80960RN [INTEL]

Micro Peripheral IC, CMOS, PBGA540;
80960RN
型号: 80960RN
厂家: INTEL    INTEL
描述:

Micro Peripheral IC, CMOS, PBGA540

文件: 总54页 (文件大小:398K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intel® 80960RN I/O Processor  
Complies with PCI Local Bus Specification, Revision 2.2  
Universal (5 V and 3.3 V) PCI Signalling Environment (C-stepping only)  
Data Sheet  
Advance Information  
Product Features  
High Performance Intel® 80960JT Core  
Sustained One Instruction/Clock Execution Connects Internal Bus to 64-bit PCI Buses  
Two Address Translation Units  
16 Kbyte, Two-Way Set-Associative  
Instruction Cache  
Inbound/Outbound Address Translation  
Support  
—4 Kbyte, Direct-Mapped Data Cache  
Sixteen 32-Bit Global Registers  
Sixteen 32-Bit Local Registers  
—1 Kbyte, Internal Data RAM  
Direct Outbound Addressing Support  
DMA Controller  
Three Independent Channels  
PCI Memory Controller Interface  
64-Bit Internal + PCI Bus Addressing  
Local Register Cache  
(Eight Available Stack Frames)  
Independent Interface to 64-bit Primary  
and Secondary PCI Buses  
Two 32-Bit On-Chip Timer Units  
264 Mbyte/sec Burst Transfers to PCI and  
SDRAM Memory  
PCI-to-PCI Bridge Unit  
Eight Delayed Read/Write Buffers  
Holding up to eight Transactions  
Direct Addressing to/from PCI Buses  
Primary and Secondary 64-bit PCI  
Interfaces  
Unaligned Transfers Supported in  
Hardware  
Two Posting Buffers Holding up to 12  
Transactions  
Two Channels Dedicated to Primary PCI Bus  
One Channel Dedicated to Secondary PCI Bus  
I2C Bus Interface Unit  
Delayed and Posted Transaction Support  
Forwards Memory, I/O, Configuration  
Commands from PCI Bus to PCI Bus  
Serial Bus  
Master/Slave Capabilities  
I O Messaging Unit  
2
System Management Functions  
Secondary PCI Arbitration Unit  
Supports Six Secondary PCI Devices  
Multi-priority Arbitration Algorithm  
Private PCI Device Support  
Perimeter Land Grid Array Package  
540-pin  
Four Message Registers  
Two Doorbell Registers  
Four Circular Queues  
1004 Index Registers  
Memory Controller  
128 Mbytes of 64-Bit SDRAM or  
64 Mbytes of 32-Bit SDRAM  
Application Accelerator  
Built-in hardware XOR engine  
Performance Monitoring  
ECC Single-Bit error correction,  
Double-Bit error detection  
Two Independent Banks for SRAM /  
ROM / Flash (8 Mbyte/Bank; 8-Bit)  
Ninety-eight events monitored on-chip  
Notice: This document contains information on products in the sampling and initial production  
phases of development. The specifications are subject to change without notice. Verify with your  
local Intel sales office that you have the latest datasheet before finalizing a design.  
Order Number: 273157-009  
August, 2001  
80960RN — Data Sheet  
Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual  
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability  
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to  
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not  
intended for use in medical, life saving, or life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The Intel® 80960RN I/O Processor may contain design defects or errors known as errata which may cause the product to deviate from published  
specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling  
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.  
Copyright © Intel Corporation, 2001  
Intel, Intel Solutions960 and Intel i960 are registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Advance Information  
Data Sheet — 80960RN  
Contents  
1.0  
2.0  
About this Document................................................................................................7  
1.1  
1.2  
1.3  
Intel® Solutions960® Program...............................................................................7  
Terminology...........................................................................................................7  
Additional Information Sources .............................................................................7  
Functional Overview.................................................................................................8  
2.1  
Key Functional Units .............................................................................................9  
2.1.1 PCI-to-PCI Bridge Unit .............................................................................9  
2.1.2 Private PCI Device Support......................................................................9  
2.1.3 DMA Controller.........................................................................................9  
2.1.4 Address Translation Unit..........................................................................9  
2.1.5 Messaging Unit.........................................................................................9  
2.1.6 Memory Controller Unit ..........................................................................10  
2.1.7 I2C Bus Interface Unit ............................................................................10  
2.1.8 Secondary PCI Arbitration Unit ..............................................................10  
2.1.9 Application Accelerator Unit ...................................................................10  
2.1.10 Performance Monitor Unit ......................................................................10  
2.1.11 Bus Interface Unit...................................................................................10  
Intel® i960® Core Features (Intel® 80960JT).......................................................11  
2.2.1 Burst Bus................................................................................................12  
2.2.2 Timer Unit...............................................................................................12  
2.2.3 Priority Interrupt Controller .....................................................................12  
2.2.4 Faults and Debugging ............................................................................12  
2.2.5 On-Chip Cache and Data RAM..............................................................12  
2.2.6 Local Register Cache.............................................................................13  
2.2.7 Test Features .........................................................................................13  
2.2.8 Memory-Mapped Control Registers .......................................................13  
2.2.9 Instructions, Data Types and Memory Addressing Modes.....................13  
2.2  
3.0  
Package Information...............................................................................................15  
3.1  
Package Introduction...........................................................................................15  
3.1.1 Functional Signal Definitions..................................................................15  
3.1.1.1 Signal Pin Descriptions .............................................................16  
3.1.2 540-Lead H-PBGA Package ..................................................................26  
Package Thermal Specifications.........................................................................38  
3.2.1 Thermal Specifications...........................................................................38  
3.2.1.1 Ambient Temperature................................................................38  
3.2.1.2 Case Temperature ....................................................................38  
3.2.1.3 Thermal Resistance ..................................................................39  
3.2.2 Thermal Analysis....................................................................................39  
Heat Sink Information..........................................................................................40  
Vendor Information..............................................................................................40  
3.4.1 Socket-Header Vendor...........................................................................40  
3.4.2 Burn-in Socket Vendor ...........................................................................40  
3.4.3 Shipping Tray Vendor.............................................................................41  
3.4.4 Logic Analyzer Interposer Vendor..........................................................41  
3.4.5 JTAG Emulator Vendor ..........................................................................41  
............................................................................................................................41  
3.2  
3.3  
3.4  
3.5  
Advance Information  
iii  
80960RN — Data Sheet  
4.0  
Electrical Specifications........................................................................................42  
4.1  
4.2  
4.3  
4.4  
4.5  
Absolute Maximum Ratings ................................................................................42  
V
Pin Requirements (V  
).....................................................................43  
CC5REF  
DIFF  
V
Pin Requirements...................................................................................43  
CCPLL  
Targeted DC Specifications ................................................................................44  
Targeted AC Specifications.................................................................................45  
4.5.1 Clock Signal Timings..............................................................................45  
4.5.2 PCI Interface Signal Timings..................................................................47  
4.5.3 Intel® 80960JN Core Interface Timings..................................................48  
4.5.4 SDRAM/Flash Interface Signal Timings.................................................48  
4.5.5 Boundary Scan Test Signal Timings ......................................................49  
4.5.6 I2C Interface Signal Timings ..................................................................50  
AC Timing Waveforms ........................................................................................51  
AC Test Conditions .............................................................................................53  
4.6  
4.7  
5.0  
Device Identification on Reset............................................................................54  
iv  
Advance Information  
Data Sheet — 80960RN  
Figures  
1
2
3
4
Intel® 80960RN Functional Block Diagram ..................................................... 8  
Intel® 80960JT Core Block Diagram ............................................................. 11  
540L H-PBGA Package Diagram (Top and Side View) ................................ 26  
540L H-PBGA Package Diagram (Bottom View) .......................................... 27  
Thermocouple Attachment - A) No Heatsink / B) With Heatsink................... 38  
5
6
7
V
V
Current-Limiting Resistor................................................................ 43  
Lowpass Filter .................................................................................. 43  
CC5REF  
CCPLL  
8
P_CLK, TCK, DCLKIN, DCLKOUT Waveform .............................................. 51  
9
T
T
T
Output Delay Waveform......................................................................... 51  
Output Float Waveform.......................................................................... 52  
OV  
OF  
10  
11  
12  
13  
and T Input Setup and Hold Waveform ................................................ 52  
IS  
IH  
I2C Interface Signal Timings.......................................................................... 52  
AC Test Load (all signals except SDRAM and Flash signals)....................... 53  
Tables  
1
2
3
4
5
6
7
8
Related Documentation................................................................................... 7  
Instruction Set .............................................................................................. 14  
Pin Description Nomenclature....................................................................... 16  
Memory Controller Signals............................................................................ 17  
Primary PCI Bus Signals............................................................................... 20  
Secondary PCI Arbiter Signals...................................................................... 21  
Secondary PCI Bus Signals .......................................................................... 22  
Intel® 80960Jx Core Signals and Configuration Straps................................. 24  
I2C, JTAG, Core Signals ............................................................................... 25  
540-Lead H-PBGA Package — Signal Name Order..................................... 28  
540-Lead H-PBGA Pinout — Ballpad Number Order.................................... 33  
540-Lead H-PBGA Package Thermal Characteristics .................................. 39  
Heat Sink Vendors and Contacts .................................................................. 40  
Socket-Header Vendor.................................................................................. 40  
Burn-in Socket Vendor .................................................................................. 40  
Shipping Tray Vendor.................................................................................... 41  
Logic Analyzer Interposer Vendor................................................................. 41  
JTAG Emulator Vendor ................................................................................. 41  
Operating Conditions..................................................................................... 42  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
Specification for Dual Power Supply Requirements (3.3 V, 5 V)......... 43  
DIFF  
DC Characteristics ........................................................................................ 44  
Characteristics ........................................................................................ 45  
I
CC  
Input Clock Timings....................................................................................... 45  
SDRAM Output Clock Timings...................................................................... 46  
PCI Signal Timings....................................................................................... 47  
Intel® 80960JN Core Signal Timings............................................................. 48  
SDRAM / Flash Signal Timings..................................................................... 48  
Boundary Scan Test Signal Timings ............................................................. 49  
I2C Interface Signal Timings ......................................................................... 50  
Device ID Registers...................................................................................... 54  
Advance Information  
v
80960RN — Data Sheet  
This Page Intentionally Left Blank  
vi  
Advance Information  
Data Sheet — 80960RN  
1.0  
About this Document  
®
This is the Advance Information data sheet for the Intel 80960RN processor. This data sheet  
contains a functional overview, mechanical data (package signal locations and simulated thermal  
characteristics), targeted electrical specifications (simulated), and bus functional waveforms.  
®
Detailed functional descriptions other than parametric performance is published in the i960  
RM/RN I/O Processor Developers Manual.  
1.1  
1.2  
Intel® Solutions960® Program  
®
®
The Intel Solutions960 program features a wide variety of development tools which support the  
®
i960 processor family. Many of these tools are developed by partner companies; some are  
developed by Intel, such as profile-driven optimizing compilers. For more information on these  
products, contact your local Intel representative.  
Terminology  
In this document, the following terms are used:  
Primary and Secondary PCI buses are the 80960RN processor’s external PCI buses which  
conform to PCI SIG specifications.  
®
®
Intel 80960 core refers to the Intel 80960JT processor which is integrated into the 80960RN  
processor.  
1.3  
Additional Information Sources  
Intel documentation is available from your local Intel Sales Representative or Intel Literature Sales.  
Intel Corporation  
Literature Sales  
P.O. Box 5937  
Denver, CO 80217-9808  
1-800-548-4725  
Table 1.  
Related Documentation  
Document Title  
Order / Contact  
i960® RM/RN I/O Processor Developer’s Manual  
i960® Jx Microprocessor User’s Guide  
Intel Order # 273158  
Intel Order # 272483  
i960® RM/RN/RS I/O Processor Specification Update  
Intel Order # 273164  
PCI Local Bus Specification, Revision 2.2  
PCI Special Interest Group 1-800-433-5177  
PCI Special Interest Group 1-800-433-5177  
Philips Semiconductor  
PCI-to-PCI Bridge Architecture Specification, Revision 1.1  
I2C Peripherals for Microcontrollers  
Advance Information  
7
80960RN — Data Sheet  
2.0  
Functional Overview  
As indicated in Figure 1, the 80960RN processor combines many features with the 80960JT to create  
an intelligent I/O processor. Subsections following the figure briefly describe the main features; for  
®
detailed functional descriptions, refer to the i960 RM/RN I/O Processor Developers Manual.  
The PCI bus is an industry standard, high performance, low latency system bus that operates up to  
264 Mbyte/s. The 80960RN processor, a multi-function PCI device, is fully compliant with the  
PCI Local Bus Specification, Revision 2.2. Function 0 is the PCI-to-PCI bridge unit; Function 1 is  
the address translation unit.  
The PCI-to-PCI bridge unit is the path between two independent 64-bit PCI buses and provides the  
®
®
ability to overcome PCI electrical load limits. The addition of the Intel i960 core processor  
brings intelligence to the bridge.  
The 80960RN processor, object code compatible with the i960 core processor, is capable of  
sustained execution at the rate of one instruction per clock.  
The internal bus, a 64-bit PCI-like bus, is a high-speed interface to local memory and I/O. Physical  
and logical memory attributes are programmed via memory-mapped control registers (MMRs); an  
®
extension not found on the Intel i960 Kx, Sx or Cx processors.  
®
Figure 1.  
Intel 80960RN Functional Block Diagram  
Local Memory  
(SDRAM, Flash)  
I2C Serial Bus  
80960RN Processor  
80960 Core  
Memory  
Controller  
2
Bus  
Interface  
I C Bus  
Application  
Accelerator  
Internal  
Arbitration  
Interface  
64-bit Internal Bus  
Messaging  
Unit  
Two DMA  
Channels  
Address  
Translation  
One DMA  
Channel  
Address  
Translation  
PCI to PCI  
Bridge  
64-bit/32-bit Primary PCI Bus  
64-bit/32-bit Secondary PCI Bus  
Performance  
Monitoring  
Unit  
Secondary  
PCI Arbitration  
Unit  
8
Advance Information  
 
Data Sheet — 80960RN  
2.1  
Key Functional Units  
2.1.1  
PCI-to-PCI Bridge Unit  
The PCI-to-PCI bridge unit (referred to as “bridge”) connects two independent PCI buses. Each  
PCI bus may be 32 or 64 bits wide. The bridge is fully compliant with the PCI-to-PCI Bridge  
Architecture Specification, Revision 1.1 published by the PCI Special Interest Group. The bridge  
forwards bus transactions on one PCI bus to the other PCI bus. Dedicated data queues support high  
performance bandwidth on the PCI buses. The 80960RN supports PCI 64-bit Dual Address Cycle  
(DAC) addressing.  
