80960VH [INTEL]

RISC Microprocessor, 32-Bit, 33.33MHz, CMOS, PBGA324, PLASTIC, BGA-324;
80960VH
型号: 80960VH
厂家: INTEL    INTEL
描述:

RISC Microprocessor, 32-Bit, 33.33MHz, CMOS, PBGA324, PLASTIC, BGA-324

时钟 外围集成电路
文件: 总64页 (文件大小:444K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
i960® VH Embedded-PCI Processor  
Preliminary Datasheet  
Product Features  
High Performance 80960JT Core  
Memory Controller  
Sustained One Instruction/Clock  
Execution  
256 Mbytes of 32- or 36-Bit DRAM  
Interleaved or Non-Interleaved DRAM  
Fast Page-Mode DRAM Support  
Extended Data Out DRAM Support  
16 Kbyte Two-Way Set-Associative  
Instruction Cache  
—4 Kbyte Direct-Mapped Data Cache  
Sixteen 32-Bit Global Registers  
Sixteen 32-Bit Local Registers  
Two Independent Banks for SRAM /  
ROM / Flash (16 Mbytes/Bank; 8- or  
32-Bit)  
Programmable Bus Widths:  
8-, 16-, 32-Bit  
DMA Controller  
Two Independent Channels  
PCI Memory Controller Interface  
32-Bit Local Bus Addressing  
64-Bit PCI Bus Addressing  
Independent Interface to PCI Bus  
—1 Kbyte Internal Data RAM  
Local Register Cache  
(Eight Available Stack Frames)  
Two 32-Bit On-Chip Timer Units  
Core Clock Rate: 1x, 2x or 3x Local Bus  
Clock  
132 Mbyte/sec Burst Transfers to PCI  
and Local Buses  
PCI Interface  
Direct Addressing to and from PCI  
Buses  
Complies with PCI Local Bus  
Specification 2.2  
Unaligned Transfers Supported in  
Hardware  
Runs at Local Bus Clock Rate  
—5 Volts PCI Signaling Environment  
Address Translation Unit  
Channels Dedicated to PCI Bus  
I2C Bus Interface Unit  
Serial Bus  
Connects Local Bus to PCI Bus  
Inbound/Outbound Address Translation  
Support  
Master/Slave Capabilities  
System Management Functions  
3.3 V Supply  
Direct Outbound Addressing Support  
Messaging Unit  
—5 V Tolerant Inputs  
Four Message Registers  
Two Doorbell Registers  
TTL Compatible Outputs  
Plastic BGA* Package  
324 Ball-Grid Array (PBGA)  
Notice: This document contains preliminary information on new products in production. The  
specifications are subject to change without notice. Verify with your local Intel sales office that  
you have the latest datasheet before finalizing a design.  
Order Number: 273179-004  
April 1999  
Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual  
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability  
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to  
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not  
intended for use in medical, life saving, or life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The i960® VH Processor may contain design defects or errors known as errata which may cause the product to deviate from published specifications.  
Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-  
548-4725 or by visiting Intel’s website at http://www.intel.com.  
Copyright © Intel Corporation, 1999  
*Third-party brands and names are the property of their respective owners.  
Preliminary Datasheet  
80960VH  
Contents  
1.0  
About This Document.........................................................................................................7  
1.1  
1.2  
1.3  
Solutions960® Program.........................................................................................7  
Terminology...........................................................................................................7  
Additional Information Sources .............................................................................7  
2.0  
Functional Overview...........................................................................................................8  
2.1  
Key Functional Units .............................................................................................9  
2.1.1 DMA Controller.........................................................................................9  
2.1.2 Address Translation Unit..........................................................................9  
2.1.3 Messaging Unit.........................................................................................9  
2.1.4 Memory Controller....................................................................................9  
2.1.5 Core and Peripheral Unit..........................................................................9  
2.1.6 I2C Bus Interface Unit ..............................................................................9  
i960® Core Features (80960JT) ..........................................................................10  
2.2.1 Burst Bus................................................................................................11  
2.2.2 Timer Unit...............................................................................................11  
2.2.3 Priority Interrupt Controller .....................................................................11  
2.2.4 Faults and Debugging ............................................................................11  
2.2.5 On-Chip Cache and Data RAM..............................................................12  
2.2.6 Local Register Cache.............................................................................12  
2.2.7 Test Features .........................................................................................12  
2.2.8 Memory-Mapped Control Registers .......................................................12  
2.2.9 Instructions, Data Types and Memory Addressing Modes.....................13  
2.2  
3.0  
Package Information ........................................................................................................15  
3.1  
Package Introduction...........................................................................................15  
3.1.1 Functional Signal Definitions..................................................................15  
3.1.2 324-Lead PBGA Package ......................................................................25  
Package Thermal Specifications.........................................................................33  
3.2.1 Thermal Specifications...........................................................................33  
3.2.1.1 Ambient Temperature................................................................33  
3.2.1.2 Case Temperature ....................................................................33  
3.2.1.3 Thermal Resistance ..................................................................34  
3.2.2 Thermal Analysis....................................................................................34  
3.2  
4.0  
Electrical Specifications....................................................................................................35  
4.1  
4.2  
4.3  
4.4  
V
V
Pin Requirements (V  
) ..........................................................................35  
DIFF  
CC5  
Pin Requirements ...................................................................................36  
CCPLL  
DC Specifications................................................................................................37  
AC Specifications ................................................................................................39  
4.4.1 Relative Output Timings .........................................................................41  
4.4.2 Memory Controller Relative Output Timings ..........................................41  
4.4.3 Boundary Scan Test Signal Timings ......................................................43  
4.4.4 I2C Interface Signal Timings ..................................................................44  
AC Test Conditions .............................................................................................44  
AC Timing Waveforms ........................................................................................45  
Memory Controller Output Timing Waveforms....................................................48  
4.5  
4.6  
4.7  
Preliminary Datasheet  
3
80960VH  
5.0  
6.0  
Bus Functional Waveforms ..............................................................................................54  
Device Identification On Reset.........................................................................................63  
Figures  
1
2
3
4
Product Name Functional Block Diagram ............................................................. 8  
80960JT Core Block Diagram .............................................................................10  
324-Plastic Ball Grid Array Top and Side View...................................................25  
324-Plastic Ball Grid Array (Top View)................................................................26  
Thermocouple Attachment ..................................................................................33  
5
6
7
V
V
Current-Limiting Resistor ...........................................................................36  
CC5  
Lowpass Filter ........................................................................................36  
CCPLL  
8
9
AC Test Load ......................................................................................................44  
P_CLK, TCLK Waveform ....................................................................................45  
10  
11  
12  
13  
14  
15  
16  
T
T
T
T
Output Delay Waveform ..............................................................................45  
Output Float Waveform................................................................................46  
OV  
OF  
and T Input Setup and Hold Waveform ......................................................46  
IS  
IH  
and T  
Relative Timings Waveform ........................................................46  
LXL  
LXA  
DT/R# and DEN# Timings Waveform .................................................................47  
I2C Interface Signal Timings................................................................................47  
Fast Page-Mode Read Access, Non-Interleaved, 2,1,1,1 Wait State, 32-Bit 80960  
Local Bus ............................................................................................................48  
Fast Page-Mode Write Access, Non-Interleaved, 2,1,1,1 Wait States, 32-Bit 80960  
Local Bus ............................................................................................................49  
FPM DRAM System Read Access, Interleaved, 2,0,0,0 Wait States..................50  
FPM DRAM System Write Access, Interleaved, 1,0,0,0 Wait States..................51  
EDO DRAM, Read Cycle ....................................................................................52  
EDO DRAM, Write Cycle ....................................................................................52  
32-Bit Bus, SRAM Read Accesses with 0 Wait States .......................................53  
32-Bit Bus, SRAM Write Accesses with 0 Wait States........................................53  
Non-Burst Read and Write Transactions without Wait States, 32-Bit 80960 Local  
Bus......................................................................................................................54  
Burst Read and Write Transactions without Wait States, 32-Bit 80960  
17  
18  
19  
20  
21  
22  
23  
24  
25  
Local Bus ............................................................................................................55  
Burst Write Transactions with 2,1,1,1 Wait States, 32-Bit 80960 Local Bus.......56  
Burst Read and Write Transactions without Wait States, 8-Bit 80960 Local Bus57  
Burst Read and Write Transactions with 1, 0 Wait States and Extra Tr State on  
Read, 16-Bit 80960 Local Bus ............................................................................58  
Bus Transactions Generated by Double Word Read Bus Request, Misaligned One  
Byte From Quad Word Boundary, 32-Bit 80960 Local Bus.................................59  
HOLD/HOLDA Waveform For Bus Arbitration ....................................................60  
80960 Core Cold Reset Waveform .....................................................................61  
80960 Local Bus Warm Reset Waveform ...........................................................62  
26  
27  
28  
29  
30  
31  
32  
4
Preliminary Datasheet  
80960VH  
Tables  
1
2
3
4
5
6
7
8
Related Documentation.........................................................................................7  
80960VH Instruction Set .....................................................................................14  
Signal Type Definition .........................................................................................15  
Signal Descriptions..............................................................................................16  
Power Requirement, Processor Control and Test Signal Descriptions...............19  
Interrupt Unit Signal Descriptions........................................................................20  
PCI Signal Descriptions.......................................................................................21  
Memory Controller Signal Descriptions...............................................................22  
DMA, I2C Units Signal Descriptions ....................................................................24  
Clock Related Signals .........................................................................................24  
PBGA 324 Package Dimensions.........................................................................26  
324-Plastic Ball Grid Array Ballout — In Ball Order ............................................27  
324-Plastic Ball Grid Array Ballout — In Signal Order ........................................30  
324-Lead PBGA Package Thermal Characteristics ............................................34  
Absolute Maximum Ratings.................................................................................35  
Operating Conditions...........................................................................................35  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
Specification for Dual Power Supply Requirements (3.3 V, 5 V)...............36  
DIFF  
DC Characteristics ..............................................................................................37  
Characteristics ..............................................................................................38  
I
CC  
Input Clock Timings.............................................................................................39  
Synchronous Output Timings..............................................................................39  
Synchronous Input Timings.................................................................................40  
Relative Output Timings......................................................................................41  
Fast Page Mode Non-interleaved DRAM Output Timings...................................41  
Fast Page Mode Interleaved DRAM Output Timings ..........................................41  
EDO DRAM Output Timings................................................................................42  
SRAM/ROM Output Timings ...............................................................................42  
Boundary Scan Test Signal Timings ...................................................................43  
I2C Interface Signal Timings ...............................................................................44  
Processor Device ID Register - PDIDR..............................................................63  
Preliminary Datasheet  
5
80960VH  
1.0  
About This Document  
®
This is the Preliminary data sheet for the low-power (3.3 V) version of Intel’s i960 VH processor  
(“80960VH”) family.  
This data sheet contains a functional overview, mechanical data (package signal locations and  
simulated thermal characteristics), targeted electrical specifications (simulated), and bus functional  
waveforms. Detailed functional descriptions other than parametric performance is published in the  
®
i960 VH Processor Developers Manual.  
1.1  
1.2  
Solutions960® Program  
®
Intel’s Solutions960 program features a wide variety of development tools which support the i960  
processor family. Many of these tools are developed by partner companies; some are developed by  
Intel, such as profile-driven optimizing compilers. For more information on these products, contact  
your local Intel representative.  
Terminology  
In this document, the following terms are used:  
local bus refers to the 80960VH’s internal local bus, not the PCI local bus.  
primary PCI bus is the 80960VH’s internal PCI bus which conforms to PCI SIG  
specifications.  
80960 core refers to the 80960JT processor which is integrated into the 80960VH.  
1.3  
Additional Information Sources  
Intel documentation is available from your local Intel Sales Representative or Intel Literature  
Sales.  
Call 1-800-879-4683 or visit Intels website at http://www.intel.com.  
Table 1. Related Documentation  
Document Title  
Order / Contact  
i960® VH Processor Developer’s Manual  
i960® Jx Microprocessor User’s Guide  
PCI Local Bus Specification, revision 2.2  
I2C Peripherals for Microcontrollers  
Intel Order # 273173  
Intel Order # 272483  
PCI Special Interest Group 1-800-433-5177  
Philips Semiconductor  
Preliminary Datasheet  
7
80960VH  
2.0  
Functional Overview  
As indicated in Figure 1, the 80960VH combines many features with the 80960JT to create a  
highly integrated processor. Subsections following the figure briefly describe the main features; for  
®
detailed functional descriptions, refer to the i960 VH Processor Developers Manual.  
The PCI bus is an industry standard, high performance, low latency system bus that operates up to  
132 Mbyte/sec. The 80960VH is fully compliant with the PCI Local Bus Specification, revision  
2.2. Function 0 is the address translation unit.  
The 80960VH, object code compatible with the i960 core processor, is capable of sustained  
execution at the rate of one instruction per clock.  
The local bus, a 32-bit multiplexed burst bus, is a high-speed interface to system memory and I/O.  
A full complement of control signals simplifies the connection of the 80960VH to external  
components. Physical and logical memory attributes are programmed via memory-mapped control  
registers (MMRs), an extension not found on the i960 Kx, Sx or Cx processors. Physical and  
logical configuration registers enable the processor to operate with all combinations of bus width  
and data object alignment.  
Figure 1. Product Name Functional Block Diagram  
Local Memory  
I2C Serial Bus  
®
i960 JT  
Memory  
2
Core  
Internal  
Arbitration  
I C Bus  
Controller  
Processor  
Interface Unit  
Local Bus  
Primary ATU  
Core and  
Peripheral  
Control Unit  
Address  
Translation  
Unit  
Two DMA  
Channels  
Messaging  
Unit  
Primary PCI Bus  
8
Preliminary Datasheet  
 
