541 [INTEL]

Pentium 4 Processors Supporting Hyper-Threading Technology; 奔腾4处理器,支持超线程技术
541
型号: 541
厂家: INTEL    INTEL
描述:

Pentium 4 Processors Supporting Hyper-Threading Technology
奔腾4处理器,支持超线程技术

文件: 总96页 (文件大小:1585K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
®
Intel Pentium 4 Processors  
570/571, 560/561, 550/551,  
540/541, 530/531 and 520/521  
Supporting Hyper-Threading  
Technology  
1
Datasheet  
On 90 nm Process in 775-land LGA Package and  
supporting Intel® Extended Memory 64 TechnologyΦ  
May 2005  
Document Number: 302351-004  
Contents  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY  
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN  
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS  
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES  
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER  
INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
®
®
The Intel Pentium 4 processor in the 775-land package on 90 nm process may contain design defects or errors known as errata which may cause  
the product to deviate from published specifications. Current characterized errata are available on request.  
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across  
different processor families.  
1
®
®
Hyper-Threading Technology requires a computer system with an Intel Pentium 4 processor supporting Hyper-Threading Technology and an HT  
Technology enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use. See http:/  
/www.intel.com/info/hyperthreading/ for more information including details on which processors support HT Technology.  
®
®
ΦIntel Extended Memory 64 Technology (Intel EM64T) requires a computer system with a processor, chipset, BIOS, operating system, device  
drivers and applications enabled for Intel EM64T. Processor will not operate (including 32-bit operation) without an Intel EM64T-enabled BIOS.  
Performance will vary depending on your hardware and software configurations. See http://www.intel.com/info/em64t for more information including  
details on which processors support EM64T or consult with your system vendor for more information.  
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system.  
Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Intel, Pentium, Itanium, Intel Xeon, Intel NetBurst and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in  
the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2004–2005 Intel Corporation.  
2
Datasheet  
Contents  
Contents  
1
Introduction....................................................................................................................................11  
1.1  
Terminology........................................................................................................................12  
1.1.1 Processor Packaging Terminology ........................................................................12  
References .........................................................................................................................13  
1.2  
2
Electrical Specifications.................................................................................................................15  
2.1  
2.2  
2.3  
FSB and GTLREF...............................................................................................................15  
Power and Ground Lands...................................................................................................15  
Decoupling Guidelines........................................................................................................15  
2.3.1 VCC Decoupling ....................................................................................................16  
2.3.2 FSB GTL+ Decoupling...........................................................................................16  
2.3.3 FSB Clock (BCLK[1:0]) and Processor Clocking ...................................................16  
Voltage Identification ..........................................................................................................17  
2.4.1 Phase Lock Loop (PLL) Power and Filter ..............................................................19  
Reserved, Unused, FC and TESTHI Signals......................................................................20  
FSB Signal Groups.............................................................................................................21  
GTL+ Asynchronous Signals ..............................................................................................22  
Test Access Port (TAP) Connection...................................................................................23  
FSB Frequency Select Signals (BSEL[2:0]) .......................................................................23  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
2.10 Absolute Maximum and Minimum Ratings .........................................................................24  
2.11 Processor DC Specifications ..............................................................................................24  
2.12 VCC Overshoot Specification .............................................................................................33  
2.12.1 Die Voltage Validation ...........................................................................................33  
2.13 GTL+ FSB Specifications....................................................................................................34  
3
Package Mechanical Specifications ..............................................................................................35  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Package Mechanical Drawing ............................................................................................35  
Processor Component Keep-Out Zones.............................................................................39  
Package Loading Specifications.........................................................................................39  
Package Handling Guidelines.............................................................................................39  
Package Insertion Specifications........................................................................................40  
Processor Mass Specification.............................................................................................40  
Processor Materials............................................................................................................40  
Processor Markings............................................................................................................40  
Processor Land Coordinates ..............................................................................................41  
4
5
Land Listing and Signal Descriptions ............................................................................................43  
4.1  
4.2  
Processor Land Assignments.............................................................................................43  
Alphabetical Signals Reference..........................................................................................66  
Thermal Specifications and Design Considerations......................................................................75  
5.1  
5.2  
Processor Thermal Specifications ......................................................................................75  
5.1.1 Thermal Specifications ..........................................................................................75  
5.1.2 Thermal Metrology.................................................................................................79  
Processor Thermal Features ..............................................................................................79  
5.2.1 Thermal Monitor.....................................................................................................79  
5.2.2 Thermal Monitor 2..................................................................................................80  
Datasheet  
3
Contents  
5.2.3 On-Demand Mode .................................................................................................81  
5.2.4 PROCHOT# Signal................................................................................................82  
5.2.5 THERMTRIP# Signal.............................................................................................82  
5.2.6  
T
and Fan Speed Reduction....................................................................82  
CONTROL  
5.2.7 Thermal Diode .......................................................................................................83  
6
7
Features ........................................................................................................................................85  
6.1  
6.2  
Power-On Configuration Options........................................................................................85  
Clock Control and Low Power States .................................................................................85  
6.2.1 Normal State..........................................................................................................86  
6.2.2 HALT and Enhanced HALT Powerdown States ....................................................86  
6.2.3 Stop-Grant State....................................................................................................87  
6.2.4 Enhanced HALT Snoop or HALT Snoop State, Grant Snoop State......................88  
Boxed Processor Specifications....................................................................................................89  
7.1  
Mechanical Specifications ..................................................................................................90  
7.1.1 Boxed Processor Cooling Solution Dimensions ....................................................90  
7.1.2 Boxed Processor Fan Heatsink Weight.................................................................91  
7.1.3 Boxed Processor Retention Mechanism and Heatsink  
Attach Clip Assembly.............................................................................................91  
Electrical Requirements......................................................................................................91  
7.2.1 Fan Heatsink Power Supply ..................................................................................91  
Thermal Specifications .......................................................................................................93  
7.3.1 Boxed Processor Cooling Requirements...............................................................93  
7.3.2 Variable Speed Fan...............................................................................................95  
7.2  
7.3  
4
Datasheet  
Contents  
Figures  
2-1 Phase Lock Loop (PLL) Filter Requirements..............................................................................19  
2-2 VCC Static and Transient Tolerance for 775_VR_CONFIG_04A...............................................28  
2-3 VCC Static and Transient Tolerance for 775_VR_CONFIG_04B...............................................30  
2-4 VCC Overshoot Example Waveform ..........................................................................................33  
3-1 Processor Package Assembly Sketch........................................................................................35  
3-2 Processor Package Drawing 1 ...................................................................................................36  
3-3 Processor Package Drawing 2 ...................................................................................................37  
3-4 Processor Package Drawing 3 ...................................................................................................38  
3-5 Processor Top-Side Marking Example .......................................................................................40  
®
3-6 Processor Top-Side Marking Example for Processors Supporting Intel EM64T......................41  
3-7 Processor Land Coordinates (Top View)....................................................................................42  
4-1 Landout Diagram (Top View – Left Side)....................................................................................44  
4-2 Landout Diagram (Top View – Right Side) .................................................................................45  
5-1 Thermal Profile for Processors with PRB = 1 .............................................................................77  
5-2 Thermal Profile for Processors with PRB = 0 .............................................................................78  
5-3 Case Temperature (TC) Measurement Location........................................................................79  
5-4 Thermal Monitor 2 Frequency and Voltage Ordering .................................................................81  
6-1 Processor Low Power State Machine.........................................................................................87  
7-1 Mechanical Representation of the Boxed Processor..................................................................89  
7-2 Space Requirements for the Boxed Processor (Side View) .......................................................90  
7-3 Space Requirements for the Boxed Processor (Top View) ........................................................90  
7-4 Space Requirements for the Boxed Processor (Overall View)...................................................91  
7-5 Boxed Processor Fan Heatsink Power Cable Connector Description........................................92  
7-6 Baseboard Power Header Placement Relative to Processor Socket .........................................93  
7-7 Boxed Processor Fan Heatsink Airspace Keepout Requirements (Top View)...........................94  
7-8 Boxed Processor Fan Heatsink Airspace Keepout Requirements (Side View)..........................94  
7-9 Boxed Processor Fan Heatsink Set Points.................................................................................95  
Datasheet  
5
Contents  
Tables  
1-1 References .................................................................................................................................13  
2-1 Core Frequency to FSB Multiplier Configuration........................................................................16  
2-2 Voltage Identification Definition ..................................................................................................18  
2-3 FSB Signal Groups.....................................................................................................................21  
2-4 Signal Characteristics.................................................................................................................22  
2-5 Signal Reference Voltages.........................................................................................................22  
2-6 BSEL[2:0] Frequency Table for BCLK[1:0].................................................................................23  
2-7 Processor DC Absolute Maximum Ratings ................................................................................24  
2-8 Voltage and Current Specifications ............................................................................................25  
2-9 VCC Static and Transient Tolerance for 775_VR_CONFIG_04A Processors ...........................27  
2-10VCC Static and Transient Tolerance for 775_VR_CONFIG_04B Processors ...........................29  
2-11 GTL+ Asynchronous Signal Group DC Specifications ..............................................................31  
2-12GTL+ Signal Group DC Specifications .......................................................................................31  
2-13PWRGOOD and TAP Signal Group DC Specifications..............................................................32  
2-14VTTPWRGD DC Specifications..................................................................................................32  
2-15BSEL [2:0] and VID[5:0] DC Specifications................................................................................32  
2-16BOOTSELECT DC Specifications..............................................................................................32  
2-17VCC Overshoot Specifications ...................................................................................................33  
2-18GTL+ Bus Voltage Definitions ....................................................................................................34  
3-1 Processor Loading Specifications ..............................................................................................39  
3-2 Package Handling Guidelines ....................................................................................................39  
3-3 Processor Materials....................................................................................................................40  
4-1 Alphabetical Land Assignments .................................................................................................46  
4-2 Numerical Land Assignment.......................................................................................................56  
4-3 Signal Description.......................................................................................................................66  
5-1 Processor Thermal Specifications..............................................................................................76  
5-2 Thermal Profile for Processors with PRB = 1 .............................................................................77  
5-3 Thermal Profile for Processors with PRB = 0 .............................................................................78  
5-4 Thermal Diode Parameters ........................................................................................................83  
5-5 Thermal Diode Interface.............................................................................................................83  
6-1 Power-On Configuration Option Signals.....................................................................................85  
7-1 Fan Heatsink Power and Signal Specifications..........................................................................92  
7-2 Fan Heatsink Power and Signal Specifications..........................................................................96  
§
6
Datasheet  
Contents  
Revision History  
Revision No.  
Description  
Date of Release  
-001  
-002  
-003  
Initial release  
June 2004  
Added specifications for processor number 550 with PRB = 0  
Added support for Execute Disable Bit capability  
Added Icc Enhanced Auto Halt specifications  
Added support for Thermal Monitor 2  
September 2004  
November 2004  
Added specifications for processor number 570 with PRB = 1  
Added specifications for processor numbers 571, 561, 551, 541,  
531, and 521.  
Modified Table 2-3, “FSB Signal Groups“.  
Added Note 5 to Table 2-18.  
-004  
May 2005  
Updated Figure 3-5 Top SIde Marking Example and added  
Figure 3-6.  
Minor edits throughout for clarity.  
§
Datasheet  
7
Contents  
8
Datasheet  
Contents  
®
®
Intel Pentium 4 Processors 570/571,  
560/561, 550/551, 540/541, 530/531, and  
520/521  
Available at 3.80 GHz, 3.60 GHz, 3.40 GHz,  
3.20 GHz, 3 GHz, and 2.80 GHz  
16-KB Level 1 data cache  
1-MB Advanced Transfer Cache (on-die, full-  
speed Level 2 (L2) cache) with 8-way associativity  
and Error Correcting Code (ECC)  
1
Supports Hyper-Threading Technology  
(HT Technology) for all frequencies with  
800 MHz front side bus (FSB)  
144 Streaming SIMD Extensions 2 (SSE2)  
instructions  
®
®
Intel Pentium 4 processors 571, 561, 551, 541,  
®
531, and 521 support Intel Extended Memory 64  
13 Streaming SIMD Extensions 3 (SSE3)  
instructions  
Technology (EM64T)Φ  
Supports Execute Disable Bit capability  
Enhanced floating point and multimedia unit for  
enhanced video, audio, encryption, and 3D  
performance  
Binary compatible with applications running on  
previous members of the Intel microprocessor line  
®
Intel NetBurst microarchitecture  
Power Management capabilities  
System Management mode  
Multiple low-power states  
FSB frequency at 800 MHz  
Hyper-Pipelined Technology  
Advance Dynamic Execution  
Very deep out-of-order execution  
Enhanced branch prediction  
8-way cache associativity provides improved  
cache hit rate on load/store operations  
775-land Package  
Optimized for 32-bit applications running on  
advanced 32-bit operating systems  
®
®
1
The Intel Pentium 4 processor family supporting Hyper-Threading Technology (HT Technology) delivers  
Intel's advanced, powerful processors for desktop PCs and entry-level workstations that are based on the Intel  
®
NetBurst microarchitecture. The Pentium 4 processor is designed to deliver performance across applications and  
usages where end-users can truly appreciate and experience the performance. These applications include Internet  
audio and streaming video, image processing, video content creation, speech, 3D, CAD, games, multimedia, and  
®
®
®
multitasking user environments. Intel Extended Memory 64 Technology enables the Intel Pentium processor to  
execute operating systems and applications written to take advange of the Intel EM64TΦ.  
§
Datasheet  
9
Contents  
10  
Datasheet  
Introduction  
1 Introduction  
®
®
The Intel Pentium 4 processor on 90 nm process in the 775-land package is a follow on to the  
®
Pentium 4 processor in the 478-pin package with enhancements to the Intel NetBurst  
microarchitecture. The Pentium 4 processor on 90 nm process in the 775-land package uses Flip-  
Chip Land Grid Array (FC-LGA4) package technology, and plugs into a 775LGA socket. The  
Pentium 4 processor in the 775-land package, like its predecessor, the Pentium 4 processor in the  
478-pin package, is based on the same Intel 32-bit microarchitecture and maintains the tradition of  
compatibility with IA-32 software.  
Note: In this document the Pentium 4 processor on 90 nm process in the 775-land package is also referred  
to as the processor.  
The Pentium 4 processor on 90 nm process in the 775-land package supports Hyper-Threading  
1
Technology . Hyper-Threading Technology allows a single, physical processor to function as two  
logical processors. While some execution resources (such as caches, execution units, and buses)  
are shared, each logical processor has its own architecture state with its own set of general-purpose  
registers, control registers to provide increased system responsiveness in multitasking  
environments, and headroom for next generation multithreaded applications. Intel recommends  
enabling Hyper-Threading Technology with Microsoft Windows* XP Professional or  
Windows* XP Home, and disabling Hyper-Threading Technology via the BIOS for all previous  
versions of Windows operating systems. For more information on Hyper-Threading Technology,  
see http://www.intel.com/info/hyperthreading. Refer to Section 6.1, for Hyper-Threading  
Technology configuration details.  
®
The Intel Pentium 4 processor 571, 561, 541, 531, and 521 support Intel Extended Memory 64  
Φ
Technology (EM64T) as an enhancement to Intel’s IA-32 architecture. This enhancement enables  
the processor to execute operating systems and applications written to take advantage of Intel  