The bridge has dedicated PCI configuration space accessible through the primary PCI bus.  
2.1.2  
2.1.3  
2.1.4  
Private PCI Device Support  
The 80960RN processor explicitly supports private PCI devices on the secondary PCI bus. The  
bridge and Address Translation Unit work together to hide private PCI devices from PCI  
configuration cycles and allow these hidden devices to use a private PCI address space. The  
Address Translation Unit issues PCI configuration cycles to configure hidden devices.  
DMA Controller  
The DMA Controller supports low-latency, high-throughput data transfers between PCI bus agents  
and local memory. Three separate DMA channels accommodate data transfers: two for primary  
PCI bus, one for the secondary PCI bus. The DMA Controller supports chaining and unaligned  
data transfers. The DMA Controller is programmable only through the i960 core processor.  
Address Translation Unit  
The Address Translation Unit (ATU) allows PCI transactions direct access to local memory. The  
80960RN processor has direct access to both PCI buses. The ATU supports transactions between  
PCI address space and 80960RN processor address space.  
Address translation is controlled through programmable registers accessible from both the primary  
PCI interface and the 80960 core. Dual access to registers allows flexibility in mapping the two  
address spaces.  
2.1.5  
Messaging Unit  
The Messaging Unit (MU) provides data transfer between the PCI system and the 80960RN  
processor. The Messaging Unit uses interrupts to notify the PCI system or the 80960RN processor  
when new data arrives. The MU has four messaging mechanisms: Message Registers, Doorbell  
Registers, Circular Queues, and Index Registers. Each mechanism allows a host processor or  
external PCI device and the 80960RN processor to communicate through message passing and  
interrupt generation.  
Advance Information  
9
80960RN — Data Sheet  
2.1.6  
2.1.7  
Memory Controller Unit  
The Memory Controller Unit (MCU) allows direct control of a local SDRAM and Flash subsystem.  
The MCU features programmable chip selects, a wait state generator and Error Correction and  
Detection. With the ATU configuration registers, local memory can be configured as PCI  
addressable memory or private processor memory.  
I2C Bus Interface Unit  
2
The I C (Inter-Integrated Circuit) Bus Interface Unit allows the 80960 core to serve as a master and  
2
2
slave device residing on the I C bus. The I C bus is a serial bus developed by Philips  
Semiconductor comprising a two pin interface. The bus allows the 80960RN processor to interface  
2
to other I C peripherals and microcontrollers for system management functions. It requires a  
minimum of hardware for an economical system to relay status and reliability information on the  
2
I/O subsystem to an external device. For more information, see I C Peripherals for  
Microcontrollers (Philips Semiconductor).  
2.1.8  
2.1.9  
Secondary PCI Arbitration Unit  
The Secondary PCI Arbitration Unit provides PCI arbitration for the secondary PCI bus. The  
arbitration includes a fairness algorithm with programmable priorities and six external PCI Request  
and Grant signal pairs.  
Application Accelerator Unit  
The Application Accelerator Unit (AAU) provides hardware acceleration of XOR functions  
commonly used in RAID algorithms. Additionally, the AAU provides block moves within local  
memory. The Application Accelerator interfaces the internal bus and operates on data within local  
memory. The AAU is programmable through the i960 core processor and supports chaining and  
unaligned data transfers.  
2.1.10  
2.1.11  
Performance Monitor Unit  
The Performance Monitor Unit (PMU) allows software to monitor the performance of the different  
buses: Primary PCI, Secondary PCI, and Internal. Multiple performance characteristics are  
captured with 14 mode registers and a global time stamp register.  
Bus Interface Unit  
The Bus Interface Unit (BIU) provides an interface between the 100 MHz 80960JT core and the  
66 MHz internal bus. To optimize performance, the BIU implements prefetching and write merging.  
10  
Advance Information  
Data Sheet — 80960RN  
2.2  
Intel® i960® Core Features (Intel® 80960JT)  
The processing power of the 80960RN processor comes from the 100 MHz 80960JT processor  
core. The 80960JT is a scalar implementation of the 80960 Core Architecture. Figure 2 shows a  
block diagram of the 80960JT Core processor.  
Factors that contribute to the 80960JT core’s performance include:  
100 MHz Single-clock execution of most instructions  
Independent Multiply/Divide Unit  
Efficient instruction pipeline minimizes pipeline break latency  
Register and resource scoreboarding allow overlapped instruction execution  
128-bit register bus speeds local register caching  
16 Kbyte two-way set-associative, integrated instruction cache  
4 Kbyte direct-mapped, integrated data cache  
1 Kbyte integrated data RAM delivers zero wait state program data  
The 80960 core operates out of its own 32-bit address space, which is independent of the PCI  
address space. Local memory can be:  
Made visible to the PCI address space  
Kept private to the 80960JT core  
Allocated as a combination of the two  
®
Figure 2.  
Intel 80960JT Core Block Diagram  
Control  
32-bit buses  
address / data  
Physical Region  
Configuration  
P_CLK  
PLL, Clocks,  
Power Mgmt  
Bus  
Instruction Cache  
16 Kbyte Two-Way Set  
Associative  
Control Unit  
Address/  
Data Bus  
Bus Request  
Queues  
TAP  
5
Boundary Scan  
Controller  
32  
Instruction Sequencer  
Two 32-Bit  
Timers  
Constants  
Control  
Interrupt  
Port  
Programmable  
Interrupt Controller  
8-Set  
Local Register  
Cache  
9
Execution  
and  
Memory  
Interface  
Unit  
Memory-Mapped  
Register Interface  
Multiply  
Divide  
Unit  
Address  
Generation  
128  
Unit  
1 Kbyte  
32-bit Addr  
32-bit Data  
Effective  
Address  
Global / Local  
Register File  
Data RAM  
SRC1 SRC2 DST  
4 Kbyte  
Direct Mapped  
Data Cache  
3 Independent 32-Bit SRC1, SRC2, and DST Buses  
Advance Information  
11  
 
80960RN — Data Sheet  
2.2.1  
Burst Bus  
A 32-bit high-performance bus controller interfaces the 80960RN processor to the Bus Interface  
Unit. The Bus Control Unit fetches instructions and transfers data on the internal bus at the rate of  
up to four 32-bit words per six clock cycles. The external address/data bus is multiplexed.  
Data caching is programmed through a group of logical memory templates and a defaults register.  
The Bus Control Unit’s features include:  
Multiplexed external bus minimizes pin count  
External ready control for address-to-data, data-to-data and data-to-next-address wait state types  
Little endian byte ordering  
Unaligned bus accesses performed transparently  
Three-deep load/store queue decouples the bus from the 80960 core  
Upon reset, the 80960JT conducts an internal self test. Before executing its first instruction, it  
performs an external bus confidence test by performing a checksum on the first words of the  
Initialization Boot Record.  
2.2.2  
2.2.3  
Timer Unit  
The timer unit (TU) contains two independent 32-bit timers that are capable of counting at several  
clock rates and generating interrupts. Each is programmed through the Timer Unit registers. These  
memory-mapped registers are addressable on 32-bit boundaries. Timers have a single-shot mode  
and auto-reload capabilities for continuous operation. Each timer has an independent interrupt  
request to the 80960JT’s interrupt controller. The TU can generate a fault when unauthorized writes  
from user mode are detected.  
Priority Interrupt Controller  
Low interrupt latency is critical to many embedded applications. As part of its highly flexible  
interrupt mechanism, the 80960JT exploits several techniques to minimize latency:  
Interrupt vectors and interrupt handler routines can be reserved on-chip  
Register frames for high-priority interrupt handlers can be cached on-chip  
The interrupt stack can be placed in cacheable memory space  
2.2.4  
Faults and Debugging  
The 80960JT employs a comprehensive fault model. The processor responds to faults by making  
implicit calls to a fault handling routine. Specific information collected for each fault allows the  
fault handler to diagnose exceptions and recover appropriately.  
The processor also has built-in debug capabilities. With software, the 80960JT may be configured  
to detect as many as seven different trace event types. Alternatively, mark and fmark instructions  
can generate trace events explicitly in the instruction stream. Hardware breakpoint registers are  
also available to trap on execution and data addresses.  
2.2.5  
On-Chip Cache and Data RAM  
Memory subsystems often impose substantial wait state penalties. The 80960JT integrates  
considerable storage resources on-chip to decouple CPU execution from the external bus. The  
80960JT includes a 16 Kbyte instruction cache, a 4 Kbyte data cache and 1 Kbyte data RAM.  
12  
Advance Information  
Data Sheet — 80960RN  
2.2.6  
2.2.7  
Local Register Cache  
The 80960JT rapidly allocates and deallocates local register sets during context switches. The processor  
needs to flush a register set to the stack only when it saves more than seven sets to its local register cache.  
Test Features  
The 80960RN processor incorporates numerous features that enhance the user’s ability to test both  
the processor and the system to which it is attached. These features include ONCE (On-Circuit  
Emulation) mode and Boundary Scan (JTAG).  
The 80960JT provides testability features compatible with IEEE Standard Test Access Port and  
Boundary Scan Architecture (IEEE Std. 1149.1).  
One of the boundary scan instructions, HIGHZ, forces the processor to float all its output pins (ONCE  
mode). ONCE mode can also be initiated at reset without using the boundary scan mechanism.  
ONCE mode is useful for board-level testing. This feature allows a mounted 80960RN processor to  
electrically “remove” itself from a circuit board allowing system-level testing where a remote  
tester can exercise the processor system.  
The test logic does not interfere with component or system behavior and ensures that components  
function correctly and the connections between various components are correct.  
The JTAG Boundary Scan feature is an alternative to conventional “bed-of-nails” testing.  
Boundary Scan can examine connections that might otherwise be inaccessible to a test system.  
2.2.8  
2.2.9  
Memory-Mapped Control Registers  
The 80960JT is compliant with 80960 family architecture. Each memory-mapped, 32-bit register is  
accessed via memory-format instructions. The processor ensures that these accesses do not  
generate external bus cycles.  
Instructions, Data Types and Memory Addressing Modes  
As with all 80960 family processors, the instruction set supports several different data types and formats:  
Bit  
Bit fields  
Integer (8-, 16-, 32-, 64-bit)  
Ordinal (8-, 16-, 32-, 64-bit unsigned integers)  
Triple word (96 bits)  
Quad word (128 bits)  
The 80960JT provides a full set of addressing modes for C and assembly:  
Two Absolute modes  
Five Register Indirect modes  
Index with displacement mode  
IP with displacement mode  
Advance Information  
13  
80960RN — Data Sheet  
Table 2 shows the available 80960JT instructions.  
Table 2.  
Instruction Set  
Data Movement  
Arithmetic  
Logical  
Bit, Bit Field and Byte  
Add  
Subtract  
Multiply  
And  
Set Bit  
Divide  
Not And  
And Not  
Or  
Clear Bit  
Remainder  
Not Bit  
Load  
Modulo  
Alter Bit  
Store  
Shift  
Exclusive Or  
Not Or  
Scan For Bit  
Span Over Bit  
Extract  
Move  
Extended Shift  
Extended Multiply  
Extended Divide  
Add with Carry  
Subtract with Carry  
Conditional Add  
Conditional Subtract  
Rotate  
Conditional Select  
Load Address  
Or Not  
Nor  
Modify  
Exclusive Nor  
Not  
Scan Byte for Equal  
Byte Swap  
Nand  
Comparison  
Branch  
Call/Return  
Fault  
Compare  
Call  
Conditional Compare  
Compare and Increment  
Unconditional Branch  
Conditional Branch  
Compare and Branch  
Call Extended  
Call System  
Return  
Conditional Fault  
Compare and  
Decrement  
Synchronize Faults  
Test Condition Code  
Check Bit  
Branch and Link  
Processor  
Management  
Debug  
Atomic  
Flush Local Registers  
Modify Arithmetic  
Controls  
Modify Trace Controls  
Mark  
Modify Process Controls  
Halt  
Atomic Add  
Atomic Modify  
Force Mark  
System Control  
Cache Control  
Interrupt Control  
14  
Advance Information  
 
Data Sheet — 80960RN  
3.0  
Package Information  
3.1  
Package Introduction  
The 80960RN processor is offered in a Perimeter Land Grid Array (PBGA) package. This is a  
perimeter array package with five rows of ball connections in the outer area of the package. See  
Figure 4 “540L H-PBGA Package Diagram (Bottom View)” on page 27.  
3.1.1  
Functional Signal Definitions  
This section defines the pins and signals in the following tables:  
Table 3 “Pin Description Nomenclature” on page 16  
Table 4 “Memory Controller Signals” on page 17  
Table 5 “Primary PCI Bus Signals” on page 20  
Table 6 “Secondary PCI Arbiter Signals” on page 21  
Table 8 “Intel® 80960Jx Core Signals and Configuration Straps” on page 24  
Table 9 “I2C, JTAG, Core Signals” on page 25  
Advance Information  
15  
80960RN — Data Sheet  
3.1.1.1  
Table 3.  
Signal Pin Descriptions  
Pin Description Nomenclature  
SYMBOL  
DESCRIPTION  
I
O
Input pin only  
Output pin only  
I/O  
Pin can be either an input or output  
Open Drain pin  
OD  
-
Pin must be connected as described  
N/C  
5V  
NO CONNECT. Do not make electrical connections to these balls.  
Input pin is 5 volt tolerant  
Sync(...)  
Synchronous. Inputs meet setup and hold times relative to an input clock.  
Sync(P) Synchronous to P_CLK  
Sync(D) Synchronous to DCLKIN  
Sync(T) Synchronous to TCK  
Async  
Asynchronous. Inputs may be asynchronous relative to P_CLK, DCLKIN, or TCK. All  
asynchronous signals are level-sensitive.  
Prst(...)  
While the P_RST# pin is asserted, the pin:  
Prst(1) Is driven to Vcc  
Prst(0) Is driven to Vss  
Prst(X) Is driven to unknown state  
Prst(H) Is pulled up to Vcc  
Prst(L) Is pulled down to Vss  
Prst(Z) Floats  
Prst(Q) Is a valid output  
Since P_RST# is asynchronous, these are asynchronous events.  
While the S_RST# pin is asserted, the pin:  
Srst(...)  
Srst(1) Is driven to Vcc  
Srst(0) Is driven to Vss  
Srst(X) Is driven to unknown state  
Srst(H) Is pulled up to Vcc  
Srst(L) Is pulled down to Vss  
Srst(Z) Floats  
Srst(Q) Is a valid output  
Note that S_RST# is asserted when P_RST# is asserted or BCR[6] is set with software.  
While the I_RST# pin is asserted, the pin:  
Irst(...)  
Irst(1) Is driven to Vcc  
Irst(0) Is driven to Vss  
Irst(X) Is driven to unknown state  
Irst(H) Is pulled up to Vcc  
Irst(L) Is pulled down to Vss  
Irst(Z) Floats  
Irst(Q) Is a valid output  
Note that I_RST# is asserted when P_RST# is asserted or EBCR[5] is set with software.  