80960VH  
2.1  
Key Functional Units  
2.1.1  
DMA Controller  
The DMA Controller supports low-latency, high-throughput data transfers between PCI bus agents  
and 80960 local memory. Two separate DMA channels accommodate data transfers for the primary  
PCI bus. The DMA Controller supports chaining and unaligned data transfers. It is programmable  
only through the i960 core processor.  
2.1.2  
Address Translation Unit  
The Address Translation Unit (ATU) allows PCI transactions direct access to the 80960VH local  
memory. The 80960VH has direct access to the PCI bus. The ATU supports transactions between  
PCI address space and 80960VH address space.  
Address translation is controlled through programmable registers accessible from the PCI interface  
and the 80960 core. Dual access to registers allows flexibility in mapping the two address spaces.  
2.1.3  
2.1.4  
Messaging Unit  
The Messaging Unit (MU) provides data transfer between the PCI system and the 80960VH. It  
uses interrupts to notify each system when new data arrives. The MU has two messaging  
mechanisms. Each allows a host processor or external PCI device and the 80960VH to  
communicate through message passing and interrupt generation. The two mechanisms are Message  
Registers and Doorbell Registers.  
Memory Controller  
The Memory Controller allows direct control of external memory systems, including DRAM,  
SRAM, ROM and Flash Memory. It provides a direct connect interface to memory that typically  
does not require external logic. It features programmable chip selects, a wait state generator and  
byte parity. External memory can be configured as PCI addressable memory.  
2.1.5  
2.1.6  
Core and Peripheral Unit  
The Core and Peripheral Unit allows software to control the 80960VH through the primary PCI  
bus. For example, the 80960 processor core and the 80960VH local bus can be reset via the PCI  
bus.  
2
I C Bus Interface Unit  
2
The I C (Inter-Integrated Circuit) Bus Interface Unit allows the 80960 core to serve as a master and  
2
2
slave device residing on the I C bus. The I C bus is a serial bus developed by Philips  
Semiconductor consisting of a two pin interface. The bus allows the 80960VH to interface to other  
2
I C peripherals and microcontrollers for system management functions. It requires a minimum of  
hardware for an economical system to relay status and reliability information on the I/O subsystem  
2
to an external device. For more information, see I C Peripherals for Microcontrollers (Philips  
Semiconductor).  
Preliminary Datasheet  
9
80960VH  
2.2  
i960® Core Features (80960JT)  
The processing power of the 80960VH comes from the 80960JT processor core. The 80960JT is a  
new, scalar implementation of the 80960 Core Architecture. Figure • shows a block diagram of the  
80960JT Core processor.  
Factors that contribute to the 80960 family core’s performance include:  
Single-clock execution of most instructions  
Independent Multiply/Divide Unit  
Efficient instruction pipeline minimizes pipeline break latency  
Register and resource scoreboarding allow overlapped instruction execution  
128-bit register bus speeds local register caching  
16 Kbyte two-way set-associative, integrated instruction cache  
4 Kbyte direct-mapped, integrated data cache  
1 Kbyte integrated data RAM delivers zero wait state program data  
The 80960 core operates out of its own 32-bit address space, which is independent of the PCI  
address space. The local bus memory can be:  
Made visible to the PCI address space  
Kept private to the 80960 core  
Allocated as a combination of the two  
Figure 2. 80960JT Core Block Diagram  
Control  
32-bit buses  
address / data  
Physical Region  
Configuration  
P_CLK  
PLL, Clocks,  
Power Mgmt  
Bus  
Instruction Cache  
Control Unit  
Address/  
Data Bus  
16 Kbyte Two-Way Set  
Bus Request  
Queues  
TAP  
5
Boundary Scan  
Controller  
32  
Instruction Sequencer  
Two 32-Bit  
Timers  
Constants  
Control  
Interrupt  
Port  
Programmable  
Interrupt Controller  
8-Set  
Local Register  
Cache  
9
Execution  
and  
Address  
Generation  
Memory  
Interface  
Unit  
Memory-Mapped  
Register Interface  
Multiply  
Divide  
Unit  
128  
Unit  
1 Kbyte  
32-bit Addr  
32-bit Data  
Effective  
Address  
Global / Local  
Register File  
Data RAM  
SRC1 SRC2 DST  
4 Kbyte  
Direct Mapped  
Data Cache  
3 Independent 32-Bit SRC1, SRC2, and DST Buses  
10  
Preliminary Datasheet  
 
80960VH  
2.2.1  
Burst Bus  
A 32-bit high-performance bus controller interfaces the 80960VH to external memory and  
peripherals. The Bus Control Unit fetches instructions and transfers data on the local bus at the rate  
of up to four 32-bit words per six clock cycles. The external address/data bus is multiplexed.  
Users may configure the 80960VH’s bus controller to match an application’s fundamental memory  
organization. Physical bus width is programmable for up to eight regions. Data caching is  
programmed through a group of logical memory templates and a defaults register. The Bus Control  
Unit’s features include:  
Multiplexed external bus minimizes pin count  
32-, 16- and 8-bit bus widths simplify I/O interfaces  
External ready control for address-to-data, data-to-data and data-to-next-address wait state  
types  
Little endian byte ordering  
Unaligned bus accesses performed transparently  
Three-deep load/store queue decouples the bus from the 80960 core  
Upon reset, the 80960VH conducts an internal self test. Before executing its first instruction, it  
performs an external bus confidence test by performing a checksum on the first words of the  
Initialization Boot Record.  
2.2.2  
2.2.3  
Timer Unit  
The timer unit (TU) contains two independent 32-bit timers that are capable of counting at several  
clock rates and generating interrupts. Each is programmed by use of the Timer Unit registers.  
These memory-mapped registers are addressable on 32-bit boundaries. The timers have a single-  
shot mode and auto-reload capabilities for continuous operation. Each timer has an independent  
interrupt request to the 80960VH’s interrupt controller. The TU can generate a fault when  
unauthorized writes from user mode are detected.  
Priority Interrupt Controller  
Low interrupt latency is critical to many embedded applications. As part of its highly flexible  
interrupt mechanism, the 80960VH exploits several techniques to minimize latency:  
Interrupt vectors and interrupt handler routines can be reserved on-chip  
Register frames for high-priority interrupt handlers can be cached on-chip  
The interrupt stack can be placed in cacheable memory space  
2.2.4  
Faults and Debugging  
The 80960VH employs a comprehensive fault model. The processor responds to faults by making  
implicit calls to a fault handling routine. Specific information collected for each fault allows the  
fault handler to diagnose exceptions and recover appropriately.  
Preliminary Datasheet  
11  
80960VH  
The processor also has built-in debug capabilities. Via software, the 80960VH may be configured  
to detect as many as seven different trace event types. Alternatively, mark and fmark instructions  
can generate trace events explicitly in the instruction stream. Hardware breakpoint registers are  
also available to trap on execution and data addresses.  
2.2.5  
2.2.6  
2.2.7  
On-Chip Cache and Data RAM  
External memory subsystems often impose substantial wait state penalties. The 80960VH  
integrates considerable storage resources on-chip to decouple CPU execution from the external bus  
by including a 16 Kbyte instruction cache, a 4 Kbyte data cache and 1 Kbyte data RAM.  
Local Register Cache  
The 80960VH rapidly allocates and deallocates local register sets during context switches. The  
processor needs to flush a register set to the stack only when it saves more than seven sets to its  
local register cache.  
Test Features  
The 80960VH incorporates numerous features that enhance the user’s ability to test both the  
processor and the system to which it is attached. These features include ONCE (On-Circuit  
Emulation) mode and Boundary Scan (JTAG).  
The 80960VH provides testability features compatible with IEEE Standard Test Access Port and  
Boundary Scan Architecture (IEEE Std. 1149.1).  
One of the boundary scan instructions, HIGHZ, forces the processor to float all its output pins  
(ONCE mode). ONCE mode can also be initiated at reset without using the boundary scan  
mechanism.  
ONCE mode is useful for board-level testing. This feature allows a mounted 80960VH to  
electrically “remove” itself from a circuit board. This mode allows system-level testing where a  
remote tester can exercise the processor system.  
The test logic does not interfere with component or system behavior and ensures that components  
function correctly, and also the connections between various components are correct.  
The JTAG Boundary Scan feature is an alternative to conventional “bed-of-nails” testing. It can  
examine connections that might otherwise be inaccessible to a test system.  
2.2.8  
Memory-Mapped Control Registers  
The 80960VH is compliant with 80960 family architecture and has the added advantage of  
memory-mapped, internal control registers not found on the 80960Kx, Sx or Cx processors. This  
feature provides software an interface to easily read and modify internal control registers.  
Each memory-mapped, 32-bit register is accessed via regular memory-format instructions. The  
processor ensures that these accesses do not generate external bus cycles.  
12  
Preliminary Datasheet  
80960VH  
2.2.9  
Instructions, Data Types and Memory Addressing Modes  
As with all 80960 family processors, the 80960VH instruction set supports several different data  
types and formats:  
Bit  
Bit fields  
Integer (8-, 16-, 32-, 64-bit)  
Ordinal (8-, 16-, 32-, 64-bit unsigned integers)  
Triple word (96 bits)  
Quad word (128 bits)  
The 80960VH provides a full set of addressing modes for C and assembly:  
Two Absolute modes  
Five Register Indirect modes  
Index with displacement mode  
IP with displacement mode  
Table 2 shows the available instructions.  
Preliminary Datasheet  
13  
80960VH  
Table 2. 80960VH Instruction Set  
Data Movement  
Arithmetic  
Logical  
Bit, Bit Field and Byte  
Add  
Subtract  
Multiply  
And  
Set Bit  
Divide  
Not And  
And Not  
Or  
Clear Bit  
Remainder  
Not Bit  
Load  
Modulo  
Alter Bit  
Store  
Shift  
Exclusive Or  
Not Or  
Scan For Bit  
Span Over Bit  
Extract  
Move  
Extended Shift  
Extended Multiply  
Extended Divide  
Add with Carry  
Subtract with Carry  
Conditional Add  
Conditional Subtract  
Rotate  
Conditional Select  
Load Address  
Or Not  
Nor  
Modify  
Exclusive Nor  
Not  
Scan Byte for Equal  
Byte Swap  
Nand  
Comparison  
Branch  
Call/Return  
Fault  
Compare  
Call  
Conditional Compare  
Compare and Increment  
Compare and Decrement  
Test Condition Code  
Check Bit  
Unconditional Branch  
Conditional Branch  
Compare and Branch  
Call Extended  
Call System  
Return  
Conditional Fault  
Synchronize Faults  
Branch and Link  
Processor  
Management  
Debug  
Atomic  
Flush Local Registers  
Modify Arithmetic  
Controls  
Modify Trace Controls  
Mark  
Modify Process Controls  
Halt  
Atomic Add  
Atomic Modify  
Force Mark  
System Control  
Cache Control  
Interrupt Control  
14  
Preliminary Datasheet  
80960VH  
3.0  
Package Information  
3.1  
Package Introduction  
The 80960VH is offered in a Plastic Ball Grid Array (PBGA) package. This is a perimeter array  
package with five rows of ball connections in the outer area of the package. See Figure , (pg. 26).  
Section 3.1.1, Functional Signal Definitions describes signal function. Section 3.1.2, 324-Lead  
PBGA Package defines the signal and ball locations.  
3.1.1  
Functional Signal Definitions  
Table 3 presents the legend for interpreting the Type Field in the following tables. Table 4 defines  
signals associated with the bus interface. Table 5 defines signals associated with basic control and  
test functions. Table 6 defines signals associated with the Interrupt Unit. Table 7 defines PCI  
2
signals. Table 8 defines Memory Controller signals. Table 9 defines DMA, and I C signals. Table  
10 defines clock signals.  
Table 3. Signal Type Definition  
Symbol  
Description  
I
Input signal only.  
O
Output signal only.  
I/O  
OD  
Signal can be either an input or output.  
Open Drain signal.  
Signal must be connected as described.  
Synchronous. Inputs must meet setup and hold times relative to P_CLK.  
S (...)  
A (...)  
S(E) Edge sensitive input  
S(L) Level sensitive input  
Asynchronous. Inputs may be asynchronous relative to P_CLK.  
A(E) Edge sensitive input  
A(L) Level sensitive input  
While the P_RST# signal is asserted, the signal:  
R(1) is driven to VCC  
R(0) is driven to VSS  
R(Q) is a valid output  
R(Z) Floats  
R (...)  
R(H) is pulled up to VCC  
R(X) is driven to an unknown state  
Preliminary Datasheet  
15  
 
