.1875  
VID – 0.1935  
VID – 0.1995  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Notes:  
1. The I listed in this table is a sum of I  
and I .  
TTD  
TT  
TTA  
2. The loadlines specify voltage limits at the die measured at the VTT_SENSE and VSS_SENSE_VTT lands. Voltage  
regulation feedback for voltage regulator circuits must also be taken from processor VTT_SENSE and  
VSS_SENSE_VTT lands.  
26  
Datasheet  
Electrical Specifications  
Figure 2-4. VTT Static and Transient Tolerance Load Line  
Itt [A] (sum of Itta and Ittd)  
0
5
10  
15  
20  
25  
0.0500  
0.0375  
0.0250  
0.0125  
0.0000  
-0.0125  
-0.0250  
-0.0375  
-0.0500  
-0.0625  
-0.0750  
-0.0875  
-0.1000  
-0.1125  
-0.1250  
-0.1375  
-0.1500  
-0.1625  
-0.1750  
-0.1875  
-0.2000  
-0.2125  
V
t
t
Vtt Maximum  
V
Vtt Typical  
Vtt Minimum  
Table 2-11. DDR3 Signal Group DC Specifications  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
V
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
0.43*V  
V
V
2,4  
3
IL  
DDQ  
V
0.57*V  
IH  
DDQ  
(V  
/ 2)* (R  
))  
VTT_TERM  
/
ON  
DDQ  
ON  
V
V
V
OL  
OH  
ON  
(R +R  
Output High Voltage  
V
– ((V  
/ 2)*  
DDQ  
DDQ  
V
R
R
R
R
R
4
(R /(R +R ))  
VTT_TERM  
ON  
ON  
DDR3 Clock Buffer On  
Resistance  
21  
16  
25  
21  
21  
31  
24  
75  
31  
31  
DDR3 Command Buffer  
On Resistance  
ON  
ON  
ON  
ON  
DDR3 Reset Buffer On  
Resistance  
DDR3 Control Buffer On  
Resistance  
DDR3 Data Buffer On  
Resistance  
I
Input Leakage Current  
COMP Resistance  
COMP Resistance  
COMP Resistance  
N/A  
99  
N/A  
100  
24.9  
130  
± 1  
101  
mA  
LI  
5
5
5
DDR_COMP0  
DDR_COMP1  
DDR_COMP2  
24.65  
128.7  
25.15  
131.30  
Notes:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
is defined as the maximum voltage level at a receiving agent that will be interpreted as a logical low  
V
IL  
value.  
is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high  
3.  
V
IH  
value.  
Datasheet  
27  
Electrical Specifications  
4.  
5.  
V
and V  
may experience excursions above V . However, input signal drivers must comply with the  
DDQ  
IH  
OH  
signal quality specifications.  
COMP resistance must be provided on the system board with 1% resistors.  
Table 2-12. RESET# Signal DC Specifications  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
V
Input Low Voltage  
Input High Voltage  
Input Leakage Current  
0.80 * V  
0.40 * V  
V
2
2,4  
3
IL  
IH  
LI  
TTA  
V
TTA  
I
± 200  
A  
Notes:  
1.  
2.  
3.  
4.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
The V  
referred to in these specifications refers to instantaneous V  
.
TTA  
TTA  
For Vin between 0 V and V . Measured when the driver is tristated.  
TTA  
V
and V  
may experience excursions above V .  
IH  
O
H
T
T
Table 2-13. TAP Signal Group DC Specifications  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
V
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
0.40  
V
TTA  
V
2
2,4  
2
IL  
IH  
OL  
*
V
0.75 * V  
TTA  
V
V
ON  
* R  
/
ON  
)
sys_term  
V
TTA  
(R  
+ R  
V
Output High Voltage  
Buffer on Resistance  
Input Leakage Current  
V
V
2,4  
3
OH  
TTA  
Ron  
10  
18  
I
± 200  
A  
LI  
Notes:  
1.  
2.  
3.  
4.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
The V referred to in these specifications refers to instantaneous V  
.
TTA  
TTA  
For Vin between 0 V and V . Measured when the driver is tristated.  
TTA  
V
and V  
may experience excursions above V .  
IH  
OH TT  
Table 2-14. PWRGOOD Signal Group DC Specifications  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
Input Low Voltage for VCCPWRGOOD  
and VTTPWRGOOD Signals  
V
V
0.25 * V  
0.29  
V
2,5  
IL  
TTA  
Input Low Voltage for VDDPWRGOOD  
Signal  
0.75 * V  
0.87  
V
6
IL  
Input High Voltage for VCCPWRGOOD  
and VTTPWRGOOD Signals  
V
V
V
V
2,5  
5
IH  
IH  
TTA  
Input High Voltage for VDDPWRGOOD  
Signal  
Ron  
Buffer on Resistance  
10  
18  
I
Input Leakage Current  
± 200  
A  
4
LI  
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
The V referred to in these specifications refers to instantaneous V  
For Vin between 0 V and V . Measured when the driver is tristated.  
.
TTA  
TTA  
TTA  
V
and V  
may experience excursions above V .  
IH  
OH TT  
This specification applies to VCCPWRGOOD and VTTPWRGOOD  
This specification applies to VDDPWRGOOD  
28  
Datasheet  
Electrical Specifications  
Table 2-15. Control Sideband Signal Group DC Specifications  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
V
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
0.64  
V
V
V
V
2
2
IL  
*
TTA  
V
0.76  
V
TTA  
IH  
*
V
* R  
sys_term  
/ (R  
ON  
2,4  
TTA  
ON  
V
OL  
+ R  
)
V
Output High Voltage  
Buffer on Resistance  
V
V
2,4  
OH  
TTA  
Ron  
Ron  
10  
18  
Buffer on Resistance for  
VID[7:0]  
100  
I
Input Leakage Current  
COMP Resistance  
± 200  
50.40  
A  
3
5
LI  
COMP0  
49.4  
49.9  
Notes:  
1.  
2.  
3.  
4.  
5.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
The V referred to in these specifications refers to instantaneous V  
For Vin between 0 V and V . Measured when the driver is tristated.  
.
TTA  
TTA  
TTA  
V
and V  
may experience excursions above V .  
IH  
OH TT  
COMP resistance must be provided on the system board with 1% resistors.  
2.11.2  
V
Overshoot Specification  
CC  
The processor can tolerate short transient overshoot events where VCC exceeds the VID  
voltage when transitioning from a high-to-low current load condition. This overshoot  
cannot exceed VID + VOS_MAX (VOS_MAX is the maximum allowable overshoot above  
VID). These specifications apply to the processor die voltage as measured across the  
VCC_SENSE and VSS_SENSE lands.  
Table 2-16. VCC Overshoot Specifications  
Symbol  
Parameter  
overshoot above VID  
CCP  
Min  
Max  
Units  
Figure  
Notes  
V
Magnitude of V  
50  
25  
mV  
µs  
2-5  
2-5  
OS_MAX  
T
Time duration of V  
overshoot above VID  
CCP  
OS_MAX  
Datasheet  
29  
Electrical Specifications  
Figure 2-5. VCC Overshoot Example Waveform  
Example Overshoot Waveform  
VOS  
VID + VOS  
VID  
TOS  
Time  
TOS: Overshoot time above VID  
VOS: Overshoot above VID  
2.11.3  
Die Voltage Validation  
Core voltage (VCC) overshoot events at the processor must meet the specifications in  
Table 2-16 when measured across the VCC_SENSE and VSS_SENSE lands. Overshoot  
events that are < 10 ns in duration may be ignored. These measurements of processor  
die level overshoot should be taken with a 100 MHz bandwidth limited oscilloscope.  
§
30  
Datasheet  
Package Mechanical Specifications  
3 Package Mechanical  
Specifications  
The processor is packaged in a Flip-Chip Land Grid Array package that interfaces with  
the motherboard using an LGA1366 socket. The package consists of a processor  
mounted on a substrate land-carrier. An integrated heat spreader (IHS) is attached to  
the package substrate and core and serves as the mating surface for processor thermal  
solutions, such as a heatsink. Figure 3-1 shows a sketch of the processor package  
components and how they are assembled together. Refer to the appropriate processor  
Thermal and Mechanical Design Guidelines (see Section 1.2) for complete details on  
the LGA1366 socket.  
The package components shown in Figure 3-1 include the following:  
• Integrated Heat Spreader (IHS)  
• Thermal Interface Material (TIM)  
• Processor core (die)  
• Package substrate  
• Capacitors  
Figure 3-1. Processor Package Assembly Sketch  
TIM  
Die  
IHS  
Substrate  
Capacitors  
LGA1366 Socket  
System Board  
Note:  
1.  
Socket and motherboard are included for reference and are not part of the processor package.  
3.1  
Package Mechanical Drawing  
The package mechanical drawings are shown in Figure 3-2 and Figure 3-3. The  
drawings include dimensions necessary to design a thermal solution for the processor.  
These dimensions include:  
• Package reference with tolerances (total height, length, width, etc.)  
• IHS parallelism and tilt  
• Land dimensions  
Top-side and back-side component keep-out dimensions  
• Reference datums  
• All drawing dimensions are in mm.  
• Guidelines on potential IHS flatness variation with socket load plate actuation and  
installation of the cooling solution is available in the appropriate processor Thermal  
and Mechanical Design Guidelines (see Section 1.2).  
Datasheet  
31  
Package Mechanical Specifications  
Figure 3-2. Processor Package Drawing (Sheet 1 of 2)  
32  
Datasheet  
Package Mechanical Specifications  
Figure 3-3. Processor Package Drawing (Sheet 2 of 2)  
Datasheet  
33  
Package Mechanical Specifications  
3.2  
3.3  
Processor Component Keep-Out Zones  
The processor may contain components on the substrate that define component keep-  
out zone requirements. A thermal and mechanical solution design must not intrude into  
the required keep-out zones. Decoupling capacitors are typically mounted to either the  
top-side or land-side of the package substrate. See Figure 3-2 and Figure 3-3 for keep-  
out zones. The location and quantity of package capacitors may change due to  
manufacturing efficiencies but will remain within the component keep-in.  
Package Loading Specifications  
Table 3-1 provides dynamic and static load specifications for the processor package.  
These mechanical maximum load limits should not be exceeded during heatsink  
assembly, shipping conditions, or standard use condition. Also, any mechanical system  
or component testing should not exceed the maximum limits. The processor package  
substrate should not be used as a mechanical reference or load-bearing surface for  
thermal and mechanical solution.  
.
Table 3-1.  
Processor Loading Specifications  
Parameter  
Maximum  
Notes  
Static Compressive Load  
934 N [210 lbf]  
1, 2, 3  
1, 3, 4  
Dynamic Compressive Load  
1834 N [410 lbf] [max static  
compressive + dynamic load]  
Notes:  
1.  
2.  
These specifications apply to uniform compressive loading in a direction normal to the processor IHS.  
This is the minimum and maximum static force that can be applied by the heatsink and retention solution  
to maintain the heatsink and processor interface.  
3.  
4.  
These specifications are based on limited testing for design characterization. Loading limits are for the  
package only and do not include the limits of the processor socket.  
Dynamic loading is defined as an 11 ms duration average load superimposed on the static load  
requirement.  
3.4  
Package Handling Guidelines  
Table 3-2 includes a list of guidelines on package handling in terms of recommended  
maximum loading on the processor IHS relative to a fixed substrate. These package  
handling loads may be experienced during heatsink removal.  
Table 3-2.  
Package Handling Guidelines  
Parameter  
Maximum Recommended  
Notes  
Shear  
Tensile  
Torque  
70 lbs  
25 lbs  
35 in.lbs  
3.5  
Package Insertion Specifications  
The processor can be inserted into and removed from an LGA1366 socket 15 times. The  
socket should meet the LGA1366 requirements detailed in the appropriate processor  
Thermal and Mechanical Design Guidelines (see Section 1.2)  
34  
Datasheet  
Package Mechanical Specifications  
3.6  
Processor Mass Specification  
The typical mass of the processor is 35g. This mass [weight] includes all the  
components that are included in the package.  
3.7  
Processor Materials  
Table 3-3 lists some of the package components and associated materials.  
Table 3-3.  
Processor Materials  
Component  
Material  
Integrated Heat Spreader (IHS)  
Substrate  
Nickel Plated Copper  
Fiber Reinforced Resin  
Gold Plated Copper  
Substrate Lands  
3.8  
Processor Markings  
Figure 3-4 shows the top-side markings on the processor. This diagram is to aid in the  
identification of the processor.  
Figure 3-4. Processor Top-side Markings  
M
INTEL ©'07 PROC#  
BRAND  
SLxxx [COO]  
SPEED/CACHE/INTC/FMB  
e4  
[FPO]  
Datasheet  
35  
Package Mechanical Specifications  
3.9  
Processor Land Coordinates  
Figure 3-5 shows the top view of the processor land coordinates. The coordinates are  
referred to throughout the document to identify processor lands.  
Figure 3-5. Processor Land Coordinates and Quadrants (Bottom View)  
§
36  
Datasheet  
Land Listing  
4 Land Listing  
This section provides sorted land lists in Table 4-1 and Table 4-2. Table 4-1 is a listing  
of all processor lands ordered alphabetically by land name. Table 4-2 is a listing of all  
processor lands ordered by land number.  
Table 4-1. Land Listing by Land Name  
(Sheet 2 of 29)  
Table 4-1. Land Listing by Land Name  
(Sheet 1 of 29)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
DDR0_CS#[5]  
A7  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
O
BCLK_DN  
AH35  
AJ35  
AA4  
AA5  
B3  
CMOS  
CMOS  
CMOS  
CMOS  
GTL  
I
DDR0_DQ[0]  
DDR0_DQ[1]  
DDR0_DQ[10]  
DDR0_DQ[11]  
DDR0_DQ[12]  
DDR0_DQ[13]  
DDR0_DQ[14]  
DDR0_DQ[15]  
DDR0_DQ[16]  
DDR0_DQ[17]  
DDR0_DQ[18]  
DDR0_DQ[19]  
DDR0_DQ[2]  
DDR0_DQ[20]  
DDR0_DQ[21]  
DDR0_DQ[22]  
DDR0_DQ[23]  
DDR0_DQ[24]  
DDR0_DQ[25]  
DDR0_DQ[26]  
DDR0_DQ[27]  
DDR0_DQ[28]  
DDR0_DQ[29]  
DDR0_DQ[3]  
DDR0_DQ[30]  
DDR0_DQ[31]  
DDR0_DQ[32]  
DDR0_DQ[33]  
DDR0_DQ[34]  
DDR0_DQ[35]  
DDR0_DQ[36]  
DDR0_DQ[37]  
DDR0_DQ[38]  
DDR0_DQ[39]  
DDR0_DQ[4]  
DDR0_DQ[40]  
DDR0_DQ[41]  
DDR0_DQ[42]  
W41  
V41  
K42  
K43  
P42  
P41  
L43  
L42  
H41  
H43  
E42  
E43  
R43  
J42  
J41  
F43  
F42  
D40  
C41  
A38  
D37  
D41  
D42  
R42  
C38  
B38  
B5  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
BCLK_DP  
I
BCLK_ITP_DN  
BCLK_ITP_DP  
BPM#[0]  
O
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
BPM#[1]  
A5  
GTL  
BPM#[2]  
C2  
GTL  
BPM#[3]  
B4  
GTL  
BPM#[4]  
D1  
GTL  
BPM#[5]  
C3  
GTL  
BPM#[6]  
D2  
GTL  
BPM#[7]  
E2  
GTL  
CAT_ERR#  
AC37  
AB41  
AF10  
AA8  
Y7  
GTL  
COMP0  
Analog  
Asynch  
Analog  
Analog  
Analog  
Analog  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CMOS  
CMOS  
CMOS  
DBR#  
I
DDR_COMP[0]  
DDR_COMP[1]  
DDR_COMP[2]  
DDR_VREF  
AC1  
L23  
B16  
A16  
C28  
C12  
C29  
A30  
B30  
B31  
K19  
C19  
E18  
E19  
J19  
D19  
F18  
E20  
G15  
B10  
B15  
I
DDR0_BA[0]  
DDR0_BA[1]  
DDR0_BA[2]  
DDR0_CAS#  
DDR0_CKE[0]  
DDR0_CKE[1]  
DDR0_CKE[2]  
DDR0_CKE[3]  
DDR0_CLK_N[0]  
DDR0_CLK_N[1]  
DDR0_CLK_N[2]  
DDR0_CLK_N[3]  
DDR0_CLK_P[0]  
DDR0_CLK_P[1]  
DDR0_CLK_P[2]  
DDR0_CLK_P[3]  
DDR0_CS#[0]  
DDR0_CS#[1]  
DDR0_CS#[4]  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
C4  
F1  
G3  
B6  
C6  
F3  
F2  
W40  
H2  
H1  
L1  
Datasheet  
37  
Land Listing  
Table 4-1. Land Listing by Land Name  
(Sheet 3 of 29)  
Table 4-1. Land Listing by Land Name  
(Sheet 4 of 29)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
DDR0_DQ[43]  
M1  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
DDR0_MA[14]  
DDR0_MA[15]  
DDR0_MA[2]  
DDR0_MA[3]  
DDR0_MA[4]  
DDR0_MA[5]  
DDR0_MA[6]  
DDR0_MA[7]  
DDR0_MA[8]  
DDR0_MA[9]  
DDR0_ODT[0]  
DDR0_ODT[1]  
DDR0_ODT[2]  
DDR0_ODT[3]  
DDR0_RAS#  
A28  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
O
DDR0_DQ[44]  
DDR0_DQ[45]  
DDR0_DQ[46]  
DDR0_DQ[47]  
DDR0_DQ[48]  
DDR0_DQ[49]  
DDR0_DQ[5]  
G1  
B29  
C23  
D24  
B23  
B24  
C24  
A25  
B25  
C26  
F12  
C9  
O
H3  
O
L3  
O
L2  
O
N1  
O
N2  
O
W42  
T1  
O
DDR0_DQ[50]  
DDR0_DQ[51]  
DDR0_DQ[52]  
DDR0_DQ[53]  
DDR0_DQ[54]  
DDR0_DQ[55]  
DDR0_DQ[56]  
DDR0_DQ[57]  
DDR0_DQ[58]  
DDR0_DQ[59]  
DDR0_DQ[6]  
O
T2  
O
M3  
N3  
O
O
R4  
B11  
C7  
O
T3  
O
U4  
A15  
D32  
B13  
C18  
K13  
H27  
E14  
H28  
E27  
D27  
C27  
D21  
G20  
L18  
H19  
C21  
G19  
K18  
H18  
D12  
A8  
O
V1  
DDR0_RESET#  
DDR0_WE#  
O
Y2  
O
Y3  
DDR1_BA[0]  
O
U41  
U1  
DDR1_BA[1]  
O
DDR0_DQ[60]  
DDR0_DQ[61]  
DDR0_DQ[62]  
DDR0_DQ[63]  
DDR0_DQ[7]  
DDR1_BA[2]  
O
U3  
DDR1_CAS#  
O
V4  
DDR1_CKE[0]  
DDR1_CKE[1]  
DDR1_CKE[2]  
DDR1_CKE[3]  
DDR1_CLK_N[0]  
DDR1_CLK_N[1]  
DDR1_CLK_N[2]  
DDR1_CLK_N[3]  
DDR1_CLK_P[0]  
DDR1_CLK_P[1]  
DDR1_CLK_P[2]  
DDR1_CLK_P[3]  
DDR1_CS#[0]  
DDR1_CS#[1]  
DDR1_CS#[4]  
DDR1_CS#[5]  
DDR1_DQ[0]  
DDR1_DQ[1]  
DDR1_DQ[10]  
DDR1_DQ[11]  
DDR1_DQ[12]  
DDR1_DQ[13]  
DDR1_DQ[14]  
DDR1_DQ[15]  
DDR1_DQ[16]  
DDR1_DQ[17]  
DDR1_DQ[18]  
O
W4  
T42  
N41  
N43  
U43  
M41  
G41  
B40  
E4  
O
O
DDR0_DQ[8]  
O
DDR0_DQ[9]  
O
DDR0_DQS_N[0]  
DDR0_DQS_N[1]  
DDR0_DQS_N[2]  
DDR0_DQS_N[3]  
DDR0_DQS_N[4]  
DDR0_DQS_N[5]  
DDR0_DQS_N[6]  
DDR0_DQS_N[7]  
DDR0_DQS_P[0]  
DDR0_DQS_P[1]  
DDR0_DQS_P[2]  
DDR0_DQS_P[3]  
DDR0_DQS_P[4]  
DDR0_DQS_P[5]  
DDR0_DQS_P[6]  
DDR0_DQS_P[7]  
DDR0_MA[0]  
O
O
O
O
O
K3  
O
R3  
O
W1  
T43  
L41  
F41  
B39  
E3  
O
O
C17  
E10  
AA37  
AA36  
P39  
N39  
R34  
R35  
N37  
N38  
M35  
M34  
K35  
O
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
K2  
R2  
W2  
A20  
B21  
B19  
A26  
B26  
A10  
DDR0_MA[1]  
O
DDR0_MA[10]  
DDR0_MA[11]  
DDR0_MA[12]  
DDR0_MA[13]  
O
O
O
O
38  
Datasheet  
Land Listing  
Table 4-1. Land Listing by Land Name  
(Sheet 5 of 29)  
Table 4-1. Land Listing by Land Name  
(Sheet 6 of 29)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
DDR1_DQ[19]  
J35  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DDR1_DQ[62]  
AA7  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
DDR1_DQ[2]  
DDR1_DQ[20]  
DDR1_DQ[21]  
DDR1_DQ[22]  
DDR1_DQ[23]  
DDR1_DQ[24]  
DDR1_DQ[25]  
DDR1_DQ[26]  
DDR1_DQ[27]  
DDR1_DQ[28]  
DDR1_DQ[29]  
DDR1_DQ[3]  
DDR1_DQ[30]  
DDR1_DQ[31]  
DDR1_DQ[32]  
DDR1_DQ[33]  
DDR1_DQ[34]  
DDR1_DQ[35]  
DDR1_DQ[36]  
DDR1_DQ[37]  
DDR1_DQ[38]  
DDR1_DQ[39]  
DDR1_DQ[4]  
DDR1_DQ[40]  
DDR1_DQ[41]  
DDR1_DQ[42]  
DDR1_DQ[43]  
DDR1_DQ[44]  
DDR1_DQ[45]  
DDR1_DQ[46]  
DDR1_DQ[47]  
DDR1_DQ[48]  
DDR1_DQ[49]  
DDR1_DQ[5]  
DDR1_DQ[50]  
DDR1_DQ[51]  
DDR1_DQ[52]  
DDR1_DQ[53]  
DDR1_DQ[54]  
DDR1_DQ[55]  
DDR1_DQ[56]  
DDR1_DQ[57]  
DDR1_DQ[58]  
DDR1_DQ[59]  
DDR1_DQ[6]  
DDR1_DQ[60]  
DDR1_DQ[61]  
Y35  
N34  
M36  
J36  
H36  
H33  
L33  
K32  
J32  
J34  
H34  
Y34  
L32  
K30  
E9  
DDR1_DQ[63]  
DDR1_DQ[7]  
W9  
Y39  
P34  
P35  
Y37  
R37  
L36  
L31  
D7  
DDR1_DQ[8]  
DDR1_DQ[9]  
DDR1_DQS_N[0]  
DDR1_DQS_N[1]  
DDR1_DQS_N[2]  
DDR1_DQS_N[3]  
DDR1_DQS_N[4]  
DDR1_DQS_N[5]  
DDR1_DQS_N[6]  
DDR1_DQS_N[7]  
DDR1_DQS_P[0]  
DDR1_DQS_P[1]  
DDR1_DQS_P[2]  
DDR1_DQS_P[3]  
DDR1_DQS_P[4]  
DDR1_DQS_P[5]  
DDR1_DQS_P[6]  
DDR1_DQS_P[7]  
DDR1_MA[0]  
G6  
L5  
Y9  
Y38  
R38  
L35  
L30  
E7  
E8  
E5  
F5  
H6  
F10  
G8  
L6  
Y8  
D6  
J14  
J16  
H14  
E23  
E24  
B14  
H26  
F26  
J17  
L28  
K28  
F22  
J27  
D22  
E22  
G24  
D11  
C8  
F6  
DDR1_MA[1]  
O
AA35  
H8  
DDR1_MA[10]  
DDR1_MA[11]  
DDR1_MA[12]  
DDR1_MA[13]  
DDR1_MA[14]  
DDR1_MA[15]  
DDR1_MA[2]  
O
O
J6  
O
G4  
O
H4  
O
G9  
O
H9  
O
G5  
DDR1_MA[3]  
O
J5  
DDR1_MA[4]  
O
K4  
DDR1_MA[5]  
O
K5  
DDR1_MA[6]  
O
AB36  
R5  
DDR1_MA[7]  
O
DDR1_MA[8]  
O
T5  
DDR1_MA[9]  
O
J4  
DDR1_ODT[0]  
DDR1_ODT[1]  
DDR1_ODT[2]  
DDR1_ODT[3]  
DDR1_RAS#  
O
M6  
R8  
O
D14  
F11  
G14  
D29  
G13  
A17  
F17  
L26  
F16  
O
R7  
O
W6  
W7  
Y10  
W10  
Y40  
V9  
O
DDR1_RESET#  
DDR1_WE#  
O
O
DDR2_BA[0]  
O
DDR2_BA[1]  
O
DDR2_BA[2]  
O
W5  
DDR2_CAS#  
O
Datasheet  
39  
Land Listing  
Table 4-1. Land Listing by Land Name  
(Sheet 7 of 29)  
Table 4-1. Land Listing by Land Name  
(Sheet 8 of 29)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
DDR2_CKE[0]  
J26  
CMOS  
CMOS  
CMOS  
CMOS  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
O
DDR2_DQ[38]  
DDR2_DQ[39]  
DDR2_DQ[4]  
H12  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DDR2_CKE[1]  
DDR2_CKE[2]  
DDR2_CKE[3]  
DDR2_CLK_N[0]  
DDR2_CLK_N[1]  
DDR2_CLK_N[2]  
DDR2_CLK_N[3]  
DDR2_CLK_P[0]  
DDR2_CLK_P[1]  
DDR2_CLK_P[2]  
DDR2_CLK_P[3]  
DDR2_CS#[0]  
DDR2_CS#[1]  
DDR2_CS#[4]  
DDR2_CS#[5]  
DDR2_DQ[0]  
G26  
D26  
L27  
J21  
O
L12  
U34  
L10  
K10  
M9  
O
O
DDR2_DQ[40]  
DDR2_DQ[41]  
DDR2_DQ[42]  
DDR2_DQ[43]  
DDR2_DQ[44]  
DDR2_DQ[45]  
DDR2_DQ[46]  
DDR2_DQ[47]  
DDR2_DQ[48]  
DDR2_DQ[49]  
DDR2_DQ[5]  
O
K20  
G21  
L21  
J22  
O
O
N9  
O
L11  
M10  
L8  
O
L20  
H21  
L22  
G16  
K14  
E17  
D9  
O
O
M8  
O
P7  
O
N6  
O
V34  
P9  
O
DDR2_DQ[50]  
DDR2_DQ[51]  
DDR2_DQ[52]  
DDR2_DQ[53]  
DDR2_DQ[54]  
DDR2_DQ[55]  
DDR2_DQ[56]  
DDR2_DQ[57]  