P32(...)  
S32(...)  
While the Primary PCI Bus is configured as a 32-bit PCI bus by the Primary central resource:  
P32(H) is pulled up internally to Vcc  
P32(L) is pulled down internally to Vss  
While the Secondary PCI Bus is configured as a 32-bit PCI bus with 32BITPCI_EN#:  
S32(H) is pulled up internally to Vcc  
S32(L) is pulled down internally to Vss  
16  
Advance Information  
Data Sheet — 80960RN  
Table 4.  
Memory Controller Signals (Sheet 1 of 3)  
NAME  
COUNT  
TYPE  
DESCRIPTION  
1
O
Irst(Q)  
SDRAM OUTPUT CLOCK dedicated for SDRAM memory  
subsystem.  
DCLKOUT  
1
I
SDRAM INPUT CLOCK dedicated for SDRAM memory  
subsystem. Used to skew DCLKOUT appropriately to  
accommodate flight time and clock buffer delays.  
DCLKIN  
SA[11:0]  
12  
O
Irst(Q)  
SDRAM MULTIPLEXED ADDRESS BUS carries the multiplexed  
row and column addresses to the SDRAM memory banks. For  
SA[10], see note 1.  
2
1
1
O
Irst(Q)  
SDRAM INTERNAL BANK SELECT indicates which of the SDRAM  
internal banks are read or written during the current transaction.  
SBA[1:0]  
SRAS#  
O
Irst(1)  
SDRAM ROW ADDRESS STROBE indicates the presence of a valid  
row address on the Multiplexed Address Bus SA[11:0]. See note 1.  
O
Irst(1)  
SDRAM COLUMN ADDRESS STROBE indicates the presence of  
a valid column address on the Multiplexed Address Bus SA[11:0].  
See note 1.  
SCAS#  
8
O
Irst(1)  
SDRAM DATA MASK controls which of the eight bytes on the data  
bus should be written or read. When SDQM[7:0] asserted, the  
SDRAM devices do not accept/drive valid data from/to the byte  
lanes. When SDQM[7:0] deasserted, the SDRAM devices  
accept/drive valid data from/to the byte lanes.  
SDQM[7:0]  
By convention, SDQM[1] masks two x8 SDRAM devices.  
Functionally, all SDQM[7:0] signals are equivalent.  
1
2
O
Irst(1)  
SDRAM WRITE ENABLE indicates that the current memory  
transaction is a write operation. See note 1.  
SWE#  
O
Irst(1)  
SDRAM CHIP ENABLE enables the SDRAM devices for a  
memory access (1 per bank supported). See note 1.  
SCE[1:0]#  
SCKE[1:0]  
2
O
Irst(Q)  
SCKE[1:0] are the clock enables for the SDRAM memory.  
Deasserting will place the SDRAM in self-refresh mode. See note 1.  
64  
I/O  
DATA BUS carries 64-bit data to and from memory. During a data  
(T ) cycle, read or write data is present on one or more contiguous  
Irst(1)  
Sync(D)  
d
DQ[63:0]  
bytes, comprising DQ[63:56], DQ[55:48], DQ[47:40], DQ[39:32],  
DQ[31:24], DQ[23:16], DQ[15:8] and DQ[7:0]. During write  
operations, unused pins are driven to determinate values.  
8
1
I/O  
Irst(1)  
Sync(D)  
ERROR CORRECTION CODE carries the 8-bit ECC code to and  
from memory during data cycles.  
SCB[7:0]  
ROE#  
O
Irst(1)  
ROM OUTPUT ENABLE specifies, during a T cycle, whether the  
a
operation is a write (1) or read (0) to the ROM interface. It remains  
valid during T cycles. When ROE# is asserted, the data is  
d
transferred from the memory on RAD[16:9].  
1
O
Irst(1)  
ROM WRITE ENABLE indicates the direction data is to be  
transferred to/from ROM and controls the WE input on the ROM  
device. When RWE# is asserted, the data is transferred to the  
memory on DQ[7:0].  
RWE#  
2
1
O
Irst(1)  
RCE[1:0]#  
RALE  
FLASH CHIP ENABLE enables Flash devices for a memory access.  
O
Irst(0)  
ROM ADDRESS LATCH ENABLE indicates the cycle in which the  
address on RAD[16:3] should be externally latched for the Flash  
subsystem.  
Advance Information  
17  
80960RN — Data Sheet  
Table 4.  
Memory Controller Signals (Sheet 2 of 3)  
NAME  
COUNT  
TYPE  
DESCRIPTION  
8
I/O  
5V  
Irst(X)  
Sync(D)  
FLASH ADDRESS/DATA BUS: During an address (Ta) cycle, bits  
16:9 contain a physical word address. During a data cycle (Td), bits  
16:9 carry data bits 16:9 of the Flash data byte.  
RAD[16:9]  
1
1
1
O
FLASH ADDRESS BUS: During an address (Ta) cycle, bit 8 contain  
a physical word address. RAD[8]. multiplexes physical address bits  
[22] with [8]. Refer to the MCU chapter of the i960® RM/RN I/O  
Processor Developer’s Manual for details.  
RAD[8]  
RAD[7]  
Prst(H)  
O
FLASH ADDRESS BUS: During an address (Ta) cycle, bit 7 contain  
a physical word address. RAD[7]. multiplexes physical address bits  
[21] with [7]. Refer to the MCU chapter of the i960® RM/RN I/O  
Processor Developer’s Manual for details.  
Prst(H)  
I/O  
5V  
Prst(H)  
FLASH ADDRESS BUS: During an address (Ta) cycle, bit 6 contain  
a physical word address. RAD[6]. multiplexes physical address bits  
[20] with [6]. Within four clocks after the deassertion of P_RST#,  
this pin is an output only. Refer to the MCU chapter of the i960®  
RM/RN I/O Processor Developer’s Manual for details.  
RAD[6]/  
RST_MODE#  
(Config. Pin)  
RESET MODE is sampled at Primary PCI bus reset to determine if  
the 80960RN processor is to be held in reset. If asserted, the  
80960RN processor will be held in reset until the 80960 Processor  
Reset bit is cleared in the Extended Bridge Control Register.  
1
1
O
FLASH ADDRESS BUS: During an address (Ta) cycle, bit 5 contain  
a physical word address. RAD[5]. multiplexes physical address bits  
[19] with [5]. Within four clocks after the deassertion of P_RST#,  
this pin is an output only. Refer to the MCU chapter of the i960®  
RM/RN I/O Processor Developer’s Manual for details.  
Prst(H)  
RAD[5]  
I/O  
5V  
Prst(H)  
FLASH ADDRESS BUS: During an address (Ta) cycle, bit 4 contain  
a physical word address. RAD[4]. multiplexes physical address bits  
[18] with [4]. Within four clocks after the deassertion of P_RST#,  
this pin is an output only. Refer to the MCU chapter of the i960®  
RM/RN I/O Processor Developer’s Manual for details.  
RAD[4]/  
SELF TEST enables or disables the processor’s internal self-test  
feature at initialization. STEST is examined at the end of P_RST#.  
When STEST is asserted, the processor performs its internal  
self-test and the external bus confidence test. When STEST is  
deasserted, the processor performs only the external bus  
confidence test.  
STEST  
(Config. Pin)  
0 = Self Test Disabled  
1 = Self Test Enabled  
1
I/O  
5V  
Prst(H)  
FLASH ADDRESS BUS: During an address (Ta) cycle, bit 3 contain  
a physical word address. RAD[3]. multiplexes physical address bits  
[17] with [3]. Within four clocks after the deassertion of P_RST#,  
this pin is an output only. Refer to the MCU chapter of the i960®  
RM/RN I/O Processor Developer’s Manual for details.  
RAD[3]/  
RETRY  
RETRY is sampled at Primary PCI bus reset to determine if the  
Primary PCI interface will be disabled. If high, the Primary PCI  
interface will disable PCI configuration cycles by signaling a Retry  
until the Configuration Cycle Retry bit is cleared in the Extended  
Bridge Control Register. If low, the Primary PCI interface allow  
configuration cycles to occur.  
(Config. Pin)  
18  
Advance Information  
Data Sheet — 80960RN  
Table 4.  
Memory Controller Signals (Sheet 3 of 3)  
NAME  
COUNT  
TYPE  
DESCRIPTION  
1
I/O  
5V  
Prst(H)  
FLASH ADDRESS BUS: During an address (Ta) cycle, bit 2  
contains a physical word address. Within four clocks after the  
deassertion of P_RST#, this pin is an output only. Refer to the MCU  
chapter of the i960® RM/RN I/O Processor Developer’s Manual for  
details.  
RAD[2]/  
32-BIT Memory Enable The 32BITMEM_EN# signal is sampled at  
Primary PCI Reset to notify the memory controller if 32-bit wide  
SDRAM memories are connected to the memory controller.  
32BITMEM_EN#  
(Config. Pin)  
If 32BITMEM_EN# is high, the memory controller supports the  
64-bit SDRAM protocol for accesses to SDRAM memories.  
If 32BITMEM_EN# is low, the memory controller supports the  
32-bit SDRAM protocol for accesses to SDRAM memories.  
1
I/O  
5V  
Prst(H)  
FLASH ADDRESS BUS: During an address (Ta) cycle, bit 1  
contains a physical word address. Within four clocks after the  
deassertion of P_RST#, this pin is an output only. Refer to the MCU  
chapter of the i960® RM/RN I/O Processor Developer’s Manual for  
details.  
32-BIT Secondary PCI Enable The 32BITPCI_EN# signal is  
sampled at Primary PCI Reset to notify the secondary PCI arbiter  
NOT to generate the 64-bit protocol of the rising edge of the  
secondary reset for the secondary PCI bus.  
RAD[1]/  
32BITPCI_EN#  
(Config. Pin)  
If 32BITPCI_EN# is high, the secondary PCI arbiter asserts  
S_REQ64# during S_RST#, indicating the secondary PCI bus is a  
64-bit bus.  
If 32BITPCI_EN# is low, the secondary PCI arbiter does not assert  
S_REQ64# during S_RST#, indicating the secondary PCI bus is  
NOT a 64-bit bus.  
1
O
FLASH ADDRESS BUS: During an address (Ta) cycle, bit 0  
contains a physical word address. Refer to the MCU chapter of the  
i960® RM/RN I/O Processor Developer’s Manual for details.  
RAD[0]  
NOTE:  
Prst(H)  
1. These pins remain functional for 20 DCLKIN periods after I_RST# is asserted for a warm boot. The  
designated Irst() state applies after 20 DCLKIN periods after I_RST# is asserted. For more details, refer to  
the MCU Chapter of the i960® RM/RN I/O Processor Developer’s Manual.  
Advance Information  
19  
80960RN — Data Sheet  
Table 5.  
Primary PCI Bus Signals (Sheet 1 of 2)  
NAME  
COUNT  
TYPE  
DESCRIPTION  
I/O  
5V  
PRIMARY PCI ADDRESS/DATA is the multiplexed PCI address  
P_AD[31:0]  
32  
Sync(P) and bottom 32 bits of the data bus.  
Prst(Z)  
I/O  
5V  
Sync(P)  
Prst(Z)  
PRIMARY PCI DATA is the upper 32 bits of the primary PCI data  
bus driven during the data phase.  
P_AD[63:32]  
P_PAR  
32  
1
P32(H)  
I/O  
5V  
PRIMARY PCI BUS PARITY is even parity across P_AD[31:0] and  
Sync(P) P_C/BE[3:0]#.  
Prst(Z)  
I/O  
5V  
Sync(P)  
Prst(Z)  
P32(H)  
PRIMARY PCI BUS UPPER DWORD PARITY is even parity  
across P_AD[63:32] and P_C/BE[7:4]#.  
P_PAR64  
1
I/O  
5V  
PRIMARY PCI BUS COMMAND and BYTE ENABLES are  
multiplexed on the same PCI pins. During the address phase, they  
P_C/BE[3:0]#  
4
Sync(P) define the bus command. During the data phase, they are used as  
Prst(Z) byte enables for P_AD[31:0].  
I/O  
5V  
Sync(P)  
Prst(Z)  
PRIMARY PCI BUS BYTE ENABLES are as byte enables for  
P_AD[63:32] during the data phase.  
P_C/BE[7:4]#  
P_REQ#  
4
1
1
P32(H)  
O
PRIMARY PCI BUS REQUEST indicates to the primary PCI bus  
Prst(Z) arbiter that the 80960RN processor desires use of the PCI bus.  
I/O  
5V  
Sync(P)  
Prst(Z)  
PRIMARY PCI BUS REQUEST 64-BIT TRANSFER indicates the  
attempt of a 64-bit transaction on the primary PCI bus. If the target  
is 64-bit capable, the target acknowledges the attempt with the  
assertion of P_ACK64#.  
P_REQ64#  
P32(Z)  
I
5V  
PRIMARY PCI BUS GRANT indicates that access to the primary  
P_GNT#  
1
1
1
1
1
Sync(P) PCI bus has been granted.  
Prst(Z)  
I/O  
5V  
Sync(P)  
Prst(Z)  
P32(Z)  
PRIMARY PCI BUS ACKNOWLEDGE 64-BIT TRANSFER  
indicates that the device has positively decoded its address as the  
target of the current access and the target is willing to transfer data  
using the full 64-bit data bus.  
P_ACK64#  
P_FRAME#  
P_IRDY#  
P_TRDY#  
I/O  
5V  
PRIMARY PCI BUS CYCLE FRAME is asserted to indicate the  
Sync(P) beginning and duration of an access.  
Prst(Z)  
PRIMARY PCI BUS INITIATOR READY indicates the initiating  
agent’s ability to complete the current data phase of the  
transaction. During a write, it indicates that valid data is present on  
the Address/Data bus. During a read, it indicates the processor is  
I/O  
5V  
Sync(P)  
Prst(Z)  
ready to accept the data.  
I/O  
5V  
PRIMARY PCI BUS TARGET READY indicates the target agent’s  
ability to complete the current data phase of the transaction. During a  
Sync(P) read, it indicates that valid data is present on the Address/Data bus.  
Prst(Z) During a write, it indicates the target is ready to accept the data.  
20  
Advance Information  
Data Sheet — 80960RN  
Table 5.  
Primary PCI Bus Signals (Sheet 2 of 2)  
NAME  
COUNT  
TYPE  
DESCRIPTION  
I/O  
5V  
PRIMARY PCI BUS STOP indicates a request to stop the current  
P_STOP#  
1
Sync(P) transaction on the primary PCI bus.  
Prst(Z)  
I/O  
5V  
Sync(P)  
Prst(Z)  
PRIMARY PCI BUS DEVICE SELECT is driven by a target agent  
that has successfully decoded the address. As an input, it indicates  
whether or not an agent has been selected.  