 
80960VH  
Table 3. Signal Type Definition  
Symbol  
Description  
While the is in the hold state, the signal:  
H(1) is driven to VCC  
H(0) is driven to VSS  
H (...)  
H(Q) Maintains previous state or continues to be a valid output  
H(Z) Floats  
While the 80960VH is halted, the signal:  
P(1) is driven to VCC  
P(0) is driven to VSS  
P(Q) Maintains previous state or continues to be a valid output  
P (...)  
K (...)  
While the PCI Bus is in park mode, the pin:  
K(Z) Floats  
K(Q) Maintains previous state or continues to be a valid output  
Table 4. Signal Descriptions (Sheet 1 of 4)  
NAME  
TYPE  
DESCRIPTION  
ADDRESS / DATA BUS carries 32-bit physical addresses and 8-, 16- or 32-  
bit data to and from memory. During an address (Ta) cycle, bits 2-31 contain a  
physical word address (bits 0-1 indicate SIZE; see below). During a data (T )  
d
cycle, read or write data is present on one or more contiguous bytes,  
comprising AD31:24, AD23:16, AD15:8 and AD7:0. During write operations,  
unused signals are driven to determinate values.  
SIZE, which comprises bits 0-1 of the AD lines during a Ta cycle, specifies the  
number of data transfers during the bus transaction on the local bus.  
When the DMA or ATUs initiate data transfers, transfer size shown below is  
not valid.  
I/O  
S(L)  
R(Z)  
H(Z)  
P(Q)  
AD31:0  
AD1  
AD0  
Bus Transfers  
0
0
1
1
0
1
0
1
1 Transfer  
2 Transfers  
3 Transfers  
4 Transfers  
When the 80960VH enters Halt mode and the previous bus operation was:  
write — AD31:2 are driven with the last data value on the AD bus.  
read — AD31:2 are driven with the last address value on the AD bus.  
Typically, AD1:0 reflect the SIZE information of the last bus transaction (either  
instruction fetch or load/store) that was executed before entering Halt mode.  
O
ADDRESS STROBE indicates a valid address and the start of a new bus  
access. The processor asserts ADS# for the entire Ta cycle. External bus  
control logic typically samples ADS# at the end of the cycle.  
R(1)  
H(Z)  
P(1)  
ADS#  
ALE  
O
ADDRESS LATCH ENABLE indicates the transfer of a physical address.  
ALE is asserted during a Ta cycle and deasserted before the beginning of the  
R(0)  
H(Z)  
P(0)  
T
state. It is active HIGH and floats to a high impedance state during a hold  
d
cycle (T ).  
h
BURST LAST indicates the last transfer in a bus access. BLAST# is asserted  
in the last data transfer of burst and non-burst accesses. BLAST# remains  
active while wait states are detected via the LRDYRCV# or RDYRCV# signal  
on the memory controller. BLAST# becomes inactive after the final data  
transfer in a bus cycle. BLAST# has a weak internal pullup which is active  
during reset to ensure normal operation when the signal is not connected.  
O
R(H)  
H(Z)  
P(1)  
BLAST#  
0 = Last Data Transfer  
1 = Not the Last Data Transfer  
16  
Preliminary Datasheet  
80960VH  
Table 4. Signal Descriptions (Sheet 2 of 4)  
NAME  
TYPE  
DESCRIPTION  
BYTE ENABLES select which of up to four data bytes on the bus participate  
in the current bus access. Byte enable encoding depends on the bus width of  
the memory region accessed:  
32-bit bus:  
BE3# enables data on AD31:24  
BE2# enables data on AD23:16  
BE1# enables data on AD15:8  
BE0# enables data on AD7:0  
16-bit bus:  
BE3# becomes Byte High Enable (enables data on AD15:8)  
BE2# is not used (state is high)  
O
BE1# becomes Address Bit 1 (A1)  
R(1)  
H(Z)  
P(1)  
(increments with the assertion of LRDY# or RDYRCV#)  
BE0# becomes Byte Low Enable (enables data on AD7:0)  
BE3:0#  
8-bit bus:  
BE3# is not used (state is high)  
BE2# is not used (state is high)  
BE1# becomes Address Bit 1 (A1)  
(increments with the assertion of LRDY# or RDYRCV#)  
BE0# becomes Address Bit 0 (A0)  
(increments with the assertion of LRDY# or RDYRCV#)  
The processor asserts byte enables, byte high enable and byte low enable  
during Ta. Since unaligned bus requests are split into separate bus  
transactions, these signals do not toggle during a burst (32-bit bus only) from  
the i960 core processor; they do toggle for DMA and ATU cycles. They remain  
active through the last Td cycle.  
DATA ENABLE indicates data transfer cycles during a bus access. DEN# is  
asserted at the start of the first data cycle in a bus access and deasserted at  
the end of the last data cycle. DEN# is used with DT/R# to provide control for  
data transceivers connected to the data bus. DEN# has a weak internal pullup  
which is active during reset to ensure normal operation when the signal is not  
connected.  
O
R(H)  
H(Z)  
P(1)  
DEN#  
0 = Data Cycle  
1 = Not a Data Cycle  
DATA/CODE/RESET_MODE indicates that a bus access is a data access or  
an instruction access. D/C# has the same timing as W/R#.  
0 = Instruction Access  
1 = Data Access  
The RST_MODE# signal is sampled at primary PCI bus reset to determine  
whether the 80960 core is to be held in reset. When RST_MODE# is high, the  
80960VH begins initialization immediately following the deassertion of  
P_RST#. When RST_MODE# is low, the 80960 core remains in reset until the  
80960 core reset bit is cleared in the Reset/Retry control register. This signal  
has a weak internal pullup that is active during reset to ensure normal  
operation when the signal is left unconnected.  
I/O  
D/C#/  
RST_MODE#  
R(H)  
H(Z)  
P(Q)  
0 = RST_MODE enabled  
1 = RST_MODE not enabled  
While the 80960 core is in reset, all peripherals may be accessed from the  
primary PCI bus depending on the status of the WIDTH/HLTD1/RETRY/  
signal.  
DATA TRANSMIT/RECEIVE indicates the direction of data transfer to and  
from the address/data bus. It is low during Ta and Tw/T cycles for a read; it is  
high during Ta and Tw/T cycles for a write. DT/R# never changes state when  
d
DEN# is asserted.  
O
d
R(0)  
H(Z)  
P(Q)  
DT/R#  
0 = Receive  
1 = Transmit  
Preliminary Datasheet  
17  
80960VH  
Table 4. Signal Descriptions (Sheet 3 of 4)  
NAME  
TYPE  
DESCRIPTION  
BUS LOCK indicates that an atomic read-modify-write operation is in  
progress. The LOCK# output is asserted in the first clock of an atomic  
operation and deasserted in the last data transfer of the sequence. The  
processor does not grant HOLDA while asserting LOCK#. This prevents  
external agents from accessing memory involved in semaphore operations.  
I/O  
0 = Atomic Read-Modify-Write in Progress  
1 = No Atomic Read-Modify-Write in Progress  
S(L)  
R(H)  
H(Z)  
P(Q)  
LOCK#/ONCE#  
ONCE MODE: The processor samples the ONCE input during reset. When  
ONCE# is asserted LOW at the end of reset, the processor enters ONCE  
mode, stops all clocks and floats all output signals. This signal has a weak  
internal pullup which is active during reset to ensure normal operation when  
the signal is not connected.  
0 = ONCE Mode Enabled  
1 = ONCE Mode Not Enabled  
LOCAL READY/RECOVER, generated by the 80960VH’s memory controller  
unit, is an output version of the READY/RECOVER (RDYRCV#) signal. Refer  
to the RDYRCV# signal description.  
SELF TEST enables or disables the processor’s internal self-test feature at  
initialization. STEST is examined at the end of P_RST#. When STEST is  
asserted, the processor performs its internal self-test and the external bus  
confidence test. When STEST is deasserted, the processor performs only the  
external bus confidence test. This signal has a weak internal pullup which is  
active during reset to ensure normal operation.  
I/O  
LRDYRCV#/  
STEST  
R(H)  
H(Q)  
P(Q)  
0 = Self Test Disabled  
1 = Self Test Enabled  
HOLD is a request from an external bus master to acquire the bus. When the  
processor receives HOLD and grants bus control to another master, it asserts  
HOLDA, floats the address/data and control lines and enters the T state.  
h
When HOLD is deasserted, the processor deasserts HOLDA and enters  
I
HOLD  
either the T or Ta state, resuming control of the address/data and control  
S(L)  
i
lines. See Figure , (pg. 61).  
0 = No Hold Request  
1 = Hold Requested  
HOLD ACKNOWLEDGE indicates to an external bus master that the  
processor has relinquished bus control. The processor can grant HOLD  
requests and enter the Th state and while halted as well as during regular  
operation. See Figure , (pg. 61).  
O
R(0)  
H(1)  
P(Q)  
HOLDA  
0 = No Hold Acknowledged  
1 = Hold Acknowledged  
READY/RECOVER is only used in systems that use an external memory  
controller (and do not use the 80960VH’s memory controller unit). This signal  
indicates that data on AD lines can be sampled or removed. When RDYRCV#  
is not asserted during a T cycle, the Td cycle extends to the next cycle by  
d
inserting a wait state (T ).  
w
0 = Sample Data  
1 = Do Not Sample Data  
I
RDYRCV#  
RDYRCV# has an alternate function during the recovery (Tr) state. The  
processor continues to insert recovery states until it samples the signal HIGH.  
This gives slow external devices more time to float their buffers before the  
processor drives addresses.  
S(L)  
0 = Insert Wait States  
1 = Recovery Complete  
When using the internal memory controller, connect this signal to VCC through  
a 2.7 Kresistor.  
18  
Preliminary Datasheet  
80960VH  
Table 4. Signal Descriptions (Sheet 4 of 4)  
NAME  
TYPE  
DESCRIPTION  
WRITE/READ specifies during a Ta cycle whether the operation is a write or  
O
read. It is latched on-chip and remains valid during T cycles.  
R(0)  
H(Z)  
P(Q)  
d
W/R#  
0 = Read  
1 = Write  
WIDTH denotes the physical memory attributes for a bus transaction in  
conjunction with WIDTH/HLTD1/RETRY:  
WIDTH/HLTD1/RETRY WIDTH/HLTD0  
0
0
1
1
0
1
0
1
8 Bits Wide  
16 Bits Wide  
32 Bits Wide  
Undefined  
I/O  
WIDTH/  
HLTD0  
R(H)  
H(Z)  
P(Q)  
WIDTH/HLTD0 For proper operation, do not connect this signal to ground.  
This signal has a weak internal pullup which is active during reset to ensure  
normal operation.  
HLTD0 signal name has no function in the 80960VH; the signal name is  
included for 80960JT naming convention compatibility.  
WIDTH denotes the physical memory attributes for a bus transaction in  
conjunction with the WIDTH/HLTD0 signal. Refer to description above.  
RETRY is sampled at primary PCI bus reset to determine when the primary  
PCI interface is disabled. When high, the Primary PCI interface disables PCI  
configuration cycles by signaling a RETRY until the Reset/Retry Control  
Register’s Configuration Cycle Disable bit is cleared. When low, the primary  
PCI interface allows configuration cycles to occur. WIDTH/HLTD1/RETRY  
has a weak internal pullup which is active during reset to ensure normal  
operation when the signal is not connected. When the RST_MODE# pin is  
asserted, RETRY is internally forced low [inactive] regardless of its external  
state.  
I/O  
WIDTH/  
HLTD1/  
RETRY  
R(H)  
H(Z)  
P(Q)  
HLTD1 signal name has no function in the 80960VH; the signal name is  
included for 80960JT naming convention compatibility.  
Table 5. Power Requirement, Processor Control and Test Signal Descriptions (Sheet 1 of 2)  
NAME  
TYPE  
DESCRIPTION  
FAIL indicates a failure of the processor’s built-in self-test performed  
during initialization. FAIL# is asserted immediately upon reset and toggles  
during self-test to indicate the status of individual tests:  
When self-test passes, the processor deasserts FAIL# and  
commences operation from user code.  
O
R(0)  
FAIL#  
H(Q)  
When self-test fails, the processor asserts FAIL# and then stops  
executing.  
0 = Self Test Failed  
1 = Self Test Passed  
L_RST#  
TCK  
O
I
LOCAL BUS RESET notifies external devices that the local bus has reset.  
TEST CLOCK is a CPU input that provides the clocking function for  
IEEE 1149.1 Boundary Scan Testing (JTAG). State information and data  
are clocked into the processor on the rising edge; data is clocked out of the  
processor on the falling edge.  
TEST DATA INPUT is the serial input signal for JTAG. TDI is sampled on  
the rising edge of TCK, during the SHIFT-IR and SHIFT-DR states of the  
Test Access Port. This signal has a weak internal pullup to ensure normal  
operation.  
I
TDI  
S(L)  
Preliminary Datasheet  
19  
80960VH  
Table 5. Power Requirement, Processor Control and Test Signal Descriptions (Sheet 2 of 2)  
NAME  
TYPE  
DESCRIPTION  
O
TEST DATA OUTPUT is the serial output signal for JTAG. TDO is driven on  
the falling edge of TCK during the SHIFT-IR and SHIFT-DR states of the  
Test Access Port. At other times, TDO floats.  
R(Q)  
H(Q)  
P(Q)  
TDO  
TMS  
TEST MODE SELECT is sampled at the rising edge of TCK to select the  
operation of the test logic for IEEE 1149.1 Boundary Scan testing. This  
signal has a weak internal pullup to ensure normal operation.  
I
S(L)  
TEST RESET asynchronously resets the Test Access Port (TAP) controller  
function of IEEE 1149.1 Boundary Scan testing (JTAG). When using the  
Boundary Scan feature, connect a pulldown resistor (1.5 K) between this  
signal and VSS. When TAP is not used, this signal must be connected to  
I
TRST#  
VSS; however, no resistor is required. The signal has a weak internal pullup  
A(L)  
which must be overcome during reset to ensure normal operation.  
NOTE: The system must ensure that TRST# is asserted after power-up to  
put the TAP controller in a known state. Failure to do so may  
cause improper processor operation.  
LCD INITIALIZATION is a static signal used to initialize the internal logic of  
the LCD960 debugger. This signal has an internal pullup for normal  
operation.  
LCDINIT#  
VCC  
I
POWER. Connect to a 3.3 Volt power board plane.  
5 VOLT REFERENCE VOLTAGE. Input is the reference voltage for the  
5 V-tolerant I/O buffers. Connect this signal to +5 V for use with signals  
which exceed 3.3 V. When all inputs are from 3.3 V components, connect  
this signal to 3.3 V.  
VCC5REF  
VSS  
GROUND. Connect to a VSS board plane.  
N.C.  
NO CONNECT. Do not make electrical connections to these balls.  
PLL POWER. For external connection to a 3.3 V VCC board plane. Power  
to PLLs requires external filtering. See Section 4.2, VCCPLL Pin  
Requirements.  
VCCPLL2:1  
I
20  
Preliminary Datasheet  
80960VH  
Table 6. Interrupt Unit Signal Descriptions  
NAME  
TYPE  
DESCRIPTION  
NON-MASKABLE INTERRUPT causes a non-maskable interrupt event to  
occur. NMI# is the highest priority interrupt source and is level-detect. When  
I
NMI#  
A(L)  
NMI# is unused, it is recommended that you connect it to VCC  
.
EXTERNAL INTERRUPT. External devices use this signal to request an  
interrupt service. These signals operate in dedicated mode, where each signal  
is assigned a dedicated interrupt level.  
The XINT3:0# signals can be directed as follows:  
I
External Int.  
XINT0#  
Primary PCI  
P_INTA#  
80960 Core Processor  
XINT0#  
XINT3:0#  
A(L)  
or  
or  
or  
or  
XINT1#  
P_INTB#  
P_INTC#  
P_INTD#  
XINT1#  
XINT2#  
XINT2#  
XINT3#  
XINT3#  
EXTERNAL INTERRUPT. External devices use this signal to request an  
interrupt service. These signals operate in dedicated mode, where each signal  
is assigned a dedicated interrupt level.  
I
XINT7:4#  
A(L)  
NOTE:  
1. PCI signal functions are summarized in this data sheet. Refer to the PCI Local Bus Specification, revision 2.2 for  
a more complete definition.  
Table 7. PCI Signal Descriptions (Sheet 1 of 2)  
NAME  
TYPE  
DESCRIPTION1  
I/O  
K(Q)  
R(Z)  
PRIMARY PCI ADDRESS/DATA is the primary multiplexed PCI address and  
data bus.  
P_AD31:0  
I/O  
K(Q)  
R(Z)  
PRIMARY PCI BUS COMMAND and BYTE ENABLE signals are multiplexed  
on the same PCI signals. During an address phase, P_C/BE3:0# define the  
bus command. During a data phase, P_C/BE3:0# are used as byte enables.  
P_C/BE3:0#  
P_DEVSEL#  
P_FRAME#  
I/O  
PRIMARY PCI BUS DEVICE SELECT is driven by a target agent that has  
successfully decoded the address. As an input, it indicates whether or not an  
agent has been selected.  
R(Z)  
I/O  
PRIMARY PCI BUS CYCLE FRAME is asserted to indicate the beginning  
and duration of an access on the Primary PCI bus.  
R(Z)  
I
PRIMARY PCI BUS GRANT indicates to the agent that access to the bus has  
been granted. This is a point-to-point signal.  
P_GNT#  
P_IDSEL  
R(Z)  
I
PRIMARY PCI BUS INITIALIZATION DEVICE SELECT selects the 80960VH  
during a Configuration Read or Write command on the primary PCI bus.  
S(L)  
PRIMARY PCI BUS INTERRUPT requests an interrupt. The assertion and  
deassertion of P_INTx# is asynchronous to P_CLK. A device asserts its  
P_INTx# line when requesting attention from its device driver. Once the  
P_INTx# signal is asserted, it remains asserted until the device driver clears  
the pending request. P_INTx# Interrupts are level sensitive.  
O
OD  
R(Z)  
P_INT[A:D]#  
I/O  
R(Z)  
PRIMARY PCI BUS INITIATOR READY indicates the initiating agent’s (bus  
master’s) ability to complete the current data phase of the transaction.  
P_IRDY#  
NOTE:  
1. PCI signal functions are summarized in this data sheet; refer to the PCI Local Bus Specification, revision 2.2 for  
a more complete definition.  
Preliminary Datasheet  
21  
80960VH  
Table 7. PCI Signal Descriptions (Sheet 2 of 2)  
NAME  
TYPE  
DESCRIPTION1  
I
PRIMARY PCI BUS LOCK indicates an atomic operation that may require  
multiple transactions to complete.  
P_LOCK#  
S(L)  
I/O  
K(Q)  
R(Z)  
PRIMARY PCI BUS PARITY. This signal ensures even parity across  
P_AD31:0 and P_C/BE3:0. All PCI devices must provide a parity signal.  
P_PAR  
I/O  
R(Z)  
PRIMARY PCI BUS PARITY ERROR is used for reporting data parity errors  
during all PCI transactions except a special cycle.  
P_PERR#  
P_REQ#  
O
K(Q)  
R(Z)  
PRIMARY PCI BUS REQUEST indicates to the arbiter that this agent desires  
use of the bus. This is a point to point signal.  
PRIMARY RESET brings 80960VH to a consistent state. When P_RST# is  
asserted:  
PCI output signals are driven to a known consistent state.  
PCI bus interface output signals are three-stated.  
open drain signals such as P_SERR# are floated.  
S_RST# asserts.  
I
P_RST#  
A(L)  
P_RST# may be asynchronous to P_CLK when asserted or deasserted.  
Although asynchronous, deassertion must be guaranteed to be a clean,  
bounce-free edge.  
I/O  
OD  
R(Z)  
PRIMARY PCI BUS SYSTEM ERROR reports address and data parity errors  
on the special cycle command, or any other system error where the result  
would be catastrophic.  
P_SERR#  
P_STOP#  
I/O  
PRIMARY PCI BUS STOP indicates that the current target is requesting the  
master to stop the current transaction on the primary PCI bus.  
R(Z)  
I/O  
PRIMARY PCI BUS TARGET READY indicates the target agent's (selected  
P_TRDY#  
device's) ability to complete the current data phase of the transaction.  
R(Z)  
NOTE:  
1. PCI signal functions are summarized in this data sheet; refer to the PCI Local Bus Specification, revision 2.2 for  
a more complete definition.  
22  
Preliminary Datasheet  
80960VH  
Table 8. Memory Controller Signal Descriptions (Sheet 1 of 2)  
NAME  
TYPE  
DESCRIPTION  
COLUMN ADDRESS STROBE signals are used for DRAM accesses  
and are asserted when the MA11:0 signals contain a valid column  
address. CAS7:0# signals are asserted during refresh.  
Non-Interleaved Operation:  
CAS0#,CAS4# = BE0#  
CAS1#,CAS5# = BE1#  
CAS2#,CAS6# = BE2#  
CAS3#,CAS7# = BE3#  
lane access  
lane access  
lane access  
lane access  
O
R(1)  
H(Q)  
P(Q)  
CAS7:0#  
Interleaved Operation:  
CAS0# = BE0#  
CAS1# = BE1#  
CAS2# = BE2#  
CAS3# = BE3#  
CAS4# = BE0#  
CAS5# = BE1#  
CAS6# = BE2#  
CAS7# = BE3#  
Even leaf lane access  
Even leaf lane access  
Even leaf lane access  
Even leaf lane access  
Odd leaf lane access  
Odd leaf lane access  
Odd leaf lane access  
Odd leaf lane access  
CHIP ENABLE signals indicate an access to one of the two SRAM/  
FLASH/ ROM memory banks. CE0# and CE1# are never asserted at the  
same time. These signals are valid during the entire memory operation.  
CE0# is asserted for accesses to memory bank 0. CE1# is asserted for  
accesses to memory bank 1.  
O
R(1)  
H(Q)  
P(Q)  
CE1:0#  
DRAM ADDRESS LATCH ENABLE signals support external address  
demultiplexing of the MA11:0 address lines for interleaved DRAM  
systems. Use these to directly interface to ‘373’ type latches. These  
signals are only valid for accesses to interleaved memory systems.  
DALE0 is asserted during a valid even leaf address. DALE1 is asserted  
during a valid odd leaf address.  
O
R(0)  
H(Q)  
P(Q)  
DALE1:0  
DATA PARITY carries the parity information for DRAM accesses. Each  
parity bit corresponds to a group of 8 data bus signals as follows:  
DP0 AD7:0  
DP1 AD15:8  
DP2 AD23:16  
DP3 AD31:24  
I/O  
The memory controller generates parity information for local bus writes  
during data cycles. During read data cycles, the memory controller  
checks parity and provides notification of parity errors on the clock  
following the data cycle.  
R(X)  
H(Q)  
P(Q)  
DP3:0  
Parity checking and polarity are user-programmable. Parity generation  
and checking are valid only for data lines that have their associated  
enable bits asserted.  
DRAM WRITE ENABLE signals distinguish between read and write  
accesses to DRAM. DWE1:0# lines are asserted for writes and  
deasserted for reads. CAS7:0# determine valid bytes lanes during the  
access. These two outputs are functionally equivalent for all DRAM  
accesses; these provide increased drive capability for heavily loaded  
systems.  
O
R(1)  
H(Q)  
P(Q)  
DWE1:0#  
LEAF1:0#  
LEAF ENABLE signals control the data output enables of the memory  
system during an interleaved DRAM read access. Use these to directly  
interface to either DRAM or transceiver output enable signals. LEAF0# is  
asserted during an even leaf access. LEAF1# is asserted during an odd  
leaf access.  
O
R(1)  
H(Q)  
P(Q)  
Preliminary Datasheet  
23  
80960VH  
Table 8. Memory Controller Signal Descriptions (Sheet 2 of 2)  
NAME  
TYPE  
DESCRIPTION  
MULTIPLEXED ADDRESS signals are multi-purpose depending on the  
device that is selected.  
For memory banks 0 and 1, these signals output address bits A13:2.  
These address bits are incremented for each data transfer of a burst  
access.  
O
R(X)  
H(Q)  
P(Q)  
MA11:0  
For DRAM bank, these signals output the row/column multiplexed  
address bits 11:0. The relationship between the AD31:0 lines and the  
MA11:0 lines depends on the bank size, type and arrangement of the  
DRAM that is accessed.  
MEMORY WRITE ENABLE signals for write accesses to SRAM/FLASH  
devices. The MWE’s rising edge strobes valid data into these devices.  
O
R(1)  
H(Q)  
P(Q)  
MWE0# is asserted for writes to the BE0# lane  
MWE1# is asserted for writes to the BE1# lane  
MWE2# is asserted for writes to the BE2# lane  
MWE3# is asserted for writes to the BE3# lane  
MWE3:0#  
RAS3:0#  
2
ROW ADDRESS STROBE signals are used for DRAM accesses and  
are asserted when the MA11:0 signals contain a valid row address.  
RAS3:0# always deasserts after the last data transfer in a DRAM  
access.  
O
Non-Interleaved Operation:  
RAS0# = Bank0 access  
RAS1# = Bank1 access  
RAS2# = Bank2 access  
RAS3# = Bank3 access  
R(1)  
H(Q)  
P(Q)  
Interleaved Operation:  
RAS0,2# = Even leaf  
RAS1,3# = Odd leaf  
Table 9. DMA, I C Units Signal Descriptions  
NAME  
TYPE  
DESCRIPTION  
DMA DEMAND MODE ACKNOWLEDGE The DMA Controller asserts this  
signal to indicate (1) it can receive new data from an external device or (2) it  
has data to send to an external device. This signal has a weak internal pullup  
which is active during reset to ensure normal operation.  
O
R(H)  
H(Q)  
P(Q)  
DACK#  
DMA DEMAND MODE REQUEST External devices use this signal to  
indicate (1) new data is ready for transfer to the DMA controller or (2) buffers  
are available to receive data from the DMA controller.  
I
DREQ#  
SCL  
S(L)  
I/O  
OD  
R(Z)  
H(Q)  
P(Q)  
I2C CLOCK provides synchronous I2C bus operation.  
I/O  
OD  
R(Z)  
H(Q)  
P(Q)  
SDA  
I2C DATA used for data transfer and arbitration on the I2C bus.  
O
R(1)  
H(Q)  
P(Q)  
WAIT is an output that allows the DMA controller to insert wait states during  
DMA accesses to an external memory system.  
WAIT#  
24  
Preliminary Datasheet  
80960VH  
Table 10. Clock Related Signals  
NAME  
TYPE  
DESCRIPTION  
SYNCHRONOUS PCI BUS CLOCK Provides the timing for all primary PCI  
transactions and is the clock source for all internal units. All input/output timings  
are relative to P_CLK.  
P_CLK  
I
CLOCK MODE are used to select the mode of operation in terms of the 80960  
local bus / PCI bus vs. the internal 80960 processor core. These signals are  
internally pulled high. This causes the 80960 processor core to run in DX mode  
after reset. In this mode, the 80960 processor core speed can be altered by  
using the Core Select Register (CSR).  
CLKMODE1:0#  
I
00 - DX4 Mode  
01 - DX2 Mode  
10 - DX Mode  
11 - Select Speed via PCI Bus  
Preliminary Datasheet  
25  
80960VH  
3.1.2  
324-Lead PBGA Package  
Figure 3. 324-Plastic Ball Grid Array Top and Side View  
Pin #1  
Corner  
D
D1  
30˚  
Pin #1 I.D.  
E1  
E
Seating  
Plate  
A
2
f
A
1
A
C
Top View  
Side View  
Note: All Dimensions are in Millimeters  
A4628-01  
26  
Preliminary Datasheet  
80960VH  
Figure 4. 324-Plastic Ball Grid Array (Top View)  
Pin #1  
Corner  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
b
A
B
C
D
E
F
G
H
J
e
K
L
325 Balls  
20 x 20  
Matrix  
M
N
P
R
T
U
V
W
Y
1.0  
3 places  
e
S
1
Top View  
A4630-01  
Table 11. PBGA 324 Package Dimensions  
PBGA Package Dimensions  
Min  
Max  
N (# of balls)  
324  
A
A1  
A2  
D/E  
D1/E1  
S1  
b
2.14  
0.50  
2.52  
0.70  
1.12  
1.22  
26.80  
23.75  
27.20  
24.25  
1.44 Ref  
1.27  
0.60  
0.52  
0.90  
0.60  
C
e
Preliminary Datasheet  
27  
80960VH  
Table 12. 324-Plastic Ball Grid Array Ballout — In Ball Order (Sheet 1 of 3)  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
VSS  
WAIT#  
P_AD3  
VCC  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
C1  
P_LOCK#  
VCC  
D3  
D4  
CLKMODE1#  
VSS  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
F1  
NC  
NC  
P_C/BE2#  
VSS  
D5  
P_AD2  
VCC  
NC  
D6  
NC  
P_C/BE0#  
VSS  
P_AD21  
VCC  
D7  
P_AD7  
VSS  
NC  
D8  
NC  
P_AD10  
VCC  
P_AD24  
VSS  
D9  
NC  
P_AD31  
MA6  
VSS  
D10  
D11  
D12  
VCC  
P_AD13  
P_AD14  
P_AD28  
DP3  
VCC  
F2  
VCC  
F3  
MA11  
CLKMODE0  
#
A11  
P_PAR  
C2  
D13  
VSS  
F4  
VCC  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
B1  
P_PERR#  
VCC  
C3  
C4  
DACK#  
P_AD1  
P_AD4  
P_AD6  
P_AD8  
P_AD11  
NC  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
E1  
P_AD18  
VCC  
F5  
F6  
NC  
VCC  
P_TRDY#  
VSS  
C5  
P_AD26  
VSS  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
G1  
VCC  
C6  
VCC  
P_AD17  
P_AD22  
P_IDSEL  
P_C/BE3#  
VSS  
C7  
P_AD30  
VCC  
NC  
C8  
VCC  
C9  
NC  
P_REQ#  
VSS  
C10  
C11  
P_AD15  
P_SERR#  
MA9  
E2  
DP0  
P_GNT#  
NC  
DREQ#  
VSS  
C12 P_DEVSEL#  
E3  
DP2  
B2  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
D1  
P_IRDY#  
P_AD16  
P_AD20  
P_AD23  
P_AD25  
P_AD27  
P_AD29  
VCC  
E4  
VCC  
G2  
MA5  
B3  
P_AD0  
VCC  
E5  
NC  
G3  
MA7  
B4  
E6  
NC  
G4  
MA10  
NC  
B5  
P_AD5  
VSS  
E7  
NC  
G5  
B6  
E8  
NC  
G6  
VCC  
B7  
P_AD9  
VCC  
E9  
NC  
G16  
G17  
G18  
G19  
NC  
B8  
E10  
E11  
E12  
P_C/BE1#  
P_STOP#  
P_FRAME#  
P_RST#  
P_INTD#  
VCC  
B9  
P_AD12  
VSS  
B10  
DP1  
28  
Preliminary Datasheet  
80960VH  
Table 12. 324-Plastic Ball Grid Array Ballout — In Ball Order (Sheet 2 of 3)  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
B11  
H1  
H2  
H3  
H4  
H5  
H16  
H17  
H18  
H19  
H20  
J1  
VSS  
VCC  
D2  
K11  
K12  
K16  
K17  
K18  
K19  
K20  
L1  
VCC  
VSS  
E13  
M17  
M18  
M19  
M20  
N1  
P_AD19  
BE3#  
BE2#  
BE1#  
VCC  
G20  
R7  
VCCPLL2  
VCC  
VCC  
VSS  
R15  
R16  
R17  
R18  
R19  
R20  
T1  
VCC  
MA4  
VSS  
BE0#  
VCC  
NC  
VCC  
MA8  
P_INTC#  
VSS  
DT/R#  
VSS  
VCC  
AD23  
VSS  
N2  
VCC  
W/R#  
LEAF0#  
VSS  
N3  
MWE0#  
VSS  
VSS  
P_INTB#  
VCC  
N4  
CAS4#  
CAS1#  
RAS3#  
RAS0#  
NC  
L2  
N5  
CAS5#  
NC  
T2  
VCC  
L3  
CE1#  
VCC  
N16  
N17  
N18  
N19  
N20  
P1  
T3  
MA0  
MA1  
MA2  
MA3  
VCC  
L4  
VSS  
T4  
J2  
L5  
CE0#  
VSS  
AD30  
VCC  
T5  
J3  
L9  
T6  
NC  
J4  
L10  
L11  
VSS  
VCC  
T7  
XINT0#  
FAIL#  
J5  
VSS  
CAS7#  
T8  
D/C#/  
RST_MODE#  
J9  
VSS  
L12  
VSS  
P2  
VCC  
T9  
J10  
J11  
J12  
J16  
J17  
J18  
J19  
J20  
K1  
VSS  
VSS  
L16  
L17  
L18  
L19  
L20  
M1  
AD31  
VCC  
P3  
P4  
CAS6#  
CAS3#  
NC  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
U1  
RDYRCV#  
NC  
VSS  
ALE  
P5  
VCC  
ADS#  
BLAST#  
SDA  
VSS  
P15  
P16  
P17  
P18  
P19  
P20  
R1  
VCC  
AD6  
DEN#  
DWE1#  
DWE0#  
MWE3#  
MWE2#  
MWE1#  
VSS  
NC  
TCK  
AD22  
AD27  
AD29  
VCC5REF  
VSS  
TDI  
SCL  
M2  
NC  
P_INTA#  
LEAF1#  
VSS  
M3  
AD17  
AD20  
AD24  
AD28  
CAS0#  
VCC  
M4  
K2  
M5  
K3  
DALE0  
VCC  
M9  
R2  
VSS  
K4  
M10  
M11  
M12  
VSS  
R3  
CAS2#  
VCC  
K5  
DALE1  
VSS  
VSS  
R4  
U2  
K9  
VSS  
R5  
NC  
U3  
RAS1#  
Preliminary Datasheet  
29  
80960VH  
Table 12. 324-Plastic Ball Grid Array Ballout — In Ball Order (Sheet 3 of 3)  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
K10  
U5  
VSS  
VCC  
M16  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
AD26  
AD5  
R6  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
Y8  
VCC  
VSS  
U4  
VSS  
U6  
VCC  
AD8  
XINT5#  
XINT3#  
XINT1#  
VCC  
U7  
WIDTH/HLTD0  
VSS  
TMS  
U8  
AD12  
AD13  
AD16  
AD19  
AD21  
U9  
VCC  
U10  
U11  
U12  
VCC  
VSS  
VCC  
LCDINIT#  
HOLD  
VCC  
LRDYRCV#/  
STEST  
U13  
VSS  
W1  
NC  
Y9  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
V1  
AD9  
VCC  
W2  
W3  
VSS  
VCC  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
VCCPLL1  
AD1  
VCC  
W4  
VCC  
AD4  
VSS  
W5  
LRST#  
VSS  
AD7  
AD18  
VCC  
W6  
TRST#  
VSS  
W7  
VCC  
AD25  
RAS2#  
XINT7#  
XINT6#  
XINT4#  
XINT2#  
W8  
VCC  
AD10  
NC  
W9  
NMI#  
VSS  
V2  
W10  
W11  
W12  
W13  
AD14  
AD15  
VSS  
V3  
VSS  
V4  
AD3  
VCC  
V5  
V6 WIDTH/HLTD1/RETRY W14  
VCC  
V7  
NC  
LOCK#/ONCE#  
HOLDA  
TDO  
W15  
W16  
W17  
W18  
W19  
W20  
VSS  
V8  
NC  
V9  
AD11  
VCC  
V10  
V11  
V12  
NOTE:  
AD0  
VSS  
AD2  
P_CLK  
1. Do not connect any external logic to balls marked NC (no connect balls).  
30  
Preliminary Datasheet  
80960VH  
Table 13. 324-Plastic Ball Grid Array Ballout — In Signal Order (Sheet 1 of 3)  
Signal  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
Ball  
AD0  
AD1  
V11  
Y11  
V12  
W12  
Y12  
V13  
T13  
Y13  
V14  
U14  
Y16  
W17  
V16  
V17  
Y18  
Y19  
V18  
T17  
U18  
V19  
T18  
V20  
P17  
R18  
T19  
U20  
M16  
P18  
T20  
P19  
N18  
AD31  
ADS#  
L16  
J16  
L18  
K16  
M19  
M18  
M17  
J17  
U1  
DWE0#  
DWE1#  
FAIL#  
M2  
M1  
T8  
Y8  
V9  
Y7  
L1  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NMI#  
E6  
E7  
AD2  
ALE  
E8  
AD3  
BE0#  
HOLD  
E9  
AD4  
BE1#  
HOLDA  
LCDINIT#  
LEAF0#  
LEAF1#  
LOCK#/ONCE#  
LRDYRCV#/STEST  
LRST#  
MA0  
E14  
E15  
E16  
E17  
E18  
E19  
F5  
AD5  
BE2#  
AD6  
BE3#  
AD7  
BLAST#  
CAS0#  
CAS1#  
CAS2#  
CAS3#  
CAS4#  
CAS5#  
CAS6#  
CAS7#  
CE0#  
K1  
V8  
Y9  
W5  
J1  
AD8  
AD9  
T2  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
R3  
P4  
F16  
G1  
T1  
MA1  
J2  
N5  
MA2  
J3  
G5  
P3  
MA3  
J4  
G16  
N16  
P5  
P1  
MA4  
H3  
G2  
F1  
G3  
H5  
E1  
G4  
F3  
N3  
M5  
M4  
M3  
C9  
D9  
D20  
E5  
L5  
MA5  
CE1#  
L3  
MA6  
P16  
R5  
CLKMODE0#  
CLKMODE1#  
D/C#/RST_MODE#  
DACK#  
DALE0  
DALE1  
DEN#  
C2  
MA7  
D3  
MA8  
R16  
T5  
T9  
MA9  
C3  
MA10  
T6  
K3  
MA11  
T11  
T16  
V7  
K5  
MWE0#  
MWE1#  
MWE2#  
MWE3#  
NC  
L20  
E2  
DP0  
W1  
W16  
Y17  
W9  
DP1  
D1  
DP2  
E3  
DP3  
C1  
NC  
DREQ#  
DT/R#  
B1  
NC  
P_AD0  
P_AD1  
B3  
C4  
K18  
NC  
Preliminary Datasheet  
31  
80960VH  
Table 13. 324-Plastic Ball Grid Array Ballout — In Signal Order (Sheet 2 of 3)  
Signal  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
Ball  
P_AD2  
P_AD3  
D5  
A3  
P_C/BE1#  
P_C/BE2#  
P_C/BE3#  
P_CLK  
E10  
B14  
A19  
W20  
C12  
E12  
F20  
A18  
J20  
H18  
H16  
G18  
C13  
B12  
A11  
A12  
F18  
G17  
C11  
E11  
A14  
T4  
TMS  
TRST#  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
V15  
Y14  
A8  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
N20  
P15  
R4  
P_AD4  
C5  
P_AD5  
B5  
A13  
B4  
R6  
P_AD6  
C6  
P_DEVSEL#  
P_FRAME#  
P_GNT#  
P_IDSEL  
P_INTA#  
P_INTB#  
P_INTC#  
P_INTD#  
P_IRDY#  
P_LOCK#  
P_PAR  
R7  
P_AD7  
D7  
B8  
R15  
R17  
U2  
P_AD8  
C7  
B13  
B17  
D2  
P_AD9  
B7  
P_AD10  
P_AD11  
P_AD12  
P_AD13  
P_AD14  
P_AD15  
P_AD16  
P_AD17  
P_AD18  
P_AD19  
P_AD20  
P_AD21  
P_AD22  
P_AD23  
P_AD24  
P_AD25  
P_AD26  
P_AD27  
P_AD28  
P_AD29  
P_AD30  
P_AD31  
P_C/BE0#  
A7  
U6  
C8  
D6  
U10  
U11  
U15  
U19  
W4  
W8  
W13  
Y5  
B9  
D10  
D11  
D15  
D19  
F4  
A9  
A10  
C10  
C14  
A16  
D14  
E13  
C15  
B16  
A17  
C16  
B18  
C17  
D16  
C18  
B20  
C19  
D18  
E20  
A5  
P_PERR#  
P_REQ#  
P_RST#  
P_SERR#  
P_STOP#  
P_TRDY#  
RAS0#  
F6  
F14  
F15  
F17  
G6  
A4  
D12  
G19  
J5  
H1  
H2  
M20  
P2  
RAS1#  
U3  
H19  
H20  
K4  
RAS2#  
V1  
U5  
RAS3#  
T3  
U9  
RDYRCV#  
SCL  
T10  
J19  
J18  
T14  
T15  
V10  
K17  
L4  
U12  
U16  
W3  
W7  
W14  
W18  
SDA  
L17  
N1  
TCK  
TDI  
N2  
TDO  
N19  
32  
Preliminary Datasheet  
80960VH  
Table 13. 324-Plastic Ball Grid Array Ballout — In Signal Order (Sheet 3 of 3)  
Signal  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
Ball  
VCC  
VCC  
C20  
E4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
K2  
K9  
VSS  
VSS  
W10  
W11  
W15  
W19  
Y1  
VCC  
T12  
P20  
Y10  
G20  
A1  
K10  
K11  
K12  
K19  
L2  
VSS  
VCC5REF  
VCCPLL1  
VCCPLL2  
VSS  
VSS  
VSS  
VSS  
Y6  
VSS  
Y15  
Y20  
K20  
A2  
VSS  
A6  
L9  
VSS  
VSS  
A15  
A20  
B2  
L10  
L11  
L12  
L19  
M9  
W/R#  
VSS  
WAIT#  
VSS  
WIDTH/HLTD0  
WIDTH/HLTD1/RETRY  
XINT0#  
XINT1#  
XINT2#  
XINT3#  
XINT4#  
XINT5#  
XINT6#  
XINT7#  
U7  
VSS  
B6  
V6  
VSS  
B10  
B11  
B15  
B19  
D4  
T7  
VSS  
M10  
M11  
M12  
N4  
Y4  
VSS  
V5  
VSS  
Y3  
VSS  
V4  
VSS  
D8  
N17  
R1  
Y2  
VSS  
D13  
D17  
F2  
V3  
VSS  
R2  
V2  
VSS  
R19  
R20  
U4  
VSS  
F19  
H4  
VSS  
VSS  
H17  
J9  
U8  
VSS  
U13  
U17  
W2  
W6  
VSS  
J10  
J11  
J12  
VSS  
VSS  
NOTE:  
1. Do not connect any external logic to balls marked NC (no connect balls).  
Preliminary Datasheet  
33  
80960VH  
3.2  
Package Thermal Specifications  
The device is specified for operation when T (case temperature) is within the range of 0° C to  
C
95° C. Case temperature may be measured in any environment to determine whether the processor  
is within specified operating range. Measure the case temperature at the center of the top surface,  
opposite the ballpad.  
3.2.1  
Thermal Specifications  
This section defines the terms used for thermal analysis.  
3.2.1.1  
Ambient Temperature  
Ambient temperature, T , is the temperature of the ambient air surrounding the package. In a  
A
system environment, ambient temperature is the temperature of the air upstream from the package.  
3.2.1.2  
Case Temperature  
To ensure functionality and reliability, the device is specified for proper operation when the case  
temperature, T , is within the specified range in Table 16, Operating Conditions (pg. 36).  
C
When measuring case temperature, attention to detail is required to ensure accuracy. If a  
thermocouple is used, then calibrate it before taking measurements. Errors may result when the  
measured surface temperature is affected by the surrounding ambient air temperature. Such errors  
may be due to a poor thermal contact between thermocouple junction and the surface, heat loss by  
radiation, or conduction through thermocouple leads.  
To minimize measurement errors:  
Use a 35 gauge K-type thermocouple or equivalent.  
Attach the thermocouple bead or junction to the package top surface at a location  
corresponding to the center of the die (). The center of the die gives a more accurate  
measurement and less variation as the boundary condition changes.  
Attach the thermocouple bead or junction at a 90° angle by an adhesive bond (such as thermal  
epoxy or heat-tolerant tape) to the package top surface as shown in .  
Figure 5. Thermocouple Attachment  
Thermocouple Wire  
Epoxy Fillet  
Thermocouple Bead  
34  
Preliminary Datasheet  
 
