5M160ZM68A5N [INTEL]

Flash PLD, 14ns, 128-Cell, CMOS, PBGA68;
5M160ZM68A5N
型号: 5M160ZM68A5N
厂家: INTEL    INTEL
描述:

Flash PLD, 14ns, 128-Cell, CMOS, PBGA68

文件: 总72页 (文件大小:1170K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Section I. MAX V Device Core  
This section provides a complete overview of all features relating to the MAX® V  
device family.  
This section includes the following chapters:  
Chapter 1, MAX V Device Family Overview  
Chapter 2, MAX V Architecture  
Chapter 3, DC and Switching Characteristics for MAX V Devices  
May 2011 Altera Corporation  
MAX V Device Handbook  
I–2  
Section I: MAX V Device Core  
MAX V Device Handbook  
May 2011 Altera Corporation  
1. MAX V Device Family Overview  
MV51001-1.2  
The MAX® V family of low cost and low power CPLDs offer more density and I/Os  
per footprint versus other CPLDs. Ranging in density from 40 to 2,210 logic elements  
(LEs) (32 to 1,700 equivalent macrocells) and up to 271 I/Os, MAX V devices provide  
programmable solutions for applications such as I/O expansion, bus and protocol  
bridging, power monitoring and control, FPGA configuration, and analog IC  
interface.  
MAX V devices feature on-chip flash storage, internal oscillator, and memory  
functionality. With up to 50% lower total power versus other CPLDs and requiring as  
few as one power supply, MAX V CPLDs can help you meet your low power design  
requirement.  
This chapter contains the following sections:  
“Feature Summary” on page 1–1  
“Integrated Software Platform” on page 1–3  
“Device Pin-Outs” on page 1–3  
“Ordering Information” on page 1–4  
Feature Summary  
The following list summarizes the MAX V device family features:  
Low-cost, low-power, and non-volatile CPLD architecture  
Instant-on (0.5 ms or less) configuration time  
Standby current as low as 25 µA and fast power-down/reset operation  
Fast propagation delay and clock-to-output times  
Internal oscillator  
Emulated RSDS output support with a data rate of up to 200 Mbps  
Emulated LVDS output support with a data rate of up to 304 Mbps  
Four global clocks with two clocks available per logic array block (LAB)  
User flash memory block up to 8 Kbits for non-volatile storage with up to 1000  
read/write cycles  
Single 1.8-V external supply for device core  
MultiVolt I/O interface supporting 3.3-V, 2.5-V, 1.8-V, 1.5-V, and 1.2-V logic levels  
Bus-friendly architecture including programmable slew rate, drive strength,  
bus-hold, and programmable pull-up resistors  
Schmitt triggers enabling noise tolerant inputs (programmable per pin)  
© 2011 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.  
and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective holders as described at  
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but  
reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any  
information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device  
specifications before relying on any published information and before placing orders for products or services.  
MAX V Device Handbook  
May 2011  
Subscribe  
1–2  
Chapter 1: MAX V Device Family Overview  
Feature Summary  
I/Os are fully compliant with the PCI-SIG® PCI Local Bus Specification, revision  
2.2 for 3.3-V operation  
Hot-socket compliant  
Built-in JTAG BST circuitry compliant with IEEE Std. 1149.1-1990  
Table 1–1 lists the MAX V family features.  
Table 1–1. MAX V Family Features  
Feature  
5M40Z  
40  
5M80Z  
80  
5M160Z  
160  
128  
8,192  
4
5M240Z  
240  
192  
8,192  
4
5M570Z  
570  
440  
8,192  
4
5M1270Z 5M2210Z  
LEs  
1,270  
980  
8,192  
4
2,210  
1,700  
8,192  
4
Typical Equivalent Macrocells  
User Flash Memory Size (bits)  
Global Clocks  
32  
64  
8,192  
4
8,192  
4
Internal Oscillator  
Maximum User I/O pins  
tPD1 (ns) (1)  
1
1
1
1
1
1
1
54  
79  
79  
114  
7.5  
159  
9.0  
271  
6.2  
271  
7.0  
7.5  
152  
2.3  
6.5  
7.5  
152  
2.3  
6.5  
7.5  
fCNT (MHz) (2)  
152  
2.3  
152  
2.3  
152  
2.2  
304  
1.2  
304  
1.2  
t
SU (ns)  
tCO (ns)  
6.5  
6.5  
6.7  
4.6  
4.6  
Notes to Table 1–1:  
(1) tPD1 represents a pin-to-pin delay for the worst case I/O placement with a full diagonal path across the device and combinational logic  
implemented in a single LUT and LAB that is adjacent to the output pin.  
(2) The maximum global clock frequency, fCNT, is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay will run faster  
than this number.  
MAX V devices accept 1.8 V on their VCCINTpins. The 1.8-V VCCINT external supply  
powers the device core directly. MAX V devices operate internally at 1.8 V. The  
supported MultiVolt I/O interface voltage levels (VCCIO) are 1.2 V, 1.5 V, 1.8 V, 2.5 V,  
and 3.3 V.  
MAX V devices are available in two speed grades: –4 and –5, with –4 being the fastest.  
For commercial applications, speed grades –C4 and –C5 are available. For industrial  
and automotive applications, speed grade –I5 and –A5 are available, respectively.  
These speed grades represent the overall relative performance, not any specific timing  
parameter.  
f For propagation delay timing numbers within each speed grade and density, refer to  
the DC and Switching Characteristics for MAX V Devices chapter.  
MAX V devices are available in space-saving FineLine BGA (FBGA), Micro FineLine  
BGA (MBGA), plastic enhanced quad flat pack (EQFP), and thin quad flat pack  
(TQFP) packages (refer to Table 1–2 and Table 1–3). MAX V devices support vertical  
migration within the same package (for example, you can migrate between the  
5M570Z, 5M1270Z, and 5M2210Z devices in the 256-pin FineLine BGA package).  
Vertical migration means that you can migrate to devices whose dedicated pins and  
JTAG pins are the same and power pins are subsets or supersets for a given package  
across device densities. The largest density in any package has the highest number of  
power pins; you must lay out for the largest planned density in a package to provide  
MAX V Device Handbook  
May 2011 Altera Corporation  
Chapter 1: MAX V Device Family Overview  
1–3  
Integrated Software Platform  
the necessary power pins for migration. For I/O pin migration across densities, cross  
reference the available I/O pins using the device pin-outs for all planned densities of  
a given package type to identify which I/O pins can be migrated. The Quartus® II  
software can automatically cross-reference and place all pins for you when given a  
device migration list.  
Table 1–2. MAX V Packages and User I/O Pins (Note 1)  
64-Pin  
MBGA  
64-Pin  
EQFP  
68-Pin  
MBGA  
100-Pin  
TQFP  
100-Pin  
MBGA  
144-Pin  
TQFP  
256-Pin  
FBGA  
324-Pin  
FBGA  
Device  
5M40Z  
30  
30  
54  
54  
54  
52  
52  
52  
79  
79  
79  
74  
79  
79  
74  
5M80Z  
5M160Z  
5M240Z  
114  
114  
114  
5M570Z  
159  
211  
203  
5M1270Z  
5M2210Z  
Note to Table 1–2:  
271  
271  
(1) Device packages under the same arrow sign have vertical migration capability.  
Table 1–3. MAX V Package Sizes  
64-Pin  
MBGA  
64-Pin  
EQFP  
68-Pin  
MBGA  
100-Pin  
TQFP  
100-Pin  
MBGA  
144-Pin  
TQFP  
256-Pin  
FBGA  
324-Pin  
FBGA  
Package  
Pitch (mm)  
Area (mm2)  
0.5  
0.4  
81  
0.5  
25  
0.5  
0.5  
36  
0.5  
1
1
20.25  
256  
484  
289  
361  
Length × width  
(mm × mm)  
4.5 × 4.5  
9 × 9  
5 × 5  
16 × 16  
6 × 6  
22 × 22  
17 × 17  
19 × 19  
Integrated Software Platform  
The Quartus II software provides an integrated environment for HDL and schematic  
design entry, compilation and logic synthesis, full simulation and advanced timing  
analysis, and programming of MAX V devices.  
f For more information about the Quartus II software features, refer to the Quartus II  
Handbook.  
You can debug your MAX V designs using In-System Sources and Probes Editor in  
the Quartus II software. This feature allows you to easily control any internal signal  
and provides you with a completely dynamic debugging environment.  
f For more information about the In-System Sources and Probes Editor, refer to the  
Design Debugging Using In-System Sources and Probes chapter of the Quartus II  
Handbook.  
Device Pin-Outs  
f For more information, refer to the MAX V Device Pin-Out Files page.  
May 2011 Altera Corporation  
MAX V Device Handbook  
1–4  
Chapter 1: MAX V Device Family Overview  
Ordering Information  
Ordering Information  
Figure 1–1 shows the ordering codes for MAX V devices.  
Figure 1–1. MAX V Device Packaging Ordering Information  
5M  
40Z  
E
64  
C
4
N
Family Signature  
Optional Suffix  
5M: MAX V  
Indicates specific device  
options or shipment method  
N: Lead-free packaging  
Device Type  
Speed Grade  
40Z: 40 Logic Elements  
80Z: 80 Logic Elements  
160Z: 160 Logic Elements  
240Z: 240 Logic Elements  
570Z: 570 Logic Elements  
4 or 5, with 4 being the fastest  
1270Z: 1,270 Logic Elements  
2210Z: 2,210 Logic Elements  
Operating Temperature  
C: Commercial temperature (TJ = 0  
°
C to 85  
C to 100  
A: Automotive temperature (TJ = -40  
°
C)  
C)  
I: Industrial temperature (TJ = -40  
°
°
°
C to 125  
°
C)  
Package Type  
Pin Count  
Number of pins for a particular package  
T: Thin quad flat pack (TQFP)  
F: FineLine BGA (FBGA)  
M: Micro FineLine BGA (MBGA)  
E: Plastic Enhanced Quad Flat Pack (EQFP)  
Document Revision History  
Table 1–4 lists the revision history for this chapter.  
Table 1–4. Document Revision History  
Date  
May 2011  
Version  
Changes  
Updated Figure 1–1.  
Updated Table 1–3.  
1.2  
January 2011  
1.1  
1.0  
Updated “Feature Summary” section.  
Initial release.  
December 2010  
MAX V Device Handbook  
May 2011 Altera Corporation  
2. MAX V Architecture  
MV51002-1.0  
This chapter describes the architecture of the MAX® V device and contains the  
following sections:  
“Functional Description” on page 2–1  
“Logic Array Blocks” on page 2–4  
“Logic Elements” on page 2–8  
“MultiTrack Interconnect” on page 2–14  
“Global Signals” on page 2–19  
“User Flash Memory Block” on page 2–21  
“Internal Oscillator” on page 2–22  
“Core Voltage” on page 2–25  
“I/O Structure” on page 2–26  
Functional Description  
MAX V devices contain a two-dimensional row- and column-based architecture to  
implement custom logic. Row and column interconnects provide signal interconnects  
between the logic array blocks (LABs).  
Each LAB in the logic array contains 10 logic elements (LEs). An LE is a small unit of  
logic that provides efficient implementation of user logic functions. LABs are grouped  
into rows and columns across the device. The MultiTrack interconnect provides fast  
granular timing delays between LABs. The fast routing between LEs provides  
minimum timing delay for added levels of logic versus globally routed interconnect  
structures.  
The I/O elements (IOEs) located after the LAB rows and columns around the  
periphery of the MAX V device feeds the I/O pins. Each IOE contains a bidirectional  
I/O buffer with several advanced features. I/O pins support Schmitt trigger inputs  
and various single-ended standards, such as 33-MHz, 32-bit PCI™, and LVTTL.  
MAX V devices provide a global clock network. The global clock network consists of  
four global clock lines that drive throughout the entire device, providing clocks for all  
resources within the device. You can also use the global clock lines for control signals  
such as clear, preset, or output enable.  
© 2010 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.  
and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective holders as described at  
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but  
reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any  
information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device  
specifications before relying on any published information and before placing orders for products or services.  
MAX V Device Handbook  
December 2010  
Subscribe  
2–2  
Chapter 2: MAX V Architecture  
Functional Description  
Figure 2–1 shows a functional block diagram of the MAX V device.  
Figure 2–1. Device Block Diagram  
IOE  
IOE  
IOE  
IOE  
IOE  
IOE  
Logic  
Element  
Logic  
Element  
Logic  
Element  
IOE  
IOE  
Logic  
Element  
Logic  
Element  
Logic  
Element  
Logic Array  
BLock (LAB)  
MultiTrack  
Interconnect  
Logic  
Element  
Logic  
Element  
Logic  
Element  
IOE  
Logic  
Element  
Logic  
Element  
Logic  
Element  
IOE  
MultiTrack  
Interconnect  
Each MAX V device contains a flash memory block within its floorplan. This block is  
located on the left side of the 5M40Z, 5M80Z, 5M160Z, and 5M240Z devices. On the  
5M240Z (T144 package), 5M570Z, 5M1270Z, and 5M2210Z devices, the flash memory  
block is located on the bottom-left area of the device. The majority of this flash  
memory storage is partitioned as the dedicated configuration flash memory (CFM)  
block. The CFM block provides the non-volatile storage for all of the SRAM  
configuration information. The CFM automatically downloads and configures the  
logic and I/O at power-up, providing instant-on operation.  
f For more information about configuration upon power-up, refer to the Hot Socketing  
and Power-On Reset for MAX V Devices chapter.  
A portion of the flash memory within the MAX V device is partitioned into a small  
block for user data. This user flash memory (UFM) block provides 8,192 bits of  
general-purpose user storage. The UFM provides programmable port connections to  
the logic array for reading and writing. There are three LAB rows adjacent to this  
block, with column numbers varying by device.  
MAX V Device Handbook  
December 2010 Altera Corporation  
Chapter 2: MAX V Architecture  
2–3  
Functional Description  
Table 2–1 lists the number of LAB rows and columns in each device, as well as the  
number of LAB rows and columns adjacent to the flash memory area. The long LAB  
rows are full LAB rows that extend from one side of row I/O blocks to the other. The  
short LAB rows are adjacent to the UFM block; their length is shown as width in LAB  
columns.  
Table 2–1. Device Resources for MAX V Devices  
LAB Rows  
Device  
5M40Z  
UFM Blocks  
LAB Columns  
Total LABs  
Long LAB Rows  
Short LAB Rows (Width) (1)  
1
1
1
1
1
1
1
1
1
6
6
4
4
24  
24  
5M80Z  
5M160Z  
6
4
24  
5M240Z (2)  
5M240Z (3)  
5M570Z  
6
4
24  
12  
12  
16  
20  
20  
4
3 (3)  
3 (3)  
3 (5)  
3 (7)  
3 (7)  
57  
4
57  
5M1270Z (4)  
5M1270Z (5)  
5M2210Z  
7
127  
221  
221  
10  
10  
Notes to Table 2–1:  
(1) The width is the number of LAB columns in length.  
(2) Not applicable to T144 package of the 5M240Z device.  
(3) Only applicable to T144 package of the 5M240Z device.  
(4) Not applicable to F324 package of the 5M1270Z device.  
(5) Only applicable to F324 package of the 5M1270Z device.  
December 2010 Altera Corporation  
MAX V Device Handbook  
2–4  
Chapter 2: MAX V Architecture  
Logic Array Blocks  
Figure 2–2 shows a floorplan of a MAX V device.  
Figure 2–2. Device Floorplan for MAX V Devices (Note 1)  
I/O Blocks  
I/O Blocks  
Logic Array  
Blocks  
Logic Array  
Blocks  
2 GCLK  
Inputs  
2 GCLK  
Inputs  
I/O Blocks  
UFM Block  
CFM Block  
Note to Figure 2–2:  
(1) The device shown is a 5M570Z device. 5M1270Z and 5M2210Z devices have a similar floorplan with more LABs. For 5M40Z, 5M80Z, 5M160Z,  
and 5M240Z devices, the CFM and UFM blocks are located on the left side of the device.  
Logic Array Blocks  
Each LAB consists of 10 LEs, LE carry chains, LAB control signals, a local interconnect,  
a look-up table (LUT) chain, and register chain connection lines. There are 26 possible  
unique inputs into an LAB, with an additional 10 local feedback input lines fed by LE  
outputs in the same LAB. The local interconnect transfers signals between LEs in the  
same LAB. LUT chain connections transfer the LUT output from one LE to the  
MAX V Device Handbook  
December 2010 Altera Corporation  
Chapter 2: MAX V Architecture  
2–5  
Logic Array Blocks  
adjacent LE for fast sequential LUT connections within the same LAB. Register chain  
connections transfer the output of one LE’s register to the adjacent LE’s register  
within an LAB. The Quartus® II software places associated logic within an LAB or  
adjacent LABs, allowing the use of local, LUT chain, and register chain connections  
for performance and area efficiency. Figure 2–3 shows the MAX V LAB.  
Figure 2–3. LAB Structure for MAX V Devices  
Row Interconnect  
Column Interconnect  
LE0  
LE1  
LE2  
LE3  
Fast I/O connection  
to IOE (1)  
Fast I/O connection  
to IOE (1)  
DirectLink  
DirectLink  
interconnect from  
adjacent LAB  
or IOE  
interconnect from  
adjacent LAB  
or IOE  
LE4  
LE5  
LE6  
LE7  
DirectLink  
DirectLink  
interconnect to  
adjacent LAB  
or IOE  
interconnect to  
adjacent LAB  
or IOE  
LE8  
LE9  
Logic Element  
LAB  
Local Interconnect  
Note to Figure 2–3:  
(1) Only from LABs adjacent to IOEs.  
December 2010 Altera Corporation  
MAX V Device Handbook  
2–6  
Chapter 2: MAX V Architecture  
Logic Array Blocks  
LAB Interconnects  
Column and row interconnects and LE outputs within the same LAB drive the LAB  
local interconnect. Adjacent LABs, from the left and right, can also drive an LAB’s  
local interconnect through the DirectLink connection. The DirectLink connection  
feature minimizes the use of row and column interconnects, providing higher  
performance and flexibility. Each LE can drive 30 other LEs through fast local and  
DirectLink interconnects. Figure 2–4 shows the DirectLink connection.  
Figure 2–4. DirectLink Connection  
DirectLink interconnect from  
right LAB or IOE output  