P_DEVSEL#  
1
I/O  
5V  
OD  
Sync(P)  
PRIMARY PCI BUS SYSTEM ERROR is driven for address parity  
errors on the primary PCI bus.  
P_SERR#  
P_CLK  
1
1
Prst(Z)  
PRIMARY PCI BUS INPUT CLOCK provides the timing for all  
primary PCI transactions and is the clock source for all internal  
80960RN units.  
I
5V  
PRIMARY RESET brings PCI-specific registers, sequencers, and  
signals to a consistent state. When P_RST# is asserted:  
PCI output signals are driven to a known consistent state.  
I
PCI bus interface output signals are three-stated.  
P_RST#  
1
5V  
Async  
open drain signals such as P_SERR# are floated.  
P_RST# may be asynchronous to P_CLK when asserted or  
deasserted. Although asynchronous, deassertion must be  
guaranteed to be a clean, bounce-free edge.  
I/O  
5V  
PRIMARY PCI BUS PARITY ERROR is asserted when a data  
P_PERR#  
1
Sync(P) parity error occurs during a primary PCI bus transaction.  
Prst(Z)  
I
PRIMARY PCI BUS LOCK indicates the need to perform an atomic  
operation on the primary PCI bus.  
P_LOCK#  
P_IDSEL  
1
1
5V  
Sync(P)  
I
PRIMARY PCI BUS INITIALIZATION DEVICE SELECT is used to  
select the 80960RN during a Configuration Read or Write  
5V  
Sync(P) command on the primary PCI bus.  
PRIMARY PCI BUS INTERRUPT requests an interrupt. The  
assertion and deassertion of P_INT[A:D]# is asynchronous to  
P_CLK. A device asserts its P_INT[A:D]# line when requesting  
attention from its device driver. Once the P_INT[A:D]# signal is  
asserted, it remains asserted until the device driver clears the  
O
OD  
Prst(Z)  
P_INT[A:D]#  
4
pending request. P_INT[A:D]# Interrupts are level sensitive.  
Table 6.  
Secondary PCI Arbiter Signals  
NAME  
COUNT  
TYPE  
DESCRIPTION  
6
I
5V  
Sync(P)  
SECONDARY PCI BUS REQUESTS are the request signals from  
devices 0 through 5 on the secondary PCI bus.  
S_REQ[5:0]#  
6
O
Srst(Z)  
SECONDARY PCI BUS GRANT are grant signals sent to devices  
5-0 on the secondary PCI bus  
S_GNT[5:0]#  
Advance Information  
21  
80960RN — Data Sheet  
Table 7.  
Secondary PCI Bus Signals (Sheet 1 of 2)  
NAME  
COUNT  
TYPE  
DESCRIPTION  
I/O  
5V  
SECONDARY PCI ADDRESS/DATA is the multiplexed secondary  
S_AD[31:0]  
32  
Sync(P) PCI address and lower 32 bits of the data bus.  
Srst(0)  
I/O  
5V  
SECONDARY PCI DATA is the upper 32 bits of the secondary PCI  
S_AD[63:32]  
S_PAR  
32  
1
Sync(P)  
data bus.  
Srst(Z)  
S32(H)  
I/O  
Sync(P)  
Srst(0)  
SECONDARY PCI BUS PARITY is even parity across S_AD[31:0]  
and S_C/BE[3:0]#.  
I/O  
5V  
Sync(P)  
Srst(Z)  
SECONDARY PCI BUS UPPER DWORD PARITY is even parity  
across S_AD[63:32] and S_C/BE[7:4]#.  
S_PAR64  
1
S32(H)  
I/O  
5V  
SECONDARY PCI BUS COMMAND and BYTE ENABLES are  
multiplexed on the same PCI pins. During the address phase, they  
S_C/BE[3:0]#  
S_C/BE[7:4]#  
4
4
Sync(P) define the bus command. During the data phase, they are used as  
Srst(0) the byte enables for S_AD[31:0].  
I/O  
5V  
Sync(P)  
Srst(Z)  
SECONDARY PCI BYTE ENABLES are used as byte enables for  
S_AD[63:32] during secondary PCI data phases.  
S32(H)  
I/O  
5V  
Sync(P)  
Srst(Q)  
SECONDARY PCI BUS REQUEST 64-BIT TRANSFER indicates  
the attempt of a 64-bit transaction on the secondary PCI bus. If the  
target is 64-bit capable, the target acknowledges the attempt with  
the assertion of S_ACK64#.  
S_REQ64#  
1
S32(Z)  
I/O  
5V  
Sync(P)  
Srst(Z)  
SECONDARY PCI BUS ACKNOWLEDGE 64-BIT TRANSFER  
indicates that the device has positively decoded its address as the  
target of the current access, indicates the target is willing to transfer  
data using 64 bits.  
S_ACK64#  
S_FRAME#  
S_IRDY#  
1
1
1
S32(Z)  
I/O  
5V  
SECONDARY PCI BUS CYCLE FRAME is asserted to indicate the  
Sync(P) beginning and duration of an access.  
Srst(Z)  
SECONDARY PCI BUS INITIATOR READY indicates the initiating  
agent’s ability to complete the current data phase of the  
transaction. During a write, it indicates that valid data is present on  
the secondary Address/Data bus. During a read, it indicates the  
I/O  
5V  
Sync(P)  
Srst(Z)  
processor is ready to accept the data.  
SECONDARY PCI BUS TARGET READY indicates the target  
agent’s ability to complete the current data phase of the  
transaction. During a read, it indicates that valid data is present on  
the secondary Address/Data bus. During a write, it indicates the  
I/O  
5V  
Sync(P)  
Srst(Z)  
S_TRDY#  
S_STOP#  
1
1
target is ready to accept the data.  
I/O  
5V  
SECONDARY PCI BUS STOP indicates a request to stop the  
Sync(P) current transaction on the secondary PCI bus.  
Srst(Z)  
22  
Advance Information  
Data Sheet — 80960RN  
Table 7.  
Secondary PCI Bus Signals (Sheet 2 of 2)  
NAME  
COUNT  
TYPE  
DESCRIPTION  
I/O  
5V  
Sync(P)  
SECONDARY PCI BUS DEVICE SELECT is driven by a target  
agent that has successfully decoded the address. As an input, it  
indicates whether or not an agent has been selected.  
S_DEVSEL#  
1
Srst(Z)  
I/O  
5V  
OD  
Sync(P)  
Srst(Z)  
SECONDARY PCI BUS SYSTEM ERROR is driven for address  
parity errors on the secondary PCI bus.  
S_SERR#  
1
1
SECONDARY PCI BUS RESET is an output based on P_RST#. It  
brings PCI-specific registers, sequencers, and signals to a  
consistent state. When P_RST# is asserted or BCR[6] is set, it  
causes S_RST# to assert and:  
PCI output signals are driven to a known consistent state.  
PCI bus interface output signals are three-stated.  
open drain signals such as S_SERR# are floated  
O
Async  
S_RST#  
S_RST# may be asynchronous to S_CLKIN when asserted or  
deasserted. Although asynchronous, deassertion must be  
guaranteed to be a clean, bounce-free edge.  
I/O  
5V  
SECONDARY PCI BUS PARITY ERROR is asserted when a data  
S_PERR#  
S_LOCK#  
1
1
Sync(P) parity error during a secondary PCI bus transaction.  
Srst(Z)  
I/O  
5V  
SECONDARY PCI BUS LOCK indicates the need to perform an  
Sync(P) atomic operation on the secondary PCI bus.  
Srst(Z)  
Advance Information  
23  
80960RN — Data Sheet  
®
Table 8.  
Intel 80960Jx Core Signals and Configuration Straps  
NAME  
COUNT  
TYPE  
DESCRIPTION  
SECONDARY PCI BUS INTERRUPT REQUESTS. S_INT[D:A]#  
assertion and deassertion is asynchronous to P_CLK. As device  
asserts S_INT[D:A]# when requesting attention from it device  
driver. When S_INT[D:A]# is asserted, it remains asserted until the  
device driver clears the pending request. S_INT[D:A]# interrupts  
are level low sensitive.  
EXTERNAL INTERRUPT. External devices use this signal to  
request an interrupt service. These signals operate in dedicated  
mode, where each signal is assigned a dedicated interrupt level.  
I
XINT[3:0]#/  
S_INT[D:A]#  
4
5V  
Async  
The S_INT[D:A]#/XINT[3:0]# signals can be directed as follows:  
Sec. PCIPrimary PCIi960 core processor  
S_INTA# P_INTA# or XINT0#  
S_INTB# P_INTB# or XINT1#  
S_INTC# P_INTC# or XINT2#  
S_INTD# P_INTD# or XINT3#  
I
EXTERNAL INTERRUPT pins are used to request 80960RN  
interrupt service.  
XINT[5:4]#  
2
5V  
Async  
I
NON-MASKABLE INTERRUPT causes an i960 core processor  
non-maskable interrupt event to occur. NMI# is the highest priority  
NMI#  
1
1
5V  
Async interrupt source.  
INPUT REFERENCE VOLTAGE is strapped to 5 V. This reference  
voltage allows the 80960RN input pins to be 5 V tolerant.  
VCC5REF  
-
-
PLL POWER is a separate VCC supply pin for the phase lock loop  
clock generator. It is intended for external connection to the VCC  
board plane. In noisy environments, add a simple bypass filter  
circuit to reduce noise-induced clock jitter and its effects on timing  
relationships.  
VCCPLL  
3
FAIL indicates a failure of the processor’s built-in self-test  
performed during initialization. FAIL# is asserted immediately upon  
reset and toggles during self-test to indicate the status of individual  
tests:  
When self-test passes, the processor deasserts FAIL# and  
commences operation from user code.  
O
Irst(0)  
FAIL#  
1
When self-test fails, the processor asserts FAIL# and then stops  
executing. Self-test failing does not cause the bridge to stop  
execution.  
0 = Self Test Failed  
1 = Self Test Passed  
24  
Advance Information  
Data Sheet — 80960RN  
2
Table 9.  
I C, JTAG, Core Signals  
NAME  
COUNT  
TYPE  
DESCRIPTION  
TEST CLOCK is an input which provides the clocking function for  
the IEEE 1149.1 Boundary Scan Testing (JTAG). State information  
and data are clocked into the component on the rising edge and  
data is clocked out of the component on the falling edge.  
I
TCK  
1
5V  
TEST DATA INPUT is the serial input pin for the JTAG feature. TDI  
is sampled on the rising edge of TCK, during the SHIFT-IR and  
SHIFT-DR states of the Test Access Port. This signal has a weak  
I
TDI  
1
5V  
Sync(T) internal pull-up to ensure proper operation when this signal is  
unconnected.  
TEST DATA OUTPUT is the serial output pin for the JTAG feature.  
TDO  
1
1
O
TDO is driven on the falling edge of TCK during the SHIFT-IR and  
SHIFT-DR states of the Test Access Port. At other times, TDO floats.  
TEST RESET asynchronously resets the Test Access Port (TAP)  
controller function of IEEE 1149.1 Boundary Scan Testing (JTAG).  
This signal has a weak internal pull-up to ensure proper operation  
when this signal is unconnected.  
I
TRST#  
TMS  
5V  
Async  
TEST MODE SELECT is sampled at the rising edge of TCK to  
select the operation of the test logic for IEEE 1149.1 Boundary  
Scan testing. This signal has a weak internal pull-up to ensure  
proper operation when this signal is unconnected.  
I
1
1
1
5V  
Sync(T)  
I/O  
5V  
OD  
SDA  
I2C DATA is used for data transfer and arbitration on the I2C bus.  
I2C CLOCK provides synchronous operation of the I2C bus.  
Irst(Z)  
I/O  
5V  
OD  
SCL  
Irst(Z)  
LCD INITIALIZATION is a static signal used to initialize the internal  
logic for the LCD960 debugger. This signal has an internal pull-up  
for normal operation.  
I
LCDINIT#  
I_RST#  
1
1
Sync(I)  
O
INTERNAL BUS RESET indicates when the internal bus has been  
Async reset with P_RST# or a software reset.  
ONCE MODE: The processor samples this pin during reset. If it is  
asserted LOW at the end of reset, the processor enters ONCE  
Mode. In ONCE Mode, the processor stops all clocks and floats all  
output pins except the TDO and RAD[8:0] pins. The pin has a weak  
internal pull-up which is active during reset to ensure normal  
operation if the pin is left unconnected.  
ONCE#  
I
1
5V  
(Config. Pin)  
Advance Information  
25  
80960RN — Data Sheet  
3.1.2  
540-Lead H-PBGA Package  
Figure 3.  
540L H-PBGA Package Diagram (Top and Side View)  
Pin #1 Corner  
27.700  
42.500 ± 0.200  
GC80960RN100  
SSSSSS  
MALAY  
FFFFFFFF-[{SN}]  
M
© ‘98  
INTEL  
27.700  
42.500 ± 0.200  
1.56 REF  
Slug  
0.55 ± 0.15  
Seating Plane  
Ball spacing is 1.270  
Ball width is 0.750 ± 0.150  
1.025 ± 0.075  
3.845 ± 0.255  
2.150 ± 0.150  
NOTES:  
1. All dimensions and tolerances conform to ANSI Y14.5M 1982.  
2. Dimensions are measured at the maximum solder ball diameter parallel to primary datum.  
3. Primary datum and seating plane are defined by the spherical crowns of the solder balls.  
4. All dimensions are in millimeters.  
5. S spec numbers are only printed on the C-X steppings.  
26  
Advance Information  
Data Sheet — 80960RN  
Figure 4.  
540L H-PBGA Package Diagram (Bottom View)  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
AM  
AL  
AK  
AJ  
AM  
AL  
AK  
AJ  
AH  
AG  
AF  
AH  
AG  
AF  
AE  
AD  
AE  
AD  
AC  
AB  
AA  
Y
AC  
AB  
AA  
Y
W
V
W
V
U
U
T
T
R
R
P
P
N
N
M
L
M
L
K
K
J
J
H
H
G
F
G
F
E
D
E
D
C
B
A
C
B
A
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Advance Information  
27  
80960RN — Data Sheet  
Table 10.  