DDR2_DQ[58]  
DDR2_DQ[59]  
DDR2_DQ[6]  
O
P10  
N8  
W34  
W35  
R39  
T36  
W39  
V39  
T41  
R40  
M39  
M40  
J40  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DDR2_DQ[1]  
N7  
DDR2_DQ[10]  
DDR2_DQ[11]  
DDR2_DQ[12]  
DDR2_DQ[13]  
DDR2_DQ[14]  
DDR2_DQ[15]  
DDR2_DQ[16]  
DDR2_DQ[17]  
DDR2_DQ[18]  
DDR2_DQ[19]  
DDR2_DQ[2]  
R10  
R9  
U5  
U6  
T10  
U10  
V37  
T6  
DDR2_DQ[60]  
DDR2_DQ[61]  
DDR2_DQ[62]  
DDR2_DQ[63]  
DDR2_DQ[7]  
T7  
J39  
V8  
V36  
P40  
N36  
L40  
K38  
G40  
F40  
J37  
U9  
DDR2_DQ[20]  
DDR2_DQ[21]  
DDR2_DQ[22]  
DDR2_DQ[23]  
DDR2_DQ[24]  
DDR2_DQ[25]  
DDR2_DQ[26]  
DDR2_DQ[27]  
DDR2_DQ[28]  
DDR2_DQ[29]  
DDR2_DQ[3]  
V38  
U38  
U39  
W36  
T38  
K39  
E40  
J9  
DDR2_DQ[8]  
DDR2_DQ[9]  
DDR2_DQS_N[0]  
DDR2_DQS_N[1]  
DDR2_DQS_N[2]  
DDR2_DQS_N[3]  
DDR2_DQS_N[4]  
DDR2_DQS_N[5]  
DDR2_DQS_N[6]  
DDR2_DQS_N[7]  
DDR2_DQS_P[0]  
DDR2_DQS_P[1]  
DDR2_DQS_P[2]  
DDR2_DQS_P[3]  
DDR2_DQS_P[4]  
DDR2_DQS_P[5]  
DDR2_DQS_P[6]  
DDR2_DQS_P[7]  
H37  
H39  
G39  
U36  
F38  
E38  
K12  
J12  
K7  
P5  
T8  
DDR2_DQ[30]  
DDR2_DQ[31]  
DDR2_DQ[32]  
DDR2_DQ[33]  
DDR2_DQ[34]  
DDR2_DQ[35]  
DDR2_DQ[36]  
DDR2_DQ[37]  
W37  
T37  
K40  
E39  
J10  
L7  
H13  
L13  
G11  
G10  
P6  
U8  
40  
Datasheet  
Land Listing  
Table 4-1. Land Listing by Land Name  
(Sheet 9 of 29)  
Table 4-1. Land Listing by Land Name  
(Sheet 10 of 29)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
DDR2_MA[0]  
A18  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
QPI_DRX_DN[3]  
QPI_DRX_DN[4]  
QPI_DRX_DN[5]  
QPI_DRX_DN[6]  
QPI_DRX_DN[7]  
QPI_DRX_DN[8]  
QPI_DRX_DN[9]  
QPI_DRX_DP[0]  
QPI_DRX_DP[1]  
QPI_DRX_DP[10]  
QPI_DRX_DP[11]  
QPI_DRX_DP[12]  
QPI_DRX_DP[13]  
QPI_DRX_DP[14]  
QPI_DRX_DP[15]  
QPI_DRX_DP[16]  
QPI_DRX_DP[17]  
QPI_DRX_DP[18]  
QPI_DRX_DP[19]  
QPI_DRX_DP[2]  
QPI_DRX_DP[3]  
QPI_DRX_DP[4]  
QPI_DRX_DP[5]  
QPI_DRX_DP[6]  
QPI_DRX_DP[7]  
QPI_DRX_DP[8]  
QPI_DRX_DP[9]  
QPI_DTX_DN[0]  
QPI_DTX_DN[1]  
QPI_DTX_DN[10]  
QPI_DTX_DN[11]  
QPI_DTX_DN[12]  
QPI_DTX_DN[13]  
QPI_DTX_DN[14]  
QPI_DTX_DN[15]  
QPI_DTX_DN[16]  
QPI_DTX_DN[17]  
QPI_DTX_DN[18]  
QPI_DTX_DN[19]  
QPI_DTX_DN[2]  
QPI_DTX_DN[3]  
QPI_DTX_DN[4]  
QPI_DTX_DN[5]  
QPI_DTX_DN[6]  
QPI_DTX_DN[7]  
QPI_DTX_DN[8]  
QPI_DTX_DN[9]  
QPI_DTX_DP[0]  
AY36  
BA37  
AW38  
AY38  
AT39  
AV40  
AU41  
AT37  
AU38  
AU42  
AT43  
AT40  
AP42  
AN43  
AN40  
AM42  
AP41  
AN39  
AP38  
AV36  
AW36  
BA36  
AW37  
BA38  
AU39  
AW40  
AU40  
AH38  
AG39  
AE43  
AE41  
AC42  
AB43  
AD39  
AC40  
AC38  
AB38  
AE38  
AF40  
AK38  
AJ39  
AJ40  
AK41  
AH42  
AJ42  
AH43  
AG41  
AG38  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
I
DDR2_MA[1]  
DDR2_MA[10]  
DDR2_MA[11]  
DDR2_MA[12]  
DDR2_MA[13]  
DDR2_MA[14]  
DDR2_MA[15]  
DDR2_MA[2]  
DDR2_MA[3]  
DDR2_MA[4]  
DDR2_MA[5]  
DDR2_MA[6]  
DDR2_MA[7]  
DDR2_MA[8]  
DDR2_MA[9]  
DDR2_ODT[0]  
DDR2_ODT[1]  
DDR2_ODT[2]  
DDR2_ODT[3]  
DDR2_RAS#  
DDR2_RESET#  
DDR2_WE#  
K17  
I
H17  
I
H23  
I
G23  
F15  
I
I
H24  
I
G25  
G18  
J20  
I
I
I
F20  
I
K23  
I
K22  
I
J24  
I
L25  
I
H22  
I
L16  
I
F13  
I
D15  
I
D10  
I
D17  
I
E32  
I
C16  
I
FC_AH5  
AH5  
AK8  
I
ISENSE  
Analog  
I
I
PECI  
AH36  
B41  
Asynch I/O  
I
PRDY#  
GTL  
GTL  
GTL  
CMOS  
QPI  
QPI  
QPI  
QPI  
Analog  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
O
I
I
PREQ#  
C42  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
PROCHOT#  
AG35  
AP7  
I/O  
O
I
PSI#  
QPI_CLKRX_DN  
QPI_CLKRX_DP  
QPI_CLKTX_DN  
QPI_CLKTX_DP  
QPI_CMP[0]  
AR42  
AR41  
AF42  
AG42  
AL43  
AU37  
AV38  
AT42  
AR43  
AR40  
AN42  
AM43  
AM40  
AM41  
AP40  
AP39  
AR38  
AV37  
I
O
O
QPI_DRX_DN[0]  
QPI_DRX_DN[1]  
QPI_DRX_DN[10]  
QPI_DRX_DN[11]  
QPI_DRX_DN[12]  
QPI_DRX_DN[13]  
QPI_DRX_DN[14]  
QPI_DRX_DN[15]  
QPI_DRX_DN[16]  
QPI_DRX_DN[17]  
QPI_DRX_DN[18]  
QPI_DRX_DN[19]  
QPI_DRX_DN[2]  
I
I
I
I
I
I
I
I
I
I
I
I
I
Datasheet  
41  
Land Listing  
Table 4-1. Land Listing by Land Name  
(Sheet 11 of 29)  
Table 4-1. Land Listing by Land Name  
(Sheet 12 of 29)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
QPI_DTX_DP[1]  
QPI_DTX_DP[10]  
QPI_DTX_DP[11]  
QPI_DTX_DP[12]  
QPI_DTX_DP[13]  
QPI_DTX_DP[14]  
QPI_DTX_DP[15]  
QPI_DTX_DP[16]  
QPI_DTX_DP[17]  
QPI_DTX_DP[18]  
QPI_DTX_DP[19]  
QPI_DTX_DP[2]  
QPI_DTX_DP[3]  
QPI_DTX_DP[4]  
QPI_DTX_DP[5]  
QPI_DTX_DP[6]  
QPI_DTX_DP[7]  
QPI_DTX_DP[8]  
QPI_DTX_DP[9]  
RESET#  
AF39  
AF43  
AE42  
AD42  
AC43  
AD40  
AC41  
AC39  
AB39  
AD38  
AE40  
AK37  
AJ38  
AH40  
AK40  
AH41  
AK42  
AJ43  
AG40  
AL39  
D35  
D34  
C36  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
Asynch  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
F31  
F30  
AB5  
C13  
B9  
C11  
B8  
M43  
G43  
C39  
D4  
J1  
P1  
V3  
B35  
V42  
N42  
H42  
D39  
D5  
RSVD  
J2  
RSVD  
P2  
RSVD  
V2  
RSVD  
A36  
B36  
V43  
B20  
D25  
B28  
A27  
E15  
E13  
C14  
E12  
P37  
E35  
K37  
K33  
F7  
RSVD  
F32  
RSVD  
C33  
RSVD  
C37  
RSVD  
A37  
RSVD  
B34  
RSVD  
C34  
RSVD  
G34  
G33  
D36  
F36  
RSVD  
RSVD  
RSVD  
RSVD  
E33  
RSVD  
G36  
E37  
RSVD  
RSVD  
F37  
RSVD  
E34  
J7  
RSVD  
G35  
G30  
G29  
H32  
M4  
RSVD  
Y5  
RSVD  
AA41  
P36  
L37  
K34  
F8  
RSVD  
RSVD  
F33  
RSVD  
E29  
RSVD  
E30  
RSVD  
J31  
H7  
RSVD  
J30  
M5  
42  
Datasheet  
Land Listing  
Table 4-1. Land Listing by Land Name  
(Sheet 13 of 29)  
Table 4-1. Land Listing by Land Name  
(Sheet 14 of 29)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
Y4  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
AD8  
F35  
AA40  
D20  
C22  
E25  
F25  
D16  
H16  
L17  
J15  
T40  
L38  
G38  
J11  
K8  
AE1  
AE3  
AE4  
AE5  
AE6  
AF1  
AF2  
AF3  
AF4  
AF6  
AG1  
AG2  
AG4  
AG5  
AG6  
AG7  
AG8  
AH2  
AH3  
AH4  
AH6  
AH8  
AJ1  
P4  
V7  
G31  
T35  
U40  
M38  
H38  
H11  
K9  
AJ2  
N4  
AJ3  
V6  
AJ37  
AJ4  
H31  
U35  
B18  
F21  
J25  
F23  
A31  
A40  
AB3  
AB6  
AC3  
AC4  
AC6  
AC8  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
AJ6  
AJ7  
AJ8  
AK1  
AK2  
AK35  
AK36  
AK4  
AK5  
AK6  
AL3  
AL38  
AL4  
AL40  
AL41  
AL5  
AL6  
AL8  
AM1  
AM2  
Datasheet  
43  
Land Listing  
Table 4-1. Land Listing by Land Name  
(Sheet 15 of 29)  
Table 4-1. Land Listing by Land Name  
(Sheet 16 of 29)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
AM3  
AM36  
AM38  
AM4  
AM6  
AM7  
AM8  
AN1  
AN2  
AN36  
AN38  
AN4  
AN5  
AN6  
AP2  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
AW41  
AW42  
AW5  
AW7  
AY3  
AY35  
AY39  
AY4  
AY40  
AY41  
AY5  
AY6  
AY8  
B33  
BA4  
BA40  
BA6  
BA7  
BA8  
C31  
AP3  
AP4  
AR1  
AR36  
AR37  
AR4  
AR5  
AR6  
AT1  
C32  
D30  
D31  
E28  
AT2  
F27  
AT3  
F28  
AT36  
AT4  
G28  
H29  
J29  
AT5  
AT6  
K15  
AU2  
AU3  
AU4  
AU6  
AU7  
AU8  
AV1  
K24  
K25  
K27  
K29  
L15  
U11  
V11  
AV2  
AK7  
AG36  
AH10  
AJ9  
AV35  
AV42  
AV43  
AV5  
SKTOCC#  
TCK  
GTL  
O
I
TAP  
TAP  
TAP  
GTL  
TAP  
TAP  
PWR  
PWR  
PWR  
TDI  
I
TDO  
AJ10  
AG37  
AG10  
AH9  
AH11  
AH33  
AJ11  
O
O
I
AV7  
THERMTRIP#  
TMS  
AV8  
AW2  
AW3  
AW39  
AW4  
TRST#  
VCC  
I
VCC  
VCC  
44  
Datasheet  
Land Listing  
Table 4-1. Land Listing by Land Name  
(Sheet 17 of 29)  
Table 4-1. Land Listing by Land Name  
(Sheet 18 of 29)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AJ33  
AK11  
AK12  
AK13  
AK15  
AK16  
AK18  
AK19  
AK21  
AK24  
AK25  
AK27  
AK28  
AK30  
AK31  
AK33  
AL12  
AL13  
AL15  
AL16  
AL18  
AL19  
AL21  
AL24  
AL25  
AL27  
AL28  
AL30  
AL31  
AL33  
AL34  
AM12  
AM13  
AM15  
AM16  
AM18  
AM19  
AM21  
AM24  
AM25  
AM27  
AM28  
AM30  
AM31  
AM33  
AM34  
AN12  
AN13  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AN15  
AN16  
AN18  
AN19  
AN21  
AN24  
AN25  
AN27  
AN28  
AN30  
AN31  
AN33  
AN34  
AP12  
AP13  
AP15  
AP16  
AP18  
AP19  
AP21  
AP24  
AP25  
AP27  
AP28  
AP30  
AP31  
AP33  
AP34  
AR10  
AR12  
AR13  
AR15  
AR16  
AR18  
AR19  
AR21  
AR24  
AR25  
AR27  
AR28  
AR30  
AR31  
AR33  
AR34  
AT10  
AT12  
AT13  
AT15  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
Datasheet  
45  
Land Listing  
Table 4-1. Land Listing by Land Name  
(Sheet 19 of 29)  
Table 4-1. Land Listing by Land Name  
(Sheet 20 of 29)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AT16  
AT18  
AT19  
AT21  
AT24  
AT25  
AT27  
AT28  
AT30  
AT31  
AT33  
AT34  
AT9  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AW12  
AW13  
AW15  
AW16  
AW18  
AW19  
AW21  
AW24  
AW25  
AW27  
AW28  
AW30  
AW31  
AW33  
AW34  
AW9  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
AU10  
AU12  
AU13  
AU15  
AU16  
AU18  
AU19  
AU21  
AU24  
AU25  
AU27  
AU28  
AU30  
AU31  
AU33  
AU34  
AU9  
AY10  
AY12  
AY13  
AY15  
AY16  
AY18  
AY19  
AY21  
AY24  
AY25  
AY27  
AY28  
AY30  
AY31  
AY33  
AY34  
AY9  
AV10  
AV12  
AV13  
AV15  
AV16  
AV18  
AV19  
AV21  
AV24  
AV25  
AV27  
AV28  
AV30  
AV31  
AV33  
AV34  
AV9  
BA10  
BA12  
BA13  
BA15  
BA16  
BA18  
BA19  
BA24  
BA25  
BA27  
BA28  
BA30  
BA9  
M11  
AW10  
M13  
46  
Datasheet  
Land Listing  
Table 4-1. Land Listing by Land Name  
(Sheet 21 of 29)  
Table 4-1. Land Listing by Land Name  
(Sheet 22 of 29)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
M15  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
Analog  
PWR  
PWR  
PWR  
Asynch  
Asynch  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
F24  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
M19  
M21  
M23  
M25  
M29  
M31  
M33  
N11  
N33  
R11  
R33  
T11  
T33  
W11  
AR9  
U33  
V33  
W33  
AR7  
AA6  
A14  
A19  
A24  
A29  
A9  
G17  
G22  
G27  
H15  
H20  
H25  
J18  
J23  
J28  
K16  
K21  
K26  
L14  
L19  
VCC_SENSE  
VCCPLL  
VCCPLL  
VCCPLL  
VCCPWRGOOD  
VDDPWRGOOD  
VDDQ  
L24  
M17  
M27  
AL10  
AL9  
VID[0]/MSID[0]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
I
I
VID[1]/MSID[1]  
VID[2]/MSID[2]  
AN9  
AM10  
AN10  
AP9  
AP8  
AN8  
A35  
A39  
A4  
VID[3]/CSC[0]  
VID[4]/CSC[1]  
VID[5]/CSC[2]  
VID[6]  
VID[7]  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
O
VDDQ  
B12  
B17  
B22  
B27  
B32  
B7  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
A41  
A6  
VDDQ  
VSS  
VDDQ  
VSS  
AA3  
AA34  
AA38  
AA39  
AA9  
AB37  
AB4  
AB40  
AB42  
AB7  
AC2  
AC36  
AC5  
AC7  
AC9  
AD11  
AD33  
VDDQ  
C10  
C15  
C20  
C25  
C30  
D13  
D18  
D23  
D28  
E11  
E16  
E21  
E26  
E31  
F14  
F19  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
Datasheet  
47  
Land Listing  
Table 4-1. Land Listing by Land Name  
(Sheet 23 of 29)  
Table 4-1. Land Listing by Land Name  
(Sheet 24 of 29)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AD37  
AD41  
AD43  
AE2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AL32  
AL35  
AL36  
AL37  
AL42  
AL7  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
AE39  
AE7  
AF35  
AF38  
AF41  
AF5  
AM11  
AM14  
AM17  
AM20  
AM22  
AM23  
AM26  
AM29  
AM32  
AM35  
AM37  
AM39  
AM5  
AG11  
AG3  
AG33  
AG43  
AG9  
AH1  
AH34  
AH37  
AH39  
AH7  
AM9  
AJ34  
AJ36  
AJ41  
AJ5  
AN11  
AN14  
AN17  
AN20  
AN22  
AN23  
AN26  
AN29  
AN3  
AK10  
AK14  
AK17  
AK20  
AK22  
AK23  
AK26  
AK29  
AK3  
AN32  
AN35  
AN37  
AN41  
AN7  
AK32  
AK34  
AK39  
AK43  
AK9  
AP1  
AP10  
AP11  
AP14  
AP17  
AP20  
AP22  
AP23  
AP26  
AP29  
AP32  
AP35  
AP36  
AP37  
AL1  
AL11  
AL14  
AL17  
AL2  
AL20  
AL22  
AL23  
AL26  
AL29  
48  
Datasheet  
Land Listing  
Table 4-1. Land Listing by Land Name  
(Sheet 25 of 29)  
Table 4-1. Land Listing by Land Name  
(Sheet 26 of 29)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AP43  
AP5  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AV22  
AV23  
AV26  
AV29  
AV32  
AV39  
AV4  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
AP6  
AR11  
AR14  
AR17  
AR2  
AR20  
AR22  
AR23  
AR26  
AR29  
AR3  
AV41  
AW1  
AW11  
AW14  
AW17  
AW20  
AW22  
AW23  
AW26  
AW29  
AW32  
AW35  
AW6  
AW8  
AY11  
AY14  
AY17  
AY2  
AR32  
AR35  
AR39  
AT11  
AT14  
AT17  
AT20  
AT22  
AT23  
AT26  
AT29  
AT32  
AT35  
AT38  
AT41  
AT7  
AY20  
AY22  
AY23  
AY26  
AY29  
AY32  
AY37  
AY42  
AY7  
AT8  
AU1  
AU11  
AU14  
AU17  
AU20  
AU22  
AU23  
AU26  
AU29  
AU32  
AU35  
AU36  
AU43  
AU5  
B2  
B37  
B42  
BA11  
BA14  
BA17  
BA20  
BA26  
BA29  
BA3  
AV11  
AV14  
AV17  
AV20  
BA35  
BA39  
BA5  
C35  
Datasheet  
49  
Land Listing  
Table 4-1. Land Listing by Land Name  
(Sheet 27 of 29)  
Table 4-1. Land Listing by Land Name  
(Sheet 28 of 29)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
C40  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
M18  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
C43  
C5  
M2  
M20  
M22  
M24  
M26  
M28  
M30  
M32  
M37  
M42  
M7  
D3  
D33  
D38  
D43  
D8  
E1  
E36  
E41  
E6  
F29  
F34  
F39  
F4  
N10  
N35  
N40  
N5  
F9  
P11  
P3  
G12  
G2  
P33  
P38  
P43  
P8  
G32  
G37  
G42  
G7  
R1  
H10  
H30  
H35  
H40  
H5  
R36  
R41  
R6  
T34  
T39  
T4  
J13  
J3  
T9  
J33  
J38  
J43  
J8  
U2  
U37  
U42  
U7  
K1  
V10  
V35  
V40  
V5  
K11  
K31  
K36  
K41  
K6  
W3  
W38  
W43  
W8  
L29  
L34  
L39  
L4  
Y1  
Y11  
Y33  
Y36  
Y41  
Y6  
L9  
M12  
M14  
M16  
50  
Datasheet  
Land Listing  
Table 4-1. Land Listing by Land Name  
(Sheet 29 of 29)  
Land  
No.  
Buffer  
Type  
Land Name  
Direction  
VSS_SENSE  
AR8  
Analog  
Analog  
Analog  
CMOS  
CMOS  
CMOS  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
Asynch  
VSS_SENSE_VTT  
VTT_SENSE  
VTT_VID2  
VTT_VID3  
VTT_VID4  
VTTA  
AE37  
AE36  
AV3  
O
O
O
AF7  
AV6  
AD10  
AE10  
AE11  
AE33  
AF11  
AF33  
AF34  
AG34  
AA10  
AA11  
AA33  
AB10  
AB11  
AB33  
AB34  
AB8  
VTTA  
VTTA  
VTTA  
VTTA  
VTTA  
VTTA  
VTTA  
VTTD  
VTTD  
VTTD  
VTTD  
VTTD  
VTTD  
VTTD  
VTTD  
VTTD  
AB9  
VTTD  
AC10  
AC11  
AC33  
AC34  
AC35  
AD34  
AD35  
AD36  
AD9  
VTTD  
VTTD  
VTTD  
VTTD  
VTTD  
VTTD  
VTTD  
VTTD  
VTTD  
AE34  
AE35  
AE8  
VTTD  
VTTD  
VTTD  
AE9  
VTTD  
AF36  
AF37  
AF8  
VTTD  
VTTD  
VTTD  
AF9  
VTTPWRGOOD  
AB35  
I
Datasheet  
51  
Land Listing  
Table 4-2. Land Listing by Land Number  
(Sheet 2 of 29)  
Table 4-2. Land Listing by Land Number  
(Sheet 1 of 29)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
AB11  
AB3  
VTTD  
RSVD  
VTTD  
VTTD  
PWR  
A10  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
A35  
A36  
A37  
A38  
A39  
A4  
DDR0_MA[13]  
VDDQ  
CMOS  
PWR  
O
AB33  
AB34  
AB35  
AB36  
AB37  
AB38  
AB39  
AB4  
PWR  
PWR  
Asynch  
CMOS  
GND  
QPI  
DDR0_RAS#  
DDR0_BA[1]  
DDR2_BA[0]  
DDR2_MA[0]  
VDDQ  
CMOS  
CMOS  
CMOS  
CMOS  
PWR  
O
O
O
O
VTTPWRGOOD  
DDR1_DQ[5]  
VSS  
I
I/O  
QPI_DTX_DN[17]  
QPI_DTX_DP[17]  
VSS  
O
O
DDR0_MA[0]  
VDDQ  
CMOS  
PWR  
O
QPI  
GND  
GND  
Analog  
GND  
QPI  
DDR0_MA[7]  
DDR0_MA[11]  
RSVD  
CMOS  
CMOS  
O
O
AB40  
AB41  
AB42  
AB43  
AB5  
VSS  
COMP0  
VSS  
DDR0_MA[14]  
VDDQ  
CMOS  
PWR  
O
O
QPI_DTX_DN[13]  
RSVD  
O
DDR0_CKE[1]  
RSVD  
CMOS  
AB6  
RSVD  
AB7  
VSS  
GND  
PWR  
PWR  
Analog  
PWR  
PWR  
GND  
VSS  
GND  
AB8  
VTTD  
RSVD  
AB9  
VTTD  
RSVD  
AC1  
DDR_COMP[2]  
VTTD  
DDR0_DQ[26]  
VSS  
CMOS  
GND  
I/O  
AC10  
AC11  
AC2  
VTTD  
VSS  
GND  
VSS  
A40  
A41  
A5  
RSVD  
AC3  
RSVD  
VSS  
GND  
GTL  
AC33  
AC34  
AC35  
AC36  
AC37  
AC38  
AC39  
AC4  
VTTD  
PWR  
PWR  
PWR  
GND  
GTL  
QPI  
BPM#[1]  
VSS  
I/O  
VTTD  
A6  
GND  
VTTD  
A7  
DDR0_CS#[5]  
DDR1_CS#[1]  
VDDQ  
CMOS  
CMOS  
PWR  
O
O
VSS  
A8  
CAT_ERR#  
QPI_DTX_DN[16]  
QPI_DTX_DP[16]  
RSVD  
I/O  
O
A9  
AA10  
AA11  
AA3  
AA33  
AA34  
AA35  
AA36  
AA37  
AA38  
AA39  
AA4  
AA40  
AA41  
AA5  
AA6  
AA7  
AA8  
AA9  
AB10  
VTTD  
PWR  
QPI  
O
VTTD  
PWR  
VSS  
GND  
AC40  
AC41  
AC42  
AC43  
AC5  
QPI_DTX_DN[15]  
QPI_DTX_DP[15]  
QPI_DTX_DN[12]  
QPI_DTX_DP[13]  
VSS  
QPI  
QPI  
QPI  
QPI  
GND  
O
O
O
O
VTTD  
PWR  
VSS  
GND  
DDR1_DQ[4]  
DDR1_DQ[1]  
DDR1_DQ[0]  
VSS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
AC6  
RSVD  
AC7  
VSS  
GND  
GND  
VSS  
GND  
AC8  
RSVD  
BCLK_ITP_DN  
RSVD  
CMOS  
O
AC9  
VSS  
AD1  
RSVD  
RSVD  
AD10 VTTA  
AD11 VSS  
PWR  
GND  
BCLK_ITP_DP  
VDDPWRGOOD  
DDR1_DQ[62]  
DDR_COMP[0]  
VSS  
CMOS  
Asynch  
CMOS  
Analog  
GND  
O
I
AD2  
AD3  
RSVD  
RSVD  
I/O  
AD33 VSS  
AD34 VTTD  
GND  
PWR  
VTTD  
PWR  
52  
Datasheet  
Land Listing  
Table 4-2. Land Listing by Land Number  
(Sheet 3 of 29)  
Table 4-2. Land Listing by Land Number  
(Sheet 4 of 29)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
AD35 VTTD  
AD36 VTTD  
AD37 VSS  
PWR  
PWR  
GND  
QPI  
AF39  
AF4  
QPI_DTX_DP[1]  
RSVD  
QPI  
O
AF40  
AF41  
AF42  
AF43  
AF5  
QPI_DTX_DN[19]  
VSS  
QPI  
O
AD38 QPI_DTX_DP[18]  
AD39 QPI_DTX_DN[14]  
O
O
GND  
QPI  
QPI  
QPI_CLKTX_DN  
QPI_DTX_DP[10]  
VSS  
O
O
AD4  
RSVD  
QPI  
AD40 QPI_DTX_DP[14]  
AD41 VSS  
QPI  
O
O
GND  
GND  
QPI  
AF6  
RSVD  
AD42 QPI_DTX_DP[12]  
AD43 VSS  
AF7  
VTT_VID3  
VTTD  
CMOS  
PWR  
O
I
GND  
AF8  
AD5  
RSVD  
AF9  
VTTD  
PWR  
AD6  
RSVD  
AG1  
RSVD  
AD7  
RSVD  
AG10 TMS  
AG11 VSS  
TAP  
AD8  
RSVD  
GND  
AD9  
VTTD  
PWR  
AG2  
AG3  
RSVD  
VSS  
AE1  
RSVD  
GND  
GND  
PWR  
GTL  
GTL  
GTL  
QPI  
AE10  
AE11  
AE2  
VTTA  
PWR  
PWR  
GND  
AG33 VSS  
VTTA  
AG34 VTTA  
VSS  
AG35 PROCHOT#  
AG36 SKTOCC#  
AG37 THERMTRIP#  
AG38 QPI_DTX_DP[0]  
AG39 QPI_DTX_DN[1]  
I/O  
O
AE3  
RSVD  
AE33  
AE34  
AE35  
AE36  
AE37  
AE38  
AE39  
AE4  
VTTA  
PWR  
O
VTTD  
PWR  
O
VTTD  
PWR  
QPI  
O
VTT_SENSE  
VSS_SENSE_VTT  
QPI_DTX_DN[18]  
VSS  
Analog  
Analog  
QPI  
AG4  
RSVD  
AG40 QPI_DTX_DP[9]  
AG41 QPI_DTX_DN[9]  
AG42 QPI_CLKTX_DP  
AG43 VSS  
QPI  
QPI  
QPI  
GND  
O
O
O
O
GND  
RSVD  
AE40  
AE41  
AE42  
AE43  
AE5  
QPI_DTX_DP[19]  
QPI_DTX_DN[11]  
QPI_DTX_DP[11]  
QPI_DTX_DN[10]  
RSVD  
QPI  
QPI  
QPI  
QPI  
O
O
O
O
AG5  
AG6  
AG7  
AG8  
AG9  
AH1  
RSVD  
RSVD  
RSVD  
RSVD  
VSS  
GND  
GND  
TAP  
AE6  
RSVD  
VSS  
AE7  
VSS  
GND  
PWR  
PWR  
AH10 TCK  
AH11 VCC  
I
I
AE8  
VTTD  
PWR  
AE9  
VTTD  
AH2  
AH3  
RSVD  
RSVD  
AF1  
RSVD  
AF10  
AF11  
AF2  
DBR#  
Asynch  
PWR  
I
AH33 VCC  
PWR  
VTTA  
AH34 VSS  
GND  
RSVD  
AH35 BCLK_DN  
AH36 PECI  
CMOS  
AF3  
RSVD  
Asynch I/O  
GND  
AF33  
AF34  
AF35  
AF36  
AF37  
AF38  
VTTA  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
AH37 VSS  
VTTA  
AH38 QPI_DTX_DN[0]  
AH39 VSS  
QPI  
O
VSS  
GND  
VTTD  
AH4  
RSVD  
VTTD  
AH40 QPI_DTX_DP[4]  
AH41 QPI_DTX_DP[6]  
QPI  
QPI  
O
O
VSS  
Datasheet  
53  
Land Listing  
Table 4-2. Land Listing by Land Number  
(Sheet 5 of 29)  
Table 4-2. Land Listing by Land Number  
(Sheet 6 of 29)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
AH42 QPI_DTX_DN[6]  
AH43 QPI_DTX_DN[8]  
QPI  
QPI  
O
O
AK27  
AK28  
AK29  
AK3  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
RSVD  
RSVD  
PWR  
PWR  
GND  
GND  
PWR  
PWR  
GND  
PWR  
GND  
AH5  
FC_AH5  
RSVD  
VSS  
AH6  
AH7  
GND  
TAP  
AK30  
AK31  
AK32  
AK33  
AK34  
AK35  
AK36  
AK37  
AK38  
AK39  
AK4  
AH8  
RSVD  
TRST#  
RSVD  
TDO  
AH9  
I
AJ1  
AJ10  
AJ11  
AJ2  
TAP  
O
VCC  
PWR  
RSVD  
RSVD  
VCC  
AJ3  
QPI_DTX_DP[2]  
QPI  
QPI  
GND  
O
O
AJ33  
AJ34  
AJ35  
AJ36  
AJ37  
AJ38  
AJ39  
AJ4  
PWR  
GND  
CMOS  
GND  
QPI_DTX_DN[2]  
VSS  
VSS  
BCLK_DP  
VSS  
I
RSVD  
AK40  
AK41  
AK42  
AK43  
AK5  
QPI_DTX_DP[5]  
QPI  
QPI  
QPI  
GND  
O
O
O
RSVD  
QPI_DTX_DP[3]  
QPI_DTX_DN[3]  
RSVD  
QPI_DTX_DN[4]  
VSS  
QPI_DTX_DN[5]  
QPI_DTX_DP[7]  
VSS  
QPI  
QPI  
O
O
RSVD  
RSVD  
RSVD  
ISENSE  
VSS  
AJ40  
AJ41  
AJ42  
AJ43  
AJ5  
QPI  
O
AK6  
GND  
QPI  
AK7  
QPI_DTX_DN[7]  
QPI_DTX_DP[8]  
VSS  
O
O
AK8  
Analog  
GND  
GND  
CMOS  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
GND  
PWR  
GND  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
I
QPI  
AK9  
GND  
AL1  
VSS  
AJ6  
RSVD  
RSVD  
RSVD  
TDI  
AL10  
AL11  
AL12  
AL13  
AL14  
AL15  
AL16  
AL17  
AL18  
AL19  
AL2  
VID[0]/MSID[0]  
VSS  
I/O  
AJ7  
AJ8  
VCC  
AJ9  
TAP  
I
VCC  
AK1  
RSVD  
VSS  
VSS  
AK10  
AK11  
AK12  
AK13  
AK14  
AK15  
AK16  
AK17  
AK18  
AK19  
AK2  
GND  
PWR  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
AL20  
AL21  