80960VH  
3.2.1.3  
3.2.2  
Thermal Resistance  
The thermal resistance value for the case-to-ambient, θ , is used as a measure of the cooling  
solution’s thermal performance.  
CA  
Thermal Analysis  
Table 14 lists the case-to-ambient thermal resistances of the 80960VH for different air flow rates  
without a heat sink.  
To calculate T , the maximum ambient temperature to conform to a particular case temperature:  
A
T = T - P (θ )  
CA  
A
C
Compute P by multiplying I and V . Values for θ and θ are given in Table 14.  
CC  
CC  
JC  
CA  
Junction temperature (T ) is commonly used in reliability calculations. T can be calculated from  
J
J
θ
(thermal resistance from junction to case) using the following equation:  
JC  
T = T + P (θ )  
JC  
J
C
Similarly, when T is known, the corresponding case temperature (T ) can be calculated as  
A
C
follows:  
T = T + P (θ  
CA  
)
C
A
The θ (Junction-to-Ambient) for this package is currently estimated at 26.54° C/Watt with no  
JA  
airflow.  
θ
= θ + θ  
JC CA  
JA  
Table 14. 324-Lead PBGA Package Thermal Characteristics  
Thermal Resistance — °C/Watt  
Airflow — ft./min (m/sec)  
Parameter  
0
100  
200  
400  
600  
800  
(0)  
(0.50)  
(1.01)  
(2.03)  
(3.04)  
(4.06)  
θJC (Junction-to-Case)  
1.36  
1.36  
1.36  
1.36  
1.36  
1.36  
θCA (Case-to-Ambient)  
Without Heatsink  
25.18  
20.30  
18.29  
16.57  
15.55  
14.75  
θJA  
θCA  
θJC  
NOTE:  
1. This table applies to a PBGA device soldered directly onto a board.  
Preliminary Datasheet  
35  
 