EM64T. With appropriate 64 bit supporting hardware and software, platforms based on an Intel  
®
processor supporting Intel EM64T can enable use of extended virtual and physical memory.  
Further details on the 64-bit extension architecture and programming model is provided in the  
®
Intel Extended Memory 64 Technology Software Developer Guide at: http://developer.intel.com/  
technology/64bitextensions/.  
In addition to supporting all the existing Streaming SIMD Extensions 2 (SSE2), there are 13 new  
instructions that further extend the capabilities of Intel processor technology. These new  
instructions are called Streaming SIMD Extensions 3 (SSE3). These new instructions enhance the  
performance of optimized applications for the digital home such as video, image processing, and  
media compression technology. 3D graphics and other entertainment applications such as gaming  
will have the opportunity to take advantage of these new instructions as platforms with the Pentium  
4 processor in the 775-land package and SSE3 become available in the market place.  
The processor’s Intel NetBurst microarchitecture FSB uses a split-transaction, deferred reply  
protocol like the Pentium 4 processor. The Intel NetBurst microarchitecture FSB uses Source-  
Synchronous Transfer (SST) of address and data to improve performance by transferring data four  
times per bus clock (4X data transfer rate, as in AGP 4X). Along with the 4X data bus, the address  
bus can deliver addresses two times per bus clock and is referred to as a "double-clocked" or 2X  
address bus. Working together, the 4X data bus and 2X address bus provide a data bus bandwidth  
of up to 6.4 GB/s.  
Datasheet  
11  
Introduction  
The Pentium 4 processor on 90 nm process in the LGA775-land package will also include the  
®
®
Execute Disable Bit capability previously available in Intel Itanium processors. This feature  
combined with a support operating system allows memory to be marked as executable or non-  
executable. If code attempts to run in non-executable memory the processor raises an error to the  
operating system. This feature can prevent some classes of viruses or worms that exploit buffer  
®
overrun vulnerabilities and can thus help improve the overall security of the system. See the Intel  
Architecture Software Developer's Manual for more detailed information.  
Intel will enable support components for the processor including heatsink, heatsink retention  
mechanism, and socket. Manufacturability is a high priority; hence, mechanical assembly may be  
completed from the top of the baseboard and should not require any special tooling.  
The processor includes an address bus powerdown capability that removes power from the address  
and data pins when the FSB is not in use. This feature is always enabled on the processor.  
1.1  
Terminology  
A ‘#’ symbol after a signal name refers to an active low signal, indicating a signal is in the active  
state when driven to a low level. For example, when RESET# is low, a reset has been requested.  
Conversely, when NMI is high, a nonmaskable interrupt has occurred. In the case of signals where  
the name does not imply an active state but describes part of a binary sequence (such as address or  
data), the ‘#’ symbol implies that the signal is inverted. For example, D[3:0] = ‘HLHLrefers to a  
hex ‘A, and D[3:0]# = ‘LHLH’ also refers to a hex ‘A(H= High logic level, L= Low logic level).  
“FSB” refers to the interface between the processor and system core logic (a.k.a. the chipset  
components). The FSB is a multiprocessing interface to processors, memory, and I/O.  
1.1.1  
Processor Packaging Terminology  
Commonly used terms are explained here for clarification:  
Pentium 4 processor on 90 nm process in the 775-land package — Processor in the FC-  
LGA4 package with a 1-MB L2 cache.  
Processor — For this document, the term processor is the generic form of the Pentium 4  
processor in the 775-land package.  
Keep-out zone — The area on or near the processor that system design can not use.  
Intel 925X/915G/915P Express chipsets — Chipsets that supports DDR and DDR2 memory  
technology for the Pentium 4 processor in the 775-land package.  
Processor core — Processor core die with integrated L2 cache.  
FC-LGA4 package — The Pentium 4 processor in the 775-land package is available in a Flip-  
Chip Land Grid Array 4 package, consisting of a processor core mounted on a substrate with  
an integrated heat spreader (IHS).  
LGA775 socket — The Pentium 4 processor in the 775-land package mates with the system  
board through a surface mount, 775-land, LGA socket.  
Integrated heat spreader (IHS) —A component of the processor package used to enhance  
the thermal performance of the package. Component thermal solutions interface with the  
processor at the IHS surface.  
12  
Datasheet  
Introduction  
Retention mechanism (RM)—Since the LGA775 socket does not include any mechanical  
features for heatsink attach, a retention mechanism is required. Component thermal solutions  
should attach to the processor via a retention mechanism that is independent of the socket.  
Storage conditions—Refers to a non-operational state. The processor may be installed in a  
platform, in a tray, or loose. Processors may be sealed in packaging or exposed to free air.  
Under these conditions, processor lands should not be connected to any supply voltages, have  
any I/Os biased, or receive any clocks. Upon exposure to “free air” (i.e., unsealed packaging or  
a device removed from packaging material) the processor must be handled in accordance with  
moisture sensitivity labeling (MSL) as indicated on the packaging material.  
Functional operation—Refers to normal operating conditions in which all processor  
specifications, including DC, AC, system bus, signal quality, mechanical and thermal, are  
satisfied.  
1.2  
References  
Material and concepts available in the following documents may be beneficial when reading this  
document.  
Table 1-1. References  
Document Numbers/  
Location  
Document  
http://developer.intel.com/  
design/Pentium4/  
Intel® Pentium® 4 Processor on 90 nm Process Specification Update  
specupdt/302352.htm  
http://developer.intel.com/  
design/Pentium4/guides/  
302553.htm  
Intel® Pentium® 4 Processor on 90 nm Process in the 775-Land Package  
Thermal Design Guidelines  
http://developer.intel.com/  
Voltage Regulator Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket design/Pentium4/guides/  
302356.htm  
Intel® Architecture Software Developer's Manual  
IA-32 Intel® Architecture Software Developer's Manual Volume 1: Basic  
Architecture  
IA-32 Intel® Architecture Software Developer's Manual Volume 2A: Instruction http://developer.intel.com/  
Set Reference Manual A–M  
design/pentium4/  
manuals/index_new.htm  
IA-32 Intel® Architecture Software Developer's Manual Volume 2B: Instruction  
Set Reference Manual, N–Z  
IA-32 Intel® Architecture Software Developer's Manual Volume 3: System  
Programming Guide  
http://developer.intel.com/  
design/pentium4/  
manuals/index_new.htm  
IA-32 Intel® Architecture and Intel® Extended Memory 64 Software  
Developer's Manual Documentation Changes  
§
Datasheet  
13  
Introduction  
14  
Datasheet  
Electrical Specifications  
2 Electrical Specifications  
This chapter describes the electrical characteristics of the processor interfaces and signals. DC  
electrical characteristics are provided.  
2.1  
FSB and GTLREF  
Most processor FSB signals use Gunning Transceiver Logic (GTL+) signaling technology.  
Platforms implement a termination voltage level for GTL+ signals defined as V . V must be  
TT TT  
provided via a separate voltage source and not be connected to V . This configuration allows for  
CC  
improved noise tolerance as processor frequency increases. Because of the speed improvements to  
the data and address bus, signal integrity and platform design methods have become more critical  
than with previous processor families.  
The GTL+ inputs require a reference voltage (GTLREF) that is used by the receivers to determine  
if a signal is a logical 0 or a logical 1. GTLREF must be generated on the system board (see  
Table 2-18 for GTLREF specifications). Termination resistors are provided on the processor silicon  
and are terminated to V . Intel chipsets will also provide on-die termination, thus eliminating the  
TT  
need to terminate the bus on the system board for most GTL+ signals.  
Some GTL+ signals do not include on-die termination and must be terminated on the system board.  
See Table 2-4 for details regarding these signals.  
The GTL+ bus depends on incident wave switching. Therefore, timing calculations for GTL+  
signals are based on flight time as opposed to capacitive deratings. Analog signal simulation of the  
FSB, including trace lengths, is highly recommended when designing a system.  
2.2  
2.3  
Power and Ground Lands  
For clean on-chip power distribution, the Pentium 4 processor in the 775-land package has  
226 V (power), 24 V and 273 V (ground) lands. All power lands must be connected to V ,  
CC  
TT  
SS  
CC  
all V lands must be connected to V , while all V lands must be connected to a system ground  
TT  
TT  
SS  
plane. The processor V lands must be supplied the voltage determined by the Voltage  
CC  
IDentification (VID) signals.  
Decoupling Guidelines  
Due to its large number of transistors and high internal clock speeds, the processor is capable of  
generating large current swings between low and full power states. This may cause voltages on  
power planes to sag below their minimum values if bulk decoupling is not adequate. Care must be  
taken in the board design to ensure that the voltage provided to the processor remains within the  
specifications listed in Table 2-8. Failure to do so can result in timing violations or reduced lifetime  
of the component. For further information and design guidelines, refer to the Voltage Regulator  
Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket.  
Datasheet  
15  
Electrical Specifications  
2.3.1  
VCC Decoupling  
Regulator solutions need to provide bulk capacitance with a low Effective Series Resistance (ESR)  
and keep a low interconnect resistance from the regulator to the socket. Bulk decoupling for the  
large current swings when the part is powering on, or entering/exiting low power states, must be  
provided by the voltage regulator solution (VR). For more details on this topic, refer to the Voltage  
Regulator Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket.  
2.3.2  
2.3.3  
FSB GTL+ Decoupling  
The Pentium 4 processor in the 775-land package integrates signal termination on the die as well as  
incorporating high frequency decoupling capacitance on the processor package. Decoupling must  
also be provided by the system baseboard for proper GTL+ bus operation.  
FSB Clock (BCLK[1:0]) and Processor Clocking  
BCLK[1:0] directly controls the FSB interface speed as well as the core frequency of the processor.  
As in previous generation processors, the Pentium 4 processor in the 775-land package core  
frequency is a multiple of the BCLK[1:0] frequency. The processor bus ratio multiplier will be set  
at its default ratio during manufacturing. No user intervention is necessary, and the processor will  
automatically run at the speed indicated on the package.  
The Pentium 4 processor in the 775-land package uses a differential clocking implementation. For  
more information on the Pentium 4 processor in the 775-land package clocking, refer to the  
CK410/CK410M Clock Synthesizer/Driver Specification.  
Table 2-1. Core Frequency to FSB Multiplier Configuration  
Multiplication of System Core  
Frequency to FSB Frequency  
Core Frequency (200 MHz  
BCLK/800 MHz FSB)  
Notes1, 2  
1/14  
2.80 GHz  
3 GHz  
-
-
-
-
-
-
1/15  
1/16  
3.20 GHz  
3.40 GHz  
3.60 GHz  
3.80 GHz  
1/17  
1/18  
1/19  
NOTES:  
1.  
2.  
Individual processors operate only at or below the rated frequency.  
Listed frequencies are not necessarily committed production frequencies.  
16  
Datasheet  
Electrical Specifications  
2.4  
Voltage Identification  
The VID specification for the Pentium 4 processor in the 775-land package is supported by the  
Voltage Regulator Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket. The voltage set  
by the VID signals is the reference VR output voltage to be delivered to the processor V pins. A  
CC  
minimum voltage is provided in Table 2-8 and changes with frequency. This allows processors  
running at a higher frequency to have a relaxed minimum voltage specification. The specifications  
have been set such that one voltage regulator can work with all supported frequencies.  
Individual processor VID values may be calibrated during manufacturing such that two devices at  
the same speed may have different VID settings.  
The Pentium 4 processor in the 775-land package uses six voltage identification signals, VID[5:0],  
to support automatic selection of power supply voltages. Table 2-2 specifies the voltage level  
corresponding to the state of VID[5:0]. A ‘1’ in this table refers to a high voltage level and a ‘0’  
refers to low voltage level. If the processor socket is empty (VID[5:0] = x11111), or the voltage  
regulation circuit cannot supply the voltage that is requested, it must disable itself. See the Voltage  
Regulator Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket for more details.  
Power source characteristics must be guaranteed to be stable when the supply to the voltage  
regulator is stable.  
The LL_ID[1:0] lands are used by the platform to configure the proper loadline slope for the  
processor. LL_ID[1:0] = 00 for the Pentium 4 processor in the 775-land package.  
The VTT_SEL land is used by the platform to configure the proper V voltage level for the  
TT  
processor. VTT_SEL = 1 for the Pentium 4 processor in the 775-land package.  
The GTLREF_SEL signal is used by the platform to select the appropriate chipset GTLREF level.  
GTLREF_SEL = 0 for the Pentium 4 processor in the 775-land package.  
LL_ID[1:0] and VTT_SEL are signals that are implemented on the processor package. That is,  
they are either connected directly to V or are open lands.  
SS  
Datasheet  
17  
Electrical Specifications  
Table 2-2.  
Voltage Identification Definition  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
VID  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
VID  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0.8375  
0.8500  
0.8625  
0.8750  
0.8875  
0.9000  
0.9125  
0.9250  
0.9375  
0.9500  
0.9625  
0.9750  
0.9875  
1.0000  
1.0125  
1.0250  
1.0375  
1.0500  
1.0625  
1.0750  
1.0875  
VR output off  
VR output off  
1.1000  
1.1125  
1.1250  
1.1375  
1.1500  
1.1625  
1.1750  
1.1875  
1.2000  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1.2125  
1.2250  
1.2375  
1.2500  
1.2625  
1.2750  
1.2875  
1.3000  
1.3125  
1.3250  
1.3375  
1.3500  
1.3625  
1.3750  
1.3875  
1.4000  
1.4125  
1.4250  
1.4375  
1.4500  
1.4625  
1.4750  
1.4875  
1.5000  
1.5125  
1.5250  
1.5375  
1.5500  
1.5625  
1.5750  
1.5875  
1.6000  
18  
Datasheet  
Electrical Specifications  
2.4.1  
Phase Lock Loop (PLL) Power and Filter  
V
and V  
are power sources required by the PLL clock generators for the Pentium 4  
CCIOPLL  
CCA  
processor in the 775-land package. Since these PLLs are analog, they require low noise power  
supplies for minimum jitter. Jitter is detrimental to the system: it degrades external I/O timings as  
well as internal core timings (i.e., maximum frequency). To prevent this degradation, these supplies  
must be low pass filtered from V  
.
TT  
The AC low-pass requirements, with input at V are as follows:  
TT  
< 0.2 dB gain in pass band  
< 0.5 dB attenuation in pass band < 1 Hz  
> 34 dB attenuation from 1 MHz to 66 MHz  
> 28 dB attenuation from 66 MHz to core frequency  
The filter requirements are illustrated in Figure 2-1.  
.
Figure 2-1. Phase Lock Loop (PLL) Filter Requirements  
0.2 dB  
0 dB  
–0.5 dB  
Forbidden  
Zone  
Forbidden  
Zone  
–28 dB  
–34 dB  
DC  
1 Hz  
Passband  
fpeak  
1 MHz  
66 MHz  
fcore  
High  
Frequency  
Band  
Filter_Spec  
NOTES:  
1. Diagram not to scale.  
2. No specification exists for frequencies beyond fcore (core frequency).  
3. fpeak, if existent, should be less than 0.05 MHz.  
Datasheet  
19  
Electrical Specifications  
2.5  
Reserved, Unused, FC and TESTHI Signals  
All RESERVED signals must remain unconnected. Connection of these signals to V , V , V  
TT,  
CC  
SS  
or to any other signal (including each other) can result in component malfunction or  
incompatibility with future processors. See Chapter 4 for a land listing of the processor and the  
location of all RESERVED signals.  
For reliable operation, always connect unused inputs or bidirectional signals to an appropriate  
signal level. In a system level design, on-die termination has been included on the Pentium 4  
processor in the 775-land package to allow signals to be terminated within the processor silicon.  
Most unused GTL+ inputs should be left as no connects, as GTL+ termination is provided on the  
processor silicon. However, see Table 2-4 for details on GTL+ signals that do not include on-die  
termination. Unused active high inputs should be connected through a resistor to ground (V ).  
SS  
Unused outputs can be left unconnected, however this may interfere with some test access port  
(TAP) functions, complicate debug probing, and prevent boundary scan testing. A resistor must be  
used when tying bidirectional signals to power or ground. When tying any signal to power or  
ground, a resistor will also allow for system testability. For unused GTL+ input or I/O signals, use  
pull-up resistors of the same value as the on-die termination resistors (RTT). Refer to Table 2-18 for  
more details.  
TAP, GTL+ Asynchronous inputs, and GTL+ Asynchronous outputs do not include on-die  
termination. Inputs and used outputs must be terminated on the system board. Unused outputs may  
be terminated on the system board or left unconnected. Note that leaving unused outputs  
unterminated may interfere with some TAP functions, complicate debug probing, and prevent  
boundary scan testing.  
FCx signals are signals that are available for compatibility with other processors.  
The TESTHI signals must be tied to the processor V using a matched resistor, where a matched  
TT  
resistor has a resistance value within ±20% of the impedance of the board transmission line traces.  
For example, if the trace impedance is 60 , then a value between 48 and 72 is required.  
The TESTHI signals may use individual pull-up resistors or be grouped together as detailed below.  
A matched resistor must be used for each group:  
TESTHI[1:0]  
TESTHI[7:2]  
TESTHI8 – cannot be grouped with other TESTHI signals  
TESTHI9 – cannot be grouped with other TESTHI signals  
TESTHI10 – cannot be grouped with other TESTHI signals  
TESTHI11 – cannot be grouped with other TESTHI signals  
TESTHI12 – cannot be grouped with other TESTHI signals  
TESTHI13 – cannot be grouped with other TESTHI signals  
20  
Datasheet  
Electrical Specifications  
2.6  
FSB Signal Groups  
The FSB signals have been combined into groups by buffer type. GTL+ input signals have  
differential input buffers, which use GTLREF as a reference level. In this document, the term  
"GTL+ Input" refers to the GTL+ input group as well as the GTL+ I/O group when receiving.  
Similarly, "GTL+ Output" refers to the GTL+ output group as well as the GTL+ I/O group when  
driving.  
With the implementation of a source synchronous data bus comes the need to specify two sets of  
timing parameters. One set is for common clock signals which are dependent upon the rising edge  
of BCLK0 (ADS#, HIT#, HITM#, etc.) and the second set is for the source synchronous signals  
which are relative to their respective strobe lines (data and address) as well as the rising edge of  
BCLK0. Asychronous signals are still present (A20M#, IGNNE#, etc.) and can become active at  
any time during the clock cycle. Table 2-3 identifies which signals are common clock, source  
synchronous, and asynchronous.  
Table 2-3. FSB Signal Groups  
Signal Group  
Type  
Signals1  
Synchronous to  
BCLK[1:0]  
GTL+ Common Clock Input  
GTL+ Common Clock I/O  
BPRI#, DEFER#, RS[2:0]#, RSP#, TRDY#  
Synchronous to  
BCLK[1:0]  
AP[1:0]#, ADS#, BINIT#, BNR#, BPM[5:0]#, BR0#, DBSY#,  
DP[3:0]#, DRDY#, HIT#, HITM#, LOCK#, MCERR#  
Signals  
Associated Strobe  
REQ[4:0]#, A[16:3]#3  
A[35:17]#3  
ADSTB0#  
Synchronous to assoc.  
strobe  
ADSTB1#  
GTL+ Source Synchronous I/O  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBP0#, DSTBN0#  
DSTBP1#, DSTBN1#  
DSTBP2#, DSTBN2#  
DSTBP3#, DSTBN3#  
Synchronous to  
BCLK[1:0]  
GTL+ Strobes  
ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#  
A20M#, IGNNE#, INIT#, LINT0/INTR, LINT1/NMI, SMI#,  
STPCLK#, RESET#  
GTL+ Asynchronous Input  
GTL+ Asynchronous Output  
GTL+ Asynchronous Input/Output  
TAP Input  
FERR#/PBE#, IERR#, THERMTRIP#  
PROCHOT#  
Synchronous to TCK  
Synchronous to TCK  
Clock  
TCK, TDI, TMS, TRST#  
TDO  
TAP Output  
FSB Clock  
BCLK[1:0], ITP_CLK[1:0]2  
VCC, VTT, VCCA, VCCIOPLL, VID[5:0], VSS, VSSA, GTLREF,  
COMP[1:0], RESERVED, TESTHI[13:0], THERMDA,  
THERMDC, VCC_SENSE, VSS_SENSE, BSEL[2:0],  
SKTOCC#, DBR#2, VTTPWRGD, BOOTSELECT, PWRGOOD,  
VTT_OUT_LEFT, VTT_OUT_RIGHT, VTT_SEL, LL_ID[1:0],  
FCx, VSS_MB_REGULATION, VCC_MB_REGULATION,  
MSID[1:0]  
Power/Other  
Datasheet  
21  
Electrical Specifications  
NOTES:  
1. Refer to Section 4.2 for signal descriptions.  
2. In processor systems where there is no debug port implemented on the system board, these signals are used  
to support a debug port interposer. In systems with the debug port implemented on the system board, these  
signals are no connects.  
3. The value of these signals during the active-to-inactive edge of RESET# defines the processor configuration  
options. See Section 6.1 for details.  
Table 2-4. Signal Characteristics  
Signals with RTT  
Signals with no RTT  
A20M#, BCLK[1:0], BPM[5:0]#, BR0#, BSEL[2:0],  
COMP[1:0], FERR#/PBE#, IERR#, IGNNE#, INIT#,  
LINT0/INTR, LINT1/NMI, PWRGOOD, RESET#,  
SKTOCC#, SMI#, STPCLK#, TDO, TESTHI[13:0],  
THERMDA, THERMDC, THERMTRIP#, VID[5:0],  
VTTPWRGD, GTLREF, TCK, TDI, TRST#, TMS  
A[35:3]#, ADS#, ADSTB[1:0]#, AP[1:0]#, BINIT#,  
BNR#, BOOTSELECT1, BPRI#, D[63:0]#, DBI[3:0]#,  
DBSY#, DEFER#, DP[3:0]#, DRDY#, DSTBN[3:0]#,  
DSTBP[3:0]#, HIT#, HITM#, LOCK#, MCERR#,  
PROCHOT#, REQ[4:0]#, RS[2:0]#, RSP#, TRDY#  
Open Drain Signals2  
BSEL[2:0], VID[5:0], THERMTRIP#, FERR#/PBE#,  
IERR#, BPM[5:0]#, BR0#, TDO, VTT_SEL, LL_ID[1:0],  
MSID[1:0]  
NOTES:  
1.  
2.  
The BOOTSELECT signal has a 500-5000 pull-up to V rather than on-die termination.  
TT  
Signals that do not have RTT, nor are actively driven to their high-voltage level.  
.
Table 2-5. Signal Reference Voltages  
GTLREF  
VTT/2  
BPM[5:0]#, LINT0/INTR, LINT1/NMI, RESET#, BINIT#,  
BNR#, HIT#, HITM#, MCERR#, PROCHOT#, BR0#,  
A[35:0]#, ADS#, ADSTB[1:0]#, AP[1:0]#, BPRI#, D[63:0]#,  
DBI[3:0]#, DBSY#, DEFER#, DP[3:0]#, DRDY#,  
DSTBN[3:0]#, DSTBP[3:0]#, LOCK#, REQ[4:0]#, RS[2:0]#,  
RSP#, TRDY#  
BOOTSELECT, VTTPWRGD, A20M#,  
IGNNE#, INIT#, PWRGOOD1, SMI#,  
STPCLK#, TCK1, TDI1, TMS1, TRST#1  
NOTES:  
1.  
These signals also have hysteresis added to the reference voltage. See Table 2-13 for more information.  
2.7  
GTL+ Asynchronous Signals  