DirectLink interconnect from  
left LAB or IOE output  
LE0  
LE1  
LE2  
LE3  
LE4  
LE5  
LE6  
LE7  
LE8  
LE9  
DirectLink  
interconnect  
to left  
DirectLink  
interconnect  
to right  
Local  
Interconnect  
Logic Element  
LAB  
LAB Control Signals  
Each LAB contains dedicated logic for driving control signals to its LEs. The control  
signals include two clocks, two clock enables, two asynchronous clears, a  
synchronous clear, an asynchronous preset/load, a synchronous load, and  
add/subtract control signals, providing a maximum of 10 control signals at a time.  
Synchronous load and clear signals are generally used when implementing counters  
but they can also be used with other functions.  
Each LAB can use two clocks and two clock enable signals. Each LAB’s clock and  
clock enable signals are linked. For example, any LE in a particular LAB using the  
labclk1signal also uses labclkena1. If the LAB uses both the rising and falling edges  
of a clock, it also uses both LAB-wide clock signals. Deasserting the clock enable  
signal turns off the LAB-wide clock.  
Each LAB can use two asynchronous clear signals and an asynchronous load/preset  
signal. By default, the Quartus II software uses a NOTgate push-back technique to  
achieve preset. If you disable the NOTgate push-back option or assign a given register  
to power-up high using the Quartus II software, the preset is then achieved using the  
asynchronous load signal with asynchronous load data input tied high.  
MAX V Device Handbook  
December 2010 Altera Corporation  
Chapter 2: MAX V Architecture  
2–7  
Logic Array Blocks  
With the LAB-wide addnsubcontrol signal, a single LE can implement a one-bit adder  
and subtractor. This signal saves LE resources and improves performance for logic  
functions such as correlators and signed multipliers that alternate between addition  
and subtraction depending on data.  
The LAB column clocks [3..0], driven by the global clock network, and LAB local  
interconnect generate the LAB-wide control signals. The MultiTrack interconnect  
structure drives the LAB local interconnect for non-global control signal generation.  
The MultiTrack interconnect’s inherent low skew allows clock and control signal  
distribution in addition to data signals. Figure 2–5 shows the LAB control signal  
generation circuit.  
Figure 2–5. LAB-Wide Control Signals  
Dedicated  
LAB Column  
Clocks  
4
Local  
Interconnect  
Local  
Interconnect  
Local  
Interconnect  
Local  
Interconnect  
Local  
Interconnect  
labclkena2  
labclkena1  
syncload  
labclr2  
addnsub  
Local  
Interconnect  
labclk1  
labclk2  
asyncload  
or labpre  
labclr1  
synclr  
December 2010 Altera Corporation  
MAX V Device Handbook  
2–8  
Chapter 2: MAX V Architecture  
Logic Elements  
Logic Elements  
The smallest unit of logic in the MAX V architecture, the LE, is compact and provides  
advanced features with efficient logic utilization. Each LE contains a four-input LUT,  
which is a function generator that can implement any function of four variables. In  
addition, each LE contains a programmable register and carry chain with carry-select  
capability. A single LE also supports dynamic single-bit addition or subtraction mode  
that is selected by an LAB-wide control signal. Each LE drives all types of  
interconnects: local, row, column, LUT chain, register chain, and DirectLink  
interconnects as shown in Figure 2–6.  
Figure 2–6. LE for MAX V Devices  
Register chain  
routing from  
previous LE  
LAB-wide  
Synchronous  
Register Bypass  
LAB Carry-In  
Carry-In1  
Load  
Programmable  
Register  
LAB-wide  
Synchronous  
Packed  
Register Select  
addnsub  
Carry-In0  
Clear  
LUT chain  
routing to next LE  
data1  
Row, column,  
and DirectLink  
routing  
PRN/ALD  
data2  
data3  
Synchronous  
Load and  
Clear Logic  
Look-Up  
Table  
(LUT)  
Carry  
Chain  
D
Q
ADATA  
data4  
ENA  
CLRN  
Row, column,  
and DirectLink  
routing  
labclr1  
labclr2  
Asynchronous  
Clear/Preset/  
Load Logic  
Local routing  
labpre/aload  
Chip-Wide  
Reset (DEV_CLRn)  
Register chain  
output  
Register  
Feedback  
Clock and  
Clock Enable  
Select  
labclk1  
labclk2  
labclkena1  
labclkena2  
Carry-Out0  
Carry-Out1  
LAB Carry-Out  
You can configure each LE’s programmable register for D, T, JK, or SR operation. Each  
register has data, true asynchronous load data, clock, clock enable, clear, and  
asynchronous load/preset inputs. Global signals, general purpose I/O (GPIO) pins,  
or any LE can drive the registers clock and clear control signals. Either GPIO pins or  
LEs can drive the clock enable, preset, asynchronous load, and asynchronous data.  
The asynchronous load data input comes from the data3input of the LE. For  
combinational functions, the LUT output bypasses the register and drives directly to  
the LE outputs.  
Each LE has three outputs that drive the local, row, and column routing resources. The  
LUT or register output can drive these three outputs independently. Two LE outputs  
drive either a column or row and DirectLink routing connections while one output  
drives the local interconnect resources. This configuration allows the LUT to drive one  
output while the register drives another output. This register packing feature  
MAX V Device Handbook  
December 2010 Altera Corporation  
Chapter 2: MAX V Architecture  
2–9  
Logic Elements  
improves device utilization because the device can use the register and the LUT for  
unrelated functions. Another special packing mode allows the register output to feed  
back into the LUT of the same LE so that the register is packed with its own fan-out  
LUT. This mode provides another mechanism for improved fitting. The LE can also  
drive out registered and unregistered versions of the LUT output.  
LUT Chain and Register Chain  
In addition to the three general routing outputs, the LEs within a LAB have LUT chain  
and register chain outputs. LUT chain connections allow LUTs within the same LAB  
to cascade together for wide input functions. Register chain outputs allow registers  
within the same LAB to cascade together. The register chain output allows a LAB to  
use LUTs for a single combinational function and the registers for an unrelated shift  
register implementation. These resources speed up connections between LABs while  
saving local interconnect resources. For more information about LUT chain and  
register chain connections, refer to “MultiTrack Interconnect” on page 2–14.  
addnsub Signal  
The LE’s dynamic adder/subtractor feature saves logic resources by using one set of  
LEs to implement both an adder and a subtractor. This feature is controlled by the  
LAB-wide control signal addnsub. The addnsubsignal sets the LAB to perform either  
A + B or A – B. The LUT computes addition; subtraction is computed by adding the  
two’s complement of the intended subtractor. The LAB-wide signal converts to two’s  
complement by inverting the B bits within the LAB and setting carry-in to 1, which  
adds one to the LSB. The LSB of an adder/subtractor must be placed in the first LE of  
the LAB, where the LAB-wide addnsubsignal automatically sets the carry-in to 1. The  
Quartus II Compiler automatically places and uses the adder/subtractor feature  
when using adder/subtractor parameterized functions.  
LE Operating Modes  
The MAX V LE can operate in one of the following modes:  
“Normal Mode”  
“Dynamic Arithmetic Mode”  
Each mode uses LE resources differently. In each mode, eight available inputs to the  
LE, the four data inputs from the LAB local interconnect, carry-in0 and carry-in1  
from the previous LE, the LAB carry-in from the previous carry-chain LAB, and the  
register chain connection are directed to different destinations to implement the  
desired logic function. LAB-wide signals provide clock, asynchronous clear,  
asynchronous preset/load, synchronous clear, synchronous load, and clock enable  
control for the register. These LAB-wide signals are available in all LE modes. The  
addnsubcontrol signal is allowed in arithmetic mode.  
The Quartus II software, along with parameterized functions such as the library of  
parameterized modules (LPM) functions, automatically chooses the appropriate  
mode for common functions such as counters, adders, subtractors, and arithmetic  
functions.  
December 2010 Altera Corporation  
MAX V Device Handbook  
2–10  
Chapter 2: MAX V Architecture  
Logic Elements  
Normal Mode  
The normal mode is suitable for general logic applications and combinational  
functions. In normal mode, four data inputs from the LAB local interconnect are  
inputs to a four-input LUT as shown in Figure 2–7. The Quartus II Compiler  
automatically selects the carry-in or the data3signal as one of the inputs to the LUT.  
Each LE can use LUT chain connections to drive its combinational output directly to  
the next LE in the LAB. Asynchronous load data for the register comes from the data3  
input of the LE. LEs in normal mode support packed registers.  
Figure 2–7. LE in Normal Mode  
sload  
sclear  
aload  
(LAB Wide) (LAB Wide)  
(LAB Wide)  
Register chain  
connection  
addnsub (LAB Wide)  
ALD/PRE  
(1)  
Row, column, and  
ADATA  
D
Q
DirectLink routing  
data1  
data2  
Row, column, and  
DirectLink routing  
ENA  
CLRN  
data3  
cin (from cout  
of previous LE)  
4-Input  
LUT  
clock (LAB Wide)  
Local routing  
data4  
ena (LAB Wide)  
aclr (LAB Wide)  
LUT chain  
connection  
Register  
chain output  
Register Feedback  
Note to Figure 2–7:  
(1) This signal is only allowed in normal mode if the LE is after an adder/subtractor chain.  
Dynamic Arithmetic Mode  
The dynamic arithmetic mode is ideal for implementing adders, counters,  
accumulators, wide parity functions, and comparators. A LE in dynamic arithmetic  
mode uses four 2-input LUTs configurable as a dynamic adder/subtractor. The first  
two 2-input LUTs compute two summations based on a possible carry-in of 1 or 0; the  
other two LUTs generate carry outputs for the two chains of the carry-select circuitry.  
As shown in Figure 2–8, the LAB carry-in signal selects either the carry-in0or  
carry-in1chain. The selected chain’s logic level in turn determines which parallel  
sum is generated as a combinational or registered output. For example, when  
implementing an adder, the sum output is the selection of two possible calculated  
sums:  
data1 + data2 + carry-in0  
or  
data1 + data2 + carry-in1  
MAX V Device Handbook  
December 2010 Altera Corporation  
Chapter 2: MAX V Architecture  
2–11  
Logic Elements  
The other two LUTs use the data1and data2signals to generate two possible  
carry-out signals: one for a carry of 1 and the other for a carry of 0. The carry-in0  
signal acts as the carry-select for the carry-out0output and carry-in1acts as the  
carry-select for the carry-out1output. LEs in arithmetic mode can drive out  
registered and unregistered versions of the LUT output.  
The dynamic arithmetic mode also offers clock enable, counter enable, synchronous  
up/down control, synchronous clear, synchronous load, and dynamic  
adder/subtractor options. The LAB local interconnect data inputs generate the  
counter enable and synchronous up/down control signals. The synchronous clear  
and synchronous load options are LAB-wide signals that affect all registers in the  
LAB. The Quartus II software automatically places any registers that are not used by  
the counter into other LABs. The addnsubLAB-wide signal controls whether the LE  
acts as an adder or subtractor.  
Figure 2–8. LE in Dynamic Arithmetic Mode  
LAB Carry-In  
Carry-In0  
sload  
(LAB Wide) (LAB Wide)  
Register chain  
connection  
sclear  
aload  
(LAB Wide)  
Carry-In1  
addnsub  
(LAB Wide)  
(1)  
ALD/PRE  
data1  
data2  
data3  
LUT  
ADATA  
D
Row, column, and  
direct link routing  
Q
LUT  
LUT  
LUT  
Row, column, and  
direct link routing  
ENA  
CLRN  
clock (LAB Wide)  
ena (LAB Wide)  
aclr (LAB Wide)  
Local routing  
LUT chain  
connection  
Register  
chain output  
Register Feedback  
Carry-Out0 Carry-Out1  
Note to Figure 2–8:  
(1) The addnsubsignal is tied to the carry input for the first LE of a carry chain only.  
Carry-Select Chain  
The carry-select chain provides a very fast carry-select function between LEs in  
dynamic arithmetic mode. The carry-select chain uses the redundant carry calculation  
to increase the speed of carry functions. The LE is configured to calculate outputs for a  
possible carry-in of 0 and carry-in of 1 in parallel. The carry-in0and carry-in1  
signals from a lower-order bit feed forward into the higher-order bit via the parallel  
carry chain and feed into both the LUT and the next portion of the carry chain.  
Carry-select chains can begin in any LE within an LAB.  
December 2010 Altera Corporation  
MAX V Device Handbook  
2–12  
Chapter 2: MAX V Architecture  
Logic Elements  
The speed advantage of the carry-select chain is in the parallel pre-computation of  
carry chains. Because the LAB carry-in selects the precomputed carry chain, not every  
LE is in the critical path. Only the propagation delays between LAB carry-in  
generation (LE5and LE10) are now part of the critical path. This feature allows the  
MAX V architecture to implement high-speed counters, adders, multipliers, parity  
functions, and comparators of arbitrary width.  
Figure 2–9 shows the carry-select circuitry in an LAB for a 10-bit full adder. One  
portion of the LUT generates the sum of two bits using the input signals and the  
appropriate carry-in bit; the sum is routed to the output of the LE. The register can be  
bypassed for simple adders or used for accumulator functions. Another portion of the  
LUT generates carry-out bits. An LAB-wide carry-in bit selects which chain is used for  
the addition of given inputs. The carry-in signal for each chain, carry-in0or  
carry-in1, selects the carry-out to carry forward to the carry-in signal of the  
next-higher-order bit. The final carry-out signal is routed to an LE, where it is fed to  
local, row, or column interconnects.  
Figure 2–9. Carry-Select Chain  
LAB Carry-In  
0
1
LAB Carry-In  
Carry-In0  
Sum1  
Sum2  
Sum3  
Sum4  
Sum5  
A1  
B1  
LE0  
LE1  
LE2  
LE3  
LE4  
Carry-In1  
A2  
B2  
LUT  
LUT  
data1  
data2  
Sum  
A3  
B3  
A4  
B4  
LUT  
LUT  
A5  
B5  
0
1
Carry-Out0  
Carry-Out1  
Sum6  
Sum7  
Sum8  
Sum9  
Sum10  
A6  
B6  
LE5  
LE6  
LE7  
LE8  
LE9  
A7  
B7  
A8  
B8  
A9  
B9  
A10  
B10  
To top of adjacent LAB  
LAB Carry-Out  
MAX V Device Handbook  
December 2010 Altera Corporation  
Chapter 2: MAX V Architecture  
2–13  
Logic Elements  
The Quartus II software automatically creates carry chain logic during design  
processing, or you can create it manually during design entry. Parameterized  
functions such as LPM functions automatically take advantage of carry chains for the  
appropriate functions. The Quartus II software creates carry chains longer than 10 LEs  
by linking adjacent LABs within the same row together automatically. A carry chain  
can extend horizontally up to one full LAB row, but does not extend between LAB  
rows.  
Clear and Preset Logic Control  
LAB-wide signals control the logic for the registers clear and preset signals. The LE  
directly supports an asynchronous clear and preset function. The register preset is  
achieved through the asynchronous load of a logic high. MAX V devices support  
simultaneous preset/asynchronous load and clear signals. An asynchronous clear  
signal takes precedence if both signals are asserted simultaneously. Each LAB  
supports up to two clears and one preset signal.  
In addition to the clear and preset ports, MAX V devices provide a chip-wide reset pin  
(
DEV_CLRn) that resets all registers in the device. An option set before compilation in  
the Quartus II software controls this pin. This chip-wide reset overrides all other  
control signals and uses its own dedicated routing resources without using any of the  
four global resources. Driving this signal low before or during power-up prevents  
user mode from releasing clears within the design. This allows you to control when  
clear is released on a device that has just been powered-up. If not set for its chip-wide  
reset function, the DEV_CLRnpin is a regular I/O pin.  
By default, all registers in MAX V devices are set to power-up low. However, this  
power-up state can be set to high on individual registers during design entry using  
the Quartus II software.  
LE RAM  
The Quartus II memory compiler can configure the unused LEs as LE RAM.  
MAX V devices support the following memory types:  
FIFO synchronous R/W  
FIFO asynchronous R/W  
1 port SRAM  
2 port SRAM  
3 port SRAM  
shift registers  
f For more information about memory, refer to the Internal Memory (RAM and ROM)  
User Guide.  
December 2010 Altera Corporation  
MAX V Device Handbook  
2–14  
Chapter 2: MAX V Architecture  
MultiTrack Interconnect  
MultiTrack Interconnect  
In the MAX V architecture, connections between LEs, the UFM, and device I/O pins  
are provided by the MultiTrack interconnect structure. The MultiTrack interconnect  
consists of continuous, performance-optimized routing lines used for inter- and  
intra-design block connectivity. The Quartus II Compiler automatically places critical  
design paths on faster interconnects to improve design performance.  
The MultiTrack interconnect consists of row and column interconnects that span fixed  
distances. A routing structure with fixed length resources for all devices allows  