80960VH  
4.0  
Electrical Specifications  
Table 15. Absolute Maximum Ratings  
Parameter  
Maximum Rating  
Storage Temperature  
Case Temperature Under Bias  
Supply Voltage wrt. VSS  
–55° C to + 125° C  
0° C to + 95° C  
–0.5 V to + 4.6 V  
–0.5 V to + 6.5 V  
–0.5 V to VCC + 0.5 V  
Supply Voltage wrt. VSS on VCC5  
Voltage on Any Ball wrt. VSS  
NOTICE: This data sheet contains information on products in the design phases of development. The  
specifications are subject to change without notice. Contact your local Intel representative before finalizing a  
design.  
WARNING: Stressing the device beyond the “Absolute Maximum Ratings” may cause permanent damage.  
These are stress ratings only. Operation beyond the “Operating Conditions” is not recommended and  
extended exposure beyond the “Operating Conditions” may affect device reliability.  
Table 16. Operating Conditions  
Symbol  
Parameter  
Supply Voltage  
Min  
Max  
Units  
Notes  
V
3.0  
3.0  
16  
3.6  
5.25  
33.33  
V
V
(1)  
(1)  
CC  
V
Input Protection Bias  
Input Clock Frequency  
CC5  
F
MHz  
P_CLK  
Case Temperature Under Bias  
TC  
i960® VH processor (324 PBGA)  
0
95  
°C  
NOTE:  
1. The 80960VH processor is produced on Intel’s advanced CMOS process. Proper bulk decoupling must be  
used to prevent device damage during power up and power down. Power supply behavior during these  
transitions, without proper bulk decoupling, can cause the power supply to exceed the maximum VCC  
specification, causing device damage.  
4.1  
VCC5 Pin Requirements (VDIFF)  
In mixed voltage systems that drive 80960VH inputs in excess of 3.3 V, the V  
pin must be  
CC5  
connected to the system’s 5 V supply. To limit current flow into the V  
pin, there is a limit to the  
CC5  
voltage differential between the V  
pin and the other V pins. The voltage differential between  
CC5  
CC  
the 80960VH V  
pin and its 3.3 V V pins should never exceed 2.25 V. This limit applies to  
CC5  
CC  
power-up, power-down, and steady-state operation. Table 17 outlines this requirement. Meeting  
this requirement ensures proper operation and guarantees that the current draw into the V pin  
CC5  
does not exceed the I  
specification.  
CC5  
If the voltage difference requirements cannot be met due to system design limitations, then an  
alternate solution may be employed. As shown in Figure 6., a minimum of 100 series resistor  
may be used to limit the current into the V  
pin. This resistor ensures that current drawn by the  
CC5  
V
pin does not exceed the maximum rating for this pin.  
CC5  
36  
Preliminary Datasheet  
80960VH  
Figure 6. V  
Current-Limiting Resistor  
CC5  
+5 V (±0.25 V)  
VCC5 Pin  
100 Ω  
(±5%, 0.5 W)  
This resistor is not necessary in systems that can guarantee the V  
specification.  
DIFF  
In 3.3 V-only systems and systems that drive 80960VH pins from 3.3 V logic, connect the V  
CC5  
pin directly to the 3.3 V V plane.  
CC  
Table 17. V  
Specification for Dual Power Supply Requirements (3.3 V, 5 V)  
DIFF  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
V
CC5 input should not exceed VCC by more than 2.25 V  
VCC5-VCC  
Difference  
VDIFF  
2.25  
V
during power-up and power-down, or during steady-state  
operation.  
4.2  
VCCPLL Pin Requirements  
To reduce clock skew on the i960 Jx processor, the V  
pin for the Phase Lock Loop (PLL)  
CCPLL  
circuit is isolated on the pinout. The lowpass filter, as shown in Figure 7., reduces noise-induced  
clock jitter and its effects on timing relationships in system designs. The 4.7 µF capacitor must be  
(low ESR solid tantalum), the 0.01 µF capacitor must be of the type X7R and the node connecting  
V
must be as short as possible.  
CCPLL  
Figure 7. V  
Lowpass Filter  
CCPLL  
10, 5%, 1/8W  
VCCPLL  
+
VCC  
(Board Plane)  
(On i960® Jx processors)  
4.7µF  
0.01µF  
F_CA078A  
Preliminary Datasheet  
37  
 