AL22  
AL23  
AL24  
AL25  
AL26  
AL27  
AL28  
AL29  
AL3  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
RSVD  
VSS  
VCC  
AK20  
AK21  
AK22  
AK23  
AK24  
AK25  
AK26  
GND  
PWR  
GND  
GND  
PWR  
PWR  
GND  
VCC  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
RSVD  
VCC  
VSS  
AL30  
PWR  
54  
Datasheet  
Land Listing  
Table 4-2. Land Listing by Land Number  
(Sheet 7 of 29)  
Table 4-2. Land Listing by Land Number  
(Sheet 8 of 29)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
AL31  
AL32  
AL33  
AL34  
AL35  
AL36  
AL37  
AL38  
AL39  
AL4  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
RSVD  
PWR  
GND  
PWR  
PWR  
GND  
GND  
GND  
AM36 RSVD  
AM37 VSS  
AM38 RSVD  
AM39 VSS  
GND  
GND  
AM4  
RSVD  
AM40 QPI_DRX_DN[15]  
AM41 QPI_DRX_DN[16]  
AM42 QPI_DRX_DP[16]  
AM43 QPI_DRX_DN[14]  
QPI  
QPI  
QPI  
QPI  
GND  
I
I
I
I
RESET#  
RSVD  
Asynch  
I
AM5  
AM6  
AM7  
AM8  
AM9  
AN1  
VSS  
AL40  
AL41  
AL42  
AL43  
AL5  
RSVD  
RSVD  
RSVD  
RSVD  
VSS  
RSVD  
VSS  
GND  
QPI_CMP[0]  
RSVD  
Analog  
GND  
RSVD  
AL6  
RSVD  
AN10 VID[4]/CSC[1]  
AN11 VSS  
AN12 VCC  
AN13 VCC  
AN14 VSS  
AN15 VCC  
AN16 VCC  
AN17 VSS  
AN18 VCC  
AN19 VCC  
CMOS  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
I/O  
AL7  
VSS  
GND  
AL8  
RSVD  
AL9  
VID[1]/MSID[1]  
RSVD  
CMOS  
I/O  
I/O  
AM1  
AM10 VID[3]/CSC[0]  
AM11 VSS  
AM12 VCC  
AM13 VCC  
AM14 VSS  
AM15 VCC  
AM16 VCC  
AM17 VSS  
AM18 VCC  
AM19 VCC  
CMOS  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
AN2  
RSVD  
AN20 VSS  
AN21 VCC  
AN22 VSS  
AN23 VSS  
AN24 VCC  
AN25 VCC  
AN26 VSS  
AN27 VCC  
AN28 VCC  
AN29 VSS  
GND  
PWR  
GND  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
AM2  
RSVD  
AM20 VSS  
AM21 VCC  
AM22 VSS  
AM23 VSS  
AM24 VCC  
AM25 VCC  
AM26 VSS  
AM27 VCC  
AM28 VCC  
AM29 VSS  
GND  
PWR  
GND  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
AN3  
VSS  
AN30 VCC  
AN31 VCC  
AN32 VSS  
AN33 VCC  
AM3  
RSVD  
AN34 VCC  
AM30 VCC  
AM31 VCC  
AM32 VSS  
AM33 VCC  
AM34 VCC  
AM35 VSS  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
AN35 VSS  
AN36 RSVD  
AN37 VSS  
GND  
QPI  
AN38 RSVD  
AN39 QPI_DRX_DP[18]  
I
AN4  
RSVD  
Datasheet  
55  
Land Listing  
Table 4-2. Land Listing by Land Number  
(Sheet 9 of 29)  
Table 4-2. Land Listing by Land Number  
(Sheet 10 of 29)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
AN40 QPI_DRX_DP[15]  
AN41 VSS  
QPI  
GND  
QPI  
QPI  
I
AP6  
VSS  
GND  
AP7  
PSI#  
CMOS  
CMOS  
CMOS  
O
AN42 QPI_DRX_DN[13]  
AN43 QPI_DRX_DP[14]  
I
I
AP8  
VID[6]  
O
AP9  
VID[5]/CSC[2]  
I/O  
AN5  
RSVD  
AR1  
RSVD  
AN6  
RSVD  
AR10  
AR11  
AR12  
AR13  
AR14  
AR15  
AR16  
AR17  
AR18  
AR19  
AR2  
VCC  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
GND  
PWR  
GND  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
AN7  
VSS  
GND  
CMOS  
CMOS  
GND  
GND  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
VSS  
AN8  
VID[7]  
O
VCC  
AN9  
VID[2]/MSID[2]  
I/O  
VCC  
AP1  
VSS  
VSS  
AP10  
AP11  
AP12  
AP13  
AP14  
AP15  
AP16  
AP17  
AP18  
AP19  
AP2  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
AR20  
AR21  
AR22  
AR23  
AR24  
AR25  
AR26  
AR27  
AR28  
AR29  
AR3  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
RSVD  
VCC  
AP20  
AP21  
AP22  
AP23  
AP24  
AP25  
AP26  
AP27  
AP28  
AP29  
AP3  
VSS  
GND  
PWR  
GND  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
VCC  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VSS  
AR30  
AR31  
AR32  
AR33  
AR34  
AR35  
AR36  
AR37  
AR38  
AR39  
AR4  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
RSVD  
VCC  
AP30  
AP31  
AP32  
AP33  
AP34  
AP35  
AP36  
AP37  
AP38  
AP39  
AP4  
VCC  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
GND  
GND  
QPI  
VSS  
VCC  
RSVD  
VSS  
RSVD  
VCC  
QPI_DRX_DN[19]  
VSS  
QPI  
I
VCC  
GND  
VSS  
RSVD  
VSS  
AR40  
AR41  
AR42  
AR43  
AR5  
QPI_DRX_DN[12]  
QPI_CLKRX_DP  
QPI_CLKRX_DN  
QPI_DRX_DN[11]  
RSVD  
QPI  
QPI  
QPI  
QPI  
I
I
I
I
VSS  
QPI_DRX_DP[19]  
QPI_DRX_DN[18]  
RSVD  
I
I
QPI  
AP40  
AP41  
AP42  
AP43  
AP5  
QPI_DRX_DN[17]  
QPI_DRX_DP[17]  
QPI_DRX_DP[13]  
VSS  
QPI  
I
I
I
AR6  
RSVD  
QPI  
AR7  
VCCPWRGOOD  
VSS_SENSE  
VCC_SENSE  
RSVD  
Asynch  
Analog  
Analog  
I
QPI  
AR8  
GND  
GND  
AR9  
VSS  
AT1  
56  
Datasheet  
Land Listing  
Table 4-2. Land Listing by Land Number  
(Sheet 11 of 29)  
Table 4-2. Land Listing by Land Number  
(Sheet 12 of 29)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
AT10  
AT11  
AT12  
AT13  
AT14  
AT15  
AT16  
AT17  
AT18  
AT19  
AT2  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
RSVD  
VSS  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
RSVD  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
RSVD  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
AU15 VCC  
AU16 VCC  
AU17 VSS  
AU18 VCC  
AU19 VCC  
PWR  
PWR  
GND  
PWR  
PWR  
AU2  
RSVD  
AU20 VSS  
AU21 VCC  
AU22 VSS  
AU23 VSS  
AU24 VCC  
AU25 VCC  
AU26 VSS  
AU27 VCC  
AU28 VCC  
AU29 VSS  
GND  
PWR  
GND  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
AT20  
AT21  
AT22  
AT23  
AT24  
AT25  
AT26  
AT27  
AT28  
AT29  
AT3  
GND  
PWR  
GND  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
AU3  
RSVD  
AU30 VCC  
AU31 VCC  
AU32 VSS  
AU33 VCC  
AU34 VCC  
AU35 VSS  
AU36 VSS  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
GND  
QPI  
AT30  
AT31  
AT32  
AT33  
AT34  
AT35  
AT36  
AT37  
AT38  
AT39  
AT4  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
AU37 QPI_DRX_DN[0]  
AU38 QPI_DRX_DP[1]  
AU39 QPI_DRX_DP[7]  
I
I
I
QPI  
QPI  
AU4  
RSVD  
AU40 QPI_DRX_DP[9]  
AU41 QPI_DRX_DN[9]  
AU42 QPI_DRX_DP[10]  
AU43 VSS  
QPI  
I
I
I
QPI_DRX_DP[0]  
QPI  
GND  
QPI  
I
I
I
QPI  
VSS  
QPI  
QPI_DRX_DN[7]  
GND  
GND  
RSVD  
AU5  
VSS  
AT40  
AT41  
AT42  
AT43  
AT5  
QPI_DRX_DP[12]  
QPI  
GND  
QPI  
QPI  
AU6  
RSVD  
RSVD  
RSVD  
VCC  
RSVD  
VCC  
VSS  
VSS  
AU7  
QPI_DRX_DN[10]  
I
I
AU8  
QPI_DRX_DP[11]  
AU9  
PWR  
RSVD  
RSVD  
VSS  
AV1  
AT6  
AV10  
AV11  
AV12  
AV13  
AV14  
AV15  
AV16  
AV17  
AV18  
AV19  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
AT7  
GND  
GND  
PWR  
GND  
PWR  
GND  
PWR  
PWR  
GND  
AT8  
VSS  
VCC  
VCC  
VSS  
AT9  
VCC  
AU1  
VSS  
AU10 VCC  
AU11 VSS  
AU12 VCC  
AU13 VCC  
AU14 VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
Datasheet  
57  
Land Listing  
Table 4-2. Land Listing by Land Number  
(Sheet 13 of 29)  
Table 4-2. Land Listing by Land Number  
(Sheet 14 of 29)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
AV2  
RSVD  
VSS  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
AW24 VCC  
AW25 VCC  
AW26 VSS  
AW27 VCC  
AW28 VCC  
AW29 VSS  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
AV20  
AV21  
AV22  
AV23  
AV24  
AV25  
AV26  
AV27  
AV28  
AV29  
AV3  
GND  
PWR  
GND  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
CMOS  
PWR  
PWR  
GND  
PWR  
PWR  
AW3  
RSVD  
AW30 VCC  
AW31 VCC  
AW32 VSS  
AW33 VCC  
AW34 VCC  
AW35 VSS  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
QPI  
VTT_VID2  
VCC  
O
AV30  
AV31  
AV32  
AV33  
AV34  
AV35  
AV36  
AV37  
AV38  
AV39  
AV4  
VCC  
AW36 QPI_DRX_DP[3]  
AW37 QPI_DRX_DP[5]  
AW38 QPI_DRX_DN[5]  
AW39 RSVD  
I
I
I
VSS  
QPI  
VCC  
QPI  
VCC  
RSVD  
AW4  
RSVD  
QPI_DRX_DP[2]  
QPI_DRX_DN[2]  
QPI_DRX_DN[1]  
VSS  
QPI  
I
I
I
AW40 QPI_DRX_DP[8]  
AW41 RSVD  
QPI  
I
QPI  
QPI  
AW42 RSVD  
GND  
GND  
QPI  
AW5  
AW6  
AW7  
AW8  
AW9  
AY10  
AY11  
AY12  
AY13  
AY14  
AY15  
AY16  
AY17  
AY18  
AY19  
AY2  
RSVD  
VSS  
RSVD  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
RSVD  
VSS  
GND  
AV40  
AV41  
AV42  
AV43  
AV5  
QPI_DRX_DN[8]  
VSS  
I
GND  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
GND  
PWR  
GND  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
RSVD  
RSVD  
RSVD  
AV6  
VTT_VID4  
RSVD  
CMOS  
O
AV7  
AV8  
RSVD  
AV9  
VCC  
PWR  
GND  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
AW1  
VSS  
AW10 VCC  
AW11 VSS  
AW12 VCC  
AW13 VCC  
AW14 VSS  
AW15 VCC  
AW16 VCC  
AW17 VSS  
AW18 VCC  
AW19 VCC  
AY20  
AY21  
AY22  
AY23  
AY24  
AY25  
AY26  
AY27  
AY28  
AY29  
AY3  
AW2  
RSVD  
AW20 VSS  
AW21 VCC  
AW22 VSS  
AW23 VSS  
GND  
PWR  
GND  
GND  
58  
Datasheet  
Land Listing  
Table 4-2. Land Listing by Land Number  
(Sheet 15 of 29)  
Table 4-2. Land Listing by Land Number  
(Sheet 16 of 29)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
AY30  
AY31  
AY32  
AY33  
AY34  
AY35  
AY36  
AY37  
AY38  
AY39  
AY4  
AY40  
AY41  
AY42  
AY5  
AY6  
AY7  
AY8  
AY9  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B2  
VCC  
VCC  
VSS  
VCC  
VCC  
RSVD  
PWR  
PWR  
GND  
PWR  
PWR  
B37  
VSS  
GND  
B38  
DDR0_DQ[31]  
DDR0_DQS_P[3]  
BPM#[3]  
DDR0_DQS_N[3]  
PRDY#  
VSS  
CMOS  
CMOS  
GTL  
I/O  
I/O  
I/O  
I/O  
O
B39  
B4  
B40  
CMOS  
GTL  
B41  
QPI_DRX_DN[3]  
VSS  
QPI  
GND  
QPI  
I
I
B42  
GND  
B5  
DDR0_DQ[32]  
DDR0_DQ[36]  
VDDQ  
CMOS  
CMOS  
PWR  
I/O  
I/O  
QPI_DRX_DN[6]  
RSVD  
B6  
B7  
RSVD  
B8  
RSVD  
RSVD  
B9  
RSVD  
RSVD  
BA10  
BA11  
BA12  
BA13  
BA14  
BA15  
BA16  
BA17  
BA18  
BA19  
BA20  
BA24  
BA25  
BA26  
BA27  
BA28  
BA29  
BA3  
VCC  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
PWR  
PWR  
GND  
GND  
PWR  
GND  
QPI  
VSS  
GND  
GND  
VSS  
RSVD  
VCC  
RSVD  
VCC  
VSS  
VSS  
RSVD  
VCC  
VCC  
PWR  
VCC  
DDR0_CS#[1]  
DDR0_ODT[2]  
VDDQ  
CMOS  
CMOS  
PWR  
O
O
VSS  
VCC  
VCC  
DDR0_WE#  
DDR1_MA[13]  
DDR0_CS#[4]  
DDR0_BA[0]  
VDDQ  
CMOS  
CMOS  
CMOS  
CMOS  
PWR  
O
O
O
O
VSS  
VCC  
VCC  
VSS  
VCC  
RSVD  
VCC  
DDR0_MA[10]  
VSS  
CMOS  
GND  
O
O
VSS  
VSS  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B3  
RSVD  
BA30  
BA35  
BA36  
BA37  
BA38  
BA39  
BA4  
VCC  
DDR0_MA[1]  
VDDQ  
CMOS  
PWR  
VSS  
QPI_DRX_DP[4]  
QPI_DRX_DN[4]  
QPI_DRX_DP[6]  
VSS  
I
I
I
DDR0_MA[4]  
DDR0_MA[5]  
DDR0_MA[8]  
DDR0_MA[12]  
VDDQ  
CMOS  
CMOS  
CMOS  
CMOS  
PWR  
O
O
O
O
QPI  
QPI  
GND  
RSVD  
BA40  
BA5  
RSVD  
RSVD  
VSS  
GND  
DDR0_MA[15]  
BPM#[0]  
DDR0_CKE[2]  
DDR0_CKE[3]  
VDDQ  
CMOS  
GTL  
O
BA6  
RSVD  
I/O  
O
BA7  
RSVD  
B30  
B31  
B32  
B33  
B34  
B35  
B36  
CMOS  
CMOS  
PWR  
BA8  
RSVD  
O
BA9  
VCC  
PWR  
PWR  
C10  
VDDQ  
RSVD  
C11  
RSVD  
RSVD  
C12  
DDR0_CAS#  
RSVD  
CMOS  
O
RSVD  
C13  
RSVD  
C14  
RSVD  
Datasheet  
59  
Land Listing  
Table 4-2. Land Listing by Land Number  
(Sheet 17 of 29)  
Table 4-2. Land Listing by Land Number  
(Sheet 18 of 29)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
C15  
C16  
C17  
C18  
C19  
C2  
VDDQ  
PWR  
D2  
BPM#[6]  
GTL  
I/O  
DDR2_WE#  
DDR1_CS#[4]  
DDR1_BA[0]  
DDR0_CLK_N[1]  
BPM#[2]  
CMOS  
CMOS  
CMOS  
CLOCK  
GTL  
O
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D3  
RSVD  
O
DDR1_CLK_N[0]  
DDR1_MA[7]  
VDDQ  
CLOCK  
CMOS  
PWR  
O
O
O
O
I/O  
DDR0_MA[3]  
RSVD  
CMOS  
O
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C3  
VDDQ  
PWR  
DDR1_CLK_P[0]  
RSVD  
CLOCK  
O
DDR2_CKE[2]  
DDR1_CKE[2]  
VDDQ  
CMOS  
CMOS  
PWR  
O
O
DDR0_MA[2]  
DDR0_MA[6]  
VDDQ  
CMOS  
CMOS  
PWR  
O
O
DDR1_RESET#  
VSS  
CMOS  
GND  
O
DDR0_MA[9]  
DDR1_CKE[3]  
DDR0_BA[2]  
DDR0_CKE[0]  
BPM#[5]  
CMOS  
CMOS  
CMOS  
CMOS  
GTL  
O
D30  
D31  
D32  
D33  
D34  
D35  
D36  
D37  
D38  
D39  
D4  
RSVD  
O
RSVD  
O
DDR0_RESET#  
VSS  
CMOS  
GND  
O
O
I/O  
RSVD  
C30  
C31  
C32  
C33  
C34  
C35  
C36  
C37  
C38  
C39  
C4  
VDDQ  
PWR  
RSVD  
RSVD  
RSVD  
RSVD  
DDR0_DQ[27]  
VSS  
CMOS  
GND  
I/O  
RSVD  
RSVD  
RSVD  
VSS  
GND  
RSVD  
RSVD  
D40  
D41  
D42  
D43  
D5  
DDR0_DQ[24]  
DDR0_DQ[28]  
DDR0_DQ[29]  
VSS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
RSVD  
DDR0_DQ[30]  
RSVD  
CMOS  
I/O  
I/O  
DDR0_DQ[33]  
VSS  
CMOS  
GND  
RSVD  
C40  
C41  
C42  
C43  
C5  
D6  
DDR1_DQ[38]  
DDR1_DQS_N[4]  
VSS  
CMOS  
CMOS  
GND  
I/O  
I/O  
DDR0_DQ[25]  
PREQ#  
CMOS  
GTL  
I/O  
I
D7  
D8  
VSS  
GND  
D9  
DDR2_CS#[5]  
VSS  
CMOS  
GND  
O
O
VSS  
GND  
E1  
C6  
DDR0_DQ[37]  
DDR0_ODT[3]  
DDR1_ODT[1]  
DDR0_ODT[1]  
BPM#[4]  
CMOS  
CMOS  
CMOS  
CMOS  
GTL  
I/O  
O
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E2  
DDR1_CS#[5]  
VDDQ  
CMOS  
PWR  
C7  
C8  
O
RSVD  
C9  
O
RSVD  
D1  
I/O  
O
DDR1_CAS#  
RSVD  
CMOS  
O
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
DDR2_ODT[3]  
DDR1_ODT[0]  
DDR1_CS#[0]  
VDDQ  
CMOS  
CMOS  
CMOS  
PWR  
O
VDDQ  
PWR  
O
DDR2_CS#[4]  
DDR0_CLK_N[2]  
DDR0_CLK_N[3]  
BPM#[7]  
DDR0_CLK_P[3]  
VDDQ  
CMOS  
CLOCK  
CLOCK  
GTL  
O
O
DDR1_ODT[2]  
DDR2_ODT[2]  
RSVD  
CMOS  
CMOS  
O
O
O
I/O  
O
E20  
E21  
E22  
E23  
CLOCK  
PWR  
DDR2_RAS#  
VDDQ  
CMOS  
PWR  
O
O
DDR1_MA[8]  
DDR1_MA[11]  
CMOS  
CMOS  
O
O
DDR0_CLK_P[1]  
CLOCK  
60  
Datasheet  
Land Listing  
Table 4-2. Land Listing by Land Number  
(Sheet 19 of 29)  
Table 4-2. Land Listing by Land Number  
(Sheet 20 of 29)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
E24  
E25  
E26  
E27  
E28  
E29  
E3  
DDR1_MA[12]  
RSVD  
CMOS  
O
F29  
F3  
VSS  
GND  
DDR0_DQ[38]  
RSVD  
CMOS  
I/O  
VDDQ  
PWR  
F30  
F31  
F32  
F33  
F34  
F35  
F36  
F37  
F38  
F39  
F4  
DDR1_CKE[1]  
RSVD  
CMOS  
O
RSVD  
RSVD  
RSVD  
RSVD  
DDR0_DQS_P[4]  
RSVD  
CMOS  
I/O  
O
VSS  
GND  
E30  
E31  
E32  
E33  
E34  
E35  
E36  
E37  
E38  
E39  
E4  
RSVD  
VDDQ  
PWR  
RSVD  
DDR2_RESET#  
RSVD  
CMOS  
RSVD  
DDR2_DQ[30]  
VSS  
CMOS  
GND  
I/O  
RSVD  
RSVD  
VSS  
GND  
VSS  
GND  
F40  
F41  
F42  
F43  
F5  
DDR2_DQ[25]  
DDR0_DQS_P[2]  
DDR0_DQ[23]  
DDR0_DQ[22]  
DDR1_DQ[35]  
DDR1_DQ[39]  
RSVD  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
RSVD  
DDR2_DQ[31]  
DDR2_DQS_P[3]  
DDR0_DQS_N[4]  
DDR2_DQS_N[3]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
E40  
E41  
E42  
E43  
E5  
F6  
F7  
DDR0_DQ[18]  
DDR0_DQ[19]  
DDR1_DQ[34]  
VSS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
F8  
RSVD  
F9  
VSS  
GND  
G1  
DDR0_DQ[44]  
DDR2_DQ[37]  
DDR2_DQ[36]  
VSS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
E6  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G2  
E7  
DDR1_DQS_P[4]  
DDR1_DQ[33]  
DDR1_DQ[32]  
DDR0_DQ[34]  
DDR1_DQ[36]  
DDR1_ODT[3]  
DDR0_ODT[0]  
DDR2_ODT[1]  
VDDQ  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
PWR  
I/O  
I/O  
I/O  
I/O  
I/O  
O
E8  
E9  
DDR1_WE#  
DDR1_RAS#  
DDR0_CS#[0]  
DDR2_CS#[0]  
VDDQ  
CMOS  
CMOS  
CMOS  
CMOS  
PWR  
O
O
O
O
F1  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F2  
O
O
DDR2_MA[2]  
DDR1_CLK_P[1]  
VSS  
CMOS  
CLOCK  
GND  
O
O
DDR2_MA[13]  
DDR2_CAS#  
DDR2_BA[1]  
DDR0_CLK_P[2]  
VDDQ  
CMOS  
CMOS  
CMOS  
CLOCK  
PWR  
O
O
O
O
G20  
G21  
G22  
G23  
G24  
G25  
G26  
G27  
G28  
G29  
G3  
DDR1_CLK_N[1]  
DDR2_CLK_N[2]  
VDDQ  
CLOCK  
CLOCK  
PWR  
O
O
DDR2_MA[12]  
DDR1_MA[9]  
DDR2_MA[15]  
DDR2_CKE[1]  
VDDQ  
CMOS  
CMOS  
CMOS  
CMOS  
PWR  
O
O
O
O
DDR0_DQ[39]  
DDR2_MA[4]  
RSVD  
CMOS  
CMOS  
I/O  
O
F20  
F21  
F22  
F23  
F24  
F25  
F26  
F27  
F28  
DDR1_MA[5]  
RSVD  
CMOS  
PWR  
O
RSVD  
VDDQ  
RSVD  
RSVD  
DDR0_DQ[35]  
RSVD  
CMOS  
GND  
I/O  
DDR1_MA[15]  
RSVD  
CMOS  
O
G30  
G31  
G32  
RSVD  
RSVD  
VSS  
Datasheet  
61  
Land Listing  
Table 4-2. Land Listing by Land Number  
(Sheet 21 of 29)  
Table 4-2. Land Listing by Land Number  
(Sheet 22 of 29)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
G33  
G34  
G35  
G36  
G37  
G38  
G39  
G4  
RSVD  
RSVD  
RSVD  
RSVD  
VSS  
H38  
H39  
H4  
RSVD  
DDR2_DQ[28]  
DDR1_DQ[43]  
VSS  
CMOS  
CMOS  
GND  
I/O  
I/O  
H40  
H41  
H42  
H43  
H5  
GND  
DDR0_DQ[16]  
RSVD  
CMOS  
I/O  
I/O  
I/O  
RSVD  
DDR2_DQ[29]  
DDR1_DQ[42]  
DDR2_DQ[24]  
DDR0_DQS_N[2]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
DDR0_DQ[17]  
VSS  
CMOS  
GND  
G40  
G41  
G42  
G43  
G5  
H6  
DDR1_DQS_P[5]  
RSVD  
CMOS  
H7  
H8  
DDR1_DQ[40]  
DDR1_DQ[45]  
RSVD  
CMOS  
CMOS  
I/O  
I/O  
RSVD  
H9  
DDR1_DQ[46]  
DDR1_DQS_N[5]  
VSS  
CMOS  
CMOS  
GND  
I/O  
I/O  
J1  
G6  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J2  
DDR2_DQS_P[4]  
RSVD  
CMOS  
I/O  
I/O  
O
G7  
G8  
DDR1_DQ[37]  
DDR1_DQ[44]  
DDR0_DQ[41]  
VSS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
DDR2_DQ[33]  
VSS  
CMOS  
GND  
G9  
H1  
DDR1_MA[0]  
RSVD  
CMOS  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H2  
RSVD  
DDR1_MA[1]  
DDR1_MA[2]  
VDDQ  
CMOS  
CMOS  
PWR  
O
O
DDR2_DQ[38]  
DDR2_DQ[34]  
DDR1_MA[10]  
VDDQ  
CMOS  
CMOS  
CMOS  
PWR  
I/O  
I/O  
O
DDR0_CLK_P[0]  
RSVD  
CLOCK  
O
RSVD  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
J27  
J28  
J29  
J3  
DDR2_MA[3]  
DDR2_CLK_N[0]  
DDR2_CLK_P[0]  
VDDQ  
CMOS  
CLOCK  
CLOCK  
PWR  
O
O
O
DDR2_MA[10]  
DDR1_CLK_P[3]  
DDR1_CLK_N[3]  
DDR0_DQ[40]  
VDDQ  
CMOS  
CLOCK  
CLOCK  
CMOS  
PWR  
O
O
O
I/O  
DDR2_MA[7]  
RSVD  
CMOS  
O
H20  
H21  
H22  
H23  
H24  
H25  
H26  
H27  
H28  
H29  
H3  
DDR2_CLK_P[2]  
DDR2_MA[9]  
DDR2_MA[11]  
DDR2_MA[14]  
VDDQ  
CLOCK  
CMOS  
CMOS  
CMOS  
PWR  
O
O
O
O
DDR2_CKE[0]  
DDR1_MA[6]  
VDDQ  
CMOS  
CMOS  
PWR  
O
O
RSVD  
VSS  
GND  
DDR1_MA[14]  
DDR1_BA[2]  
DDR1_CKE[0]  
RSVD  
CMOS  
CMOS  
CMOS  
O
O
O
J30  
J31  
J32  
J33  
J34  
J35  
J36  
J37  
J38  
J39  
J4  
RSVD  
RSVD  
DDR1_DQ[27]  
VSS  
CMOS  
GND  
I/O  
DDR0_DQ[45]  
VSS  
CMOS  
GND  
I/O  
DDR1_DQ[28]  
DDR1_DQ[19]  
DDR1_DQ[22]  
DDR2_DQ[26]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
H30  
H31  
H32  
H33  
H34  
H35  
H36  
H37  
RSVD  
RSVD  
DDR1_DQ[24]  
DDR1_DQ[29]  
VSS  
CMOS  
CMOS  
GND  
I/O  
I/O  
DDR2_DQ[19]  
DDR1_DQ[52]  
DDR2_DQ[18]  
DDR0_DQ[21]  
CMOS  
CMOS  
CMOS  
CMOS  
I/O  
I/O  
I/O  
I/O  
DDR1_DQ[23]  
DDR2_DQ[27]  
CMOS  
CMOS  
I/O  
I/O  
J40  
J41  
62  
Datasheet  
Land Listing  
Table 4-2. Land Listing by Land Number  
(Sheet 23 of 29)  
Table 4-2. Land Listing by Land Number  
(Sheet 24 of 29)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
J42  
J43  
J5  
DDR0_DQ[20]  
VSS  
CMOS  
GND  
I/O  
K8  
RSVD  
RSVD  
K9  
DDR1_DQ[47]  
DDR1_DQ[41]  
RSVD  
CMOS  
CMOS  
I/O  
I/O  
L1  
DDR0_DQ[42]  
DDR2_DQ[40]  
DDR2_DQ[44]  
DDR2_DQ[39]  
DDR2_DQ[35]  
VDDQ  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
PWR  
I/O  
I/O  
I/O  
I/O  
I/O  
J6  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L2  
J7  
J8  
VSS  
GND  
J9  
DDR2_DQS_N[4]  
VSS  
CMOS  
GND  
I/O  
I/O  
K1  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K2  
DDR2_DQ[41]  
VSS  
CMOS  
GND  
RSVD  
DDR2_ODT[0]  
RSVD  
CMOS  
O
O
DDR2_DQ[32]  
DDR1_BA[1]  
DDR2_CS#[1]  
RSVD  
CMOS  
CMOS  
CMOS  
I/O  
O
DDR1_CLK_N[2]  
VDDQ  
CLOCK  
PWR  
O
DDR0_DQ[47]  
DDR2_CLK_P[1]  
DDR2_CLK_N[3]  
DDR2_CLK_P[3]  
DDR_VREF  
CMOS  
CLOCK  
CLOCK  
CLOCK  
Analog  
PWR  
I/O  
O
VDDQ  
PWR  
L20  
L21  
L22  
L23  
L24  
L25  
L26  
L27  
L28  
L29  
L3  
DDR2_MA[1]  
DDR1_CLK_P[2]  
DDR0_CLK_N[0]  
DDR0_DQS_P[5]  
DDR2_CLK_N[1]  
VDDQ  
CMOS  
CLOCK  
CLOCK  
CMOS  
CLOCK  
PWR  
O
O
O
O
O
I
I/O  
O
VDDQ  
K20  
K21  
K22  
K23  
K24  
K25  
K26  
K27  
K28  
K29  
K3  
DDR2_MA[8]  
DDR2_BA[2]  
DDR2_CKE[3]  
DDR1_MA[3]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
O
O
O
O
DDR2_MA[6]  
DDR2_MA[5]  
RSVD  
CMOS  
CMOS  
O
O
RSVD  
DDR0_DQ[46]  
DDR1_DQS_P[3]  
DDR1_DQS_N[3]  
DDR1_DQ[30]  
DDR1_DQ[25]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
VDDQ  
PWR  
L30  
L31  
L32  
L33  
L34  
L35  
L36  
L37  
L38  
L39  
L4  
RSVD  
DDR1_MA[4]  
RSVD  
CMOS  
O
DDR0_DQS_N[5]  
DDR1_DQ[31]  
VSS  
CMOS  
CMOS  
GND  
I/O  
I/O  
K30  
K31  
K32  
K33  
K34  
K35  
K36  
K37  
K38  
K39  
K4  
DDR1_DQS_P[2]  
DDR1_DQS_N[2]  
RSVD  
CMOS  
CMOS  
I/O  
I/O  
DDR1_DQ[26]  
RSVD  
CMOS  
I/O  
I/O  
RSVD  
RSVD  
VSS  
GND  
DDR1_DQ[18]  
VSS  
CMOS  
GND  
VSS  
GND  
L40  
L41  
L42  
L43  
L5  
DDR2_DQ[22]  
DDR0_DQS_P[1]  
DDR0_DQ[15]  
DDR0_DQ[14]  
DDR1_DQS_N[6]  
DDR1_DQS_P[6]  
DDR2_DQS_P[5]  
DDR2_DQ[46]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
RSVD  
DDR2_DQ[23]  
DDR2_DQS_N[2]  
DDR1_DQ[48]  
DDR2_DQS_P[2]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
K40  
K41  
K42  
K43  
K5  
L6  
L7  
DDR0_DQ[10]  
DDR0_DQ[11]  
DDR1_DQ[49]  
VSS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
L8  
L9  
M1  
DDR0_DQ[43]  
DDR2_DQ[45]  
VCC  
CMOS  
CMOS  
PWR  
I/O  
I/O  
K6  
M10  
M11  
K7  
DDR2_DQS_N[5]  
CMOS  
I/O  
Datasheet  
63  
Land Listing  
Table 4-2. Land Listing by Land Number  
(Sheet 25 of 29)  
Table 4-2. Land Listing by Land Number  
(Sheet 26 of 29)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M2  
VSS  
VCC  
VSS  
VCC  
VSS  
VDDQ  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VDDQ  
VSS  
VCC  
GND  
PWR  
GND  
PWR  
GND  
PWR  
GND  
PWR  
GND  
GND  
PWR  
GND  
PWR  
GND  
PWR  
GND  
PWR  
GND  
PWR  
CMOS  
GND  
PWR  
GND  
PWR  
CMOS  
CMOS  
CMOS  
GND  
N36  
N37  
N38  
N39  
N4  
DDR2_DQ[21]  
DDR1_DQ[14]  
DDR1_DQ[15]  
DDR1_DQ[11]  
RSVD  
CMOS  
CMOS  
CMOS  
CMOS  
I/O  
I/O  
I/O  
I/O  
N40  
N41  
N42  
N43  
N5  
VSS  
GND  
DDR0_DQ[8]  
RSVD  
CMOS  
I/O  
I/O  
DDR0_DQ[9]  
VSS  
CMOS  
GND  
M20  
M21  
M22  
M23  
M24  
M25  
M26  
M27  
M28  
M29  
M3  
N6  
DDR2_DQ[49]  
DDR2_DQ[53]  
DDR2_DQ[52]  
DDR2_DQ[43]  
RSVD  
CMOS  
CMOS  
CMOS  
CMOS  
I/O  
I/O  
I/O  
I/O  
N7  
N8  
N9  
P1  
P10  
P11  
P2  
DDR2_DQ[51]  
VSS  
CMOS  
GND  
I/O  
RSVD  
P3  
VSS  
GND  
DDR0_DQ[52]  
VSS  
I/O  
P33  
P34  
P35  
P36  
P37  
P38  
P39  
P4  
VSS  
GND  
M30  
M31  
M32  
M33  
M34  
M35  
M36  
M37  
M38  
M39  
M4  
DDR1_DQ[8]  
DDR1_DQ[9]  
RSVD  
CMOS  
CMOS  
I/O  
I/O  
VCC  
VSS  
VCC  
RSVD  
DDR1_DQ[17]  
DDR1_DQ[16]  
DDR1_DQ[21]  
VSS  
I/O  
I/O  
I/O  
VSS  
GND  
DDR1_DQ[10]  
RSVD  
CMOS  
I/O  
P40  
P41  
P42  
P43  
P5  
DDR2_DQ[20]  
DDR0_DQ[13]  
DDR0_DQ[12]  
VSS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
RSVD  
DDR2_DQ[16]  
RSVD  
CMOS  
I/O  
M40  
M41  
M42  
M43  
M5  
DDR2_DQ[17]  
DDR0_DQS_N[1]  
VSS  
CMOS  
CMOS  
GND  
I/O  
I/O  
DDR2_DQS_N[6]  
DDR2_DQS_P[6]  
DDR2_DQ[48]  
VSS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
P6  
P7  
RSVD  
P8  
RSVD  
P9  
DDR2_DQ[50]  
VSS  
CMOS  
GND  
I/O  
I/O  
M6  
DDR1_DQ[53]  
VSS  
CMOS  
GND  
I/O  
R1  
M7  
R10  
R11  
R2  
DDR2_DQ[54]  
VCC  
CMOS  
PWR  
M8  
DDR2_DQ[47]  
DDR2_DQ[42]  
DDR0_DQ[48]  
VSS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
M9  
DDR0_DQS_P[6]  
DDR0_DQS_N[6]  
VCC  
CMOS  
CMOS  
PWR  
I/O  
I/O  
N1  
R3  
N10  
N11  
N2  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
VCC  
PWR  
DDR1_DQ[12]  
DDR1_DQ[13]  
VSS  
CMOS  
CMOS  
GND  
I/O  
I/O  
DDR0_DQ[49]  
DDR0_DQ[53]  
VCC  
CMOS  
CMOS  
PWR  
I/O  
I/O  
N3  
N33  
N34  
N35  
DDR1_DQS_N[1]  
DDR1_DQS_P[1]  
DDR2_DQ[10]  
CMOS  
CMOS  
CMOS  
I/O  
I/O  
I/O  
DDR1_DQ[20]  
VSS  
CMOS  
GND  
I/O  
64  
Datasheet  
Land Listing  
Table 4-2. Land Listing by Land Number  
(Sheet 27 of 29)  
Table 4-2. Land Listing by Land Number  
(Sheet 28 of 29)  
Land  
No.  
Buffer  
Type  
Land  
No.  
Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
R4  
DDR0_DQ[54]  
DDR2_DQ[15]  
VSS  
CMOS  
CMOS  
GND  
I/O  
I/O  
U43  
U5  
DDR0_DQS_N[0]  
DDR2_DQ[56]  
DDR2_DQ[57]  
VSS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
R40  
R41  
R42  
R43  
R5  
U6  
DDR0_DQ[3]  
DDR0_DQ[2]  
DDR1_DQ[50]  
VSS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
U7  
U8  
DDR2_DQS_P[7]  
DDR2_DQ[63]  
DDR0_DQ[57]  
VSS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
U9  
R6  
V1  
R7  
DDR1_DQ[55]  
DDR1_DQ[54]  
DDR2_DQ[55]  
DDR0_DQ[50]  
DDR2_DQ[58]  
VCC  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
PWR  
I/O  
I/O  
I/O  
I/O  
I/O  
V10  
V11  
V2  
R8  
RSVD  
R9  
RSVD  
T1  
V3  
RSVD  
T10  
T11  
T2  
V33  
V34  
V35  
V36  
V37  
V38  
V39  
V4  
VCCPLL  
PWR  
DDR2_DQ[5]  
VSS  
CMOS  
GND  
I/O  
DDR0_DQ[51]  
DDR0_DQ[55]  
VCC  
CMOS  
CMOS  
PWR  
I/O  
I/O  
T3  
DDR2_DQ[2]  
DDR2_DQ[6]  
DDR2_DQ[7]  
DDR2_DQ[13]  
DDR0_DQ[62]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
T33  
T34  
T35  
T36  
T37  
T38  
T39  
T4  
VSS  
GND  
RSVD  
DDR2_DQ[11]  
DDR2_DQS_P[1]  
DDR2_DQS_N[1]  
VSS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
V40  
V41  
V42  
V43  
V5  
DDR0_DQ[1]  
RSVD  
CMOS  
I/O  
VSS  
GND  
RSVD  
T40  
T41  
T42  
T43  
T5  
RSVD  
VSS  
GND  
DDR2_DQ[14]  
DDR0_DQ[7]  
DDR0_DQS_P[0]  
DDR1_DQ[51]  
DDR2_DQ[60]  
DDR2_DQ[61]  
DDR2_DQS_N[7]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
V6  
RSVD  
V7  
RSVD  
V8  
DDR2_DQ[62]  
DDR1_DQ[60]  
DDR0_DQS_N[7]  
DDR1_DQ[59]  
VCC  
CMOS  
CMOS  
CMOS  
CMOS  
PWR  
I/O  
I/O  
I/O  
I/O  
V9  
T6  
W1  
T7  
W10  
W11  
W2  
T8  
T9  
DDR0_DQS_P[7]  
VSS  
CMOS  
GND  
I/O  
U1  
DDR0_DQ[60]  
DDR2_DQ[59]  
RSVD  
CMOS  
CMOS  
I/O  
I/O  
W3  
U10  
U11  
U2  
W33  
W34  
W35  
W36  
W37  
W38  
W39  
W4  
VCCPLL  
PWR  
DDR2_DQ[0]  
DDR2_DQ[1]  
DDR2_DQS_N[0]  
DDR2_DQS_P[0]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
VSS  
GND  
U3  
DDR0_DQ[61]  
VCCPLL  
CMOS  
PWR  
I/O  
I/O  
I/O  
U33  
U34  
U35  
U36  
U37  
U38  
U39  
U4  
DDR2_DQ[4]  
RSVD  
CMOS  
DDR2_DQ[12]  
DDR0_DQ[63]  
DDR0_DQ[4]  
DDR0_DQ[0]  
DDR0_DQ[5]  
VSS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
DDR2_DQ[3]  
VSS  
CMOS  
GND  
W40  
W41  
W42  
W43  
W5  
DDR2_DQ[8]  
DDR2_DQ[9]  
DDR0_DQ[56]  
RSVD  
CMOS  
CMOS  
CMOS  
I/O  
I/O  
I/O  
U40  
U41  
U42  
DDR1_DQ[61]  
DDR1_DQ[56]  
DDR1_DQ[57]  
CMOS  
CMOS  
CMOS  
I/O  
I/O  
I/O  
DDR0_DQ[6]  
VSS  
CMOS  
GND  
I/O  
W6  
W7  
Datasheet  
65  
Land Listing  
Table 4-2. Land Listing by Land Number  
(Sheet 29 of 29)  
Land  
No.  
Buffer  
Type  
Pin Name  
Direction  
W8  
W9  
Y1  
VSS  
GND  
DDR1_DQ[63]  
VSS  
CMOS  
GND  
I/O  
I/O  
Y10  
Y11  
Y2  
DDR1_DQ[58]  
VSS  
CMOS  
GND  
DDR0_DQ[58]  
DDR0_DQ[59]  
VSS  
CMOS  
CMOS  
GND  
I/O  
I/O  
Y3  
Y33  
Y34  
Y35  
Y36  
Y37  
Y38  
Y39  
Y4  
DDR1_DQ[3]  
DDR1_DQ[2]  
VSS  
CMOS  
CMOS  
GND  
I/O  
I/O  
DDR1_DQS_N[0]  
DDR1_DQS_P[0]  
DDR1_DQ[7]  
RSVD  
CMOS  
CMOS  
CMOS  
I/O  
I/O  
I/O  
Y40  
Y41  
Y5  
DDR1_DQ[6]  
VSS  
CMOS  
GND  
I/O  
RSVD  
Y6  
VSS  
GND  
Y7  
DDR_COMP[1]  
DDR1_DQS_P[7]  
DDR1_DQS_N[7]  
Analog  
CMOS  
CMOS  
Y8  
I/O  
I/O  
Y9  
§
66  
Datasheet  
Signal Descriptions  
5 Signal Descriptions  
This chapter provides a description of each processor signal.  
Table 5-1.  
Signal Definitions (Sheet 1 of 4)  
Name  
Type  
Description  
Notes  
BCLK_DN  
BCLK_DP  
I
Differential bus clock input to the processor.  
Buffered differential bus clock pair to ITP.  
BCLK_ITP_DN  
BCLK_ITP_DP  
O
BPM#[7:0] are breakpoint and performance monitor signals. They are outputs  
from the processor that indicate the status of breakpoints and programmable  
counters used for monitoring processor performance. BPM#[7:0] should be  
connected in a wired OR topology between all packages on a platform. The end  
points for the wired OR connections must be terminated.  
BPM#[7:0]  
I/O  
CAT_ERR# indicates that the system has experienced a catastrophic error and  
cannot continue to operate. The processor will set this for non-recoverable  
machine check errors and other internal unrecoverable error. Since this is an I/  
O pin, external agents are allowed to assert this pin which will cause the  
processor to take a machine check exception.  
CAT_ERR#  
COMP0  
I/O  
I
Impedance compensation must be terminated on the system board using a  
precision resistor.  
I
I
QPI_CLKRX_DN  
QPI_CLKRX_DP  
Intel QPI received clock is the input clock that corresponds to the received data.  
QPI_CLKTX_DN  
QPI_CLKTX_DP  
O
O
Intel QPI forwarded clock sent with the outbound data.  
QPI_CMP[0]  
I
Must be terminated on the system board using a precision resistor.  
QPI_DRX_DN[19:0] and QPI_DRX_DP[19:0] comprise the differential receive  
data for the QPI port. The inbound 20 lanes are connected to another  
component’s outbound direction.  
QPI_DRX_DN[19:0]  
QPI_DRX_DP[19:0]  
I
I
QPI_DTX_DN[19:0] and QPIQPI_DTX_DP[19:0] comprise the differential  
transmit data for the QPI port. The outbound 20 lanes are connected to another  
component’s inbound direction.  
QPI_DTX_DN[19:0]  
QPI_DTX_DP[19:0]  
O
O
DBR# is used only in systems where no debug port is implemented on the  
system board. DBR# is used by a debug port interposer so that an in-target  
probe can drive system reset. If a debug port is implemented in the system,  
DBR# is a no connect in the system. DBR# is not a processor signal.  
DBR#  
I
DDR_COMP[2:0]  
DDR_VREF  
I
I
Must be terminated on the system board using precision resistors.  
Voltage reference for DDR3  
Defines the bank which is the destination for the current Activate, Read, Write,  
or Precharge command.  
1
DDR{0/1/2}_BA[2:0]  
O
DDR{0/1/2}_CAS#  
O
O
Column Address Strobe.  
Clock Enable.  
DDR{0/1/2}_CKE[3:0]  
DDR{0/1/2}_CLK_N[2:0]  
DDR{0/1/2}_CLK_P[2:0]  
Differential clocks to the DIMM. All command and control signals are valid on  
the rising edge of clock.  
O
DDR{0/1/2}_CS[1:0]#  
DDR{0/1/2}_CS[5:4]#  
O
Each signal selects one rank as the target of the command and address.  
DDR3 Data bits.  
DDR{0/1/2}_DQ[63:0]  
I/O  
Differential pair, Data Strobe x8. Differential strobes latch data for each DRAM.  
Different numbers of strobes are used depending on whether the connected  
DRAMs are x4 or x8. Driven with edges in center of data, receive edges are  
aligned with data edges.  
DDR{0/1/2}_DQS_N[7:0]  
DDR{0/1/2}_DQS_P[7:0]  
I/O  
Datasheet  
67  
Signal Descriptions  
Table 5-1.  
Signal Definitions (Sheet 2 of 4)  
Name  
Type  
Description  
Notes  
Selects the Row address for Reads and writes, and the column address for  
activates. Also used to set values for DRAM configuration registers.  
DDR{0/1/2}_MA[15:0]  
O
Enables various combinations of termination resistance in the target and non-  
target DIMMs when data is read or written  
DDR{0/1/2}_ODT[3:0]  
DDR{0/1/2}_RAS#  
O
O
O
Row Address Strobe.  
Resets DRAMs. Held low on power up, held high during self refresh, otherwise  
controlled by configuration register.  
DDR{0/1/2}_RESET#  
DDR{0/1/2}_WE#  
ISENSE  
O
I
Write Enable.  
Current sense from VRD11.1.  
PECI (Platform Environment Control Interface) is the serial sideband interface to  
the processor and is used primarily for thermal, power and error management.  
Details regarding the PECI electrical specifications, protocols and functions can  
be found in the Platform Environment Control Interface Specification.  
PECI  
I/O  
PRDY# is a processor output used by debug tools to determine processor debug  
readiness.  
PRDY#  
PREQ#  
O
I/O  
PREQ# is used by debug tools to request debug operation of the processor.  
PROCHOT# will go active when the processor temperature monitoring sensor  
detects that the processor has reached its maximum safe operating  
temperature. This indicates that the processor Thermal Control Circuit has been  
activated, if enabled. This signal can also be driven to the processor to activate  
the Thermal Control Circuit. This signal does not have on-die termination and  
must be terminated on the system board.  
PROCHOT#  
I/O  
Processor Power Status Indicator signal. This signal is asserted when maximum  
possible processor core current consumption is less than 20A. Assertion of this  
signal is an indication that the VR controller does not currently need to be able  
to provide ICC above 20A, and the VR controller can use this information to  
move to more efficient operation point. This signal will de-assert at least 3.3 us  
before the current consumption will exceed 20A. The minimum PSI#  
assertion and de-assertion time is 1 BCLK.  
PSI#  
O
Asserting the RESET# signal resets the processor to a known state and  
invalidates its internal caches without writing back any of their contents. Note  
some PLL, QPI and error states are not effected by reset and only  
VCCPWRGOOD forces them to a known state. For a power-on Reset, RESET#  
must stay active for at least one millisecond after VCC and BCLK have reached  
their proper specifications. RESET# must not be kept asserted for more than  
10 ms while VCCPWRGOOD is asserted. RESET# must be held de-asserted for  
at least 1 ms before it is asserted again. RESET# must be held asserted before  
VCCPWRGOOD is asserted. This signal does not have on-die termination and  
must be terminated on the system board. RESET# is a common clock signal.  
RESET#  
I
SKTOCC# (Socket Occupied) will be pulled to ground on the processor package.  
There is no connection to the processor silicon for this signal. System board  
designers may use this signal to determine if the processor is present.  
SKTOCC#  
O
TCK (Test Clock) provides the clock input for the processor Test Bus (also known  
as the Test Access Port).  
TCK  
I
I
TDI (Test Data In) transfers serial test data into the processor. TDI provides the  
serial input needed for JTAG specification support.  
TDI  
TDO (Test Data Out) transfers serial test data out of the processor. TDO  
provides the serial output needed for JTAG specification support.  
TDO  
O
I
TESTLOW must be connected to ground through a resistor for proper processor  
operation.  
TESTLOW  
68  
Datasheet  
Signal Descriptions  
Table 5-1.  
Signal Definitions (Sheet 3 of 4)  
Name  
Type  
Description  
Notes  
Assertion of THERMTRIP# (Thermal Trip) indicates the processor junction  
temperature has reached a level beyond which permanent silicon damage may  
occur. Measurement of the temperature is accomplished through an internal  
thermal sensor. Upon assertion of THERMTRIP#, the processor will shut off its  
internal clocks (thus halting program execution) in an attempt to reduce the  
processor junction temperature. To further protect the processor, its core  
THERMTRIP#  
O
voltage (V ), V  
V
, and V  
must be removed following the assertion of  
CC  
TTA TTD  
DDQ  
THERMTRIP#. Once activated, THERMTRIP# remains latched until RESET# is  
asserted. While the assertion of the RESET# signal may de-assert  
THERMTRIP#, if the processor junction temperature remains at or above the  
trip level, THERMTRIP# will again be asserted after RESET# is de-asserted.  
TMS (Test Mode Select) is a JTAG specification support signal used by debug  
tools.  
TMS  
I
TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST# must be  
driven low during power on Reset.  
TRST#  
VCC  
I
I
Power for processor core.  
VCC_SENSE and VSS_SENSE provide an isolated, low impedance connection to  
the processor core power and ground. They can be used to sense or measure  
voltage near the silicon.  
VCC_SENSE  
VSS_SENSE  
O
O
VCCPLL  
I
Power for on-die PLL filter.  
VCCPWRGOOD (Power Good) is a processor input. The processor requires this  
signal to be a clean indication that BCLK, V , V  
, V  
and V  
supplies  
CC  
CCPLL  
TTA  
TTD  
are stable and within their specifications. 'Clean' implies that the signal will  
remain low (capable of sinking leakage current), without glitches, from the time  
that the power supplies are turned on until they come within specification. The  
signal must then transition monotonically to a high state. VCCPWRGOOD can be  
driven inactive at any time, but BCLK and power must again be stable before a  
subsequent rising edge of VCCPWRGOOD. In addition at the time  
VCCPWRGOOD is asserted RESET# must be active. The PWRGOOD signal must  
be supplied to the processor. It should be driven high throughout boundary scan  
operation.  
VCCPWRGOOD  
I
VDDPWRGOOD is an input that indicates the V  
power supply is good. The  
DDQ  
processor requires this signal to be a clean indication that the V  
power  
DDQ  
supply is stable and within specifications. "Clean" implies that the signal will  
remain low (capable of sinking leakage current), without glitches, from the time  
that the Vddq supply is turned on until it comes within specification. The signals  
must then transition monotonically to a high state.  
VDDPWRGOOD  
I
The PwrGood signal must be supplied to the processor.  
VID[7:0] (Voltage ID) are used to support automatic selection of power supply  
voltages (V ). The voltage supply for these signals must be valid before the VR  
CC  
can supply V to the processor. Conversely, the VR output must be disabled  
CC  
until the voltage supply for the VID signals become valid. The VR must supply  
the voltage that is requested by the signals, or disable itself.  
VID7 and VID6 should be tied separately to V using a 1 kresistor during  
SS  
VID[7:6]  
reset (This value is latched on the rising edge of VTTPWRGOOD)  
VID[5:3]/CSC[2:0]  
VID[2:0]/MSID[2:0]  
I/O  
MSID[2:0] — MSID[2:0] is used to indicate to the processor whether the  
platform supports a particular TDP. A processor will only boot if the MSID[2:0]  
pins are strapped to the appropriate setting on the platform (see Table 2-2 for  
MSID encodings). In addition, MSID protects the platform by preventing a  
higher power processor from booting in a platform designed for lower power  
processors.  
CSC[2:0] — Current Sense Configuration bits, for ISENSE gain setting. This  
value is latched on the rising edge of VTTPWRGOOD.  
Power for the analog portion of the integrated memory controller, QPI and  
Shared Cache.  
VTTA  
VTTD  
I
I
Power for the digital portion of the integrated memory controller, QPI and  
Shared Cache.  
Datasheet  
69  
Signal Descriptions  
Table 5-1.  
Signal Definitions (Sheet 4 of 4)  
Name  
Type  
Description  
Notes  
VTT_VID[2:4] (VTTVoltage ID) are used to support automatic selection of power  
supply voltages (V ).  
TT  
VTT_VID[4:2]  
O
VTT_SENSE and VSS_SENSE_VTT provide an isolated, low impedance  
VTT_SENSE  
VSS_SENSE_VTT  
O
O
connection to the processor V voltage and ground. They can be used to sense  
TT  
or measure voltage near the silicon.  
The processor requires this input signal to be a clean indication that the V  
TT  
power supply is stable and within specifications. 'Clean' implies that the signal  
will remain low (capable of sinking leakage current), without glitches, from the  
time that the power supplies are turned on until they come within specification.  
The signal must then transition monotonically to a high state. Note that it is not  
valid for VTTPWRGOOD to be de-asserted while VCCPWRGOOD is asserted.  
VTTPWRGOOD  
I
Notes:  
1.  
DDR{0/1/2} refers to DDR3 Channel 0, DDR3 Channel 1, and DDR3 Channel 2.  
§
70  
Datasheet  
Thermal Specifications  
6 Thermal Specifications  
6.1  
Package Thermal Specifications  
The processor requires a thermal solution to maintain temperatures within its operating  
limits. Any attempt to operate the processor outside these operating limits may result  
in permanent damage to the processor and potentially other components within the  
system. Maintaining the proper thermal environment is key to reliable, long-term  
system operation.  
A complete solution includes both component and system level thermal management  
features. Component level thermal solutions can include active or passive heatsinks  
attached to the processor integrated heat spreader (IHS).  
This chapter provides data necessary for developing a complete thermal solution. For  
more information on designing a component level thermal solution, refer to the  
appropriate processor Thermal and Mechanical Design Guidelines (see Section 1.2).  
6.1.1  
Thermal Specifications  
The processor thermal specification uses the on-die Digital Thermal Sensor (DTS) value  
reported using the PECI interface for all processor temperature measurements. The  
DTS is a factory calibrated, analog to digital thermal sensor. As a result, it will no longer  
be necessary to measure the processors case temperature. Consequently, there will be  
no need for a Thermal Profile specification defining the relationship between the  
processors TCASE and power dissipation.  
Note:  
Note:  
Unless otherwise specified, the term “DTS” refers to the DTS value returned by the  
PECI interface gettemp command.  
A thermal solution that was verified compliant to the processor case temperature  
thermal profile at the customer defined boundary conditions is expected to be  
compliant with this update. No redesign of the thermal solution should be necessary. A  
fan speed control algorithms that was compliant to the previous thermal requirements  
is also expected to be compliant with this specification. The fan speed control algorithm  
can be updated to use the additional information to optimize acoustics.  
To allow the optimal operation and long-term reliability of Intel processor-based  
systems, the processor thermal solution must deliver the specified thermal solution  
performance in response to the DTS sensor value. The thermal solution performance  
will be measured using a Thermal Test Vehicle (TTV). See Table 6-1 and Figure 6-1 for  
the TTV thermal profile and Table 6-3 for the required thermal solution performance  
table when DTS values are greater than TCONTROL. Thermal solutions not designed to  
provide this level of thermal capability may affect the long-term reliability of the  
processor and system. When the DTS value is less than TCONTROL, the thermal solution  
performance is not defined and the fans may be slowed down. This is unchanged from  
the prior specification. For more details on thermal solution design, refer to the  
appropriate processor Thermal and Mechanical Design Guidelines (see Section 1.2).  
The processors implement a methodology for managing processor temperatures, which  
is intended to support acoustic noise reduction through fan speed control and to assure  
processor reliability. Selection of the appropriate fan speed is based on the relative  
temperature data reported by the processor’s Digital Temperature Sensor (DTS). The  
DTS can be read using the Platform Environment Control Interface (PECI) as described  
Datasheet  
71  
Thermal Specifications  
in Section 6.3. The temperature reported over PECI is always a negative value and  
represents a delta below the onset of thermal control circuit (TCC) activation, as  
indicated by PROCHOT# (see Section 6.2, Processor Thermal Features). Systems that  
implement fan speed control must be designed to use this data. Systems that do not  
alter the fan speed only need to ensure the thermal solution provides the CA that  
meets the TTV thermal profile specifications.  
A single integer change in the PECI value corresponds to approximately 1 °C change in  
processor temperature. Although each processors DTS is factory calibrated, the  
accuracy of the DTS will vary from part to part and may also vary slightly with  
temperature and voltage. In general, each integer change in PECI should equal a  
temperature change between 0.9 °C and 1.1 °C.  
Analysis indicates that real applications are unlikely to cause the processor to consume  
maximum power dissipation for sustained time periods. Intel recommends that  
complete thermal solution designs target the Thermal Design Power (TDP), instead of  
the maximum processor power consumption. The Adaptive Thermal Monitor feature is  
intended to help protect the processor in the event that an application exceeds the TDP  
recommendation for a sustained time period. For more details on this feature, refer to  
Section 6.2. Refer to the appropriate processor Thermal and Mechanical Design Guide  
(see Section 1.2) for details on system thermal solution design, thermal profiles and  
environmental considerations.  
Table 6-1.  
Processor Thermal Specifications  
Target Psi-ca  
Thermal  
Design Power  
(W)  
Idle  
Minimum  
TTV T  
Maximum TTV  
Core  
Frequency  
Using  
Processor  
Power  
T
Notes  
CASE  
CASE  
(°C)  
Processor TTV  
6
(W)  
(°C)  
5
(°C/W)  
i7-975  
i7-965  
i7-960  
i7-950  
i7-940  
i7-930  
i7-920  
3.33 GHz  
3.20 GHz  
3.20 GHz  
3.06 GHz  
2.93 GHz  
2.80 GHz  
2.66 GHz  
130  
130  
130  
130  
130  
130  
130  
12  
12  
12  
12  
12  
12  
15  
5
5
5
5
5
5
5
0.222  
0.222  
0.222  
0.222  
0.222  
0.222  
0.222  
See Figure 6-1;  
Table 6-2  
1, 2, 3, 4,  
5
Notes:  
1.  
These values are specified at V  
for all processor frequencies. Systems must be designed to ensure  
CC_MAX  
the processor is not to be subjected to any static V and I combination wherein V exceeds V at  
specified I . Refer to the loadline specifications in Chapter 2.  
CC  
CC  
CC  
CC_MAX  
CC  
2.  
3.  
4.  
Thermal Design Power (TDP) should be used for processor thermal solution design targets. TDP is not the  
maximum power that the processor can dissipate. TDP is measured at the TCC activation temperature.  
These specifications are based on initial silicon characterization. These specifications may be further  
updated as more characterization data becomes available.  
Power specifications are defined at all VIDs found in Table 2-1. The processor may be shipped under  
multiple VIDs for each frequency.  
5.  
6.  
Target -ca Using the processor TTV (°C/W) is based on a T  
of 39 °C.  
AMBIENT  
Processor idle power is specified under the lowest possible idle state: processor package C6 state.  
Achieving processor package C6 state is not supported by all chipsets. See the Intel X58 Express Chipset  
Datasheet for more details.  
72  
Datasheet  
Thermal Specifications  
Figure 6-1. Processor Thermal Profile  
70.0  
y = 43.2 + 0.19 * P  
65.0  
60.0  
55.0  
50.0  
45.0  
40.0  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
TTV Power (W)  
Notes:  
1.  
2.  
Refer to Table 6-2 for discrete points that constitute the thermal profile.  
Refer to the appropriate processor Thermal and Mechanical Design Guidelines (see Section 1.2) for system  
and environmental implementation details.  
3.  
The thermal profile is based on data from the Thermal Test Vehicle (TTV).  
Table 6-2.  
Processor Thermal Profile  
Power  
(W)  
T
Power  
(W)  
T
Power  
(W)  
T
Power  
(W)  
T
CASE_MAX  
CASE_MAX  
(C)  
CASE_MAX  
(C)  
CASE_MAX  
(C)  
(C)  
0
43.2  
43.6  
44.0  
44.3  
44.7  
45.1  
45.5  
45.9  
46.2  
46.6  
47.0  
47.4  
47.8  
48.1  
48.5  
48.9  
49.3  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
64  
66  
49.7  
50.0  
50.4  
50.8  
51.2  
51.6  
51.9  
52.3  
52.7  
53.1  
53.5  
53.8  
54.2  
54.6  
55.0  
55.4  
55.7  
68  
70  
72  
74  
76  
78  
80  
82  
84  
86  
88  
90  
92  
94  
96  
98  
56.1  
56.5  
56.9  
57.3  
57.6  
58.0  
58.4  
58.8  
59.2  
59.5  
59.9  
60.3  
60.7  
61.1  
61.4  
61.8  
100  
102  
104  
106  
108  
110  
112  
114  
116  
118  
120  
122  
124  
126  
128  
130  
62.2  
62.6  
63.0  
63.3  
63.7  
64.1  
64.5  
64.9  
65.2  
65.6  
66.0  
66.4  
66.8  
67.1  
67.5  
67.9  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
Datasheet  
73  
Thermal Specifications  
6.1.1.1  
Specification for Operation Where Digital Thermal Sensor Exceeds  
CONTROL  
T
When the DTS value is less than TCONTROL, the fan speed control algorithm can reduce  
the speed of the thermal solution fan. This remains the same as with the previous  
guidance for fan speed control.  
During operation where the DTS value is greater than TCONTROL, the fan speed control  
algorithm must drive the fan speed to meet or exceed the target thermal solution  
performance (CA) shown in Table 6-3. The ability to monitor the inlet temperature  
(TAMBIENT) is required to fully implement the specification as the target CA is explicitly  
defined for various ambient temperature conditions. See the appropriate processor  
Thermal and Mechanical Design Guidelines (see Section 1.2) for details on  
characterizing the fan speed to CA and ambient temperature measurement.  
Table 6-3.  
Thermal Solution Performance above TCONTROL  
1
2
3
T
at DTS = T  
at DTS = -1  
CA  
AMBIENT  
43.2  
42.0  
41.0  
40.0  
39.0  
38.0  
37.0  
36.0  
35.0  
34.0  
33.0  
32.0  
31.0  
30.0  
29.0  
28.0  
27.0  
26.0  
25.0  
24.0  
23.0  
22.0  
21.0  
20.0  
19.0  
18.0  
CA  
CONTROL  
0.190  
0.206  
0.219  
0.232  
0.245  
0.258  
0.271  
0.284  
0.297  
0.310  
0.323  
0.336  
0.349  
0.362  
0.375  
0.388  
0.401  
0.414  
0.427  
0.440  
0.453  
0.466  
0.479  
0.492  
0.505  
0.519  
0.190  
0.199  
0.207  
0.215  
0.222  
0.230  
0.238  
0.245  
0.253  
0.261  
0.268  
0.276  
0.284  
0.292  
0.299  
0.307  
0.315  
0.322  
0.330  
0.338  
0.345  
0.353  
0.361  
0.368  
0.376  
0.384  
Notes:  
1.  
2.  
The ambient temperature is measured at the inlet to the processor thermal solution.  
This column can be expressed as a function of T  
by the following equation:  
AMBIENT  
Y
= 0.19 + (43.2 – T  
) * 0.013  
CA  
AMBIENT  
3.  
This column can be expressed as a function of T  
= 0.19 + (43.2 – T ) * 0.0077  
by the following equation:  
AMBIENT  
Y
CA  
AMBIENT  
74  
Datasheet  
Thermal Specifications  
6.1.2  
Thermal Metrology  
The minimum and maximum TTV case temperatures (TCASE) are specified in Table 6-1,  
and Table 6-2 and are measured at the geometric top center of the thermal test vehicle  
integrated heat spreader (IHS). Figure 6-2 illustrates the location where TCASE  
temperature measurements should be made. For detailed guidelines on temperature  
measurement methodology and attaching the thermocouple, refer to the appropriate  
processor Thermal and Mechanical Design Guidelines (see Section 1.2).  
Figure 6-2. Thermal Test Vehicle (TTV) Case Temperature (TCASE) Measurement Location  
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
Figure is not to scale and is for reference only.  
B1: Max = 45.07 mm, Min = 44.93 mm.  
B2: Max = 42.57 mm, Min = 42.43 mm.  
C1: Max = 39.1 mm, Min = 38.9 mm.  
C2: Max = 36.6 mm, Min = 36.4 mm.  
C3: Max = 2.3 mm, Min = 2.2 mm  
C4: Max = 2.3 mm, Min = 2.2 mm.  
Refer to the appropriate Thermal and Mechanical Design Guide (see Section 1.2) for instructions on  
thermocouple installation on the processor TTV package.  
Datasheet  
75  
Thermal Specifications  
6.2  
Processor Thermal Features  
6.2.1  
Processor Temperature  
A new feature in the Intel Core™ i7-900 desktop processor Extreme Edition series and  
Intel Core™ i7-900 desktop processor series is a software readable field in the  
IA32_TEMPERATURE_TARGET register that contains the minimum temperature at  
which the TCC will be activated and PROCHOT# will be asserted. The TCC activation  
temperature is calibrated on a part-by-part basis and normal factory variation may  
result in the actual TCC activation temperature being higher than the value listed in the  
register. TCC activation temperatures may change based on processor stepping,  
frequency or manufacturing efficiencies.  
Note:  
There is no specified correlation between DTS temperatures and processor case  
temperatures; therefore it is not possible to use this feature to ensure the processor  
case temperature meets the Thermal Profile specifications.  
6.2.2  
Adaptive Thermal Monitor  
The Adaptive Thermal Monitor feature provides an enhanced method for controlling the  
processor temperature when the processor silicon exceeds the Thermal Control Circuit  
(TCC) activation temperature. Adaptive Thermal Monitor uses TCC activation to reduce  
processor power using a combination of methods. The first method (Frequency/VID  
control, similar to Thermal Monitor 2 (TM2) in previous generation processors) involves  
the processor reducing its operating frequency (using the core ratio multiplier) and  
input voltage (using the VID signals). This combination of lower frequency and VID  
results in a reduction of the processor power consumption. The second method (clock  
modulation, known as Thermal Monitor 1 (TM1) in previous generation processors)  
reduces power consumption by modulating (starting and stopping) the internal  
processor core clocks. The processor intelligently selects the appropriate TCC method  
to use on a dynamic basis. BIOS is not required to select a specific method (as with  
previous-generation processors supporting TM1 or TM2). The temperature at which  
Adaptive Thermal Monitor activates the Thermal Control Circuit is factory calibrated and  
is not user configurable. Snooping and interrupt processing are performed in the  
normal manner while the TCC is active.  
When the TCC activation temperature is reached, the processor will initiate TM2 in  
attempt to reduce its temperature. If TM2 is unable to reduce the processor  
temperature then TM1 will be also be activated. TM1 and TM2 will work together (clocks  
will be modulated at the lowest frequency ratio) to reduce power dissipation and  
temperature.  
With a properly designed and characterized thermal solution, it is anticipated that the  
TCC would only be activated for very short periods of time when running the most  
power intensive applications. The processor performance impact due to these brief  
periods of TCC activation is expected to be so minor that it would be immeasurable. An  
under-designed thermal solution that is not able to prevent excessive activation of the  
TCC in the anticipated ambient environment may cause a noticeable performance loss,  
and in some cases may result in a TCASE that exceeds the specified maximum  
temperature and may affect the long-term reliability of the processor. In addition, a  
thermal solution that is significantly under-designed may not be capable of cooling the  
processor even when the TCC is active continuously. Refer to the appropriate processor  
Thermal and Mechanical Design Guide (see Section 1.2) for information on designing a  
compliant thermal solution.  
The Thermal Monitor does not require any additional hardware, software drivers, or  
interrupt handling routines. The following sections provide more details on the different  
TCC mechanisms used by the Intel Core™ i7-900 desktop processor Extreme Edition  
series and Intel Core™ i7-900 desktop processor series.  
76  
Datasheet  
Thermal Specifications  
6.2.2.1  
Frequency/VID Control  
When the Digital Temperature Sensor (DTS) reaches a value of 0 (DTS temperatures  
reported using PECI may not equal zero when PROCHOT# is activated, see Section 6.3  
for further details), the TCC will be activated and the PROCHOT# signal will be  
asserted. This indicates the processor temperature has met or exceeded the factory  
calibrated trip temperature and it will take action to reduce the temperature.  
Upon activation of the TCC, the processor will stop the core clocks, reduce the core  
ratio multiplier by 1 ratio and restart the clocks. All processor activity stops during this  
frequency transition, which occurs within 2 us. Once the clocks have been restarted at  
the new lower frequency, processor activity resumes while the voltage requested by the  
VID lines is stepped down to the minimum possible for the particular frequency.  
Running the processor at the lower frequency and voltage will reduce power  
consumption and should allow the processor to cool off. If after 1 ms the processor is  
still too hot (the temperature has not dropped below the TCC activation point, DTS  
still = 0 and PROCHOT is still active), then a second frequency and voltage transition  
will take place. This sequence of temperature checking and Frequency/VID reduction  
will continue until either the minimum frequency has been reached or the processor  
temperature has dropped below the TCC activation point.  
If the processor temperature remains above the TCC activation point even after the  
minimum frequency has been reached, then clock modulation (described below) at that  
minimum frequency will be initiated.  
There is no end user software or hardware mechanism to initiate this automated TCC  
activation behavior.  
A small amount of hysteresis has been included to prevent rapid active/inactive  
transitions of the TCC when the processor temperature is near the TCC activation  
temperature. Once the temperature has dropped below the trip temperature, and the  
hysteresis timer has expired, the operating frequency and voltage transition back to  
the normal system operating point using the intermediate VID/frequency points.  
Transition of the VID code will occur first, to insure proper operation as the frequency is  
increased. Refer to Table 6-3 for an illustration of this ordering.  
Figure 6-3. Frequency and Voltage Ordering  
Temperature  
Frequency  
fMAX  
f1  
f2  
VIDfMAX  
VIDf1  
VIDf2  
VID  
PROCHOT#  
Datasheet  
77  
Thermal Specifications  
6.2.2.2  
Clock Modulation  
Clock modulation is a second method of thermal control available to the processor.  
Clock modulation is performed by rapidly turning the clocks off and on at a duty cycle  
that should reduce power dissipation by about 50% (typically a 30–50% duty cycle).  
Clocks often will not be off for more than 32 µs when the TCC is active. Cycle times are  
independent of processor frequency. The duty cycle for the TCC, when activated by the  
Thermal Monitor, is factory configured and cannot be modified.  
It is possible for software to initiate clock modulation with configurable duty cycles.  
A small amount of hysteresis has been included to prevent rapid active/inactive  
transitions of the TCC when the processor temperature is near its maximum operating  
temperature. Once the temperature has dropped below the maximum operating  
temperature, and the hysteresis timer has expired, the TCC goes inactive and clock  
modulation ceases.  
6.2.2.3  
Immediate Transiton to combined TM1 and TM2  
As mentioned above, when the TCC is activated, the processor will sequentially step  
down the ratio multipliers and VIDs in an attempt to reduce the silicon temperature. If  
the temperature continues to increase and exceeds the TCC activation temperature by  
approximately 5 °C before the lowest ratio/VID combination has been reached, then  
the processor will immediately transition to the combined TM1/TM2 condition. The  
processor will remain in this state until the temperature has dropped below the TCC  
activation point. Once below the TCC activation temperature, TM1 will be discontinued  
and TM2 will be exited by stepping up to the appropriate ratio/VID state.  
6.2.2.4  
Critical Temperature Flag  
If TM2 is unable to reduce the processor temperature, then TM1 will be also be  
activated. TM1 and TM2 will then work together to reduce power dissipation and  
temperature. It is expected that only a catastrophic thermal solution failure would  
create a situation where both TM1 and TM2 are active.  
If TM1 and TM2 have both been active for greater than 20 ms and the processor  
temperature has not dropped below the TCC activation point, then the Critical  
Temperature Flag in the IA32_THERM_STATUS MSR will be set. This flag is an indicator  
of a catastrophic thermal solution failure and that the processor cannot reduce its  
temperature. Unless immediate action is taken to resolve the failure, the processor will  
probably reach the Thermtrip temperature (see Section 6.2.3 Thermtrip Signal) within  
a short time. To prevent possible permanent silicon damage, Intel recommends  
removing power from the processor within ½ second of the Critical Temperature Flag  
being set.  
6.2.2.5  
PROCHOT# Signal  
An external signal, PROCHOT# (processor hot), is asserted when the processor core  
temperature has exceeded its specification. If Adaptive Thermal Monitor is enabled  
(note it must be enabled for the processor to be operating within specification), the  
TCC will be active when PROCHOT# is asserted.  
The processor can be configured to generate an interrupt upon the assertion or de-  
assertion of PROCHOT#.  
Although the PROCHOT# signal is an output by default, it may be configured as bi-  
directional. When configured in bi-directional mode, it is either an output indicating the  
processor has exceeded its TCC activation temperature or it can be driven from an  
78  
Datasheet  
Thermal Specifications  
external source (e.g., a voltage regulator) to activate the TCC. The ability to activate  
the TCC using PROCHOT# can provide a means for thermal protection of system  
components.  
As an output, PROCHOT# (Processor Hot) will go active when the processor  
temperature monitoring sensor detects that one or more cores has reached its  
maximum safe operating temperature. This indicates that the processor Thermal  
Control Circuit (TCC) has been activated, if enabled. As an input, assertion of  
PROCHOT# by the system will activate the TCC for all cores. TCC activation when  
PROCHOT# is asserted by the system will result in the processor immediately  
transitioning to the minimum frequency and corresponding voltage (using Freq/VID  
control). Clock modulation is not activated in this case. The TCC will remain active until  
the system de-asserts PROCHOT#.  
Use of PROCHOT# in bi-directional mode can allow VR thermal designs to target  
maximum sustained current instead of maximum current. Systems should still provide  
proper cooling for the VR, and rely on PROCHOT# only as a backup in case of system  
cooling failure. The system thermal design should allow the power delivery circuitry to  
operate within its temperature specification even while the processor is operating at its  
Thermal Design Power.  
6.2.3  
THERMTRIP# Signal  
Regardless of whether or not Adaptive Thermal Monitor is enabled, in the event of a  
catastrophic cooling failure, the processor will automatically shut down when the silicon  
has reached an elevated temperature (refer to the THERMTRIP# definition in  
Table 5-1). THERMTRIP# activation is independent of processor activity. The  
temperature at which THERMTRIP# asserts is not user configurable and is not software  
visible.  
6.3  
Platform Environment Control Interface (PECI)  
6.3.1  
Introduction  
The Platform Environment Control Interface (PECI) is a one-wire interface that provides  
a communication channel between the Intel processor and chipset components to  
external monitoring devices. The processor implements a PECI interface to allow  
communication of processor thermal and other information to other devices on the  
platform. The processor provides a digital thermal sensor (DTS) for fan speed control.  
The DTS is calibrated at the factory to provide a digital representation of relative  
processor temperature. Instantaneous temperature readings from the DTS are  
available using the IA32_THERM_STATUS MSR; averaged DTS values are read using  
the PECI interface.  
The PECI physical layer is a self-clocked one-wire bus that begins each bit with a  
driven, rising edge from an idle level near zero volts. The duration of the signal driven  
high depends on whether the bit value is a logic '0' or logic '1'. PECI also includes  
variable data transfer rate established with every message. The single wire interface  
provides low board routing overhead for the multiple load connections in the congested  
routing area near the processor and chipset components. Bus speed, error checking,  
and low protocol overhead provides adequate link bandwidth and reliability to transfer  
critical device operating conditions and configuration information.  
Datasheet  
79  
Thermal Specifications  
6.3.1.1  
6.3.1.2  
Fan Speed Control with Digital Thermal Sensor  
Fan speed control solutions use a value stored in the static variable, TCONTROL. The DTS  
temperature data, which is delivered over PECI (in response to a GetTemp0()  
command), is compared to this TCONTROL reference. The DTS temperature is reported  
as a relative value versus an absolute value. The temperature reported over PECI is  
always a negative value and represents a delta below the onset of thermal control  
circuit (TCC) activation, as indicated by PROCHOT#. Therefore, as the temperature  
approaches TCC activation, the value approaches zero degrees.  
Processor Thermal Data Sample Rate and Filtering  
The processor digital thermal sensor (DTS) provides an improved capability to monitor  
device hot spots, which inherently leads to more varying temperature readings over  
short time intervals. To reduce the sample rate requirements on PECI and improve  
thermal data stability versus. time the processor DTS implements an averaging  
algorithm that filters the incoming data. This filter is expressed mathematically as:  
PECI(t) = PECI(t–1)+1/(2^^X)*[Temp – PECI(t–1)]  
Where: PECI(t) is the new averaged temperature; PECI(t-1) is the previous  
averaged temperature; Temp is the raw temperature data from the DTS; X is the  
Thermal Averaging Constant (TAC)  
Note:  
Only values read using the PECI interface are averaged. Temperature values read using  
the IA32_THERM_STATUS MSR are not averaged.  
The Thermal Averaging Constant is a BIOS configurable value that determines the time  
in milliseconds over which the DTS temperature values are averaged. Short averaging  
times will make the averaged temperature values respond more quickly to DTS  
changes. Long averaging times will result in better overall thermal smoothing but also  
incur a larger time lag between fast DST temperature changes and the value read using  
PECI. Refer to the appropriate processor Thermal and Mechanical Design Guidelines  
(see Section 1.2) for further details on the Data Filter and the Thermal Averaging  
Constant.  
Within the processor, the DTS converts an analog signal into a digital value  
representing the temperature relative to TCC activation. The conversions are in  
integers with each single number change corresponding to approximately 1 °C. DTS  
values reported using the internal processor MSR will be in whole integers.  
As a result of the averaging function described above, DTS values reported over PECI  
will include a 6-bit fractional value. Under typical operating conditions, where the  
temperature is close to TCONTROL, the fractional values may not be of interest. But when  
the temperature approaches zero, the fractional values can be used to detect the  
activation of the TCC. An averaged temperature value between 0 and 1 can only occur  
if the TCC has been activated during the averaging window. As TCC activation time  
increases, the fractional value will approach zero. Fan control circuits can detect this  
situation and take appropriate action as determined by the system designers. Of  
course, fan control chips can also monitor the PROCHOT# pin to detect TCC activation  
using a dedicated input pin on the package. Further details on how the Thermal  
Averaging Constant influences the fractional temperature values are available in the  
Thermal Design Guide.  
80  
Datasheet  
Thermal Specifications  
6.3.2  
PECI Specifications  
6.3.2.1  
PECI Device Address  
The PECI register resides at address 30h.  
6.3.2.2  
PECI Command Support  
The processor supports the PECI commands listed in Table 6-4.  
Table 6-4.  
Supported PECI Command Functions and Codes  
Command  
Code  
Comments  
Function  
Ping()  
N/A  
This command targets a valid PECI device address followed by zero Write  
Length and zero Read Length.  
GetTemp0()  
01h  
Write Length: 1  
Read Length: 2  
Returns the temperature of the processor in Domain 0  
6.3.2.3  
PECI Fault Handling Requirements  
PECI is largely a fault tolerant interface, including noise immunity and error checking  
improvements over other comparable industry standard interfaces. The PECI client is  
as reliable as the device that it is embedded in, and thus given operating conditions  
that fall under the specification. The PECI will always respond to requests and the  
protocol itself can be relied upon to detect any transmission failures. There are,  
however, certain scenarios where the PECI is know to be unresponsive. Prior to a power  
on RESET# and during RESET# assertion, PECI is not ensured to provide reliable  
thermal data. System designs should implement a default power-on condition that  
ensures proper processor operation during the time frame when reliable data is not  
available using PECI.  
To protect platforms from potential operational or safety issues due to an abnormal  
condition on PECI, the Host controller should take action to protect the system from  
possible damaging states. If the Host controller cannot complete a valid PECI  
transactions of GetTemp0() with a given PECI device over 3 consecutive failed  
transactions or a one second maximum specified interval, then it should take  
appropriate actions to protect the corresponding device and/or other system  
components from overheating. The host controller may also implement an alert to  
software in the event of a critical or continuous fault condition.  
6.3.2.4  
PECI GetTemp0() Error Code Support  
The error codes supported for the processor GetTemp() command are listed in  
Table 6-5.  
Table 6-5.  
GetTemp0() Error Codes  
Error Code  
8000h  
Description  
General sensor error  
Datasheet  
81  
Thermal Specifications  
6.4  
Storage Conditions Specifications  
Environmental storage condition limits define the temperature and relative humidity  
limits to which the device is exposed to while being stored. The specified storage  
conditions are for component level prior to board attach (see following notes on post  
board attach limits).  
Table 6-6 specifies absolute maximum and minimum storage temperature limits which  
represent the maximum or minimum device condition beyond which damage, latent or  
otherwise, may occur. The table also specifies sustained storage temperature, relative  
humidity, and time-duration limits. At conditions outside sustained limits, but within  
absolute maximum and minimum ratings, quality and reliability may be affected. These  
conditions should not be exceeded in storage or transportation.  
Table 6-6.  
Storage Conditions  
Symbol  
Parameter  
Min  
Max  
Notes  
T
The non-operating device storage  
temperature. Damage (latent or otherwise)  
may occur when subjected to for any length  
of time.  
ABSOLUTE STORAGE  
-55 °C  
125 °C  
1, 2, 3  
T
The ambient storage temperature limit (in  
shipping media) for a sustained period of  
time  
SUSTAINED STORAGE  
-5 °C  
40 °C  
4, 5  
RH  
The maximum device storage relative  
humidity for a sustained period of time  
SUSTAINED STORAGE  
60% @ 24°C  
5, 6  
6
Time  
A prolonged or extended period of time;  
typically associated with customer shelf life.  
SUSTAINED STORAGE  
0 months  
6 months  
Notes:  
1.  
2.  
3.  
4.  
Refers to a component device that is not assembled in a board or socket that is not to be electrically  
connected to a voltage reference or I/O signals.  
Specified temperatures are based on data collected. Exceptions for surface mount reflow are specified in by  
applicable JEDEC standard and MAS document. Non-adherence may affect processor reliability.  
T
applies to unassembled component only and does not apply to the shipping media,  
ABSOLUTE STORAGE  
moisture barrier bags, or desiccant.  
Intel branded board products are certified to meet the following temperature and humidity limits that are  
given as an example only (Non-Operating Temperature limit: -40° C to 70° C and Humidity: 50% to 90%  
non-condensing with a maximum wet bulb of 28° C) Post board attach storage temperature limits are not  
specified for non-Intel branded boards.  
5.  
6.  
The JEDEC, J-JSTD-020 moisture level rating and associated handling practices apply to all moisture  
sensitive devices removed from the moisture barrier bag.  
Nominal temperature and humidity conditions and durations are given and tested within the constraints  
imposed by T  
and customer shelf live in appl9icable Intel box and bags.  
SUSTAINED  
§
82  
Datasheet  
Features  
7 Features  
7.1  
Power-On Configuration (POC)  
Several configuration options can be configured by hardware. For electrical  
specifications on these options, refer to Chapter 2. Note that request to execute BIST is  
not selected by hardware but is passed across the Intel QPI link during initialization.  
The sampled information configures the processor for subsequent operation. These  
configuration options cannot be changed except by another reset. All resets reconfigure  
the processor; for reset purposes, the processor does not distinguish between a  
"warm" reset and a “power-on” reset.  
Table 7-1.  
Power On Configuration Signal Options  
Configuration Option  
Signal  
1, 2  
MSID  
CSC  
VID[2:0]/MSID[2:0]  
1, 2  
VID[5:3]/CSC[2:0]  
Notes:  
1.  
2.  
Latched when VTTPWRGOOD is asserted and all internal power good conditions are met.  
See the signal definitions in Table 6-1 for the description of MSID and CSC.  
7.2  
Clock Control and Low Power States  
The processor supports low power states at the individual thread, core, and package  
level for optimal power management. The processor implements software interfaces for  
requesting low power states: MWAIT instruction extensions with sub-state hints, the  
HLT instruction (for C1 and C1E) and P_LVLx reads to the ACPI P_BLK register block  
mapped in the processor’s I/O address space. The P_LVLx I/O reads are converted to  
equivalent MWAIT C-state requests inside the processor and do not directly result in  
I/O reads to the system. The P_LVLx I/O Monitor address does not need to be set up  
before using the P_LVLx I/O read interface.  
Software may make C-state requests by using a legacy method involving I/O reads  
from the ACPI-defined processor clock control registers, referred to as P_LVLx. This  
feature is designed to provide legacy support for operating systems that initiate C-state  
transitions using access to pre-defined ICH registers. The base P_LVLx register is  
P_LVL2, corresponding to a C3 request; P_LVL3 is C6.  
P_LVLx is limited to a subset of C-states. For Example, P_LVL8 is not supported and will  
not cause an I/O redirection to a C8 request. Instead, it will fall through like a normal  
I/O instruction. The range of I/O addresses that may be converted into C-state  
requests is also defined in the PMG_IO_CAPTURE MSR, in the ‘C-state Range’ field. This  
field maybe written by BIOS to restrict the range of I/O addresses that are trapped and  
redirected to MWAIT instructions. Note that when I/O instructions are used, no MWAIT  
substates can be defined, as therefore the request defaults to have a sub-state or zero,  
but always assumes the ‘break on IF==0’ control that can be selected using ECX with  
an MWAIT instruction.  
Datasheet  
83  
Features  
Figure 7-1. Power States  
C0  
MWAIT C1,  
HLT  
MWAIT C6,  
2
2
I/O C6  
2
2
MWAIT C1,  
HLT (C1E  
enabled)  
MWAIT C3,  
I/O C3  
C E1  
C11  
1
C3  
C6  
1. No transition to C0 is needed to service a snoop when in C1 or C1E.  
,
.
2. Transitions back to C0 occur on an interrupt or on access to monitored address (if state was entered via MWAIT).  
.
7.2.1  
Thread and Core Power State Descriptions  
Individual threads may request low power states. Core power states are automatically  
resolved by the processor as shown in Table 7-2.  
Table 7-2.  
Coordination of Thread Power States at the Core Level  
Thread1 State  
Core State  
C0  
C11  
C3  
C6  
C0  
C0  
C0  
C0  
C0  
C0  
C0  
C0  
C11  
C3  
1
1
1
C1  
C1  
C1  
Thread0  
State  
1
C1  
C3  
C3  
C3  
C6  
1
C1  
C6  
Notes:  
1. If enabled, state will be C1E.  
7.2.1.1  
7.2.1.2  
C0 State  
This is the normal operating state in the processor.  
C1/C1E State  
C1/C1E is a low power state entered when all threads within a core execute a HLT or  
MWAIT(C1E) instruction. The processor thread will transition to the C0 state upon  
occurrence of an interrupt or an access to the monitored address if the state was  
entered using the MWAIT instruction. RESET# will cause the processor to initialize  
itself.  
A System Management Interrupt (SMI) handler will return execution to either Normal  
state or the C1 state. See the Intel® 64 and IA-32 Architecture Software Developer's  
Manuals, Volume III: System Programmer's Guide for more information.  
84  
Datasheet  
Features  
While in C1/C1E state, the processor will process bus snoops and snoops from the  
other threads.  
7.2.1.3  
C3 State  
Individual threads of the processor can enter the C3 state by initiating a P_LVL2 I/O  
read to the P_BLK or an MWAIT(C3) instruction. Before entering core C3, the processor  
flushes the contents of its caches. Except for the caches, the processor core maintains  
all its architectural state while in the C3 state. All of the clocks in the processor core are  
stopped in the C3 state.  
Because the core’s caches are flushed, the processor keeps the core in the C3 state  
when the processor detects a snoop on the Intel QPI Link or when another logical  
processor in the same package accesses cacheable memory. The processor core will  
transition to the C0 state upon occurrence of an interrupt. RESET# will cause the  
processor core to initialize itself.  
7.2.1.4  
C6 State  
Individual threads of the processor can enter the C6 state by initiating a P_LVL3 read to  
the P_BLK or an MWAIT(C6) instruction. Before entering Core C6, the processor saves  
core state data (such as, registers) to the last level cache. This data is retired after  
exiting core C6. The processor achieves additional power savings in the core C6 state.  
7.2.2  
Package Power State Descriptions  
The package supports C0, C3, and C6 power states. Note that there is no package C1  
state. The package power state is automatically resolved by the processor depending  
on the core power states and permission from the rest of the system as described in  
the following sections.  
7.2.2.1  
Package C0 State  
This is the normal operating state for the processor. The processor remains in the  
Normal state when at least one of its cores is in the C0 or C1 state or when another  
component in the system has not granted permission to the processor to go into a low  
power state. Individual components of the processor may be in low power states while  
the package is in C0.  
7.2.2.2  
Package C1/C1E State  
The package will enter the C1/C1E low power state when at least one core is in the  
C1/C1E state and the rest of the cores are in the C1/C1E or lower power state. The  
processor will also enter the C1/C1E state when all cores are in a power state lower  
than C1/C1E but the package low power state is limited to C1/C1E using the  
PMG_CST_CONFIG_CONTROL MSR. In the C1E state, the processor will automatically  
transition to the lowest power operating point (lowest supported voltage and associated  
frequency). When entering the C1E state, the processor will first switch to the lowest  
bus ratio and then transition to the lower VID. No notification to the system occurs  
upon entry to C1/C1E.  
7.2.2.3  
Package C3 State  
The package will enter the C3 low power state when all cores are in the C3 or lower  
power state and the processor has been granted permission by the other component(s)  
in the system to enter the C3 state. The package will also enter the C3 state when all  
cores are in an idle state lower than C3 but other component(s) in the system have  
only granted permission to enter C3.  
Datasheet  
85  
Features  
If Intel QPI L1 has been granted, the processor will disable some clocks and PLLs and  
for processors with an integrated memory controller, the DRAM will be put into self-  
refresh.  
7.2.2.4  
Package C6 State  
The package will enter the C6 low power state when all cores are in the C6 or lower  
power state and the processor has been granted permission by the other component(s)  
in the system to enter the C6 state. The package will also enter the C6 state when all  
cores are in an idle state lower than C6 but the other component(s) have only granted  
permission to enter C6.  
If Intel QPI L1 has been granted, the processor will disable some clocks and PLLs and  
the shared cache will enter a deep sleep state. Additionally, for processors with an  
integrated memory controller, the DRAM will be put into self-refresh.  
7.3  
Sleep States  
The processor supports the ACPI sleep states S0, S1, S3, and S4/S5 as shown in  
Table 7-3. For information on ACPI S-states and related terminology, refer to ACPI  
Specification. The S-state transitions are coordinated by the processor in response PM  
Request (PMReq) messages from the chipset. The processor itself will never request a  
particular S-state.  
Table 7-3.  
Processor S-States  
S-State  
Power Reduction  
Allowed Transitions  
S0  
S1  
Normal Code Execution  
S1 (using PMReq)  
Cores in C1E like state, processor responds with  
CmpD(S1) message.  
S0 (using reset or PMReq)  
S3, S4 (using PMReq)  
S3  
Memory put into self-refresh, processor responds with  
CmpD(S3) message.  
S0 (using reset)  
S4/S5  
Processor responds with CmpD(S4/S5) message.  
S0 (using reset)  
Notes:  
1.  
If the chipset requests an S-state transition, which is not allowed, a machine check error  
will be generated by the processor.  
7.4  
ACPI P-States (Intel® Turbo Boost Technology)  
The processor supports ACPI P-States. A new feature is that the P0 ACPI state will be a  
request for Intel Turbo Boost Technology. This technology opportunistically and  
automatically allows the processor to run faster than its marked frequency if the  
processor is operating below power, thermal, and current specifications. Maximum  
turbo frequency is dependant on the processor component and number of active cores.  
No special hardware support is necessary for Intel Turbo Boost Technology. BIOS and  
the operating system can enable or disable Intel Turbo Boost Technology.  
86  
Datasheet  
Features  
7.5  
Enhanced Intel® SpeedStep® Technology  
The processor features Enhanced Intel SpeedStep Technology. Following are the key  
features of Enhanced Intel SpeedStep Technology:  
• Multiple voltage and frequency operating points provide optimal performance at the  
lowest power.  
• Voltage and frequency selection is software controlled by writing to processor  
MSRs:  
— If the target frequency is higher than the current frequency, VCC is ramped up  
in steps by placing new values on the VID pins and the PLL then locks to the  
new frequency.  
— If the target frequency is lower than the current frequency, the PLL locks to the  
new frequency and the VCC is changed through the VID pin mechanism.  
— Software transitions are accepted at any time. If a previous transition is in  
progress, the new transition is deferred until the previous transition completes.  
• The processor controls voltage ramp rates internally to ensure smooth transitions.  
• Low transition latency and large number of transitions possible per second:  
— Processor core (including shared cache) is unavailable for less than 5 µs during  
the frequency transition.  
§
Datasheet  
87  
Features  
88  
Datasheet  
Boxed Processor Specifications  
8
Boxed Processor Specifications  
8.1  
Introduction  
The processor will also be offered as an Intel boxed processor. Intel boxed processors  
are intended for system integrators who build systems from baseboards and standard  
components. The boxed processor will be supplied with a cooling solution. This chapter  
documents baseboard and system requirements for the cooling solution that will be  
supplied with the boxed processor. This chapter is particularly important for OEMs that  
manufacture baseboards for system integrators.  
Note:  
Note:  
Unless otherwise noted, all figures in this chapter are dimensioned in millimeters and  
inches [in brackets]. Figure 8-1 shows a mechanical representation of a boxed  
processor.  
Drawings in this section reflect only the specifications on the Intel boxed processor  
product. These dimensions should not be used as a generic keep-out zone for all  
cooling solutions. It is the system designers’ responsibility to consider their proprietary  
cooling solution when designing to the required keep-out zone on their system  
platforms and chassis. Refer to the appropriate processor Thermal and Mechanical  
Design Guidelines (see Section 1.2) for further guidance. Contact your local Intel Sales  
Representative for this document.  
Figure 8-1. Mechanical Representation of the Boxed Processor  
NOTE: The airflow of the fan heatsink is into the center and out of the sides of the fan heatsink.  
Datasheet  
89  
Boxed Processor Specifications  
8.2  
Mechanical Specifications  
8.2.1  
Boxed Processor Cooling Solution Dimensions  
This section documents the mechanical specifications of the boxed processor. The  
boxed processor will be shipped with an unattached fan heatsink. Figure 8-1 shows a  
mechanical representation of the boxed processor.  
Clearance is required around the fan heatsink to ensure unimpeded airflow for proper  
cooling. The physical space requirements and dimensions for the boxed processor with  
assembled fan heatsink are shown in Figure 8-2 (Side View), and Figure 8-3 (Top  
View). The airspace requirements for the boxed processor fan heatsink must also be  
incorporated into new baseboard and system designs. Airspace requirements are  
shown in Figure 8-7 and Figure 8-8. Note that some figures have centerlines shown  
(marked with alphabetic designations) to clarify relative dimensioning.  
Figure 8-2. Space Requirements for the Boxed Processor (side view)  
90  
Datasheet  
Boxed Processor Specifications  
Figure 8-3. Space Requirements for the Boxed Processor (top view)  
NOTES:  
1.  
Diagram does not show the attached hardware for the clip design and is provided only as a  
mechanical representation.  
Figure 8-4. Space Requirements for the Boxed Processor (overall view)  
Datasheet  
91  
Boxed Processor Specifications  
8.2.2  
8.2.3  
Boxed Processor Fan Heatsink Weight  
The boxed processor fan heatsink will not weigh more than 550 grams. See Chapter 6  
and the appropriate processor Thermal and Mechanical Design Guidelines (see  
Section 1.2). for details on the processor weight and heatsink requirements.  
Boxed Processor Retention Mechanism and Heatsink  
Attach Clip Assembly  
The boxed processor thermal solution requires a heatsink attach clip assembly, to  
secure the processor and fan heatsink in the baseboard socket. The boxed processor  
will ship with the heatsink attach clip assembly.  
8.3  
Electrical Requirements  
8.3.1  
Fan Heatsink Power Supply  
The boxed processor fan heatsink requires a +12 V power supply. A fan power cable  
will be shipped with the boxed processor to draw power from a power header on the  
baseboard. The power cable connector and pinout are shown in Figure 8-5. Baseboards  
must provide a matched power header to support the boxed processor. Table 8-1  
contains specifications for the input and output signals at the fan heatsink connector.  
The fan heatsink outputs a SENSE signal, which is an open- collector output that pulses  
at a rate of 2 pulses per fan revolution. A baseboard pull-up resistor provides VOH to  
match the system board-mounted fan speed monitor requirements, if applicable. Use of  
the SENSE signal is optional. If the SENSE signal is not used, pin 3 of the connector  
should be tied to GND.  
The fan heatsink receives a PWM signal from the motherboard from the 4th pin of the  
connector labeled as CONTROL.  
The boxed processor's fanheat sink requires a constant +12 V supplied to pin 2 and  
does not support variable voltage control or 3-pin PWM control.  
The power header on the baseboard must be positioned to allow the fan heatsink power  
cable to reach it. The power header identification and location should be documented in  
the platform documentation, or on the system board itself. Figure 8-6 shows the  
location of the fan power connector relative to the processor socket. The baseboard  
power header should be positioned within 110 mm [4.33 inches] from the center of the  
processor socket.  
Figure 8-5. Boxed Processor Fan Heatsink Power Cable Connector Description  
Signal  
Pin  
Straight square pin, 4-pin terminal housing with  
polarizing ribs and friction locking ramp.  
1
2
3
4
GND  
+12 V  
0.100" pitch, 0.025" square pin width.  
SENSE  
CONTROL  
Match with straight pin, friction lock header on  
mainboard.  
3
2
4
1
92  
Datasheet  
Boxed Processor Specifications  
Table 8-1.  
Fan Heatsink Power and Signal Specifications  
Description  
Min  
Typ  
Max  
Unit  
Notes  
+12 V: 12 volt fan power supply  
10.8  
12  
13.2  
V
-
IC:  
- Peak steady-state fan current draw  
- Average steady-state fan current draw  
3.0  
2.0  
A
A
-
pulses per fan  
revolution  
1
SENSE: SENSE frequency  
2
2, 3  
CONTROL  
21  
25  
28  
kHz  
Notes:  
1. Baseboard should pull this pin up to 5V with a resistor.  
2. Open drain type, pulse width modulated.  
3. Fan will have pull-up resistor for this signal to maximum of 5.25 V.  
Figure 8-6. Baseboard Power Header Placement Relative to Processor Socket  
R110  
[4.33]  
B
C
8.4  
Thermal Specifications  
This section describes the cooling requirements of the fan heatsink solution used by the  
boxed processor.  
8.4.1  
Boxed Processor Cooling Requirements  
The boxed processor may be directly cooled with a fan heatsink. However, meeting the  
processor's temperature specification is also a function of the thermal design of the  
entire system, and ultimately the responsibility of the system integrator. The processor  
temperature specification is found in Chapter 6 of this document. The boxed processor  
fan heatsink is able to keep the processor temperature within the specifications (see  
Table 6-1) in chassis that provide good thermal management. For the boxed processor  
fan heatsink to operate properly, it is critical that the airflow provided to the fan  
heatsink is unimpeded. Airflow of the fan heatsink is into the center and out of the  
sides of the fan heatsink. Airspace is required around the fan to ensure that the airflow  
through the fan heatsink is not blocked. Blocking the airflow to the fan heatsink  
reduces the cooling efficiency and decreases fan life. Figure 8-7 and Figure 8-8  
illustrate an acceptable airspace clearance for the fan heatsink. The air temperature  
entering the fan should be kept below 40 ºC. Again, meeting the processor's  
temperature specification is the responsibility of the system integrator.  
Datasheet  
93  
Boxed Processor Specifications  
Figure 8-7. Boxed Processor Fan Heatsink Airspace Keepout Requirements (top view)  
Figure 8-8. Boxed Processor Fan Heatsink Airspace Keepout Requirements (side view)  
94  
Datasheet  
Boxed Processor Specifications  
8.4.2  
Variable Speed Fan  
If the boxed processor fan heatsink 4-pin connector is connected to a 3-pin  
motherboard header it will operate as follows:  
The boxed processor fan will operate at different speeds over a short range of  
internal chassis temperatures. This allows the processor fan to operate at a lower  
speed and noise level, while internal chassis temperatures are low. If internal  
chassis temperature increases beyond a lower set point, the fan speed will rise  
linearly with the internal temperature until the higher set point is reached. At that  
point, the fan speed is at its maximum. As fan speed increases, so does fan noise  
levels. Systems should be designed to provide adequate air around the boxed  
processor fan heatsink that remains cooler then lower set point. These set points,  
represented in Figure 8-9 and Table 8-2, can vary by a few degrees from fan  
heatsink to fan heatsink. The internal chassis temperature should be kept below  
40 ºC. Meeting the processor temperature specification (see Chapter 6) is the  
responsibility of the system integrator.  
The motherboard must supply a constant +12 V to the processor's power header to  
ensure proper operation of the variable speed fan for the boxed processor. Refer to  
Table 8-1 for the specific requirements.  
Figure 8-9. Boxed Processor Fan Heatsink Set Points  
Higher Set Point  
Highest Noise Level  
Increasing Fan  
Speed & Noise  
Lowest Noise Level  
X
Z
Internal Chassis Temperature (Degrees C)  
Table 8-2.  
Fan Heatsink Power and Signal Specifications  
Boxed Processor Fan  
Heatsink Set Point  
(°C)  
Boxed Processor Fan Speed  
Notes  
When the internal chassis temperature is below or equal to this set point,  
the fan operates at its lowest speed. Recommended maximum internal  
chassis temperature for nominal operating environment.  
1
X 30  
When the internal chassis temperature is above or equal to this set point,  
the fan operates at its highest speed. Recommended maximum internal  
chassis temperature for worst-case operating environment.  
Z 40  
-
Notes:  
1. Set point variance is approximately ± 1 C from fan heatsink to fan heatsink.  
Datasheet  
95  
Boxed Processor Specifications  
If the boxed processor fan heatsink 4-pin connector is connected to a 4-pin  
motherboard header and the motherboard is designed with a fan speed controller with  
PWM output (CONTROL see Table 8-1) and remote thermal diode measurement  
capability the boxed processor will operate as follows:  
As processor power has increased the required thermal solutions have generated  
increasingly more noise. Intel has added an option to the boxed processor that allows  
system integrators to have a quieter system in the most common usage.  
The 4th wire PWM solution provides better control over chassis acoustics. This is  
achieved by more accurate measurement of processor die temperature through the  
processor's Digital Thermal Sensors (DTS) and PECI. Fan RPM is modulated through the  
use of an ASIC located on the motherboard that sends out a PWM control signal to the  
4th pin of the connector labeled as CONTROL. The fan speed is based on actual  
processor temperature instead of internal ambient chassis temperatures.  
If the new 4-pin active fan heat sink solution is connected to an older 3-pin baseboard  
processor fan header it will default back to a thermistor controlled. Under thermistor  
controlled mode, the fan RPM is automatically varied based on the Tinlet temperature  
measured by a thermistor located at the fan inlet.  
For more details on specific motherboard requirements for 4-wire based fan speed  
control, see the appropriate processor Thermal and Mechanical Design Guidelines (see  
Section 1.2).  
96  
Datasheet  
Intel® Core™ i7-930 Processor (8M Cache, 2.80 GHz, 4.80 GT/s Intel®...  
http://ark.intel.com/products/41447?wapkw=at80601000897aa  
Language:  
Type Here to Search Products  
Compare Queue (0)  
Intel® Core™ i7-900 Desktop Processor Series  
Send Feedback  
Product Specs  
Intel® Processors  
Previous Generation Intel® Core™ i7 Processor  
i7-930  
Intel® Core™ i7-930 Processor  
(8M Cache, 2.80 GHz, 4.80 GT/s Intel® QPI)  
Add to Compare  
Compare Now (0)  
Additional Information  
Products formerly Bloomfield  
Download Datasheet  
Quick Links  
PCN/MDDS Information  
Search Distributors  
1 of 4  
22-Sep-2011 4:41 PM  
Intel® Core™ i7-930 Processor (8M Cache, 2.80 GHz, 4.80 GT/s Intel®...  
http://ark.intel.com/products/41447?wapkw=at80601000897aa  
Ordering and Spec Information  
Ordering and Spec Information  
Intel® Core™ i7-930 Processor (8M Cache, 2.80 GHz, 4.80 GT/s Intel® QPI) FC-LGA8, Tray  
Socket  
Step  
Step TDP  
Ordering Code  
Spec Code  
Low Halogen  
Low Halogen  
VT-x  
Yes  
FCLGA1366  
130 W  
AT80601000897AA  
SLBKP  
Yes  
Boxed Intel® Core™ i7-930 Processor (8M Cache, 2.80 GHz, 4.80 GT/s Intel® QPI) FC-LGA8  
Socket  
Step  
Step TDP  
Ordering Code  
Spec Code  
VT-x  
Yes  
FCLGA1366  
130 W  
BX80601930  
SLBKP  
No  
Compatible Products  
Intel® X58 Express Chipset (Configurations: 2)  
Intel® X58 Express Chipset with 82801JB I/O  
Controller Hub (ICH10)  
Chipsets  
Intel® X58 Express Chipset with 82801JR I/O  
Controller Hub (ICH10R)  
# of CPUs: 1  
# of CPUs: 1  
Embedded: No  
Embedded: No  
System Price: $346  
System Price: $349  
System TDP: 158.6W  
System TDP: 158.6W  
Block Diagrams  
Newsroom  
Chip Shot: Intel, Asus and Jason Mraz Join in Search for 'Incredible'  
USA (English)  
2 of 4  
22-Sep-2011 4:41 PM  
Intel® Core™ i7-930 Processor (8M Cache, 2.80 GHz, 4.80 GT/s Intel®...  
http://ark.intel.com/products/41447?wapkw=at80601000897aa  
Menu  
Communities Find Content  
Disclaimers  
“Announced” SKUs are not yet available. Please refer to the Launch Date for market availability.  
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system. Check with your PC  
manufacturer on whether your system delivers Execute Disable Bit functionality.  
64-bit computing on Intel® architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications enabled for Intel® 64  
architecture. Processors will not operate (including 32-bit operation) without an Intel 64 architecture-enabled BIOS. Performance will vary depending on your hardware and  
software configurations. Consult with your system vendor for more information.  
Hyper-Threading Technology (HT Technology) requires a computer system with an Intel® processor supporting HT Technology and an HT Technology enabled chipset, BIOS  
and operating system. Performance will vary depending on the specific hardware and software you use. See www.intel.com/products/ht/hyperthreading_more.htm for more  
information including details on which processors support HT Technology.  
Intel® Virtualization Technology requires a computer system with a processor, chipset, BIOS, virtual machine monitor (VMM) and for some uses, certain platform software,  
enabled for it. Functionality, performance or other benefit will vary depending on hardware and software configurations. Intel Virtualization Technology-enabled VMM  
applications are currently in development.  
Note: Prices subject to change without notice. Prices are for direct Intel customers in 1000-unit bulk quantities and, unless specified, represent the latest technology versions  
of the products. Taxes and shipping, etc. not included. Prices may vary for other package types and shipment quantities, and special promotional arrangements may apply.  
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See  
http://www.intel.com/products/processor_number for details.  
System and Maximum TDP is based on worst case scenarios. Actual TDP may be lower if not all I/Os for chipsets are used.  
All information provided is subject to change at any time, without notice. Intel may make changes to manufacturing life cycle, specifications, and product descriptions at any  
time, without notice. The information herein is provided "as-is" and Intel does not make any representations or warranties whatsoever regarding accuracy of the information,  
nor on the product features, availability, functionality, or compatibility of the products listed. Please contact system vendor for more information on specific products or  
systems.  
Low Halogen implies the following:  
Bromine and/or chlorine in materials that may be used during processing, but do not remain within the final product are not included in this definition. The halogens fluorine  
(F), iodine (I), and astatine (At) are not restricted by this standard.  
“BFR/CFR and PVC-Free” Definition: :  
All PCB laminates must meet Br and Cl requirements for low halogen as defined in IPC-4101B  
For components other than PCB laminates, all homogeneous materials must contain < 900 ppm (0.09%) of Bromine [if the Bromine (Br)  
source is from BFRs] and < 900 ppm (0.09%) of Chlorine [if the Chlorine (Cl) source is from CFRs or PVC. Higher concentrations of Br and Cl  
are allowed in homogenous materials of components other than PCB laminates as long as their sources are not BFRs, CFRs, PVC.  
Although the elemental analysis for Br and Cl in homogeneous materials can be performed by any analytical method with sufficient sensitivity  
and selectivity, the presence or absence of BFRs, CFRs or PVC must be verified by any acceptable analytical techniques that allow for the  
unequivocal identification of the specific Br or Cl compounds, or by appropriate material declarations agreed to between customer and  
supplier.  
Max Turbo Frequency refers to the maximum single-core frequency that can be achieved with Intel® Turbo Boost Technology, which requires a PC with a processor with Intel  
Turbo Boost Technology capability. Intel Turbo Boost Technology performance varies depending on hardware, software, and overall system configuration. Check with your PC  
manufacturer on whether your system delivers Intel Turbo Boost Technology. See www.intel.com/technology/turboboost/ for more information.  
Some products can support AES New Instructions with a Processor Configuration update, in particular, i7-2630QM/i7-2635QM, i7-2670QM/i7-2675QM, i5-2430M/i5-2435M,  
i5-2410M/i5-2415M. Please contact OEM for the BIOS that includes the latest Processor configuration update.  
Newsroom  
Chip Shot: Intel, Asus and Jason Mraz Join in Search for 'Incredible'  
USA (English)  
3 of 4  
22-Sep-2011 4:41 PM  
Intel® Core™ i7-930 Processor (8M Cache, 2.80 GHz, 4.80 GT/s Intel®...  
http://ark.intel.com/products/41447?wapkw=at80601000897aa  
Menu  
Communities Find Content  
Newsroom  
Chip Shot: Intel, Asus and Jason Mraz Join in Search for 'Incredible'  
USA (English)  
4 of 4  
22-Sep-2011 4:41 PM  