540-Lead H-PBGA Package — Signal Name Order (Sheet 1 of 5)  
Signal  
Ball #  
Signal  
Ball #  
Signal  
Ball #  
DCLKIN  
DCLKOUT  
DQ00  
DQ01  
DQ02  
DQ03  
DQ04  
DQ05  
DQ06  
DQ07  
DQ08  
DQ09  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
DQ16  
DQ17  
DQ18  
DQ19  
DQ20  
DQ21  
DQ22  
DQ23  
DQ24  
DQ25  
DQ26  
DQ27  
DQ28  
DQ29  
DQ30  
DQ31  
DQ32  
DQ33  
DQ34  
E21  
A22  
DQ35  
DQ36  
DQ37  
DQ38  
DQ39  
DQ40  
DQ41  
DQ42  
DQ43  
DQ44  
DQ45  
DQ46  
DQ47  
DQ48  
DQ49  
DQ50  
DQ51  
DQ52  
DQ53  
DQ54  
DQ55  
DQ56  
DQ57  
DQ58  
DQ59  
DQ60  
DQ61  
DQ62  
DQ63  
FAIL#  
LCDINIT#  
I_RST#  
ONCE#  
NMI#  
C24  
E24  
N/C  
N/C  
AG1  
AL16  
V5  
U1  
U2  
U3  
T1  
D22  
B25  
P_ACK64#  
P_AD00  
P_AD01  
P_AD02  
P_AD03  
P_AD04  
P_AD05  
P_AD06  
P_AD07  
P_AD08  
P_AD09  
P_AD10  
P_AD11  
P_AD12  
P_AD13  
P_AD14  
P_AD15  
P_AD16  
P_AD17  
P_AD18  
P_AD19  
P_AD20  
P_AD21  
P_AD22  
P_AD23  
P_AD24  
P_AD25  
P_AD26  
P_AD27  
P_AD28  
P_AD29  
P_AD30  
P_AD31  
P_AD32  
P_AD33  
A23  
E25  
C23  
C26  
A24  
A27  
D24  
C27  
A25  
A28  
T3  
C25  
G32  
H31  
T4  
A26  
T5  
E26  
H28  
R1  
R3  
R5  
P1  
P3  
P4  
P5  
N1  
N2  
K3  
K4  
K5  
J1  
B27  
J30  
E27  
J28  
C28  
W28  
Y31  
H32  
H30  
Y28  
J32  
AA30  
AA28  
AB31  
AB28  
AC30  
AC28  
AD31  
AD28  
AE30  
AE28  
AF31  
AF28  
AH32  
E12  
J29  
W29  
Y32  
Y30  
AA32  
AA29  
AB32  
AB30  
AC32  
AC29  
AD32  
AD30  
AE32  
AE29  
AF32  
AF30  
AG32  
E22  
J2  
J3  
J5  
H1  
H5  
G1  
G2  
G3  
E5  
A6  
C6  
D6  
AG2  
AG3  
A21  
A11  
C21  
A9  
N/C  
A16  
B23  
N/C  
G5  
E23  
N/C  
V28  
28  
Advance Information  
Data Sheet — 80960RN  
Table 10.  
540-Lead H-PBGA Package — Signal Name Order (Sheet 2 of 5)  
Signal  
Ball #  
Signal  
Ball #  
Signal  
Ball #  
P_AD34  
P_AD35  
P_AD36  
P_AD37  
P_AD38  
P_AD39  
P_AD40  
P_AD41  
P_AD42  
P_AD43  
P_AD44  
P_AD45  
P_AD46  
P_AD47  
P_AD48  
P_AD49  
P_AD50  
P_AD51  
P_AD52  
P_AD53  
P_AD54  
P_AD55  
P_AD56  
P_AD57  
P_AD58  
P_AD59  
P_AD60  
P_AD61  
P_AD62  
P_AD63  
P_CLK  
AF1  
AF3  
AF4  
AF5  
AE1  
AE2  
AE3  
AE5  
AD1  
AD3  
AD4  
AD5  
AC1  
AC2  
AC3  
AC5  
AB1  
AB3  
AB4  
AB5  
AA1  
AA2  
AA3  
AA5  
Y1  
P_C/BE6#  
P_C/BE7#  
P_FRAME#  
P_DEVSEL#  
P_GNT#  
P_INTA#  
P_INTB#  
P_INTC#  
P_INTD#  
P_IRDY#  
P_LOCK#  
P_PAR  
V3  
V4  
RALE  
RCE0#  
RCE1#  
P_IDSEL  
ROE#  
RWE#  
SA00  
B19  
C19  
E19  
H3  
L5  
L1  
A7  
D20  
A20  
N30  
N29  
N28  
P32  
P31  
P30  
P28  
R32  
R30  
R29  
R28  
T32  
T31  
T30  
L30  
K32  
K30  
V31  
W32  
K31  
K28  
V30  
W30  
M30  
M28  
T28  
U32  
A8  
E8  
D8  
E7  
SA01  
C7  
SA02  
L3  
SA03  
M4  
SA04  
N3  
SA05  
P_PAR64  
P_PERR#  
P_SERR#  
P_STOP#  
P_REQ#  
P_REQ64#  
P_RST#  
P_TRDY#  
RAD00  
W3  
M3  
SA06  
SA07  
M1  
SA08  
M5  
SA09  
E6  
SA10  
U5  
SA11  
B7  
SBA0  
SBA1  
SCAS#  
SCB0  
SCB1  
SCB2  
SCB3  
SCB4  
SCB5  
SCB6  
SCB7  
SCE0#  
SCE1#  
SCKE0  
SCKE1  
SCL  
L2  
A13  
B13  
C13  
E13  
A14  
C14  
D14  
E14  
A15  
C15  
E15  
E17  
A18  
C18  
D18  
E18  
A19  
RAD01  
RAD02  
RAD03  
RAD04  
Y3  
RAD05  
Y4  
RAD06  
Y5  
RAD07  
W1  
RAD08  
W2  
RAD09  
C20  
R2  
RAD10  
P_C/BE0#  
P_C/BE1#  
P_C/BE2#  
P_C/BE3#  
P_C/BE4#  
P_C/BE5#  
RAD11  
N5  
RAD12  
K1  
RAD13  
H4  
RAD14  
SDA  
C8  
W5  
RAD15  
SDQM0  
SDQM1  
L29  
M32  
V1  
RAD16  
Advance Information  
29  
80960RN — Data Sheet  
Table 10.  
540-Lead H-PBGA Package — Signal Name Order (Sheet 3 of 5)  
Signal  
Ball #  
Signal  
Ball #  
Signal  
Ball #  
SDQM2  
SDQM3  
SDQM4  
SDQM5  
SDQM6  
SDQM7  
SRAS#  
U30  
U28  
S_AD28  
S_AD29  
S_AD30  
S_AD31  
S_AD32  
S_AD33  
S_AD34  
S_AD35  
S_AD36  
S_AD37  
S_AD38  
S_AD39  
S_AD40  
S_AD41  
S_AD42  
S_AD43  
S_AD44  
S_AD45  
S_AD46  
S_AD47  
S_AD48  
S_AD49  
S_AD50  
S_AD51  
S_AD52  
S_AD53  
S_AD54  
S_AD55  
S_AD56  
S_AD57  
S_AD58  
S_AD59  
S_AD60  
S_AD61  
S_AD62  
S_AD63  
S_C/BE0#  
AJ25  
AK25  
AM25  
AH26  
AH1  
S_C/BE1#  
S_C/BE2#  
S_C/BE3#  
S_C/BE4#  
S_C/BE5#  
S_C/BE6#  
S_C/BE7#  
S_DEVSEL#  
S_FRAME#  
S_GNT0#  
S_GNT1#  
S_GNT2#  
S_GNT3#  
S_GNT4#  
S_GNT5#  
S_IRDY#  
S_LOCK#  
S_PAR  
AJ19  
AM21  
AH24  
AL12  
AM12  
AH13  
AJ13  
AM20  
AK21  
AM26  
AJ27  
AM27  
AK28  
AM28  
AK29  
AJ21  
AK20  
AK19  
AK12  
AH20  
AL26  
AH27  
AK27  
AH28  
AL28  
AJ29  
AK13  
AK26  
AM19  
AL20  
AH21  
C12  
L28  
M31  
U29  
V32  
AH3  
N32  
AH4  
SWE#  
L32  
AJ2  
S_ACK64#  
S_AD00  
S_AD01  
S_AD02  
S_AD03  
S_AD04  
S_AD05  
S_AD06  
S_AD07  
S_AD08  
S_AD09  
S_AD10  
S_AD11  
S_AD12  
S_AD13  
S_AD14  
S_AD15  
S_AD16  
S_AD17  
S_AD18  
S_AD19  
S_AD20  
S_AD21  
S_AD22  
S_AD23  
S_AD24  
S_AD25  
S_AD26  
S_AD27  
AM13  
AH14  
AK14  
AL14  
AM14  
AH15  
AJ15  
AK15  
AM15  
AJ17  
AK17  
AM17  
AH18  
AK18  
AL18  
AM18  
AH19  
AH22  
AK22  
AL22  
AM22  
AH23  
AJ23  
AK23  
AM23  
AK24  
AL24  
AM24  
AH25  
AJ5  
AK5  
AM5  
AH6  
AK6  
AL6  
AM6  
AH7  
AJ7  
AK7  
AM7  
AH8  
S_PAR64  
S_PERR#  
S_REQ0#  
S_REQ1#  
S_REQ2#  
S_REQ3#  
S_REQ4#  
S_REQ5#  
S_REQ64#  
S_RST#  
AK8  
AL8  
AM8  
AH9  
AJ9  
AK9  
AM9  
AH10  
AK10  
AL10  
AM10  
AH11  
AJ11  
AK11  
AM11  
AH12  
AH17  
S_SERR#  
S_STOP#  
S_TRDY#  
TCK  
TDI  
A12  
TDO  
E11  
TMS  
B11  
TRST#  
C11  
VCC  
A17  
30  
Advance Information  
Data Sheet — 80960RN  
Table 10.  
540-Lead H-PBGA Package — Signal Name Order (Sheet 4 of 5)  
Signal  
Ball #  
Signal  
Ball #  
Signal  
Ball #  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
A29  
B2  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
F2  
F3  
VCC  
VCC  
AL3  
AL4  
AL5  
AL7  
AL9  
AL11  
AL13  
AL15  
AL17  
AL19  
AL21  
AL23  
AL25  
AL27  
AL29  
AL30  
AL31  
AM4  
AM16  
E20  
C22  
B15  
D26  
A1  
B3  
F4  
VCC  
B4  
G30  
G31  
H2  
VCC  
B5  
VCC  
B6  
VCC  
B8  
J31  
VCC  
B10  
B12  
B14  
B16  
B17  
B18  
B20  
B22  
B24  
B26  
B28  
B29  
B30  
B31  
C2  
K2  
VCC  
L31  
VCC  
M2  
VCC  
N31  
P2  
VCC  
VCC  
R31  
T2  
VCC  
VCC  
U31  
V2  
VCC  
VCC  
W31  
Y2  
VCC  
VCC  
AA31  
AB2  
AC31  
AD2  
AE31  
AF2  
AG30  
AG31  
AH2  
AH30  
AH31  
AJ1  
AJ30  
AJ31  
AK2  
AK3  
AK30  
AK31  
AL2  
VCC  
VCC5REF  
VCCPLL1  
VCCPLL2  
VCCPLL3  
VSS  
C3  
C5  
C16  
C29  
C30  
C31  
D2  
VSS  
A2  
VSS  
A3  
VSS  
A4  
VSS  
A5  
VSS  
A30  
A31  
A32  
B1  
D12  
D30  
D31  
D32  
E2  
VSS  
VSS  
VSS  
VSS  
B21  
B32  
C1  
VSS  
E3  
VSS  
E10  
E31  
VSS  
C4  
VSS  
C17  
Advance Information  
31  
80960RN — Data Sheet  
Table 10.  
540-Lead H-PBGA Package — Signal Name Order (Sheet 5 of 5)  
Signal  
Ball #  
Signal  
Ball #  
Signal  
Ball #  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
C32  
D1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
F32  
G4  
VSS  
VSS  
AJ6  
AJ8  
D3  
G28  
G29  
H29  
J4  
VSS  
AJ10  
AJ12  
AJ14  
AJ16  
AJ18  
AJ20  
AJ22  
AJ24  
AJ26  
AJ28  
AJ32  
AK1  
AK4  
AK16  
AK32  
AL1  
D4  
VSS  
D5  
VSS  
D7  
VSS  
D9  
K29  
L4  
VSS  
D11  
D13  
D15  
D16  
D17  
D19  
D21  
D23  
D25  
D27  
D28  
D29  
E1  
VSS  
M29  
N4  
VSS  
VSS  
P29  
R4  
VSS  
VSS  
T29  
VSS  
U4  
VSS  
V29  
W4  
VSS  
VSS  
Y29  
AA4  
AB29  
AC4  
AD29  
AE4  
AF29  
AG4  
AG5  
AG28  
AG29  
AH5  
AH16  
AH29  
AJ3  
AJ4  
VSS  
VSS  
VSS  
AL32  
AM1  
AM2  
AM3  
AM29  
AM30  
AM31  
AM32  
B9  
VSS  
E4  
VSS  
E16  
E28  
E29  
E30  
E32  
F1  
VSS  
VSS  
VSS  
VSS  
VSS  
XINT0#  
XINT1#  
XINT2#  
XINT3#  
XINT4#  
XINT5#  
F5  
C9  
F28  
F29  
F30  
F31  
E9  
A10  
C10  
D10  
32  
Advance Information  
Data Sheet — 80960RN  
Table 11.  
540-Lead H-PBGA Pinout — Ballpad Number Order (Sheet 1 of 5)  
Ball #  
Signal  
Ball #  
Signal  
Ball #  
Signal  
A1  
A2  
VSS  
VSS  
B6  
B7  
VCC  
P_RST#  
VCC  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
C31  
C32  
D1  
TRST#  
TCK  
A3  
VSS  
B8  
RAD02  
RAD05  
RAD09  
VCC  
A4  
VSS  
B9  
XINT0#  
VCC  
A5  
VSS  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
B31  
B32  
C1  
A6  
P_AD29  
P_GNT#  
SCL  
TMS  
A7  
VCC  
VSS  
A8  
RAD01  
VCC  
RAD13  
RCE0#  
P_CLK  
ONCE#  
VCCPLL1  
DQ02  
DQ35  
DQ06  
DQ39  
DQ41  
DQ11  
VCC  
A9  
NMI#  
XINT3#  
I_RST#  
TDI  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
A32  
B1  
VCCPLL2  
VCC  
VCC  
RAD00  
RAD04  
RAD08  
N/C  
VCC  
RALE  
VCC  
VSS  
VCC  
VCC  
RAD12  
RAD16  
RWE#  
LCDINIT#  
DCLKOUT  
DQ01  
DQ03  
DQ05  
DQ07  
DQ40  
DQ42  
VCC  
DQ33  
VCC  
DQ37  
VCC  
VCC  
VCC  
DQ09  
VCC  
VSS  
VSS  
VCC  
D2  
VCC  
VCC  
D3  
VSS  
VCC  
D4  
VSS  
VSS  
D5  
VSS  
VSS  
D6  
P_AD31  
VSS  
C2  
VCC  
D7  
VSS  
C3  
VCC  
D8  
P_INTB#  
VSS  
VSS  
C4  
VSS  
D9  
VSS  
C5  
VCC  
D10  
D11  
D12  
D13  
D14  
D15  
XINT5#  
VSS  
VSS  
C6  
P_AD30  
P_INTD#  
SDA  
B2  
VCC  
C7  
VCC  
B3  
VCC  
C8  
VSS  
B4  
VCC  
C9  
XINT1#  
XINT4#  
RAD06  
VSS  
B5  
VCC  
C10  
Advance Information  
33  
80960RN — Data Sheet  
Table 11.  