80960VH  
4.3  
DC Specifications  
Table 18. DC Characteristics  
Symbol  
Parameter  
Input Low Voltage  
Min  
Max  
Units  
Notes  
VIL  
-0.5  
0.8  
V
(1)  
(1)  
Input High Voltage for all signals  
except P_CLK  
VCC  
+
VIH1  
VOL1  
VOH1  
2.0  
V
V
V
0.5  
Output Low Voltage Processor signals  
Output High Voltage Processor signals  
0.45  
IOL = 6 mA (3)  
IOH = -2 mA (3)  
2.4  
VCC - 0.5  
IOH = -200 µA (3)  
VOL2  
VOH2  
Output Low Voltage PCI signals  
Output High Voltage PCI signals  
0.55  
0.45  
V
V
IOL = 1.5 mA (1)  
IOH = 0.5 mA (1)  
2.4  
2.4  
Output Low Voltage Memory Controller  
Normal drive  
VOL3  
VOH3  
V
V
I
OL = 6 mA (4)  
Output High Voltage Memory  
Controller Normal drive  
I
I
OH = -2 mA (4)  
OL = 7 mA  
Output Low Voltage Memory Controller  
High Drive  
VOL4  
0.45  
V
V
Output High Voltage Memory  
Controller High Drive  
VOH4  
2.4  
5
I
OH = -2 mA  
CIN  
Input Capacitance - PBGA  
10  
10  
12  
8
pF  
pF  
pF  
pF  
nH  
FP_CLK = TF Min (1, 2)  
COUT  
CCLK  
I/O or Output Capacitance - PBGA  
P_CLK Capacitance - PBGA  
FP_CLK = TF Min (1, 2)  
FP_CLK = TF Min (1, 2)  
CIDSEL IDSEL Ball Capacitance  
(1)  
(1)  
LPIN  
Ball Inductance  
20  
NOTES:  
1. As required by the PCI Local Bus Specification, revision 2.2.  
2. Not tested.  
3. Processor signals include AD31:0, ALE, ADS#, BE3:0#, WIDTH/HLTD0, WIDTH/HLTD1/RETRY, D/C#/RST_MODE#, W/  
R#, DT/R#, DEN#, BLAST#, LRDYRCV#, LOCK#/ONCE#, HOLD, FAIL#, TDO, DACK#, WAIT#, SDA, SCL.  
4. Memory Controller signals include MA11:0, DP3:0, RAS3:0#, CAS7:0#, MWE3:0#, DWE1:0#, DALE1:0, CE1:0#,  
LEAF1:0#.  
5. Memory Controller signals capable of high drive are MA11:0, CAS7:0#, RAS3:0#, DWE1:0#.  
38  
Preliminary Datasheet  
80960VH  
Table 19. I Characteristics  
CC  
Symbol  
Parameter  
Typ  
Max Units  
Notes  
Input Leakage Current for each signal except  
PCI Bus Signals, LOCK#/ONCE#, WIDTH/  
HLTD0, WIDTH/HLTD1/RETRY, BLAST#,  
D/C#/RST_MODE#, DEN#, TMS, TRST#,  
TDI, DACK#/PLLEN, LCDINIT#,  
V
IN = 0.8 V (VIL)  
ILI1  
± 5  
µA  
µA  
and 2.0 V (VIH  
)
LRDYRCV#/STEST, CLKMODE1:0#  
Input Leakage Current for LOCK#/ONCE#,  
WIDTH/HLTD0, WIDTH/HLTD1/RETRY,  
BLAST#, D/C#/RST_MODE#, DEN#, TMS,  
TRST#, TDI, DACK#/PLLEN, LCDINIT#,  
LRDYRCV#/STEST, CLKMODE1:0#  
ILI2  
-140  
-250  
V
V
IN = 0.45 V (1)  
Input Leakage Current for PCI Bus Signals  
(except PCLK)  
IN = 0.8 V (VIL)  
ILI3  
ILO  
± 5  
± 5  
µA  
µA  
and 2.0 V (VIH  
)
Output Leakage Current  
0.4 VOUT VCC  
Power Supply Current  
i960® VH processor  
ICC Active  
(Power Supply)  
DX Mode  
DX2 Mode  
DX4 Mode  
450  
590  
720  
mA  
mA  
mA  
(1,2)  
(1,2)  
(1,2)  
Thermal Current  
i960® VH processor  
ICC Active  
(Thermal)  
DX Mode  
DX2 Mode  
DX4 Mode  
390  
550  
690  
mA  
mA  
mA  
(1,3)  
(1,3)  
(1,3)  
Reset Mode  
i960® VH processor  
I
CC Active  
470  
40  
(4)  
(4)  
mA  
(Power Modes)  
ONCE Mode  
i960® VH processor  
NOTES:  
1. Measured with device operating and outputs loaded to the test condition in Figure 8.  
2. ICC Active (Power Supply) value is provided for selecting your system’s power supply. It is measured using one of the worst  
case instruction mixes with VCC = 3.6 V and ambient temperature = 55 ° C. This parameter is characterized but not tested.  
3. ICC Active (Thermal) value is provided for your system’s thermal management. Typical ICC is measured with VCC = 3.3 V  
and ambient temperature = 55 ° C. This parameter is characterized but not tested.  
4.  
ICC Active (Power modes) refers to the ICC values that are tested when the device is in Reset mode or ONCE mode with  
VCC = 3.6 V and ambient temperature = 55 ° C.  
Preliminary Datasheet  
39  
80960VH  
4.4  
AC Specifications  
Table 20. Input Clock Timings  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
TF  
TC  
P_CLK Frequency  
P_CLK Period  
16  
30  
33.33  
62.5  
MHz  
ns  
(1)  
TCS  
P_CLK Period Stability  
P_CLK High Time  
P_CLK Low Time  
P_CLK Rise Time  
P_CLK Fall Time  
±250  
ps  
Adjacent Clocks (2,3)  
Measured at 1.5 V (2,3)  
Measured at 1.5 V (2,3)  
0.4 V to 2.4 V (2,3)  
TCH  
12  
12  
ns  
TCL  
ns  
TCR  
4
4
V/ns  
V/ns  
TCF  
2.4 V to 0.4 V (2,3)  
NOTES:  
1. See Figure 9, (pg. 46).  
2. To ensure a 1:1 relationship between the amplitude of the input jitter and the internal clock, the jitter frequency spectrum  
should not have any power peaking between 500 KHz and 1/3 of the P_CLK frequency.  
3. Not tested.  
Table 21. Synchronous Output Timings  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
Output Valid Delay - All Local Bus Signals Except  
ALE Inactive and DT/R#  
TOV1  
2
15.5  
ns  
(1,2,5)  
0.5 TC  
+15  
TOV2  
Output Valid Delay, DT/R#  
0.5 TC +3  
ns  
(2,5)  
TOV3  
TOV4  
Output Valid Delay - PCI Signals Except P_REQ#  
Output Valid Delay P_REQ#  
Output Valid Delay - DP3:0  
2
2
3
3
11  
12  
19  
13  
ns  
ns  
ns  
ns  
(2,5)  
(2,5)  
TOV5  
(2,5)  
TOF  
Output Float Delay  
(3,4,5)  
NOTES:  
1. Inactive ALE refers to the falling edge of ALE. For inactive ALE timings, see Table 23, Relative Output Timings (pg. 42).  
2. See Figure 10, (pg. 46).  
3. A float condition occurs when the output current becomes less than ILO. Float delay is not tested, but is designed to be no  
longer than the valid delay.  
4. See Figure 11, (pg. 47).  
5. Outputs precharged to VCC5 maximum.  
40  
Preliminary Datasheet  
 
80960VH  
Table 22. Synchronous Input Timings  
Sym  
Parameter  
Min Max  
Units  
Notes  
TIS1  
Input Setup to P_CLK — NMI#, XINT7:0#, DP3:0  
6
ns  
(1,2)  
Input Setup to P_CLK — for all accesses except Expansion ROM  
Accesses — AD31:0 only  
TIS1A  
TIS1B  
6
8
ns  
ns  
(1,2)  
(1,2)  
Input Setup to P_CLK during Expansion ROM Accesses —  
AD31:0 only  
TIH1 Input Hold from P_CLK — AD31:0, NMI#, XINT7:0#, DP3:0  
TIS2 Input Setup to P_CLK — RDYRCV# and HOLD  
TIH2 Input Hold from P_CLK — RDYRCV# and HOLD  
TIS3 Input Setup to P_CLK — LOCK#/ONCE#, STEST  
TIH3 Input Hold from P_CLK — LOCK#/ONCE#, STEST  
TIS4 Input Setup to P_CLK — DREQ#  
TIH4 Input Hold from P_CLK — DREQ#  
TIS5 Input Setup to P_CLK — PCI Signals Except P_GNT#  
TIH5 Input Hold from P_CLK — PCI Signals  
2
10  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(1,2,4)  
(2)  
(2)  
7
(1,2,4)  
(1,2,4)  
(2)  
3
12  
7
(2)  
7
(2)  
0
(2,4)  
(2,3)  
(2,3)  
(2,3,4)  
(2)  
TIS6  
TIS6  
Input Setup to P_CLK — P_RST# - DX4 Mode  
6
Input Setup to P_CLK — P_RST# - DX2 and DX Mode  
10  
2
TIH6 Input Hold to P_CLK — P_RST#  
TIS7  
TIS8  
Input Setup to P_CLK — P_GNT#  
10  
Input Setup to P_RST# —  
WIDTH/HLTD0, WIDTH/HLTD1/RETRY, D/C#/RST_MODE#  
7
3
ns  
ns  
(1,2,4)  
(1,2,4)  
Input Hold from P_RST# —  
WIDTH/HLTD0, WIDTH/HLTD1/RETRY, D/C#/RST_MODE#  
TIH8  
NOTES:  
1. Setup and hold times must be met for proper processor operation. NMI#, and XINT7:0# may be synchronous or asynchro-  
nous. Meeting setup and hold time guarantees recognition at a particular clock edge.  
For asynchronous operation, NMI#, and XINT7:0# must be asserted for a minimum of two P_CLK periods to guarantee  
recognition.  
2. See Figure 12, (pg. 47).  
3. P_RST# may be synchronous or asynchronous. Meeting setup and hold time guarantees recognition at a particular clock  
edge.  
4. Guaranteed by design. May not be 100% tested.  
Preliminary Datasheet  
41  
80960VH  
4.4.1  
Relative Output Timings  
Table 23. Relative Output Timings  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
TLXL  
TLXA  
ALE Width  
0.5TC-3  
0.5TC-1  
0.5TC-3  
ns  
ns  
ns  
(1,2,4)  
Address Hold from ALE Inactive  
DT/R# Valid to DEN# Active  
Equal Loading (1,2,4)  
Equal Loading (1,3,4)  
TDXD  
NOTES:  
1. Guaranteed by design. May not be 100% tested.  
2. See Figure 13, (pg. 47).  
3. See Figure 14, (pg. 48)  
4. Outputs precharged to VCC5 maximum.  
4.4.2  
Memory Controller Relative Output Timings  
Table 24. Fast Page Mode Non-interleaved DRAM Output Timings  
Symbol  
Description  
Min  
Max  
Units  
Notes  
RAS3:0# Rising and Falling edge Output Valid  
Delay  
TOV6  
1
9
ns  
2
TOV7  
TOV8  
TOV9  
TOV10  
CAS7:0# Rising Edge Output Valid Delay  
CAS7:0# Falling Edge Output Valid Delay  
MA11:0 Output Valid Delay-Row Address  
MA11:0 Output Valid Delay-Column Address  
1
8
ns  
ns  
ns  
ns  
2
0.5Tc+1  
0.5Tc+1  
1
0.5Tc+8  
0.5Tc+10  
10  
1,2  
1,2  
2
DWE1:0# Rising and Falling edge Output Valid  
Delay  
TOV11  
1
11  
ns  
2
NOTES:  
1. Signal generated on the rising edge of an internally generated 2XCLK which corresponds to the center of an P_CLK  
period. For testing purposes, the signal is specified relative to the rising edge of P_CLK with the 0.5Tc period offset.  
2. Output switching between VCC3 maximum and VSS  
.
Table 25. Fast Page Mode Interleaved DRAM Output Timings (Sheet 1 of 2)  
Symbol  
Description  
Min  
Max  
Units  
Notes  
RAS3:0# Rising and Falling edge Output Valid  
Delay  
TOV12  
1
9
ns  
2
TOV13  
TOV14  
TOV15  
TOV16  
CAS7:0# Rising Edge Output Valid Delay  
CAS7:0# Falling Edge Output Valid Delay  
MA11:0 Output Valid Delay-Row Address  
MA11:0 Output Valid Delay-Column Address  
1
8
ns  
ns  
ns  
ns  
2
0.5Tc+1  
0.5Tc+1  
1
0.5Tc+8  
0.5Tc+10  
10  
1,2  
1,2  
2
DWE1:0# Rising and Falling Edge Output Valid  
Delay  
TOV17  
1
11  
ns  
2
NOTES:  
1. Signal generated on the rising edge of an internally generated 2XCLK which corresponds to the center of an P_CLK  
period. For testing purposes, the signal is specified relative to the rising edge of P_CLK with the 0.5Tc period offset.  
2. Output switching between VCC3 maximum and VSS  
.
42  
Preliminary Datasheet  
80960VH  
Table 25. Fast Page Mode Interleaved DRAM Output Timings (Sheet 2 of 2)  
Symbol  
Description  
Min  
Max  
Units  
Notes  
TOV18  
TOV19  
TOV20  
DALE1:0 Initial Falling Edge Output Valid Delay  
DALE1:0 Burst Falling Edge Output Valid Delay  
DALE1:0 Rising Edge Output Valid Delay  
1
0.5Tc+1  
1
10  
0.5Tc+10  
10  
ns  
ns  
ns  
2
1,2  
2
LEAF1:0# Rising and Falling Edge Output Valid  
Delay  
TOV21  
1
10  
ns  
2
NOTES:  
1. Signal generated on the rising edge of an internally generated 2XCLK which corresponds to the center of an P_CLK  
period. For testing purposes, the signal is specified relative to the rising edge of P_CLK with the 0.5Tc period offset.  
2. Output switching between VCC3 maximum and VSS  
.
Table 26. EDO DRAM Output Timings  
Note  
s
Symbol  
Description  
Min  
Max  
Units  
TOV22  
TOV23  
RAS3:0# Rising and Falling Edge Output Valid Delay  
1
9
ns  
ns  
2
CAS7:0# Rising Edge Output Valid Delay -  
Read Cycles  
0.5Tc+1  
0.5Tc+8  
1,2  
CAS7:0# Falling Edge Output Valid Delay -  
Read Cycles  
TOV24  
TOV25  
TOV26  
1
1
8
8
ns  
ns  
ns  
2
2
CAS7:0# Rising Edge Output Valid Delay -  
Write Cycles  
CAS7:0# Falling Edge Output Valid Delay -  
Write Cycles  
0.5Tc+1  
0.5Tc+8  
1,2  
TOV27  
TOV28  
TOV29  
TOV30  
NOTES:  
MA11:0 Output Valid Delay - Row Address  
0.5Tc+1 0.5Tc+10  
ns  
ns  
ns  
ns  
1,2  
1,2  
2
MA11:0 Output Valid Delay - Column Address Read Cycles 0.5Tc+1 0.5Tc+10  
MA11:0 Output Valid Delay - Column Address Write Cycles  
DWE1:0# Rising and Falling Edge Output Valid Delay  
1
1
10  
11  
2
1. Signal generated on the rising edge of an internally generated 2XCLK which corresponds to the center of an P_CLK  
period. For testing purposes, the signal is specified relative to the rising edge of P_CLK with the 0.5Tc period offset.  
2. Output switching between VCC3 maximum and VSS  
.
Table 27. SRAM/ROM Output Timings (Sheet 1 of 2)  
Symbol  
Description  
Min  
Max  
Units  
Notes  
CE1:0# Rising and Falling Edge Output Valid  
Delay  
TOV40  
1
8
ns  
2
TOV41  
TOV42  
MWE3:0# Rising Edge Output Valid Delay  
MWE3:0# Falling Edge Output Valid Delay  
1
9
ns  
ns  
2
0.5Tc+1  
0.5Tc +9  
1,2  
Preliminary Datasheet  
43  
80960VH  
Table 27. SRAM/ROM Output Timings (Sheet 2 of 2)  
Symbol  
Description  
Min  
Max  
Units  
Notes  
TOV43  
TOV44  
MA11:0 Output Valid Delay - Initial Address  
MA11:0 Output Valid Delay - Burst Address  
0.5Tc+1  
1
0.5Tc +10  
10  
ns  
ns  
2
2
NOTES:  
1. Signal generated on the rising edge of an internally generated 2XCLK which corresponds to the center of an P_CLK  
period. For testing purposes, the signal is specified relative to the rising edge of P_CLK with the 0.5Tc period offset.  
2. Output switching between VCC3 maximum and VSS  
.
4.4.3  
Boundary Scan Test Signal Timings  
Table 28. Boundary Scan Test Signal Timings  
Symbol  
Parameter  
TCK Frequency  
Min  
Max  
Units  
Notes  
TBSF  
TBSCH  
TBSCL  
TBSCR  
TBSCF  
0
0.5TF  
MHz  
ns  
TCK High Time  
TCK Low Time  
TCK Rise Time  
TCK Fall Time  
15  
15  
Measured at 1.5 V (1)  
Measured at 1.5 V (1)  
0.8 V to 2.0 V (1)  
ns  
5
5
ns  
ns  
2.0 V to 0.8 V (1)  
ns  
TBSIS1  
Input Setup to TCK — TDI,  
TMS  
4
6
TBSIH1  
Input Hold from TCK — TDI,  
TMS  
ns  
(1)  
TBSOV1  
TBSOF1  
TBSOV2  
TDO Valid Delay  
TDO Float Delay  
3
3
3
30  
30  
30  
ns  
ns  
ns  
Relative to falling edge of TCK (1,2)  
Relative to falling edge of TCK (1,2)  
Relative to falling edge of TCK (1,2)  
All Outputs (Non-Test) Valid  
Delay  
TBSOF2  
TBSIS2  
All Outputs (Non-Test) Float  
Delay  
3
4
6
30  
ns  
ns  
ns  
Relative to falling edge of TCK (1,2)  
Input Setup to TCK — All  
Inputs (Non-Test)  
(1)  
(1)  
TBSIH2  
Input Hold from TCK — All  
Inputs (Non-Test)  
NOTES:  
1. Guaranteed by design. Not tested.  
2. Outputs precharged to VCC5 maximum.  
44  
Preliminary Datasheet  
80960VH  
2
4.4.4  
I C Interface Signal Timings  
2
Table 29. I C Interface Signal Timings  
Std. Mode  
Fast Mode  
Symbol  
Parameter  
Units Notes  
Min  
Max  
Min  
Max  
400  
FSCL  
TBUF  
SCL Clock Frequency  
0
100  
0
KHz  
Bus Free Time Between STOP and START  
Condition  
4.7  
1.3  
µs  
(1)  
THDSTA Hold Time (repeated) START Condition  
4
4.7  
4
0.6  
1.3  
0.6  
µs  
µs  
µs  
(1,3)  
(1,2)  
(1,2)  
TLOW  
THIGH  
SCL Clock Low Time  
SCL Clock High Time  
Setup Time for a Repeated START  
Condition  
TSUSTA  
4.7  
0.6  
µs  
(1)  
THDDAT Data Hold Time  
TSUDAT Data Setup Time  
0
0
0.9  
µs  
ns  
ns  
ns  
µs  
(1)  
(1)  
250  
100  
TR  
TF  
SCL and SDA Rise Time  
SCL and SDA Fall Time  
1000 20+0.1Cb  
300  
300  
(1,4)  
(1,4)  
(1)  
300  
20+0.1Cb  
0.6  
TSUSTO Setup Time for STOP Condition  
4
NOTES:  
1. See Figure 15, (pg. 48).  
2. Not tested.  
3. After this period, the first clock pulse is generated.  
4. Cb = the total capacitance of one bus line, in pF.  
4.5  
AC Test Conditions  
The AC Specifications in Section 4.4, AC Specifications (pg. 40) are tested with the 50 pF load  
indicated in .  
Figure 8. AC Test Load  
Output Ball  
CL = 50 pF for all signals  
CL  
Preliminary Datasheet  
45  
 