predictable and short delays between logic levels instead of large delays associated  
with global or long routing lines. Dedicated row interconnects route signals to and  
from LABs within the same row. These row resources include:  
DirectLink interconnects between LABs  
R4 interconnects traversing four LABs to the right or left  
The DirectLink interconnect allows an LAB to drive into the local interconnect of its  
left and right neighbors. The DirectLink interconnect provides fast communication  
between adjacent LABs and blocks without using row interconnect resources.  
The R4 interconnects span four LABs and are used for fast row connections in a  
four-LAB region. Every LAB has its own set of R4 interconnects to drive either left or  
right. Figure 2–10 shows R4 interconnect connections from an LAB. R4 interconnects  
can drive and be driven by row IOEs. For LAB interfacing, a primary LAB or  
horizontal LAB neighbor can drive a given R4 interconnect. For R4 interconnects that  
drive to the right, the primary LAB and right neighbor can drive on to the  
interconnect. For R4 interconnects that drive to the left, the primary LAB and its left  
neighbor can drive on to the interconnect. R4 interconnects can drive other R4  
interconnects to extend the range of LABs they can drive. R4 interconnects can also  
drive C4 interconnects for connections from one row to another.  
MAX V Device Handbook  
December 2010 Altera Corporation  
Chapter 2: MAX V Architecture  
2–15  
MultiTrack Interconnect  
Figure 2–10. R4 Interconnect Connections  
Adjacent LAB can  
drive onto another  
LAB’s R4 Interconnect  
R4 Interconnect  
Driving Right  
C4 Column Interconnects (1)  
R4 Interconnect  
Driving Left  
LAB  
Neighbor  
Primary  
LAB (2)  
LAB  
Neighbor  
Notes to Figure 2–10:  
(1) C4 interconnects can drive R4 interconnects.  
(2) This pattern is repeated for every LAB in the LAB row.  
The column interconnect operates similarly to the row interconnect. Each column of  
LABs is served by a dedicated column interconnect, which vertically routes signals to  
and from LABs and row and column IOEs. These column resources include:  
LUT chain interconnects within an LAB  
Register chain interconnects within an LAB  
C4 interconnects traversing a distance of four LABs in an up and down direction  
MAX V devices include an enhanced interconnect structure within LABs for routing  
LE output to LE input connections faster using LUT chain connections and register  
chain connections. The LUT chain connection allows the combinational output of an  
LE to directly drive the fast input of the LE right below it, bypassing the local  
interconnect. These resources can be used as a high-speed connection for wide fan-in  
functions from LE 1to LE 10in the same LAB. The register chain connection allows  
the register output of one LE to connect directly to the register input of the next LE in  
the LAB for fast shift registers. The Quartus II Compiler automatically takes  
advantage of these resources to improve utilization and performance. Figure 2–11  
shows the LUT chain and register chain interconnects.  
December 2010 Altera Corporation  
MAX V Device Handbook  
2–16  
Chapter 2: MAX V Architecture  
MultiTrack Interconnect  
Figure 2–11. LUT Chain and Register Chain Interconnects  
Local Interconnect  
Routing Among LEs  
in the LAB  
LE0  
LUT Chain  
Routing to  
Adjacent LE  
Register Chain  
Routing to Adjacent  
LE's Register Input  
LE1  
LE2  
LE3  
LE4  
LE5  
LE6  
LE7  
LE8  
Local  
Interconnect  
LE9  
The C4 interconnects span four LABs up or down from a source LAB. Every LAB has  
its own set of C4 interconnects to drive either up or down. Figure 2–12 shows the C4  
interconnect connections from an LAB in a column. The C4 interconnects can drive  
and be driven by column and row IOEs. For LAB interconnection, a primary LAB or  
its vertical LAB neighbor can drive a given C4 interconnect. C4 interconnects can  
drive each other to extend their range as well as drive row interconnects for  
column-to-column connections.  
MAX V Device Handbook  
December 2010 Altera Corporation  
Chapter 2: MAX V Architecture  
2–17  
MultiTrack Interconnect  
Figure 2–12. C4 Interconnect Connections (Note 1)  
C4 Interconnect  
Drives Local and R4  
Interconnects  
Up to Four Rows  
C4 Interconnect  
Driving Up  
LAB  
Row  
Interconnect  
Adjacent LAB can  
drive onto neighboring  
LAB's C4 interconnect  
Local  
Interconnect  
C4 Interconnect  
Driving Down  
Note to Figure 2–12:  
(1) Each C4 interconnect can drive either up or down four rows.  
December 2010 Altera Corporation  
MAX V Device Handbook  
2–18  
Chapter 2: MAX V Architecture  
MultiTrack Interconnect  
The UFM block communicates with the logic array similar to LAB-to-LAB interfaces.  
The UFM block connects to row and column interconnects and has local interconnect  
regions driven by row and column interconnects. This block also has DirectLink  
interconnects for fast connections to and from a neighboring LAB. For more  
information about the UFM interface to the logic array, refer too “User Flash Memory  
Block” on page 2–21.  
Table 2–2 lists the MAX V device routing scheme.  
Table 2–2. Routing Scheme for MAX V Devices  
Destination  
Source  
LUT  
Register Local DirectLink  
UFM  
Column Row Fast I/O  
R4 (1) C4 (1)  
LE  
Chain  
Chain  
(1)  
(1)  
Block  
IOE  
IOE  
(1)  
LUT Chain  
v
v
v
Register Chain  
Local  
Interconnect  
v
v
v
DirectLink  
Interconnect  
v
R4 Interconnect  
C4 Interconnect  
LE  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
UFM Block  
Column IOE  
Row IOE  
Note to Table 2–2:  
(1) These categories are interconnects.  
MAX V Device Handbook  
December 2010 Altera Corporation  
Chapter 2: MAX V Architecture  
2–19  
Global Signals  
Global Signals  
Each MAX V device has four dual-purpose dedicated clock pins (GCLK[3..0], two  
pins on the left side and two pins on the right side) that drive the global clock network  
for clocking, as shown in Figure 2–13. These four pins can also be used as GPIOs if  
they are not used to drive the global clock network.  
The four global clock lines in the global clock network drive throughout the entire  
device. The global clock network can provide clocks for all resources within the  
device including LEs, LAB local interconnect, IOEs, and the UFM block. The global  
clock lines can also be used for global control signals, such as clock enables,  
synchronous or asynchronous clears, presets, output enables, or protocol control  
signals such as TRDYand IRDYfor the PCI I/O standard. Internal logic can drive the  
global clock network for internally-generated global clocks and control signals.  
Figure 2–13 shows the various sources that drive the global clock network.  
Figure 2–13. Global Clock Generation  
GCLK0  
GCLK1  
GCLK2  
4
Global Clock  
Network  
GCLK3  
4
Logic Array(1)  
Note to Figure 2–13:  
(1) Any I/O pin can use a MultiTrack interconnect to route as a logic array-generated global clock signal.  
The global clock network drives to individual LAB column signals, LAB column  
clocks [3..0], that span an entire LAB column from the top to the bottom of the  
device. Unused global clocks or control signals in an LAB column are turned off at the  
LAB column clock buffers shown in Figure 2–14. The LAB column clocks [3..0]are  
multiplexed down to two LAB clock signals and one LAB clear signal. Other control  
signal types route from the global clock network into the LAB local interconnect. For  
more information, refer to “LAB Control Signals” on page 2–6.  
December 2010 Altera Corporation  
MAX V Device Handbook  
2–20  
Chapter 2: MAX V Architecture  
Global Signals  
Figure 2–14. Global Clock Network (Note 1)  
LAB Column  
clock[3..0]  
I/O Block Region  
4
4
4
4
4
4
4
4
LAB Column  
clock[3..0]  
I/O Block Region  
I/O Block Region  
UFM Block (2)  
CFM Block  
Notes to Figure 2–14:  
(1) LAB column clocks in I/O block regions provide high fan-out output enable signals.  
(2) LAB column clocks drive to the UFM block.  
MAX V Device Handbook  
December 2010 Altera Corporation  
Chapter 2: MAX V Architecture  
2–21  
User Flash Memory Block  
User Flash Memory Block  
MAX V devices feature a single UFM block, which can be used like a serial EEPROM  
for storing non-volatile information up to 8,192 bits. The UFM block connects to the  
logic array through the MultiTrack interconnect, allowing any LE to interface to the  
UFM block. Figure 2–15 shows the UFM block and interface signals. The logic array is  
used to create customer interface or protocol logic to interface the UFM block data  
outside of the device. The UFM block offers the following features:  
Non-volatile storage up to 16-bit wide and 8,192 total bits  
Two sectors for partitioned sector erase  
Built-in internal oscillator that optionally drives logic array  
Program, erase, and busy signals  
Auto-increment addressing  
Serial interface to logic array with programmable interface  
Figure 2–15. UFM Block and Interface Signals  
UFM Block  
PROGRAM  
ERASE  
RTP_BUSY  
BUSY  
Program  
Erase  
Control  
_
:
OSC  
4
OSC_ENA  
OSC  
UFM Sector 1  
UFM Sector 0  
9
ARCLK  
Address  
Register  
16  
16  
ARSHFT  
ARDin  
DRDin  
Data Register  
DRDout  
DRCLK  
DRSHFT  
December 2010 Altera Corporation  
MAX V Device Handbook  
2–22  
Chapter 2: MAX V Architecture  
User Flash Memory Block  
UFM Storage  
Each device stores up to 8,192 bits of data in the UFM block. Table 2–3 lists the data  
size, sector, and address sizes for the UFM block.  
Table 2–3. UFM Array Size  
Device  
5M40Z  
Total Bits  
8,192  
8,192  
8,192  
8,192  
8,192  
8,192  
8,192  
Sectors  
Address Bits  
Data Width  
2 (4,096 bits per sector)  
2 (4,096 bits per sector)  
2 (4,096 bits per sector)  
2 (4,096 bits per sector)  
2 (4,096 bits per sector)  
2 (4,096 bits per sector)  
2 (4,096 bits per sector)  
9
9
9
9
9
9
9
16  
16  
16  
16  
16  
16  
16  
5M80Z  
5M160Z  
5M240Z  
5M570Z  
5M1270Z  
5M2210Z  
There are 512 locations with 9-bit addressing ranging from 000hto 1FFh. The sector 0  
address space is 000hto 0FFhand the sector 1 address space is from 100hto 1FFh. The  
data width is up to 16 bits of data. The Quartus II software automatically creates logic  
to accommodate smaller read or program data widths. Erasure of the UFM involves  
individual sector erasing (that is, one erase of sector 0 and one erase of sector 1 is  
required to erase the entire UFM block). Because sector erase is required before a  
program or write operation, having two sectors enables a sector size of data to be left  
untouched while the other sector is erased and programmed with new data.  
Internal Oscillator  
As shown in Figure 2–15, the dedicated circuitry within the UFM block contains an  
oscillator. The dedicated circuitry uses this oscillator internally for its read and  
program operations. This oscillator's divide by 4 output can drive out of the UFM  
block as a logic interface clock source or for general-purpose logic clocking. The  
typical OSC output signal frequency ranges from 3.9 to 5.3 MHz, and its exact  
frequency of operation is not programmable.  
The UFM internal oscillator can be instantiated using the MegaWizardPlug-In  
Manager. You can also use the MAX II/MAX V Oscillator megafunction to instantiate  
the UFM oscillator without using the UFM memory block.  
MAX V Device Handbook  
December 2010 Altera Corporation  
Chapter 2: MAX V Architecture  
2–23  
User Flash Memory Block  
Program, Erase, and Busy Signals  
The UFM block’s dedicated circuitry automatically generates the necessary internal  
program and erase algorithm after the PROGRAMor ERASEinput signals have been  
asserted. The PROGRAMor ERASEsignal must be asserted until the busy signal deasserts,  
indicating the UFM internal program or erase operation has completed. The UFM  
block also supports JTAG as the interface for programming and reading.  
f For more information about programming and erasing the UFM block, refer to the  
User Flash Memory in MAX V Devices chapter.  
Auto-Increment Addressing  
The UFM block supports standard read or stream read operations. The stream read is  
supported with an auto-increment address feature. Deasserting the ARSHIFTsignal  
while clocking the ARCLKsignal increments the address register value to read  
consecutive locations from the UFM array.  
Serial Interface  
The UFM block supports a serial interface with serial address and data signals. The  
internal shift registers within the UFM block for address and data are 9 bits and 16 bits  
wide, respectively. The Quartus II software automatically generates interface logic in  
LEs for a parallel address and data interface to the UFM block. Other standard  
protocol interfaces such as SPI are also automatically generated in LE logic by the  
Quartus II software.  
f For more information about the UFM interface signals and the Quartus II LE-based  
alternate interfaces, refer to the User Flash Memory in MAX V Devices chapter.  
December 2010 Altera Corporation  
MAX V Device Handbook  
2–24  
Chapter 2: MAX V Architecture  
User Flash Memory Block  
UFM Block to Logic Array Interface  
The UFM block is a small partition of the flash memory that contains the CFM block,  
as shown in Figure 2–1 and Figure 2–2. The UFM block for the 5M40Z, 5M80Z,  
5M160Z, and 5M240Z devices is located on the left side of the device adjacent to the  
left most LAB column. The UFM blocks for the 5M570Z, 5M1270Z, and 5M2210Z  
devices are located at the bottom left of the device. The UFM input and output signals  
interface to all types of interconnects (R4 interconnect, C4 interconnect, and  
DirectLink interconnect to/from adjacent LAB rows). The UFM signals can also be  
driven from global clocks, GCLK[3..0]. The interface regions for the 5M40Z, 5M80Z,  
5M160Z, and 5M240Z devices are shown in Figure 2–16. The interface regions for  
5M570Z, 5M1270Z, and 5M2210Z devices are shown in Figure 2–17.  
Figure 2–16. 5M40Z, 5M80Z, 5M160Z, and 5M240Z UFM Block LAB Row Interface (Note 1), (2)  
CFM Block  
UFM Block  
LAB  
PROGRAM  
ERASE  
OSC_ENA  
LAB  
RTP_BUSY  
DRDin  
DRCLK  
DRSHFT  
ARin  
ARCLK  
ARSHFT  
DRDout  
OSC  
LAB  
BUSY  
Notes to Figure 2–16:  
(1) The UFM block inputs and outputs can drive to and from all types of interconnects, not only DirectLink interconnects  
from adjacent row LABs.  
(2) Not applicable to the T144 package of the 5M240Z device.  
MAX V Device Handbook  
December 2010 Altera Corporation  
Chapter 2: MAX V Architecture  
2–25  
Core Voltage  
Figure 2–17. 5M240Z, 5M570Z, 5M1270Z, and 5M2210Z UFM Block LAB Row Interface (Note 1)  
CFM Block  
RTP_BUSY  
BUSY  
OSC  
DRDout  
DRDin  
LAB  
DRDCLK  
DRDSHFT  
ARDin  
PROGRAM  
ERASE  
OSC_ENA  
ARCLK  
ARSHFT  
LAB  
UFM Block  
LAB  
Note to Figure 2–17:  
(1) Only applicable to the T144 package of the 5M240Z device.  
Core Voltage  
The MAX V architecture supports a 1.8-V core voltage on the VCCINT supply. You must  
use a 1.8-V VCC external supply to power the VCCINTpins.  
Figure 2–18. Core Voltage Feature in MAX V Devices  
1.8-V Core  
1.8-V on  
Voltage  
VCCINT Pins  
MAX V Device  
December 2010 Altera Corporation  
MAX V Device Handbook  
2–26  
Chapter 2: MAX V Architecture  
I/O Structure  
I/O Structure  
IOEs support many features, including:  
LVTTL, LVCMOS, LVDS, and RSDS I/O standards  
3.3-V, 32-bit, 33-MHz PCI compliance  
JTAG boundary-scan test (BST) support  
Programmable drive strength control  
Weak pull-up resistors during power-up and in system programming  
Slew-rate control  
Tri-state buffers with individual output enable control  
Bus-hold circuitry  
Programmable pull-up resistors in user mode  
Unique output enable per pin  
Open-drain outputs  
Schmitt trigger inputs  
Fast I/O connection  
Programmable input delay  
MAX V device IOEs contain a bidirectional I/O buffer. Figure 2–19 shows the MAX V  
IOE structure. Registers from adjacent LABs can drive to or be driven from the IOE’s  
bidirectional I/O buffers. The Quartus II software automatically attempts to place  
registers in the adjacent LAB with fast I/O connection to achieve the fastest possible  
clock-to-output and registered output enable timing. When the fast input registers  
option is enabled, the Quartus II software automatically routes the register to  
guarantee zero hold time. You can set timing assignments in the Quartus II software  
to achieve desired I/O timing.  
MAX V Device Handbook  
December 2010 Altera Corporation  
Chapter 2: MAX V Architecture  
2–27  
I/O Structure  
Fast I/O Connection  
A dedicated fast I/O connection from the adjacent LAB to the IOEs within an I/O  
block provides faster output delays for clock-to-output and tPD propagation delays.  
This connection exists for data output signals, not output enable signals or input  
signals. Figure 2–20, Figure 2–21, and Figure 2–22 illustrate the fast I/O connection.  
Figure 2–19. IOE Structure for MAX V Devices  
Data_in Fast_out  
Data_out OE  
DEV_OE  
Optional  
PCI Clamp (1)  
Programmable  
Pull-Up (2)  
V
V
CCIO  
CCIO  
I/O Pin  
Optional Bus-Hold  
Circuit  
Drive Strength Control  
Open-Drain Output  
Slew Control  
Optional Schmitt  
Trigger Input  
Programmable  
Input Delay  
Notes to Figure 2–19:  
(1) Available only in I/O bank 3 of 5M1270Z and 5M2210Z devices.  
(2) The programmable pull-up resistor is active during power-up, in-system programming (ISP), and if the device is unprogrammed.  
December 2010 Altera Corporation  
MAX V Device Handbook  
2–28  
Chapter 2: MAX V Architecture  
I/O Structure  
I/O Blocks  
The IOEs are located in I/O blocks around the periphery of the MAX V device. There  
are up to seven IOEs per row I/O block and up to four IOEs per column I/O block.  
Each column or row I/O block interfaces with its adjacent LAB and MultiTrack  
interconnect to distribute signals throughout the device. The row I/O blocks drive  
row, column, or DirectLink interconnects. The column I/O blocks drive column  
interconnects.  
1
5M40Z, 5M80Z, 5M160Z, and 5M240Z devices have a maximum of five IOEs per row  
I/O block.  
Figure 2–20 shows how a row I/O block connects to the logic array.  
Figure 2–20. Row I/O Block Connection to the Interconnect (Note 1)  
R4 Interconnects  
C4 Interconnects  
I/O Block Local  
Interconnect  
data_out  
[6..0]  
7
OE  
[6..0]  
7
LAB  
Row  
I/O Block  
fast_out  
[6..0]  
7
7
data_in[6..0]  
Direct Link  
Interconnect  
from Adjacent LAB  
Direct Link  
Interconnect  
Row I/O Block  
Contains up to  
Seven IOEs  
to Adjacent LAB  
LAB Column  
clock [3..0]  
LAB Local  
Interconnect  
Note to Figure 2–20:  
(1) Each of the seven IOEs in the row I/O block can have one data_outor fast_outoutput, one OEoutput, and  
one data_ininput.  
MAX V Device Handbook  
December 2010 Altera Corporation  
Chapter 2: MAX V Architecture  
2–29  
I/O Structure  
Figure 2–21 shows how a column I/O block connects to the logic array.  
Figure 2–21. Column I/O Block Connection to the Interconnect (Note 1)  
Column I/O  
Block Contains  
Up To 4 IOEs  
Column I/O Block  
data_in  
[3..0]  
data_out  
[3..0]  
OE  
[3..0]  
fast_out  
[3..0]  
4
4
4
4
I/O Block  
Local Interconnect  
Fast I/O  
Interconnect  
Path  
LAB Column  
Clock [3..0]  
R4 Interconnects  
LAB  
LAB  
LAB  
LAB Local  
Interconnect  
LAB Local  
Interconnect  
LAB Local  
Interconnect  
C4 Interconnects  
C4 Interconnects  
Note to Figure 2–21:  
(1) Each of the four IOEs in the column I/O block can have one data_outor fast_outoutput, one OEoutput, and  
one data_ininput.  
I/O Standards and Banks  
Table 2–4 lists the I/O standards supported by MAX V devices.  
Table 2–4. MAX V I/O Standards (Part 1 of 2)  
Output Supply Voltage (VCCIO  
)
I/O Standard  
Type  
(V)  
3.3-V LVTTL/LVCMOS  
2.5-V LVTTL/LVCMOS  
1.8-V LVTTL/LVCMOS  
1.5-V LVCMOS  
Single-ended  
Single-ended  
Single-ended  
Single-ended  
Single-ended  
3.3  
2.5  
1.8  
1.5  
1.2  
1.2-V LVCMOS  
December 2010 Altera Corporation  
MAX V Device Handbook  
2–30  
Chapter 2: MAX V Architecture  
I/O Structure  
Table 2–4. MAX V I/O Standards (Part 2 of 2)  
I/O Standard  
Output Supply Voltage (VCCIO  
)
Type  
(V)  
3.3-V PCI (1)  
LVDS (2)  
Single-ended  
Differential  
Differential  
3.3  
2.5  
2.5  
RSDS (3)  
Notes to Table 2–4:  
(1) The 3.3-V PCI compliant I/O is supported in Bank 3 of the 5M1270Z and 5M2210Z devices.  
(2) MAX V devices only support emulated LVDS output using a three resistor network (LVDS_E_3R).  
(3) MAX V devices only support emulated RSDS output using a three resistor network (RSDS_E_3R).  
The 5M40Z, 5M80Z, 5M160Z, 5M240Z, and 5M570Z devices support two I/O banks,  
as shown in Figure 2–22. Each of these banks support all the LVTTL, LVCMOS, LVDS,  
and RSDS standards shown in Table 2–4. PCI compliant I/O is not supported in these  
devices and banks.  
Figure 2–22. I/O Banks for 5M40Z, 5M80Z, 5M160Z, 5M240Z, and 5M570Z Devices (Note 1), (2)  
I/O Bank 1  
I/O Bank 2  
All I/O Banks Support  
3.3-V LVTTL/LVCMOS,  
2.5-V LVTTL/LVCMOS,  
1.8-V LVTTL/LVCMOS,  
1.5-V LVCMOS,  
1.2-V LVCMOS (3),  
LVDS (4),  
RSDS (5)  
Notes to Figure 2–22:  
(1) Figure 2–22 is a top view of the silicon die.  
(2) Figure 2–22 is a graphical representation only. Refer to the pin list and the Quartus II software for exact pin locations.  
(3) This I/O standard is not supported in Bank 1.  
(4) Emulated LVDS output using a three resistor network (LVDS_E_3R).  
(5) Emulated RSDS output using a three resistor network (RSDS_E_3R).  
MAX V Device Handbook  
December 2010 Altera Corporation  
Chapter 2: MAX V Architecture  
2–31  
I/O Structure  
The 5M1270Z and 5M2210Z devices support four I/O banks, as shown in Figure 2–23.  
Each of these banks support all of the LVTTL, LVCMOS, LVDS, and RSDS standards  
shown in Table 2–4. PCI compliant I/O is supported in Bank 3. Bank 3 supports the  
PCI clamping diode on inputs and PCI drive compliance on outputs. You must use  
Bank 3 for designs requiring PCI compliant I/O pins. The Quartus II software  
automatically places I/O pins in this bank if assigned with the PCI I/O standard.  
Figure 2–23. I/O Banks for 5M1270Z and 5M2210Z Devices (Note 1), (2)  
I/O Bank 2  
Also Supports  
the 3.3-V PCI  
I/O Standard  
All I/O Banks Support  
3.3-V LVTTL/LVCMOS,  
2.5-V LVTTL/LVCMOS,  
1.8-V LVTTL/LVCMOS,  
1.5-V LVCMOS,  
I/O Bank 1  
I/O Bank 3  
1.2-V LVCMOS (3),  
LVDS (4),  
RSDS(5)  
I/O Bank 4  
Notes to Figure 2–23:  
(1) Figure 2–23 is a top view of the silicon die.  
(2) Figure 2–23 is a graphical representation only. Refer to the pin list and the Quartus II software for exact pin locations.  
(3) This I/O standard is not supported in Bank 1.  
(4) Emulated LVDS output using a three resistor network (LVDS_E_3R).  
(5) Emulated RSDS output using a three resistor network (RSDS_E_3R).  
Each I/O bank has dedicated VCCIO pins that determine the voltage standard support  
in that bank. A single device can support 1.2-V, 1.5-V, 1.8-V, 2.5-V, and 3.3-V interfaces;  
each individual bank can support a different standard. Each I/O bank can support  
multiple standards with the same VCCIO for input and output pins. For example, when  
VCCIO is 3.3 V, Bank 3 can support LVTTL, LVCMOS, and 3.3-V PCI. VCCIO powers  
both the input and output buffers in MAX V devices.  
The JTAG pins for MAX V devices are dedicated pins that cannot be used as regular  
I/O pins. The pins TMS, TDI, TDO, and TCKsupport all the I/O standards shown in  
Table 2–4 on page 2–29 except for PCI and 1.2-V LVCMOS. These pins reside in Bank 1  
for all MAX V devices and their I/O standard support is controlled by the VCCIO  
setting for Bank 1.  
December 2010 Altera Corporation  
MAX V Device Handbook  
2–32  
Chapter 2: MAX V Architecture  
I/O Structure  
PCI Compliance  
The MAX V 5M1270Z and 5M2210Z devices are compliant with PCI applications as  
well as all 3.3-V electrical specifications in the PCI Local Bus Specification Revision 2.2.  
These devices are also large enough to support PCI intellectual property (IP) cores.  
Table 2–5 shows the MAX V device speed grades that meet the PCI timing  
specifications.  
Table 2–5. 3.3-V PCI Electrical Specifications and PCI Timing Support for MAX V Devices  
Device  
5M1270Z  
5M2210Z  
33-MHz PCI  
All Speed Grades  
All Speed Grades  
LVDS and RSDS Channels  
The MAX V device supports emulated LVDS and RSDS outputs on both row and  
column I/O banks. You can configure the rows and columns as emulated LVDS or  
RSDS output buffers that use two single-ended output buffers with three external  
resistor networks.  
Table 2–6. LVDS and RSDS Channels supported in MAX V Devices (Note 1)  
Device  
5M40Z  
64 MBGA  
10 eTx  
10 eTx  
64 EQFP  
20 eTx  
20 eTx  
20 eTx  
68 MBGA  
100 TQFP 100 MBGA 144 TQFP  
256 FBGA  
324 FBGA  
5M80Z  
20 eTx  
20 eTx  
20 eTx  
33 eTx  
33 eTx  
33 eTx  
28 eTx  
5M160Z  
5M240Z  
5M570Z  
5M1270Z  
5M2210Z  
33 eTx  
33 eTx  
28 eTx  
49 eTx  
49 eTx  
42 eTx  
75 eTx  
90 eTx  
83 eTx  
115 eTx  
115 eTx  
Note to Table 2–6:  
(1) eTx = emulated LVDS output buffers (LVDS_E_3R) or emulated RSDS output buffers (RSDS_E_3R).  
Schmitt Trigger  
The input buffer for each MAX V device I/O pin has an optional Schmitt trigger  
setting for the 3.3-V and 2.5-V standards. The Schmitt trigger allows input buffers to  
respond to slow input edge rates with a fast output edge rate. Most importantly,  
Schmitt triggers provide hysteresis on the input buffer, preventing slow-rising noisy  
input signals from ringing or oscillating on the input signal driven into the logic array.  
This provides system noise tolerance on MAX V inputs, but adds a small, nominal  
input delay.  
The JTAG input pins (TMS, TCK, and TDI) have Schmitt trigger buffers that are always  
enabled.  
1
The TCKinput is susceptible to high pulse glitches when the input signal fall time is  
greater than 200 ns for all I/O standards.  
MAX V Device Handbook  
December 2010 Altera Corporation  
Chapter 2: MAX V Architecture  
2–33  
I/O Structure  
Output Enable Signals  
Each MAX V IOE output buffer supports output enable signals for tri-state control.  
The output enable signal can originate from the GCLK[3..0]global signals or from the  
MultiTrack interconnect. The MultiTrack interconnect routes output enable signals  
and allows for a unique output enable for each output or bidirectional pin.  
MAX V devices also provide a chip-wide output enable pin (DEV_OE) to control the  
output enable for every output pin in the design. An option set before compilation in  
the Quartus II software controls this pin. This chip-wide output enable uses its own  
routing resources and does not use any of the four global resources. If this option is  
turned on, all outputs on the chip operate normally when DEV_OEis asserted. When  
the pin is deasserted, all outputs are tri-stated. If this option is turned off, the DEV_OE  
pin is disabled when the device operates in user mode and is available as a user I/O  
pin.  
Programmable Drive Strength  
The output buffer for each MAX V device I/O pin has two levels of programmable  
drive strength control for each of the LVTTL and LVCMOS I/O standards.  
Programmable drive strength provides system noise reduction control for high  
performance I/O designs. Although a separate slew-rate control feature exists, using  
the lower drive strength setting provides signal slew-rate control to reduce system  
noise and signal overshoot without the large delay adder associated with the  
slew-rate control feature. Table 2–7 lists the possible settings for the I/O standards  
with drive strength control. The Quartus II software uses the maximum current  
strength as the default setting. The PCI I/O standard is always set at 20 mA with no  
alternate setting.  
Table 2–7. Programmable Drive Strength (Note 1)  
I/O Standard  
3.3-V LVTTL  
IOH/IOL Current Strength Setting (mA)  
16  
8
8
3.3-V LVCMOS  
4
14  
7
2.5-V LVTTL/LVCMOS  
1.8-V LVTTL/LVCMOS  
1.5-V LVCMOS  
6
3
4
2
1.2-V LVCMOS  
3
Note to Table 2–7:  
(1) The IOH current strength numbers shown are for a condition of a VOUT = VOH minimum, where the VOH  
minimum is specified by the I/O standard. The IOL current strength numbers shown are for a condition of a  
VOUT = VOL maximum, where the VOL maximum is specified by the I/O standard. For 2.5-V LVTTL/LVCMOS,  
the IOH condition is VOUT = 1.7 V and the IOL condition is VOUT = 0.7 V.  
1
The programmable drive strength feature can be used simultaneously with the  
slew-rate control feature.  
December 2010 Altera Corporation  
MAX V Device Handbook  
2–34  
Chapter 2: MAX V Architecture  
I/O Structure  
Slew-Rate Control  
The output buffer for each MAX V device I/O pin has a programmable output  
slew-rate control that can be configured for low noise or high-speed performance. A  
faster slew rate provides high-speed transitions for high-performance systems.  
However, these fast transitions may introduce noise transients into the system. A slow  
slew rate reduces system noise, but adds a nominal output delay to rising and falling  
edges. The lower the voltage standard (for example, 1.8-V LVTTL) the larger the  
output delay when slow slew is enabled. Each I/O pin has an individual slew-rate  
control, allowing you to specify the slew rate on a pin-by-pin basis. The slew-rate  
control affects both the rising and falling edges. If no slew-rate control is specified, the  
Quartus II software defaults to a fast slew rate.  
1
The slew-rate control feature can be used simultaneously with the programmable  
drive strength feature.  
Open-Drain Output  
MAX V devices provide an optional open-drain (equivalent to open-collector) output  
for each I/O pin. This open-drain output enables the device to provide system-level  
control signals (for example, interrupt and write enable signals) that can be asserted  
by any of several devices. This output can also provide an additional wired-OR plane.  
Programmable Ground Pins  
Each unused I/O pin on MAX V devices can be used as an additional ground pin.  
This programmable ground feature does not require the use of the associated LEs in  
the device. In the Quartus II software, unused pins can be set as programmable GND  
on a global default basis or they can be individually assigned. Unused pins also have  
the option of being set as tri-stated input pins.  
Bus-Hold  
Each MAX V device I/O pin provides an optional bus-hold feature. The bus-hold  
circuitry can hold the signal on an I/O pin at its last-driven state. Because the bus-  
hold feature holds the last-driven state of the pin until the next input signal is present,  
an external pull-up or pull-down resistor is not necessary to hold a signal level when  
the bus is tri-stated.  
The bus-hold circuitry also pulls un-driven pins away from the input threshold  
voltage where noise can cause unintended high-frequency switching. You can select  
this feature individually for each I/O pin. The bus-hold output will drive no higher  
than VCCIO to prevent overdriving signals. If the bus-hold feature is enabled, the  
device cannot use the programmable pull-up option.  
The bus-hold circuitry is only active after the device has fully initialized. The bus-hold  
circuit captures the value on the pin present at the moment user mode is entered.  
MAX V Device Handbook  
December 2010 Altera Corporation  
Chapter 2: MAX V Architecture  
2–35  
I/O Structure  
Programmable Pull-Up Resistor  
Each MAX V device I/O pin provides an optional programmable pull-up resistor  
during user mode. If you enable this feature for an I/O pin, the pull-up resistor holds  
the output to the VCCIO level of the output pin’s bank.  
1
1
The programmable pull-up resistor feature should not be used at the same time as the  
bus-hold feature on a given I/O pin.  
The programmable pull-up resistor is active during power-up, ISP, and if the device is  
unprogrammed.  
Programmable Input Delay  
The MAX V IOE includes a programmable input delay that is activated to ensure zero  
hold times. A path where a pin directly drives a register, with minimal routing  
between the two, may require the delay to ensure zero hold time. However, a path  
where a pin drives a register through long routing or through combinational logic  
may not require the delay to achieve a zero hold time. The Quartus II software uses  
this delay to ensure zero hold times when needed.  
MultiVolt I/O Interface  
The MAX V architecture supports the MultiVolt I/O interface feature, which allows  
MAX V devices in all packages to interface with systems of different supply voltages.  
The devices have one set of VCCpins for internal operation (VCCINT), and up to four  
sets for input buffers and I/O output driver buffers (VCCIO), depending on the  
number of I/O banks available in the devices where each set of VCCIOpins powers one  
I/O bank. The 5M40Z, 5M80Z, 5M160Z, 5M240Z, and 5M570Z devices each have two  
I/O banks while the 5M1270Z and 5M2210Z devices each have four I/O banks.  
Connect VCCIOpins to either a 1.2-, 1.5-, 1.8-, 2.5-, or 3.3-V power supply, depending  
on the output requirements. The output levels are compatible with systems of the  
same voltage as the power supply (that is, when VCCIOpins are connected to a 1.5-V  
power supply, the output levels are compatible with 1.5-V systems). When VCCIOpins  
are connected to a 3.3-V power supply, the output high is 3.3 V and is compatible with  
3.3-V or 5.0-V systems. Table 2–8 summarizes MAX V MultiVolt I/O support.  
Table 2–8. MultiVolt I/O Support in MAX V Devices (Part 1 of 2) (Note 1)  
Input Signal  
1.5 V 1.8 V 2.5 V 3.3 V  
Output Signal  
5.0 V 1.2 V 1.5 V 1.8 V 2.5 V 3.3 V 5.0 V  
VCCIO (V)  
1.2 V  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
1.2  
1.5  
1.8  
2.5  
v
v (2) v (2)  
v (3) v (3) v (3)  
December 2010 Altera Corporation  
MAX V Device Handbook  
2–36  
Chapter 2: MAX V Architecture  
Document Revision History  
Table 2–8. MultiVolt I/O Support in MAX V Devices (Part 2 of 2) (Note 1)  
Input Signal  
VCCIO (V)  
Output Signal  
5.0 V 1.2 V 1.5 V 1.8 V 2.5 V 3.3 V 5.0 V  
1.2 V  
1.5 V 1.8 V 2.5 V 3.3 V  
v (4)  
v
v (5) v (6) v (6) v (6) v (6)  
v
v (7)  
3.3  
Notes to Table 2–8:  
(1) To drive inputs higher than VCCIO but less than 4.0 V including the overshoot, disable the I/O clamp diode. However, to drive 5.0-V signals to  
the device, enable the I/O clamp diode to prevent VI from rising above 4.0 V. Use an external diode if the I/O pin does not support the clamp  
diode.  
(2) When VCCIO = 1.8 V, a MAX V device can drive a 1.2-V or 1.5-V device with 1.8-V tolerant inputs.  
(3) When VCCIO = 2.5 V, a MAX V device can drive a 1.2-V, 1.5-V, or 1.8-V device with 2.5-V tolerant inputs.  
(4) When VCCIO = 3.3 V and a 2.5-V input signal feeds an input pin, the VCCIO supply current will be slightly larger than expected.  
(5) MAX V devices can be 5.0-Vtolerant with the use of an external resistor and the internal I/Oclamp diode on the 5M1270Z and 5M2210Z devices.  
Use an external clamp diode if the internal clamp diode is not available.  
(6) When VCCIO = 3.3 V, a MAX V device can drive a 1.2-V, 1.5-V, 1.8-V, or 2.5-V device with 3.3-V tolerant inputs.  
(7) When VCCIO = 3.3 V, a MAX V device can drive a device with 5.0-V TTL inputs but not 5.0-V CMOS inputs. For 5.0-V CMOS, open-drain setting  
with internal I/O clamp diode (available only on 5M1270Z and 5M2210Z devices) and external resistor is required. Use an external clamp diode  
if the internal clamp diode is not available.  
Document Revision History  
Table 2–9 lists the revision history for this chapter.  
Table 2–9. Document Revision History  
Date  
Version  
Changes  
December 2010  
1.0  
Initial release.  
MAX V Device Handbook  
December 2010 Altera Corporation  
3. DC and Switching Characteristics for  
MAX V Devices  
May 2011  
MV51003-1.2  
MV51003-1.2  
This chapter covers the electrical and switching characteristics for MAX® V devices.  
Electrical characteristics include operating conditions and power consumptions. This  
chapter also describes the timing model and specifications.  
You must consider the recommended DC and switching conditions described in this  
chapter to maintain the highest possible performance and reliability of the MAX V  
devices.  
This chapter contains the following sections:  
“Operating Conditions” on page 3–1  
“Power Consumption” on page 3–10  
“Timing Model and Specifications” on page 3–10  
Operating Conditions  
Table 3–1 through Table 3–15 on page 3–9 list information about absolute maximum  
ratings, recommended operating conditions, DC electrical characteristics, and other  
specifications for MAX V devices.  
Absolute Maximum Ratings  
Table 3–1 lists the absolute maximum ratings for the MAX V device family.  
Table 3–1. Absolute Maximum Ratings for MAX V Devices (Note 1), (2)  
Symbol  
VCCINT  
Parameter  
Internal supply voltage  
I/O supply voltage  
Conditions  
Minimum  
–0.5  
Maximum  
2.4  
Unit  
V
With respect to ground  
VCCIO  
VI  
–0.5  
4.6  
V
DC input voltage  
–0.5  
4.6  
V
IOUT  
TSTG  
TAMB  
DC output current, per pin  
Storage temperature  
Ambient temperature  
–25  
25  
mA  
°C  
°C  
No bias  
–65  
150  
Under bias (3)  
–65  
135  
TQFP and BGA packages  
under bias  
TJ  
Junction temperature  
135  
°C  
Notes to Table 3–1:  
(1) For more information, refer to the Operating Requirements for Altera Devices Data Sheet.  
(2) Conditions beyond those listed in Table 3–1 may cause permanent damage to a device. Additionally, device operation at the absolute maximum  
ratings for extended periods of time may have adverse affects on the device.  
(3) For more information about “under bias” conditions, refer to Table 3–2.  
© 2011 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.  
and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective holders as described at  
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but  
reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any  
information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device  
specifications before relying on any published information and before placing orders for products or services.  
MAX V Device Handbook  
May 2011  
Subscribe  
3–2  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Operating Conditions  
Recommended Operating Conditions  
Table 3–2 lists recommended operating conditions for the MAX V device family.  
Table 3–2. Recommended Operating Conditions for MAX V Devices  
Symbol  
Parameter  
Conditions  
Minimum  
Maximum  
Unit  
1.8-V supply voltage for internal logic and  
in-system programming (ISP)  
VCCINT (1)  
MAX V devices  
1.71  
1.89  
V
Supply voltage for I/O buffers, 3.3-V  
operation  
3.00  
2.375  
1.71  
3.60  
2.625  
1.89  
V
V
V
V
V
Supply voltage for I/O buffers, 2.5-V  
operation  
Supply voltage for I/O buffers, 1.8-V  
operation  
VCCIO (1)  
Supply voltage for I/O buffers, 1.5-V  
operation  
1.425  
1.14  
1.575  
1.26  
Supply voltage for I/O buffers, 1.2-V  
operation  
VI  
Input voltage  
(2), (3), (4)  
–0.5  
0
4.0  
VCCIO  
85  
V
VO  
Output voltage  
V
Commercial range  
Industrial range  
Extended range (5)  
0
°C  
°C  
°C  
TJ  
Operating junction temperature  
–40  
–40  
100  
125  
Notes to Table 3–2:  
(1) MAX V device ISP and/or user flash memory (UFM) programming using JTAG or logic array is not guaranteed outside the recommended  
operating conditions (for example, if brown-out occurs in the system during a potential write/program sequence to the UFM, Altera recommends  
that you read back the UFM contents and verify it against the intended write data).  
(2) The minimum DC input is –0.5 V. During transitions, the inputs may undershoot to –2.0 V for input currents less than 100 mA and periods  
shorter than 20 ns.  
(3) During transitions, the inputs may overshoot to the voltages shown below based on the input duty cycle. The DC case is equivalent to 100%  
duty cycle. For more information about 5.0-V tolerance, refer to the Using MAX V Devices in Multi-Voltage Systems chapter.  
VIN  
Max. Duty Cycle  
4.0 V 100% (DC)  
4.1 V 90%  
4.2 V 50%  
4.3 V 30%  
4.4 V 17%  
4.5 V 10%  
(4) All pins, including the clock, I/O, and JTAG pins, may be driven before VCCINT and VCCIO are powered.  
(5) For the extended temperature range of 100 to 125°C, MAX V UFM programming (erase/write) is only supported using the JTAG interface. UFM  
programming using the logic array interface is not guaranteed in this range.  
MAX V Device Handbook  
May 2011 Altera Corporation  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
3–3  
Operating Conditions  
Programming/Erasure Specifications  
Table 3–3 lists the programming/erasure specifications for the MAX V device family.  
Table 3–3. Programming/Erasure Specifications for MAX V Devices  
Parameter  
Erase and reprogram cycles  
Note to Table 3–3:  
Block  
Minimum  
Typical  
Maximum  
1000 (1)  
100  
Unit  
UFM  
Configuration flash memory (CFM)  
Cycles  
Cycles  
(1) This value applies to the commercial grade devices. For the industrial grade devices, the value is 100 cycles.  
DC Electrical Characteristics  
Table 3–4 lists DC electrical characteristics for the MAX V device family.  
Table 3–4. DC Electrical Characteristics for MAX V Devices (Note 1) (Part 1 of 2)  
Symbol  
Parameter  
Conditions  
Minimum  
Typical  
Maximum  
Unit  
II  
Input pin leakage current VI = VCCIO max to 0 V (2)  
–10  
10  
µA  
Tri-stated I/O pin leakage  
VO = VCCIO max to 0 V (2)  
current  
IOZ  
–10  
25  
27  
25  
10  
µA  
µA  
µA  
µA  
5M40Z, 5M80Z, 5M160Z, and  
5M240Z (Commercial grade)  
(4), (5)  
90  
5M240Z (Commercial grade)  
(6)  
96  
5M40Z, 5M80Z, 5M160Z, and  
5M240Z (Industrial grade)  
(5), (7)  
VCCINT supply current  
(standby) (3)  
139  
ICCSTANDBY  
5M240Z (Industrial grade) (6)  
27  
27  
152  
96  
µA  
µA  
5M570Z (Commercial grade)  
(4)  
5M570Z (Industrial grade) (7)  
5M1270Z and 5M2210Z  
VCCIO = 3.3 V  
27  
2
152  
µA  
mA  
mV  
mV  
400  
190  
Hysteresis for Schmitt  
trigger input (9)  
VSCHMITT (8)  
VCCIO = 2.5 V  
VCCINT supply current  
during power-up (10)  
ICCPOWERUP  
MAX V devices  
40  
mA  
VCCIO = 3.3 V (11)  
VCCIO = 2.5 V (11)  
5
25  
40  
k  
k  
k  
k  
k  
10  
25  
45  
80  
Value of I/O pin pull-up  
resistor during user  
mode and ISP  
RPULLUP  
V
CCIO = 1.8 V (11)  
VCCIO = 1.5 V (11)  
CCIO = 1.2 V (11)  
60  
95  
V
130  
May 2011 Altera Corporation  
MAX V Device Handbook  
3–4  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Operating Conditions  
Table 3–4. DC Electrical Characteristics for MAX V Devices (Note 1) (Part 2 of 2)  
Symbol  
Parameter  
Conditions  
Minimum  
Typical  
Maximum  
Unit  
I/O pin pull-up resistor  
current when I/O is  
unprogrammed  
IPULLUP  
300  
µA  
Input capacitance for  
user I/O pin  
CIO  
8
8
pF  
pF  
Input capacitance for  
dual-purpose GCLK/user  
I/O pin  
CGCLK  
Notes to Table 3–4:  
(1) Typical values are for TA = 25°C, VCCINT = 1.8 V and VCCIO = 1.2, 1.5, 1.8, 2.5, or 3.3 V.  
(2) This value is specified for normal device operation. The value may vary during power-up. This applies to all VCCIO settings (3.3, 2.5, 1.8, 1.5,  
and 1.2 V).  
(3) VI = ground, no load, and no toggling inputs.  
(4) Commercial temperature ranges from 0°C to 85°C with the maximum current at 85°C.  
(5) Not applicable to the T144 package of the 5M240Z device.  
(6) Only applicable to the T144 package of the 5M240Z device.  
(7) Industrial temperature ranges from –40°C to 100°C with the maximum current at 100°C.  
(8) This value applies to commercial and industrial range devices. For extended temperature range devices, the VSCHMITT typical value is 300 mV  
for VCCIO = 3.3 V and 120 mV for VCCIO = 2.5 V.  
(9) The TCKinput is susceptible to high pulse glitches when the input signal fall time is greater than 200 ns for all I/O standards.  
(10) This is a peak current value with a maximum duration of tCONFIG time.  
(11) Pin pull-up resistance values will lower if an external source drives the pin higher than VCCIO  
.
MAX V Device Handbook  
May 2011 Altera Corporation  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
3–5  
Operating Conditions  
Output Drive Characteristics  
Figure 3–1 shows the typical drive strength characteristics of MAX V devices.  
Figure 3–1. Output Drive Characteristics of MAX V Devices (Note 1)  
MAX V Output Drive IOH Characteristics  
(Maximum Drive Strength)  
MAX V Output Drive IOL Characteristics  
(Maximum Drive Strength)  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
3.3-V VCCIO  
3.3-V VCCIO  
2.5-V VCCIO  
2.5-V VCCIO  
1.8-V VCCIO  
1.8-V VCCIO  
1.5-V VCCIO  
1.2-V VCCIO (2)  
1.5-V VCCIO  
1.2-V VCCIO (2)  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Voltage (V)  
Voltage (V)  
MAX V Output Drive IOL Characteristics  
(Minimum Drive Strength)  
MAX V Output Drive IOH Characteristics  
(Minimum Drive Strength)  
30  
25  
20  
15  
10  
5
35  
3.3-V VCCIO  
3.3-V VCCIO  
30  
25  
20  
15  
10  
5
2.5-V VCCIO  
2.5-V VCCIO  
1.8-V VCCIO  
1.5-V VCCIO  
1.8-V VCCIO  
1.5-V VCCIO  
0
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Voltage (V)  
Voltage (V)  
Notes to Figure 3–1:  
(1) The DC output current per pin is subject to the absolute maximum rating of Table 3–1 on page 3–1.  
(2) 1.2-V VCCIO is only applicable to the maximum drive strength.  
I/O Standard Specifications  
Table 3–5 through Table 3–13 on page 3–8 list the I/O standard specifications for the  
MAX V device family.  
Table 3–5. 3.3-V LVTTL Specifications for MAX V Devices  
Symbol  
VCCIO  
Parameter  
I/O supply voltage  
Conditions  
Minimum  
3.0  
Maximum  
3.6  
Unit  
V
VIH  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
1.7  
4.0  
V
VIL  
–0.5  
2.4  
0.8  
V
VOH  
IOH = –4 mA (1)  
IOL = 4 mA (1)  
V
VOL  
0.45  
V
Note to Table 3–5:  
(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the  
MAX V Device Architecture chapter.  
May 2011 Altera Corporation  
MAX V Device Handbook  
3–6  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Operating Conditions  
Table 3–6. 3.3-V LVCMOS Specifications for MAX V Devices  
Symbol  
VCCIO  
Parameter  
I/O supply voltage  
Conditions  
Minimum  
3.0  
Maximum  
3.6  
Unit  
V
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
1.7  
4.0  
V
–0.5  
0.8  
V
V
CCIO = 3.0,  
IOH = –0.1 mA (1)  
CCIO = 3.0,  
IOL = 0.1 mA (1)  
VOH  
High-level output voltage  
Low-level output voltage  
VCCIO – 0.2  
V
V
V
VOL  
0.2  
Note to Table 3–6:  
(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the  
MAX V Device Architecture chapter.  
Table 3–7. 2.5-V I/O Specifications for MAX V Devices  
Symbol  
VCCIO  
Parameter  
I/O supply voltage  
Conditions  
Minimum  
2.375  
1.7  
Maximum  
2.625  
4.0  
Unit  
V
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
V
–0.5  
2.1  
0.7  
V
IOH = –0.1 mA (1)  
IOH = –1 mA (1)  
IOH = –2 mA (1)  
IOL = 0.1 mA (1)  
IOL = 1 mA (1)  
IOL = 2 mA (1)  
V
VOH  
High-level output voltage  
Low-level output voltage  
2.0  
V
1.7  
V
0.2  
V
VOL  
0.4  
V
0.7  
V
Note to Table 3–7:  
(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the  
MAX V Device Architecture chapter.  
Table 3–8. 1.8-V I/O Specifications for MAX V Devices  
Symbol  
VCCIO  
Parameter  
I/O supply voltage  
Conditions  
Minimum  
1.71  
Maximum  
1.89  
Unit  
V
VIH  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
0.65 × VCCIO  
–0.3  
2.25 (2)  
0.35 × VCCIO  
V
VIL  
V
VOH  
IOH = –2 mA (1)  
IOL = 2 mA (1)  
VCCIO – 0.45  
V
VOL  
0.45  
V
Notes to Table 3–8:  
(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the  
MAX V Device Architecture chapter.  
(2) This maximum VIH reflects the JEDEC specification. The MAX V input buffer can tolerate a VIH maximum of 4.0, as specified by the VI parameter  
in Table 3–2 on page 3–2.  
MAX V Device Handbook  
May 2011 Altera Corporation  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
3–7  
Operating Conditions  
Table 3–9. 1.5-V I/O Specifications for MAX V Devices  
Symbol  
VCCIO  
Parameter  
I/O supply voltage  
Conditions  
Minimum  
1.425  
Maximum  
1.575  
Unit  
V
VIH  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
0.65 × VCCIO  
–0.3  
VCCIO + 0.3 (2)  
0.35 × VCCIO  
V
VIL  
V
VOH  
IOH = –2 mA (1)  
IOL = 2 mA (1)  
0.75 × VCCIO  
V
VOL  
0.25 × VCCIO  
V
Notes to Table 3–9:  
(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the  
MAX V Device Architecture chapter.  
(2) This maximum VIH reflects the JEDEC specification. The MAX V input buffer can tolerate a VIH maximum of 4.0, as specified by the VI parameter  
in Table 3–2 on page 3–2.  
Table 3–10. 1.2-V I/O Specifications for MAX V Devices  
Symbol  
VCCIO  
Parameter  
I/O supply voltage  
Conditions  
Minimum  
1.14  
Maximum  
1.26  
Unit  
V
VIH  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
0.8 × VCCIO  
–0.3  
VCCIO + 0.3  
0.25 × VCCIO  
V
VIL  
V
VOH  
IOH = –2 mA (1)  
IOL = 2 mA (1)  
0.75 × VCCIO  
V
VOL  
0.25 × VCCIO  
V
Note to Table 3–10:  
(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the  
MAX V Device Architecture chapter.  
Table 3–11. 3.3-V PCI Specifications for MAX V Devices (Note 1)  
Symbol  
VCCIO  
Parameter  
I/O supply voltage  
Conditions  
Minimum  
3.0  
Typical  
3.3  
Maximum  
3.6  
Unit  
V
V
V
V
V
VIH  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
0.5 × VCCIO  
–0.5  
VCCIO + 0.5  
0.3 × VCCIO  
VIL  
VOH  
IOH = –500 µA  
IOL = 1.5 mA  
0.9 × VCCIO  
VOL  
0.1 × VCCIO  
Note to Table 3–11:  
(1) 3.3-V PCI I/O standard is only supported in Bank 3 of the 5M1270Z and 5M2210Z devices.  
Table 3–12. LVDS Specifications for MAX V Devices (Note 1)  
Symbol  
VCCIO  
Parameter  
I/O supply voltage  
Conditions  
Minimum  
2.375  
247  
Typical  
2.5  
Maximum  
2.625  
Unit  
V
VOD  
VOS  
Differential output voltage swing  
Output offset voltage  
600  
mV  
V
1.125  
1.25  
1.375  
Note to Table 3–12:  
(1) Supports emulated LVDS output using a three-resistor network (LVDS_E_3R).  
May 2011 Altera Corporation  
MAX V Device Handbook  
3–8  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Operating Conditions  
Table 3–13. RSDS Specifications for MAX V Devices (Note 1)  
Symbol  
VCCIO  
Parameter  
I/O supply voltage  
Conditions  
Minimum  
2.375  
247  
Typical  
2.5  
Maximum  
2.625  
Unit  
V
VOD  
VOS  
Differential output voltage swing  
Output offset voltage  
600  
mV  
V
1.125  
1.25  
1.375  
Note to Table 3–13:  
(1) Supports emulated RSDS output using a three-resistor network (RSDS_E_3R).  
Bus Hold Specifications  
Table 3–14 lists the bus hold specifications for the MAX V device family.  
Table 3–14. Bus Hold Specifications for MAX V Devices  
VCCIO Level  
1.8 V  
Parameter  
Conditions  
1.2 V  
1.5 V  
2.5 V  
3.3 V  
Unit  
Min Max Min Max Min Max Min Max Min Max  
Low sustaining  
current  
VIN > VIL (maximum) 10  
VIN < VIH (minimum) –10  
20  
–20  
30  
–30  
50  
–50  
70  
–70  
µA  
µA  
µA  
High sustaining  
current  
Low overdrive  
current  
0 V < VIN < VCCIO  
0 V < VIN < VCCIO  
130  
–130  
160  
–160  
200  
–200  
300  
–300  
500  
High overdrive  
current  
–500 µA  
MAX V Device Handbook  
May 2011 Altera Corporation  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
3–9  
Operating Conditions  
Power-Up Timing  
Table 3–15 lists the power-up timing characteristics for the MAX V device family.  
Table 3–15. Power-Up Timing for MAX V Devices  
Symbol  
Parameter  
Device  
Temperature Range  
Commercial and industrial  
Extended  
Min  
Typ  
Max  
200  
300  
200  
300  
200  
300  
200  
300  
300  
400  
300  
400  
300  
400  
450  
500  
450  
500  
Unit  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
5M40Z  
Commercial and industrial  
Extended  
5M80Z  
5M160Z  
Commercial and industrial  
Extended  
Commercial and industrial  
Extended  
5M240Z (2)  
5M240Z (3)  
5M570Z  
The amount of time from  
when minimum VCCINT is  
reached until the device  
enters user mode (1)  
Commercial and industrial  
Extended  
tCONFIG  
Commercial and industrial  
Extended  
Commercial and industrial  
Extended  
5M1270Z (4)  
5M1270Z (5)  
5M2210Z  
Commercial and industrial  
Extended  
Commercial and industrial  
Extended  
Notes to Table 3–15:  
(1) For more information about power-on reset (POR) trigger voltage, refer to the Hot Socketing and Power-On Reset in MAX V Devices chapter.  
(2) Not applicable to the T144 package of the 5M240Z device.  
(3) Only applicable to the T144 package of the 5M240Z device.  
(4) Not applicable to the F324 package of the 5M1270Z device.  
(5) Only applicable to the F324 package of the 5M1270Z device.  
May 2011 Altera Corporation  
MAX V Device Handbook  
3–10  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Power Consumption  
Power Consumption  
You can use the Altera® PowerPlay Early Power Estimator and PowerPlay Power  
Analyzer to estimate the device power.  
f For more information about these power analysis tools, refer to the PowerPlay Early  
Power Estimator for Altera CPLDs User Guide and the PowerPlay Power Analysis chapter  
in volume 3 of the Quartus II Handbook.  
Timing Model and Specifications  
MAX V devices timing can be analyzed with the Altera Quartus® II software, a variety  
of industry-standard EDA simulators and timing analyzers, or with the timing model  
shown in Figure 3–2.  
MAX V devices have predictable internal delays that allow you to determine the  
worst-case timing of any design. The software provides timing simulation,  
point-to-point delay prediction, and detailed timing analysis for device-wide  
performance evaluation.  
Figure 3–2. Timing Model for MAX V Devices  
Output and Output Enable  
Data Delay  
tR4  
tIODR  
tIOE  
Data-In/LUT Chain  
Output Routing  
Delay  
User  
Flash  
Memory  
Logic Element  
LUT Delay  
Output  
Delay  
tOD  
tXZ  
tZX  
tC4  
tLUT  
tCOMB  
tFASTIO  
tCO  
tSU  
tH  
tPRE  
tCLR  
Input Routing  
Delay  
I/O Input Delay  
tIN  
Register Control  
Delay  
I/O Pin  
tDL  
tC  
From Adjacent LE  
tGLOB  
INPUT  
Combinational Path Delay  
I/O Pin  
Global Input Delay  
To Adjacent LE  
Register Delays  
Data-Out  
You can derive the timing characteristics of any signal path from the timing model  
and parameters of a particular device. You can calculate external timing parameters,  
which represent pin-to-pin timing delays, as the sum of the internal parameters.  
f For more information, refer to AN629: Understanding Timing in Altera CPLDs.  
MAX V Device Handbook  
May 2011 Altera Corporation  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
3–11  
Timing Model and Specifications  
Preliminary and Final Timing  
This section describes the performance, internal, external, and UFM timing  
specifications. All specifications are representative of the worst-case supply voltage  
and junction temperature conditions.  
Timing models can have either preliminary or final status. The Quartus II software  
issues an informational message during the design compilation if the timing models  
are preliminary. Table 3–16 lists the status of the MAX V device timing models.  
Preliminary status means the timing model is subject to change. Initially, timing  
numbers are created using simulation results, process data, and other known  
parameters. These tests are used to make the preliminary numbers as close to the  
actual timing parameters as possible.  
Final timing numbers are based on actual device operation and testing. These  
numbers reflect the actual performance of the device under the worst-case voltage  
and junction temperature conditions.  
Table 3–16. Timing Model Status for MAX V Devices  
Device  
5M40Z  
Final  
v
5M80Z  
v
5M160Z  
5M240Z  
5M570Z  
5M1270Z  
5M2210Z  
v
v
v
v
v
Performance  
Table 3–17 lists the MAX V device performance for some common designs. All  
performance values were obtained with the Quartus II software compilation of  
megafunctions.  
Table 3–17. Device Performance for MAX V Devices (Part 1 of 2)  
Performance  
Resources Used  
5M40Z/ 5M80Z/ 5M160Z/  
Resource  
Used  
Design Size and  
Function  
5M1270Z/ 5M2210Z  
5M240Z/ 5M570Z  
Unit  
UFM  
Blocks  
Mode  
LEs  
C4  
C5, I5  
C4  
C5, I5  
16-bit counter (1)  
64-bit counter (1)  
16-to-1 multiplexer  
32-to-1 multiplexer  
16-bit XORfunction  
16  
64  
11  
24  
5
0
0
0
0
0
184.1  
83.2  
17.4  
12.5  
9.0  
118.3  
80.5  
20.4  
25.3  
16.1  
247.5  
154.8  
8.0  
201.1  
125.8  
9.3  
MHz  
MHz  
ns  
LE  
9.0  
11.4  
8.2  
ns  
6.6  
ns  
16-bit decoder with  
single address line  
5
0
9.2  
16.1  
6.6  
8.2  
ns  
May 2011 Altera Corporation  
MAX V Device Handbook  
3–12  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Timing Model and Specifications  
Table 3–17. Device Performance for MAX V Devices (Part 2 of 2)  
Resources Used  
Performance  
5M40Z/ 5M80Z/ 5M160Z/  
5M1270Z/ 5M2210Z  
Resource  
Used  
Design Size and  
Function  
5M240Z/ 5M570Z  
Unit  
UFM  
Blocks  
Mode  
LEs  
C4  
C5, I5  
C4  
C5, I5  
512 × 16  
512 × 16  
None  
3
1
1
10.0  
9.7  
10.0  
9.7  
10.0  
8.0  
10.0  
8.0  
MHz  
MHz  
SPI (2)  
37  
UFM  
Parallel  
(3)  
I2C (3)  
512 × 8  
73  
1
1
(4)  
(4)  
(4)  
(4)  
MHz  
kHz  
512 × 16  
142  
100 (5)  
100 (5)  
100 (5)  
100 (5)  
Notes to Table 3–17:  
(1) This design is a binary loadable up counter.  
(2) This design is configured for read-only operation in Extended mode. Read and write ability increases the number of logic elements (LEs) used.  
(3) This design is configured for read-only operation. Read and write ability increases the number of LEs used.  
(4) This design is asynchronous.  
(5) The I2C megafunction is verified in hardware up to 100-kHz serial clock line rate.  
Internal Timing Parameters  
Internal timing parameters are specified on a speed grade basis independent of device  
density. Table 3–18 through Table 3–25 on page 3–19 list the MAX V device internal  
timing microparameters for LEs, input/output elements (IOEs), UFM blocks, and  
MultiTrack interconnects.  
f For more information about each internal timing microparameters symbol, refer to  
AN629: Understanding Timing in Altera CPLDs.  
Table 3–18. LE Internal Timing Microparameters for MAX V Devices (Part 1 of 2)  
5M40Z/ 5M80Z/ 5M160Z/  
5M1270Z/ 5M2210Z  
5M240Z/ 5M570Z  
Symbol  
Parameter  
Unit  
C4  
C5, I5  
Max  
C4  
C5, I5  
Min  
Max  
Min  
Min  
Max  
Min  
Max  
LE combinational look-up  
table (LUT) delay  
tLUT  
1,215  
2,247  
742  
914  
ps  
tCOMB  
tCLR  
Combinational path delay  
LE register clear delay  
LE register preset delay  
401  
401  
243  
545  
545  
309  
309  
309  
192  
381  
381  
236  
ps  
ps  
ps  
tPRE  
LE register setup time  
before clock  
tSU  
tH  
260  
0
321  
0
271  
0
333  
0
ps  
ps  
ps  
LE register hold time  
after clock  
LE register  
clock-to-output delay  
tCO  
380  
494  
305  
376  
MAX V Device Handbook  
May 2011 Altera Corporation  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
3–13  
Timing Model and Specifications  
Table 3–18. LE Internal Timing Microparameters for MAX V Devices (Part 2 of 2)  
5M40Z/ 5M80Z/ 5M160Z/  
5M240Z/ 5M570Z  
5M1270Z/ 5M2210Z  
C4 C5, I5  
Symbol  
Parameter  
Unit  
C4  
C5, I5  
Min  
253  
Max  
Min  
339  
Max  
Min  
216  
Max  
Min  
266  
Max  
Minimum clock high or  
low time  
tCLKHL  
tC  
ps  
ps  
Register control delay  
1,356  
1,741  
1,114  
1,372  
Table 3–19. IOE Internal Timing Microparameters for MAX V Devices  
5M40Z/ 5M80Z/ 5M160Z/  
5M240Z/ 5M570Z  
5M1270Z/ 5M2210Z  
C4 C5, I5  
Symbol  
Parameter  
Unit  
C4  
C5, I5  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Data output delay from  
adjacent LE to I/O block  
tFASTIO  
tIN  
170  
428  
207  
254  
ps  
ps  
I/O input pad and buffer  
delay  
907  
986  
920  
1,132  
2,430  
I/O input pad and buffer  
tGLOB (1) delay used as global  
2,261  
3,322  
1,974  
ps  
signal pin  
Internally generated  
tIOE  
530  
318  
1,410  
509  
374  
291  
460  
358  
ps  
ps  
ps  
output enable delay  
tDL  
Input routing delay  
Output delay buffer and  
pad delay  
tOD (2)  
1,319  
1,543  
1,383  
1,702  
Output buffer disable  
delay  
tXZ (3)  
tZX (4)  
1,045  
1,160  
1,276  
1,353  
982  
1,209  
1,604  
ps  
ps  
Output buffer enable  
delay  
1,303  
Notes to Table 3–19:  
(1) Delay numbers for tGLOB differ for each device density and speed grade. The delay numbers for tGLOB, shown in Table 3–19, are based on a 5M240Z  
device target.  
(2) For more information about delay adders associated with different I/O standards, drive strengths, and slew rates, refer to Table 3–34 on page 3–24  
and Table 3–35 on page 3–25.  
(3) For more information about tXZ delay adders associated with different I/O standards, drive strengths, and slew rates, refer to Table 3–22 on  
page 3–15 and Table 3–23 on page 3–15.  
(4) For more information about tZX delay adders associated with different I/O standards, drive strengths, and slew rates, refer to Table 3–20 on  
page 3–14 and Table 3–21 on page 3–14.  
May 2011 Altera Corporation  
MAX V Device Handbook  
3–14  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Timing Model and Specifications  
Table 3–20 through Table 3–23 list the adder delays for tZX and tXZ microparameters  
when using an I/O standard other than 3.3-V LVTTL with 16 mA drive strength.  
Table 3–20. tZX IOE Microparameter Adders for Fast Slew Rate for MAX V Devices  
5M40Z/ 5M80Z/ 5M160Z/  
5M1270Z/ 5M2210Z  
5M240Z/ 5M570Z  
Standard  
Unit  
C4  
C5, I5  
C4 C5, I5  
Min  
Max  
0
Min  
Max  
0
Min  
Max  
0
Min  
Max  
0
16 mA  
8 mA  
8 mA  
4 mA  
14 mA  
7 mA  
6 mA  
3 mA  
4 mA  
2 mA  
3 mA  
20 mA  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
3.3-V LVTTL  
72  
74  
101  
0
125  
0
0
0
3.3-V LVCMOS  
72  
74  
101  
155  
545  
721  
2012  
1590  
3269  
2860  
–18  
155  
155  
125  
191  
671  
888  
126  
196  
608  
681  
1162  
1245  
1889  
72  
127  
197  
610  
685  
2.5-V LVTTL /  
LVCMOS  
1.8-V LVTTL /  
LVCMOS  
2477  
1957  
4024  
3520  
–22  
1157  
1244  
1856  
74  
1.5-V LVCMOS  
1.2-V LVCMOS  
3.3-V PCI  
LVDS  
126  
126  
127  
191  
RSDS  
127  
191  
Table 3–21. tZX IOE Microparameter Adders for Slow Slew Rate for MAX V Devices  
5M40Z/ 5M80Z/ 5M160Z/  
5M1270Z/ 5M2210Z  
C4 C5, I5  
5M240Z/ 5M570Z  
C5, I5  
Max  
Standard  
Unit  
C4  
Min  
Max  
5,951  
6,534  
5,951  
6,534  
9,110  
9,830  
21,800  
23,020  
39,120  
40,670  
69,505  
6,534  
Min  
Min  
Max  
6,012  
8,785  
6,012  
8,785  
10,072  
12,945  
21,185  
24,597  
34,517  
39,717  
55,800  
35  
Min  
Max  
5,743  
8,516  
5,743  
8,516  
9,803  
12,676  
20,916  
24,328  
34,248  
39,448  
55,531  
44  
16 mA  
8 mA  
8 mA  
4 mA  
14 mA  
7 mA  
6 mA  
3 mA  
4 mA  
2 mA  
3 mA  
20 mA  
6,063  
6,662  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
3.3-V LVTTL  
6,063  
3.3-V LVCMOS  
6,662  
9,237  
2.5-V LVTTL /  
LVCMOS  
9,977  
21,787  
23,037  
39,067  
40,617  
70,461  
6,662  
1.8-V LVTTL /  
LVCMOS  
1.5-V LVCMOS  
1.2-V LVCMOS  
3.3-V PCI  
MAX V Device Handbook  
May 2011 Altera Corporation  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
3–15  
Timing Model and Specifications  
Table 3–22. tXZ IOE Microparameter Adders for Fast Slew Rate for MAX V Devices  
5M40Z/ 5M80Z/ 5M160Z/  
5M1270Z/ 5M2210Z  
5M240Z/ 5M570Z  
Standard  
Unit  
C4  
C5, I5  
C4 C5, I5  
Min  
Max  
0
Min  
Max  
0
Min  
Max  
0
Min  
Max  
0
16 mA  
8 mA  
8 mA  
4 mA  
14 mA  
7 mA  
6 mA  
3 mA  
4 mA  
2 mA  
3 mA  
20 mA  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
3.3-V LVTTL  
–69  
0
–69  
0
–74  
0
–91  
0
3.3-V LVCMOS  
–69  
–7  
–69  
–10  
–69  
37  
–74  
–46  
–82  
–7  
–91  
–56  
2.5-V LVTTL /  
LVCMOS  
–66  
45  
–101  
–8  
1.8-V LVTTL /  
LVCMOS  
34  
25  
119  
339  
464  
817  
80  
147  
418  
571  
1,006  
99  
166  
190  
300  
–69  
–7  
155  
179  
283  
–69  
–10  
–10  
1.5-V LVCMOS  
1.2-V LVCMOS  
3.3-V PCI  
LVDS  
–46  
–46  
–56  
–56  
RSDS  
–7  
Table 3–23. tXZ IOE Microparameter Adders for Slow Slew Rate for MAX V Devices  
5M40Z/ 5M80Z/ 5M160Z/  
5M1270Z/ 5M2210Z  
5M240Z/ 5M570Z  
Standard  
Unit  
C4  
C5, I5  
C4 C5, I5  
Min  
Max  
171  
112  
171  
112  
213  
166  
441  
496  
765  
903  
1,159  
112  
Min  
Max  
174  
116  
174  
116  
213  
166  
438  
494  
755  
897  
Min  
Max  
73  
Min  
Max  
–132  
553  
16 mA  
8 mA  
8 mA  
4 mA  
14 mA  
7 mA  
6 mA  
3 mA  
4 mA  
2 mA  
3 mA  
20 mA  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
3.3-V LVTTL  
758  
73  
–132  
553  
3.3-V LVCMOS  
758  
32  
–173  
509  
2.5-V LVTTL /  
LVCMOS  
714  
96  
–109  
758  
1.8-V LVTTL /  
LVCMOS  
963  
238  
1,319  
400  
303  
33  
1.5-V LVCMOS  
1,114  
195  
1.2-V LVCMOS  
3.3-V PCI  
1,130  
116  
373  
May 2011 Altera Corporation  
MAX V Device Handbook  
3–16  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Timing Model and Specifications  
1
The default slew rate setting for MAX V devices in the Quartus II design software is  
“fast”.  
Table 3–24. UFM Block Internal Timing Microparameters for MAX V Devices (Part 1 of 2)  
5M40Z/ 5M80Z/ 5M160Z/  
5M1270Z/ 5M2210Z  
5M240Z/ 5M570Z  
Symbol  
Parameter  
Unit  
C4  
C5, I5  
C4 C5, I5  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Address register clock  
period  
tACLK  
100  
100  
100  
100  
ns  
ns  
Address register shift  
signal setup to address  
register clock  
tASU  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
Address register shift  
signal hold to address  
register clock  
tAH  
ns  
ns  
Address register data in  
setup to address register  
clock  
tADS  
Address register data in  
hold from address  
register clock  
tADH  
tDCLK  
tDSS  
20  
100  
60  
20  
100  
60  
20  
100  
60  
20  
100  
60  
ns  
ns  
ns  
Data register clock period  
Data register shift signal  
setup to data register  
clock  
Data register shift signal  
hold from data register  
clock  
tDSH  
20  
20  
20  
20  
20  
20  
20  
20  
ns  
ns  
Data register data in  
setup to data register  
clock  
tDDS  
Data register data in hold  
from data register clock  
tDDH  
tDP  
20  
0
20  
0
20  
0
20  
0
ns  
ns  
Program signal to data  
clock hold time  
Maximum delay between  
program rising edge to  
UFM busysignal rising  
edge  
tPB  
960  
960  
960  
960  
ns  
Minimum delay allowed  
from UFM busysignal  
going low to program  
signal going low  
tBP  
20  
20  
20  
20  
ns  
µs  
Maximum length of busy  
pulse during a program  
tPPMX  
100  
100  
100  
100  
MAX V Device Handbook  
May 2011 Altera Corporation  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
3–17  
Timing Model and Specifications  
Table 3–24. UFM Block Internal Timing Microparameters for MAX V Devices (Part 2 of 2)  
5M40Z/ 5M80Z/ 5M160Z/  
5M1270Z/ 5M2210Z  
5M240Z/ 5M570Z  
Symbol  
Parameter  
Unit  
C4  
C5, I5  
C4 C5, I5  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Minimum erasesignal  
to address clock hold  
time  
tAE  
0
0
0
0
ns  
ns  
Maximum delay between  
the eraserising edge to  
the UFM busysignal  
rising edge  
tEB  
20  
960  
20  
960  
20  
960  
20  
960  
Minimum delay allowed  
from the UFM busy  
signal going low to  
tBE  
ns  
erasesignal going low  
Maximum length of busy  
pulse during an erase  
tEPMX  
500  
5
500  
5
500  
5
500  
5
ms  
ns  
Delay from data register  
clock to data register  
output  
tDCO  
Delay from OSC_ENA  
signal reaching UFM to  
rising clock of OSC  
leaving the UFM  
tOE  
180  
65  
180  
65  
180  
65  
180  
65  
ns  
ns  
ns  
Maximum read access  
time  
tRA  
Maximum delay between  
the OSC_ENArising edge  
to the erase/program  
signal rising edge  
tOSCS  
250  
250  
250  
250  
Minimum delay allowed  
from the  
erase/programsignal  
going low to OSC_ENA  
signal going low  
tOSCH  
250  
250  
250  
250  
ns  
May 2011 Altera Corporation  
MAX V Device Handbook  
3–18  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Timing Model and Specifications  
Figure 3–3 through Figure 3–5 show the read, program, and erase waveforms for  
UFM block timing parameters listed in Table 3–24.  
Figure 3–3. UFM Read Waveform  
ARShft  
tAH  
9 Address Bits  
tACLK  
tASU  
ARClk  
ARDin  
DRShft  
DRClk  
tADH  
tADS  
16 Data Bits  
tDSH  
tDCLK  
tDSS  
tDCO  
DRDin  
DRDout  
OSC_ENA  
Program  
Erase  
Busy  
Figure 3–4. UFM Program Waveform  
9 Address Bits  
tACLK  
ARShft  
ARClk  
tAH  
tADH  
tASU  
ARDin  
DRShft  
DRClk  
DRDin  
DRDout  
tADS  
16 Data Bits  
tDCLK  
tDSH  
tDSS  
tDDH  
tDDS  
tOSCH  
tOSCS  
OSC_ENA  
Program  
tPB  
Erase  
tBP  
Busy  
tPPMX  
MAX V Device Handbook  
May 2011 Altera Corporation  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
3–19  
Timing Model and Specifications  
Figure 3–5. UFM Erase Waveform  
9 Address Bits  
ARShft  
ARClk  
tACLK  
tAH  
tASU  
tADH  
ARDin  
DRShft  
DRClk  
DRDin  
DRDout  
tADS  
OSC_ENA  
tOSCS  
tOSCH  
Program  
Erase  
tEB  
tBE  
Busy  
tEPMX  
Table 3–25. Routing Delay Internal Timing Microparameters for MAX V Devices  
5M40Z/ 5M80Z/ 5M160Z/  
5M240Z/ 5M570Z  
5M1270Z/ 5M2210Z  
Routing  
Unit  
C4  
C5, I5  
C4  
C5, I5  
Min  
Max  
860  
Min  
Max  
Min  
Max  
561  
445  
731  
Min  
Max  
690  
548  
899  
tC4  
1,973  
1,479  
2,947  
ps  
ps  
ps  
tR4  
655  
tLOCAL  
1,143  
External Timing Parameters  
External timing parameters are specified by device density and speed grade. All  
external I/O timing parameters shown are for the 3.3-V LVTTL I/O standard with the  
maximum drive strength and fast slew rate. For external I/O timing using standards  
other than LVTTL or for different drive strengths, use the I/O standard input and  
output delay adders in Table 3–32 on page 3–23 through Table 3–36 on page 3–25.  
f For more information about each external timing parameters symbol, refer to  
AN629: Understanding Timing in Altera CPLDs.  
May 2011 Altera Corporation  
MAX V Device Handbook  
3–20  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Timing Model and Specifications  
Table 3–26 lists the external I/O timing parameters for the 5M40Z, 5M80Z, 5M160Z,  
and 5M240Z devices.  
Table 3–26. Global Clock External I/O Timing Parameters for the 5M40Z, 5M80Z, 5M160Z, and 5M240Z Devices  
(Note 1), (2)  
C4  
C5, I5  
Symbol  
tPD1  
Parameter  
Condition  
Unit  
Min  
Max  
7.9  
5.8  
Min  
Max  
14.0  
8.5  
Worst case pin-to-pin delay through one LUT  
Best case pin-to-pin delay through one LUT  
Global clock setup time  
10 pF  
10 pF  
ns  
ns  
ns  
ns  
ns  
ps  
ps  
tPD2  
tSU  
tH  
2.4  
0
4.6  
0
Global clock hold time  
tCO  
tCH  
tCL  
Global clock to output delay  
Global clock high time  
10 pF  
2.0  
253  
253  
6.6  
2.0  
339  
339  
8.6  
Global clock low time  
Minimum global clock period for  
16-bit counter  
tCNT  
fCNT  
5.4  
8.4  
ns  
Maximum global clock frequency for 16-bit  
counter  
184.1  
118.3  
MHz  
Notes to Table 3–26:  
(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global  
clock input pin maximum frequency.  
(2) Not applicable to the T144 package of the 5M240Z device.  
Table 3–27 lists the external I/O timing parameters for the T144 package of the  
5M240Z device.  
Table 3–27. Global Clock External I/O Timing Parameters for the 5M240Z Device (Note 1), (2)  
C4  
C5, I5  
Symbol  
tPD1  
Parameter  
Condition  
Unit  
Min  
Max  
9.5  
5.7  
Min  
Max  
17.7  
8.5  
Worst case pin-to-pin delay through one LUT  
Best case pin-to-pin delay through one LUT  
Global clock setup time  
10 pF  
10 pF  
ns  
ns  
ns  
ns  
ns  
ps  
ps  
tPD2  
tSU  
tH  
2.2  
0
4.4  
0
Global clock hold time  
tCO  
tCH  
tCL  
Global clock to output delay  
Global clock high time  
10 pF  
2.0  
253  
253  
6.7  
2.0  
339  
339  
8.7  
Global clock low time  
Minimum global clock period for 16-bit  
counter  
tCNT  
fCNT  
5.4  
8.4  
ns  
Maximum global clock frequency for 16-bit  
counter  
184.1  
118.3  
MHz  
Notes to Table 3–27:  
(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global  
clock input pin maximum frequency.  
(2) Only applicable to the T144 package of the 5M240Z device.  
MAX V Device Handbook  
May 2011 Altera Corporation  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
3–21  
Timing Model and Specifications  
Table 3–28 lists the external I/O timing parameters for the 5M570Z device.  
Table 3–28. Global Clock External I/O Timing Parameters for the 5M570Z Device (Note 1)  
C4  
C5, I5  
Symbol  
tPD1  
Parameter  
Condition  
Unit  
Min  
Max  
9.5  
5.7  
Min  
Max  
17.7  
8.5  
Worst case pin-to-pin delay through one LUT  
Best case pin-to-pin delay through one LUT  
Global clock setup time  
10 pF  
10 pF  
ns  
ns  
ns  
ns  
ns  
ps  
ps  
tPD2  
tSU  
tH  
2.2  
0
4.4  
0
Global clock hold time  
tCO  
tCH  
tCL  
Global clock to output delay  
Global clock high time  
10 pF  
2.0  
253  
253  
6.7  
2.0  
339  
339  
8.7  
Global clock low time  
Minimum global clock period for 16-bit  
counter  
tCNT  
fCNT  
5.4  
8.4  
ns  
Maximum global clock frequency for 16-bit  
counter  
184.1  
118.3  
MHz  
Note to Table 3–28:  
(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global  
clock input pin maximum frequency.  
Table 3–29 lists the external I/O timing parameters for the 5M1270Z device.  
Table 3–29. Global Clock External I/O Timing Parameters for the 5M1270Z Device (Note 1), (2)  
C4  
C5, I5  
Symbol  
tPD1  
Parameter  
Condition  
Unit  
Min  
Max  
8.1  
4.8  
Min  
Max  
10.0  
5.9  
Worst case pin-to-pin delay through one LUT  
Best case pin-to-pin delay through one LUT  
Global clock setup time  
10 pF  
10 pF  
ns  
ns  
ns  
ns  
ns  
ps  
ps  
tPD2  
tSU  
tH  
1.5  
0
1.9  
0
Global clock hold time  
tCO  
tCH  
tCL  
Global clock to output delay  
Global clock high time  
10 pF  
2.0  
216  
216  
5.9  
2.0  
266  
266  
7.3  
Global clock low time  
Minimum global clock period for 16-bit  
counter  
tCNT  
fCNT  
4.0  
5.0  
ns  
Maximum global clock frequency for 16-bit  
counter  
247.5  
201.1  
MHz  
Notes to Table 3–29:  
(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global  
clock input pin maximum frequency.  
(2) Not applicable to the F324 package of the 5M1270Z device.  
May 2011 Altera Corporation  
MAX V Device Handbook  
3–22  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Timing Model and Specifications  
Table 3–30 lists the external I/O timing parameters for the F324 package of the  
5M1270Z device.  
Table 3–30. Global Clock External I/O Timing Parameters for the 5M1270Z Device (Note 1), (2)  
C4  
C5, I5  
Symbol  
tPD1  
Parameter  
Condition  
Unit  
Min  
Max  
9.1  
4.8  
Min  
Max  
11.2  
5.9  
Worst case pin-to-pin delay through one LUT  
Best case pin-to-pin delay through one LUT  
Global clock setup time  
10 pF  
10 pF  
ns  
ns  
ns  
ns  
ns  
ps  
ps  
tPD2  
tSU  
tH  
1.5  
0
1.9  
0
Global clock hold time  
tCO  
tCH  
tCL  
Global clock to output delay  
Global clock high time  
10 pF  
2.0  
216  
216  
6.0  
2.0  
266  
266  
7.4  
Global clock low time  
Minimum global clock period for 16-bit  
counter  
tCNT  
fCNT  
4.0  
5.0  
ns  
Maximum global clock frequency for 16-bit  
counter  
247.5  
201.1  
MHz  
Notes to Table 3–30:  
(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global  
clock input pin maximum frequency.  
(2) Only applicable to the F324 package of the 5M1270Z device.  
Table 3–31 lists the external I/O timing parameters for the 5M2210Z device.  
Table 3–31. Global Clock External I/O Timing Parameters for the 5M2210Z Device (Note 1)  
C4  
C5, I5  
Symbol  
tPD1  
Parameter  
Condition  
Unit  
Min  
Max  
9.1  
4.8  
Min  
Max  
11.2  
5.9  
Worst case pin-to-pin delay through one LUT  
Best case pin-to-pin delay through one LUT  
Global clock setup time  
10 pF  
10 pF  
ns  
ns  
ns  
ns  
ns  
ps  
ps  
tPD2  
tSU  
tH  
1.5  
0
1.9  
0
Global clock hold time  
tCO  
tCH  
tCL  
Global clock to output delay  
Global clock high time  
10 pF  
2.0  
216  
216  
6.0  
2.0  
266  
266  
7.4  
Global clock low time  
Minimum global clock period for 16-bit  
counter  
tCNT  
fCNT  
4.0  
5.0  
ns  
Maximum global clock frequency for 16-bit  
counter  
247.5  
201.1  
MHz  
Note to Table 3–31:  
(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global  
clock input pin maximum frequency.  
MAX V Device Handbook  
May 2011 Altera Corporation  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
3–23  
Timing Model and Specifications  
External Timing I/O Delay Adders  
The I/O delay timing parameters for the I/O standard input and output adders and  
the input delays are specified by speed grade, independent of device density.  
Table 3–32 through Table 3–36 on page 3–25 list the adder delays associated with I/O  
pins for all packages. If you select an I/O standard other than 3.3-V LVTTL, add the  
input delay adder to the external tSU timing parameters listed in Table 3–26 on  
page 3–20 through Table 3–31. If you select an I/O standard other than 3.3-V LVTTL  
with 16 mA drive strength and fast slew rate, add the output delay adder to the  
external tCO and tPD listed in Table 3–26 on page 3–20 through Table 3–31.  
Table 3–32. External Timing Input Delay Adders for MAX V Devices  
5M40Z/ 5M80Z/ 5M160Z/  
5M240Z/ 5M570Z  
5M1270Z/ 5M2210Z  
C4 C5, I5  
I/O Standard  
Unit  
C4  
C5, I5  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Without Schmitt  
Trigger  
0
0
0
0
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
3.3-V LVTTL  
With Schmitt  
Trigger  
387  
0
442  
0
480  
0
591  
0
Without Schmitt  
Trigger  
3.3-V LVCMOS  
With Schmitt  
Trigger  
387  
42  
442  
42  
480  
246  
787  
695  
1,334  
2,324  
0
591  
303  
968  
855  
Without Schmitt  
Trigger  
2.5-V LVTTL /  
LVCMOS  
With Schmitt  
Trigger  
429  
378  
681  
1,055  
0
483  
368  
658  
1.8-V LVTTL / Without Schmitt  
LVCMOS  
Trigger  
Without Schmitt  
Trigger  
1.5-V LVCMOS  
1,642  
2,860  
0
Without Schmitt  
Trigger  
1.2-V LVCMOS  
3.3-V PCI  
1,010  
0
Without Schmitt  
Trigger  
Table 3–33. External Timing Input Delay tGLOB Adders for GCLK Pins for MAX V Devices (Part 1 of 2)  
5M40Z/ 5M80Z/ 5M160Z/  
5M1270Z/ 5M2210Z  
5M240Z/ 5M570Z  
I/O Standard  
Unit  
C4  
C5, I5  
C4  
C5, I5  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Without Schmitt  
Trigger  
0
0
0
0
ps  
ps  
3.3-V LVTTL  
With Schmitt  
Trigger  
387  
442  
400  
493  
May 2011 Altera Corporation  
MAX V Device Handbook  
3–24  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Timing Model and Specifications  
Table 3–33. External Timing Input Delay tGLOB Adders for GCLK Pins for MAX V Devices (Part 2 of 2)  
5M40Z/ 5M80Z/ 5M160Z/  
5M1270Z/ 5M2210Z  
5M240Z/ 5M570Z  
I/O Standard  
Unit  
C4  
C5, I5  
C4  
C5, I5  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Without Schmitt  
Trigger  
0
0
0
0
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
3.3-V LVCMOS  
With Schmitt  
Trigger  
387  
242  
429  
378  
681  
1,055  
0
442  
242  
483  
368  
658  
400  
287  
550  
459  
1,111  
2,067  
7
493  
353  
677  
565  
Without Schmitt  
Trigger  
2.5-V LVTTL /  
LVCMOS  
With Schmitt  
Trigger  
1.8-V LVTTL / Without Schmitt  
LVCMOS  
Trigger  
Without Schmitt  
Trigger  
1.5-V LVCMOS  
1,368  
2,544  
9
Without Schmitt  
Trigger  
1.2-V LVCMOS  
3.3-V PCI  
1,010  
0
Without Schmitt  
Trigger  
Table 3–34. External Timing Output Delay and tOD Adders for Fast Slew Rate for MAX V Devices  
5M40Z/ 5M80Z/ 5M160Z/  
5M1270Z/ 5M2210Z  
C4 C5, I5  
5M240Z/ 5M570Z  
I/O Standard  
Unit  
C4  
C5, I5  
Min  
Max  
0
Min  
Max  
0
Min  
Max  
0
Min  
Max  
0
16 mA  
8 mA  
8 mA  
4 mA  
14 mA  
7 mA  
6 mA  
3 mA  
4 mA  
2 mA  
3 mA  
20 mA  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
3.3-V LVTTL  
39  
58  
84  
104  
0
0
0
0
3.3-V LVCMOS  
39  
58  
84  
104  
195  
309  
909  
122  
196  
624  
686  
1,188  
1,279  
1,911  
39  
129  
188  
624  
694  
158  
251  
738  
850  
1,376  
1,517  
2,206  
4
2.5-V LVTTL / LVCMOS  
1.8-V LVTTL / LVCMOS  
1.5-V LVCMOS  
1,046  
1,694  
1,867  
2,715  
5
1,184  
1,280  
1,883  
58  
1.2-V LVCMOS  
3.3-V PCI  
LVDS  
122  
122  
129  
158  
158  
195  
RSDS  
129  
195  
MAX V Device Handbook  
May 2011 Altera Corporation  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
3–25  
Timing Model and Specifications  
Table 3–35. External Timing Output Delay and tOD Adders for Slow Slew Rate for MAX V Devices  
5M40Z/ 5M80Z/ 5M160Z/  
5M1270Z/ 5M2210Z  
5M240Z/ 5M570Z  
C5, I5  
Max  
I/O Standard  
Unit  
C4  
C4  
C5, I5  
Max  
Min  
Max  
5,913  
6,488  
5,913  
6,488  
9,088  
9,808  
21,758  
23,028  
39,068  
40,578  
69,332  
6,488  
Min  
Min  
Max  
6,612  
7,313  
6,612  
7,313  
10,021  
10,881  
21,134  
22,399  
34,499  
36,281  
55,796  
339  
Min  
16 mA  
8 mA  
8 mA  
4 mA  
14 mA  
7 mA  
6 mA  
3 mA  
4 mA  
2 mA  
3 mA  
20 mA  
6,043  
6,645  
6,043  
6,645  
9,222  
9,962  
21,782  
23,032  
39,032  
40,542  
70,257  
6,645  
6,293  
6,994  
6,293  
6,994  
9,702  
10,562  
20,815  
22,080  
34,180  
35,962  
55,477  
418  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
3.3-V LVTTL  
3.3-V LVCMOS  
2.5-V LVTTL / LVCMOS  
1.8-V LVTTL / LVCMOS  
1.5-V LVCMOS  
1.2-V LVCMOS  
3.3-V PCI  
Table 3–36. IOE Programmable Delays for MAX V Devices  
5M40Z/ 5M80Z/ 5M160Z/  
5M1270Z/ 5M2210Z  
C4 C5, I5  
5M240Z/ 5M570Z  
C5, I5  
Max  
Parameter  
Unit  
C4  
Min  
Max  
Min  
Min  
Max  
Min  
Max  
Input Delay from Pin to Internal  
Cells = 1  
1,858  
2,214  
616  
1,592  
1,960  
ps  
ps  
Input Delay from Pin to Internal  
Cells = 0  
569  
115  
142  
May 2011 Altera Corporation  
MAX V Device Handbook  
3–26  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Timing Model and Specifications  
Maximum Input and Output Clock Rates  
Table 3–37 and Table 3–38 list the maximum input and output clock rates for standard  
I/O pins in MAX V devices.  
Table 3–37. Maximum Input Clock Rate for I/Os for MAX V Devices  
5M40Z/ 5M80Z/ 5M160Z/  
5M240Z/ 5M570Z/5M1270Z/  
I/O Standard  
Unit  
5M2210Z  
C4, C5, I5  
304  
Without Schmitt Trigger  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
3.3-V LVTTL  
With Schmitt Trigger  
304  
Without Schmitt Trigger  
With Schmitt Trigger  
304  
3.3-V LVCMOS  
2.5-V LVTTL  
304  
Without Schmitt Trigger  
With Schmitt Trigger  
304  
304  
Without Schmitt Trigger  
With Schmitt Trigger  
304  
2.5-V LVCMOS  
304  
1.8-V LVTTL  
1.8-V LVCMOS  
1.5-V LVCMOS  
1.2-V LVCMOS  
3.3-V PCI  
Without Schmitt Trigger  
Without Schmitt Trigger  
Without Schmitt Trigger  
Without Schmitt Trigger  
Without Schmitt Trigger  
200  
200  
150  
120  
304  
Table 3–38. Maximum Output Clock Rate for I/Os for MAX V Devices  
5M40Z/ 5M80Z/ 5M160Z/  
5M240Z/ 5M570Z/5M1270Z/  
5M2210Z  
I/O Standard  
Unit  
C4, C5, I5  
304  
3.3-V LVTTL  
3.3-V LVCMOS  
2.5-V LVTTL  
2.5-V LVCMOS  
1.8-V LVTTL  
1.8-V LVCMOS  
1.5-V LVCMOS  
1.2-V LVCMOS  
3.3-V PCI  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
304  
304  
304  
200  
200  
150  
120  
304  
LVDS  
304  
RSDS  
200  
MAX V Device Handbook  
May 2011 Altera Corporation  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
3–27  
Timing Model and Specifications  
LVDS and RSDS Output Timing Specifications  
Table 3–39 lists the emulated LVDS output timing specifications for MAX V devices.  
Table 3–39. Emulated LVDS Output Timing Specifications for MAX V Devices  
5M40Z/ 5M80Z/ 5M160Z/  
5M240Z/ 5M570Z/5M1270Z/  
5M2210Z  
Parameter  
Mode  
Unit  
C4, C5, I5  
Min  
Max  
304  
304  
304  
304  
304  
304  
304  
304  
304  
304  
55  
10  
9  
8  
7  
6  
5  
4  
3  
2  
1  
45  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
%
Data rate (1), (2)  
tDUTY  
Total jitter (3)  
tRISE  
0.2  
UI  
450  
450  
ps  
tFALL  
ps  
Notes to Table 3–39:  
(1) The performance of the LVDS_E_3R transmitter system is limited by the lower of the two—the maximum data rate supported by LVDS_E_3R  
I/O buffer or 2x (FMAX of the ALTLVDS_TX instance). The actual performance of your LVDS_E_3R transmitter system must be attained through  
the Quartus II timing analysis of the complete design.  
(2) For the input clock pin to achieve 304 Mbps, use I/O standard with VCCIO of 2.5 V and above.  
(3) This specification is based on external clean clock source.  
May 2011 Altera Corporation  
MAX V Device Handbook  
3–28  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Timing Model and Specifications  
Table 3–40 lists the emulated RSDS output timing specifications for MAX V devices.  
Table 3–40. Emulated RSDS Output Timing Specifications for MAX V Devices  
5M40Z/ 5M80Z/ 5M160Z/  
5M240Z/ 5M570Z/5M1270Z/  
5M2210Z  
Parameter  
Mode  
Unit  
C4, C5, I5  
Min  
Max  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
55  
10  
9  
8  
7  
6  
5  
4  
3  
2  
1  
45  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
%
Data rate (1)  
tDUTY  
Total jitter (2)  
tRISE  
0.2  
UI  
450  
450  
ps  
tFALL  
ps  
Notes to Table 3–40:  
(1) For the input clock pin to achieve 200 Mbps, use I/O standard with VCCIO of 1.8 V and above.  
(2) This specification is based on external clean clock source.  
MAX V Device Handbook  
May 2011 Altera Corporation  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
3–29  
Timing Model and Specifications  
JTAG Timing Specifications  
Figure 3–6 shows the timing waveform for the JTAG signals for the MAX V device  
family.  
Figure 3–6. JTAG Timing Waveform for MAX V Devices  
TMS  
TDI  
t
JCP  
t
t
JPH  
JPSU  
t
t
JCL  
JCH  
TCK  
TDO  
t
t
t
JPXZ  
JPZX  
JPCO  
t
t
JSSU  
JSH  
Signal  
to be  
Captured  
t
t
t
JSXZ  
JSZX  
JSCO  
Signal  
to be  
Driven  
Table 3–41 lists the JTAG timing parameters and values for the MAX V device family.  
Table 3–41. JTAG Timing Parameters for MAX V Devices (Part 1 of 2)  
Symbol  
Parameter  
TCKclock period for VCCIO1 = 3.3 V  
TCKclock period for VCCIO1 = 2.5 V  
TCKclock period for VCCIO1 = 1.8 V  
TCKclock period for VCCIO1 = 1.5 V  
TCKclock high time  
Min  
55.5  
62.5  
100  
143  
20  
Max  
15  
15  
15  
25  
25  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tJCP (1)  
tJCH  
tJCL  
TCK clock low time  
20  
tJPSU  
tJPH  
JTAG port setup time (2)  
8
JTAG port hold time  
10  
tJPCO  
tJPZX  
tJPXZ  
tJSSU  
tJSH  
JTAG port clock to output (2)  
JTAG port high impedance to valid output (2)  
JTAG port valid output to high impedance (2)  
Capture register setup time  
8
Capture register hold time  
10  
tJSCO  
tJSZX  
Update register clock to output  
Update register high impedance to valid output  
May 2011 Altera Corporation  
MAX V Device Handbook  
3–30  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Document Revision History  
Table 3–41. JTAG Timing Parameters for MAX V Devices (Part 2 of 2)  
Symbol  
Parameter  
Min  
Max  
Unit  
tJSXZ  
Notes to Table 3–41:  
(1) Minimum clock period specified for 10 pF load on the TDOpin. Larger loads on TDOdegrades the maximum TCKfrequency.  
Update register valid output to high impedance  
25  
ns  
(2) This specification is shown for 3.3-V LVTTL/LVCMOS and 2.5-V LVTTL/LVCMOS operation of the JTAG pins. For 1.8-V LVTTL/LVCMOS and  
1.5-V LVCMOS operation, the tJPSU minimum is 6 ns and tJPCO, tJPZX, and tJPXZ are maximum values at 35 ns.  
Document Revision History  
Table 3–42 lists the revision history for this chapter.  
Table 3–42. Document Revision History  
Date  
May 2011  
Version  
1.2  
Changes  
Updated Table 3–2, Table 3–15, Table 3–16, and Table 3–33.  
Updated Table 3–37, Table 3–38, Table 3–39, and Table 3–40.  
Initial release.  
January 2011  
1.1  
December 2010  
1.0  
MAX V Device Handbook  
May 2011 Altera Corporation  

相关型号:

5M160ZM68C4N

Flash PLD, 7.9ns, 128-Cell, CMOS, PBGA68, 5 X 5 MM, 0.50 MM PITCH, LEAD FREE, MBGA-68
INTEL

5M160ZM68C5

Flash PLD, 14ns, 128-Cell, CMOS, PBGA68, 5 X 5 MM, 0.50 MM PITCH, MBGA-68
INTEL

5M160ZM68C5

Flash PLD, 14ns, 128-Cell, CMOS, PBGA68, 5 X 5 MM, 0.50 MM PITCH, MBGA-68
ALTERA

5M160ZM68C5N

Flash PLD, 14ns, 128-Cell, CMOS, PBGA68, 5 X 5 MM, 0.50 MM PITCH, LEAD FREE, MBGA-68
INTEL

5M160ZM68I5N

Flash PLD, 14ns, 128-Cell, CMOS, PBGA68, 5 X 5 MM, 0.50 MM PITCH, LEAD FREE, MBGA-68
ALTERA

5M160ZT100A5N

Flash PLD, 14ns, 128-Cell, CMOS, PQFP100,
INTEL

5M160ZT100C4N

Flash PLD, 7.9ns, 128-Cell, CMOS, PQFP100, 16 X 16 MM, 0.50 MM PITCH, LEAD FREE, TQFP-100
INTEL

5M160ZT100C5N

DC and Switching Characteristics for MAX V Devices
ALTERA

5M160ZT100C5N

Flash PLD, 14ns, 128-Cell, CMOS, PQFP100, 16 X 16 MM, 0.50 MM PITCH, LEAD FREE, TQFP-100
INTEL

5M160ZT100I5

Flash PLD, 14ns, PQFP100, 16 X 16 MM, 0.50 MM PITCH, TQFP-100
INTEL

5M160ZT100I5

Flash PLD, 14ns, PQFP100, 16 X 16 MM, 0.50 MM PITCH, TQFP-100
ALTERA

5M160ZT100I5N

Flash PLD, 14ns, 128-Cell, CMOS, PQFP100, 16 X 16 MM, 0.50 MM PITCH, LEAD FREE, TQFP-100
ALTERA