540-Lead H-PBGA Pinout — Ballpad Number Order (Sheet 2 of 5)  
Ball #  
Signal  
Ball #  
Signal  
Ball #  
Signal  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
D31  
D32  
E1  
VSS  
VSS  
E21  
E22  
E23  
E24  
E25  
E26  
E27  
E28  
E29  
E30  
E31  
E32  
F1  
DCLKIN  
DQ32  
DQ34  
DQ36  
DQ38  
DQ08  
DQ10  
VSS  
H28  
H29  
H30  
H31  
H32  
J1  
DQ45  
VSS  
RAD14  
VSS  
DQ13  
DQ44  
ROE#  
VSS  
DQ12  
P_AD19  
P_AD20  
P_AD21  
VSS  
DQ00  
VSS  
J2  
J3  
DQ04  
VSS  
VSS  
J4  
VSS  
J5  
P_AD22  
DQ47  
VCCPLL3  
VSS  
VCC  
J28  
J29  
J30  
J31  
J32  
K1  
VSS  
DQ15  
VSS  
VSS  
DQ46  
VSS  
F2  
VCC  
VCC  
VCC  
F3  
VCC  
DQ14  
VCC  
F4  
VCC  
P_C/BE2#  
VCC  
VCC  
F5  
VSS  
K2  
VSS  
F28  
F29  
F30  
F31  
F32  
G1  
VSS  
K3  
P_AD16  
P_AD17  
P_AD18  
SCB5  
E2  
VCC  
VSS  
K4  
E3  
VCC  
VSS  
K5  
E4  
VSS  
VSS  
K28  
K29  
K30  
K31  
K32  
L1  
E5  
P_AD28  
P_REQ#  
P_INTC#  
P_INTA#  
XINT2#  
VCC  
VSS  
VSS  
E6  
P_AD25  
P_AD26  
P_AD27  
VSS  
SCB1  
E7  
G2  
SCB4  
E8  
G3  
SCB0  
E9  
G4  
P_DEVSEL#  
P_TRDY#  
P_IRDY#  
VSS  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
G5  
N/C  
L2  
TDO  
G28  
G29  
G30  
G31  
G32  
H1  
VSS  
L3  
FAIL#  
RAD03  
RAD07  
RAD10  
VSS  
VSS  
L4  
VCC  
L5  
P_FRAME#  
SDQM4  
SDQM0  
SCAS#  
VCC  
VCC  
L28  
L29  
L30  
L31  
L32  
M1  
DQ43  
P_AD23  
VCC  
RAD11  
RAD15  
RCE1#  
VCC5REF  
H2  
H3  
P_IDSEL  
P_C/BE3#  
P_AD24  
SWE#  
H4  
P_SERR#  
VCC  
H5  
M2  
34  
Advance Information  
Data Sheet — 80960RN  
Table 11.  
540-Lead H-PBGA Pinout — Ballpad Number Order (Sheet 3 of 5)  
Ball #  
Signal  
Ball #  
Signal  
Ball #  
Signal  
M3  
M4  
P_PERR#  
P_LOCK#  
P_STOP#  
SCE1#  
VSS  
R32  
T1  
SA07  
P_AD03  
VCC  
W29  
W30  
W31  
W32  
Y1  
DQ16  
SCB7  
M5  
T2  
VCC  
M28  
M29  
M30  
M31  
M32  
N1  
T3  
P_AD04  
P_AD05  
P_AD06  
SCKE0  
VSS  
SCB3  
T4  
P_AD58  
VCC  
SCE0#  
SDQM5  
SDQM1  
P_AD14  
P_AD15  
P_PAR  
VSS  
T5  
Y2  
T28  
T29  
T30  
T31  
T32  
U1  
Y3  
P_AD59  
P_AD60  
P_AD61  
DQ50  
Y4  
SBA1  
Y5  
N2  
SBA0  
Y28  
N3  
SA11  
Y29  
VSS  
N4  
P_AD00  
P_AD01  
P_AD02  
VSS  
Y30  
DQ18  
N5  
P_C/BE1#  
SA02  
U2  
Y31  
DQ49  
N28  
N29  
N30  
N31  
N32  
P1  
U3  
Y32  
DQ17  
SA01  
U4  
AA1  
AA2  
AA3  
AA4  
AA5  
AA28  
AA29  
AA30  
AA31  
AA32  
AB1  
AB2  
AB3  
AB4  
AB5  
AB28  
AB29  
AB30  
AB31  
AB32  
AC1  
AC2  
AC3  
P_AD54  
P_AD55  
P_AD56  
VSS  
SA00  
U5  
P_REQ64#  
SDQM3  
SDQM6  
SDQM2  
VCC  
VCC  
U28  
U29  
U30  
U31  
U32  
V1  
SRAS#  
P_AD10  
VCC  
P_AD57  
DQ52  
P2  
P3  
P_AD11  
P_AD12  
P_AD13  
SA06  
SCKE1  
P_C/BE5#  
VCC  
DQ20  
P4  
DQ51  
P5  
V2  
VCC  
P28  
P29  
P30  
P31  
P32  
R1  
V3  
P_C/BE6#  
P_C/BE7#  
P_ACK64#  
N/C  
DQ19  
VSS  
V4  
P_AD50  
VCC  
SA05  
V5  
SA04  
V28  
V29  
V30  
V31  
V32  
W1  
W2  
W3  
W4  
W5  
W28  
P_AD51  
P_AD52  
P_AD53  
DQ54  
SA03  
VSS  
P_AD07  
P_C/BE0#  
P_AD08  
VSS  
SCB6  
R2  
SCB2  
R3  
SDQM7  
P_AD62  
P_AD63  
P_PAR64  
VSS  
VSS  
R4  
DQ22  
R5  
P_AD09  
SA10  
DQ53  
R28  
R29  
R30  
R31  
DQ21  
SA09  
P_AD46  
P_AD47  
P_AD48  
SA08  
P_C/BE4#  
DQ48  
VCC  
Advance Information  
35  
80960RN — Data Sheet  
Table 11.  
540-Lead H-PBGA Pinout — Ballpad Number Order (Sheet 4 of 5)  
Ball #  
Signal  
Ball #  
Signal  
Ball #  
Signal  
AC4  
AC5  
VSS  
P_AD49  
DQ56  
DQ24  
DQ55  
VCC  
AG1  
AG2  
N/C  
P_AD32  
P_AD33  
VSS  
AH28  
AH29  
AH30  
AH31  
AH32  
AJ1  
S_REQ3#  
VSS  
AC28  
AC29  
AC30  
AC31  
AC32  
AD1  
AG3  
VCC  
AG4  
VCC  
AG5  
VSS  
DQ63  
VCC  
AG28  
AG29  
AG30  
AG31  
AG32  
AH1  
VSS  
DQ23  
P_AD42  
VCC  
VSS  
AJ2  
S_AD35  
VSS  
VCC  
AJ3  
AD2  
VCC  
AJ4  
VSS  
AD3  
P_AD43  
P_AD44  
P_AD45  
DQ58  
VSS  
DQ31  
AJ5  
S_AD36  
VSS  
AD4  
S_AD32  
VCC  
AJ6  
AD5  
AH2  
AJ7  
S_AD44  
VSS  
AD28  
AD29  
AD30  
AD31  
AD32  
AE1  
AH3  
S_AD33  
S_AD34  
VSS  
AJ8  
AH4  
AJ9  
S_AD52  
VSS  
DQ26  
DQ57  
DQ25  
P_AD38  
P_AD39  
P_AD40  
VSS  
AH5  
AJ10  
AJ11  
AJ12  
AJ13  
AJ14  
AJ15  
AJ16  
AJ17  
AJ18  
AJ19  
AJ20  
AJ21  
AJ22  
AJ23  
AJ24  
AJ25  
AJ26  
AJ27  
AJ28  
AJ29  
AJ30  
AJ31  
AJ32  
AH6  
S_AD39  
S_AD43  
S_AD47  
S_AD51  
S_AD55  
S_AD59  
S_AD63  
S_C/BE6#  
S_AD00  
S_AD04  
VSS  
S_AD60  
VSS  
AH7  
AH8  
S_C/BE7#  
VSS  
AE2  
AH9  
AE3  
AH10  
AH11  
AH12  
AH13  
AH14  
AH15  
AH16  
AH17  
AH18  
AH19  
AH20  
AH21  
AH22  
AH23  
AH24  
AH25  
AH26  
AH27  
S_AD05  
VSS  
AE4  
AE5  
P_AD41  
DQ60  
DQ28  
DQ59  
VCC  
S_AD08  
VSS  
AE28  
AE29  
AE30  
AE31  
AE32  
AF1  
S_C/BE1#  
VSS  
S_IRDY#  
VSS  
DQ27  
P_AD34  
VCC  
S_C/BE0#  
S_AD11  
S_AD15  
S_PERR#  
S_TRDY#  
S_AD16  
S_AD20  
S_C/BE3#  
S_AD27  
S_AD31  
S_REQ1#  
S_AD21  
VSS  
AF2  
AF3  
P_AD35  
P_AD36  
P_AD37  
DQ62  
VSS  
S_AD28  
VSS  
AF4  
AF5  
S_GNT1#  
VSS  
AF28  
AF29  
AF30  
AF31  
AF32  
S_REQ5#  
VCC  
DQ30  
DQ61  
DQ29  
VCC  
VSS  
36  
Advance Information  
Data Sheet — 80960RN  
Table 11.  
540-Lead H-PBGA Pinout — Ballpad Number Order (Sheet 5 of 5)  
Ball #  
Signal  
Ball #  
Signal  
Ball #  
Signal  
AK1  
AK2  
VSS  
VCC  
AL1  
AL2  
VSS  
VCC  
AM1  
AM2  
VSS  
VSS  
AK3  
VCC  
AL3  
VCC  
AM3  
VSS  
AK4  
VSS  
AL4  
VCC  
AM4  
VCC  
AK5  
S_AD37  
S_AD40  
S_AD45  
S_AD48  
S_AD53  
S_AD56  
S_AD61  
S_PAR64  
S_REQ64#  
S_AD01  
S_AD06  
VSS  
AL5  
VCC  
AM5  
S_AD38  
S_AD42  
S_AD46  
S_AD50  
S_AD54  
S_AD58  
S_AD62  
S_C/BE5#  
S_ACK64#  
S_AD03  
S_AD07  
VCC  
AK6  
AL6  
S_AD41  
VCC  
AM6  
AK7  
AL7  
AM7  
AK8  
AL8  
S_AD49  
VCC  
AM8  
AK9  
AL9  
AM9  
AK10  
AK11  
AK12  
AK13  
AK14  
AK15  
AK16  
AK17  
AK18  
AK19  
AK20  
AK21  
AK22  
AK23  
AK24  
AK25  
AK26  
AK27  
AK28  
AK29  
AK30  
AK31  
AK32  
AL10  
AL11  
AL12  
AL13  
AL14  
AL15  
AL16  
AL17  
AL18  
AL19  
AL20  
AL21  
AL22  
AL23  
AL24  
AL25  
AL26  
AL27  
AL28  
AL29  
AL30  
AL31  
AL32  
S_AD57  
VCC  
AM10  
AM11  
AM12  
AM13  
AM14  
AM15  
AM16  
AM17  
AM18  
AM19  
AM20  
AM21  
AM22  
AM23  
AM24  
AM25  
AM26  
AM27  
AM28  
AM29  
AM30  
AM31  
AM32  
S_C/BE4#  
VCC  
S_AD02  
VCC  
N/C  
S_AD09  
S_AD12  
S_PAR  
S_LOCK#  
S_FRAME#  
S_AD17  
S_AD22  
S_AD24  
S_AD29  
S_RST#  
S_REQ2#  
S_GNT3#  
S_GNT5#  
VCC  
VCC  
S_AD10  
S_AD14  
S_SERR#  
S_DEVSEL#  
S_C/BE2#  
S_AD19  
S_AD23  
S_AD26  
S_AD30  
S_GNT0#  
S_GNT2#  
S_GNT4#  
VSS  
S_AD13  
VCC  
S_STOP#  
VCC  
S_AD18  
VCC  
S_AD25  
VCC  
S_REQ0#  
VCC  
S_REQ4#  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
Advance Information  
37  
80960RN — Data Sheet  
3.2  
Package Thermal Specifications  
The device is specified for operation when T (case temperature) is within the range of 0°C to  
C
85°C, depending on operating conditions. Refer to the “Thermal Data for the 540-lead PBGA  
package” application note for more information regarding maximum case temperatures on the  
540-lead PBGA package. Case temperature may be measured in any environment to determine  
whether the processor is within specified operating range. Measure the case temperature at the  
center of the top surface, opposite the ballpad.  
3.2.1  
Thermal Specifications  
This section defines the terms used for thermal analysis.  
3.2.1.1  
Ambient Temperature  
Ambient temperature, T , is the temperature of the ambient air surrounding the package. In a  
A
system environment, ambient temperature is the temperature of the air upstream from the package.  
3.2.1.2  
Case Temperature  
To ensure functionality and reliability, the device is specified for proper operation when the case  
temperature, T , is within the specified range as indicated in Table 12 “540-Lead H-PBGA  
C
Package Thermal Characteristics” on page 39.  
When measuring case temperature, attention to detail is required to ensure accuracy. If a  
thermocouple is used, calibrate it before taking measurements. Errors may result when the  
measured surface temperature is affected by the surrounding ambient air temperature. Such errors  
may be due to a poor thermal contact between thermocouple junction and the surface, heat loss by  
radiation, or conduction through thermocouple leads.  
To minimize measurement errors:  
Use a 35 gauge K-type thermocouple or equivalent.  
Attach the thermocouple bead or junction to the package top surface at a location  
corresponding to the center of the die (Figure 5A). The center of the die gives a more accurate  
measurement and less variation as the boundary condition changes.  
Attach the thermocouple bead at a 0° angle with respect to the package as shown in Figure 5A,  
when no heatsink is attached.  
When a passive heat sink is attached, a groove is made on the bottom surface of the heatsink  
and the thermocouple is attached at a 0° angle, as shown in Figure 5B.  
Figure 5.  