相关型号:

AT80601000897AA/SLBKP

RISC Microprocessor, 64-Bit, 2800MHz, CMOS, PBGA1366
INTEL

AT80601000921AASLBCK

RISC Microprocessor, 32-Bit, 2930MHz, CMOS, PBGA1366
INTEL

AT80601002727AA/SLBEU

RISC Microprocessor, 64-Bit, 3200MHz, CMOS, PBGA1366
INTEL

AT80602000753AA/SLBGE

RISC Microprocessor, 64-Bit, 3330MHz, CMOS, PBGA1366
INTEL

AT80602000756AD/SLBF2

RISC Microprocessor, 64-Bit, 3200MHz, CMOS, PBGA1366
INTEL

AT80602000765AA/SLBF3

RISC Microprocessor, 64-Bit, 2930MHz, CMOS, PBGA1366
INTEL

AT80602000768AA/SLBF4

RISC Microprocessor, 64-Bit, 2800MHz, CMOS, PBGA1366
INTEL

AT80602000771AA/SLBF5

RISC Microprocessor, 64-Bit, 2660MHz, CMOS, PBGA1366
INTEL

AT80602000789AA/SLBF6

RISC Microprocessor, 64-Bit, 2530MHz, CMOS, PBGA1366,
INTEL

AT80602000792AA/SLBF7

RISC Microprocessor, 64-Bit, 2400MHz, CMOS, PBGA1366
INTEL

AT80602000795AA/SLBKC

RISC Microprocessor, 64-Bit, 2260MHz, CMOS, PBGA1366
INTEL

AT80602000798AA/SLBF8

RISC Microprocessor, 64-Bit, 2130MHz, CMOS, PBGA1366
INTEL