80960VH  
4.6  
AC Timing Waveforms  
Figure 9. P_CLK, TCLK Waveform  
T
T
CR  
CF  
2.0V  
1.5V  
0.8V  
T
CH  
T
CL  
T
C
Figure 10. T Output Delay Waveform  
OV  
1.5V  
1.5V  
P_CLK  
TOVX Min  
TOVX Max  
1.5V  
1.5V  
Valid  
46  
Preliminary Datasheet  
80960VH  
Figure 11. T Output Float Waveform  
OF  
1.5V  
OF  
1.5V  
P_CLK  
T
Figure 12. TIS and TIH Input Setup and Hold Waveform  
1.5V  
1.5V  
IHX  
1.5V  
P_CLK  
T
T
ISX  
Valid  
1.5V  
Figure 13. TLXL and TLXA Relative Timings Waveform  
TA  
TW/TD  
1.5V  
1.5V  
1.5V  
P_CLK  
ALE  
TLXL  
1.5V  
Valid  
1.5V  
1.5V  
TLXA  
1.5V  
AD31:0  
Valid  
Preliminary Datasheet  
47  
80960VH  
Figure 14. DT/R# and DEN# Timings Waveform  
TA  
TW/TD  
P_CLK  
1.5V  
1.5V  
1.5V  
TOVX  
Valid  
DT/R#  
DEN#  
TDXD  
TOVX  
2
Figure 15. I C Interface Signal Timings  
SDA  
T
T
LOW  
BUF  
T
T
T
SP  
T
HDSTA  
F
R
SCL  
T
T
HDSTA  
SUSTO  
T
T
T
T
HIGH  
HDDAT  
SUDAT  
SUSTA  
Stop  
Start  
Stop  
Repeated  
Start  
48  
Preliminary Datasheet  
80960VH  
4.7  
Memory Controller Output Timing Waveforms  
Figure 16. Fast Page-Mode Read Access, Non-Interleaved, 2,1,1,1 Wait State, 32-Bit 80960  
Local Bus  
TA  
Tw  
Tw  
Td  
Tw  
Td  
Tw  
Td  
Tw  
Td  
Tr  
P_CLK  
AD31:0  
MA11:0  
ALE  
DATA  
In  
DATA  
In  
DATA  
In  
DATA  
In  
ADDR  
COL  
COL  
COL  
ROW  
COL  
ADS#  
W/R#  
BLAST#  
DT/R#  
DEN#  
DWE0#  
RAS0#  
CAS3:0#  
LRDYRCV#  
RDYRCV#  
Preliminary Datasheet  
49  
80960VH  
Figure 17. Fast Page-Mode Write Access, Non-Interleaved, 2,1,1,1 Wait States, 32-Bit 80960  
Local Bus  
TA  
Tw  
Tw  
Td  
Tw  
Td  
Tw  
Td  
Tw  
Td  
Tr  
P_CLK  
DATAO  
UT  
DATA  
OUT  
DATA  
OUT  
DATA  
OUT  
ADDR  
AD31:0  
MA11:0  
ALE  
ROW  
COL  
COL  
COL  
COL  
ADS#  
BE3:0#  
W/R#  
BLAST#  
DT/R#  
MWE0#  
DWE0#  
RAS0#  
CAS3:0#  
LRDYRCV#  
RDYRCV#  
50  
Preliminary Datasheet  
80960VH  
Figure 18. FPM DRAM System Read Access, Interleaved, 2,0,0,0 Wait States  
TA  
TW  
TW  
TD  
TD  
TD  
TD  
T
R
P_CLK  
D
IN  
D
IN  
D
IN  
D
IN  
ADDR  
AD[31:0]  
RAS[n]#  
RAS[n+1#]  
COL  
COL  
ROW  
MA[11:0]  
DALE[0]#  
CAS[3:0]#  
LEAF[0]#  
DALE[1]#  
CAS[7:4]#  
LEAF[1]#  
DWE[1:0]#  
Preliminary Datasheet  
51  
80960VH  
Figure 19. FPM DRAM System Write Access, Interleaved, 1,0,0,0 Wait States  
TW  
TD  
TD  
TD  
TD  
TR  
TR  
TA  
P_CLK  
DATA  
OUT  
DATA  
OUT  
DATA  
OUT  
DATA  
OUT  
AD[31:0]  
ADDR  
RAS[n]#  
RAS[n+1]#  
COL  
COL  
ROW  
MA[11:0]  
DALE[0]#  
CAS[3:0]#  
LEAF[0]#  
DALE[1]#  
CAS[7:4]#  
LEAF[1]#  
DWE[1:0]#  
52  
Preliminary Datasheet  
80960VH  
Figure 20. EDO DRAM, Read Cycle  
TA  
TW  
TW  
TD  
TD  
TD  
TD  
TR  
P_CLK  
RAS#  
COL  
COL  
MA[11:0]  
CAS#  
COL  
ROW  
COL  
D
IN  
D
IN  
D
IN  
D
IN  
AD[31:0]  
ADDR  
Figure 21. EDO DRAM, Write Cycle  
TA  
TW  
TD  
TD  
TD  
TD  
TR  
P_CLK  
RAS#  
COL  
ROW  
COL COL COL  
MA[11:0]  
CAS#  
D
OUT  
D
OUT  
D
OUT  
D
OUT  
AD[31:0]  
ADDR  
Preliminary Datasheet  
53  
80960VH  
Figure 22. 32-Bit Bus, SRAM Read Accesses with 0 Wait States  
TA  
TD  
TD  
TD  
TD  
TR  
P_CLK  
CE[1]#  
ADDR ADDR ADDR ADDR  
MA[11:0]  
MWE[3:0]#  
AD[31:0]  
D
D
D
D
ADDR  
IN  
IN  
IN  
IN  
Figure 23. 32-Bit Bus, SRAM Write Accesses with 0 Wait States  
TA  
TD  
TD  
TD  
TD  
TR  
P_CLK  
CE[1]#  
ADDR ADDR ADDR ADDR  
MA[11:0]  
MWE[3:0]#  
AD[31:0]  
D
D
D
D
ADDR  
OUT  
OUT  
OUT OUT  
54  
Preliminary Datasheet  
80960VH  
5.0  
Bus Functional Waveforms  
Figure 24. Non-Burst Read and Write Transactions without Wait States, 32-Bit 80960 Local  
Bus  
TA  
TD  
TR  
TI  
TI  
TA  
TD  
TR  
TI  
TI  
P_CLK  
AD31:0  
D
In  
D
In  
ADDR  
Invalid  
DATA Out  
ADDR  
ALE  
ADS#  
BE3:0#  
WIDTH1:0  
10  
10  
D/C#  
W/R#  
BLAST#  
DT/R#  
DEN#  
LRDYRCV#  
RDYRCV#  
Preliminary Datasheet  
55  
80960VH  
Figure 25. Burst Read and Write Transactions without Wait States, 32-Bit 80960 Local Bus  
TA  
TD  
TD  
TR  
TA  
TD  
TD  
TD  
TD  
TR  
P_CLK  
AD31:0  
DATA  
Out  
D
In  
DATA  
Out  
D
In  
DATA  
Out  
DATA  
Out  
ADDR  
ADDR  
ALE  
ADS#  
BE3:0#  
1 0  
WIDTH1:0  
D/C#  
1 0  
W/R#  
BLAST#  
DT/R#  
DEN#  
LRDYRCV#  
RDYRCV#  
56  
Preliminary Datasheet  
80960VH  
Figure 26. Burst Write Transactions with 2,1,1,1 Wait States, 32-Bit 80960 Local Bus  
TA  
TW  
TW  
TD  
TW  
TD  
TW  
TD  
TW  
TD  
TR  
P_CLK  
AD31:0  
ALE  
DATA  
Out  
DATA  
Out  
DATA  
Out  
DATA  
Out  
ADDR  
ADS#  
BE3:0#  
WIDTH1:0  
D/C#  
1 0  
W/R#  
BLAST#  
DT/R#  
DEN#  
LRDYRCV#  
RDYRCV#  
Preliminary Datasheet  
57  
80960VH  
Figure 27. Burst Read and Write Transactions without Wait States, 8-Bit 80960 Local Bus  
TA  
TD  
TD  
TR  
TA  
TD  
TD  
TD  
TD  
TR  
P_CLK  
AD31:0  
DATA  
Out  
D
In  
DATA  
Out  
DATA  
Out  
D
In  
DATA  
Out  
ADDR  
ADDR  
ALE  
ADS#  
BE1/A1#  
BE0/A0#  
01 or  
11  
00  
01  
10  
11  
00 or 10  
WIDTH1:0  
00  
00  
D/C#  
W/R#  
BLAST#  
DT/R#  
DEN#  
LRDYRCV#  
RDYRCV#  
58  
Preliminary Datasheet  
80960VH  
Figure 28. Burst Read and Write Transactions with 1, 0 Wait States and Extra Tr State on  
Read, 16-Bit 80960 Local Bus  
TW  
TD  
TD  
TR  
TR  
TA  
TW  
TD  
TD  
TR  
TA  
P_CLK  
AD31:0  
ALE  
D
In  
D
In  
DATA  
Out  
DATA  
Out  
ADDR  
ADDR  
ADS#  
0
0
1
BE1/A1#  
1
BE3#  
BE0#  
01  
01  
WIDTH1:0  
D/C#  
W/R#  
BLAST#  
DT/R#  
DEN#  
LRDYRCV#  
RDYRCV#  
Preliminary Datasheet  
59  
80960VH  
Figure 29. Bus Transactions Generated by Double Word Read Bus Request, Misaligned One  
Byte From Quad Word Boundary, 32-Bit 80960 Local Bus  
TA  
TD  
TR  
TA  
TD  
TR  
TA  
TD  
TR  
TA  
TD  
TR  
P_CLK  
AD31:0  
ALE  
D
In  
D
In  
D
In  
D
In  
A
A
A
A
ADS#  
BE3:0#  
0 0 0 0  
1 1 1 0  
0 0 1 1  
1 1 0 1  
1 0  
WIDTH1:0  
D/C#  
Valid  
W/R#  
BLAST#  
DT/R#  
DEN#  
LRDYRCV#  
RDYRCV#  
60  
Preliminary Datasheet  
80960VH  
Figure 30. HOLD/HOLDA Waveform For Bus Arbitration  
TI or TR  
TH  
TH  
TI or TA  
P_CLK  
Outputs:  
AD31:0,  
ALE, ADS#, BE3:0#  
D/C#/RSTMODE#  
LRDYRCV#, FAIL#  
Valid  
Valid  
WIDTH/HLTD1,  
WIDTH/HLTD1/RETRY,  
W/R#, DT/R#, DEN#,  
BLAST#, LOCK#/ONCE#  
HOLD  
HOLDA  
(Note)  
NOTE: HOLD is sampled on the rising edge of P_CLK. HOLDA is granted after the latency counter in the local  
bus arbiter expires. The processor asserts HOLDA to grant the bus on the same edge in which it recognizes  
HOLD if the last state was Ti or the last Tr of a bus transaction. Similarly, the processor deasserts HOLDA on  
the same edge in which it recognizes the deassertion of HOLD.  
Preliminary Datasheet  
61  
t e e t a a s h y r D a n i m i e r l P  
6 2  
m r  
a v e W t f o  
R d l e s e r e C C o o 6 0 8 0 9 r e u g 3 i 1 F .  
H V  
8 0 9 6 0  
80960VH  
Figure 32. 80960 Local Bus Warm Reset Waveform  
Preliminary Datasheet  
63  
80960VH  
6.0  
Device Identification On Reset  
®
During the manufacturing process, values characterizing the i960 VH processor type and stepping  
are programmed into the memory-mapped registers. The 80960VH contains two read-only device  
ID MMRs. One holds the Processor Device ID (PDIDR - 0000 1710H) and the other holds the i960  
Core Processor Device ID (DEVICEID - FF00 8710H). During initialization, the PDIDR is placed  
in g0.  
The device identification values are compliant with the IEEE 1149.1 specification and Intel  
standards. Table 30 describes the fields of the two Device IDs.  
Table 30. Processor Device ID Register - PDIDR  
31  
28  
24  
20  
16  
12  
8
4
0
LBA  
PCI  
ro ro  
ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro  
na na na na na na na na na na na na na na na na na na na na na na na na na na na na na na na na  
Legend:NA = Not AccessibleRO = Read Only  
RV = ReservedPR = PreservedRW = Read/Write  
LBA: 1710H  
RS = Read/SetRC = Read Clear  
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset  
PCI:  
NA  
Bit  
Default  
Description  
31:28  
X
Version - Indicates stepping changes.  
VCC - Indicates device voltage type.  
27  
X
0 = 5.0 V  
1 = 3.3 V  
26:21  
20:17  
16:12  
X
X
X
Product Type - Indicates the generation or “family member”.  
Generation Type - Indicates the generation of the device.  
Model Type - Indicates member within a series and specific model information.  
Manufacturer ID - Indicates manufacturer ID assigned by IEEE.  
0000 0001 001 = Intel Corporation  
11:01  
0
X
X
Constant  
NOTE:  
Values programmed into this register vary with stepping. Refer to the i960® VH processor Specification Update  
(273174-001) for the correct value.  
64  
Preliminary Datasheet  
 

相关型号:

8096BH

COMMERCIAL/EXPRESS HMOS MICROCONTROLLER
INTEL

8097

COMMERCIAL/EXPRESS HMOS MICROCONTROLLER
INTEL

8097

T-1 Subminiature Lamps
GILWAY

8097BH

COMMERCIAL/EXPRESS HMOS MICROCONTROLLER
INTEL

8097JF

COMMERCIAL/EXPRESS HMOS MICROCONTOLLER
INTEL

8098

COMMERCIAL/EXPRESS HMOS MICROCONTROLLER
INTEL

8098

T-1 Subminiature Lamps
GILWAY

8099

T-1 Subminiature Lamps
GILWAY

809A-4.000MHZ-FF0

HCMOS Output Clock Oscillator, 4MHz Nom, ROHS COMPLIANT, SMD, 4 PIN
FOX

809A-54.000MHZ-FF0

HCMOS Output Clock Oscillator, 54MHz Nom, ROHS COMPLIANT, SMD, 4 PIN
FOX

809A-FREQ-FF0

HCMOS Output Clock Oscillator, 4MHz Min, 54MHz Max, ROHS COMPLIANT, SMD, 4 PIN
FOX

809A060-1

Connector Accessory, Boot,
GLENAIR