Thermocouple Attachment - A) No Heatsink / B) With Heatsink  
80960RN  
Bottom of  
Processor  
Heatsink  
Groove for  
thermocouple  
Thermocouple  
A) No Heatsink  
B) With Heatsink  
38  
Advance Information  
 
Data Sheet — 80960RN  
3.2.1.3  
3.2.2  
Thermal Resistance  
The thermal resistance value for the case-to-ambient, θ , is used as a measure of the cooling  
solution’s thermal performance.  
CA  
Thermal Analysis  
Table 12 lists the case-to-ambient thermal resistances of the 80960RN for different air flow rates  
with and without a heat sink.  
To calculate T , the maximum ambient temperature to conform to a particular case temperature:  
A
T = T - P (θ )  
CA  
A
C
Compute P by multiplying I and V . Values for θ and θ are given in Table 12.  
CC  
CC  
JC  
CA  
Junction temperature (T ) is commonly used in reliability calculations. T can be calculated from  
J
J
θ
(thermal resistance from junction to case) using the following equation:  
JC  
T = T + P (θ )  
JC  
J
C
Similarly, when T is known, the corresponding case temperature (T ) can be calculated as  
A
C
follows:  
T = T + P (θ )  
CA  
C
A
The θ (Junction to Ambient) for this package is currently estimated at 13.10° C/Watt with no  
JA  
airflow and no heatsink. The θ (Junction to Ambient) for this package is currently estimated at  
JA  
8.30° C/Watt with no airflow and a passive heatsink:  
θJA = θJC + θ  
CA  
Table 12.  
540-Lead H-PBGA Package Thermal Characteristics  
Thermal Resistance — °C/Watt  
Airflow — ft./min (m/sec)  
Parameter  
0
50  
100  
200  
300  
400  
600  
800  
(0)  
(0.25)  
(0.50)  
(1.01)  
(1.52)  
(2.03)  
(3.04)  
(4.06)  
θJC (Junction-to-Case)  
0.44  
0.44  
0.44  
0.44  
9.26  
0.44  
8.26  
0.44  
7.61  
0.44  
6.57  
0.44  
5.78  
θCA (Case-to-Ambient)  
Without Heatsink  
12.66  
11.61  
10.66  
θCA (Case-to-Ambient)  
With Passive 0.25 in.  
Heatsink2,3  
9.0  
8.2  
7.5  
6.1  
5.1  
4.7  
3.8  
3.2  
θCA (Case-to-Ambient)  
With Passive 0.35 in.  
Heatsink2  
7.86  
6.96  
6.06  
4.56  
3.66  
3.16  
2.56  
2.16  
θJA  
θCA  
θJC  
Advance Information  
39  
 
80960RN — Data Sheet  
3.3  
Heat Sink Information  
Under normal circumstances, a heat sink is not required for the 80960RN.  
Table 13 provides a list of suggested sources for heat sinks. This is neither an endorsement nor a  
warranty of the performance of any of the listed products and/or companies.  
Table 13.  
Heat Sink Vendors and Contacts  
Heatsink Part #  
Factory  
Company  
Phone #  
Fax #  
Representative  
Passive  
AAVID Thermalloy, Inc  
80 Commercial Street  
Concord, NH 03301 USA  
Attention: Sales (603) 224-9988 (603) 223-1790 21933B without thermal  
grease (uses pins)  
21935B without thermal  
grease (uses pins)  
info@aavid.com  
http://www.aavidthermalloy.com/atp/atp.html  
3.4  
Vendor Information  
Table 14 through Table 18 provide vendor details for socket-headers, burn-in sockets, shipping  
®
trays, logic analyzer interposers and JTAG emulators for the Intel 80960RN. This is neither an  
endorsement nor a warranty of the performance of any of the listed products and/or companies.  
3.4.1  
Socket-Header Vendor  
Table 14.  
Socket-Header Vendor  
Part #  
Factory  
Representative  
Company  
Phone/Fax #  
BGA 540 Pin Header  
BGA 540 Pin Socket Carrier  
Adapter Technologies, Inc.  
214-218 South 4th St.  
Perkasie, PA 18944  
John Miller  
215-258-5750/ BGAH-540-0-01-3201-0277-1 BGA-540-0-02-3201-0275P-130  
215-258-5760  
3.4.2  
Burn-in Socket Vendor  
Table 15.  
Burn-in Socket Vendor  
Company  
Factory Representative  
W. Ray Johnson  
Phone #  
Burn-in Socket Part #  
Texas Instruments  
111 Forbes Blvd.  
508-236-5375  
ULGA540-005  
Mansfield, MA 02048  
40  
Advance Information  
 
 
Data Sheet — 80960RN  
3.4.3  
Shipping Tray Vendor  
Table 16.  
Shipping Tray Vendor  
Company  
3M  
Factory Representative  
Phone #  
Shipping Tray Part #  
Ron Goth  
602-465-5381  
7-0000-21001-184-167  
3.4.4  
Logic Analyzer Interposer Vendor  
Table 17.  
Logic Analyzer Interposer Vendor  
Company  
Factory Representative  
Phone/Fax #  
Part #  
Packard-Hughes Interconnect  
17150 Von Karman Ave  
Irvine, CA 92614-0968  
Karen May  
949-660-5773  
949-660-5825  
1126898  
3.4.5  
JTAG Emulator Vendor  
3.5  
Table 18.  
JTAG Emulator Vendor  
Phone/  
Fax #  
Company  
Factory Representative  
Part #  
281-494-4500/  
281-494-5310  
Spectrum Digital, Inc.  
Jeff Bond  
701500  
Advance Information  
41  
80960RN — Data Sheet  
4.0  
Electrical Specifications  
4.1  
Absolute Maximum Ratings  
Parameter  
Maximum Rating  
–55°C to + 125°C  
0°C to + 85°C  
NOTICE: This data sheet contains information on  
products in the design phase of development. Do  
not finalize a design with this information. Revised  
information will be published when the product  
becomes available. The specifications are subject  
to change without notice. Contact your local Intel  
representative before finalizing a design.  
Storage Temperature  
Case Temperature Under Bias  
Supply Voltage wrt. VSS  
–0.5 V to + 4.6 V  
Supply Voltage wrt. VSS on VCC5 –0.5 V to + 6.5 V  
Voltage on Any Ball wrt. VSS  
–0.5 V to VCC + 0.5 V  
WARNING: Stressing the device beyond the  
“Absolute Maximum Ratings” may cause  
permanent damage. These are stress ratings only.  
Operation beyond the “Operating Conditions” is  
not recommended and extended exposure beyond  
the “Operating Conditions” may affect device  
reliability.  
Table 19.  
Operating Conditions  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
V
V
F
Supply Voltage  
3.0  
3.6  
V
V
CC  
Input Protection Bias  
V
V
+2.5  
CC5  
CC  
CC  
Input Clock Frequency  
16  
33.33  
85  
MHz  
P_CLK  
Case Temperature Under Bias  
GC (540L PBGA)  
TC  
0
°C  
42  
Advance Information  
Data Sheet — 80960RN  
4.2  
VCC5REF Pin Requirements (VDIFF)  
In mixed voltage systems that drive 80960RN processor inputs in excess of 3.3 V, the V  
pin  
CC5REF  
must be connected to the system’s 5 V supply. To limit current flow into the V  
pin, there is  
CC5REF  
a limit to the voltage differential between the V  
pin and the other V pins. The voltage  
CC5REF  
CC  
differential between the V  
pin and its 3.3 V V pins should never exceed 2.25 V. This  
CC5REF  
CC  
limit applies to power-up, power-down, and steady-state operation. Table 20 outlines this  
requirement.  
If the voltage difference requirements cannot be met due to system design limitations, an alternate  
solution may be employed. As shown in Figure 6, a minimum of 100 series resistor may be used  
to limit the current into the V  
pin. This resistor ensures that current drawn by the V  
CC5REF  
CC5REF  
pin does not exceed the maximum rating for this pin.  
Figure 6.  
V
Current-Limiting Resistor  
CC5REF  
VCC5REF Pin  
+5 V (±0.25 V)  
100 Ω  
(±5%, 0.5 W)  
This resistor is not necessary in systems that can guarantee the V  
specification.  
DIFF  
In 3.3 V-only systems (only applies to 80960RN C-x steppings) and systems that drive pins from  
3.3 V logic, connect the V pin directly to the 3.3 V V plane.  
CC5REF  
CC  
Table 20.  
V
Specification for Dual Power Supply Requirements (3.3 V, 5 V)  
DIFF  
Symbol  
Parameter  
VCC5-VCC Difference  
Min  
Max  
Units  
Notes  
(1)  
VDIFF  
2.25  
V
NOTE:  
1. VCC5REF input should not exceed VCC by more than 2.25 V during power-up and power-down, or during  
steady-state operation.  
4.3  
VCCPLL Pin Requirements  
To reduce clock skew on the i960 Jx processor, the V  
pin for the Phase Lock Loop (PLL)  
CCPLL  
circuit is isolated on the pinout. The lowpass filter, as shown in Figure 7, reduces noise induced  
clock jitter and its effects on timing relationships in system designs. The trace lengths between the  
4.7 µF capacitor, the 0.01 µF capacitor, and V  
must be as short as possible.  
CCPLL  
Figure 7.  
V
Lowpass Filter  
CCPLL  
10, 5%, 1/8W  
VCCPLL  
(On i960® Jx processors)  
+
VCC  
(Board Plane)  
4.7µF  
0.01µF  
Advance Information  
43  
 
 
 
80960RN — Data Sheet  
4.4  
Targeted DC Specifications  
Table 21.  
DC Characteristics  
Symbol  
Parameter  
Min  
-0.5  
2
Max  
0.8  
Units  
Notes  
VIL5  
Input Low Voltage 5 Volt PCI  
V
V
V
V
V
(1,4)  
VIH5  
Input High Voltage 5 Volt PCI  
Input Low Voltage 3.3 Volt PCI  
Input High Voltage 3.3 Volt PCI  
Output Low Voltage Processor signals  
VCC + 0.5  
0.3VCC  
VCC + 0.5  
0.4  
(1,4)  
VIL3.3  
VIH3.3  
VOL1  
-0.5  
0.5VCC  
(1,4,5)  
(1,4,5)  
IOL = 6 mA (3)  
2.4  
VCC - 0.5  
I
OH = -2 mA (3)  
VOH1  
VOL2  
VOH2  
Output High Voltage Processor signals  
V
V
V
IOH = -200 µA (3, 6)  
Output Low Voltage 5 V PCI / Flash  
signals  
0.4  
I
OL = 6 mA (1)  
OH = -2 mA (1)  
Output High Voltage 5 V PCI / Flash  
signals  
2.4  
I
VOL3  
VOH3  
VOL4  
VOH4  
CIN  
Output Low Voltage SDRAM signals  
Output High Voltage SDRAM signals  
Output Low Voltage 3.3 V PCI signals  
Output Low Voltage 3.3 V PCI signals  
Input Capacitance - PBGA  
-2.0  
2.4  
0.4  
V
V
IOL = 3 mA (4)  
VCC + 2.0  
0.1VCC  
IOH = -2 mA (4)  
IOL = 1500 µA (1,5)  
IOH = -500 µA (1,5)  
FS_CLK = TF Min (1, 2)  
FS_CLK = TF Min (1, 2)  
FS_CLK = TF Min (1, 2)  
(1,2)  
V
0.9VCC  
V
10  
10  
10  
8
pF  
pF  
pF  
pF  
nH  
COUT  
CCLK  
CIDSEL  
LPIN  
I/O or Output Capacitance - PBGA  
S_CLK Capacitance - PBGA  
IDSEL Ball Capacitance  
5
Ball Inductance  
25  
(1,2)  
NOTES:  
1. As required by the PCI Local Bus Specification, Revision 2.2.  
2. Not tested.  
3. Processor signals include RALE, RCE[1:0]#, ROE#, RWE#, XINT[5:4]#, NMI#, FAIL#, TDI, TDO, TMS,  
TRST#, SDA, and SCL.  
4. SDRAM signals include SA[11:0], SBA[1:0], SCAS#, SCE[1:0]#, SCKE[1:0], SDQM[7:0], SRAS#,  
SWE#, DCLKIN, DCLKOUT, DQ[63:0], and SCB[7:0].  
5. 3.3 V PCI signalling only supported on C-x steppings on the 80960RN processor  
6. Guaranteed by characterization  
44  
Advance Information  
Data Sheet — 80960RN  
Table 22.  
I
Characteristics  
CC  
Symbol  
Parameter  
Typ  
Max  
Units  
Notes  
Input Leakage Current for each signal except  
TMS, TRST#, TDI, ONCE#, RAD[8:0] and  
LCDINIT#.  
ILI1  
± 5  
µA  
0 VIN VCC  
Input Leakage Current for TMS, TRST#, TDI,  
ONCE#, RAD[8:0] and LCDINIT#.  
ILI2  
ILO  
-140  
-250  
± 5  
µA  
µA  
VIN = 0.45 V (1)  
Output Leakage Current  
0.4 VOUT VCC  
ICC Active  
(Power  
Supply)  
Power Supply Current  
1.65  
A
A
A
(1,2)  
ICC Active  
(Thermal)  
Thermal Current  
1.2  
(1,3)  
ICC Active  
(Power  
Modes)  
Reset Mode  
ONCE Mode  
0.95  
0.02  
(4)  
(4)  
NOTES:  
1. Measured with device operating and outputs loaded to the test condition in Figure 13.  
2. ICC Active (Power Supply) value is provided for selecting your system’s power supply. It is measured using  
one of the worst case instruction mixes with VCC = 3.6 V and ambient temperature = 55°C.  
3. ICC Active (Thermal) value is provided for your system’s thermal management. Typical ICC is measured  
with VCC = 3.3 V and ambient temperature = 55°C.  
4. ICC Test (Power modes) refers to the ICC values that are tested when the device is in Reset mode or ONCE  
mode with VCC = 3.6 V and ambient temperature = 55°C.  
4.5  
Targeted AC Specifications  
4.5.1  
Clock Signal Timings  
Table 23.  
Input Clock Timings  
Symbol  
Parameter  
P_CLK Frequency  
Min  
Max  
Units  
Notes  
TF  
16  
30  
33.33  
62.5  
MHz  
ns  
TC  
P_CLK Period  
(1)  
TCS  
P_CLK Period Stability  
P_CLK High Time  
P_CLK Low Time  
P_CLK Rise Time  
P_CLK Fall Time  
±250  
ps  
Adjacent Clocks (2)  
Measured at 1.5 V (2)  
Measured at 1.5 V (2)  
0.4 V to 2.4 V (2)  
12  
12  
1
ns  
TCH  
TCL  
ns  
TCR  
4
4
V/ns  
V/ns  
ps  
TCF  
1
2.4 V to 0.4 V (2)  
TDICS  
TDICH  
TDICL  
NOTES:  
DCLKIN Period Stability  
DCLKIN High Time  
DCLKIN Low Time  
±250  
Adjacent Clocks (2)  
Measured at 1.5 V (2)  
Measured at 1.5 V (2)  
5
5
ns  
ns  
1. See Figure 8 “P_CLK, TCK, DCLKIN, DCLKOUT Waveform” on page 51.  
2. Not tested.  
Advance Information  
45  
 
80960RN — Data Sheet  
Table 24.  