Legacy input signals such as A20M#, IGNNE#, INIT#, SMI#, and STPCLK# use CMOS input  
buffers. All of these signals follow the same DC requirements as GTL+ signals, however the  
outputs are not actively driven high (during a logical 0 to 1 transition) by the processor. These  
signals do not have setup or hold time specifications in relation to BCLK[1:0].  
All of the GTL+ Asynchronous signals are required to be asserted/de-asserted for at least six  
BCLKs for the processor to recognize the proper signal state. See Section 6.2 for additional timing  
requirements for entering and leaving the low power states.  
22  
Datasheet  
Electrical Specifications  
2.8  
2.9  
Test Access Port (TAP) Connection  
Due to the voltage levels supported by other components in the Test Access Port (TAP) logic, it is  
recommended that the Pentium 4 processor in the 775-land package be first in the TAP chain and  
followed by any other components within the system. A translation buffer should be used to  
connect to the rest of the chain unless one of the other components is capable of accepting an input  
of the appropriate voltage level. Similar considerations must be made for TCK, TMS, TRST#, TDI,  
and TDO. Two copies of each signal may be required, with each driving a different voltage level.  
FSB Frequency Select Signals (BSEL[2:0])  
The BSEL[2:0] signals are used to select the frequency of the processor input clock (BCLK[1:0]).  
Table 2-6 defines the possible combinations of the signals and the frequency associated with each  
combination. The required frequency is determined by the processor, chipset, and clock  
synthesizer. All agents must operate at the same frequency.  
The Pentium 4 processor in the 775-land package currently operates at a 533 MHz or 800 MHz  
FSB frequency (selected by a 133 MHz or 200 MHz BCLK[1:0] frequency). Individual processors  
will only operate at their specified FSB frequency.  
For more information about these signals, refer to Section 4.2.  
Table 2-6. BSEL[2:0] Frequency Table for BCLK[1:0]  
BSEL2  
BSEL1  
BSEL0  
FSB Frequency  
L
L
L
L
L
H
H
L
RESERVED  
133 MHz  
L
H
H
L
RESERVED  
200 MHz  
L
H
H
H
H
L
RESERVED  
RESERVED  
RESERVED  
RESERVED  
L
H
H
L
H
H
Datasheet  
23  
Electrical Specifications  
2.10  
Absolute Maximum and Minimum Ratings  
Table 2-7 specifies absolute maximum and minimum ratings. Within functional operation limits,  
functionality and long-term reliability can be expected.  
At conditions outside functional operation condition limits, but within absolute maximum and  
minimum ratings, neither functionality nor long-term reliability can be expected. If a device is  
returned to conditions within functional operation limits after having been subjected to conditions  
outside these limits, but within the absolute maximum and minimum ratings, the device may be  
functional, but with its lifetime degraded depending on exposure to conditions exceeding the  
functional operation condition limits.  
At conditions exceeding absolute maximum and minimum ratings, neither functionality nor long-  
term reliability can be expected. Moreover, if a device is subjected to these conditions for any  
length of time then, when returned to conditions within the functional operating condition limits, it  
will either not function, or its reliability will be severely degraded.  
Although the processor contains protective circuitry to resist damage from static electric discharge,  
precautions should always be taken to avoid high static voltages or electric fields.  
Table 2-7. Processor DC Absolute Maximum Ratings  
Symbol  
VCC  
Parameter  
Min  
Max  
Unit  
Notes1, 2  
Core voltage with respect to  
VSS  
–0.3  
1.55  
V
FSB termination voltage with  
respect to VSS  
VTT  
–0.3  
1.55  
V
TC  
Processor case temperature  
Processor storage temperature  
See Section 5  
–40  
See Section 5  
+85  
°C  
°C  
3, 4  
TSTORAGE  
NOTES:  
1.  
2.  
3.  
For functional operation, all processor electrical, signal quality, mechanical and thermal specifications must be satisfied.  
Excessive overshoot or undershoot on any signal will likely result in permanent damage to the processor.  
Storage temperature is applicable to storage conditions only. In this scenario, the processor must not receive a clock, and  
no lands can be connected to a voltage bias. Storage within these limits will not affect the long-term reliability of the device.  
For functional operation, refer to the processor case temperature specifications.  
4.  
This rating applies to the processor and does not include any tray or packaging.  
2.11  
Processor DC Specifications  
The processor DC specifications in this section are defined at the processor core silicon and  
not at the package lands unless noted otherwise. See Chapter 4 for the signal definitions and  
signal assignments. Most of the signals on the processor FSB are in the GTL+ signal group. The  
DC specifications for these signals are listed in Table 2-12.  
Previously, legacy signals and Test Access Port (TAP) signals to the processor used low-voltage  
CMOS buffer types. However, these interfaces now follow DC specifications similar to GTL+. The  
DC specifications for these signal groups are listed in Table 2-11 and Table 2-13.  
Table 2-8 through Table 2-15 list the DC specifications for the Pentium 4 processor in the 775-land  
package and are valid only while meeting specifications for case temperature, clock frequency, and  
input voltages. Care should be taken to read all notes associated with each parameter.  
MSR_PLATFORM_BRV bit 18 is a Platform Requirement Bit (PRB) that indicates that the  
processor has specific platform requirements.  
24  
Datasheet  
Electrical Specifications  
Table 2-8. Voltage and Current Specifications (Sheet 1 of 2)  
Symbol  
VID range  
Parameter  
Min  
Typ  
Max  
Unit  
Notes1  
2
VID  
1.200  
1.425  
V
Processor Number  
Core Frequency  
VCC for 775_VR_CONFIG_04B  
processors  
Refer to Table 2-10 and  
Figure 2-3  
3, 4, 5, 6  
570/571  
560/561  
550  
3.80 GHZ (PRB = 1)  
3.60 GHz (PRB = 1)  
3.40 GHz (PRB = 1)  
VCC  
V
V
VCC for 775_VR_CONFIG_04A  
processors  
550/551  
540/541  
530/531  
520/521  
3.40 GHz (PRB = 0)  
3.20 GHz (PRB = 0)  
3 GHz (PRB = 0)  
Refer to Table 2-9 and  
Figure 2-2  
3, 4, 6, 7, 8  
VCC  
2.80 GHz (PRB = 0)  
ICC for processor with multiple  
VID  
570/571  
560/561  
550  
3.80 GHZ (PRB = 1)  
3.60 GHz (PRB = 1)  
3.40 GHz (PRB = 1)  
3.40 GHz (PRB = 0)  
3.20 GHz (PRB = 0)  
3 GHz (PRB = 0)  
119  
119  
9
119  
78  
78  
78  
78  
ICC  
A
550/551  
540/541  
530/531  
520/521  
2.80 GHz (PRB = 0)  
ICC Stop-Grant  
570/571  
560/561  
550  
3.80 GHZ (PRB = 1)  
3.60 GHz (PRB = 1)  
3.40 GHz (PRB = 1)  
3.40 GHz (PRB = 0)  
3.20 GHz (PRB = 0)  
3 GHz (PRB = 0)  
56  
56  
56  
40  
40  
40  
40  
ISGNT  
10, 11, 15  
A
550/551  
540/541  
530/531  
520/521  
2.80 GHz (PRB = 0)  
ICC Enhanced Auto Halt  
3.80 GHZ (PRB = 1)  
3.60 GHz (PRB = 1)  
3.40 GHz (PRB = 0)  
3.20 GHz (PRB = 0)  
3 GHz (PRB = 0)  
570/571  
560/561  
550/551  
540/541  
530/531  
520/521  
37  
37  
31  
31  
40  
40  
IENHANCED_AUTO_  
11, 15  
A
HALT  
2.80 GHz (PRB = 0)  
12  
ITCC  
ICC TCC active  
1.14  
1.20  
ICC  
1.26  
580  
3.5  
A
V
13, 14  
VTT  
FSB termination voltage (DC+AC specifications)  
DC Current that may be drawn from VTT_OUT per pin  
FSB termination current  
VTT_OUT ICC  
ITT  
mA  
A
15, 16  
Datasheet  
25  
Electrical Specifications  
Table 2-8. Voltage and Current Specifications (Sheet 2 of 2)  
Symbol  
ICC_VCCA  
Parameter  
Min  
Typ  
Max  
Unit  
Notes1  
15  
ICC FOR PLL LANDS  
ICC FOR I/O PLL LAND  
ICC for GTLREF  
120  
100  
200  
mA  
mA  
µA  
15  
15  
ICC_VCCIOPLL  
ICC_GTLREF  
NOTES:  
1.  
Unless otherwise noted, all specifications in this table are based on estimates and simulations or empirical data. These specifications will be up-  
dated with characterized data from silicon measurements at a later date.  
2.  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at manufacturing and can not be altered.  
Individual maximum VID values are calibrated during manufacturing such that two processors at the same frequency may have different settings  
within the VID range. Note this differs from the VID employed by the processor during a power management event (Thermal Monitor 2 or En-  
hanced HALT State).  
3.  
4.  
These voltages are targets only. A variable voltage source should exist on systems in the event that a different voltage is required. See Section 2.4  
and Table 2-2 for more information.  
The voltage specification requirements are measured across VCC_SENSE and VSS_SENSE lands at the socket with a 100 MHz bandwidth os-  
cilloscope, 1.5 pF maximum probe capacitance, and 1 Mminimum impedance. The maximum length of ground wire on the probe should be less  
than 5 mm. Ensure external noise from the system is not coupled into the oscilloscope probe.  
5.  
6.  
7.  
8.  
9.  
Refer to Table 2-10 and Figure 2-3 for the minimum, typical, and maximum V allowed for a given current. The processor should not be sub-  
CC  
jected to any Vcc and Icc combination wherein V exceeds V  
for a given current.  
cc_max  
CC  
775_VR_CONFIG_04A and 775_VR_CONFIG_04B refer to voltage regulator configurations that are defined in the Voltage Regulator Down  
(VRD) 10.1 Design Guide For Desktop LGA775 Socket.  
Refer to Table 2-9 and Figure 2-2 for the minimum, typical, and maximum V allowed for a given current. The processor should not be subjected  
CC  
to any V and I combination wherein V exceeds V for a given current.  
CC  
CC  
CC  
CC_max  
These frequencies will operate in a system designed for 775_VR_CONFIG_04B processors. The power and I will be incrementally higher in  
CC  
this configuration due to the improved loadline and resulting higher V  
.
CC  
I
is specified at V  
.
cc_max  
CC_max  
10. The current specified is also for AutoHALT State.  
11. Icc Stop-Grant and I Enhanced Auto Halt are specified at V  
.
CC  
CC_max  
12. The maximum instantaneous current the processor will draw while the thermal control circuit is active as indicated by the assertion of PROCHOT#  
is the same as the maximum Icc for the processor.  
13.  
V
must be provided via a separate voltage source and not be connected to V . This specification is measured at the land.  
TT CC  
14. Baseboard bandwidth is limited to 20 MHz.  
15. These parameters are based on design characterization and are not tested.  
16. This is maximum total current drawn from V plane by only the processor. This specification does not include the current coming from R  
TT  
TT  
TT  
(through the signal line). Refer to the Voltage Regulator Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket to determine the total I  
drawn by the system.  
26  
Datasheet  
Electrical Specifications  
Table 2-9. V Static and Transient Tolerance for 775_VR_CONFIG_04A Processors  
CC  
Voltage Deviation from VID Setting (V)1, 2, 3, 4  
ICC (A)  
Maximum Voltage  
Typical Voltage  
Minimum Voltage  
1.70 mΩ  
1.75 mΩ  
1.80 mΩ  
0
5
0.000  
-0.009  
-0.017  
-0.026  
-0.034  
-0.043  
-0.051  
-0.060  
-0.068  
-0.077  
-0.085  
-0.094  
-0.102  
-0.111  
-0.119  
-0.128  
-0.133  
-0.025  
-0.034  
-0.043  
-0.051  
-0.060  
-0.069  
-0.078  
-0.086  
-0.095  
-0.104  
-0.113  
-0.121  
-0.130  
-0.139  
-0.148  
-0.156  
-0.162  
-0.050  
-0.059  
-0.068  
-0.077  
-0.086  
-0.095  
-0.104  
-0.113  
-0.122  
-0.131  
-0.140  
-0.149  
-0.158  
-0.167  
-0.176  
-0.185  
-0.190  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
78  
NOTES:  
1.  
The loadline specification includes both static and transient limits except for overshoot allowed as shown in  
Section 2.12.  
2.  
3.  
This table is intended to aid in reading discrete points on Figure 2-2.  
The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage  
regulation feedback for voltage regulator circuits must be taken from processor V and V lands. Refer to  
CC  
SS  
the Voltage Regulator Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket for socket loadline guide-  
lines and VR implementation details.  
4.  
Adherence to this loadline specification for the processor is required to ensure reliable processor operation.  
Datasheet  
27  
Electrical Specifications  
Figure 2-2. V Static and Transient Tolerance for 775_VR_CONFIG_04A  
CC  
Icc [A]  
0
10  
20  
30  
40  
50  
60  
70  
VID - 0.000  
VID - 0.025  
VID - 0.050  
VID - 0.075  
VID - 0.100  
VID - 0.125  
VID - 0.150  
VID - 0.175  
VID - 0.200  
Vcc Maximum  
Vcc Typical  
Vcc Minimum  
NOTES:  
1. The loadline specification includes both static and transient limits except for overshoot allowed as shown in Section 2.12.  
2. This loadline specification shows the deviation from the VID set point.  
3. The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage regulation  
feedback for voltage regulator circuits must be taken from processor V and V lands. Refer to the Voltage Regulator  
CC  
SS  
Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket for socket loadline guidelines and VR implementation details.  
4. Adherence to this loadline specification for the processor is required to ensure reliable processor operation.  
28  
Datasheet  
Electrical Specifications  
Table 2-10. V Static and Transient Tolerance for 775_VR_CONFIG_04B Processors  
CC  
Voltage Deviation from VID Setting (V)1, 2, 3, 4  
ICC (A)  
Maximum Voltage  
Typical Voltage  
Minimum Voltage  
1.30 mΩ  
1.35 mΩ  
1.40 mΩ  
0
5
0.000  
-0.007  
-0.013  
-0.020  
-0.026  
-0.033  
-0.039  
-0.046  
-0.052  
-0.059  
-0.065  
-0.072  
-0.078  
-0.085  
-0.091  
-0.098  
-0.104  
-0.111  
-0.117  
-0.124  
-0.130  
-0.137  
-0.143  
-0.150  
-0.155  
-0.019  
-0.026  
-0.033  
-0.039  
-0.046  
-0.053  
-0.060  
-0.066  
-0.073  
-0.080  
-0.087  
-0.093  
-0.100  
-0.107  
-0.114  
-0.120  
-0.127  
-0.134  
-0.141  
-0.147  
-0.154  
-0.161  
-0.168  
-0.174  
-0.180  
-0.038  
-0.045  
-0.052  
-0.059  
-0.066  
-0.073  
-0.080  
-0.087  
-0.094  
-0.101  
-0.108  
-0.115  
-0.122  
-0.129  
-0.136  
-0.143  
-0.150  
-0.157  
-0.164  
-0.171  
-0.178  
-0.185  
-0.192  
-0.199  
-0.205  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
105  
110  
115  
119  
NOTES:  
1.  
The loadline specification includes both static and transient limits except for overshoot allowed as shown in  
Section 2.12.  
2.  
3.  
This table is intended to aid in reading discrete points on Figure 2-2.  
The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage  
regulation feedback for voltage regulator circuits must be taken from processor V and V lands. Refer to  
CC  
SS  
the Voltage Regulator Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket for socket loadline guide-  
lines and VR implementation details.  
4.  
Adherence to this loadline specification for the processor is required to ensure reliable processor operation.  
Datasheet  
29  
Electrical Specifications  
Figure 2-3. V Static and Transient Tolerance for 775_VR_CONFIG_04B  
CC  
Icc [A]  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
VID - 0.000  
VID - 0.019  
VID - 0.038  
VID - 0.057  
VID - 0.076  
VID - 0.095  
VID - 0.114  
VID - 0.133  
VID - 0.152  
VID - 0.171  
VID - 0.190  
VID - 0.209  
VID - 0.228  
Vcc Maximum  
Vcc Typical  
Vcc Minimum  
NOTES:  
1. The loadline specification includes both static and transient limits except for overshoot allowed as shown in Section 2.12.  
2. This loadline specification shows the deviation from the VID set point.  
3. The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage regulation  
feedback for voltage regulator circuits must be taken from processor V and V lands. Refer to the Voltage Regulator  
CC  
SS  
Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket for socket loadline guidelines and VR implementation details.  
4. Adherence to this loadline specification for the processor is required to ensure reliable processor operation.  
30  
Datasheet  
Electrical Specifications  
Table 2-11. GTL+ Asynchronous Signal Group DC Specifications  
Symbol  
Parameter  
Min  
Max  
Unit Notes1  
2, 3  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
Output High Voltage  
0.0  
VTT/2 – (0.10 * VTT  
)
V
3, 4, 5, 6  
VTT/2 + (0.10 * VTT  
0.90*VTT  
)
VTT  
VTT  
V
5, 6, 7  
VOH  
V
VTT/[(0.50*RTT_MIN) +  
8
IOL  
Output Low Current  
A
RON_MIN  
± 200  
± 200  
12  
]
9
ILI  
ILO  
Input Leakage Current  
Output Leakage Current  
Buffer On Resistance  
N/A  
N/A  
8
µA  
10  
µA  
RON  
-
NOTES:  
1.  
2.  
3.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
is defined as the voltage range at a receiving agent that will be interpreted as a logical low value.  
LINT0/INTR and LINT1/NMI use GTLREF as a reference voltage. For these two signals V = GTLREF + (0.10 * V ) and  
V
IL  
IH  
TT  
V = GTLREF – (0.10 * V ).  
IL  
TT  
4.  
5.  
V
V
is defined as the voltage range at a receiving agent that will be interpreted as a logical high value.  
IH  
IH  
and V may experience excursions above V . However, input signal drivers must comply with the signal quality spec-  
OH  
TT  
ifications.  
6.  
7.  
8.  
The V referred to in these specifications refers to instantaneous V  
All outputs are open drain.  
The maximum output current is based on maximum current handling capability of the buffer and is not specified into the test  
load.  
.
TT  
TT  
9.  
Leakage to V with land held at V .  
SS TT  
10. Leakage to V with land held at 300 mV.  
TT  
Table 2-12. GTL+ Signal Group DC Specifications  
Symbol  
Parameter  
Min  
Max  
Unit Notes1  
2, 3  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
Output High Voltage  
0.0  
GTLREF – (0.10 * VTT  
)
V
3, 4  
GTLREF + (0.10 * VTT  
0.90*VTT  
)
VTT  
VTT  
V
3
VOH  
V
VTT/[(0.50*RTT_MIN) +  
IOL  
Output Low Current  
N/A  
A
-
RON_MIN  
± 200  
± 200  
12  
]
5
-
ILI  
ILO  
Input Leakage Current  
Output Leakage Current  
Buffer On Resistance  
N/A  
N/A  
8
µA  
µA  
RON  
-
NOTES:  
1.  
2.  
3.  
4.  
5.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
is defined as the voltage range at a receiving agent that will be interpreted as a logical low value.  
The V referred to in these specifications is the instantaneous V  
V
IL  
.
TT  
TT  
V
is defined as the voltage range at a receiving agent that will be interpreted as a logical high value.  
IH  
Leakage to V with land held at V  
.
SS  
TT  
Datasheet  
31  
Electrical Specifications  
Table 2-13. PWRGOOD and TAP Signal Group DC Specifications  
Symbol  
Parameter  
Min  
Max  
Unit Notes1, 2  
3
VHYS  
Input Hysteresis  
200  
350  
mV  
Input low to high  
threshold voltage  
4
VT+  
VT-  
0.5 * (VTT + VHYS_MIN)  
0.5 * (VTT + VHYS_MAX  
)
V
Input high to low  
threshold voltage  
4
0.5 * (VTT – VHYS_MAX  
)
0.5 * (VTT – VHYS_MIN  
)
V
4
VOH  
IOL  
Output High Voltage  
Output Low Current  
Input Leakage Current  
Output Leakage Current  
Buffer On Resistance  
N/A  
7
VTT  
45  
V
5
mA  
6
ILI  
± 200  
± 200  
12  
µA  
-
ILO  
µA  
RON  
NOTES:  
-
1.  
2.  
3.  
4.  
5.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
All outputs are open drain.  
V
represents the amount of hysteresis, nominally centered about 0.5 * V , for all TAP inputs.  
HYS  
TT  
The V referred to in these specifications refers to instantaneous V  
.
TT  
TT  
The maximum output current is based on maximum current handling capability of the buffer and is not specified into the test  
load.  
6.  
Leakage to V with land held at V .  
SS TT  
Table 2-14. VTTPWRGD DC Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
0.3  
V
V
0.9  
Table 2-15. BSEL [2:0] and VID[5:0] DC Specifications  
Symbol  
Parameter  
Max  
Unit  
Notes1, 2  
RON (BSEL) Buffer On Resistance  
RON (VID) Buffer On Resistance  
60  
60  
8
IOL  
ILO  
Max Land Current  
mA  
µA  
V
3
Output Leakage Current  
Voltage Tolerance  
200  
VTOL  
VTT (max)  
NOTES:  
1.  
2.  
3.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
These parameters are not tested and are based on design simulations.  
Leakage to V with land held at 2.5 V.  
SS  
Table 2-16. BOOTSELECT DC Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
1
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
0.24  
V
V
0.96  
NOTES:  
1.  
These parameters are not tested and are based on design simulations.  
32  
Datasheet  
Electrical Specifications  
2.12  
V Overshoot Specification  
CC  
The Pentium 4 processor in the 775-land package can tolerate short transient overshoot events  
where V exceeds the VID voltage when transitioning from a high to low current load condition.  
CC  
This overshoot cannot exceed VID + VOS_MAX (VOS_MAX is the maximum allowable overshoot  
voltage). The time duration of the overshoot event must not exceed TOS_MAX (TOS_MAX is the  
maximum allowable time duration above VID). These specifications apply to the processor die  
voltage as measured across the VCC_SENSE and VSS_SENSE lands.  
Table 2-17. V Overshoot Specifications  
CC  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Figure  
Magnitude of VCC  
overshoot above VID  
VOS_MAX  
0.050  
V
2-4  
Time duration of VCC  
overshoot above VID  
TOS_MAX  
25  
µs  
2-4  
Figure 2-4. V Overshoot Example Waveform  
CC  
Example Overshoot Waveform  
VOS  
VID + 0.050  
VID  
TOS  
Time  
TOS: Overshoot time above VID  
VOS: Overshoot above VID  
NOTES:  
1. VOS is measured overshoot voltage.  
2. TOS is measured time duration above VID.  
2.12.1  
Die Voltage Validation  
Overshoot events from application testing on real processors must meet the specifications in  
Table 2-17 when measured across the VCC_SENSE and VSS_SENSE lands. Overshoot events that  
are < 10 ns in duration may be ignored. These measurements of processor die level overshoot  
should be taken with a 100 MHz bandwidth limited oscilloscope. Refer to the Voltage Regulator  
Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket for additional voltage regulator  
validation details.  
Datasheet  
33  
Electrical Specifications  
2.13  
GTL+ FSB Specifications  
Termination resistors are not required for most GTL+ signals, as these are integrated into the  
processor silicon.Valid high and low levels are determined by the input buffers which compare a  
signal’s voltage with a reference voltage called GTLREF. Table 2-18 lists the GTLREF  
specifications. The GTL+ reference voltage (GTLREF) should be generated on the system board  
using high precision voltage divider circuits.  
Table 2-18. GTL+ Bus Voltage Definitions  
Symbol  
Parameter  
Min  
Typ  
Max  
Units Notes1  
Bus Reference  
Voltage  
2, 3, 4, 5  
GTLREF  
(0.98 * 0.67) * VTT 0.67 * VTT (1.02 * 0.67) * VTT  
V
On die pullup for  
BOOTSELECT  
signal  
6
RPULLUP  
500  
5000  
Termination  
Resistance  
7
RTT  
54  
60  
66  
61  
8
COMP[1:0]  
COMP Resistance  
59.8  
60.4  
NOTES:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
The tolerances for this specification have been stated generically to enable the system designer to calculate the minimum  
and maximum values across the range of V  
.
TT  
3.  
4.  
5.  
GTLREF should be generated from V by a voltage divider of 1% resistors or 1% matched resistors.  
TT  
The V referred to in these specifications is the instantaneous V  
The Intel 915G/915GV/915P and 910GL Express chipset platforms use a pull-up resistor of 100 and a pull-down resistor  
of 210 . Contact your Intel representative for further details and documentation.  
These pull-ups are to V .  
TT  
.
TT  
TT  
®
6.  
7.  
8.  
RTT is the on-die termination resistance measured at V /2 of the GTL+ output driver.  
TT  
COMP resistance must be provided on the system board with 1% resistors. COMP[1:0] resistors are to V  
.
SS  
§
34  
Datasheet  
Package Mechanical Specifications  
3 Package Mechanical  
Specifications  
The Pentium 4 processor in the 775-land package is packaged in a Flip-Chip Land Grid Array  
(FC-LGA4) package that interfaces with the motherboard via an LGA775 socket. The package  
consists of a processor core mounted on a substrate land-carrier. An integrated heat spreader (IHS)  
is attached to the package substrate and core and serves as the mating surface for processor  
component thermal solutions, such as a heatsink. Figure 3-1 shows a sketch of the processor  
package components and how they are assembled together. Refer to the LGA775 Socket  
Mechanical Design Guide for complete details on the LGA775 socket.  
The package components shown in Figure 3-1 include the following:  
Integrated Heat Spreader (IHS)  
Thermal Interface Material (TIM)  
Processor core (die)  
Package substrate  
Capacitors  
Figure 3-1. Processor Package Assembly Sketch  
TIM  
Core (die)  
IHS  
Substrate  
Capacitors  
LGA775 Socket  
System Board  
NOTE:  
1. Socket and motherboard are included for reference and are not part of processor package.  
3.1  
Package Mechanical Drawing  
The package mechanical drawings are shown in Figure 3-2 and Figure 3-4. The drawings include  
dimensions necessary to design a thermal solution for the processor. These dimensions include:  
Package reference with tolerances (total height, length, width, etc.)  
IHS parallelism and tilt  
Land dimensions  
Top-side and back-side component keep-out dimensions  
Reference datums  
All drawing dimensions are in mm [in].  
Note: Guidelines on potential IHS flatness variation with socket load plate actuation and installation of  
the cooling solution is available in the processor Thermal/Mechanical Design Guidelines.  
Datasheet  
35  
Package Mechanical Specifications  
Figure 3-2. Processor Package Drawing 1  
36  
Datasheet  
Package Mechanical Specifications  
Figure 3-3. Processor Package Drawing 2  
Datasheet  
37  
Package Mechanical Specifications  
Figure 3-4. Processor Package Drawing 3  
38  
Datasheet  
Package Mechanical Specifications  
3.2  
Processor Component Keep-Out Zones  
The processor may contain components on the substrate that define component keep-out zone  
requirements. A thermal and mechanical solution design must not intrude into the required keep-  
out zones. Decoupling capacitors are typically mounted to either the topside or land-side of the  
package substrate. See Figure 3-2 and Figure 3-3 for keep-out zones.  
The location and quantity of package capacitors may change due to manufacturing efficiencies but  
will remain within the component keep-in.  
3.3  
Package Loading Specifications  
Table 3-1 provides dynamic and static load specifications for the processor package. These  
mechanical maximum load limits should not be exceeded during heatsink assembly, shipping  
conditions, or standard use condition. Also, any mechanical system or component testing should  
not exceed the maximum limits. The processor package substrate should not be used as a  
mechanical reference or load-bearing surface for thermal and mechanical solution. The minimum  
loading specification must be maintained by any thermal and mechanical solutions.  
.
Table 3-1. Processor Loading Specifications  
Parameter  
Minimum  
Maximum  
Notes  
1, 2, 3  
Static  
80 N [18 lbf]  
311 N [70 lbf]  
1, 3, 4  
Dynamic  
756 N [170 lbf]  
NOTES:  
1.  
2.  
These specifications apply to uniform compressive loading in a direction normal to the processor IHS.  
This is the maximum force that can be applied by a heatsink retention clip. The clip must also provide the minimum specified  
load on the processor package.  
3.  
4.  
These specifications are based on limited testing for design characterization. Loading limits are for the package only and  
does not include the limits of the processor socket.  
Dynamic loading is defined as the sum of the load on the package from a 1 lb heatsink mass accelerating through a 11 ms  
trapezoidal pulse of 50 g and the maximum static load.  
3.4  
Package Handling Guidelines  
Table 3-2 includes a list of guidelines on package handling in terms of recommended maximum  
loading on the processor IHS relative to a fixed substrate. These package handling loads may be  
experienced during heatsink removal.  
Table 3-2. Package Handling Guidelines  
Parameter  
Maximum Recommended  
Notes  
1, 4  
Shear  
Tensile  
311 N [70 lbf]  
111 N [25 lbf]  
2, 4  
3, 4  
Torque  
3.95 N-m [35 lbf-in]  
NOTES:  
1.  
2.  
3.  
4.  
A shear load is defined as a load applied to the IHS in a direction parallel to the IHS top surface.  
A tensile load is defined as a pulling load applied to the IHS in a direction normal to the IHS surface.  
A torque load is defined as a twisting load applied to the IHS in an axis of rotation normal to the IHS top surface.  
These guidelines are based on limited testing for design characterization.  
Datasheet  
39  
Package Mechanical Specifications  
3.5  
Package Insertion Specifications  
The Pentium 4 processor in the 775-land package can be inserted into and removed from a  
LGA775 socket 15 times. The socket should meet the LGA775 requirements detailed in the  
LGA775 Socket Mechanical Design Guide.  
3.6  
3.7  
Processor Mass Specification  
The typical mass of the Pentium 4 processor in the 775-land package is 21.5 g [0.76 oz]. This mass  
[weight] includes all the components that are included in the package.  
Processor Materials  
Table 3-3 lists some of the package components and associated materials.  
Table 3-3. Processor Materials  
Component  
Material  
Integrated Heat Spreader (IHS)  
Substrate  
Nickel Plated Copper  
Fiber Reinforced Resin  
Gold Plated Copper  
Substrate Lands  
3.8  
Processor Markings  
Figure 3-5 and Figure 3-6 show the topside markings on the processor. These diagrams aid in the  
identification of the Pentium 4 processor in the 775-land package.  
Figure 3-5. Processor Top-Side Marking Example  
Frequency/L2Cache/Bus/  
775_VR_CONFIG_04x  
m
‘04  
©
INTEL  
®
Pentium 4  
S-Spec/CountryofAssy  
3.60GHz/1M/800/04B  
SLxxx [COO]  
FPO  
[FPO]  
UniqueUnit  
Identifier  
2-DMatrixMark  
ATPO Serial#  
ATPO  
S/N  
40  
Datasheet  
Package Mechanical Specifications  
®
Figure 3-6. Processor Top-Side Marking Example for Processors Supporting Intel EM64T  
ProcessorNumber/S-Spec/  
CountryofAssy  
m
‘04  
©
INTEL  
®
Pentium 4  
Frequency/L2Cache/Bus/  
775_VR_CONFIG_04x  
571 SLxxx [COO]  
3.80GHZ/1M/800/04B  
[FPO]  
FPO  
UniqueUnit  
Identifier  
2-DMatrixMark  
ATPO Serial#  
ATPO  
S/N  
3.9  
Processor Land Coordinates  
Figure 3-7 shows the top view of the processor land coordinates. The coordinates are referred to  
throughout the document to identify processor lands.  
Datasheet  
41  
Package Mechanical Specifications  
.
Figure 3-7. Processor Land Coordinates (Top View)  
VCC / VSS  
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9 8 7 6 5 4 3 2 1  
AN  
AM  
AL  
AN  
AM  
AL  
AK  
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
AK  
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
W
W
V
Socket 775  
Quadrants  
Address / Common  
Clock / Async  
V
U
U
T
T
Top View  
R
R
P
N
M
L
P
N
M
L
K
J
K
J
H
G
F
H
G
F
E
D
C
B
A
E
D
C
B
A
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9 8 7 6 5 4 3 2 1  
VTT / Clocks  
Data  
§
42  
Datasheet  
Land Listing and Signal Descriptions  
4 Land Listing and Signal  
Descriptions  
This chapter provides the processor land assignment and signal descriptions.  
4.1  
Processor Land Assignments  
This section contains the land listings for the Pentium 4 processor in the 775-land package. The  
landout footprint is shown in Figure 4-1 and Figure 4-2. These figures represent the landout  
arranged by land number and they show the physical location of each signal on the package land  
array (top view). Table 4-1 is a listing of all processor lands ordered alphabetically by land (signal)  
name. Table 4-2 is also a listing of all processor lands; the ordering is by land number.  
Datasheet  
43  
Land Listing and Signal Descriptions  
Figure 4-1. Landout Diagram (Top View – Left Side)  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
AN  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
AM  
AL  
AK  
AJ  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
W
V
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
U
T
R
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
P
N
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
M
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
L
K
J
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
DP3#  
VSS  
DP0#  
DP2#  
VCC  
H
GTLREF  
_SEL  
BSEL1  
DP1#  
G
F
BSEL2 BSEL0 BCLK1 TESTHI4 TESTHI5 TESTHI3 TESTHI6 RESET# D47#  
D44# DSTBN2# DSTBP2# D35#  
D36#  
D37#  
VSS  
D32#  
VSS  
D31#  
D30#  
D33#  
VSS  
RSVD  
VSS  
BCLK0 VTT_SEL TESTHI0 TESTHI2 TESTHI7 RSVD  
VSS  
D45#  
D46#  
D43#  
D42#  
VSS  
D41#  
VSS  
VSS  
D40#  
DBI2#  
D38#  
D39#  
VSS  
E
D
VSS  
VTT  
VSS  
VTT  
VSS  
VTT  
VSS  
VTT  
RSVD  
VSS  
RSVD  
RSVD  
D34#  
RSVD  
VTT  
VTT  
VTT  
D48#  
D49#  
VCCIO  
PLL  
C
VTT  
VTT  
VTT  
VTT  
VTT  
VSS  
VSS  
D58#  
DBI3#  
VSS  
D54# DSTBP3#  
VSS  
D51#  
D53#  
B
A
VTT  
VTT  
30  
VTT  
VTT  
29  
VTT  
VTT  
28  
VTT  
VTT  
27  
VTT  
VTT  
26  
VTT  
VTT  
25  
VSS  
VSS  
24  
VSSA  
VCCA  
23  
D63#  
D62#  
22  
D59#  
VSS  
21  
VSS  
RSVD  
20  
D60#  
D61#  
19  
D57#  
VSS  
18  
VSS  
D56#  
17  
D55#  
DSTBN3# VSS  
16 15  
44  
Datasheet  
Land Listing and Signal Descriptions  
Figure 4-2. Landout Diagram (Top View – Right Side)  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
VSS_MB_  
REGULATION REGULATION SENSE  
VCC_MB_  
VSS_  
VCC_  
SENSE  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
FC16  
VSS  
VID0  
VSS  
VSS  
AN  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
FC12  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VTTPWRGD  
VID3  
FC11  
VID1  
VSS  
VID5  
VID4  
VSS  
VID2  
VSS  
AM  
AL  
AK  
AJ  
PROCHOT# THERMDA  
VCC  
RSVD  
A35#  
VSS  
ITP_CLK0  
ITP_CLK1  
VSS  
VSS  
THERMDC  
BPM1#  
VSS  
VCC  
A34#  
A33#  
A31#  
A27#  
VSS  
BPM0#  
RSVD  
BPM3#  
BPM4#  
VSS  
VCC  
VSS  
A32#  
A30#  
A28#  
RSVD  
VSS  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
VCC  
A29#  
BPM5#  
VSS  
TRST#  
TDO  
VCC  
VSS  
SKTOCC#  
VCC  
RSVD  
A22#  
RSVD  
TCK  
ADSTB1#  
A25#  
A24#  
BINIT#  
VSS  
BPM2#  
DBR#  
IERR#  
TDI  
VCC  
VSS  
RSVD  
A26#  
TMS  
VCC  
A17#  
MCERR#  
VSS  
VTT_OUT_  
RIGHT  
VCC  
VCC  
VSS  
VSS  
VSS  
A23#  
VSS  
A21#  
A20#  
VSS  
LL_ID1  
VSS  
AA  
Y
BOOT  
SELECT  
A19#  
RSVD  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
A18#  
VSS  
A10#  
VSS  
A16#  
A14#  
A12#  
A9#  
VSS  
A15#  
A13#  
A11#  
TESTHI1 TESTHI12  
MSID0  
MSID1  
VSS  
W
V
VSS  
AP1#  
VSS  
LL_ID0  
AP0#  
FC4  
U
T
COMP1  
FERR#/  
PBE#  
VCC  
VSS  
ADSTB0#  
VSS  
A8#  
VSS  
FC2  
R
VCC  
VCC  
VSS  
VSS  
A4#  
RSVD  
RSVD  
VSS  
INIT#  
VSS  
SMI#  
TESTHI11  
P
N
VSS  
RSVD  
IGNNE# PWRGOOD  
THER-  
VSS  
VCC  
VSS  
REQ2#  
A5#  
A7#  
STPCLK#  
M
MTRIP#  
VCC  
VCC  
VSS  
VSS  
VSS  
A3#  
A6#  
VSS  
TESTHI13  
VSS  
LINT1  
LINT0  
L
REQ3#  
VSS  
REQ0#  
A20M#  
K
VTT_OUT_  
LEFT  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VSS  
REQ4#  
VSS  
REQ1#  
VSS  
RSVD  
VSS  
FC3  
FC6  
J
H
TESTHI10  
RSP#  
GTLREF  
VSS  
D29#  
D28#  
VSS  
D27#  
VSS  
DSTBN1# DBI1# RSVD  
D16#  
D18#  
D19#  
VSS  
BPRI#  
D17#  
VSS  
DEFER#  
VSS  
RSVD  
RSVD  
RSVD  
VSS  
FC7  
RS1#  
RSVD  
VSS  
TESTHI9 TESTHI8  
FC1  
FC5  
G
F
D24#  
DSTBP1#  
VSS  
D23#  
VSS  
VSS  
D21#  
D22#  
VSS  
HITM#  
HIT#  
BR0#  
TRDY#  
VSS  
D26#  
D25#  
RSVD  
D20#  
VSS  
ADS#  
E
D
C
RSVD  
D15#  
D12#  
RSVD  
DRDY#  
VSS  
D52#  
VSS  
D14#  
D11#  
VSS  
RSVD  
DSTBN0#  
VSS  
D3#  
D1#  
VSS  
LOCK#  
BNR#  
VSS  
D50#  
14  
RSVD  
COMP0  
13  
D13#  
VSS  
12  
VSS  
D9#  
11  
D10# DSTBP0#  
VSS  
DBI0#  
8
D6#  
D7#  
7
D5#  
VSS  
6
VSS  
D4#  
5
D0#  
D2#  
4
RS0#  
RS2#  
3
DBSY#  
VSS  
2
B
A
D8#  
VSS  
10  
9
1
Datasheet  
45  
Land Listing and Signal Descriptions  
Table 4-1. Alphabetical Land  
Assignments  
Table 4-1. Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Name  
Land Signal Buffer  
Land Name  
Direction  
Direction  
#
Type  
#
Type  
A3#  
A4#  
L5  
P6  
M5  
L4  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
BCLK1  
BINIT#  
BNR#  
BOOTSELECT  
BPM0#  
BPM1#  
BPM2#  
BPM3#  
BPM4#  
BPM5#  
BPRI#  
BR0#  
BSEL0  
BSEL1  
BSEL2  
COMP0  
COMP1  
D0#  
G28  
Clock  
Input  
AD3 Common Clock Input/Output  
C2 Common Clock Input/Output  
A5#  
A6#  
Y1  
Power/Other  
Input  
A7#  
M4  
R4  
T5  
U6  
T4  
U5  
U4  
V5  
V4  
W5  
AJ2 Common Clock Input/Output  
AJ1 Common Clock Input/Output  
AD2 Common Clock Input/Output  
AG2 Common Clock Input/Output  
AF2 Common Clock Input/Output  
AG3 Common Clock Input/Output  
A8#  
A9#  
A10#  
A11#  
A12#  
A13#  
A14#  
A15#  
A16#  
A17#  
A18#  
A19#  
A20#  
A20M#  
A21#  
A22#  
A23#  
A24#  
A25#  
A26#  
A27#  
A28#  
A29#  
A30#  
A31#  
A32#  
A33#  
A34#  
A35#  
ADS#  
ADSTB0#  
ADSTB1#  
AP0#  
AP1#  
BCLK0  
G8 Common Clock  
Input  
F3 Common Clock Input/Output  
G29  
H30  
G30  
A13  
T1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
Output  
Output  
Input  
AB6 Source Synch Input/Output  
W6  
Y6  
Y4  
K3  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Input  
B4  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Asynch GTL+  
Input  
D1#  
C5  
AA4 Source Synch Input/Output  
AD6 Source Synch Input/Output  
AA5 Source Synch Input/Output  
AB5 Source Synch Input/Output  
AC5 Source Synch Input/Output  
AB4 Source Synch Input/Output  
AF5 Source Synch Input/Output  
AF4 Source Synch Input/Output  
AG6 Source Synch Input/Output  
AG4 Source Synch Input/Output  
AG5 Source Synch Input/Output  
AH4 Source Synch Input/Output  
AH5 Source Synch Input/Output  
AJ5 Source Synch Input/Output  
AJ6 Source Synch Input/Output  
D2 Common Clock Input/Output  
D2#  
A4  
D3#  
C6  
D4#  
A5  
D5#  
B6  
D6#  
B7  
D7#  
A7  
D8#  
A10 Source Synch Input/Output  
A11 Source Synch Input/Output  
B10 Source Synch Input/Output  
C11 Source Synch Input/Output  
D9#  
D10#  
D11#  
D12#  
D8  
Source Synch Input/Output  
D13#  
B12 Source Synch Input/Output  
C12 Source Synch Input/Output  
D11 Source Synch Input/Output  
D14#  
D15#  
D16#  
G9  
F8  
F9  
E9  
D7  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
D17#  
R6  
Source Synch Input/Output  
D18#  
AD5 Source Synch Input/Output  
U2 Common Clock Input/Output  
U3 Common Clock Input/Output  
D19#  
D20#  
D21#  
E10 Source Synch Input/Output  
D10 Source Synch Input/Output  
F28  
Clock  
Input  
D22#  
46  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-1. Alphabetical Land  
Assignments  
Table 4-1. Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Name  
Land Signal Buffer  
Direction  
Land Name  
Direction  
#
Type  
#
Type  
D23#  
D24#  
D25#  
D26#  
D27#  
D28#  
D29#  
D30#  
D31#  
D32#  
D33#  
D34#  
D35#  
D36#  
D37#  
D38#  
D39#  
D40#  
D41#  
D42#  
D43#  
D44#  
D45#  
D46#  
D47#  
D48#  
D49#  
D50#  
D51#  
D52#  
D53#  
D54#  
D55#  
D56#  
D57#  
D58#  
D59#  
D60#  
D61#  
D62#  
F11  
Source Synch Input/Output  
D63#  
DBI0#  
B22 Source Synch Input/Output  
A8 Source Synch Input/Output  
F12 Source Synch Input/Output  
D13 Source Synch Input/Output  
E13 Source Synch Input/Output  
G13 Source Synch Input/Output  
F14 Source Synch Input/Output  
G14 Source Synch Input/Output  
F15 Source Synch Input/Output  
G15 Source Synch Input/Output  
G16 Source Synch Input/Output  
E15 Source Synch Input/Output  
E16 Source Synch Input/Output  
G18 Source Synch Input/Output  
G17 Source Synch Input/Output  
F17 Source Synch Input/Output  
F18 Source Synch Input/Output  
E18 Source Synch Input/Output  
E19 Source Synch Input/Output  
F20 Source Synch Input/Output  
E21 Source Synch Input/Output  
F21 Source Synch Input/Output  
G21 Source Synch Input/Output  
E22 Source Synch Input/Output  
D22 Source Synch Input/Output  
G22 Source Synch Input/Output  
D20 Source Synch Input/Output  
D17 Source Synch Input/Output  
A14 Source Synch Input/Output  
C15 Source Synch Input/Output  
C14 Source Synch Input/Output  
B15 Source Synch Input/Output  
C18 Source Synch Input/Output  
B16 Source Synch Input/Output  
A17 Source Synch Input/Output  
B18 Source Synch Input/Output  
C21 Source Synch Input/Output  
B21 Source Synch Input/Output  
B19 Source Synch Input/Output  
A19 Source Synch Input/Output  
A22 Source Synch Input/Output  
DBI1#  
G11 Source Synch Input/Output  
D19 Source Synch Input/Output  
C20 Source Synch Input/Output  
DBI2#  
DBI3#  
DBR#  
AC2  
B2 Common Clock Input/Output  
G7 Common Clock Input  
Power/Other  
Output  
DBSY#  
DEFER#  
DP0#  
J16 Common Clock Input/Output  
H15 Common Clock Input/Output  
H16 Common Clock Input/Output  
J17 Common Clock Input/Output  
C1 Common Clock Input/Output  
DP1#  
DP2#  
DP3#  
DRDY#  
DSTBN0#  
DSTBN1#  
DSTBN2#  
DSTBN3#  
DSTBP0#  
DSTBP1#  
DSTBP2#  
DSTBP3#  
FC1  
C8  
Source Synch Input/Output  
G12 Source Synch Input/Output  
G20 Source Synch Input/Output  
A16 Source Synch Input/Output  
B9  
Source Synch Input/Output  
E12 Source Synch Input/Output  
G19 Source Synch Input/Output  
C17 Source Synch Input/Output  
G2  
R1  
J2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input  
Input  
FC2  
FC3  
Input  
FC4  
T2  
Input  
FC5  
F2 Common Clock  
Input  
FC6  
H2  
G5  
Power/Other  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Asynch GTL+  
Power/Other  
Power/Other  
Input  
FC7  
Output  
Output  
Output  
Output  
Output  
Input  
FC11  
AM5  
AM7  
AN7  
R3  
FC12  
FC16  
FERR#/PBE#  
GTLREF  
GTLREF_SEL  
HIT#  
H1  
H29  
Output  
D4 Common Clock Input/Output  
E4 Common Clock Input/Output  
HITM#  
IERR#  
AB2 Asynch GTL+  
Output  
Input  
Input  
Input  
IGNNE#  
INIT#  
N2  
P3  
Asynch GTL+  
Asynch GTL+  
TAP  
ITP_CLK0  
AK3  
Datasheet  
47  
Land Listing and Signal Descriptions  
Table 4-1. Alphabetical Land  
Assignments  
Table 4-1. Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Name  
Land Signal Buffer  
Land Name  
Direction  
Direction  
#
Type  
#
Type  
ITP_CLK1  
LINT0  
AJ3  
K1  
TAP  
Input  
Input  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESET#  
RS0#  
Y3  
D23  
AK6  
G6  
Asynch GTL+  
Asynch GTL+  
Power/Other  
Power/Other  
LINT1  
L1  
Input  
LL_ID0  
V2  
Output  
Output  
LL_ID1  
AA2  
G23 Common Clock  
B3 Common Clock  
F5 Common Clock  
A3 Common Clock  
H4 Common Clock  
Input  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
LOCK#  
C3 Common Clock Input/Output  
AB3 Common Clock Input/Output  
MCERR#  
RS1#  
MSID0  
W1  
V1  
Power/Other  
Power/Other  
Output  
Output  
RS2#  
MSID1  
RSP#  
PROCHOT#  
PWRGOOD  
REQ0#  
AL2  
N1  
Asynch GTL+ Input/Output  
Power/Other Input  
SKTOCC#  
SMI#  
AE8  
P2  
Power/Other  
Asynch GTL+  
Asynch GTL+  
TAP  
K4  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
STPCLK#  
TCK  
M3  
REQ1#  
J5  
AE1  
AD1  
AF1  
F26  
W3  
F25  
G25  
G27  
G26  
G24  
F24  
G3  
REQ2#  
M6  
K6  
TDI  
TAP  
REQ3#  
TDO  
TAP  
REQ4#  
J6  
TESTHI0  
TESTHI1  
TESTHI2  
TESTHI3  
TESTHI4  
TESTHI5  
TESTHI6  
TESTHI7  
TESTHI8  
TESTHI9  
TESTHI10  
TESTHI11  
TESTHI12  
TESTHI13  
THERMDA  
THERMDC  
THERMTRIP#  
TMS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch GTL+  
Power/Other  
Power/Other  
Asynch GTL+  
TAP  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
A20  
AC4  
AE3  
AE4  
AE6  
AH2  
C9  
D1  
D14  
D16  
E23  
E24  
E5  
G4  
H5  
P1  
W2  
L2  
E6  
AL1  
AK1  
M2  
E7  
F23  
F29  
F6  
Output  
Input  
Input  
Input  
AC1  
TRDY#  
E3 Common Clock  
G10  
B13  
J3  
TRST#  
AG1  
AA8  
AB8  
TAP  
VCC  
Power/Other  
Power/Other  
VCC  
N4  
VCC  
AC23 Power/Other  
AC24 Power/Other  
AC25 Power/Other  
N5  
VCC  
P5  
VCC  
48  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-1. Alphabetical Land  
Assignments  
Table 4-1. Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Name  
Land Signal Buffer  
Direction  
Land Name  
Direction  
#
Type  
#
Type  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AC26 Power/Other  
AC27 Power/Other  
AC28 Power/Other  
AC29 Power/Other  
AC30 Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AG19 Power/Other  
AG21 Power/Other  
AG22 Power/Other  
AG25 Power/Other  
AG26 Power/Other  
AG27 Power/Other  
AG28 Power/Other  
AG29 Power/Other  
AG30 Power/Other  
AC8  
Power/Other  
AD23 Power/Other  
AD24 Power/Other  
AD25 Power/Other  
AD26 Power/Other  
AD27 Power/Other  
AD28 Power/Other  
AD29 Power/Other  
AD30 Power/Other  
AG8  
AG9  
Power/Other  
Power/Other  
AH11 Power/Other  
AH12 Power/Other  
AH14 Power/Other  
AH15 Power/Other  
AH18 Power/Other  
AH19 Power/Other  
AH21 Power/Other  
AH22 Power/Other  
AH25 Power/Other  
AH26 Power/Other  
AH27 Power/Other  
AH28 Power/Other  
AH29 Power/Other  
AH30 Power/Other  
AD8  
Power/Other  
AE11 Power/Other  
AE12 Power/Other  
AE14 Power/Other  
AE15 Power/Other  
AE18 Power/Other  
AE19 Power/Other  
AE21 Power/Other  
AE22 Power/Other  
AE23 Power/Other  
AE9  
Power/Other  
AF11 Power/Other  
AF12 Power/Other  
AF14 Power/Other  
AF15 Power/Other  
AF18 Power/Other  
AF19 Power/Other  
AF21 Power/Other  
AF22 Power/Other  
AH8  
AH9  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AJ11  
AJ12  
AJ14  
AJ15  
AJ18  
AJ19  
AJ21  
AJ22  
AJ25  
AJ26  
AJ8  
AF8  
AF9  
Power/Other  
Power/Other  
AG11 Power/Other  
AG12 Power/Other  
AG14 Power/Other  
AG15 Power/Other  
AG18 Power/Other  
AJ9  
AK11 Power/Other  
Datasheet  
49  
Land Listing and Signal Descriptions  
Table 4-1. Alphabetical Land  
Assignments  
Table 4-1. Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Name  
Land Signal Buffer  
Land Name  
Direction  
Direction  
#
Type  
#
Type  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AK12 Power/Other  
AK14 Power/Other  
AK15 Power/Other  
AK18 Power/Other  
AK19 Power/Other  
AK21 Power/Other  
AK22 Power/Other  
AK25 Power/Other  
AK26 Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AN12 Power/Other  
AN14 Power/Other  
AN15 Power/Other  
AN18 Power/Other  
AN19 Power/Other  
AN21 Power/Other  
AN22 Power/Other  
AN25 Power/Other  
AN26 Power/Other  
AN29 Power/Other  
AN30 Power/Other  
AK8  
AK9  
AL11  
Power/Other  
Power/Other  
Power/Other  
AN8  
AN9  
J10  
J11  
J12  
J13  
J14  
J15  
J18  
J19  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
J27  
J28  
J29  
J30  
J8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AL12 Power/Other  
AL14 Power/Other  
AL15 Power/Other  
AL18 Power/Other  
AL19 Power/Other  
AL21 Power/Other  
AL22 Power/Other  
AL25 Power/Other  
AL26 Power/Other  
AL29 Power/Other  
AL30 Power/Other  
AL8  
AL9  
Power/Other  
Power/Other  
AM11 Power/Other  
AM12 Power/Other  
AM14 Power/Other  
AM15 Power/Other  
AM18 Power/Other  
AM19 Power/Other  
AM21 Power/Other  
AM22 Power/Other  
AM25 Power/Other  
AM26 Power/Other  
AM29 Power/Other  
AM30 Power/Other  
J9  
K23  
K24  
K25  
K26  
K27  
K28  
AM8  
AM9  
Power/Other  
Power/Other  
AN11 Power/Other  
50  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-1. Alphabetical Land  
Assignments  
Table 4-1. Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Name  
Land Signal Buffer  
Direction  
Land Name  
Direction  
#
Type  
#
Type  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
K29  
K30  
K8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
U30  
U8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
V8  
L8  
W23  
W24  
W25  
W26  
W27  
W28  
W29  
W30  
W8  
M23  
M24  
M25  
M26  
M27  
M28  
M29  
M30  
M8  
Y23  
Y24  
Y25  
Y26  
Y27  
Y28  
Y29  
Y30  
Y8  
N23  
N24  
N25  
N26  
N27  
N28  
N29  
N30  
N8  
VCC_MB_  
REGULATION  
AN5  
Power/Other  
Output  
Output  
P8  
VCC_SENSE  
VCCA  
VCCIOPLL  
VID0  
AN3  
A23  
C23  
AM2  
AL5  
AM3  
AL6  
AK4  
AL4  
A12  
A15  
A18  
A2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
R8  
T23  
T24  
T25  
T26  
T27  
T28  
T29  
T30  
T8  
Output  
Output  
Output  
Output  
Output  
Output  
VID1  
VID2  
VID3  
VID4  
VID5  
VSS  
VSS  
U23  
U24  
U25  
U26  
U27  
U28  
U29  
VSS  
VSS  
VSS  
A21  
A24  
A6  
VSS  
VSS  
VSS  
A9  
VSS  
AA23 Power/Other  
Datasheet  
51  
Land Listing and Signal Descriptions  
Table 4-1. Alphabetical Land  
Assignments  
Table 4-1. Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Name  
Land Signal Buffer  
Land Name  
Direction  
Direction  
#
Type  
#
Type  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AA24 Power/Other  
AA25 Power/Other  
AA26 Power/Other  
AA27 Power/Other  
AA28 Power/Other  
AA29 Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AF10 Power/Other  
AF13 Power/Other  
AF16 Power/Other  
AF17 Power/Other  
AF20 Power/Other  
AF23 Power/Other  
AF24 Power/Other  
AF25 Power/Other  
AF26 Power/Other  
AF27 Power/Other  
AF28 Power/Other  
AF29 Power/Other  
AA3  
Power/Other  
AA30 Power/Other  
AA6  
AA7  
AB1  
Power/Other  
Power/Other  
Power/Other  
AB23 Power/Other  
AB24 Power/Other  
AB25 Power/Other  
AB26 Power/Other  
AB27 Power/Other  
AB28 Power/Other  
AB29 Power/Other  
AB30 Power/Other  
AF3  
Power/Other  
AF30 Power/Other  
AF6  
AF7  
Power/Other  
Power/Other  
AG10 Power/Other  
AG13 Power/Other  
AG16 Power/Other  
AG17 Power/Other  
AG20 Power/Other  
AG23 Power/Other  
AG24 Power/Other  
AB7  
AC3  
AC6  
AC7  
AD4  
AD7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AG7  
AH1  
Power/Other  
Power/Other  
AE10 Power/Other  
AE13 Power/Other  
AE16 Power/Other  
AE17 Power/Other  
AH10 Power/Other  
AH13 Power/Other  
AH16 Power/Other  
AH17 Power/Other  
AH20 Power/Other  
AH23 Power/Other  
AH24 Power/Other  
AE2  
Power/Other  
AE20 Power/Other  
AE24 Power/Other  
AE25 Power/Other  
AE26 Power/Other  
AE27 Power/Other  
AE28 Power/Other  
AE29 Power/Other  
AE30 Power/Other  
AH3  
AH6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AH7  
AJ10  
AJ13  
AJ16  
AJ17  
AJ20  
AE5  
AE7  
Power/Other  
Power/Other  
52  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-1. Alphabetical Land  
Assignments  
Table 4-1. Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Name  
Land Signal Buffer  
Direction  
Land Name  
Direction  
#
Type  
#
Type  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AJ23 Power/Other  
AJ24 Power/Other  
AJ27 Power/Other  
AJ28 Power/Other  
AJ29 Power/Other  
AJ30 Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AM24 Power/Other  
AM27 Power/Other  
AM28 Power/Other  
AM4  
AN1  
Power/Other  
Power/Other  
AN10 Power/Other  
AN13 Power/Other  
AN16 Power/Other  
AN17 Power/Other  
AJ4  
AJ7  
Power/Other  
Power/Other  
AK10 Power/Other  
AK13 Power/Other  
AK16 Power/Other  
AK17 Power/Other  
AN2  
Power/Other  
AN20 Power/Other  
AN23 Power/Other  
AN24 Power/Other  
AN27 Power/Other  
AN28 Power/Other  
AK2  
Power/Other  
AK20 Power/Other  
AK23 Power/Other  
AK24 Power/Other  
AK27 Power/Other  
AK28 Power/Other  
AK29 Power/Other  
AK30 Power/Other  
B1  
B11  
B14  
B17  
B20  
B24  
B5  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AK5  
AK7  
Power/Other  
Power/Other  
AL10 Power/Other  
AL13 Power/Other  
AL16 Power/Other  
AL17 Power/Other  
AL20 Power/Other  
AL23 Power/Other  
AL24 Power/Other  
AL27 Power/Other  
AL28 Power/Other  
B8  
C10  
C13  
C16  
C19  
C22  
C24  
C4  
C7  
AL3  
AL7  
AM1  
Power/Other  
Power/Other  
Power/Other  
D12  
D15  
D18  
D21  
D24  
D3  
AM10 Power/Other  
AM13 Power/Other  
AM16 Power/Other  
AM17 Power/Other  
AM20 Power/Other  
AM23 Power/Other  
D5  
D6  
D9  
Datasheet  
53  
Land Listing and Signal Descriptions  
Table 4-1. Alphabetical Land  
Assignments  
Table 4-1. Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Name  
Land Signal Buffer  
Land Name  
Direction  
Direction  
#
Type  
#
Type  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
E11  
E14  
E17  
E2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
H9  
J4  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
J7  
K2  
E20  
E25  
E26  
E27  
E28  
E29  
E8  
K5  
K7  
L23  
L24  
L25  
L26  
L27  
L28  
L29  
L3  
F10  
F13  
F16  
F19  
F22  
F4  
L30  
L6  
L7  
F7  
M1  
M7  
N3  
G1  
H10  
H11  
H12  
H13  
H14  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
H25  
H26  
H27  
H28  
H3  
N6  
N7  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
P4  
P7  
R2  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
H6  
H7  
H8  
54  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-1. Alphabetical Land  
Assignments  
Table 4-1. Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Name  
Land Signal Buffer  
Direction  
Land Name  
Direction  
#
Type  
#
Type  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
R30  
R5  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VTT  
C26  
C27  
C28  
C29  
C30  
D25  
D26  
D27  
D28  
D29  
D30  
J1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VTT  
R7  
VTT  
VTT  
T3  
T6  
VTT  
T7  
VTT  
U1  
VTT  
U7  
VTT  
V23  
V24  
V25  
V26  
V27  
V28  
V29  
V3  
VTT  
VTT  
VTT  
VTT_OUT_LEFT  
VTT_OUT_RIGHT  
VTT_SEL  
VTTPWRGD  
Output  
Output  
Output  
Input  
AA1  
F27  
AM6  
V30  
V6  
V7  
W4  
W7  
Y2  
Y5  
Y7  
VSS_MB_  
AN6  
Power/Other  
Output  
Output  
REGULATION  
VSS_SENSE  
VSSA  
VTT  
AN4  
B23  
A25  
A26  
A27  
A28  
A29  
A30  
B25  
B26  
B27  
B28  
B29  
B30  
C25  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
Datasheet  
55  
Land Listing and Signal Descriptions  
Table 4-2. Numerical Land Assignment  
Table 4-2. Numerical Land Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
A2  
A3  
VSS  
RS2#  
D2#  
Power/Other  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
C1  
RESERVED  
VSS  
Common Clock  
Input  
Power/Other  
A4  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D53#  
D55#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
A5  
D4#  
A6  
VSS  
A7  
D7#  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D57#  
D60#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
A8  
DBI0#  
VSS  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
B1  
D8#  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D59#  
D63#  
VSSA  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D9#  
VSS  
COMP0  
D50#  
VSS  
Power/Other  
Input  
Power/Other  
Source Synch Input/Output  
Power/Other  
VTT  
Power/Other  
VTT  
Power/Other  
DSTBN3#  
D56#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VTT  
Power/Other  
VTT  
Power/Other  
VTT  
Power/Other  
D61#  
RESERVED  
VSS  
Source Synch Input/Output  
VTT  
Power/Other  
DRDY#  
BNR#  
LOCK#  
VSS  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Power/Other  
Power/Other  
C2  
D62#  
VCCA  
VSS  
Source Synch Input/Output  
Power/Other  
C3  
C4  
Power/Other  
C5  
D1#  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VTT  
Power/Other  
C6  
D3#  
VTT  
Power/Other  
C7  
VSS  
VTT  
Power/Other  
C8  
DSTBN0#  
RESERVED  
VSS  
Source Synch Input/Output  
VTT  
Power/Other  
C9  
VTT  
Power/Other  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
Power/Other  
VTT  
Power/Other  
D11#  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VSS  
Power/Other  
D14#  
VSS  
B2  
DBSY#  
RS0#  
D0#  
Common Clock Input/Output  
B3  
Common Clock  
Input  
D52#  
D51#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
B4  
Source Synch Input/Output  
Power/Other  
B5  
VSS  
B6  
D5#  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
DSTBP3#  
D54#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
B7  
D6#  
B8  
VSS  
B9  
DSTBP0#  
D10#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
DBI3#  
D58#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
B10  
B11  
B12  
D13#  
Source Synch Input/Output  
VCCIOPLL  
Power/Other  
56  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-2. Numerical Land Assignment  
Table 4-2. Numerical Land Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
D1  
VSS  
VTT  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
E6  
E7  
RESERVED  
RESERVED  
VSS  
VTT  
E8  
Power/Other  
VTT  
E9  
D19#  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VTT  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
E27  
E28  
E29  
F2  
D21#  
VTT  
VSS  
VTT  
DSTBP1#  
D26#  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
RESERVED  
ADS#  
VSS  
D2  
Common Clock Input/Output  
Power/Other  
VSS  
D3  
D33#  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D4  
HIT#  
Common Clock Input/Output  
Power/Other  
D34#  
D5  
VSS  
VSS  
D6  
VSS  
Power/Other  
D39#  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D7  
D20#  
D12#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D40#  
D8  
VSS  
D9  
D42#  
Source Synch Input/Output  
Source Synch Input/Output  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
E2  
D22#  
D15#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D45#  
RESERVED  
RESERVED  
VSS  
D25#  
RESERVED  
VSS  
Source Synch Input/Output  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
Power/Other  
VSS  
RESERVED  
D49#  
VSS  
VSS  
Source Synch Input/Output  
Power/Other  
VSS  
FC5  
Common Clock  
Input  
DBI2#  
D48#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
F3  
BR0#  
VSS  
Common Clock Input/Output  
Power/Other  
F4  
F5  
RS1#  
RESERVED  
VSS  
Common Clock  
Input  
D46#  
RESERVED  
VSS  
Source Synch Input/Output  
F6  
F7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
F8  
D17#  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VTT  
F9  
D18#  
VTT  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
VSS  
VTT  
D23#  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VTT  
D24#  
VTT  
VSS  
VTT  
D28#  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VSS  
D30#  
E3  
TRDY#  
HITM#  
RESERVED  
Common Clock  
Input  
VSS  
E4  
Common Clock Input/Output  
D37#  
Source Synch Input/Output  
Source Synch Input/Output  
E5  
D38#  
Datasheet  
57  
Land Listing and Signal Descriptions  
Table 4-2. Numerical Land Assignment  
Table 4-2. Numerical Land Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
F19  
F20  
F21  
F22  
F23  
F24  
F25  
F26  
F28  
F29  
G1  
VSS  
D41#  
Power/Other  
H2  
H3  
FC6  
VSS  
Power/Other  
Power/Other  
Common Clock  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D43#  
H4  
RSP#  
TESTHI10  
VSS  
Input  
Input  
VSS  
H5  
RESERVED  
TESTHI7  
TESTHI2  
TESTHI0  
BCLK0  
RESERVED  
VSS  
H6  
Power/Other  
Power/Other  
Power/Other  
Clock  
Input  
Input  
Input  
Input  
H7  
VSS  
H8  
VSS  
H9  
VSS  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
H25  
H26  
H27  
H28  
H29  
H30  
J1  
VSS  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
VSS  
G2  
FC1  
Input  
Input  
VSS  
G3  
TESTHI8  
TESTHI9  
FC7  
VSS  
G4  
Input  
DP1#  
DP2#  
VSS  
Common Clock Input/Output  
Common Clock Input/Output  
Power/Other  
G5  
Output  
G6  
RESERVED  
DEFER#  
BPRI#  
G7  
Common Clock  
Common Clock  
Input  
Input  
VSS  
Power/Other  
G8  
VSS  
Power/Other  
G9  
D16#  
Source Synch Input/Output  
VSS  
Power/Other  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
G23  
G24  
G25  
G26  
G27  
G28  
G29  
G30  
H1  
RESERVED  
DBI1#  
VSS  
Power/Other  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
VSS  
Power/Other  
DSTBN1#  
D27#  
VSS  
Power/Other  
VSS  
Power/Other  
D29#  
VSS  
Power/Other  
D31#  
VSS  
Power/Other  
D32#  
VSS  
Power/Other  
D36#  
VSS  
Power/Other  
D35#  
GTLREF_SEL  
BSEL1  
VTT_OUT_LEFT  
FC3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
Output  
Output  
Input  
DSTBP2#  
DSTBN2#  
D44#  
J2  
D47#  
J3  
RESERVED  
VSS  
RESET#  
TESTHI6  
TESTHI3  
TESTHI5  
TESTHI4  
BCLK1  
BSEL0  
BSEL2  
GTLREF  
Common Clock  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Clock  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Output  
Input  
J4  
Power/Other  
J5  
REQ1#  
REQ4#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
J6  
J7  
J8  
VCC  
Power/Other  
J9  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
J10  
J11  
J12  
VCC  
Power/Other  
VCC  
Power/Other  
VCC  
Power/Other  
58  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-2. Numerical Land Assignment  
Table 4-2. Numerical Land Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
J27  
J28  
J29  
J30  
K1  
VCC  
VCC  
VCC  
DP0#  
DP3#  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
LINT0  
VSS  
Power/Other  
Power/Other  
Power/Other  
L8  
L23  
L24  
L25  
L26  
L27  
L28  
L29  
L30  
M1  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch GTL+  
Asynch GTL+  
VSS  
Common Clock Input/Output  
Common Clock Input/Output  
Power/Other  
VSS  
VSS  
VSS  
Power/Other  
VSS  
Power/Other  
VSS  
Power/Other  
VSS  
Power/Other  
VSS  
Power/Other  
M2  
THERMTRIP#  
STPCLK#  
A7#  
Output  
Input  
Power/Other  
M3  
Power/Other  
M4  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
Power/Other  
M5  
A5#  
Power/Other  
M6  
REQ2#  
VSS  
Power/Other  
M7  
Power/Other  
M8  
VCC  
Power/Other  
Power/Other  
M23  
M24  
M25  
M26  
M27  
M28  
M29  
M30  
N1  
VCC  
Power/Other  
Asynch GTL+  
Power/Other  
Asynch GTL+  
Input  
Input  
VCC  
Power/Other  
K2  
VCC  
Power/Other  
K3  
A20M#  
REQ0#  
VSS  
VCC  
Power/Other  
K4  
Source Synch Input/Output  
Power/Other  
VCC  
Power/Other  
K5  
VCC  
Power/Other  
K6  
REQ3#  
VSS  
Source Synch Input/Output  
Power/Other  
VCC  
Power/Other  
K7  
VCC  
Power/Other  
K8  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
LINT1  
TESTHI13  
VSS  
Power/Other  
PWRGOOD  
IGNNE#  
VSS  
Power/Other  
Asynch GTL+  
Power/Other  
Input  
Input  
K23  
K24  
K25  
K26  
K27  
K28  
K29  
K30  
L1  
Power/Other  
N2  
Power/Other  
N3  
Power/Other  
N4  
RESERVED  
RESERVED  
VSS  
Power/Other  
N5  
Power/Other  
N6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
N7  
VSS  
Power/Other  
N8  
VCC  
Power/Other  
N23  
N24  
N25  
N26  
N27  
N28  
N29  
N30  
VCC  
Asynch GTL+  
Asynch GTL+  
Power/Other  
Input  
Input  
VCC  
L2  
VCC  
L3  
VCC  
L4  
A6#  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VCC  
L5  
A3#  
VCC  
L6  
VSS  
VCC  
L7  
VSS  
Power/Other  
VCC  
Datasheet  
59  
Land Listing and Signal Descriptions  
Table 4-2. Numerical Land Assignment  
Table 4-2. Numerical Land Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
P1  
P2  
TESTHI11  
SMI#  
INIT#  
VSS  
Power/Other  
Asynch GTL+  
Asynch GTL+  
Power/Other  
Input  
Input  
Input  
T24  
T25  
T26  
T27  
T28  
T29  
T30  
U1  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
P3  
P4  
P5  
RESERVED  
A4#  
P6  
Source Synch Input/Output  
Power/Other  
P7  
VSS  
P8  
VCC  
Power/Other  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
R1  
VSS  
Power/Other  
U2  
AP0#  
AP1#  
A13#  
A12#  
A10#  
VSS  
Common Clock Input/Output  
Common Clock Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VSS  
Power/Other  
U3  
VSS  
Power/Other  
U4  
VSS  
Power/Other  
U5  
VSS  
Power/Other  
U6  
VSS  
Power/Other  
U7  
VSS  
Power/Other  
U8  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
MSID1  
LL_ID0  
VSS  
Power/Other  
VSS  
Power/Other  
U23  
U24  
U25  
U26  
U27  
U28  
U29  
U30  
V1  
Power/Other  
FC2  
Power/Other  
Power/Other  
Asynch GTL+  
Input  
Power/Other  
R2  
VSS  
Power/Other  
R3  
FERR#/PBE#  
A8#  
Output  
Power/Other  
R4  
Source Synch Input/Output  
Power/Other  
Power/Other  
R5  
VSS  
Power/Other  
R6  
ADSTB0#  
VSS  
Source Synch Input/Output  
Power/Other  
Power/Other  
R7  
Power/Other  
R8  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
Output  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
T1  
VSS  
Power/Other  
V2  
VSS  
Power/Other  
V3  
VSS  
Power/Other  
V4  
A15#  
A14#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VSS  
Power/Other  
V5  
VSS  
Power/Other  
V6  
VSS  
Power/Other  
V7  
VSS  
Power/Other  
VSS  
Power/Other  
V8  
VCC  
VSS  
Power/Other  
VSS  
Power/Other  
V23  
V24  
V25  
V26  
V27  
V28  
V29  
V30  
W1  
W2  
Power/Other  
COMP1  
FC4  
Power/Other  
Power/Other  
Power/Other  
Input  
Input  
VSS  
Power/Other  
T2  
VSS  
Power/Other  
T3  
VSS  
VSS  
Power/Other  
T4  
A11#  
A9#  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VSS  
Power/Other  
T5  
VSS  
Power/Other  
T6  
VSS  
VSS  
Power/Other  
T7  
VSS  
Power/Other  
VSS  
Power/Other  
T8  
VCC  
Power/Other  
MSID0  
TESTHI12  
Power/Other  
Power/Other  
Output  
Input  
T23  
VCC  
Power/Other  
60  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-2. Numerical Land Assignment  
Table 4-2. Numerical Land Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
W3  
W4  
TESTHI1  
VSS  
Power/Other  
Power/Other  
Input  
AA27  
AA28  
AA29  
AA30  
AB1  
VSS  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch GTL+  
W5  
A16#  
A18#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VSS  
W6  
VSS  
W7  
VSS  
W8  
VCC  
Power/Other  
AB2  
IERR#  
MCERR#  
A26#  
A24#  
A17#  
VSS  
Output  
W23  
W24  
W25  
W26  
W27  
W28  
W29  
W30  
Y1  
VCC  
Power/Other  
AB3  
Common Clock Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VCC  
Power/Other  
AB4  
VCC  
Power/Other  
AB5  
VCC  
Power/Other  
AB6  
VCC  
Power/Other  
AB7  
VCC  
Power/Other  
AB8  
VCC  
Power/Other  
VCC  
Power/Other  
AB23  
AB24  
AB25  
AB26  
AB27  
AB28  
AB29  
AB30  
AC1  
VSS  
Power/Other  
VCC  
Power/Other  
VSS  
Power/Other  
BOOTSELECT  
VSS  
Power/Other  
Power/Other  
Input  
VSS  
Power/Other  
Y2  
VSS  
Power/Other  
Y3  
RESERVED  
A20#  
VSS  
VSS  
Power/Other  
Y4  
Source Synch Input/Output  
Power/Other  
VSS  
Power/Other  
Y5  
VSS  
Power/Other  
Y6  
A19#  
VSS  
Source Synch Input/Output  
Power/Other  
VSS  
Power/Other  
Y7  
TMS  
TAP  
Input  
Y8  
VCC  
Power/Other  
AC2  
DBR#  
VSS  
Power/Other  
Power/Other  
Output  
Y23  
Y24  
Y25  
Y26  
Y27  
Y28  
Y29  
Y30  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
AA23  
AA24  
AA25  
AA26  
VCC  
Power/Other  
AC3  
VCC  
Power/Other  
AC4  
RESERVED  
A25#  
VSS  
VCC  
Power/Other  
AC5  
Source Synch Input/Output  
Power/Other  
VCC  
Power/Other  
AC6  
VCC  
Power/Other  
AC7  
VSS  
Power/Other  
VCC  
Power/Other  
AC8  
VCC  
Power/Other  
VCC  
Power/Other  
AC23  
AC24  
AC25  
AC26  
AC27  
AC28  
AC29  
AC30  
AD1  
VCC  
Power/Other  
VCC  
Power/Other  
VCC  
Power/Other  
LL_ID1  
VSS  
Power/Other  
Power/Other  
Output  
VCC  
Power/Other  
VCC  
Power/Other  
A21#  
A23#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VCC  
Power/Other  
VCC  
Power/Other  
VCC  
Power/Other  
VSS  
Power/Other  
VCC  
Power/Other  
VCC  
Power/Other  
TDI  
TAP  
Input  
VSS  
Power/Other  
AD2  
BPM2#  
BINIT#  
VSS  
Common Clock Input/Output  
Common Clock Input/Output  
Power/Other  
VSS  
Power/Other  
AD3  
VSS  
Power/Other  
AD4  
VSS  
Power/Other  
AD5  
ADSTB1#  
Source Synch Input/Output  
Datasheet  
61  
Land Listing and Signal Descriptions  
Table 4-2. Numerical Land Assignment  
Table 4-2. Numerical Land Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
AD6  
AD7  
A22#  
VSS  
Source Synch Input/Output  
Power/Other  
AF1  
AF2  
TDO  
BPM4#  
A28#  
A27#  
VSS  
TAP  
Output  
Common Clock Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
AD8  
VCC  
Power/Other  
AF4  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AE1  
VCC  
Power/Other  
AF5  
VCC  
Power/Other  
AF6  
VCC  
Power/Other  
AF7  
VSS  
Power/Other  
VCC  
Power/Other  
AF8  
VCC  
VCC  
VSS  
Power/Other  
VCC  
Power/Other  
AF9  
Power/Other  
VCC  
Power/Other  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
AF22  
AF23  
AF24  
AF25  
AF26  
AF27  
AF28  
AF29  
AF3  
Power/Other  
VCC  
Power/Other  
VCC  
VCC  
VSS  
Power/Other  
VCC  
Power/Other  
Power/Other  
TCK  
TAP  
Input  
Power/Other  
AE2  
VSS  
Power/Other  
VCC  
VCC  
VSS  
Power/Other  
AE3  
RESERVED  
RESERVED  
VSS  
Power/Other  
AE4  
Power/Other  
AE5  
Power/Other  
VSS  
Power/Other  
AE6  
RESERVED  
VSS  
VCC  
VCC  
VSS  
Power/Other  
AE7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AE8  
SKTOCC#  
VCC  
Output  
Power/Other  
AE9  
VCC  
VCC  
VSS  
Power/Other  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
AE26  
AE27  
AE28  
AE29  
AE30  
VSS  
Power/Other  
VCC  
Power/Other  
VCC  
VSS  
Power/Other  
VSS  
VSS  
Power/Other  
VCC  
VSS  
Power/Other  
VCC  
VSS  
Power/Other  
VSS  
VSS  
Power/Other  
VSS  
VSS  
Power/Other  
VCC  
VSS  
Power/Other  
VCC  
AF30  
AG1  
AG2  
AG3  
AG4  
AG5  
AG6  
AG7  
AG8  
AG9  
AG10  
AG11  
VSS  
Power/Other  
VSS  
TRST#  
BPM3#  
BPM5#  
A30#  
A31#  
A29#  
VSS  
TAP  
Input  
VCC  
Common Clock Input/Output  
Common Clock Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VSS  
Power/Other  
VSS  
Power/Other  
VSS  
Power/Other  
VSS  
VCC  
Power/Other  
62  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-2. Numerical Land Assignment  
Table 4-2. Numerical Land Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
AG12  
AG13  
AG14  
AG15  
AG16  
AG17  
AG18  
AG19  
AG20  
AG21  
AG22  
AG23  
AG24  
AG25  
AG26  
AG27  
AG28  
AG29  
AG30  
AH1  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AH23  
AH24  
AH25  
AH26  
AH27  
AH28  
AH29  
AH30  
AJ1  
VSS  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
BPM1#  
BPM0#  
ITP_CLK1  
VSS  
Common Clock Input/Output  
Common Clock Input/Output  
VCC  
VCC  
VSS  
AJ2  
AJ3  
TAP  
Input  
AJ4  
Power/Other  
VSS  
AJ5  
A34#  
A35#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
AJ6  
AJ7  
AJ8  
VCC  
AJ9  
VCC  
AJ10  
AJ11  
AJ12  
AJ13  
AJ14  
AJ15  
AJ16  
AJ17  
AJ18  
AJ19  
AJ20  
AJ21  
AJ22  
AJ23  
AJ24  
AJ25  
AJ26  
AJ27  
AJ28  
AJ29  
AJ30  
AK1  
VSS  
VCC  
VCC  
AH2  
RESERVED  
VSS  
VSS  
AH3  
Power/Other  
VCC  
AH4  
A32#  
A33#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VCC  
AH5  
VSS  
AH6  
VSS  
AH7  
VSS  
Power/Other  
VCC  
AH8  
VCC  
VCC  
VSS  
Power/Other  
VCC  
AH9  
Power/Other  
VSS  
AH10  
AH11  
AH12  
AH13  
AH14  
AH15  
AH16  
AH17  
AH18  
AH19  
AH20  
AH21  
AH22  
Power/Other  
VCC  
VCC  
VCC  
VSS  
Power/Other  
VCC  
Power/Other  
VSS  
Power/Other  
VSS  
VCC  
VCC  
VSS  
Power/Other  
VCC  
Power/Other  
VCC  
Power/Other  
VSS  
VSS  
Power/Other  
VSS  
VCC  
VCC  
VSS  
Power/Other  
VSS  
Power/Other  
VSS  
Power/Other  
THERMDC  
VSS  
VCC  
VCC  
Power/Other  
AK2  
Power/Other  
AK3  
ITP_CLK0  
TAP  
Input  
Datasheet  
63  
Land Listing and Signal Descriptions  
Table 4-2. Numerical Land Assignment  
Table 4-2. Numerical Land Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
AK4  
AK5  
VID4  
VSS  
Power/Other  
Power/Other  
Output  
AL15  
AL16  
AL17  
AL18  
AL19  
AL20  
AL21  
AL22  
AL23  
AL24  
AL25  
AL26  
AL27  
AL28  
AL29  
AL30  
AM1  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VID0  
VID2  
VSS  
FC11  
FC12  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AK6  
RESERVED  
VSS  
AK7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AK8  
VCC  
AK9  
VCC  
AK10  
AK11  
AK12  
AK13  
AK14  
AK15  
AK16  
AK17  
AK18  
AK19  
AK20  
AK21  
AK22  
AK23  
AK24  
AK25  
AK26  
AK27  
AK28  
AK29  
AK30  
AL1  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
AM2  
Output  
Output  
VCC  
AM3  
VSS  
AM4  
VSS  
AM5  
Output  
Output  
VCC  
AM7  
VCC  
AM8  
VSS  
AM9  
VSS  
AM10  
AM11  
AM12  
AM13  
AM14  
AM15  
AM16  
AM17  
AM18  
AM19  
AM20  
AM21  
AM22  
AM23  
AM24  
AM25  
AM26  
VSS  
VSS  
THERMDA  
PROCHOT#  
VSS  
AL2  
Asynch GTL+ Input/Output  
Power/Other  
AL3  
AL4  
VID5  
VID1  
VID3  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
Output  
Output  
AL5  
AL6  
AL7  
AL8  
VCC  
AL9  
VCC  
AL10  
AL11  
AL12  
AL13  
AL14  
VSS  
VCC  
VCC  
VSS  
VCC  
64  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-2. Numerical Land Assignment  
Table 4-2. Numerical Land Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
AM27  
AM28  
AM29  
AM30  
AN1  
VSS  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AN16  
AN17  
AN18  
AN19  
AN20  
AN21  
AN22  
AN23  
AN24  
AN25  
AN26  
AN27  
AN28  
AN29  
AN30  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VSS  
AN2  
VSS  
AN3  
VCC_SENSE  
VSS_SENSE  
Output  
Output  
AN4  
VCC_MB_  
REGULATION  
AN5  
AN6  
Power/Other  
Power/Other  
Output  
VSS_MB_  
REGULATION  
Output  
Output  
AN7  
AN8  
FC16  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AN9  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
Datasheet  
65  
Land Listing and Signal Descriptions  
4.2  
Alphabetical Signals Reference  
Table 4-3. Signal Description (Sheet 1 of 8)  
Name  
Type  
Description  
A[35:3]# (Address) define a 236-byte physical memory address space. In sub-  
phase 1 of the address phase, these signals transmit the address of a  
transaction. In sub-phase 2, these signals transmit transaction type information.  
These signals must connect the appropriate pins/lands of all agents on the  
processor FSB. A[35:3]# are protected by parity signals AP[1:0]#. A[35:3]# are  
source synchronous signals and are latched into the receiving buffers by  
ADSTB[1:0]#.  
Input/  
Output  
A[35:3]#  
On the active-to-inactive transition of RESET#, the processor samples a subset  
of the A[35:3]# signals to determine power-on configuration. See Section 6.1 for  
more details.  
If A20M# (Address-20 Mask) is asserted, the processor masks physical  
address bit 20 (A20#) before looking up a line in any internal cache and before  
driving a read/write transaction on the bus. Asserting A20M# emulates the 8086  
processor's address wrap-around at the 1-MB boundary. Assertion of A20M# is  
only supported in real mode.  
A20M#  
ADS#  
Input  
A20M# is an asynchronous signal. However, to ensure recognition of this signal  
following an Input/Output write instruction, it must be valid along with the  
TRDY# assertion of the corresponding Input/Output Write bus transaction.  
ADS# (Address Strobe) is asserted to indicate the validity of the transaction  
address on the A[35:3]# and REQ[4:0]# signals. All bus agents observe the  
ADS# activation to begin parity checking, protocol checking, address decode,  
internal snoop, or deferred reply ID match operations associated with the new  
transaction.  
Input/  
Output  
Address strobes are used to latch A[35:3]# and REQ[4:0]# on their rising and  
falling edges. Strobes are associated with signals as shown below.  
Signals  
Associated Strobe  
Input/  
Output  
ADSTB[1:0]#  
REQ[4:0]#, A[16:3]#  
A[35:17]#  
ADSTB0#  
ADSTB1#  
AP[1:0]# (Address Parity) are driven by the request initiator along with ADS#,  
A[35:3]#, and the transaction type on the REQ[4:0]#. A correct parity signal is  
high if an even number of covered signals are low and low if an odd number of  
covered signals are low. This allows parity to be high when all the covered  
signals are high. AP[1:0]# should connect the appropriate pins/lands of all  
processor FSB agents. The following table defines the coverage model of these  
signals.  
Input/  
Output  
AP[1:0]#  
Request Signals  
Subphase 1  
Subphase 2  
A[35:24]#  
A[23:3]#  
AP0#  
AP1#  
AP1#  
AP1#  
AP0#  
AP0#  
REQ[4:0]#  
The differential pair BCLK (Bus Clock) determines the FSB frequency. All  
processor FSB agents must receive these signals to drive their outputs and  
latch their inputs.  
BCLK[1:0]  
Input  
All external timing parameters are specified with respect to the rising edge of  
BCLK0 crossing VCROSS  
.
66  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-3. Signal Description (Sheet 2 of 8)  
Name  
Type  
Description  
BINIT# (Bus Initialization) may be observed and driven by all processor FSB  
agents and if used, must connect the appropriate pins/lands of all such agents.  
If the BINIT# driver is enabled during power-on configuration, BINIT# is  
asserted to signal any bus condition that prevents reliable future operation.  
If BINIT# observation is enabled during power-on configuration, and BINIT# is  
sampled asserted, symmetric agents reset their bus LOCK# activity and bus  
request arbitration state machines. The bus agents do not reset their IOQ and  
transaction tracking state machines upon observation of BINIT# activation.  
Once the BINIT# assertion has been observed, the bus agents will re-arbitrate  
for the FSB and attempt completion of their bus queue and IOQ entries.  
Input/  
Output  
BINIT#  
If BINIT# observation is disabled during power-on configuration, a central agent  
may handle an assertion of BINIT# as appropriate to the error handling  
architecture of the system.  
BNR# (Block Next Request) is used to assert a bus stall by any bus agent  
unable to accept new bus transactions. During a bus stall, the current bus  
owner cannot issue any new transactions.  
Input/  
Output  
BNR#  
This input is required to determine whether the processor is installed in a  
platform that supports the Pentium 4 processor in the 775-land package. The  
processor will not operate if this signal is low. This input has a weak internal  
BOOTSELECT  
Input  
pull-up to VCC  
.
BPM[5:0]# (Breakpoint Monitor) are breakpoint and performance monitor  
signals. They are outputs from the processor which indicate the status of  
breakpoints and programmable counters used for monitoring processor  
performance. BPM[5:0]# should connect the appropriate pins/lands of all  
processor FSB agents.  
BPM4# provides PRDY# (Probe Ready) functionality for the TAP port. PRDY#  
is a processor output used by debug tools to determine processor debug  
readiness.  
Input/  
Output  
BPM[5:0]#  
BPM5# provides PREQ# (Probe Request) functionality for the TAP port.  
PREQ# is used by debug tools to request debug operation of the processor.  
These signals do not have on-die termination. Refer to Section 2.5 for  
termination requirements.  
BPRI# (Bus Priority Request) is used to arbitrate for ownership of the processor  
FSB. It must connect the appropriate pins/lands of all processor FSB agents.  
Observing BPRI# active (as asserted by the priority agent) causes all other  
agents to stop issuing new requests, unless such requests are part of an  
ongoing locked operation. The priority agent keeps BPRI# asserted until all of  
its requests are completed, then releases the bus by de-asserting BPRI#.  
BPRI#  
BR0#  
Input  
BR0# drives the BREQ0# signal in the system and is used by the processor to  
request the bus. During power-on configuration this signal is sampled to  
determine the agent ID = 0.  
Input/  
Output  
This signal does not have on-die termination and must be terminated.  
The BCLK[1:0] frequency select signals BSEL[2:0] are used to select the  
processor input clock frequency. Table 2-6 defines the possible combinations of  
the signals and the frequency associated with each combination. The required  
frequency is determined by the processor, chipset and clock synthesizer. All  
agents must operate at the same frequency. For more information about these  
signals, including termination recommendations refer to Section 2.9.  
BSEL[2:0]  
COMP[1:0]  
Output  
Analog  
COMP[1:0] must be terminated to VSS on the system board using precision  
resistors.  
Datasheet  
67  
Land Listing and Signal Descriptions  
Table 4-3. Signal Description (Sheet 3 of 8)  
Name  
Type  
Description  
D[63:0]# (Data) are the data signals. These signals provide a 64-bit data path  
between the processor FSB agents, and must connect the appropriate pins/  
lands on all such agents. The data driver asserts DRDY# to indicate a valid data  
transfer.  
D[63:0]# are quad-pumped signals and will, thus, be driven four times in a  
common clock period. D[63:0]# are latched off the falling edge of both  
DSTBP[3:0]# and DSTBN[3:0]#. Each group of 16 data signals correspond to a  
pair of one DSTBP# and one DSTBN#. The following table shows the grouping  
of data signals to data strobes and DBI#.  
Quad-Pumped Signal Groups  
DSTBN#/  
Input/  
Output  
D[63:0]#  
Data Group  
DBI#  
DSTBP#  
D[15:0]#  
D[31:16]#  
D[47:32]#  
D[63:48]#  
0
1
2
3
0
1
2
3
Furthermore, the DBI# signals determine the polarity of the data signals. Each  
group of 16 data signals corresponds to one DBI# signal. When the DBI# signal  
is active, the corresponding data group is inverted and therefore sampled active  
high.  
DBI[3:0]# (Data Bus Inversion) are source synchronous and indicate the  
polarity of the D[63:0]# signals.The DBI[3:0]# signals are activated when the  
data on the data bus is inverted. If more than half the data bits, within a 16-bit  
group, would have been asserted electrically low, the bus agent may invert the  
data bus signals for that particular sub-phase for that 16-bit group.  
DBI[3:0] Assignment To Data Bus  
Input/  
Output  
DBI[3:0]#  
Bus Signal  
Data Bus Signals  
DBI3#  
DBI2#  
DBI1#  
DBI0#  
D[63:48]#  
D[47:32]#  
D[31:16]#  
D[15:0]#  
DBR# (Debug Reset) is used only in processor systems where no debug port is  
implemented on the system board. DBR# is used by a debug port interposer so  
DBR#  
Output that an in-target probe can drive system reset. If a debug port is implemented in  
the system, DBR# is a no connect in the system. DBR# is not a processor  
signal.  
DBSY# (Data Bus Busy) is asserted by the agent responsible for driving data on  
Input/ the processor FSB to indicate that the data bus is in use. The data bus is  
Output released after DBSY# is de-asserted. This signal must connect the appropriate  
pins/lands on all processor FSB agents.  
DBSY#  
DEFER# is asserted by an agent to indicate that a transaction cannot be  
guaranteed in-order completion. Assertion of DEFER# is normally the  
responsibility of the addressed memory or input/output agent. This signal must  
connect the appropriate pins/lands of all processor FSB agents.  
DEFER#  
DP[3:0]#  
Input  
DP[3:0]# (Data parity) provide parity protection for the D[63:0]# signals. They  
are driven by the agent responsible for driving D[63:0]#, and must connect the  
appropriate pins/lands of all processor FSB agents.  
Input/  
Output  
68  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-3. Signal Description (Sheet 4 of 8)  
Name  
Type  
Description  
DRDY# (Data Ready) is asserted by the data driver on each data transfer,  
Input/ indicating valid data on the data bus. In a multi-common clock data transfer,  
Output DRDY# may be de-asserted to insert idle clocks. This signal must connect the  
appropriate pins/lands of all processor FSB agents.  
DRDY#  
DSTBN[3:0]# are the data strobes used to latch in D[63:0]#.  
Signals  
Associated Strobe  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBN0#  
DSTBN1#  
DSTBN2#  
DSTBN3#  
Input/  
Output  
DSTBN[3:0]#  
DSTBP[3:0]# are the data strobes used to latch in D[63:0]#.  
Signals  
Associated Strobe  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBP0#  
DSTBP1#  
DSTBP2#  
DSTBP3#  
Input/  
Output  
DSTBP[3:0]#  
FCx  
Other FC signals are signals that are available for compatibility with other processors.  
FERR#/PBE# (floating point error/pending break event) is a multiplexed signal  
and its meaning is qualified by STPCLK#. When STPCLK# is not asserted,  
FERR#/PBE# indicates a floating-point error and will be asserted when the  
processor detects an unmasked floating-point error. When STPCLK# is not  
asserted, FERR#/PBE# is similar to the ERROR# signal on the Intel 387  
coprocessor, and is included for compatibility with systems using MS-DOS*-  
type floating-point error reporting. When STPCLK# is asserted, an assertion of  
FERR#/PBE# indicates that the processor has a pending break event waiting  
FERR#/PBE#  
Output  
for service. The assertion of FERR#/PBE# indicates that the processor should  
be returned to the Normal state. For additional information on the pending break  
event functionality, including the identification of support of the feature and  
enable/disable information, refer to volume 3 of the Intel Architecture Software  
Developer's Manual and the Intel Processor Identification and the CPUID  
Instruction application note.  
GTLREF determines the signal reference level for GTL+ input signals. GTLREF  
Input  
GTLREF  
is used by the GTL+ receivers to determine if a signal is a logical 0 or logical 1.  
GTLREF_SEL  
Output GTLREF_SEL is used to select the appropriate chipset GTLREF voltage.  
Input/  
Output  
HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction snoop operation  
results. Any FSB agent may assert both HIT# and HITM# together to indicate  
that it requires a snoop stall, which can be continued by reasserting HIT# and  
HITM# together.  
HIT#  
HITM#  
Input/  
Output  
IERR# (Internal Error) is asserted by a processor as the result of an internal  
error. Assertion of IERR# is usually accompanied by a SHUTDOWN transaction  
on the processor FSB. This transaction may optionally be converted to an  
external error signal (e.g., NMI) by system core logic. The processor will keep  
IERR# asserted until the assertion of RESET#.  
IERR#  
Output  
This signal does not have on-die termination. Refer to Section 2.5 for  
termination requirements.  
Datasheet  
69  
Land Listing and Signal Descriptions  
Table 4-3. Signal Description (Sheet 5 of 8)  
Name  
Type  
Description  
IGNNE# (Ignore Numeric Error) is asserted to force the processor to ignore a  
numeric error and continue to execute noncontrol floating-point instructions. If  
IGNNE# is de-asserted, the processor generates an exception on a noncontrol  
floating-point instruction if a previous floating-point instruction caused an error.  
IGNNE# has no effect when the NE bit in control register 0 (CR0) is set.  
IGNNE#  
Input  
IGNNE# is an asynchronous signal. However, to ensure recognition of this  
signal following an Input/Output write instruction, it must be valid along with the  
TRDY# assertion of the corresponding Input/Output Write bus transaction.  
INIT# (Initialization), when asserted, resets integer registers inside the  
processor without affecting its internal caches or floating-point registers. The  
processor then begins execution at the power-on Reset vector configured  
during power-on configuration. The processor continues to handle snoop  
requests during INIT# assertion. INIT# is an asynchronous signal and must  
connect the appropriate pins/lands of all processor FSB agents.  
INIT#  
Input  
Input  
If INIT# is sampled active on the active to inactive transition of RESET#, then  
the processor executes its Built-in Self-Test (BIST).  
ITP_CLK[1:0] are copies of BCLK that are used only in processor systems  
where no debug port is implemented on the system board. ITP_CLK[1:0] are  
used as BCLK[1:0] references for a debug port implemented on an interposer. If  
a debug port is implemented in the system, ITP_CLK[1:0] are no connects in  
the system. These are not processor signals.  
ITP_CLK[1:0]  
LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins/lands of all  
APIC Bus agents. When the APIC is disabled, the LINT0 signal becomes INTR,  
a maskable interrupt request signal, and LINT1 becomes NMI, a nonmaskable  
interrupt. INTR and NMI are backward compatible with the signals of those  
names on the Pentium processor. Both signals are asynchronous.  
LINT[1:0]  
Input  
Both of these signals must be software configured via BIOS programming of the  
APIC register space to be used either as NMI/INTR or LINT[1:0]. Because the  
APIC is enabled by default after Reset, operation of these signals as LINT[1:0]  
is the default configuration.  
The LL_ID[1:0] signals are used to select the correct loadline slope for the  
LL_ID[1:0]  
LOCK#  
Output processor. LL_ID[1:0] = 00 for the Pentium 4 processor in the 775-land  
package.  
LOCK# indicates to the system that a transaction must occur atomically. This  
signal must connect the appropriate pins/lands of all processor FSB agents. For  
a locked sequence of transactions, LOCK# is asserted from the beginning of  
the first transaction to the end of the last transaction.  
Input/  
Output  
When the priority agent asserts BPRI# to arbitrate for ownership of the  
processor FSB, it will wait until it observes LOCK# de-asserted. This enables  
symmetric agents to retain ownership of the processor FSB throughout the bus  
locked operation and ensure the atomicity of lock.  
MCERR# (Machine Check Error) is asserted to indicate an unrecoverable error  
without a bus protocol violation. It may be driven by all processor FSB agents.  
MCERR# assertion conditions are configurable at a system level. Assertion  
options are defined by the following options:  
Enabled or disabled.  
Input/  
Output  
MCERR#  
MSID[1:0]  
Asserted, if configured, for internal errors along with IERR#.  
Asserted, if configured, by the request initiator of a bus transaction after it  
observes an error.  
Asserted by any bus agent when it observes an error in a bus transaction.  
For more details regarding machine check architecture, refer to the IA-32  
Software Developer’s Manual, Volume 3: System Programming Guide.  
MSID[1:0] are provided to indicate the market segment for the processor and  
may be used for future processor compatibility or for keying.  
Output  
70  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-3. Signal Description (Sheet 6 of 8)  
Name  
Type  
Description  
As an output, PROCHOT# (Processor Hot) will go active when the processor  
temperature monitoring sensor detects that the processor has reached its  
maximum safe operating temperature. This indicates that the processor  
Thermal Control Circuit (TCC) has been activated, if enabled. As an input,  
assertion of PROCHOT# by the system will activate the TCC, if enabled. The  
TCC will remain active until the system de-asserts PROCHOT#. See  
Section 5.2.4 for more details.  
Input/  
Output  
PROCHOT#  
PWRGOOD (Power Good) is a processor input. The processor requires this  
signal to be a clean indication that the clocks and power supplies are stable and  
within their specifications. ‘Clean’ implies that the signal will remain low  
(capable of sinking leakage current), without glitches, from the time that the  
power supplies are turned on until they come within specification. The signal  
must then transition monotonically to a high state. PWRGOOD can be driven  
inactive at any time, but clocks and power must again be stable before a  
subsequent rising edge of PWRGOOD. The PWRGOOD signal must be  
supplied to the processor; it is used to protect internal circuits against voltage  
sequencing issues. It should be driven high throughout boundary scan  
operation.  
PWRGOOD  
Input  
REQ[4:0]# (Request Command) must connect the appropriate pins/lands of all  
processor FSB agents. They are asserted by the current bus owner to define  
the currently active transaction type. These signals are source synchronous to  
ADSTB0#. Refer to the AP[1:0]# signal description for a details on parity  
checking of these signals.  
Input/  
Output  
REQ[4:0]#  
Asserting the RESET# signal resets the processor to a known state and  
invalidates its internal caches without writing back any of their contents. For a  
power-on Reset, RESET# must stay active for at least one millisecond after  
V
CC and BCLK have reached their proper specifications. On observing active  
RESET#, all FSB agents will de-assert their outputs within two clocks. RESET#  
must not be kept asserted for more than 10 ms while PWRGOOD is asserted.  
RESET#  
Input  
A number of bus signals are sampled at the active-to-inactive transition of  
RESET# for power-on configuration. These configuration options are described  
in the Section 6.1.  
This signal does not have on-die termination and must be terminated on the  
system board.  
RS[2:0]# (Response Status) are driven by the response agent (the agent  
responsible for completion of the current transaction), and must connect the  
appropriate pins/lands of all processor FSB agents.  
RS[2:0]#  
RSP#  
Input  
Input  
RSP# (Response Parity) is driven by the response agent (the agent responsible  
for completion of the current transaction) during assertion of RS[2:0]#, the  
signals for which RSP# provides parity protection. It must connect to the  
appropriate pins/lands of all processor FSB agents.  
A correct parity signal is high if an even number of covered signals are low and  
low if an odd number of covered signals are low. While RS[2:0]# = 000, RSP# is  
also high, since this indicates it is not being driven by any agent guaranteeing  
correct parity.  
SKTOCC# (Socket Occupied) will be pulled to ground by the processor. System  
board designers may use this signal to determine if the processor is present.  
SKTOCC#  
SMI#  
Output  
Input  
SMI# (System Management Interrupt) is asserted asynchronously by system  
logic. On accepting a System Management Interrupt, the processor saves the  
current state and enter System Management Mode (SMM). An SMI  
Acknowledge transaction is issued, and the processor begins program  
execution from the SMM handler.  
If SMI# is asserted during the de-assertion of RESET#, the processor will tri-  
state its outputs.  
Datasheet  
71  
Land Listing and Signal Descriptions  
Table 4-3. Signal Description (Sheet 7 of 8)  
Name  
Type  
Description  
STPCLK# (Stop Clock), when asserted, causes the processor to enter a low  
power Stop-Grant state. The processor issues a Stop-Grant Acknowledge  
transaction, and stops providing internal clock signals to all processor core units  
except the FSB and APIC units. The processor continues to snoop bus  
transactions and service interrupts while in Stop-Grant state. When STPCLK# is  
de-asserted, the processor restarts its internal clock to all units and resumes  
execution. The assertion of STPCLK# has no effect on the bus clock; STPCLK#  
is an asynchronous input.  
STPCLK#  
Input  
TCK (Test Clock) provides the clock input for the processor Test Bus (also  
known as the Test Access Port).  
TCK  
TDI  
Input  
Input  
TDI (Test Data In) transfers serial test data into the processor. TDI provides the  
serial input needed for JTAG specification support.  
TDO (Test Data Out) transfers serial test data out of the processor. TDO  
provides the serial output needed for JTAG specification support.  
TDO  
Output  
TESTHI[13:0] must be connected to the processor’s appropriate power source  
(refer to VTT_OUT_LEFT and VTT_OUT_RIGHT signal description) through a  
resistor for proper processor operation. See Section 2.5 for more details.  
TESTHI[13:0]  
Input  
THERMDA  
THERMDC  
Other Thermal Diode Anode. See Section 5.2.7.  
Other Thermal Diode Cathode. See Section 5.2.7.  
In the event of a catastrophic cooling failure, the processor will automatically  
shut down when the silicon has reached a temperature approximately 20 °C  
above the maximum TC. Assertion of THERMTRIP# (Thermal Trip) indicates the  
processor junction temperature has reached a level beyond where permanent  
silicon damage may occur. Upon assertion of THERMTRIP#, the processor will  
shut off its internal clocks (thus, halting program execution) in an attempt to  
reduce the processor junction temperature. To protect the processor, its core  
Output voltage (VCC) must be removed following the assertion of THERMTRIP#.  
Driving of the THERMTRIP# signal is enabled within 10 µs of the assertion of  
PWRGOOD and is disabled on de-assertion of PWRGOOD. Once activated,  
THERMTRIP# remains latched until PWRGOOD is de-asserted. While the de-  
assertion of the PWRGOOD signal will de-assert THERMTRIP#, if the  
processor’s junction temperature remains at or above the trip level,  
THERMTRIP# will again be asserted within 10 µs of the assertion of  
PWRGOOD.  
THERMTRIP#  
TMS (Test Mode Select) is a JTAG specification support signal used by debug  
TMS  
Input  
tools.  
TRDY# (Target Ready) is asserted by the target to indicate that it is ready to  
TRDY#  
Input  
receive a write or implicit writeback data transfer. TRDY# must connect the  
appropriate pins/lands of all FSB agents.  
TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST# must be  
driven low during power on Reset.  
TRST#  
VCC  
Input  
Input  
VCC are the power pins for the processor. The voltage supplied to these pins is  
determined by the VID[5:0] pins.  
VCCA  
Input  
Input  
VCCA provides isolated power for the internal processor core PLLs.  
VCCIOPLL provides isolated power for internal processor FSB PLLs.  
VCC_SENSE is an isolated low impedance connection to processor core power  
VCCIOPLL  
VCC_SENSE  
Output (VCC). It can be used to sense or measure voltage near the silicon with little  
noise.  
This land is provided as a voltage regulator feedback sense point for VCC. It is  
connected internally in the processor package to the sense point land U27 as  
described in the Voltage Regulator-Down (VRD) 10.1 Design Guide for Desktop  
VCC_MB_  
REGULATION  
Output  
Socket 775.  
72  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-3. Signal Description (Sheet 8 of 8)  
Name  
Type  
Description  
VID[5:0] (Voltage ID) signals are used to support automatic selection of power  
supply voltages (VCC). These are open drain signals that are driven by the  
processor and must be pulled up on the motherboard. Refer to the Voltage  
Regulator-Down (VRD) 10.1 Design Guide for Desktop Socket 775 for more  
information. The voltage supply for these signals must be valid before the VR  
can supply VCC to the processor. Conversely, the VR output must be disabled  
until the voltage supply for the VID signals becomes valid. The VID signals are  
needed to support the processor voltage specification variations. See Table 2-2  
for definitions of these signals. The VR must supply the voltage that is  
requested by the signals, or disable itself.  
VID[5:0]  
Output  
VSS are the ground pins for the processor and should be connected to the  
system ground plane.  
VSS  
Input  
Input  
VSSA  
VSSA is the isolated ground for internal PLLs.  
VSS_SENSE is an isolated low impedance connection to processor core VSS. It  
can be used to sense or measure ground near the silicon with little noise.  
VSS_SENSE  
Output  
This land is provided as a voltage regulator feedback sense point for VSS. It is  
connected internally in the processor package to the sense point land V27 as  
described in the Voltage Regulator-Down (VRD) 10.1 Design Guide for Desktop  
Socket 775.  
VSS_MB_  
REGULATION  
Output  
VTT  
Miscellaneous voltage supply.  
The VTT_OUT_LEFT and VTT_OUT_RIGHT signals are included to provide a  
voltage supply for some signals that require termination to VTT on the  
motherboard.  
For future processor compatibility some signals are required to be pulled up to  
VTT_OUT_LEFT or VTT_OUT_RIGHT. Refer to the following table for the  
signals that should be pulled up to VTT_OUT_LEFT and VTT_OUT_RIGHT.  
VTT_OUT_LEFT  
VTT_OUT_RIGHT  
Output  
Pull-up Signal  
Signals to be Pulled Up  
VTT_PWRGOOD, VID[5:0], GTLREF, TMS, TDI,  
TDO, BPM[5:0], other VRD components  
VTT_OUT_RIGHT  
RESET#, BR0#, PWRGOOD, TESTHI1, TESTHI8,  
TESTHI9, TESTHI10, TESTHI11, TESTHI12  
VTT_OUT_LEFT  
The VTT_SEL signal is used to select the correct VTT voltage level for the  
processor.  
VTT_SEL  
Output  
Input  
The processor requires this input to determine that the VTT voltages are stable  
and within specification.  
VTTPWRGD  
§
Datasheet  
73  
Land Listing and Signal Descriptions  
74  
Datasheet  
Thermal Specifications and Design Considerations  
5 Thermal Specifications and  
Design Considerations  
5.1  
Processor Thermal Specifications  
The Pentium 4 processor in the 775-land package requires a thermal solution to maintain  
temperatures within operating limits as set forth in Section 5.1.1. Any attempt to operate the  
processor outside these operating limits may result in permanent damage to the processor and  
potentially other components within the system. As processor technology changes, thermal  
management becomes increasingly crucial when building computer systems. Maintaining the  
proper thermal environment is key to reliable, long-term system operation.  
A complete thermal solution includes both component and system level thermal management  
features. Component level thermal solutions can include active or passive heatsinks attached to the  
processor Integrated Heat Spreader (IHS). Typical system level thermal solutions may consist of  
system fans combined with ducting and venting.  
®
For more information on designing a component level thermal solution, refer to the Intel  
®
Pentium 4 Processor on 90 nm Process in the 775-Land Package Thermal Design Guidelines.  
Note: The boxed processor will ship with a component thermal solution. Refer to Chapter 7 for details on  
the boxed processor.  
5.1.1  
Thermal Specifications  
To allow for the optimal operation and long-term reliability of Intel processor-based systems, the  
system/processor thermal solution should be designed such that the processor remains within the  
minimum and maximum case temperature (T ) specifications when operating at or below the  
C
Thermal Design Power (TDP) value listed per frequency in Table 5-1. Thermal solutions not  
designed to provide this level of thermal capability may affect the long-term reliability of the  
processor and system. For more details on thermal solution design, refer to the appropriate  
processor thermal design guidelines.  
The Pentium 4 processor in the 775-land package introduces a new methodology for managing  
processor temperatures which is intended to support acoustic noise reduction through fan speed  
control. Selection of the appropriate fan speed will be based on the temperature reported by the  
processor’s thermal diode. If the diode temperature is greater than or equal to T  
, the  
CONTROL  
processor case temperature must remain at or below the temperature as specified by the thermal  
profile. If the diode temperature is less than T then the case temperature is permitted to  
CONTROL  
exceed the thermal profile, but the diode temperature must remain at or below T  
. Systems  
CONTROL  
that implement fan speed control must be designed to take these conditions into account. Systems  
that do not alter the fan speed only need to guarantee the case temperature meets the thermal profile  
specifications.  
To determine a processor's case temperature specification based on the thermal profile, it is  
necessary to accurately measure processor power dissipation.  
Datasheet  
75  
Thermal Specifications and Design Considerations  
The case temperature is defined at the geometric top center of the processor IHS. Analysis indicates  
that real applications are unlikely to cause the processor to consume maximum power dissipation for  
sustained periods of time. Intel recommends that complete thermal solution designs target the  
Thermal Design Power (TDP) indicated in Table 5-1 instead of the maximum processor power  
consumption. The Thermal Monitor feature is intended to help protect the processor in the unlikely  
event that an application exceeds the TDP recommendation for a sustained period of time. For more  
details on the usage of this feature, refer to Section 5.2. In all cases, the Thermal Monitor feature  
must be enabled for the processor to remain within specification.  
Table 5-1. Processor Thermal Specifications  
Processor  
Number  
Core Frequency  
(GHz)  
Thermal Design Minimum TC  
Maximum TC (°C)  
Notes  
Power (W)  
(°C)  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
520/521  
530/531  
540/541  
550/551  
550  
2.80 (PRB = 0)  
3 (PRB = 0)  
84  
84  
5
5
5
5
5
5
5
See Table 5-3 and Figure 5-2  
See Table 5-3 and Figure 5-2  
See Table 5-3 and Figure 5-2  
See Table 5-3 and Figure 5-2  
See Table 5-2 and Figure 5-1  
See Table 5-2 and Figure 5-1  
See Table 5-2 and Figure 5-1  
3.20 (PRB = 0)  
3.40 (PRB = 0)  
3.40 (PRB = 1)  
3.60 (PRB = 1)  
3.80 (PRB = 1)  
84  
84  
115  
115  
115  
560/561  
570/571  
NOTES:  
1.  
Thermal Design Power (TDP) should be used for processor thermal solution design targets. The TDP is not the maximum pow-  
er that the processor can dissipate.  
2.  
This table shows the maximum TDP for a given frequency range. Individual processors may have a lower TDP. Therefore, the  
maximum T will vary depending on the TDP of the individual processor. Refer to thermal profile figure and associated table  
C
for the allowed combinations of power and T .  
C
76  
Datasheet  
Thermal Specifications and Design Considerations  
Table 5-2. Thermal Profile for Processors with PRB = 1  
Power  
(W)  
Maximum TC  
(°C)  
Power  
(W)  
Maximum TC  
(°C)  
Power  
(W)  
Maximum TC  
(°C)  
Power  
(W)  
Maximum TC  
(°C)  
0
44.0  
44.5  
45.0  
45.5  
46.0  
46.5  
47.0  
47.5  
48.0  
48.5  
49.0  
49.5  
50.0  
50.5  
51.0  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
51.5  
52.0  
52.5  
53.0  
53.5  
54.0  
54.5  
55.0  
55.5  
56.0  
56.5  
57.0  
57.5  
58.0  
58.5  
60  
62  
64  
66  
68  
70  
72  
74  
76  
78  
80  
82  
84  
86  
88  
59.0  
59.5  
60.0  
60.5  
61.0  
61.5  
62.0  
62.5  
63.0  
63.5  
64.0  
64.5  
65.0  
65.5  
66.0  
90  
92  
66.5  
67.0  
67.5  
68.0  
68.5  
69.0  
69.5  
70.0  
70.5  
71.0  
71.5  
72.0  
72.5  
72.8  
2
4
94  
6
96  
8
98  
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
100  
102  
104  
106  
108  
110  
112  
114  
115  
Figure 5-1. Thermal Profile for Processors with PRB = 1  
75.0  
70.0  
65.0  
60.0  
55.0  
50.0  
45.0  
40.0  
y = 0.25x + 44  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
Power (W)  
Datasheet  
77  
Thermal Specifications and Design Considerations  
Table 5-3. Thermal Profile for Processors with PRB = 0  
Power  
(W)  
Maximum Tc  
(°C)  
Power  
(W)  
Maximum Tc  
(°C)  
Power  
(W)  
Maximum Tc  
(°C)  
0
44.2  
44.8  
45.3  
45.9  
46.4  
47.0  
47.6  
48.1  
48.7  
49.2  
49.8  
50.4  
50.9  
51.5  
52.0  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
52.6  
53.2  
53.7  
54.3  
54.8  
55.4  
56.0  
56.5  
57.1  
57.6  
58.2  
58.8  
59.3  
59.9  
60.4  
60  
62  
64  
66  
68  
70  
72  
74  
76  
78  
80  
82  
84  
61.0  
61.6  
62.1  
62.7  
63.2  
63.8  
64.4  
64.9  
65.5  
66.0  
66.6  
67.2  
67.7  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
Figure 5-2. Thermal Profile for Processors with PRB = 0  
70.0  
65.0  
60.0  
55.0  
50.0  
45.0  
40.0  
y = 0.28x + 44.2  
0
10  
20  
30  
40  
50  
60  
70  
80  
Power (W)  
78  
Datasheet  
Thermal Specifications and Design Considerations  
5.1.2  
Thermal Metrology  
The maximum and minimum case temperatures (T ) are specified in Table 5-1. These temperature  
C
specifications are meant to help ensure proper operation of the processor. Figure 5-3 illustrates  
where Intel recommends T thermal measurements should be made. For detailed guidelines on  
C
®
®
temperature measurement methodology, refer to the Intel Pentium 4 Processor on 90 nm  
Process in the 775-Land Package Thermal Design Guidelines.  
Figure 5-3. Case Temperature (T ) Measurement Location  
C
Measure TC at this point  
(geometric center of the package)  
37.5 mm  
5.2  
Processor Thermal Features  
5.2.1  
Thermal Monitor  
The Thermal Monitor feature helps control the processor temperature by activating the TCC when  
the processor silicon reaches its maximum operating temperature. The TCC reduces processor  
power consumption as needed by modulating (starting and stopping) the internal processor core  
clocks. The Thermal Monitor feature must be enabled for the processor to be operating  
within specifications. The temperature at which Thermal Monitor activates the thermal control  
circuit is not user configurable and is not software visible. Bus traffic is snooped in the normal  
manner, and interrupt requests are latched (and serviced during the time that the clocks are on)  
while the TCC is active.  
When the Thermal Monitor feature is enabled, and a high temperature situation exists (i.e., TCC is  
active), the clocks will be modulated by alternately turning the clocks off and on at a duty cycle  
specific to the processor (typically 30–50%). Clocks often will not be off for more than  
3.0 microseconds when the TCC is active. Cycle times are processor speed dependent and will  
decrease as processor core frequencies increase. A small amount of hysteresis has been included to  
prevent rapid active/inactive transitions of the TCC when the processor temperature is near its  
maximum operating temperature. Once the temperature has dropped below the maximum  
operating temperature, and the hysteresis timer has expired, the TCC goes inactive and clock  
modulation ceases.  
Datasheet  
79  
Thermal Specifications and Design Considerations  
With a properly designed and characterized thermal solution, it is anticipated that the TCC would  
only be activated for very short periods of time when running the most power intensive  
applications. The processor performance impact due to these brief periods of TCC activation is  
expected to be so minor that it would be immeasurable. An under-designed thermal solution that is  
not able to prevent excessive activation of the TCC in the anticipated ambient environment may  
cause a noticeable performance loss, and in some cases may result in a TC that exceeds the  
specified maximum temperature and may affect the long-term reliability of the processor. In  
addition, a thermal solution that is significantly under-designed may not be capable of cooling the  
®
®
processor even when the TCC is active continuously. Refer to the Intel Pentium 4 Processor on  
90 nm Process in the 775-Land Package Thermal Design Guidelines for information on designing  
a thermal solution.  
The duty cycle for the TCC, when activated by the Thermal Monitor, is factory configured and  
cannot be modified. The Thermal Monitor does not require any additional hardware, software  
drivers, or interrupt handling routines.  
5.2.2  
Thermal Monitor 2  
The Pentium 4 processor in the 775-land package also supports a power management capability  
known as Thermal Monitor 2. This mechanism provides an efficient mechanism for limiting the  
processor temperature by reducing power consumption within the processor.  
When Thermal Monitor 2 is enabled, and a high temperature situation is detected, the enhanced  
Thermal Control Circuit (TCC) will be activated. This enhanced TCC causes the processor to  
adjust its operating frequency (bus multiplier) and input voltage (VID). This combination of  
reduced frequency and VID results in a decrease in processor power consumption.  
A processor enabled for Thermal Monitor 2 includes two operating points, each consisting of a  
specific operating frequency and voltage. The first point represents the normal operating conditions  
for the processor.  
The second point consists of both a lower operating frequency and voltage. When the enhanced  
TCC is activated, the processor automatically transitions to the new frequency. This transition  
occurs very rapidly (on the order of 5 µs). During the frequency transition, the processor is unable  
to service any bus requests, and consequently, all bus traffic is blocked. Edge-triggered interrupts  
will be latched and kept pending until the processor resumes operation at the new frequency.  
Once the new operating frequency is engaged, the processor will transition to the new core  
operating voltage by issuing a new VID code to the voltage regulator. The voltage regulator must  
support VID transitions in order to support Thermal Monitor 2. During the voltage change, it will  
be necessary to transition through multiple VID codes to reach the target operating voltage. Each  
step will be one VID table entry (i.e., 12.5 mV steps). The processor continues to execute  
instructions during the voltage transition. Operation at this lower voltage reduces both the dynamic  
and leakage power consumption of the processor, providing a reduction in power consumption at a  
minimum performance impact.  
Once the processor has sufficiently cooled, and a minimum activation time has expired, the  
operating frequency and voltage transition back to the normal system operating point. Transition of  
the VID code will occur first, to insure proper operation once the processor reaches its normal  
operating frequency. Refer to Figure 5-4 for an illustration of this ordering.  
80  
Datasheet  
Thermal Specifications and Design Considerations  
Figure 5-4. Thermal Monitor 2 Frequency and Voltage Ordering  
TTM2  
Temperature  
Frequency  
fMAX  
fTM2  
VID  
VIDTM2  
VID  
PROCHOT#  
Time  
The PROCHOT# signal is asserted when a high temperature situation is detected, regardless of  
whether or not Thermal Monitor or Thermal Monitor 2 is enabled.  
It should be noted that the Thermal Monitor 2 TCC can not be activated via the on demand mode.  
The Thermal Monitor TCC, however, can be activated through the use of the on demand mode.  
5.2.3  
On-Demand Mode  
The Pentium 4 processor in the 775-land package provides an auxiliary mechanism that allows  
system software to force the processor to reduce its power consumption. This mechanism is  
referred to as "On-Demand" mode and is distinct from the Thermal Monitor feature. On-Demand  
mode is intended as a means to reduce system level power consumption. Systems using the  
Pentium 4 processor in the 775-land package must not rely on software usage of this mechanism to  
limit the processor temperature.  
If bit 4 of the ACPI P_CNT Control Register (located in the processor IA32_THERM_CONTROL  
MSR) is written to a '1', the processor will immediately reduce its power consumption via  
modulation (starting and stopping) of the internal core clock, independent of the processor  
temperature. When using On-Demand mode, the duty cycle of the clock modulation is  
programmable via bits 3:1 of the same ACPI P_CNT Control Register. In On-Demand mode, the  
duty cycle can be programmed from 12.5% on/ 87.5% off, to 87.5% on/12.5% off in 12.5%  
increments. On-Demand mode may be used in conjunction with the Thermal Monitor. If the system  
tries to enable On-Demand mode at the same time the TCC is engaged, the factory configured duty  
cycle of the TCC will override the duty cycle selected by the On-Demand mode.  
Datasheet  
81  
Thermal Specifications and Design Considerations  
5.2.4  
PROCHOT# Signal  
An external signal, PROCHOT# (processor hot), is asserted when the processor die temperature  
has reached its maximum operating temperature. If the Thermal Monitor is enabled (note that the  
Thermal Monitor must be enabled for the processor to be operating within specification), the TCC  
will be active when PROCHOT# is asserted. The processor can be configured to generate an  
interrupt upon the assertion or de-assertion of PROCHOT#. Refer to the Intel Architecture  
Software Developer's Manuals for specific register and programming details.  
The Pentium 4 processor in the 775-land package implements a bi-directional PROCHOT#  
capability to allow system designs to protect various components from over-temperature situations.  
The PROCHOT# signal is bi-directional in that it can either signal when the processor has reached  
its maximum operating temperature or be driven from an external source to activate the TCC. The  
ability to activate the TCC via PROCHOT# can provide a means for thermal protection of system  
components.  
One application is the thermal protection of voltage regulators (VR). System designers can create a  
circuit to monitor the VR temperature and activate the TCC when the temperature limit of the VR  
is reached. By asserting PROCHOT# (pulled-low) and activating the TCC, the VR can cool down  
as a result of reduced processor power consumption. Bi-directional PROCHOT# can allow VR  
thermal designs to target maximum sustained current instead of maximum current. Systems should  
still provide proper cooling for the VR, and rely on bi-directional PROCHOT# only as a backup in  
case of system cooling failure. The system thermal design should allow the power delivery  
circuitry to operate within its temperature specification even while the processor is operating at its  
Thermal Design Power. With a properly designed and characterized thermal solution, it is  
anticipated that bi-directional PROCHOT# would only be asserted for very short periods of time  
when running the most power intensive applications. An under-designed thermal solution that is  
not able to prevent excessive assertion of PROCHOT# in the anticipated ambient environment may  
cause a noticeable performance loss. Refer to the Voltage Regulator-Down (VRD) 10.1 Design  
Guide for Desktop Socket 775 for details on implementing the bi-directional PROCHOT# feature.  
5.2.5  
5.2.6  
THERMTRIP# Signal  
Regardless of whether or not the Thermal Monitor feature is enabled, in the event of a catastrophic  
cooling failure, the processor will automatically shut down when the silicon has reached an  
elevated temperature (refer to the THERMTRIP# definition in Table 4-3). At this point, the FSB  
signal THERMTRIP# will go active and stay active as described in Table 4-3. THERMTRIP#  
activation is independent of processor activity and does not generate any bus cycles.  
TCONTROL and Fan Speed Reduction  
T
is a temperature specification based on a temperature reading from the thermal diode.  
CONTROL  
The value for T  
will be calibrated in manufacturing and configured for each processor.  
CONTROL  
When T  
is above T  
, then T must be at or below T  
as defined by the thermal  
diode  
CONTROL  
C
C-MAX  
profile in Table 5-2 and Figure 5-1; otherwise, the processor temperature can be maintained at  
(or lower) as measured by the thermal diode.  
T
CONTROL  
The purpose of this feature is to support acoustic optimization through fan speed control. Contact  
your Intel representative for further details and documentation.  
82  
Datasheet  
Thermal Specifications and Design Considerations  
5.2.7  
Thermal Diode  
The processor incorporates an on-die thermal diode. A thermal sensor located on the system board  
may monitor the die temperature of the processor for thermal management/long term die  
temperature change purposes. Table 5-4 and Table 5-5 provide the diode parameter and interface  
specifications. This thermal diode is separate from the Thermal Monitor’s thermal sensor and  
cannot be used to predict the behavior of the Thermal Monitor.  
Table 5-4. Thermal Diode Parameters  
Symbol  
IFW  
Parameter  
Forward Bias Current  
Min  
Typ  
Max  
Unit  
Notes  
1
11  
187  
µA  
2, 3, 4, 5  
2, 3, 6  
n
RT  
Diode Ideality Factor  
Series Resistance  
1.0083  
3.242  
1.011  
3.33  
1.023  
3.594  
NOTES:  
1.  
2.  
3.  
4.  
Intel does not support or recommend operation of the thermal diode under reverse bias.  
Characterized at 75 °C.  
Not 100% tested. Specified by design characterization.  
The ideality factor, n, represents the deviation from ideal diode behavior as exemplified by the diode equation:  
IFW = IS * (e qV /nkT –1)  
D
where IS = saturation current, q = electronic charge, VD = voltage across the diode, k = Boltzmann  
Constant, and T = absolute temperature (Kelvin).  
5.  
6.  
Devices found to have an ideality factor of 1.0183 to 1.023 will create a temperature error approximately 2 C° higher than  
the actual temperature. To minimize any potential acoustic impact of this temperature error, T  
2 C° on these parts.  
will be increased by  
CONTROL  
The series resistance, R , is provided to allow for a more accurate measurement of the thermal diode temperature. R , as  
T
T
defined, includes the pins of the processor but does not include any socket resistance or board trace resistance between  
the socket and the external remote diode thermal sensor. RT can be used by remote diode thermal sensors with automatic  
series resistance cancellation to calibrate out this error term. Another application is that a temperature offset can be manu-  
ally calculated and programmed into an offset register in the remote diode thermal sensors as exemplified by the equation:  
Terror = [RT * (N-1) * IFWmin] / [nk/q * ln N]  
where Terror = sensor temperature error, N = sensor current ratio, k = Boltzmann Constant, q = electronic  
charge.  
Table 5-5. Thermal Diode Interface  
Signal Name  
Land Number  
Signal Description  
THERMDA  
THERMDC  
AL1  
AK1  
diode anode  
diode cathode  
§
Datasheet  
83  
Thermal Specifications and Design Considerations  
84  
Datasheet  
Features  
6 Features  
6.1  
Power-On Configuration Options  
Several configuration options can be configured by hardware. The Pentium 4 processor in the 775-  
land package samples the hardware configuration at reset, on the active-to-inactive transition of  
RESET#. For specifications on these options, refer to Table 6-1.  
The sampled information configures the processor for subsequent operation. These configuration  
options cannot be changed except by another reset. All resets reconfigure the processor; for reset  
purposes, the processor does not distinguish between a "warm" reset and a "power-on" reset.  
Frequency determination functionality will exist on engineering sample processors which means  
that samples can run at varied frequencies. Production material will have the bus to core ratio  
locked and can only be operated at the rated frequency.  
Table 6-1. Power-On Configuration Option Signals  
Configuration Option  
Signal1, 2  
Output tristate  
SMI#  
Execute BIST  
INIT#  
In Order Queue pipelining (set IOQ depth to 1)  
Disable MCERR# observation  
Disable BINIT# observation  
APIC Cluster ID (0-3)  
A7#  
A9#  
A10#  
A[12:11]#  
Disable bus parking  
A15#  
Disable Hyper-Threading Technology  
Symmetric agent arbitration ID  
RESERVED  
A31#  
BR0#  
A[6:3]#, A8#, A[14:13]#, A[16:30]#, A[32:35]#  
NOTES:  
1.  
2.  
Asserting this signal during RESET# will select the corresponding option.  
Address signals not identified in this table as configuration options should not be asserted during RESET#.  
6.2  
Clock Control and Low Power States  
The processor allows the use of AutoHALT and Stop-Grant states to reduce power consumption by  
stopping the clock to internal sections of the processor, depending on each particular state. See  
Figure 6-1 for a visual representation of the processor low power states.  
The processor adds support for the Enhanced HALT powerdown state. Refer to Figure 6-1 and the  
following sections.  
Not all processors are capable of supporting the Enhanced HALT state. Refer to the Specification  
Update to determine which processor stepping and frequencies will support the Enhanced HALT  
state.  
Datasheet  
85  
Features  
6.2.1  
Normal State  
This is the normal operating state for the processor.  
6.2.2  
HALT and Enhanced HALT Powerdown States  
The Prescott processor supports the HALT or Enhanced HALT powerdown state. The Enhanced  
HALT powerdown state is configured and enabled via the BIOS.  
The Enhanced HALT state is a lower power state as compared to the Stop Grant State.  
If Enhanced HALT is not enabled, the default powerdown state entered will be HALT. Refer to the  
sections below for details about the HALT and Enhanced HALT states.  
6.2.2.1  
HALT Powerdown State  
HALT is a low power state entered when all the logical processors have executed the HALT or  
MWAIT instructions. When one of the logical processors executes the HALT instruction, that  
logical processor is halted, however, the other processor continues normal operation. The processor  
will transition to the Normal state upon the occurrence of SMI#, BINIT#, INIT#, or LINT[1:0]  
(NMI, INTR). RESET# will cause the processor to immediately initialize itself.  
The return from a System Management Interrupt (SMI) handler can be to either Normal Mode or  
the HALT Power Down state. See the Intel Architecture Software Developer's Manual, Volume III:  
System Programmer's Guide for more information.  
The system can generate a STPCLK# while the processor is in the HALT Power Down state. When  
the system deasserts the STPCLK# interrupt, the processor will return execution to the HALT state.  
While in HALT Power Down state, the processor will process bus snoops.  
6.2.2.2  
Enhanced HALT Powerdown State  
Enhanced HALT is a low power state entered when all logical processors have executed the HALT  
or MWAIT instructions and Enhanced HALT has been enabled via the BIOS. When one of the  
logical processors executes the HALT instruction, that logical processor is halted; however, the  
other processor continues normal operation.  
The processor will automatically transition to a lower frequency and voltage operating point before  
entering the Enhanced HALT state. Note that the processor FSB frequency is not altered; only the  
internal core frequency is changed. When entering the low power state, the processor will first  
switch to the lower bus ratio and then transition to the lower VID.  
While in Enhanced HALT state, the processor will process bus snoops.  
The processor exits the Enhanced HALT state when a break event occurs. When the processor exits  
the Enhanced HALT state, it will first transition the VID to the original value and then change the  
bus ratio back to the original value.  
86  
Datasheet  
Features  
Figure 6-1. Processor Low Power State Machine  
HALT or MWAIT Instruction and  
HALT Bus Cycle Generated  
Enhanced HALT or HALT State  
Normal State  
Normal execution  
INIT#, BINIT#, INTR, NMI, SMI#,  
RESET#, FSB interrupts  
BCLK running  
Snoops and interrupts allowed  
Snoop  
Event  
Occurs  
Snoop  
Event  
Serviced  
STPCLK#  
Asserted  
STPCLK#  
De-asserted  
HALT Snoop State  
BCLK running  
Service snoops to caches  
Snoop Event Occurs  
Snoop Event Serviced  
Stop-Grant State  
Grant Snoop State  
BCLK running  
BCLK running  
Snoops and interrupts allowed  
Service snoops to caches  
6.2.3  
Stop-Grant State  
When the STPCLK# signal is asserted, the Stop-Grant state of the processor is entered 20 bus  
clocks after the response phase of the processor-issued Stop Grant Acknowledge special bus cycle.  
Since the GTL+ signals receive power from the FSB, these signals should not be driven (allowing  
the level to return to VTT) for minimum power drawn by the termination resistors in this state. In  
addition, all other input signals on the FSB should be driven to the inactive state.  
BINIT# will not be serviced while the processor is in Stop-Grant state. The event will be latched  
and can be serviced by software upon exit from the Stop Grant state.  
RESET# will cause the processor to immediately initialize itself, but the processor will stay in  
Stop-Grant state. A transition back to the Normal state will occur with the de-assertion of the  
STPCLK# signal.  
A transition to the HALT/Grant Snoop state will occur when the processor detects a snoop on the  
FSB (see Section 6.2.3).  
While in the Stop-Grant State, SMI#, INIT#, BINIT# and LINT[1:0] will be latched by the  
processor, and only serviced when the processor returns to the Normal State. Only one occurrence  
of each event will be recognized upon return to the Normal state.  
While in Stop-Grant state, the processor will process a FSB snoop.  
Datasheet  
87  
Features  
6.2.4  
Enhanced HALT Snoop or HALT Snoop State, Grant Snoop  
State  
The Enhanced HALT Snoop State is used in conjunction with the new Enhanced HALT state. If  
Enhanced HALT state is not enabled in the BIOS, the default Snoop State entered will be the  
HALT Snoop State. Refer to the sections below for details on HALT Snoop State, Grant Snoop  
State and Enhanced HALT Snoop State.  
6.2.4.1  
6.2.4.2  
HALT Snoop State, Grant Snoop State  
The processor will respond to snoop transactions on the FSB while in Stop-Grant state or in HALT  
Power Down state. During a snoop transaction, the processor enters the HALT:Grant Snoop state.  
The processor will stay in this state until the snoop on the FSB has been serviced (whether by the  
processor or another agent on the FSB). After the snoop is serviced, the processor will return to the  
Stop-Grant state or HALT Power Down state, as appropriate.  
Enhanced HALT Snoop State  
The Enhanced HALT Snoop State is the default Snoop State when the Enhanced HALT state is  
enabled via the BIOS. The processor will remain in the lower bus ratio and VID operating point of  
the Enhanced HALT state.  
While in the Enhanced HALT Snoop State, snoops are handled the same way as in the HALT  
Snoop State. After the snoop is serviced the processor will return to the Enhanced HALT Power  
Down state.  
§
88  
Datasheet  
Boxed Processor Specifications  
7 Boxed Processor Specifications  
The Pentium 4 processor on 90 nm process in the 775-land package will also be offered as a boxed  
Intel processor. Boxed Intel processors are intended for system integrators who build systems from  
baseboards and standard components. The boxed Pentium 4 processor in the 775-land package will  
be supplied with a cooling solution. This chapter documents baseboard and system requirements  
for the cooling solution that will be supplied with the boxed Pentium 4 processor in the 775-land  
package. This chapter is particularly important for OEMs that manufacture baseboards for system  
integrators. Unless otherwise noted, all figures in this chapter are dimensioned in millimeters and  
inches [in brackets]. Figure 7-1 shows a mechanical representation of a boxed Pentium 4 processor  
in the 775-land package.  
Note: Drawings in this section reflect only the specifications on the boxed Intel processor product. These  
dimensions should not be used as a generic keep-out zone for all cooling solutions. It is the system  
designers’ responsibility to consider their proprietary cooling solution when designing to the  
®
®
required keep-out zone on their system platforms and chassis. Refer to the Intel Pentium 4  
Processor on 90 nm Process in the 775-Land Package Thermal Design Guidelines for further  
guidance. Contact your local Intel Sales Representative for this document.  
Figure 7-1. Mechanical Representation of the Boxed Processor  
NOTE: The airflow of the fan heatsink is into the center and out of the sides of the fan heatsink.  
Datasheet  
89  
Boxed Processor Specifications  
7.1  
Mechanical Specifications  
7.1.1  
Boxed Processor Cooling Solution Dimensions  
This section documents the mechanical specifications of the boxed Pentium 4 processor on 90 nm  
process in the 775-land package. The boxed processor will be shipped with an unattached fan  
heatsink. Figure 7-1 shows a mechanical representation of the boxed Pentium 4 processor in the  
775-land package.  
Clearance is required around the fan heatsink to ensure unimpeded airflow for proper cooling. The  
physical space requirements and dimensions for the boxed processor with assembled fan heatsink  
are shown in Figure 7-2 (side view), and Figure 7-3 (top view). The airspace requirements for the  
boxed processor fan heatsink must also be incorporated into new baseboard and system designs.  
Airspace requirements are shown in Figure 7-7 and Figure 7-8. Note that some figures have  
centerlines shown (marked with alphabetic designations) to clarify relative dimensioning.  
Figure 7-2. Space Requirements for the Boxed Processor (Side View)  
3.74  
[95.0]  
3.2  
[81.3]  
0.98  
0.39  
[25.0]  
[10.0]  
Figure 7-3. Space Requirements for the Boxed Processor (Top View)  
3.74  
[95.0]  
3.74  
[95.0]  
NOTES:  
1. Diagram does not show the attached hardware for the clip design and is provided only as a mechanical  
representation.  
90  
Datasheet  
Boxed Processor Specifications  
Figure 7-4. Space Requirements for the Boxed Processor (Overall View)  
7.1.2  
7.1.3  
Boxed Processor Fan Heatsink Weight  
The boxed processor fan heatsink will not weigh more than 450 grams. See Chapter 5 and the  
®
®
Intel Pentium 4 Processor on 90 nm Process in the 775-Land Package Thermal Design  
Guidelines for details on the processor weight and heatsink requirements.  
Boxed Processor Retention Mechanism and Heatsink  
Attach Clip Assembly  
The boxed processor thermal solution requires a heatsink attach clip assembly, to secure the  
processor and fan heatsink in the baseboard socket. The boxed processor will ship with the heatsink  
attach clip assembly.  
7.2  
Electrical Requirements  
7.2.1  
Fan Heatsink Power Supply  
The boxed processor's fan heatsink requires a +12 V power supply. A fan power cable will be  
shipped with the boxed processor to draw power from a power header on the baseboard. The power  
cable connector and pinout are shown in Figure 7-5. Baseboards must provide a matched power  
header to support the boxed processor. Table 7-1 contains specifications for the input and output  
signals at the fan heatsink connector.  
Datasheet  
91  
Boxed Processor Specifications  
The fan heatsink outputs a SENSE signal that is an open-collector output that pulses at a rate of  
2 pulses per fan revolution. A baseboard pull-up resistor provides V to match the system board-  
OH  
mounted fan speed monitor requirements, if applicable. Use of the SENSE signal is optional. If the  
SENSE signal is not used, pin 3 of the connector should be tied to GND.  
The fan heatsink receives a PWM signal from the motherboard from the 4th pin of the connector  
labeled as CONTROL.  
The boxed processor's fan heatsink requires a constant +12 V supplied to pin 2 and does not  
support variable voltage control or 3-pin PWM control.  
The power header on the baseboard must be positioned to allow the fan heatsink power cable to  
reach it. The power header identification and location should be documented in the platform  
documentation, or on the system board itself. Figure 7-6 shows the location of the fan power  
connector relative to the processor socket. The baseboard power header should be positioned  
within 110 mm [4.33 inches] from the center of the processor socket.  
Figure 7-5. Boxed Processor Fan Heatsink Power Cable Connector Description  
Signal  
Pin  
Straight square pin, 4-pin terminal housing with  
polarizing ribs and friction locking ramp.  
1
2
3
4
GND  
+12 V  
0.100" pitch, 0.025" square pin width.  
SENSE  
CONTROL  
Match with straight pin, friction lock header on  
mainboard.  
3 4  
1 2  
Boxed_Proc_PwrCable  
Table 7-1. Fan Heatsink Power and Signal Specifications  
Description  
Min  
Typ  
Max  
Unit  
Notes  
+12 V: 12 volt fan power supply  
10.2  
12  
13.8  
V
-
IC:  
Peak Fan current draw  
Fan start-up current draw  
Fan start-up current draw maximum duration  
1.1  
1.5  
2.2  
1.0  
A
A
-
Second  
pulses per fan  
revolution  
1
SENSE: SENSE frequency  
2
2, 3  
CONTROL  
21  
25  
28  
kHz  
NOTES:  
1.  
2.  
3.  
Baseboard should pull this pin up to 5V with a resistor.  
Open drain type, pulse width modulated.  
Fan will have pull-up resistor to 4.75 V maximum of 5.25 V.  
92  
Datasheet  
Boxed Processor Specifications  
Figure 7-6. Baseboard Power Header Placement Relative to Processor Socket  
R4.33  
[110]  
B
C
7.3  
Thermal Specifications  
This section describes the cooling requirements of the fan heatsink solution used by the boxed  
processor.  
7.3.1  
Boxed Processor Cooling Requirements  
The boxed processor may be directly cooled with a fan heatsink. However, meeting the processor's  
temperature specification is also a function of the thermal design of the entire system, and  
ultimately the responsibility of the system integrator. The processor temperature specification is in  
Chapter 5. The boxed processor fan heatsink is able to keep the processor temperature within the  
specifications (see Table 5-1) in chassis that provide good thermal management. For the boxed  
processor fan heatsink to operate properly, it is critical that the airflow provided to the fan heatsink  
is unimpeded. Airflow of the fan heatsink is into the center and out of the sides of the fan heatsink.  
Airspace is required around the fan to ensure that the airflow through the fan heatsink is not  
blocked. Blocking the airflow to the fan heatsink reduces the cooling efficiency and decreases fan  
life. Figure 7-7 and Figure 7-8 illustrate an acceptable airspace clearance for the fan heatsink. The  
air temperature entering the fan should be kept below 38 ºC. Again, meeting the processor's  
temperature specification is the responsibility of the system integrator.  
Datasheet  
93  
Boxed Processor Specifications  
Figure 7-7. Boxed Processor Fan Heatsink Airspace Keepout Requirements (Top View)  
Figure 7-8. Boxed Processor Fan Heatsink Airspace Keepout Requirements (Side View)  
94  
Datasheet  
Boxed Processor Specifications  
7.3.2  
Variable Speed Fan  
If the boxed processor fan heatsink 4-pin connector is connected to a 3-pin motherboard header it  
will operate as follows:  
The boxed processor fan will operate at different speeds over a short range of internal chassis  
temperatures. This allows the processor fan to operate at a lower speed and noise level, while  
internal chassis temperatures are low. If internal chassis temperature increases beyond a lower  
set point, the fan speed will rise linearly with the internal temperature until the higher set point  
is reached. At that point, the fan speed is at its maximum. As fan speed increases, so does fan  
noise levels. Systems should be designed to provide adequate air around the boxed processor  
fan heatsink that remains cooler then lower set point. These set points, represented in  
Figure 7-9 and Table 7-2, can vary by a few degrees from fan heatsink to fan heatsink. The  
internal chassis temperature should be kept below 38 ºC. Meeting the processor's temperature  
specification (see Chapter 5) is the responsibility of the system integrator.  
The motherboard must supply a constant +12 V to the processor's power header to ensure proper  
operation of the variable speed fan for the boxed processor. Refer to Table 7-1 for the specific  
requirements.  
Figure 7-9. Boxed Processor Fan Heatsink Set Points  
Higher Set Point  
Highest Noise Level  
Increasing Fan  
Speed & Noise  
Lower Set Point  
Lowest Noise Level  
X
Y
Z
Internal Chassis Temperature (Degrees C)  
Datasheet  
95  
Boxed Processor Specifications  
Table 7-2. Fan Heatsink Power and Signal Specifications  
Boxed Processor Fan  
Heatsink Set Point (ºC)  
Boxed Processor Fan Speed  
Notes  
When the internal chassis temperature is below or equal to this set point,  
the fan operates at its lowest speed. Recommended maximum internal  
chassis temperature for nominal operating environment.  
1
X 30  
When the internal chassis temperature is at this point, the fan operates  
between its lowest and highest speeds. Recommended maximum  
internal chassis temperature for worst-case operating environment.  
Y = 34  
-
-
When the internal chassis temperature is above or equal to this set point,  
the fan operates at its highest speed.  
Z 38  
NOTES:  
1.  
Set point variance is approximately ± 1 °C from fan heatsink to fan heatsink.  
If the boxed processor fan heatsink 4-pin connector is connected to a 4-pin motherboard header and  
the motherboard is designed with a fan speed controller with PWM output (CONTROL see  
Table 7-1) and remote thermal diode measurement capability the boxed processor will operate as  
follows:  
As processor power has increased the required thermal solutions have generated increasingly more  
noise. Intel has added an option to the boxed processor that allows system integrators to have a  
quieter system in the most common usage.  
The 4th wire PWM solution provides better control over chassis acoustics. This is achieved by  
more accurate measurement of processor die temperature through the processor's temperature  
diode (T  
). Fan RPM is modulated through the use of an ASIC located on the motherboard that  
diode  
sends out a PWM control signal to the 4th pin of the connector labeled as CONTROL. The fan  
speed is based on actual processor temperature instead of internal ambient chassis temperatures.  
If the new 4-pin active fan heat sink solution is connected to an older 3-pin baseboard processor fan  
header, it will default back to a thermistor controlled mode, allowing compatibility with existing 3-  
pin baseboard designs. Under thermistor controlled mode, the fan RPM is automatically varied  
based on the Tinlet temperature measured by a thermistor located at the fan inlet.  
For more details on specific motherboard requirements for 4-wire based fan speed control see the  
®
®
Intel Pentium 4 Processor on 90 nm Process in the 775-Land Package Thermal Design Guide.  
§
96  
Datasheet  

相关型号:

541-0001-0-01

Board Connector
HRS

541-0004-8-01

Board Connector
HRS

541-0869-035

Board Connector
HRS

541-100KJTR-ND

ADSP-BF506F EZ-KIT Lite® Evaluation System Manual
ADI

541-1074

NTC Thermistors,Coated
VISHAY

541-1074-ND

NTC Thermistors,Coated
VISHAY

541-1075

NTC Thermistors,Coated
VISHAY

541-1075-ND

NTC Thermistors,Coated
VISHAY

541-1076

NTC Thermistors,Coated
VISHAY

541-1076-ND

NTC Thermistors,Coated
VISHAY

541-1203

NTC Thermistors,Coated
VISHAY

541-1203-ND

NTC Thermistors,Coated
VISHAY