SDRAM Output Clock Timings  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
TDOF  
DCLKOUT Frequency  
DCLKOUT Period  
2TF  
MHz  
ns  
TDOC  
TDOCS  
TC / 2  
(1)  
DCLKOUT Period Stability  
DCLKOUT High Time  
DCLKOUT Low Time  
±250  
ps  
Adjacent Clocks  
Measured at 1.5 V  
Measured at 1.5 V  
5
5
ns  
TDOCH  
TDOCL  
ns  
NOTE:  
1. See Figure 8 “P_CLK, TCK, DCLKIN, DCLKOUT Waveform” on page 51.  
46  
Advance Information  
Data Sheet — 80960RN  
4.5.2  
PCI Interface Signal Timings  
Table 25.  
PCI Signal Timings  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
(1,2)  
Output Valid Delay from P_CLK - PCI Signals Except  
P_REQ#, P_INT[A:D]#, and S_GNT[5:0]#  
2
11  
ns  
TOV1  
TOV2  
TOV3  
Output Valid Delay from P_CLK - P_INT[A:D]#  
Output Valid Delay from P_CLK - S_REQ64#  
0
0
2
25  
ns  
ns  
ns  
(1,2,6)  
(1,2,8)  
Output Valid Delay from P_CLK - P_REQ# and  
S_GNT[5:0]#  
12  
28  
TOV4  
TOF  
(1,2)  
Output Float Delay from P_CLK  
ns  
ns  
(1,4,5,6)  
(1,3)  
Input Setup to P_CLK - PCI Signals Except P_GNT# and  
S_REQ[5:0]#  
7
TIS1  
TIS2  
Input Setup to P_CLK - P_GNT#  
Input Setup to P_CLK - S_REQ[5:0]#  
Input Hold from P_CLK - PCI Signals  
Input Setup to P_CLK - S_INT[A:D]#  
Input Hold to P_CLK - S_INT[A:D]#  
Input Setup to P_CLK - P_RST#  
Input Hold to P_CLK - P_RST#  
10  
12  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(1,3)  
TIS3  
(1,3)  
TIH1  
(1,3)  
TIS4  
25  
2
(1,3,7,9)  
(1,3,7,9)  
(1,3,7)  
(1,3,7)  
(1,3)  
TIH2  
TIS5  
6
TIH3  
2
TIS6  
Input Setup to P_RST# - P_REQ64#  
Input Hold to P_RST# - P_REQ64#  
10Tc  
0
TIH4  
50  
(1,3)  
NOTES:  
1. The PCI Local Bus Specification, Revision 2.2 requires that all of the PCI signal AC timings use 0 pF for  
minimum timings and 50 pF for maximum timings.  
2. See Figure 9 “TOV Output Delay Waveform” on page 51.  
3. See Figure 11 “TIS and TIH Input Setup and Hold Waveform” on page 52.  
4. A float condition occurs when the output current becomes less than ILO. Float delay is not tested. See  
Figure 10 “TOF Output Float Waveform” on page 52.  
5. See Figure 10 “TOF Output Float Waveform” on page 52.  
6. Outputs precharged to VCC5  
.
7. P_RST#, S_INT[A:D]# may be synchronous or asynchronous. Meeting setup and hold time guarantees  
recognition at a particular clock edge.  
8. S_REQ64# is asserted asynchronously with respect to P_RST#. S_REQ64# is deasserted one P_CLK  
after the deassertion of S_RST#.  
9. S_INT[A:D]# must be asserted for a minimum of two P_CLK periods to guarantee recognition.  
Advance Information  
47  
80960RN — Data Sheet  
4.5.3  
Intel® 80960JN Core Interface Timings  
®
Table 26.  
Intel 80960JN Core Signal Timings  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
(1,5)  
TOV5  
TIS7  
Output Valid Delay from P_CLK - FAIL#  
Input Setup to P_CLK - NMI#, XINT[5:4]#  
Input Hold from P_CLK - NMI#, XINT[5:4]#  
2
25  
2
TBD  
ns  
ns  
ns  
(2,3)  
(2,3)  
TIH5  
NOTES:  
1. See Figure 9 “TOV Output Delay Waveform” on page 51.  
2. See Figure 11 “TIS and TIH Input Setup and Hold Waveform” on page 52.  
3. Setup and hold times must be met for proper processor operation. NMI# and XINT[5:4]# may be  
synchronous or asynchronous. Meeting setup and hold time guarantees recognition at a particular clock  
edge. For asynchronous operation, NMI# and XINT[5:4]# must be asserted for a minimum of two P_CLK  
periods to guarantee recognition.  
4. Core signals include: XINT[5:4]#, NMI#, FAIL# .  
5. The processor asserts FAIL# during built-in self-test. If self-test passes, FAIL# is deasserted. The  
processor asserts FAIL# during the bus confidence test. If the test passes, FAIL# is deasserted and user  
program execution begins.  
4.5.4  
SDRAM/Flash Interface Signal Timings  
Table 27.  
SDRAM / Flash Signal Timings  
Sym  
Parameter  
Min  
Max  
Units Notes  
Output Valid Delay from DCLKIN - SA[11:0], SBA[1:0], SCAS#,  
SRAS#, and SWE#.  
1.62  
6.60  
ns  
TOV6  
(1,5)  
TOV7  
TOV8  
TOV9  
Output Valid Delay from DCLKIN - DQ[63:0], and SCB[7:0].  
Output Valid Delay from DCLKIN - SDQM[7:0]  
Output Valid Delay from DCLKIN - SCKE[1:0]  
2.03  
2.57  
1.74  
1.65  
3.00  
1.5  
7.14  
6.85  
5.50  
5.25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(1,5)  
(1,5)  
(1,5)  
(1,5)  
(2)  
TOV10 Output Valid Delay from DCLKIN - SCE[1:0]#  
TIS8  
TIH6  
Input Setup to DCLKIN - DQ[63:0], and SCB[7:0]  
Input Hold from DCLKIN - DQ[63:0], and SCB[7:0]  
(2)  
Output Valid Delay from DCLKIN - RAD[16:0], RALE, RCE[1:0]#,  
ROE#, and RWE#.  
1.4  
11.0  
TOV11  
(1,5)  
TIS9  
Input Setup to DCLKIN - RAD[16:0]  
Input Hold from DCLKIN - RAD[16:0]  
5
ns  
ns  
(2)  
(2)  
TIH7  
1.4  
NOTES:  
1. See Figure 9 “TOV Output Delay Waveform” on page 51.  
2. See Figure 11 “TIS and TIH Input Setup and Hold Waveform” on page 52.  
3. SDRAM signals include SA[11:0], SBA[1:0], SCAS#, SCE[1:0]#, SCKE[1:0], SDQM[7:0], SRAS#,  
SWE#, DQ[63:0], and SCB[7:0]. Timings are for 3.3 V signalling environment.  
4. Flash signals include RAD[16:0], RALE, RCE[1:0]#, ROE#, and RWE#. Timings are for 5V signalling  
environment.  
5. These output valid times are specified with a 0 pF loading.  
48  
Advance Information  
Data Sheet — 80960RN  
4.5.5  
Boundary Scan Test Signal Timings  
Table 28.  
Boundary Scan Test Signal Timings  
Symbol  
Parameter  
TCK Frequency  
Min  
Max  
Units  
Notes  
TBSF  
0
0.5TF MHz  
TBSCH  
TBSCL  
TBSCR  
TBSCF  
TBSIS1  
TCK High Time  
15  
15  
ns  
ns  
Measured at 1.5 V (1)  
TCK Low Time  
Measured at 1.5 V (1)  
0.8 V to 2.0 V (1)  
2.0 V to 0.8 V (1)  
(4)  
TCK Rise Time  
5
5
ns  
ns  
ns  
TCK Fall Time  
Input Setup to TCK TDI, TMS  
4
6
Input Hold from TCK TDI,  
TMS  
TBSIH1  
ns  
(4)  
TBSIS2  
TBSIH2  
TBSOV1  
TOF1  
Input Setup to TCK TRST#  
Input Hold from TCK TRST#  
TDO Valid Delay  
25  
3
ns  
ns  
ns  
ns  
(4)  
(4)  
3
30  
30  
Relative to falling edge of TCK (2,3)  
Relative to falling edge of TCK (2,5)  
TDO Float Delay  
3
All Outputs (Non-Test) Valid  
Delay  
TOV12  
TOF2  
TIS10  
3
3
4
6
30  
30  
ns  
ns  
ns  
ns  
Relative to falling edge of TCK (2,3)  
All Outputs (Non-Test) Float  
Delay  
Relative to falling edge of TCK (2,5)  
Input Setup to TCK — All Inputs  
(Non-Test)  
(4)  
(4)  
Input Hold from TCK — All Inputs  
(Non-Test)  
TIH8  
NOTES:  
1. Not tested.  
2. Outputs precharged to VCC5  
.
3. See Figure 9 “TOV Output Delay Waveform” on page 51.  
4. See Figure 11 “TIS and TIH Input Setup and Hold Waveform” on page 52.  
5. A float condition occurs when the output current becomes less than ILO. Float delay is not tested. See  
Figure 10 “TOF Output Float Waveform” on page 52.  
Advance Information  
49  
80960RN — Data Sheet  
4.5.6  
I2C Interface Signal Timings  
2
Table 29.  
I C Interface Signal Timings  
Std. Mode  
Fast Mode  
Symbol  
Parameter  
Units Notes  
Min  
Max  
Min  
Max  
400 KHz  
µs  
FSCL  
TBUF  
SCL Clock Frequency  
0
100  
0
Bus Free Time Between STOP and START  
Condition  
4.7  
1.3  
(1)  
THDSTA  
TLOW  
Hold Time (repeated) START Condition  
SCL Clock Low Time  
4
4.7  
4
0.6  
1.3  
0.6  
0.6  
0
µs  
µs  
µs  
µs  
µs  
ns  
(1,3)  
(1,2)  
(1,2)  
(1)  
THIGH  
TSUSTA  
THDDAT  
TSUDAT  
TSR  
SCL Clock High Time  
Setup Time for a Repeated START Condition  
Data Hold Time  
4.7  
0
0.9  
(1)  
Data Setup Time  
250  
100  
(1)  
SCL and SDA Rise Time  
SCL and SDA Fall Time  
1000 20+0.1Cb  
300 ns  
300 ns  
µs  
(1,4)  
(1,4)  
(1)  
TSF  
300  
20+0.1Cb  
0.6  
TSUSTO  
NOTES:  
Setup Time for STOP Condition  
4
1. See Figure 12 “I2C Interface Signal Timings” on page 52.  
2. Not tested.  
3. After this period, the first clock pulse is generated.  
4. Cb = the total capacitance of one bus line, in pF.  
50  
Advance Information  
Data Sheet — 80960RN  
4.6  
AC Timing Waveforms  
Figure 8.  
P_CLK, TCK, DCLKIN, DCLKOUT Waveform  
T
T
CR  
CF  
2.0V  
1.5V  
0.8V  
T
CH  
T
CL  
T
C
Figure 9.  
T
Output Delay Waveform  
OV  
1.5V  
1.5V  
P_CLK / DCLKIN  
TOVX Min  
TOVX Max  
1.5V  
1.5V  
Valid  
Advance Information  
51  
80960RN — Data Sheet  
Figure 10.  
Figure 11.  
Figure 12.  
T
Output Float Waveform  
OF  
1.5V  
1.5V  
P_CLK / DCLKIN  
T
OF  
TIS and TIH Input Setup and Hold Waveform  
1.5V  
1.5V  
1.5V  
P_CLK / DCLKIN  
T
IHX  
T
ISX  
Valid  
1.5V  
2
I C Interface Signal Timings  
SDA  
T
T
LOW  
BUF  
T
T
T
T
T
T
HDSTA  
SF  
SP  
SR  
SCL  
T
HDSTA  
SUSTO  
T
T
T
HIGH  
HDDAT  
SUDAT  
SUSTA  
Stop  
Start  
Stop  
Repeated  
Start  
52  
Advance Information  
Data Sheet — 80960RN  
4.7  
AC Test Conditions  
The AC specifications in Section 4.5, “Targeted AC Specifications” on page 45 are tested with a  
50 pF load indicated in Figure 13.  
Figure 13.  
AC Test Load (all signals except SDRAM and Flash signals)  
Output Ball  
CL = 50 pF  
CL  
The PCI maximum AC specifications are tested with the 50 pF load indicated in Figure 13. The  
PCI minimum AC specifications are tested with a 0 pF load. All of the SDRAM and Flash timings  
are specified for a 0 pF load.  
Advance Information  
53  
 
80960RN — Data Sheet  
5.0  
Device Identification on Reset  
During the manufacturing process, values characterizing the i960 RM/RN I/O processor type and  
stepping are programmed into memory-mapped registers. The i960 RM/RN I/O processor contains  
two, read-only device ID MMRs. One holds the Processor Device ID (PDIDR MMR Location -  
0000 1710H) and the other holds the i960 Core Processor Device ID (DEVICEID MMR Location -  
FF00 8710H). During initialization, the DEVICEID is placed in g0.  
The device identification values are compliant with the IEEE 1149.1 specification and Intel  
standards. Table 30 describes the fields of the two Device IDs.  
Note: The value programmed into these registers varies with stepping. Refer to the Specification Update  
for the correct value.  
Table 30.  
Device ID Registers  
31  
28  
24  
20  
16  
12  
8
4
0
IB  
ro ro  
ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro  
PCI  
IB:  
na na na na na na na na na na na na na na na na na na na na na na na na na na na na na na na na  
Legend:NA = Not AccessibleRO = Read Only  
RV = ReservedPR = PreservedRW = Read/Write  
RS = Read/SetRC = Read Clear  
0000 1710H  
FF00 8710H  
NA  
PCI:  
IB = Internal Bus AddressPCI = PCI Configuration Address Offset  
Bit  
Default  
Description  
31:28  
X
Version - Indicates stepping changes.  
VCC - Indicates device voltage type.  
27  
X
0 = 5.0 V  
1 = 3.3 V  
26:21  
20:17  
16:12  
X
X
X
Product Type - Indicates the generation or “family member”.  
Generation Type - Indicates the generation of the device.  
Model Type - Indicates member within a series and specific model information.  
Manufacturer ID - Indicates manufacturer ID assigned by IEEE.  
0000 0001 001 = Intel Corporation  
11:01  
0
X
1
Constant  
54  
Advance Information  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY