313064 [INTEL]

Dual-Core Intel Xeon Processor; 双核英特尔​​®至强®处理器
313064
型号: 313064
厂家: INTEL    INTEL
描述:

Dual-Core Intel Xeon Processor
双核英特尔​​®至强®处理器

文件: 总104页 (文件大小:3687K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual-Core Intel® Xeon®  
Processor 5000 Series  
Datasheet  
May 2006  
Document Number: 313079-001  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,  
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS  
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,  
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING  
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY  
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or  
life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.Intel  
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future  
changes to them.  
The Dual-Core Intel® Xeon® Processor 5000 Series may contain design defects or errors known as errata which may cause the  
product to deviate from published specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Intel, Pentium, Intel Xeon, Intel SpeedStep, Intel NetBurst, Intel Architecture, Intel Virtualization Technology, and the Intel logo  
are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2004-2006, Intel Corporation.  
2
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Contents  
1
Introduction.................................................................................................................9  
1.1  
1.2  
1.3  
Terminology ..................................................................................................... 11  
State of Data.................................................................................................... 12  
References ....................................................................................................... 12  
2
Electrical Specifications ............................................................................................... 15  
2.1  
2.2  
2.3  
Front Side Bus and GTLREF ................................................................................ 15  
Power and Ground Lands.................................................................................... 15  
Decoupling Guidelines........................................................................................ 16  
2.3.1 VCC Decoupling...................................................................................... 16  
2.3.2 VTT Decoupling...................................................................................... 16  
2.3.3 Front Side Bus AGTL+ Decoupling ............................................................ 16  
Front Side Bus Clock (BCLK[1:0]) and Processor Clocking....................................... 16  
2.4.1 Front Side Bus Frequency Select Signals (BSEL[2:0]).................................. 17  
2.4.2 Phase Lock Loop (PLL) and Filter .............................................................. 18  
Voltage Identification (VID) ................................................................................ 19  
Reserved or Unused Signals................................................................................ 21  
Front Side Bus Signal Groups.............................................................................. 21  
GTL+ Asynchronous and AGTL+ Asynchronous Signals........................................... 23  
Test Access Port (TAP) Connection....................................................................... 23  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
2.10 Mixing Processors.............................................................................................. 24  
2.11 Absolute Maximum and Minimum Ratings ............................................................. 24  
2.12 Processor DC Specifications ................................................................................ 25  
2.12.1 VCC Overshoot Specification.................................................................... 31  
2.12.2 Die Voltage Validation............................................................................. 32  
3
Mechanical Specifications............................................................................................. 33  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Package Mechanical Drawings ............................................................................. 33  
Processor Component Keepout Zones................................................................... 37  
Package Loading Specifications ........................................................................... 37  
Package Handling Guidelines............................................................................... 38  
Package Insertion Specifications.......................................................................... 38  
Processor Mass Specifications ............................................................................. 38  
Processor Materials............................................................................................ 38  
Processor Markings............................................................................................ 39  
Processor Land Coordinates................................................................................ 40  
4
Land Listing............................................................................................................... 43  
4.1  
Dual-Core Intel Xeon Processor 5000 Series Land Assignments ............................... 43  
4.1.1 Land Listing by Land Name...................................................................... 43  
4.1.2 Land Listing by Land Number................................................................... 52  
5
6
Signal Definitions ...................................................................................................... 61  
5.1 Signal Definitions .............................................................................................. 61  
Thermal Specifications ................................................................................................ 69  
6.1  
Package Thermal Specifications........................................................................... 69  
6.1.1 Thermal Specifications ............................................................................ 69  
6.1.2 Thermal Metrology ................................................................................. 75  
Processor Thermal Features................................................................................ 77  
6.2.1 Thermal Monitor..................................................................................... 77  
6.2.2 On-Demand Mode .................................................................................. 77  
6.2.3 PROCHOT# Signal.................................................................................. 78  
6.2.4 FORCEPR# Signal................................................................................... 78  
6.2.5 THERMTRIP# Signal ............................................................................... 78  
6.2  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
3
6.2.6 Tcontrol and Fan Speed Reduction ............................................................79  
6.2.7 Thermal Diode........................................................................................79  
7
Features....................................................................................................................83  
7.1  
7.2  
Power-On Configuration Options ..........................................................................83  
Clock Control and Low Power States.....................................................................83  
7.2.1 Normal State .........................................................................................84  
7.2.2 HALT or Enhanced Powerdown States........................................................84  
7.2.3 Stop-Grant State ....................................................................................85  
7.2.4 Enhanced HALT Snoop or HALT Snoop State,  
Stop Grant Snoop State...........................................................................86  
Enhanced Intel SpeedStep® Technology...............................................................86  
7.3  
8
Boxed Processor Specifications .....................................................................................89  
8.1  
8.2  
Introduction......................................................................................................89  
Mechanical Specifications....................................................................................90  
8.2.1 Boxed Processor Heat Sink Dimensions (CEK).............................................91  
8.2.2 Boxed Processor Heat Sink Weight............................................................99  
8.2.3 Boxed Processor Retention Mechanism and  
Heat Sink Support (CEK) .........................................................................99  
Electrical Requirements ......................................................................................99  
8.3.1 Fan Power Supply (Active CEK).................................................................99  
8.3.2 Boxed Processor Cooling Requirements....................................................100  
Boxed Processor Contents.................................................................................101  
8.3  
8.4  
9
Debug Tools Specifications.........................................................................................103  
9.1  
9.2  
Debug Port System Requirements......................................................................103  
Target System Implementation..........................................................................103  
9.2.1 System Implementation.........................................................................103  
Logic Analyzer Interface (LAI) ..........................................................................103  
9.3.1 Mechanical Considerations .....................................................................104  
9.3.2 Electrical Considerations........................................................................104  
9.3  
Figures  
2-1  
2-2  
Phase Lock Loop (PLL) Filter Requirements............................................................18  
Dual-Core Intel® Xeon® Processor 5000 Series (1066 MHz)  
Load Current versus Time...................................................................................27  
2-3  
Dual-Core Intel® Xeon® Processor 5000 Series (667 MHz) and  
Dual-Core Intel® Xeon® Processor 5063 (MV) Load Current versus Time..................28  
VCC Static and Transient Tolerance Load Lines ......................................................29  
VCC Overshoot Example Waveform......................................................................32  
Processor Package Assembly Sketch.....................................................................33  
Processor Package Drawing (Sheet 1 of 3) ............................................................34  
Processor Package Drawing (Sheet 2 of 3) ............................................................35  
Processor Package Drawing (Sheet 3 of 3) ............................................................36  
Dual-Core Intel Xeon Processor 5000 Series Top-side Markings................................39  
Dual-Core Intel Xeon Processor 5063 (MV) Top-side Markings..................................39  
Processor Land Coordinates, Top View..................................................................40  
Processor Land Coordinates, Bottom View.............................................................41  
Dual-Core Intel Xeon Processor 5000 Series (1066 MHz)  
2-4  
2-5  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
3-7  
3-8  
6-1  
Thermal Profiles A and B.....................................................................................71  
Dual-Core Intel Xeon Processor 5000 Series (667 MHz) Thermal Profiles ...................73  
Dual-Core Intel Xeon Processor 5063 (MV) Thermal Profile......................................75  
Case Temperature (TCASE) Measurement Location.................................................76  
Stop Clock State Machine....................................................................................85  
6-2  
6-3  
6-4  
7-1  
4
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
8-1  
Boxed Dual-Core Intel Xeon Processor 5000 Series 1U  
Passive/2U Active Combination Heat Sink (With Removable Fan) ............................. 89  
Boxed Dual-Core Intel Xeon Processor 5000 Series 2U Passive Heat Sink.................. 90  
2U Passive Dual-Core Intel Xeon Processor 5000 Series  
8-2  
8-3  
Thermal Solution (Exploded View) ....................................................................... 90  
Top Side Board Keep-Out Zones (Part 1) .............................................................. 92  
Top Side Board Keep-Out Zones (Part 2) .............................................................. 93  
Bottom Side Board Keep-Out Zones..................................................................... 94  
Board Mounting Hole Keep-Out Zones.................................................................. 95  
Volumetric Height Keep-Ins ................................................................................ 96  
4-Pin Fan Cable Connector (For Active CEK Heat Sink) ........................................... 97  
8-4  
8-5  
8-6  
8-7  
8-8  
8-9  
8-10 4-Pin Base Board Fan Header (For Active CEK Heat Sink)........................................ 98  
8-11 Fan Cable Connector Pin Out for 4-Pin Active CEK Thermal Solution ....................... 100  
Tables  
1-1  
Dual-Core Intel® Xeon® Processor 5000 Series Features ....................................... 10  
Core Frequency to FSB Multiplier Configuration ..................................................... 17  
BSEL[2:0] Frequency Table ................................................................................ 17  
Voltage Identification Definition........................................................................... 19  
Loadline Selection Truth Table for LL_ID[1:0] ....................................................... 20  
Market Segment Selection Truth Table for MS_ID[1:0]........................................... 20  
FSB Signal Groups............................................................................................. 22  
Signal Description Table..................................................................................... 23  
Signal Reference Voltages .................................................................................. 23  
Processor Absolute Maximum Ratings................................................................... 24  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-8  
2-9  
2-10 Voltage and Current Specifications....................................................................... 25  
2-11 VCC Static and Transient Tolerance ..................................................................... 28  
2-12 BSEL[2:0], VID[5:0] Signal Group DC Specifications.............................................. 30  
2-13 AGTL+ Signal Group DC Specifications ................................................................. 30  
2-14 PWRGOOD Input and TAP Signal Group DC Specifications ....................................... 30  
2-15 GTL+ Asynchronous and AGTL+ Asynchronous Signal Group  
DC Specifications .............................................................................................. 31  
2-16 VTTPWRGD DC Specifications.............................................................................. 31  
2-17 VCC Overshoot Specifications.............................................................................. 32  
3-1  
3-2  
3-3  
4-1  
4-2  
5-1  
6-1  
6-2  
6-3  
6-4  
6-5  
6-6  
6-7  
6-8  
6-9  
Package Loading Specifications ........................................................................... 37  
Package Handling Guidelines............................................................................... 38  
Processor Materials............................................................................................ 38  
Land Listing by Land Name................................................................................. 43  
Land Listing by Land Number.............................................................................. 52  
Signal Definitions .............................................................................................. 61  
Dual-Core Intel Xeon Processor 5000 Series (1066 MHz) Thermal Specifications ........ 70  
Dual-Core Intel Xeon Processor 5000 Series (1066 MHz) Thermal Profile A Table ....... 71  
Dual-Core Intel Xeon Processor 5000 Series (1066 MHz) Thermal Profile B Table ....... 72  
Dual-Core Intel Xeon Processor 5000 Series (667 MHz) Thermal Specifications.......... 72  
Dual-Core Intel Xeon Processor 5000 Series (667 MHz) Thermal Profile A Table......... 73  
Dual-Core Intel Xeon 5000 Series (667 MHz) Thermal Profile B Table ....................... 74  
Dual-Core Intel Xeon Processor 5063 (MV) Thermal Specifications ........................... 74  
Dual-Core Intel Xeon Processor 5063 (MV) Thermal Profile Table............................. 75  
Thermal Diode Parameters using Diode Model ....................................................... 80  
6-10 Thermal Diode Interface..................................................................................... 81  
6-11 Thermal Diode Parameters using Transistor Model ................................................. 81  
6-12 Parameters for Tdiode Correction Factor............................................................... 81  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
5
7-1  
8-1  
8-2  
8-3  
Power-On Configuration Option Lands...................................................................83  
PWM Fan Frequency Specifications for 4-Pin Active CEK Thermal Solution................100  
Fan Specifications for 4-pin Active CEK Thermal Solution.......................................100  
Fan Cable Connector Pin Out for 4-Pin Active CEK Thermal Solution........................100  
6
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Revision History  
Revision  
Description  
Date  
001  
Initial release  
May 2006  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
7
Features  
„ Dual-Core processor  
„ Available at 3.73 GHz processor speed  
„ Includes 16-KB Level 1 data cache per core (2 x 16-KB)  
„ Includes 12-KB Level 1 trace cache per core (2 x 12-KB)  
„ 2-MB Advanced Transfer Cache per core (2 x 2-MB, On-die, full speed Level 2 (L2) Cache) with 8-  
way associativity and Error Correcting Code (ECC)  
„ 667/1066 MHz front side bus  
„ 65 nm process technology  
„ Dual processing (DP) server support  
„ Intel® NetBurst® microarchitecture  
„ Hyper-Threading Technology allowing up to 8 threads per platform  
„ Hardware support for multi-threaded applications  
„ Intel® Virtualization Technology  
„ Intel® Extended Memory 64 Technology (Intel® EM64T)  
„ Execute Disable Bit (XD Bit)  
„ Enables system support of up to 64 GB of physical memory  
„ Enhanced branch prediction  
„ Enhanced floating-point and multimedia unit for enhanced video, audio, encryption, and 3D  
performance  
„ Advanced Dynamic Execution  
„ Very deep out-of-order execution  
„ System Management mode  
„ Machine Check Architecture (MCA)  
„ Interfaces to Memory Controller Hub  
The Dual-Core Intel Xeon Processor 5000 series are designed for high-performance dual-processor  
server and workstation applications. Based on the Intel NetBurst® microarchitecture and Hyper-  
Threading Technology (HT Technology), it is binary compatible with previous Intel® Architecture  
(IA-32) processors. The Dual-Core Intel Xeon Processor 5000 series are scalable to two processors in  
a multiprocessor system, providing exceptional performance for applications running on advanced  
operating systems such as Windows* XP, Windows Server 2003, Linux*, and UNIX*.  
The Dual-Core Intel Xeon Processor 5000 series deliver compute power at unparalleled value and  
flexibility for powerful servers, internet infrastructure, and departmental server applications. The Intel  
NetBurst micro-architecture, Intel Virtualization Technology and Hyper-Threading Technology deliver  
outstanding performance and headroom for peak internet server workloads, resulting in faster  
response times, support for more users, and improved scalability.  
§
8
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Introduction  
1 Introduction  
The Dual-Core Intel® Xeon® Processor 5000 series are Intel dual core products for dual  
processor (DP) servers and workstations. The Dual-Core Intel Xeon Processor 5000  
series are 64-bit server/workstation processors utilizing two physical Intel NetBurst®  
microarchitecture cores in one package. The Dual-Core Intel Xeon Processor 5000  
series include enhancements to the Intel NetBurst microarchitecture while maintaining  
the tradition of compatibility with IA-32 software. Some key features include Hyper  
Pipelined Technology and an Execution Trace Cache. Hyper Pipelined Technology  
includes a multi-stage pipeline depth, allowing the processor to reach higher core  
frequencies. The Dual-Core Intel Xeon Processor 5000 series contain a total of 4 MB of  
L2 Advanced Transfer Cache, 2 MB per core. The 1066 MHz Front Side Bus (FSB) is a  
quad-pumped bus running off a 266 MHz system clock making 8.5 GBytes per second  
data transfer rates possible. The 667 MHz Front Side Bus (FSB) is a quad-pumped bus  
running off a 166 MHz system clock making 5.3 GBytes per second data transfer rates  
possible.  
In addition, enhanced thermal and power management capabilities are implemented  
including Thermal Monitor (TM1) and Enhanced Intel SpeedStep® technology. These  
technologies are targeted for dual processor (DP) systems in enterprise environments.  
TM1 provides efficient and effective cooling in high temperature situations. Enhanced  
Intel SpeedStep technology provides power management capabilities to servers and  
workstations.  
The Dual-Core Intel Xeon Processor 5000 series also include Hyper-Threading  
Technology (HT Technology) resulting in four logical processors per package. This  
feature allows multi-threaded applications to execute more than one thread per  
physical processor core, increasing the throughput of applications and enabling  
improved scaling for server and workstation workloads. More information on Hyper-  
Threading Technology can be found at http://www.intel.com/technology/hyperthread.  
Other features within the Intel NetBurst microarchitecture include Advanced Dynamic  
Execution, Advanced Transfer Cache, enhanced floating point and multi-media units,  
and Streaming SIMD Extensions 3 (SSE3). Advanced Dynamic Execution improves  
speculative execution and branch prediction internal to the processor. The Advanced  
Transfer Cache in each core is a 2 MB level 2 (L2) cache. The floating point and multi-  
media units include 128-bit wide registers and a separate register for data movement.  
Streaming SIMD3 (SSE3) instructions provide highly efficient double-precision floating  
point, SIMD integer, and memory management operations. Other processor  
enhancements include core frequency improvements and microarchitectural  
improvements.  
The Dual-Core Intel Xeon Processor 5000 series support Intel® Extended Memory 64  
Technology (Intel® EM64T) as an enhancement to Intel's IA-32 architecture. This  
enhancement allows the processor to execute operating systems and applications  
written to take advantage of the 64-bit extension technology. Further details on Intel  
Extended Memory 64 Technology and its programming model can be found in the  
64-bit Extension Technology Software Developer's Guide at http://developer.intel.com/  
technology/64bitextensions/.  
In addition, the Dual-Core Intel Xeon Processor 5000 series support the Execute  
Disable Bit functionality. When used in conjunction with a supporting operating system,  
Execute Disable allows memory to be marked as executable or non executable. This  
feature can prevent some classes of viruses that exploit buffer overrun vulnerabilities  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
9
Introduction  
and can thus help improve the overall security of the system. For further information on  
Execute Disable Bit functionality see http://www.intel.com/cd/ids/developer/asmo-na/  
eng/149308.htm.  
The Dual-Core Intel Xeon Processor 5000 series support Intel® Virtualization  
Technology, virtualization within the processor. Intel Virtualization Technology is a set of  
hardware enhancements that can improve virtualization solutions. Intel Virtualization  
Technology is used in conjunction with Virtual Machine Monitor software enabling  
multiple, independent software environments inside a single platform. More  
information on Intel Virtualization Technology can be found at http://www.intel.com/  
technology/computing/vptech/index.htm.  
The Dual-Core Intel Xeon Processor 5000 series are intended for high performance  
workstation and server systems. The Dual-Core Intel Xeon Processor 5063 is a lower  
power version of the Dual-Core Intel Xeon Processor 5000 series. The Dual-Core Intel  
Xeon Processor 5000 series support a new Dual Independent Bus (DIB) architecture  
with one processor socket on each bus, up to two processor sockets in a system. The  
DIB architecture provides improved performance by allowing increased FSB speeds and  
bandwidth. The Dual-Core Intel Xeon Processor 5000 series will be packaged in an FC-  
LGA6 Land Grid Array package with 771 lands for improved power delivery. It utilizes a  
surface mount LGA771 socket that supports Direct Socket Loading (DSL).  
Table 1-1.  
Dual-Core Intel® Xeon® Processor 5000 Series Features  
# Cores Per  
Package  
L2 Advanced  
Transfer Cache  
Hyper-Threading  
Technology  
Front Side Bus  
Frequency  
Package  
1
2
2 MB per core  
4 MB total  
Yes  
667 MHz  
1066 MHz  
FC-LGA6  
771 Lands  
Notes:  
1. Total accessible size of L2 caches may vary by one cache line pair (128 bytes) per core, depending on usage  
and operating environment.  
The Dual-Core Intel Xeon Processor 5000 series-based platforms implement  
independent core voltage (VCC) power planes for each processor. FSB termination  
voltage (VTT) is shared and must connect to all FSB agents. The processor core voltage  
utilizes power delivery guidelines specified by VRM/EVRD 11.0 and its associated load  
line. Refer to the appropriate platform design guidelines for implementation details.  
The Dual-Core Intel Xeon Processor 5000 series support a 1066/667 MHz Front Side  
Bus frequency. The FSB utilizes a split-transaction, deferred reply protocol and Source-  
Synchronous Transfer (SST) of address and data to improve performance. The  
processor transfers data four times per bus clock (4X data transfer rate, as in AGP 4X).  
Along with the 4X data bus, the address bus can deliver addresses two times per bus  
clock and is referred to as a ‘double-clocked’ or a 2X address bus. In addition, the  
Request Phase completes in one clock cycle. Working together, the 4X data bus and 2X  
address bus provide a data bus bandwidth of up to 8.5 GBytes/second. (5.3 GBytes/  
second for Dual-Core Intel Xeon Processor 5000 series 667) Finally, the FSB is also  
used to deliver interrupts.  
Signals on the FSB use Assisted Gunning Transceiver Logic (AGTL+) level voltages.  
Section 2.1 contains the electrical specifications of the FSB while implementation  
details are fully described in the appropriate platform design guidelines (refer to  
Section 1.3).  
10  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Introduction  
1.1  
Terminology  
A ‘#’ symbol after a signal name refers to an active low signal, indicating a signal is in  
the asserted state when driven to a low level. For example, when RESET# is low, a  
reset has been requested. Conversely, when NMI is high, a nonmaskable interrupt has  
occurred. In the case of signals where the name does not imply an active state but  
describes part of a binary sequence (such as address or data), the ‘#’ symbol implies  
that the signal is inverted. For example, D[3:0] = ‘HLHL’ refers to a hex ‘A, and  
D[3:0]# = ‘LHLH’ also refers to a hex ‘A’ (H= High logic level, L= Low logic level).  
Commonly used terms are explained here for clarification:  
Dual-Core Intel® Xeon® Processor 5000 Series – Processor in the FC-LGA6  
package with two physical processor cores. Dual-Core Intel Xeon processor 5000  
series refers to the “Full Power” Dual-Core Intel Xeon Processor 5000 series with  
1066 MHz Front Side Bus. For this document, “processor” is used as the generic  
term for the “Dual-Core Intel® Xeon® Processor 5000 series.  
Dual-Core Intel® Xeon® Processor 5063 (MV) – This is a lower power version  
of the Dual-Core Intel Xeon Processor 5000 series. Dual-Core Intel Xeon Processor  
5063 (MV) refers to the “Mid Power” Dual-Core Intel Xeon Processor 5000 series.  
Unless otherwise noted, the terms “Dual-Core Intel Xeon 5000 series” and  
“processor” also refer to the “Dual-Core Intel Xeon Processor 5063.  
FC-LGA6 (Flip Chip Land Grid Array) Package – The Dual-Core Intel Xeon  
Processor 5000 series package is a Land Grid Array, consisting of a processor core  
mounted on a pinless substrate with 771 lands, and includes an integrated heat  
spreader (IHS).  
FSB (Front Side Bus) – The electrical interface that connects the processor to the  
chipset. Also referred to as the processor front side bus or the front side bus. All  
memory and I/O transactions as well as interrupt messages pass between the  
processor and chipset over the FSB.  
Functional Operation – Refers to the normal operating conditions in which all  
processor specifications, including DC, AC, FSB, signal quality, mechanical and  
thermal are satisfied.  
Storage Conditions – Refers to a non-operational state. The processor may be  
installed in a platform, in a tray, or loose. Processors may be sealed in packaging or  
exposed to free air. Under these conditions, processor lands should not be  
connected to any supply voltages, have any I/Os biased or receive any clocks.  
Upon exposure to “free air” (that is, unsealed packaging or a device removed from  
packaging material) the processor must be handled in accordance with moisture  
sensitivity labeling (MSL) as indicated on the packaging material.  
Priority Agent – The priority agent is the host bridge to the processor and is  
typically known as the chipset.  
Symmetric Agent – A symmetric agent is a processor which shares the same I/O  
subsystem and memory array, and runs the same operating system as another  
processor in a system. Systems using symmetric agents are known as Symmetric  
Multiprocessing (SMP) systems.  
Integrated Heat Spreader (IHS) – A component of the processor package used  
to enhance the thermal performance of the package. Component thermal solutions  
interface with the processor at the IHS surface.  
Enhanced Intel SpeedStep Technology – The next generation implementation  
of Intel SpeedStep technology which extends power management capabilities of  
servers and workstations.  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
11  
Introduction  
Thermal Design Power – Processor thermal solutions should be designed to meet  
this target. It is the highest expected sustainable power while running known  
power intensive real applications. TDP is not the maximum power that the  
processor can dissipate.  
LGA771 socket – The Dual-Core Intel Xeon Processor 5000 series interfaces to  
the baseboard through this surface mount, 771 Land socket. See the LGA771  
Socket Design Guidelines for details regarding this socket.  
Processor – A single package that contains one or more complete execution cores.  
Processor core – Processor core die with integrated L2 cache. All AC timing and  
signal integrity specifications are at the pads of the processor core.  
Intel® Virtualization Technology – Processor virtualization which when used in  
conjunction with Virtual Machine Monitor software enables multiple, robust  
independent software environments inside a single platform.  
VRM (Voltage Regulator Module) – DC-DC converter built onto a module that  
interfaces with a card edge socket and supplies the correct voltage and current to  
the processor based on the logic state of the processor VID bits.  
EVRD (Enterprise Voltage Regulator Down) – DC-DC converter integrated onto  
the system board that provides the correct voltage and current to the processor  
based on the logic state of the processor VID bits.  
VCC – The processor core power supply.  
VSS – The processor ground.  
VTT – FSB termination voltage.  
1.2  
1.3  
State of Data  
The data contained within this document is subject to change. It is the most accurate  
information available by the publication date of this document and is based on final  
silicon characterization. All specifications in this version of the Dual-Core Intel® Xeon®  
Processor 5000 Series Datasheet can be used for platform design purposes (layout  
studies, characterizing thermal capabilities, and so forth).  
References  
Material and concepts available in the following documents may be beneficial when  
reading this document:  
Document  
Intel Order Number  
AP-485, Intel® Processor Identification and the CPUID Instruction  
241618  
®
IA-32 Intel Architecture Software Developer's Manual  
Volume 1: Basic Architecture  
253665  
253666  
253667  
253668  
253669  
Volume 2A: Instruction Set Reference, A-M  
Volume 2B: Instruction Set Reference, N-Z  
Volume 3A: System Programming Guide  
Volume 3B: System Programming Guide  
64-bit Extension Technology Software Developer's Guide  
Volume 1  
Volume 2  
®
300834  
300835  
IA-32 Intel Architecture Optimization Reference Manual  
248966  
12  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Introduction  
Document  
Intel Order Number  
®
®
Dual-Core Intel Xeon Processor 5000 Series Specifications Update  
313065  
EPS12V Power Supply Design Guide: A Server system Infrastructure (SSI)  
Specification for Entry Chassis Power Supplies  
http://  
www.ssiforum.org  
Entry-Level Electronics-Bay Specifications: A Server System Infrastructure (SSI)  
Specification for Entry Pedestal Servers and Workstations  
http://  
www.ssiforum.org  
Dual-Core Intel® Xeon® Processor 5000 Series Thermal/Mechanical Design  
Guidelines  
313062  
313064  
Dual-Core Intel® Xeon® Processor 5000 Series Boundary Scan Descriptive  
Language (BSDL) Model  
Notes: Contact your Intel representative for the latest revision of those documents.  
§
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
13  
Introduction  
14  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Electrical Specifications  
2 Electrical Specifications  
2.1  
Front Side Bus and GTLREF  
Most Dual-Core Intel Xeon Processor 5000 series FSB signals use Assisted Gunning  
Transceiver Logic (AGTL+) signaling technology. This technology provides improved  
noise margins and reduced ringing through low voltage swings and controlled edge  
rates. AGTL+ buffers are open-drain and require pull-up resistors to provide the high  
logic level and termination. AGTL+ output buffers differ from GTL+ buffers with the  
addition of an active PMOS pull-up transistor to “assist” the pull-up resistors during the  
first clock of a low-to-high voltage transition. Platforms implement a termination  
voltage level for AGTL+ signals defined as VTT. Because platforms implement separate  
power planes for each processor (and chipset), separate VCC and VTT supplies are  
necessary. This configuration allows for improved noise tolerance as processor  
frequency increases. Speed enhancements to data and address buses have made  
signal integrity considerations and platform design methods even more critical than  
with previous processor families.  
The AGTL+ inputs require reference voltages (GTLREF), which are used by the  
receivers to determine if a signal is a logical 0 or a logical 1. GTLREF must be generated  
on the baseboard. GTLREF is a generic name for GTLREF_DATA_C[1:0], the reference  
voltages for the 4X data bus and GTLREF_ADD_C[1:0], the reference voltages for the  
2X address bus and common clock signals. Refer to the applicable platform design  
guidelines for details. Termination resistors (RTT) for AGTL+ signals are provided on the  
processor silicon and are terminated to VTT. The on-die termination resistors are always  
enabled on the Dual-Core Intel Xeon Processor 5000 series to control reflections on the  
transmission line. Intel chipsets also provide on-die termination, thus eliminating the  
need to terminate the bus on the baseboard for most AGTL+ signals.  
Some FSB signals do not include on-die termination (RTT) and must be terminated on  
the baseboard. See Table 2-7 for details regarding these signals.  
The AGTL+ bus depends on incident wave switching. Therefore, timing calculations for  
AGTL+ signals are based on flight time as opposed to capacitive deratings. Analog  
signal simulation of the FSB, including trace lengths, is highly recommended when  
designing a system. Contact your Intel Field Representative to obtain the processor  
signal integrity models, which includes buffer and package models.  
2.2  
Power and Ground Lands  
For clean on-chip processor core power distribution, the processor has 223 VCC (power)  
and 271 VSS (ground) inputs. All Vcc lands must be connected to the processor power  
plane, while all VSS lands must be connected to the system ground plane. The  
processor VCC lands must be supplied with the voltage determined by the processor  
Voltage IDentification (VID) signals. See Table 2-3 for VID definitions.  
Twenty two lands are specified as VTT, which provide termination for the FSB and power  
to the I/O buffers. The platform must implement a separate supply for these lands  
which meets the VTT specifications outlined in Table 2-10.  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
15  
Electrical Specifications  
2.3  
Decoupling Guidelines  
Due to its large number of transistors and high internal clock speeds, the Dual-Core  
Intel Xeon Processor 5000 series are capable of generating large average current  
swings between low and full power states. This may cause voltages on power planes to  
sag below their minimum values if bulk decoupling is not adequate. Larger bulk storage  
(CBULK), such as electrolytic capacitors, supply current during longer lasting changes in  
current demand by the component, such as coming out of an idle condition. Similarly,  
they act as a storage well for current when entering an idle condition from a running  
condition. Care must be taken in the baseboard design to ensure that the voltage  
provided to the processor remains within the specifications listed in Table 2-10. Failure  
to do so can result in timing violations or reduced lifetime of the component. For further  
information and guidelines, refer to the appropriate platform design guidelines.  
2.3.1  
2.3.2  
V Decoupling  
CC  
Vcc regulator solutions need to provide bulk capacitance with a low Effective Series  
Resistance (ESR), and the baseboard designer must assure a low interconnect  
resistance from the regulator (EVRD or VRM pins) to the LGA771 socket. Bulk  
decoupling must be provided on the baseboard to handle large current swings. The  
power delivery solution must insure the voltage and current specifications are met (as  
defined in Table 2-10). For further information regarding power delivery, decoupling  
and layout guidelines, refer to the appropriate platform design guidelines.  
VTT Decoupling  
Bulk decoupling must be provided on the baseboard. Decoupling solutions must be  
sized to meet the expected load. To insure optimal performance, various factors  
associated with the power delivery solution must be considered including regulator  
type, power plane and trace sizing, and component placement. A conservative  
decoupling solution consists of a combination of low ESR bulk capacitors and high  
frequency ceramic capacitors. For further information regarding power delivery,  
decoupling and layout guidelines, refer to the appropriate platform design guidelines.  
2.3.3  
Front Side Bus AGTL+ Decoupling  
The Dual-Core Intel Xeon Processor 5000 series integrate signal termination on the die,  
as well as a portion of the required high frequency decoupling capacitance on the  
processor package. However, additional high frequency capacitance must be added to  
the baseboard to properly decouple the return currents from the FSB. Bulk decoupling  
must also be provided by the baseboard for proper AGTL+ bus operation. Decoupling  
guidelines are described in the appropriate platform design guidelines.  
2.4  
Front Side Bus Clock (BCLK[1:0]) and Processor  
Clocking  
BCLK[1:0] directly controls the FSB interface speed as well as the core frequency of the  
processor. As in previous processor generations, the Dual-Core Intel Xeon Processor  
5000 series core frequency is a multiple of the BCLK[1:0] frequency. The processor bus  
ratio multiplier is set during manufacturing. The default setting is for the maximum  
speed of the processor. It is possible to override this setting using software (see the  
IA-32 Intel® Architecture Software Developer’s Manual, Volume 3A &3B). This permits  
operation at lower frequencies than the processor’s tested frequency.  
16  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Electrical Specifications  
The processor core frequency is configured during reset by using values stored  
internally during manufacturing. The stored value sets the highest bus fraction at which  
the particular processor can operate. If lower speeds are desired, the appropriate ratio  
can be configured via the IA32_FLEX_BRVID_SEL MSR. For details of operation at core  
frequencies lower than the maximum rated processor speed, refer to the IA-32 Intel®  
Architecture Software Developer’s Manual, Volume 3A &3B.  
Clock multiplying within the processor is provided by the internal phase locked loop  
(PLL), which requires a constant frequency BCLK[1:0] input, with exceptions for spread  
spectrum clocking. The Dual-Core Intel Xeon Processor 5000 series utilize differential  
clocks. Table 2-1 contains processor core frequency to FSB multipliers and their  
corresponding core frequencies.  
Table 2-1.  
Core Frequency to FSB Multiplier Configuration  
Core Frequency to FSB  
Multiplier  
Core Frequency with  
166 MHz FSB Clock  
Processor Number  
Notes  
1/16  
1/18  
2.67 GHz  
3 GHz  
5030  
5050  
1, 2, 3, 4  
1, 2, 3, 4  
Core Frequency to FSB  
Multiplier  
Core Frequency with  
266 MHz FSB Clock  
Notes  
1/12  
1/12  
1/14  
3.20 GHz  
3.20 GHz  
3.73 GHz  
5063  
5060  
5080  
1, 2, 3, 4  
1, 2, 3, 5  
1, 2, 3  
Notes:  
1.  
2.  
3.  
Individual processors operate only at or below the frequency marked on the package.  
Listed frequencies are not necessarily committed production frequencies.  
For valid processor core frequencies, refer to the Dual-Core Intel Xeon Processor 5000 series  
Specification Update.  
Mid-voltage (MV) processors only.  
®
®
4.  
5.  
The lowest bus ratio supported by the Dual-Core Intel Xeon Processor 5000 series is 1/12.  
2.4.1  
Front Side Bus Frequency Select Signals (BSEL[2:0])  
Upon power up, the FSB frequency is set to the maximum supported by the individual  
processor. BSEL[2:0] are open drain outputs which must be pulled up to VTT, and are  
used to select the FSB frequency. Please refer to Table 2-12 for DC specifications.  
Table 2-2 defines the possible combinations of the signals and the frequency associated  
with each combination. The frequency is determined by the processor(s), chipset, and  
clock synthesizer. All FSB agents must operate at the same core and FSB frequency.  
See the appropriate platform design guidelines for further details.  
Table 2-2.  
BSEL[2:0] Frequency Table  
BSEL2  
BSEL1  
BSEL0  
Bus Clock Frequency  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
266.67 MHz  
Reserved  
Reserved  
166.67 MHz  
Reserved  
Reserved  
Reserved  
Reserved  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
17  
Electrical Specifications  
2.4.2  
Phase Lock Loop (PLL) and Filter  
VCCA and VCCIOPLL are power sources required by the PLL clock generators on the Dual-  
Core Intel Xeon Processor 5000 series. Since these PLLs are analog in nature, they  
require low noise power supplies for minimum jitter. Jitter is detrimental to the system:  
it degrades external I/O timings as well as internal core timings (that is, maximum  
frequency). To prevent this degradation, these supplies must be low pass filtered from  
VTT.  
The AC low-pass requirements are as follows:  
• < 0.2 dB gain in pass band  
• < 0.5 dB attenuation in pass band < 1 Hz  
• > 34 dB attenuation from 1 MHz to 66 MHz  
• > 28 dB attenuation from 66 MHz to core frequency  
The filter requirements are illustrated in Figure 2-1. For recommendations on  
implementing the filter, refer to the appropriate platform design guidelines.  
Figure 2-1. Phase Lock Loop (PLL) Filter Requirements  
0.2 dB  
0 dB  
-0.5 dB  
forbidden  
zone  
-28 dB  
forbidden  
zone  
-34 dB  
DC  
passband  
1 Hz  
fpeak  
1 MHz  
66 MHz  
fcore  
high frequency  
band  
CS00141  
Notes:  
1.  
2.  
3.  
4.  
Diagram not to scale.  
No specifications for frequencies beyond f  
(core frequency).  
core  
f
f
, if existent, should be less than 0.05 MHz.  
peak  
core  
represents the maximum core frequency supported by the platform.  
18  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Electrical Specifications  
2.5  
Voltage Identification (VID)  
The Voltage Identification (VID) specification for the Dual-Core Intel Xeon Processor  
5000 series set by the VID signals is the reference VR output voltage to be delivered to  
the processor Vcc pins. VID signals are open drain outputs, which must be pulled up to  
VTT. Please refer to Table 2-12 for the DC specifications for these signals. A minimum  
voltage is provided in Table 2-10 and changes with frequency. This allows processors  
running at a higher frequency to have a relaxed minimum voltage specification. The  
specifications have been set such that one voltage regulator can operate with all  
supported frequencies.  
Individual processor VID values may be calibrated during manufacturing such that two  
devices at the same core frequency may have different default VID settings. This is  
reflected by the VID range values provided in Table 2-3.  
The Dual-Core Intel Xeon Processor 5000 series use six voltage identification signals,  
VID[5:0], to support automatic selection of power supply voltages. The processor uses  
the VTTPWRGD input to determine that the supply voltage for VID[5:0] is stable and  
within specification.Table 2-3 specifies the voltage level corresponding to the state of  
VID[5:0]. A ‘1’ in this table refers to a high voltage level and a ‘0’ refers to a low  
voltage level. The definition provided in Table 2-3 is not related in any way to previous  
Intel® Xeon® processors or voltage regulator designs. If the processor socket is empty  
(VID[5:0] = x11111), or the voltage regulation circuit cannot supply the voltage that is  
requested, it must disable itself.  
The Dual-Core Intel Xeon Processor 5000 series provide the ability to operate while  
transitioning to an adjacent VID and its associated processor core voltage (VCC). This  
will represent a DC shift in the load line. It should be noted that a low-to-high or high-  
to-low voltage state change may result in as many VID transitions as necessary to  
reach the target core voltage. Transitions above the specified VID are not permitted.  
Table 2-10 includes VID step sizes and DC shift ranges. Minimum and maximum  
voltages must be maintained as shown in Table 2-11 and Figure 2-4.  
The VRM or EVRD utilized must be capable of regulating its output to the value defined  
by the new VID. DC specifications for dynamic VID transitions are included in  
Table 2-10 and Table 2-11.  
Power source characteristics must be guaranteed to be stable whenever the supply to  
the voltage regulator is stable.  
Table 2-3.  
Voltage Identification Definition (Sheet 1 of 2)  
VID4 VID3 VID2 VID1 VID0 VID5 VCC_MAX  
VID4 VID3 VID2 VID1 VID0 VID5 VCC_MAX  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
0.8375  
0.8500  
0.8625  
0.8750  
0.8875  
0.9000  
0.9125  
0.9250  
0.9375  
0.9500  
0.9625  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1.2125  
1.2250  
1.2375  
1.2500  
1.2625  
1.2750  
1.2875  
1.3000  
1.3125  
1.3250  
1.3375  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
19  
Electrical Specifications  
Table 2-3.  
Voltage Identification Definition (Sheet 2 of 2)  
VID4 VID3 VID2 VID1 VID0 VID5 VCC_MAX  
VID4 VID3 VID2 VID1 VID0 VID5 VCC_MAX  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.9750  
0.9875  
1.0000  
1.0125  
1.0250  
1.0375  
1.0500  
1.0625  
1.0750  
1.0875  
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.3500  
1.3625  
1.3750  
1.3875  
1.4000  
1.4125  
1.4250  
1.4375  
1.4500  
1.4625  
1.4750  
1.4875  
1.5000  
1.5125  
1.5250  
1.5375  
1.5500  
1.5625  
1.5750  
1.5875  
1.6000  
1
OFF  
1
OFF  
1.1000  
1.1125  
1.1250  
1.1375  
1.1500  
1.1625  
1.1750  
1.1875  
1.2000  
Notes:  
1.  
2.  
When this VID pattern is observed, the voltage regulator output should be disabled.  
Shading denotes the expected VID range of the Dual-Core Intel Xeon Processor 5000 series [1.0750 V -  
1.3500 V].  
Table 2-4.  
Loadline Selection Truth Table for LL_ID[1:0]  
LL_ID1  
LL_ID0  
Description  
0
0
1
1
0
1
0
1
Reserved  
Dual-Core Intel Xeon Processor 5000 Series  
Reserved  
Reserved  
Note:  
1.  
2.  
3.  
4.  
The LL_ID[1:0] signals are used to select the correct loadline slope for the processor.  
These signals are not connected to the processor die.  
A logic 0 is achieved by pulling the signal to ground on the package.  
A logic 1 is achieved by leaving the signal as a no connect on the package.  
Table 2-5.  
Market Segment Selection Truth Table for MS_ID[1:0]  
MS_ID1  
MS_ID0  
Description  
0
0
1
1
0
1
0
1
Dual-Core Intel Xeon Processor 5000 Series  
Reserved  
Reserved  
Reserved  
20  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Electrical Specifications  
Note:  
1.  
The MS_ID[1:0] signals are provided to indicate the Market Segment for the processor and may be used  
for future processor compatibility or for keying. System management software may utilize these signals to  
identify the processor installed.  
2.  
3.  
4.  
These signals are not connected to the processor die.  
A logic 0 is achieved by pulling the signal to ground on the package.  
A logic 1 is achieved by leaving the signal as a no connect on the package.  
2.6  
Reserved or Unused Signals  
All Reserved signals must remain unconnected. Connection of these signals to VCC, VTT,  
VSS, or to any other signal (including each other) can result in component malfunction  
or incompatibility with future processors. See Chapter 4, “Land Listing” for a land  
listing of the processor and the location of all Reserved signals.  
For reliable operation, always connect unused inputs or bidirectional signals to an  
appropriate signal level. Unused active high inputs, should be connected through a  
resistor to ground (VSS). Unused outputs can be left unconnected; however, this may  
interfere with some TAP functions, complicate debug probing, and prevent boundary  
scan testing. A resistor must be used when tying bidirectional signals to power or  
ground. When tying any signal to power or ground, a resistor will also allow for system  
testability. Resistor values should be within ± 20% of the impedance of the baseboard  
trace for FSB signals. For unused AGTL+ input or I/O signals, use pull-up resistors of  
the same value as the on-die termination resistors (RTT).  
TAP, Asynchronous GTL+ inputs, and Asynchronous GTL+ outputs do not include on-die  
termination. Inputs and utilized outputs must be terminated on the baseboard. Unused  
outputs may be terminated on the baseboard or left unconnected. Note that leaving  
unused outputs unterminated may interfere with some TAP functions, complicate debug  
probing, and prevent boundary scan testing. Signal termination for these signal types  
is discussed in the appropriate platform design guidelines.  
The TESTHI signals must be tied to the processor VTT using a matched resistor, where a  
matched resistor has a resistance value within +/-20% of the impedance of the board  
transmission line traces. For example, if the trace impedance is 50 Ω, then a value  
between 40 Ω and 60 Ω is required.  
The TESTHI signals may use individual pull-up resistors or be grouped together as  
detailed below. A matched resistor must be used for each group:  
• TESTHI[1:0] - can be grouped together with a single pull-up to VTT  
• TESTHI[7:2] - can be grouped together with a single pull-up to VTT  
• TESTHI8 – cannot be grouped with other TESTHI signals  
• TESTHI9 – cannot be grouped with other TESTHI signals  
• TESTHI10 – cannot be grouped with other TESTHI signals  
• TESTHI11 – cannot be grouped with other TESTHI signals  
2.7  
Front Side Bus Signal Groups  
The FSB signals have been combined into groups by buffer type. AGTL+ input signals  
have differential input buffers, which use GTLREF as a reference level. In this  
document, the term “AGTL+ Input” refers to the AGTL+ input group as well as the  
AGTL+ I/O group when receiving. Similarly, “AGTL+ Output” refers to the AGTL+  
output group as well as the AGTL+ I/O group when driving. AGTL+ asynchronous  
outputs can become active anytime and include an active PMOS pull-up transistor to  
assist the during the first clock of a low-to-high voltage transition.  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
21  
Electrical Specifications  
With the implementation of a source synchronous data bus comes the need to specify  
two sets of timing parameters. One set is for common clock signals whose timings are  
specified with respect to rising edge of BCLK0 (ADS#, HIT#, HITM#, and so forth) and  
the second set is for the source synchronous signals which are relative to their  
respective strobe lines (data and address) as well as rising edge of BCLK0.  
Asynchronous signals are still present (A20M#, IGNNE#, and so forth) and can become  
active at any time during the clock cycle. Table 2-6 identifies which signals are common  
clock, source synchronous and asynchronous.  
Table 2-6.  
FSB Signal Groups  
1
Signal Group  
Type  
Signals  
AGTL+ Common Clock Input  
Synchronous to BCLK[1:0]  
BPRI#, DEFER#, RESET#, RS[2:0]#, RSP#,  
TRDY#  
2
2
AGTL+ Common Clock I/O  
Synchronous to BCLK[1:0]  
ADS#, AP[1:0]#, BINIT# , BNR# ,  
BPM[5:0]#, BR[1:0]#, DBSY#, DP[3:0]#,  
2
2
2
DRDY#, HIT# , HITM# , LOCK#, MCERR#  
AGTL+ Source Synchronous I/O Synchronous to assoc.  
strobe  
Signals  
Associated Strobe  
REQ[4:0]#,A[16:3]  
#
ADSTB0#  
A[35:17]#  
ADSTB1#  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBP0#, DSTBN0#  
DSTBP1#, DSTBN1#  
DSTBP2#, DSTBN2#  
DSTBP3#, DSTBN3#  
AGTL+ Strobes I/O  
Synchronous to BCLK[1:0]  
Asynchronous  
ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#  
FERR#/PBE#, IERR#, PROCHOT#  
AGTL+ Asynchronous Output  
GTL+ Asynchronous Input  
Asynchronous  
A20M#, FORCEPR#, IGNNE#, INIT#, LINT0/  
INTR, LINT1/NMI, SMI#, STPCLK#  
GTL+ Asynchronous Output  
FSB Clock  
Asynchronous  
Clock  
THERMTRIP#  
BCLK1, BCLK0  
TCK, TDI, TMS TRST#  
TDO  
TAP Input  
Synchronous to TCK  
Synchronous to TCK  
Power/Other  
TAP Output  
Power/Other  
BSEL[2:0], COMP[7:0], GTLREF_ADD_C[1:0],  
GTLREF_DATA_C[1:0], LL_ID[1:0],  
MS_ID[1:0], PWRGOOD, Reserved, SKTOCC#,  
TEST_BUS, TESTHI[11:0], THERMDA,  
THEMRDA2, THERMDC, THERMDC2, V , V  
,
CC  
CCA  
V
VCC_DIE_SENSE, VCC_DIE_SENSE2,  
CCIOPLL,  
VID[5:0], VID_SELECT, VSS_DIE_SENSE,  
VSS_DIE_SENSE2, V , V  
, V , VTTOUT,  
SS  
SSA  
TT  
VTTPWRGD  
Notes:  
1.  
2.  
Refer to Section 5 for signal descriptions.  
These signals may be driven simultaneously by multiple agents (Wired-OR).  
22  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Electrical Specifications  
Table 2-7 outlines the signals which include on-die termination (RTT). Open drain  
signals are also included. Table 2-8 provides signal reference voltages.  
Table 2-7.  
Signal Description Table  
Signals with R  
Signals with no R  
TT  
TT  
A[35:3]#, ADS#, ADSTB[1:0]#, AP[1:0]#, BINIT#, A20M#, BCLK[1:0], BPM[5:0]#, BR[1:0]#, BSEL[2:0],  
BNR#, BPRI#, COMP[7:4], D[63:0]#, DBI[3:0]#, COMP[3:0], FERR#/PBE#, GTLREF_ADD_C[1:0],  
DBSY#, DEFER#, DP[3:0]#, DRDY#, DSTBN[3:0]#, GTLREF_DATA_C[1:0], IERR#, IGNNE#, INIT#, LINT0/  
DSTBP[3:0]#, FORCEPR#, HIT#, HITM#, LOCK#,  
MCERR#, PROCHOT#, REQ[4:0]#, RS[2:0]#,  
INTR, LINT1/NMI, LL_ID[1:0], MS_ID[1:0], PWRGOOD,  
RESET#, SKTOCC#, SMI#, STPCLK#, TDO,  
TESTHI[11:0], THERMDA, THERMDA2, THERMDC,  
THERMDC2, THERMTRIP#, VCC_DIE_SENSE,  
VCC_DIE_SENSE2, VID[5:0], VID_SELECT,  
2
2
2
RSP#, TCK , TDI , TEST_BUS, TMS , TRDY#,  
2
TRST#  
VSS_DIE_SENSE, VSS_DIE_SENSE2, VTTPWRGD  
1
Open Drain Signals  
BPM[5:0]#, BR0#, FERR#/PBE#, IERR#, PROCHOT#, TDO, THERMTRIP#  
Notes:  
1.  
2.  
Signals that do not have R , nor are actively driven to their high voltage level.  
TT  
The on-die termination for these signals is not R . TCK, TDI, and TMS have an approximately 150 KΩ  
TT  
pullup to V .  
TT  
Table 2-8.  
Signal Reference Voltages  
GTLREF  
VTT / 2  
1
A[35:3]#, ADS#, ADSTB[1:0]#, AP[1:0]#, BINIT#, A20M#, IGNNE#, INIT#, PWRGOOD , SMI#, STPCLK#,  
1
1
1
1
BNR#, BPM[5:0]#, BPRI#, BR[1:0]#, D[63:0]#,  
DBI[3:0]#, DBSY#, DEFER#, DP[3:0]#, DRDY#,  
TCK , TDI , TMS , TRST# , VTTPWRGD  
2
DSTBN[3:0]#, DSTBP[3:0]#, FORCEPR# , HIT#,  
HITM#, IERR#, LINT0/INTR, LINT1/NMI, LOCK#,  
MCERR#, RESET#, REQ[4:0]#, RS[2:0]#, RSP#,  
TRDY#  
Notes:  
1.  
2.  
These signals also have hysteresis added to the reference voltage. See Table 2-14 for more information.  
Use Table 2-15 for signal FORCEPR# specifications.  
2.8  
GTL+ Asynchronous and AGTL+ Asynchronous  
Signals  
Input signals such as A20M#, FORCEPR#, IGNNE#, INIT#, LINT0/INTR, LINT1/NMI,  
SMI# and STPCLK# utilize GTL+ input buffers. Legacy output FERR#/PBE# and other  
non-AGTL+ signals IERR#, THERMTRIP# and PROCHOT# utilize GTL+ output buffers.  
All of these asynchronous GTL+ signals follow the same DC requirements as AGTL+  
signals; however, the outputs are not driven high (during the electrical 0-to-1  
transition) by the processor. FERR#/PBE#, IERR#, and IGNNE# have now been defined  
as AGTL+ asynchronous signals as they include an active p-MOS device. Asynchronous  
GTL+ and asynchronous AGTL+ signals do not have setup or hold time specifications in  
relation to BCLK[1:0]; however, all of the asynchronous GTL+ and asynchronous  
AGTL+ signals are required to be asserted/deasserted for at least six BCLKs in order for  
the processor to recognize them. See Table 2-15 for the DC specifications for the  
asynchronous GTL+ signal groups.  
2.9  
Test Access Port (TAP) Connection  
Due to the voltage levels supported by other components in the Test Access Port (TAP)  
logic, it is recommended that the processor(s) be first in the TAP chain and followed by  
any other components within the system. A translation buffer should be used to  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
23  
Electrical Specifications  
connect to the rest of the chain unless one of the other components is capable of  
accepting an input of the appropriate voltage. Similar considerations must be made for  
TCK, TMS, and TRST#. Two copies of each signal may be required with each driving a  
different voltage level.  
2.10  
Mixing Processors  
Intel supports and validates dual processor configurations only in which both  
processors operate with the same FSB frequency, core frequency, and have the same  
internal cache sizes. Mixing components operating at different internal clock  
frequencies is not supported and will not be validated by Intel [Note: Processors within  
a system must operate at the same frequency per bits [15:8] of the  
IA32_FLEX_BRVID_SEL MSR; however this does not apply to frequency transitions  
initiated due to thermal events, Enhanced HALT, Enhanced Intel SpeedStep®  
Technology transitions, or assertion of the FORCEPR# signal (See Chapter 6, “Thermal  
Specifications”)]. Low voltage (LV), mid-voltage (MV) and full-power 64-bit Intel Xeon  
processors should not be mixed within a system. Not all operating systems can support  
dual processors with mixed frequencies. Intel does not support or validate operation of  
processors with different cache sizes. Mixing processors of different steppings but the  
same model (as per CPUID instruction) is supported. Details regarding the CPUID  
instruction are provided in the AP-485 Intel® Processor Identification and the CPUID  
Instruction application note.  
2.11  
Absolute Maximum and Minimum Ratings  
Table 2-9 specifies absolute maximum and minimum ratings. Within functional  
operation limits, functionality and long-term reliability can be expected.  
At conditions outside functional operation condition limits, but within absolute  
maximum and minimum ratings, neither functionality nor long term reliability can be  
expected. If a device is returned to conditions within functional operation limits after  
having been subjected to conditions outside these limits, but within the absolute  
maximum and minimum ratings, the device may be functional, but with its lifetime  
degraded depending on exposure to conditions exceeding the functional operation  
condition limits.  
At conditions exceeding absolute maximum and minimum ratings, neither functionality  
nor long-term reliability can be expected. Moreover, if a device is subjected to these  
conditions for any length of time then, when returned to conditions within the  
functional operating condition limits, it will either not function or its reliability will be  
severely degraded.  
Although the processor contains protective circuitry to resist damage from static  
electric discharge, precautions should always be taken to avoid high static voltages or  
electric fields  
.
Table 2-9.  
Processor Absolute Maximum Ratings  
1, 2  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
V
V
Core voltage with respect to VSS  
-0.30  
-0.30  
1.55  
1.55  
V
V
CC  
TT  
FSB termination voltage with respect to  
V
SS  
T
Processor case temperature  
See  
See  
° C  
° C  
CASE  
Section 6  
Section 6  
T
Storage temperature  
-40  
85  
3, 4, 5  
STORAGE  
24  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Electrical Specifications  
Notes:  
1.  
2.  
3.  
For functional operation, all processor electrical, signal quality, mechanical and thermal specifications must  
be satisfied.  
Overshoot and undershoot voltage guidelines for input, output, and I/O signals are outlined in Section 3.  
Excessive overshoot or undershoot on any signal will likely result in permanent damage to the processor.  
Storage temperature is applicable to storage conditions only. In this scenario, the processor must not  
receive a clock, and no lands can be connected to a voltage bias. Storage within these limits will not affect  
the long-term reliability of the device. For functional operation, please refer to the processor case  
temperature specifications.  
4.  
5.  
This rating applies to the processor and does not include any tray or packaging.  
Failure to adhere to this specification can affect the long term reliability of the processor.  
2.12  
Processor DC Specifications  
The processor DC specifications in this section are defined at the processor  
core (pads) unless noted otherwise. See Section 4.1 for the Dual-Core Intel Xeon  
Processor 5000 series land listings and Section 5.1 for signal definitions. Voltage and  
current specifications are detailed in Table 2-10. For platform planning refer to  
Table 2-11, which provides Voltage-Current projections. This same information is  
presented graphically in Figure 2-4.  
BSEL[2:0] and VID[5:0] signals are specified in Table 2-12. The DC specifications for  
the AGTL+ signals are listed in Table 2-13. Legacy signals and Test Access Port (TAP)  
signals follow DC specifications similar to GTL+. The DC specifications for the  
PWRGOOD input and TAP signal group are listed in Table 2-14 and the Asynchronous  
GTL+ signal group is listed in Table 2-15. The VTTPWRGD signal is detailed in  
Table 2-16.  
Table 2-10 through Table 2-16 list the DC specifications for the processor and are valid  
only while meeting specifications for case temperature (TCASE as specified in Table 6-1),  
clock frequency, and input voltages. Care should be taken to read all notes  
associated with each parameter.  
Table 2-10. Voltage and Current Specifications (Sheet 1 of 2)  
Notes  
1,13  
Symbol  
VID  
Parameter  
Min  
Typ  
Max  
Unit  
VID range  
1.0750  
1.3500  
V
V
V
V
for Dual-Core Intel Xeon  
CC  
Processor 5000 series core. FMB  
processor.  
See Table 2-11 and Figure 2-4  
2, 3, 4, 6,  
11  
CC  
V
V
VID step size during a transition  
12.5  
425  
mV  
mV  
VID_STEP  
Total allowable DC load line shift  
from VID steps  
12  
VID_SHIFT  
V
FSB termination voltage (DC + AC  
specification)  
1.140  
1.20  
1.260  
115  
V
A
10, 14  
TT  
I
I
I
I
I
for Dual-Core Intel Xeon  
CC  
4, 5, 6, 11  
CC  
Processor 5000 series with multiple  
VID (667 MHz)  
I
for Dual-Core Intel Xeon  
CC  
150  
115  
115  
A
A
A
4, 5, 6, 11  
4, 5, 6, 11  
18  
CC  
Processor 5000 series with multiple  
VID (1066 MHz)  
I
for Dual-Core Intel Xeon  
CC  
CC  
Processor 5063 (MV) with multiple  
VID  
I
for Dual-Core Intel Xeon  
CC_RESET  
CC_RESET  
Processor 5000 series with multiple  
VID (667 MHz)  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
25  
Electrical Specifications  
Table 2-10. Voltage and Current Specifications (Sheet 2 of 2)  
Notes  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
1,13  
I
I
I
I
for Dual-Core Intel Xeon  
CC_RESET  
150  
A
18  
CC_RESET  
Processor 5000 series with multiple  
VID (1066 MHz)  
I
for Dual-Core Intel Xeon  
CC_RESET  
115  
6.1  
A
A
18  
16  
CC_RESET  
TT  
Processor 5063 (MV) with multiple  
VID  
Steady-state FSB Termination  
Current  
I
I
Power-up FSB Termination Current  
8.0  
A
A
19  
TT_POWER-UP  
CC_TDC  
Thermal Design Current (TDC) for  
Dual-Core Intel Xeon Processor  
5000 series (667 MHz)  
100  
6,15  
I
I
I
Thermal Design Current (TDC) for  
Dual-Core Intel Xeon Processor  
5000 series (1066 MHz)  
130  
100  
580  
A
A
6,15  
6,15  
17  
CC_TDC  
Thermal Design Current (TDC) for  
Dual-Core Intel Xeon Processor  
5063 (MV)  
CC_TDC  
DC current that may be drawn  
mA  
CC_VTTOUT  
from V  
per land  
TTOUT  
I
I
I
I
I
I
I
I
for PLL power lands  
for PLL power lands  
for GTLREF  
120  
100  
200  
150  
mA  
mA  
µA  
A
8
8
9
CC_VCCA  
CC_VCCIOPLL  
CC_GTLREF  
TCC  
CC  
CC  
CC  
CC  
during active thermal control  
circuit (TCC) for Dual-Core Intel  
Xeon Processor 5000 series  
I
I
I
I
I
during active thermal control  
CC  
115  
50  
A
A
A
A
TCC  
circuit (TCC) for Dual-Core Intel  
Xeon Processor 5063 (MV)  
I
Stop-Grant for Dual-Core Intel  
CC  
7
7
7
SGNT  
SGNT  
SGNT  
Xeon Processor 5000 series (667  
MHz)  
I
Stop-Grant for Dual-Core Intel  
60  
CC  
Xeon Processor 5000 series (1066  
MHz)  
I
Stop-Grant for Dual-Core Intel  
40  
CC  
Xeon Processor 5063 (MV)  
Notes:  
1.  
2.  
3.  
Unless otherwise noted, all specifications in this table apply to all processors and are based on final silicon  
validation/characterization.  
These voltages are targets only. A variable voltage source should exist on systems in the event that a  
different voltage is required. See Section 2.5 for more information.  
The voltage specification requirements are measured across the VCC_DIE_SENSE and VSS_DIE_SENSE  
lands and across the VCC_DIE_SENSE2 and VSS_DIE_SENSE2 lands with a 100 MHz bandwidth  
oscilloscope, 1.5 pF maximum probe capacitance, and 1 MΩ minimum impedance. The maximum length of  
ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled  
in the scope probe.  
4.  
5.  
The processor must not be subjected to any static V level that exceeds the V  
associated with any  
CC  
CC_MAX  
particular current. Failure to adhere to this specification can shorten processor lifetime.  
is specified at V . The processor is capable of drawing I for up to 10 ms. Refer to  
I
CC_MAX  
CC_MAX  
CC_MAX  
Figure 2-2 and Figure 2-3 for further details on the average processor current draw over various time  
durations.  
6.  
7.  
8.  
9.  
10.  
26  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Electrical Specifications  
11. Minimum VCC and maximum ICC are specified at the maximum processor case temperature (TCASE)  
shown in Table 6-1.  
12. This specification refers to the total reduction of the load line due to VID transitions below the specified  
VID.  
13. Individual processor VID values may be calibrated during manufacturing such that two devices at the same  
frequency may have different VID settings.  
14. Baseboard bandwidth is limited to 20 MHz.  
15.  
I
is the sustained (DC equivalent) current that the processor is capable of drawing indefinitely and  
CC_TDC  
should be used for the voltage regulator temperature assessment. The voltage regulator is responsible for  
monitoring its temperature and asserting the necessary signal to inform the processor of a thermal  
excursion. Please see the applicable design guidelines for further details. The processor is capable of  
drawing I  
indefinitely. Refer to Figure 2-2 and Figure 2-3 for further details on the average processor  
CC_TDC  
current draw over various time durations. This parameter is based on design characterization and is not  
tested.  
16. This specification is per-processor. This is a steady-state I current specification, which is applicable when  
TT  
both V and V are high. This parameter is based on design characterization and is not tested. Please  
TT  
CC  
refer to the I Analysis of System Bus Components - Bensley Platform Whitepaper for platform  
TT  
implementation guidance.  
17. ICC_VTTOUT is specified at 1.2 V.  
18.I  
is specified while PWRGOOD and RESET# are asserted.  
CC_RESET  
19. This specification is per-processor. This is a power-up peak current specification, which is applicable when  
is powered up and V is not. This parameter is based on design characterization and is not tested.  
V
TT  
CC  
Figure 2-2. Dual-Core Intel® Xeon® Processor 5000 Series (1066 MHz) Load Current  
versus Time  
155  
150  
145  
140  
135  
130  
125  
0.01  
0.1  
1
10  
100  
1000  
Time Duration (s)  
Notes:  
1.  
Processor or Voltage Regulator thermal protection circuitry should not trip for load currents greater than  
I
.
CC_TDC  
2.  
Not 100% tested. Specified by design characterization.  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
27  
Electrical Specifications  
Figure 2-3. Dual-Core Intel® Xeon® Processor 5000 Series (667 MHz) and Dual-Core  
Intel® Xeon® Processor 5063 (MV) Load Current versus Time  
Notes:  
1.  
Processor or Voltage Regulator thermal protection circuitry should not trip for load currents greater than  
I
.
CC_TDC  
2.  
Not 100% tested. Specified by design characterization.  
Table 2-11. VCC Static and Transient Tolerance (Sheet 1 of 2)  
I
(A)  
V
(V)  
V
(V)  
V (V)  
CC_Min  
Notes  
CC  
CC_Max  
CC_Typ  
0
VID - 0.000  
VID - 0.006  
VID - 0.013  
VID - 0.019  
VID - 0.025  
VID - 0.031  
VID - 0.038  
VID - 0.044  
VID - 0.050  
VID - 0.056  
VID - 0.063  
VID - 0.069  
VID - 0.075  
VID - 0.081  
VID - 0.087  
VID - 0.094  
VID - 0.015  
VID - 0.021  
VID - 0.028  
VID - 0.034  
VID - 0.040  
VID - 0.046  
VID - 0.053  
VID - 0.059  
VID - 0.065  
VID - 0.071  
VID - 0.078  
VID - 0.084  
VID - 0.090  
VID - 0.096  
VID - 0.103  
VID - 0.109  
VID - 0.030  
VID - 0.036  
VID - 0.043  
VID - 0.049  
VID - 0.055  
VID - 0.061  
VID - 0.068  
VID - 0.074  
VID - 0.080  
VID - 0.086  
VID - 0.093  
VID - 0.099  
VID - 0.105  
VID - 0.111  
VID - 0.118  
VID - 0.124  
1, 2, 3, 4  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
28  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Electrical Specifications  
Table 2-11. VCC Static and Transient Tolerance (Sheet 2 of 2)  
I
(A)  
V
(V)  
V
(V)  
V (V)  
CC_Min  
Notes  
CC  
CC_Max  
CC_Typ  
80  
VID - 0.100  
VID - 0.106  
VID - 0.113  
VID - 0.119  
VID - 0.125  
VID - 0.131  
VID - 0.138  
VID - 0.144  
VID - 0.150  
VID - 0.156  
VID - 0.163  
VID - 0.169  
VID - 0.175  
VID - 0.181  
VID - 0.188  
VID - 0.115  
VID - 0.121  
VID - 0.128  
VID - 0.134  
VID - 0.140  
VID - 0.146  
VID - 0.153  
VID - 0.159  
VID - 0.165  
VID - 0.171  
VID - 0.178  
VID - 0.184  
VID - 0.190  
VID - 0.196  
VID - 0.203  
VID - 0.130  
VID - 0.136  
VID - 0.143  
VID - 0.149  
VID - 0.155  
VID - 0.161  
VID - 0.168  
VID - 0.174  
VID - 0.180  
VID - 0.186  
VID - 0.193  
VID - 0.199  
VID - 0.205  
VID - 0.211  
VID - 0.218  
85  
90  
95  
100  
105  
110  
115  
120  
125  
130  
135  
140  
145  
150  
Notes:  
1.  
The V  
and V  
loadlines represent static and transient limits. Please see Section 2.12.1 for V  
CC_MAX CC  
CC_MIN  
overshoot specifications.  
This table is intended to aid in reading discrete points on Figure 2-4.  
2.  
3.  
The loadlines specify voltage limits at the die measured at the VCC_DIE_SENSE and VSS_DIE_SENSE lands  
and at the VCC_DIE_SENSE2 and VSS_DIE_SENSE2 lands. Voltage regulation feedback for voltage  
regulator circuits must also be taken from processor VCC_DIE_SENSE and VSS_DIE_SENSE lands and  
VCC_DIE_SENSE2 and VSS_DIE_SENSE2 lands. Please refer to the appropriate platform design guide for  
details on VR implementation.  
4.  
Non-shading denotes the expected I range applies to both Dual-Core Intel Xeon Processor 5000 series  
CC  
(1066 MHz & 667 MHz) and Dual-Core Intel Xeon Processor 5063 (MV). Shading denotes the expected I  
CC  
range applies to Dual-Core Intel Xeon Processor 5000 series (1066 MHz) only. [120 A - 150 A]  
Figure 2-4. VCC Static and Transient Tolerance Load Lines  
Icc [A]  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
VID - 0.000  
VID - 0.020  
VID - 0.040  
VID - 0.060  
VID - 0.080  
VID - 0.100  
VID - 0.120  
VID - 0.140  
VID - 0.160  
VID - 0.180  
VID - 0.200  
VID - 0.220  
VID - 0.240  
VID - 0.260  
Vcc  
Maximum  
Vcc  
Minimum  
Vcc  
Typical  
Notes:  
1.  
The V  
and V  
loadlines represent static and transient limits. Please see Section 2.12.1 for VCC  
CC_MAX  
CC_MIN  
overshoot specifications.  
2.  
Refer to Table 2-10 for processor VID information.  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
29  
Electrical Specifications  
3.  
4.  
Refer to Table 2-11 for processor VCC information.  
The load lines specify voltage limits at the die measured at the VCC_DIE_SENSE and VSS_DIE_SENSE  
lands and at the VCC_DIE_SENSE2 and VSS_DIE_SENSE2 lands. Voltage regulation feedback for voltage  
regulator circuits must also be taken from processor VCC_DIE_SENSE and VSS_DIE_SENSE lands and  
VCC_DIE_SENSE2 and VSS_DIE_SENSE2 lands. Please refer to the appropriate platform design guide for  
details on VR implementation.  
Table 2-12. BSEL[2:0], VID[5:0] Signal Group DC Specifications  
1
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
R
BSEL[2:0], VID[5:0]  
Buffer On Resistance  
N/A  
120  
2
ON  
Ω
I
I
Output Low Current  
Output High Current  
Voltage Tolerance  
N/A  
N/A  
2.4  
460  
mA  
µA  
V
2, 3  
2, 3  
4
OL  
OH  
V
0.95 * V  
1.05 * V  
TT  
TOL  
TT  
Notes:  
1.  
2.  
3.  
4.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
These parameters are based on design characterization and are not tested.  
I
is measured at 0.10*V , I  
is measured at 0.90*V .  
OL  
TT OH TT  
Please refer to the appropriate platform design guide for implementation details.  
Table 2-13. AGTL+ Signal Group DC Specifications  
1
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
V
V
V
Input Low Voltage  
Input High Voltage  
Output High Voltage  
Output Low Current  
0.0  
GTLREF - (0.10 * V  
)
TT  
V
V
2
3, 4  
4
IL  
IH  
GTLREF + (0.10 * V  
)
V
V
TT  
TT  
TT  
0.90 * V  
N/A  
V
OH  
OL  
TT  
I
V
/
mA  
4
TT  
(0.50 * R  
+ R  
)
ON_MIN  
TT_MIN  
I
I
Input Leakage Current  
Output Leakage Current  
Buffer On Resistance  
N/A  
N/A  
7
± 200  
± 200  
11  
µA  
µA  
5, 6  
5, 6  
7
LI  
LO  
R
ON  
Ω
Notes:  
1.  
2.  
3.  
4.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
V
V
V
is defined as the voltage range at a receiving agent that will be interpreted as an electrical low value.  
is defined as the voltage range at a receiving agent that will be interpreted as an electrical high value.  
IL  
IH  
IH  
and V  
may experience excursions above V . However, input signal drivers must comply with the  
OH  
TT  
signal quality specifications in Section 3.  
Leakage to V with land held at V .  
5.  
6.  
7.  
SS  
TT  
Leakage to V with land held at 300 mV.  
TT  
This parameter is based on design characterization and is not tested  
Table 2-14. PWRGOOD Input and TAP Signal Group DC Specifications (Sheet 1 of 2)  
1,  
Notes  
2
Symbol  
Parameter  
Min  
Max  
Unit  
V
V
Input Hysteresis  
120  
396  
mV  
V
3
HYS  
t+  
PWRGOOD Input Low to  
High Threshold Voltage  
0.5 * (V + V  
+
0.5 * (V + V  
HYS_MAX  
+
)
TT  
HYS_MIN  
TT  
0.24)  
0.24)  
TAP Input Low to High  
Threshold Voltage  
0.5 * (V + V  
)
0.5 * (V + V  
V
V
V
V
TT  
HYS_MIN  
TT  
HYS_MAX  
TT  
PWRGOOD Input High to  
Low Threshold Voltage  
0.4 * V  
0.6 * V  
0.5 * (V - V  
TT  
V
V
t-  
TAP Input High to Low  
Threshold Voltage  
0.5 * (V -V  
TT  
)
)
HYS_MIN  
HYS_MAX  
TT  
Output High Voltage  
N/A  
V
4
OH  
TT  
30  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Electrical Specifications  
Table 2-14. PWRGOOD Input and TAP Signal Group DC Specifications (Sheet 2 of 2)  
1,  
Notes  
2
Symbol  
Parameter  
Min  
Max  
Unit  
I
I
Input Leakage Current  
Output Leakage Current  
Buffer On Resistance  
N/A  
N/A  
7
± 200  
± 200  
11  
µA  
µA  
LI  
LO  
R
5
ON  
Ω
Notes:  
1.  
2.  
3.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
All outputs are open drain.  
V
represents the amount of hysteresis, nominally centered about 0.5 * V for all PWRGOOD and TAP  
HYS  
TT  
inputs.  
4.  
5.  
PWRGOOD input and the TAP signal group must meet system signal quality specification in Section 3.  
The maximum output current is based on maximum current handling capability of the buffer and is not  
specified into the test load.  
Table 2-15. GTL+ Asynchronous and AGTL+ Asynchronous Signal Group  
DC Specifications  
1
Symbol  
Parameter  
Min  
Max  
(0.5 * V ) - (0.10 * V )  
TT  
Unit Notes  
V
Input Low Voltage  
0.0  
V
V
3, 11  
IL  
TT  
4, 5, 7,  
11  
V
Input High Voltage  
Output High Voltage  
Output Low Current  
Input Leakage Current  
(0.5 * V ) + (0.10 * V  
)
V
V
IH  
TT  
TT  
TT  
TT  
V
0.90*V  
-
V
2, 5, 7  
OH  
OL  
TT  
V
/
TT  
I
I
A
8
9
[(0.50*R  
)+(R  
)]  
ON_MIN  
TT_MIN  
I
N/A  
N/A  
± 200  
µA  
µA  
LI  
Output Leakage  
Current  
± 200  
11  
10  
LO  
R
Buffer On Resistance  
7
6
Ω
ON  
Notes:  
1.Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2.All outputs are open drain.  
3.V is defined as the voltage range at a receiving agent that will be interpreted as a logical low value.  
IL  
4.V is defined as the voltage range at a receiving agent that will be interpreted as a logical high value.  
IH  
IH  
5.V and V  
may experience excursions above V . However, input signal drivers must comply with the signal  
OH  
TT  
quality specifications in Section 3.  
6.Refer to the processor HSPICE* I/O Buffer Models for I/V characteristics.  
7.The V referred to in these specifications refers to instantaneous V .  
TT  
TT  
8.The maximum output current is based on maximum current handling capability of the buffer and is not  
specified into the test load.  
9.Leakage to V with land held at V .  
SS  
TT  
10.Leakage to V with land held at 300 mV.  
TT  
11.LINT0/INTR and LINT1/NMI use GTLREF_ADD as a reference voltage. For these two signals V  
=
IH  
GTLREF_ADD + (0.10 * V ) and V = GTLREF_ADD - (0.10 * V ).  
TT  
IL  
TT  
Table 2-16. VTTPWRGD DC Specifications  
Symbol  
Parameter  
Min  
Max  
Unit  
V
V
Input Low Voltage  
Input High Voltage  
0.0  
0.30  
V
V
IL  
0.90  
V
TT  
IH  
2.12.1  
V
Overshoot Specification  
CC  
The Dual-Core Intel Xeon Processor 5000 series can tolerate short transient overshoot  
events where VCC exceeds the VID voltage when transitioning from a high-to-low  
current load condition. This overshoot cannot exceed VID + VOS_MAX (VOS_MAX is the  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
31  
Electrical Specifications  
maximum allowable overshoot above VID). These specifications apply to the processor  
die voltage as measured across the VCC_DIE_SENSE and VSS_DIE_SENSE lands and  
across the VCC_DIE_SENSE2 and VSS_DIE_SENSE2 lands.  
Table 2-17. VCC Overshoot Specifications  
Symbol  
Parameter  
Magnitude of V overshoot above VID  
Min  
Max  
Units  
Figure  
Notes  
V
50  
25  
mV  
µs  
2-5  
2-5  
OS_MAX  
CC  
T
Time duration of V overshoot above VID  
CC  
OS_MAX  
Figure 2-5. VCC Overshoot Example Waveform  
Example Overshoot Waveform  
VOS  
VID + 0.050  
VID - 0.000  
TOS  
0
5
10  
15  
20  
25  
Time [us]  
TOS: Overshoot time above VID  
OS: Overshoot above VID  
V
Notes:  
1.  
2.  
V
is the measured overshoot voltage above VID.  
is the measured time duration above VID.  
OS  
OS  
T
2.12.2  
Die Voltage Validation  
Core voltage (VCC) overshoot events at the processor must meet the specifications in  
Table 2-17 when measured across the VCC_DIE_SENSE and VSS_DIE_SENSE lands  
and across the VCC_DIE_SENSE2 and VSS_DIE_SENSE2 lands. Overshoot events that  
are < 10 ns in duration may be ignored. These measurement of processor die level  
overshoot should be taken with a 100 MHz bandwidth limited oscilloscope.  
§
32  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Mechanical Specifications  
3 Mechanical Specifications  
The Dual-Core Intel Xeon Processor 5000 series are packaged in a Flip Chip Land Grid  
Array (FC-LGA6) package that interfaces to the baseboard via a LGA771 socket. The  
package consists of a processor core mounted on a pinless substrate with 771 lands. An  
integrated heat spreader (IHS) is attached to the package substrate and core and  
serves as the interface for processor component thermal solutions such as a heatsink.  
Figure 3-1 shows a sketch of the processor package components and how they are  
assembled together. .  
The package components shown in Figure 3-1 include the following:  
1. Integrated Heat Spreader (IHS)  
2. Thermal Interface Material (TIM)  
3. Processor Core (die)  
4. Package Substrate  
5. Landside capacitors  
6. Package Lands  
Figure 3-1. Processor Package Assembly Sketch  
TIM  
Core (die)  
IHS  
Substrate  
Package Lands  
Capacitors  
LGA771 Socket  
System Board  
Note: This drawing is not to scale and is for reference only.  
3.1  
Package Mechanical Drawings  
The package mechanical drawings are shown in Figure 3-2 through Figure 3-4. The  
drawings include dimensions necessary to design a thermal solution for the processor  
including:  
1. Package reference and tolerance dimensions (total height, length, width, an so  
forth)  
2. IHS parallelism and tilt  
3. Land dimensions  
4. Top-side and back-side component keepout dimensions  
5. Reference datums  
Note:  
All drawing dimensions are in mm [in.].  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
33  
Mechanical Specifications  
Figure 3-2. Processor Package Drawing (Sheet 1 of 3)  
Note: Guidelines on potential IHS flatness variation with socket load plate actuation and installation of the  
cooling solution is available in the processor Thermal/Mechanical Design Guidelines.  
34  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Mechanical Specifications  
Figure 3-3. Processor Package Drawing (Sheet 2 of 3)  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
35  
Mechanical Specifications  
Figure 3-4. Processor Package Drawing (Sheet 3 of 3)  
36  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Mechanical Specifications  
3.2  
3.3  
Processor Component Keepout Zones  
The processor may contain components on the substrate that define component  
keepout zone requirements. A thermal and mechanical solution design must not intrude  
into the required keepout zones. Decoupling capacitors are typically mounted to either  
the topside or land-side of the package substrate. See Figure 3-4 for keepout zones.  
Package Loading Specifications  
Table 3-1 provides dynamic and static load specifications for the processor package.  
These mechanical load limits should not be exceeded during heatsink assembly,  
mechanical stress testing or standard drop and shipping conditions. The heatsink  
attach solutions must not include continuous stress onto the processor with the  
exception of a uniform load to maintain the heatsink-to-processor thermal interface.  
Also, any mechanical system or component testing should not exceed these limits. The  
processor package substrate should not be used as a mechanical reference or load-  
bearing surface for thermal or mechanical solutions. Please refer to the Dual-Core  
Intel® Xeon® Processor 5000 Series Thermal/Mechanical Design Guidelines for further  
details.  
Table 3-1.  
Package Loading Specifications  
Board  
Thickness  
Parameter  
R
Min  
Max  
Unit  
Notes  
Static  
Compressive Load  
Apply for all  
board thickness  
from 1.57 mm  
(0.062”) to  
2.54 mm  
25mm  
<R<  
45mm  
80  
18  
133  
30  
N
lbf  
1, 2, 3, 9,  
10, 11,  
12, 13  
R>45mm  
80  
18  
311  
70  
N
lbf  
(0.100”)  
Dynamic  
Compressive Load  
NA  
NA  
NA  
311 N (max static  
compressive load) +  
222 N dynamic loading  
N
1, 3, 4, 5,  
6
lbf  
70 lbf (max static  
compressive load) +  
50 lbf dynamic loading  
Transient Bend  
Limits  
1.57 mm  
0.062”  
NA  
NA  
750  
µε  
1,3,7,8  
2.16 mm  
0.085”  
700  
650  
2.54 mm  
0.100”  
Notes:  
1.  
These specifications apply to uniform compressive loading in a direction perpendicular to the IHS top  
surface.  
2.  
This is the minimum and maximum static force that can be applied by the heatsink and retention solution  
to maintain the heatsink and processor interface.  
3.  
4.  
5.  
Loading limits are for the LGA771 socket.  
Dynamic compressive load applies to all board thickness.  
Dynamic loading is defined as an 11 ms duration average load superimposed on the static load  
requirement.  
6.  
Test condition used a heatsink mass of 1 lbm with 50 g acceleration measured at heatsink mass. The  
dynamic portion of this specification in the product application can have flexibility in specific values, but the  
ultimate product of mass times acceleration should not exceed this dynamic load.  
Transient bend is defined as the transient board deflection during manufacturing such as board assembly  
and system integration. It is a relatively slow bending event compared to shock and vibration tests.  
For more information on the transient bend limits, please refer to the MAS document entitled  
7.  
8.  
®
Manufacturing with Intel Components using 771-land LGA Package that Interfaces with the Motherboard  
via a LGA771 Socket.  
®
®
9.  
Refer to the Dual-Core Intel Xeon Processor 5000 Series Thermal/Mechanical Design Guidelines for  
information on heatsink clip load metrology.  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
37  
Mechanical Specifications  
10. R is defined as the radial distance from the center of the LGA771 socket ball array to the center of heatsink  
load reaction point closest to the socket.  
11. Applies to populated sockets in fully populated and partially populated socket configurations.  
12. Through life or product. Condition must be satisfied at the beginning of life and at the end of life.  
13. Rigid back is not allowed. The board should flex in the enabled configuration.  
3.4  
Package Handling Guidelines  
Table 3-2 includes a list of guidelines on a package handling in terms of recommended  
maximum loading on the processor IHS relative to a fixed substrate. These package  
handling loads may be experienced during heatsink removal.  
Table 3-2.  
Package Handling Guidelines  
Parameter  
Maximum Recommended  
Units  
Notes  
Shear  
311  
70  
N
lbf  
1,4,5  
Tensile  
Torque  
111  
25  
N
lbf  
2,4,5  
3,4,5  
3.95  
35  
N-m  
LBF-in  
Notes:  
1.  
2.  
3.  
A shear load is defined as a load applied to the IHS in a direction parallel to the IHS top surface.  
A tensile load is defined as a pulling load applied to the IHS in a direction normal to the IHS surface.  
A torque load is defined as a twisting load applied to the IHS in an axis of rotation normal to the IHS top  
surface.  
4.  
5.  
These guidelines are based on limited testing for design characterization and incidental applications (one  
time only).  
Handling guidelines are for the package only and do not include the limits of the processor socket.  
3.5  
3.6  
Package Insertion Specifications  
The Dual-Core Intel Xeon Processor 5000 Series can be inserted and removed 15 times  
from an LGA771 socket.  
Processor Mass Specifications  
The typical mass of the Dual-Core Intel Xeon Processor 5000 series is 21.5 grams [0.76  
oz.]. This includes all components which make up the entire processor product.  
3.7  
Processor Materials  
The Dual-Core Intel Xeon Processor 5000 series are assembled from several  
components. The basic material properties are described in Table 3-3.  
Table 3-3.  
Processor Materials  
Component  
Material  
Integrated Heat Spreader (IHS)  
Substrate  
Nickel over copper  
Fiber-reinforced resin  
Gold over nickel  
Substrate Lands  
38  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Mechanical Specifications  
3.8  
Processor Markings  
Figure 3-5 and Figure 3-6 shows the topside markings on the processor. This diagram  
aids in the identification of the Dual-Core Intel Xeon Processor 5000 series.  
Figure 3-5. Dual-Core Intel Xeon Processor 5000 Series Top-side Markings  
Legend:  
Mark Text (Production Mark):  
3733DP/4M/1066  
Intel ® Xeon ®  
5080 SXXX COO  
i (M) © ‘05  
GROUP1LINE1  
GROUP1LINE2  
GROUP1LINE3  
GROUP1LINE4  
GROUP1LINE5  
GROUP1LINE1  
GROUP1LINE2  
GROUP1LINE3  
GROUP1LINE4  
GROUP1LINE5  
FPO  
ATPO  
S/N  
Figure 3-6. Dual-Core Intel Xeon Processor 5063 (MV) Top-side Markings  
Legend:  
Mark Text (Production Mark):  
3200DP/4M/1066/MV  
Intel ® Xeon ®  
5063 SXXX COO  
i (M) © ‘05  
GROUP1LINE1  
GROUP1LINE2  
GROUP1LINE3  
GROUP1LINE4  
GROUP1LINE5  
GROUP1LINE1  
GROUP1LINE2  
GROUP1LINE3  
GROUP1LINE4  
GROUP1LINE5  
FPO  
ATPO  
S/N  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
39  
Mechanical Specifications  
3.9  
Processor Land Coordinates  
Figure 3-7 and Figure 3-8 show the top and bottom view of the processor land  
coordinates, respectively. The coordinates are referred to throughout the document to  
identify processor lands.  
Figure 3-7. Processor Land Coordinates, Top View  
VCC / VSS  
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2 1  
AN  
AM  
AL  
AK  
AJ  
AN  
AM  
AL  
AK  
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
Address /  
Common Clock /  
Async  
W
W
V
Socket 771  
Quadrants  
Top View  
V
U
U
T
T
R
R
P
N
M
L
P
N
M
L
K
J
K
J
H
G
F
H
G
F
E
D
C
B
A
E
D
C
B
A
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2 1  
Data  
VTT / Clocks  
40  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Mechanical Specifications  
Figure 3-8. Processor Land Coordinates, Bottom View  
VCC / VSS  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
AN  
AM  
AL  
AK  
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
AN  
AM  
AL  
AK  
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
Address /  
Common Clock /  
Async  
W
V
W
V
Socket 771  
Quadrants  
Bottom View  
U
U
T
T
R
R
P
P
N
N
M
M
L
L
K
K
J
J
H
H
G
G
F
F
E
E
D
D
C
C
B
B
A
A
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
Data  
VTT / Clocks  
§
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
41  
Mechanical Specifications  
42  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Land Listing  
4 Land Listing  
4.1  
Dual-Core Intel Xeon Processor 5000 Series Land  
Assignments  
This section provides sorted land list in Table 4-1 and Table 4-2. Table 4-1 is a listing of  
all processor lands ordered alphabetically by land name. Table 4-2 is a listing of all  
processor lands ordered by land number.  
4.1.1  
Land Listing by Land Name  
Table 4-1.  
Land Listing by Land Name (Sheet 1 of 9)  
Land SignalBuffer  
Land SignalBuffer  
Land Name  
Direction  
Land Name  
Direction  
No.  
Type  
No.  
Type  
A03#  
A04#  
A05#  
A06#  
A07#  
A08#  
A09#  
A10#  
A11#  
A12#  
A13#  
A14#  
A15#  
A16#  
A17#  
A18#  
A19#  
A20#  
A21#  
A22#  
A23#  
A24#  
A25#  
A26#  
A27#  
A28#  
A29#  
A30#  
A31#  
A32#  
COMP5  
COMP6  
COMP7  
D00#  
D01#  
M5  
P6  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input  
A33#  
A34#  
AH5  
AJ5  
AJ6  
K3  
Source Sync  
Source Sync  
Source Sync  
ASync GTL+  
Common Clk  
Source Sync  
Source Sync  
Common Clk  
Common Clk  
Clk  
Input/Output  
Input/Output  
Input/Output  
Input  
L5  
A35#  
L4  
A20M#  
ADS#  
M4  
R4  
D2  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input  
ADSTB0#  
ADSTB1#  
AP0#  
R6  
T5  
AD5  
U2  
U6  
T4  
AP1#  
U3  
U5  
BCLK0  
BCLK1  
BINIT#  
BNR#  
F28  
G28  
AD3  
C2  
U4  
Clk  
Input  
V5  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input  
V4  
W5  
AB6  
W6  
Y6  
BPM0#  
BPM1#  
BPM2#  
BPM3#  
BPM4#  
BPM5#  
BPRI#  
BR0#  
AJ2  
AJ1  
AD2  
AG2  
AF2  
AG3  
G8  
Y4  
AA4  
AD6  
AA5  
AB5  
AC5  
AB4  
AF5  
AF4  
AG6  
AG4  
AG5  
AH4  
T2  
F3  
Input/Output  
Input  
BR1#  
H5  
BSEL0  
BSEL1  
BSEL2  
COMP0  
COMP1  
COMP2  
COMP3  
COMP4  
D40#  
G29  
H30  
G30  
A13  
T1  
Output  
Output  
Output  
Input  
Input  
G2  
Input  
R1  
Input  
J2  
Input  
E19  
F20  
E21  
F21  
G21  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Y3  
Input  
D41#  
AE3  
B4  
Input  
D42#  
Input/Output  
Input/Output  
D43#  
C5  
D44#  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
43  
Land Listing  
Table 4-1.  
Land Listing by Land Name (Sheet 2 of 9)  
Land SignalBuffer  
Land SignalBuffer  
Land Name  
Direction  
Land Name  
Direction  
No.  
Type  
No.  
Type  
D02#  
D03#  
A4  
C6  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
ASync GTL+  
ASync GTL+  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Common Clk  
ASync GTL+  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Output  
D45#  
D46#  
E22  
D22  
G22  
D20  
D17  
A14  
C15  
C14  
B15  
C18  
B16  
A17  
B18  
C21  
B21  
B19  
A19  
A22  
B22  
A8  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Power/Other  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Output  
D04#  
A5  
D47#  
D05#  
B6  
D48#  
D06#  
B7  
D49#  
D07#  
A7  
D50#  
D08#  
A10  
A11  
B10  
C11  
D8  
D51#  
D09#  
D52#  
D10#  
D53#  
D11#  
D54#  
D12#  
D55#  
D13#  
B12  
C12  
D11  
G9  
D56#  
D14#  
D57#  
D15#  
D58#  
D16#  
D59#  
D17#  
F8  
D60#  
D18#  
F9  
D61#  
D19#  
E9  
D62#  
D20#  
D7  
D63#  
D21#  
E10  
D10  
F11  
F12  
D13  
E13  
G13  
F14  
G14  
F15  
G15  
G16  
E15  
E16  
G18  
G17  
F17  
F18  
E18  
C17  
R3  
DBI0#  
D22#  
DBI1#  
G11  
D19  
C20  
AC2  
B2  
D23#  
DBI2#  
D24#  
DBI3#  
D25#  
DBR#  
D26#  
DBSY#  
DEFER#  
DP0#  
Input/Output  
Input  
D27#  
G7  
D28#  
J16  
H15  
H16  
J17  
C1  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
D29#  
DP1#  
D30#  
DP2#  
D31#  
DP3#  
D32#  
DRDY#  
DSTBN0#  
DSTBN1#  
DSTBN2#  
DSTBN3#  
DSTBP0#  
DSTBP1#  
DSTBP2#  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
D33#  
C8  
D34#  
G12  
G20  
A16  
B9  
D35#  
D36#  
D37#  
D38#  
E12  
G19  
E23  
E24  
E5  
D39#  
DSTBP3#  
FERR#/PBE#  
FORCEPR#  
GTLREF_ADD_C0  
GTLREF_ADD_C1  
GTLREF_DATA_C0  
GTLREF_DATA_C1  
HIT#  
AK6  
H1  
Input  
Input  
E6  
H2  
Input  
E7  
G10  
F2  
Input  
F23  
F29  
F6  
Input  
D4  
Input/Output  
Input/Output  
Output  
HITM#  
IERR#  
E4  
G5  
AB2  
G6  
44  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Land Listing  
Table 4-1.  
Land Listing by Land Name (Sheet 3 of 9)  
Land SignalBuffer  
Land SignalBuffer  
Land Name  
Direction  
Land Name  
Direction  
No.  
Type  
No.  
Type  
IGNNE#  
INIT#  
N2  
P3  
ASync GTL+  
ASync GTL+  
ASync GTL+  
ASync GTL+  
Power/Other  
Power/Other  
Common Clk  
Common Clk  
Power/Other  
Power/Other  
ASync GTL+  
Power/Other  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Input  
Input  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESET#  
RS0#  
J3  
N4  
LINT0  
K1  
Input  
N5  
LINT1  
L1  
Input  
P5  
LL_ID0  
V2  
Output  
W2  
Y1  
LL_ID1  
AA2  
C3  
Output  
I
LOCK#  
Input/Output  
Input/Output  
Output  
G23  
B3  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Power/Other  
ASync GTL+  
ASync GTL+  
TAP  
Input  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
Input  
Output  
MCERR#  
MS_ID0  
MS_ID1  
PROCHOT#  
PWRGOOD  
REQ0#  
AB3  
W1  
V1  
RS1#  
F5  
Output  
RS2#  
A3  
AL2  
N1  
Output  
RSP#  
H4  
Input  
SKTOCC#  
SMI#  
AE8  
P2  
K4  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
REQ1#  
J5  
STPCLK#  
TCK  
M3  
REQ2#  
M6  
AE1  
AD1  
AF1  
AH2  
F26  
W3  
F25  
G25  
G27  
G26  
G24  
F24  
G3  
REQ3#  
K6  
TDI  
TAP  
REQ4#  
J6  
TDO  
TAP  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
THERMDC2  
THERMTRIP#  
TMS  
A20  
AC4  
AE4  
AE6  
AK3  
AJ3  
AM5  
AN5  
AN6  
B13  
C9  
TEST_BUS  
TESTHI00  
TESTHI01  
TESTHI02  
TESTHI03  
TESTHI04  
TESTHI05  
TESTHI06  
TESTHI07  
TESTHI08  
TESTHI09  
TESTHI10  
TESTHI11  
THERMDA  
THERMDA2  
THERMDC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Output  
Output  
G4  
D1  
P1  
D14  
D16  
D23  
E1  
L2  
AL1  
AJ7  
AK1  
AF8  
AF9  
AH7  
M2  
Power/Other  
ASync GTL+  
TAP  
Output  
Output  
Input  
VCC  
AC1  
E3  
VCC  
AG11 Power/Other  
AG12 Power/Other  
AG14 Power/Other  
AG15 Power/Other  
AG18 Power/Other  
AG19 Power/Other  
AG21 Power/Other  
AG22 Power/Other  
AG25 Power/Other  
AG26 Power/Other  
AG27 Power/Other  
AG28 Power/Other  
AG29 Power/Other  
TRDY#  
Common Clk  
TAP  
Input  
VCC  
TRST#  
AG1  
AA8  
AB8  
Input  
VCC  
VCC  
Power/Other  
Power/Other  
VCC  
VCC  
VCC  
VCC  
AC23 Power/Other  
AC24 Power/Other  
AC25 Power/Other  
AC26 Power/Other  
AC27 Power/Other  
AC28 Power/Other  
AC29 Power/Other  
AC30 Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
45  
Land Listing  
Table 4-1.  
Land Listing by Land Name (Sheet 4 of 9)  
Land SignalBuffer  
Land SignalBuffer  
No. Type  
Land Name  
Direction  
Land Name  
Direction  
No.  
Type  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AC8  
Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AG30 Power/Other  
AD23 Power/Other  
AD24 Power/Other  
AD25 Power/Other  
AD26 Power/Other  
AD27 Power/Other  
AD28 Power/Other  
AD29 Power/Other  
AD30 Power/Other  
AG8  
AG9  
Power/Other  
Power/Other  
AH11 Power/Other  
AH12 Power/Other  
AH14 Power/Other  
AH15 Power/Other  
AH18 Power/Other  
AH19 Power/Other  
AH21 Power/Other  
AH22 Power/Other  
AH25 Power/Other  
AH26 Power/Other  
AH27 Power/Other  
AH28 Power/Other  
AH29 Power/Other  
AH30 Power/Other  
AD8  
Power/Other  
AE11 Power/Other  
AE12 Power/Other  
AE14 Power/Other  
AE15 Power/Other  
AE18 Power/Other  
AE19 Power/Other  
AE21 Power/Other  
AE22 Power/Other  
AE23 Power/Other  
AH8  
AH9  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AE9  
Power/Other  
AJ11  
AJ12  
AJ14  
AJ15  
AJ18  
AJ19  
AJ21  
AJ22  
AJ25  
AF11 Power/Other  
AF12 Power/Other  
AF14 Power/Other  
AF15 Power/Other  
AF18 Power/Other  
AF19 Power/Other  
AF21 Power/Other  
AF22 Power/Other  
AJ26  
AJ8  
Power/Other  
Power/Other  
Power/Other  
AN12 Power/Other  
AN14 Power/Other  
AN15 Power/Other  
AN18 Power/Other  
AN19 Power/Other  
AN21 Power/Other  
AN22 Power/Other  
AN25 Power/Other  
AN26 Power/Other  
AJ9  
AK11 Power/Other  
AK12 Power/Other  
AK14 Power/Other  
AK15 Power/Other  
AK18 Power/Other  
AK19 Power/Other  
AK21 Power/Other  
AK22 Power/Other  
AK25 Power/Other  
AK26 Power/Other  
AN8  
AN9  
J10  
J11  
J12  
J13  
J14  
J15  
J18  
J19  
J20  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AK8  
AK9  
Power/Other  
Power/Other  
AL11 Power/Other  
AL12 Power/Other  
AL14 Power/Other  
AL15 Power/Other  
AL18 Power/Other  
46  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Land Listing  
Table 4-1.  
Land Listing by Land Name (Sheet 5 of 9)  
Land SignalBuffer  
Land SignalBuffer  
Land Name  
Direction  
Land Name  
Direction  
No.  
Type  
No.  
Type  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AL19 Power/Other  
AL21 Power/Other  
AL22 Power/Other  
AL25 Power/Other  
AL26 Power/Other  
AL29 Power/Other  
AL30 Power/Other  
VCC  
VCC  
J21  
J22  
J23  
J24  
J25  
J26  
J27  
J28  
J29  
J30  
J8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
AL9  
Power/Other  
VCC  
AM11 Power/Other  
AM12 Power/Other  
AM14 Power/Other  
AM15 Power/Other  
AM18 Power/Other  
AM19 Power/Other  
AM21 Power/Other  
AM22 Power/Other  
AM25 Power/Other  
AM26 Power/Other  
AM29 Power/Other  
AM30 Power/Other  
VCC  
VCC  
VCC  
VCC  
J9  
VCC  
K23  
K24  
K25  
K26  
K27  
K28  
K29  
K30  
K8  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AM8  
AM9  
Power/Other  
Power/Other  
VCC  
VCC  
L8  
AN11 Power/Other  
VCC  
M23  
W28  
W29  
W30  
W8  
M24  
M25  
M26  
M27  
M28  
M29  
M30  
M8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
Y23  
Y24  
Y25  
Y26  
Y27  
Y28  
Y29  
Y30  
Y8  
VCC  
VCC  
VCC  
N23  
N24  
N25  
N26  
N27  
N28  
N29  
N30  
N8  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC_DIE_SENSE  
VCC_DIE_SENSE2  
VCCA  
VCCIOPLL  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID_SELECT  
VSS  
AN3  
AL8  
A23  
C23  
AM2  
AL5  
AM3  
AL6  
AK4  
AL4  
AN7  
A12  
Output  
Output  
Input  
Input  
P8  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
R8  
T23  
T24  
T25  
T26  
T27  
T28  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
47  
Land Listing  
Table 4-1.  
Land Listing by Land Name (Sheet 6 of 9)  
Land SignalBuffer  
Land SignalBuffer  
Land Name  
Direction  
Land Name  
Direction  
No.  
Type  
No.  
Type  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
T29  
T30  
T8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A15  
A18  
A2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
U23  
U24  
U25  
U26  
U27  
U28  
U29  
U30  
U8  
A21  
A24  
A6  
A9  
AA23 Power/Other  
AA24 Power/Other  
AA25 Power/Other  
AA26 Power/Other  
AA27 Power/Other  
AA28 Power/Other  
AA29 Power/Other  
V8  
W23  
W24  
W25  
W26  
W27  
AB1  
AA3  
Power/Other  
AA30 Power/Other  
AA6  
AA7  
Power/Other  
Power/Other  
AF30 Power/Other  
AB23 Power/Other  
AB24 Power/Other  
AB25 Power/Other  
AB26 Power/Other  
AB27 Power/Other  
AB28 Power/Other  
AB29 Power/Other  
AB30 Power/Other  
AF6  
AF7  
Power/Other  
Power/Other  
AG10 Power/Other  
AG13 Power/Other  
AG16 Power/Other  
AG17 Power/Other  
AG20 Power/Other  
AG23 Power/Other  
AG24 Power/Other  
AB7  
AC3  
AC6  
AC7  
AD4  
AD7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AG7  
AH1  
Power/Other  
Power/Other  
AH10 Power/Other  
AH13 Power/Other  
AH16 Power/Other  
AH17 Power/Other  
AH20 Power/Other  
AH23 Power/Other  
AH24 Power/Other  
AE10 Power/Other  
AE13 Power/Other  
AE16 Power/Other  
AE17 Power/Other  
AE2  
Power/Other  
AH3  
AH6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AE20 Power/Other  
AE24 Power/Other  
AE25 Power/Other  
AE26 Power/Other  
AE27 Power/Other  
AE28 Power/Other  
AE29 Power/Other  
AE30 Power/Other  
AJ10  
AJ13  
AJ16  
AJ17  
AJ20  
AJ23  
AJ24  
AJ27  
AJ28  
AE5  
AE7  
Power/Other  
Power/Other  
48  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Land Listing  
Table 4-1.  
Land Listing by Land Name (Sheet 7 of 9)  
Land SignalBuffer  
Land SignalBuffer  
Land Name  
Direction  
Land Name  
Direction  
No.  
Type  
No.  
Type  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AF10 Power/Other  
AF13 Power/Other  
AF16 Power/Other  
AF17 Power/Other  
AF20 Power/Other  
AF23 Power/Other  
AF24 Power/Other  
AF25 Power/Other  
AF26 Power/Other  
AF27 Power/Other  
AF28 Power/Other  
AF29 Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AJ29  
AJ30  
AJ4  
Power/Other  
Power/Other  
Power/Other  
AK10 Power/Other  
AK13 Power/Other  
AK16 Power/Other  
AK17 Power/Other  
AK2  
Power/Other  
AK20 Power/Other  
AK23 Power/Other  
AK24 Power/Other  
AK27 Power/Other  
AK28 Power/Other  
AF3  
Power/Other  
AK29 Power/Other  
AK30 Power/Other  
C10  
C13  
C16  
C19  
C22  
C24  
C4  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AK5  
AK7  
Power/Other  
Power/Other  
AL10 Power/Other  
AL13 Power/Other  
AL16 Power/Other  
AL17 Power/Other  
AL20 Power/Other  
AL23 Power/Other  
AL24 Power/Other  
AL27 Power/Other  
AL28 Power/Other  
C7  
D12  
D15  
D18  
D21  
D24  
D3  
AL3  
Power/Other  
Power/Other  
AM1  
D5  
AM10 Power/Other  
AM13 Power/Other  
AM16 Power/Other  
AM17 Power/Other  
AM20 Power/Other  
AM23 Power/Other  
AM24 Power/Other  
AM27 Power/Other  
AM28 Power/Other  
D6  
D9  
E11  
E14  
E17  
E2  
E20  
E25  
E26  
E27  
E28  
E29  
E8  
AM4  
AM7  
AN1  
Power/Other  
Power/Other  
Power/Other  
AN10 Power/Other  
AN13 Power/Other  
AN16 Power/Other  
AN17 Power/Other  
F1  
F10  
F13  
F16  
F19  
F22  
F4  
AN2  
Power/Other  
AN20 Power/Other  
AN23 Power/Other  
AN24 Power/Other  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
49  
Land Listing  
Table 4-1.  
Land Listing by Land Name (Sheet 8 of 9)  
Land SignalBuffer  
Land SignalBuffer  
Land Name  
Direction  
Land Name  
Direction  
No.  
Type  
No.  
Type  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
B1  
B11  
B14  
B17  
B20  
B24  
B5  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
F7  
G1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
H10  
H11  
H12  
H13  
H14  
H17  
P28  
P29  
P30  
P4  
VSS  
VSS  
VSS  
VSS  
B8  
VSS  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
H25  
H26  
H27  
H28  
H29  
H3  
VSS  
VSS  
VSS  
VSS  
VSS  
P7  
VSS  
R2  
VSS  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R5  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
H6  
VSS  
H7  
VSS  
H8  
VSS  
R7  
H9  
VSS  
T3  
J4  
VSS  
T6  
J7  
VSS  
T7  
K2  
VSS  
U1  
K5  
VSS  
U7  
K7  
VSS  
V23  
V24  
V25  
V26  
V27  
V28  
V29  
V3  
L23  
L24  
L25  
L26  
L27  
L28  
L29  
L3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
V30  
V6  
L30  
L6  
VSS  
VSS  
V7  
L7  
VSS  
W4  
W7  
Y2  
M1  
VSS  
M7  
VSS  
N3  
VSS  
Y5  
N6  
VSS  
Y7  
N7  
VSS_DIE_SENSE  
VSS_DIE_SENSE2  
VSSA  
AN4  
AL7  
B23  
Output  
Output  
Input  
P23  
P24  
50  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Land Listing  
Table 4-1.  
Land Listing by Land Name (Sheet 9 of 9)  
Land SignalBuffer  
Land SignalBuffer  
Land Name  
Direction  
Land Name  
Direction  
No.  
Type  
No.  
Type  
VSS  
VSS  
VSS  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
P25  
P26  
P27  
B26  
B27  
B28  
B29  
B30  
C25  
C26  
C27  
C28  
C29  
C30  
D25  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VTT  
VTT  
A25  
A26  
B25  
D26  
D27  
D28  
D29  
D30  
E30  
F30  
AA1  
J1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT_OUT  
VTT_OUT  
RESERVED  
VTTPWRGD  
Output  
Output  
F27  
AM6  
Power/Other  
Input  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
51  
Land Listing  
4.1.2  
Land Listing by Land Number  
Table 4-2.  
Land Listing by Land Number (Sheet 1 of 9)  
Land  
No.  
SignalBuffer  
Type  
Land  
No.  
SignalBuffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A2  
D08#  
D09#  
VSS  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Source Sync  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Source Sync  
Power/Other  
Input/Output  
Input/Output  
AB1  
AB2  
VSS  
IERR#  
VSS  
Power/Other  
ASync GTL+  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Power/Other  
Source Sync  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
TAP  
Output  
AB23  
AB24  
AB25  
AB26  
AB27  
AB28  
AB29  
AB3  
COMP0  
D50#  
VSS  
Input  
VSS  
Input/Output  
VSS  
VSS  
DSTBN3#  
D56#  
VSS  
Input/Output  
Input/Output  
VSS  
VSS  
VSS  
D61#  
VSS  
Input/Output  
MCERR#  
VSS  
Input/Output  
AB30  
AB4  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A3  
RESERVED  
VSS  
A26#  
A24#  
A17#  
VSS  
Input/Output  
Input/Output  
Input/Output  
Power/Other  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Source Sync  
Source Sync  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
AB5  
D62#  
VCCA  
VSS  
Input/Output  
Input  
AB6  
AB7  
AB8  
VCC  
VTT  
AC1  
TMS  
Input  
VTT  
AC2  
DBR#  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
RS2#  
D02#  
D04#  
VSS  
Input  
AC23  
AC24  
AC25  
AC26  
AC27  
AC28  
AC29  
AC3  
A4  
Input/Output  
Input/Output  
VCC  
A5  
VCC  
A6  
VCC  
A7  
D07#  
DBI0#  
VSS  
Input/Output  
Input/Output  
VCC  
A8  
VCC  
A9  
VCC  
AA1  
AA2  
AA23  
AA24  
AA25  
AA26  
AA27  
AA28  
AA29  
AA3  
AA30  
AA4  
AA5  
AA6  
AA7  
AA8  
AD3  
AD30  
AD4  
AD5  
AD6  
VTT_OUT  
LL_ID1  
VSS  
Output  
Output  
VSS  
AC30  
AC4  
VCC  
RESERVED  
A25#  
VSS  
VSS  
AC5  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
TAP  
Input/Output  
VSS  
AC6  
VSS  
AC7  
VSS  
VSS  
AC8  
VCC  
VSS  
AD1  
TDI  
Input  
VSS  
AD2  
BPM2#  
VCC  
Common Clk  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/Output  
VSS  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AF15  
AF16  
AF17  
AF18  
AF19  
VSS  
VCC  
A21#  
A23#  
VSS  
Input/Output  
Input/Output  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
BINIT#  
VCC  
Input/Output  
VCC  
VSS  
VSS  
VSS  
ADSTB1#  
A22#  
Input/Output  
Input/Output  
VCC  
VCC  
52  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Land Listing  
Table 4-2.  
Land Listing by Land Number (Sheet 2 of 9)  
Land  
No.  
SignalBuffer  
Type  
Land  
No.  
SignalBuffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
AD7  
AD8  
VSS  
VCC  
Power/Other  
Power/Other  
TAP  
AF2  
AF20  
AF21  
AF22  
AF23  
AF24  
AF25  
AF26  
AF27  
AF28  
AF29  
AF3  
BPM4#  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A28#  
A27#  
VSS  
VSS  
VCC  
VCC  
TRST#  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
BPM3#  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
BPM0#  
Common Clk  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TAP  
Input/Output  
AE1  
TCK  
Input  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE2  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
AF30  
AF4  
VSS  
Input/Output  
Input/Output  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
AE26  
AE27  
AE28  
AE29  
AE3  
VSS  
AF5  
VCC  
AF6  
VCC  
AF7  
VCC  
AF8  
VSS  
AF9  
VSS  
AG1  
Input  
VSS  
AG10  
AG11  
AG12  
AG13  
AG14  
AG15  
AG16  
AG17  
AG18  
AG19  
AG2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
VSS  
VSS  
VSS  
COMP7  
VSS  
Input  
AE30  
AE4  
RESERVED  
VSS  
AE5  
Power/Other  
AE6  
RESERVED  
VSS  
AE7  
Power/Other  
Power/Other  
Power/Other  
TAP  
AE8  
SKTOCC#  
VCC  
Output  
Output  
Input/Output  
AE9  
AG20  
AG21  
AG22  
AG23  
AG24  
AG25  
AG26  
AJ11  
AJ12  
AJ13  
AJ14  
AJ15  
AJ16  
AJ17  
AJ18  
AJ19  
AJ2  
AF1  
TDO  
AF10  
AF11  
AF12  
AF13  
AF14  
AG27  
AG28  
AG29  
AG3  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Power/Other  
Source Sync  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
BPM5#  
VCC  
Input/Output  
AG30  
AG4  
A30#  
A31#  
A29#  
VSS  
Input/Output  
Input/Output  
Input/Output  
AG5  
AG6  
AG7  
AG8  
VCC  
Input/Output  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
53  
Land Listing  
Table 4-2.  
Land Listing by Land Number (Sheet 3 of 9)  
Land  
No.  
SignalBuffer  
Type  
Land  
No.  
SignalBuffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
AG9  
AH1  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AJ20  
AJ21  
AJ22  
AJ23  
AJ24  
AJ25  
AJ26  
AJ27  
AJ28  
AJ29  
AJ3  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AH10  
AH11  
AH12  
AH13  
AH14  
AH15  
AH16  
AH17  
AH18  
AH19  
AH2  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
RESERVED  
VSS  
VCC  
AJ30  
AJ4  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TEST_BUS  
VSS  
VSS  
AH20  
AH21  
AH22  
AH23  
AH24  
AH25  
AH26  
AH27  
AH28  
AH29  
AH3  
AJ5  
A34#  
A35#  
THERMDA2  
VCC  
Input/Output  
Input/Output  
Output  
VCC  
AJ6  
VCC  
AJ7  
VSS  
AJ8  
VSS  
AJ9  
VCC  
VCC  
AK1  
THERMDC  
VSS  
Output  
VCC  
AK10  
AK11  
AK12  
AK13  
AK14  
AK15  
AK16  
AK17  
AK18  
AK19  
AK2  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
AH30  
AH4  
VCC  
VCC  
A32#  
A33#  
VSS  
Input/Output  
Input/Output  
VSS  
AH5  
VSS  
AH6  
VCC  
AH7  
THERMDC2  
VCC  
Output  
VCC  
AH8  
VSS  
AH9  
VCC  
AK20  
AK21  
AK22  
AL8  
VSS  
AJ1  
BPM1#  
VSS  
Input/Output  
VCC  
AJ10  
AK23  
AK24  
AK25  
AK26  
AK27  
AK28  
AK29  
AK3  
VCC  
VSS  
VCC_DIE_SENSE2  
VCC  
Output  
VSS  
AL9  
VCC  
AM1  
VSS  
VCC  
AM10  
AM11  
AM12  
AM13  
AM14  
AM15  
AM16  
AM17  
AM18  
AM19  
AM2  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
RESERVED  
VSS  
VCC  
AK30  
AK4  
Power/Other  
Power/Other  
Power/Other  
ASync GTL+  
Power/Other  
Power/Other  
Power/Other  
VCC  
VID4  
VSS  
Output  
Input  
VSS  
AK5  
VSS  
AK6  
FORCEPR#  
VSS  
VCC  
AK7  
VCC  
AK8  
VCC  
VID0  
VSS  
Output  
AK9  
VCC  
AM20  
54  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Land Listing  
Table 4-2.  
Land Listing by Land Number (Sheet 4 of 9)  
Land  
No.  
SignalBuffer  
Type  
Land  
No.  
SignalBuffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
AL1  
AL10  
AL11  
AL12  
AL13  
AL14  
AL15  
AL16  
AL17  
AL18  
AL19  
AL2  
THERMDA  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
ASync GTL+  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
AM21  
AM22  
AM23  
AM24  
AM25  
AM26  
AM27  
AM28  
AM29  
AM3  
AM30  
AM4  
AM5  
AM6  
AM7  
AM8  
AM9  
AN1  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AN16  
AN17  
AN18  
AN19  
B8  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VID2  
VCC  
Output  
Input  
VCC  
PROCHOT#  
VSS  
Output  
VSS  
AL20  
AL21  
AL22  
AL23  
AL24  
AL25  
AL26  
AL27  
AL28  
AL29  
AL3  
RESERVED  
VTTPWRGD  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Sync  
Common Clk  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Common Clk  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
AL30  
AL4  
VCC  
VCC  
VID5  
Output  
Output  
Output  
Output  
VSS  
AL5  
VID1  
VSS  
AL6  
VID3  
VCC  
AL7  
VSS_DIE_SENSE2  
VSS  
VCC  
AN2  
VSS  
AN20  
AN21  
AN22  
AN23  
AN24  
AN25  
AN26  
AN3  
VSS  
B9  
DSTBP0#  
DRDY#  
VSS  
Input/Output  
Input/Output  
VCC  
C1  
VCC  
C10  
VSS  
C11  
D11#  
D14#  
VSS  
Input/Output  
Input/Output  
VSS  
C12  
VCC  
C13  
VCC  
C14  
D52#  
D51#  
VSS  
Input/Output  
Input/Output  
VCC_DIE_SENSE  
VSS_DIE_SENSE  
RESERVED  
RESERVED  
VID_SELECT  
VCC  
Output  
Output  
C15  
AN4  
C16  
AN5  
C17  
DSTBP3#  
D54#  
VSS  
Input/Output  
Input/Output  
AN6  
C18  
AN7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Sync  
Power/Other  
Source Sync  
Output  
C19  
AN8  
C2  
BNR#  
DBI3#  
D58#  
VSS  
Input/Output  
Input/Output  
Input/Output  
AN9  
VCC  
C20  
B1  
VSS  
C21  
B10  
D10#  
VSS  
Input/Output  
Input/Output  
C22  
B11  
C23  
VCCIOPLL  
VSS  
Input  
B12  
D13#  
RESERVED  
C24  
B13  
C25  
VTT  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
55  
Land Listing  
Table 4-2.  
Land Listing by Land Number (Sheet 5 of 9)  
Land  
No.  
SignalBuffer  
Type  
Land  
No.  
SignalBuffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
B14  
B15  
B16  
B17  
B18  
B19  
B2  
VSS  
D53#  
D55#  
VSS  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Source Sync  
Source Sync  
Common Clk  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Power/Other  
Source Sync  
Power/Other  
Source Sync  
Source Sync  
Common Clk  
Source Sync  
Power/Other  
Source Sync  
C26  
C27  
C28  
C29  
C3  
VTT  
VTT  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Source Sync  
Input/Output  
Input/Output  
VTT  
VTT  
D57#  
D60#  
DBSY#  
VSS  
Input/Output  
Input/Output  
Input/Output  
LOCK#  
VTT  
Input/Output  
C30  
C4  
VSS  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B3  
C5  
D01#  
Input/Output  
Input/Output  
D59#  
D63#  
VSSA  
VSS  
Input/Output  
Input/Output  
Input  
C6  
D03#  
C7  
VSS  
C8  
DSTBN0#  
RESERVED  
RESERVED  
D22#  
Input/Output  
C9  
VTT  
D1  
VTT  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
E4  
Source Sync  
Source Sync  
Power/Other  
Source Sync  
Input/Output  
Input/Output  
VTT  
D15#  
VTT  
VSS  
VTT  
D25#  
Input/Output  
RS0#  
VTT  
Input  
RESERVED  
VSS  
B30  
B4  
Power/Other  
D00#  
VSS  
Input/Output  
RESERVED  
D49#  
B5  
Source Sync  
Power/Other  
Source Sync  
Common Clk  
Input/Output  
B6  
D05#  
D06#  
ADS#  
D48#  
VSS  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
VSS  
B7  
DBI2#  
HITM#  
RESERVED  
RESERVED  
RESERVED  
VSS  
Input/Output  
Input/Output  
D2  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D3  
E5  
E6  
D46#  
RESERVED  
VSS  
Input/Output  
E7  
E8  
Power/Other  
Source Sync  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
E9  
D19#  
Input/Output  
VTT  
F1  
VSS  
VTT  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F2  
VSS  
VTT  
D23#  
Input/Output  
Input/Output  
VTT  
D24#  
VTT  
VSS  
VSS  
D28#  
Input/Output  
Input/Output  
D30  
D4  
VTT  
D30#  
HIT#  
VSS  
Input/Output  
VSS  
D5  
D37#  
Input/Output  
Input/Output  
D6  
VSS  
D38#  
D7  
D20#  
D12#  
VSS  
Input/Output  
Input/Output  
VSS  
D8  
GTLREF_DATA_C1  
D41#  
Input  
D9  
F20  
F21  
F22  
F23  
F24  
F25  
F26  
Input/Output  
Input/Output  
E1  
RESERVED  
D21#  
VSS  
D43#  
E10  
E11  
E12  
E13  
E14  
Source Sync  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Input/Output  
VSS  
RESERVED  
TESTHI07  
TESTHI02  
TESTHI00  
DSTBP1#  
D26#  
VSS  
Input/Output  
Input/Output  
Power/Other  
Power/Other  
Power/Other  
Input  
Input  
Input  
56  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Land Listing  
Table 4-2.  
Land Listing by Land Number (Sheet 6 of 9)  
Land  
No.  
SignalBuffer  
Type  
Land  
No.  
SignalBuffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
E15  
E16  
E17  
E18  
E19  
E2  
D33#  
D34#  
Source Sync  
Source Sync  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Input/Output  
Input/Output  
F27  
F28  
F29  
F3  
RESERVED  
BCLK0  
RESERVED  
BR0#  
VTT  
Clk  
Input  
VSS  
D39#  
Input/Output  
Input/Output  
Common Clk  
Power/Other  
Power/Other  
Common Clk  
Input/Output  
D40#  
F30  
F4  
VSS  
VSS  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
E27  
E28  
E29  
E3  
VSS  
F5  
RS1#  
RESERVED  
VSS  
Input  
D42#  
Input/Output  
Input/Output  
F6  
D45#  
F7  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Common Clk  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Common Clk  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
RESERVED  
RESERVED  
VSS  
F8  
D17#  
D18#  
VSS  
Input/Output  
Input/Output  
F9  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Power/Other  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Power/Other  
Source Sync  
Source Sync  
Source Sync  
Common Clk  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Clk  
G1  
VSS  
G10  
G11  
G12  
G13  
G14  
G15  
H28  
H29  
H3  
GTLREF_DATA_C0  
DBI1#  
DSTBN1#  
D27#  
D29#  
D31#  
VSS  
Input  
VSS  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
VSS  
VSS  
TRDY#  
VTT  
Input  
E30  
G16  
G17  
G18  
G19  
G2  
D32#  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input  
D36#  
VSS  
D35#  
VSS  
DSTBP2#  
COMP2  
DSTBN2#  
D44#  
H30  
H4  
BSEL1  
RSP#  
BR1#  
VSS  
Output  
Input  
Input  
G20  
G21  
G22  
G23  
G24  
G25  
G26  
G27  
G28  
G29  
G3  
Input/Output  
Input/Output  
Input/Output  
Input  
H5  
H6  
D47#  
H7  
VSS  
RESET#  
TESTHI06  
TESTHI03  
TESTHI05  
TESTHI04  
BCLK1  
BSEL0  
TESTHI08  
BSEL2  
TESTHI09  
RESERVED  
RESERVED  
DEFER#  
BPRI#  
D16#  
H8  
VSS  
Input  
H9  
VSS  
Input  
J1  
VTT_OUT  
VCC  
Output  
Input  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J2  
Input  
VCC  
Input  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
VCC  
Input  
VCC  
G30  
G4  
Output  
VCC  
Input  
DP0#  
DP3#  
VCC  
Input/Output  
Input/Output  
G5  
G6  
G7  
Common Clk  
Common Clk  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Input  
Input  
VCC  
G8  
COMP4  
VCC  
Input  
G9  
Input/Output  
Input  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
J27  
H1  
GTLREF_ADD_C0  
VSS  
VCC  
H10  
H11  
H12  
H13  
H14  
H15  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
DP1#  
Input/Output  
VCC  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
57  
Land Listing  
Table 4-2.  
Land Listing by Land Number (Sheet 7 of 9)  
Land  
No.  
SignalBuffer  
Type  
Land  
No.  
SignalBuffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
H16  
H17  
H18  
H19  
H2  
DP2#  
VSS  
Common Clk  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
ASync GTL+  
Power/Other  
Source Sync  
Power/Other  
Source Sync  
Power/Other  
Power/Other  
ASync GTL+  
ASync GTL+  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
ASync GTL+  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/Output  
J28  
J29  
J3  
VCC  
VCC  
Power/Other  
Power/Other  
VSS  
RESERVED  
VCC  
VSS  
J30  
J4  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
ASync GTL+  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
ASync GTL+  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
GTLREF_ADD_C1  
VSS  
Input  
VSS  
H20  
H21  
H22  
H23  
H24  
H25  
H26  
H27  
K24  
K25  
K26  
K27  
K28  
K29  
K3  
J5  
REQ1#  
REQ4#  
VSS  
Input/Output  
Input/Output  
VSS  
J6  
VSS  
J7  
VSS  
J8  
VCC  
VSS  
J9  
VCC  
VSS  
K1  
LINT0  
VSS  
Input  
VSS  
K2  
VSS  
K23  
M7  
M8  
N1  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
PWRGOOD  
IGNNE#  
VCC  
Input  
Input  
VCC  
N2  
VCC  
N23  
N24  
N25  
N26  
N27  
N28  
N29  
N3  
VCC  
VCC  
A20M#  
VCC  
Input  
VCC  
K30  
K4  
VCC  
REQ0#  
VSS  
Input/Output  
Input/Output  
VCC  
K5  
VCC  
K6  
REQ3#  
VSS  
VCC  
K7  
VSS  
K8  
VCC  
N30  
N4  
VCC  
L1  
LINT1  
TESTHI11  
VSS  
Input  
Input  
RESERVED  
RESERVED  
VSS  
L2  
N5  
L23  
L24  
L25  
L26  
L27  
L28  
L29  
L3  
N6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
ASync GTL+  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
ASync GTL+  
Power/Other  
Power/Other  
VSS  
N7  
VSS  
VSS  
N8  
VCC  
VSS  
P1  
TESTHI10  
SMI#  
VSS  
Input  
Input  
VSS  
P2  
VSS  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P3  
VSS  
VSS  
VSS  
VSS  
L30  
L4  
VSS  
VSS  
A06#  
A05#  
VSS  
Input/Output  
Input/Output  
VSS  
L5  
VSS  
L6  
VSS  
L7  
VSS  
INIT#  
VSS  
Input  
L8  
VCC  
P30  
P4  
M1  
VSS  
VSS  
M2  
THERMTRIP#  
VCC  
Output  
P5  
RESERVED  
A04#  
VSS  
M23  
M24  
M25  
M26  
P6  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
Input/Output  
Input  
VCC  
P7  
VCC  
P8  
VCC  
VCC  
R1  
COMP3  
58  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Land Listing  
Table 4-2.  
Land Listing by Land Number (Sheet 8 of 9)  
Land  
No.  
SignalBuffer  
Type  
Land  
No.  
SignalBuffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
M27  
M28  
M29  
M3  
M30  
M4  
M5  
M6  
R3  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
ASync GTL+  
Power/Other  
Source Sync  
Source Sync  
Source Sync  
ASync GTL+  
Power/Other  
Source Sync  
Power/Other  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clk  
Power/Other  
Source Sync  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
R2  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
V24  
V25  
V26  
V27  
V28  
V29  
V3  
VSS  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VSS  
STPCLK#  
VCC  
Input  
VSS  
VSS  
A07#  
A03#  
REQ2#  
FERR#/PBE#  
VSS  
Input/Output  
Input/Output  
Input/Output  
Output  
VSS  
VSS  
VSS  
VSS  
R30  
R4  
VSS  
A08#  
VSS  
Input/Output  
Input/Output  
VSS  
R5  
VSS  
R6  
ADSTB0#  
VSS  
VSS  
R7  
VSS  
R8  
VCC  
VSS  
T1  
COMP1  
COMP5  
VCC  
Input  
Input  
V30  
V4  
VSS  
T2  
A15#  
A14#  
VSS  
Input/Output  
Input/Output  
T23  
T24  
T25  
T26  
T27  
T28  
T29  
T3  
V5  
VCC  
V6  
VCC  
V7  
VSS  
VCC  
V8  
VCC  
VCC  
W1  
MS_ID0  
RESERVED  
VCC  
Output  
VCC  
W2  
VCC  
W23  
W24  
W25  
W26  
W27  
W28  
W29  
W3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Sync  
Source Sync  
Power/Other  
Power/Other  
VSS  
VCC  
T30  
T4  
VCC  
VCC  
A11#  
A09#  
VSS  
Input/Output  
Input/Output  
VCC  
T5  
VCC  
T6  
VCC  
T7  
VSS  
VCC  
T8  
VCC  
TESTHI01  
VCC  
Input  
U1  
VSS  
W30  
W4  
U2  
AP0#  
VCC  
Input/Output  
VSS  
U23  
U24  
U25  
U26  
U27  
U28  
U29  
U3  
W5  
A16#  
A18#  
VSS  
Input/Output  
Input/Output  
VCC  
W6  
VCC  
W7  
VCC  
W8  
VCC  
VCC  
I
Y1  
RESERVED  
VSS  
VCC  
Y2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
Y23  
Y24  
Y25  
Y26  
Y27  
Y28  
Y29  
Y3  
VCC  
AP1#  
VCC  
Input/Output  
VCC  
U30  
U4  
VCC  
A13#  
A12#  
A10#  
VSS  
Input/Output  
Input/Output  
Input/Output  
VCC  
U5  
VCC  
U6  
VCC  
U7  
VCC  
U8  
VCC  
COMP6  
VCC  
Input  
V1  
MS_ID1  
Output  
Y30  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
59  
Land Listing  
Table 4-2.  
Land Listing by Land Number (Sheet 9 of 9)  
Land  
No.  
SignalBuffer  
Type  
Land  
No.  
SignalBuffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
V2  
V23  
Y6  
LL_ID0  
VSS  
Power/Other  
Power/Other  
Source Sync  
Power/Other  
Power/Other  
Output  
Y4  
Y5  
A20#  
VSS  
Source Sync  
Power/Other  
Input/Output  
A19#  
VSS  
Input/Output  
Y7  
Y8  
VCC  
§
60  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Signal Definitions  
5 Signal Definitions  
5.1  
Signal Definitions  
Table 5-1.  
Signal Definitions (Sheet 1 of 8)  
Name  
Type  
Description  
Notes  
36  
A[35:3]#  
I/O  
A[35:3]# (Address) define a 2 -byte physical memory address space. In sub-phase  
1 of the address phase, these signals transmit the address of a transaction. In sub-  
phase 2, these signals transmit transaction type information. These signals must  
connect the appropriate pins of all agents on the FSB. A[35:3]# are protected by  
parity signals AP[1:0]#. A[35:3]# are source synchronous signals and are latched  
into the receiving buffers by ADSTB[1:0]#.  
3
On the active-to-inactive transition of RESET#, the processors sample a subset of the  
A[35:3]# lands to determine their power-on configuration. See Section 7.1.  
A20M#  
I
If A20M# (Address-20 Mask) is asserted, the processor masks physical address bit  
20 (A20#) before looking up a line in any internal cache and before driving a read/  
write transaction on the bus. Asserting A20M# emulates the 8086 processor's  
address wrap-around at the 1 MB boundary. Assertion of A20M# is only supported in  
real mode.  
2
A20M# is an asynchronous signal. However, to ensure recognition of this signal  
following an I/O write instruction, it must be valid along with the TRDY# assertion of  
the corresponding I/O write bus transaction.  
ADS#  
I/O  
I/O  
ADS# (Address Strobe) is asserted to indicate the validity of the transaction address  
on the A[35:3]# lands. All bus agents observe the ADS# activation to begin parity  
checking, protocol checking, address decode, internal snoop, or deferred reply ID  
match operations associated with the new transaction. This signal must connect the  
appropriate pins on all Dual-Core Intel Xeon Processor 5000 series FSB agents.  
3
3
ADSTB[1:0]#  
Address strobes are used to latch A[35:3]# and REQ[4:0]# on their rising and falling  
edge. Strobes are associated with signals as shown below.  
Signals  
Associated Strobes  
REQ[4:0], A[16:3]#  
A[35:17]#  
ADSTB0#  
ADSTB1#  
AP[1:0]#  
I/O  
AP[1:0]# (Address Parity) are driven by the request initiator along with ADS#,  
A[35:3]#, and the transaction type on the REQ[4:0]# signals. A correct parity signal  
is high if an even number of covered signals are low and low if an odd number of  
covered signals are low. This allows parity to be high when all the covered signals are  
high. AP[1:0]# should connect the appropriate pins of all Dual-Core Intel Xeon  
Processor 5000 series FSB agents. The following table defines the coverage model of  
these signals.  
3
Request Signals  
Subphase 1  
Subphase 2  
A[35:24]#  
A[23:3]#  
AP0#  
AP1#  
AP1#  
AP1#  
AP0#  
AP0#  
REQ[4:0]#  
BCLK[1:0]  
I
The differential bus clock pair BCLK[1:0] (Bus Clock) determines the FSB frequency.  
All processor FSB agents must receive these signals to drive their outputs and latch  
their inputs.  
3
All external timing parameters are specified with respect to the rising edge of BCLK0  
crossing V  
.
CROSS  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
61  
Signal Definitions  
Table 5-1.  
Signal Definitions (Sheet 2 of 8)  
Name  
Type  
Description  
Notes  
BINIT#  
I/O  
BINIT# (Bus Initialization) may be observed and driven by all processor FSB agents  
and if used, must connect the appropriate pins of all such agents. If the BINIT#  
driver is enabled during power on configuration, BINIT# is asserted to signal any bus  
condition that prevents reliable future operation.  
3
If BINIT# observation is enabled during power-on configuration (see Figure 7.1) and  
BINIT# is sampled asserted, symmetric agents reset their bus LOCK# activity and  
bus request arbitration state machines. The bus agents do not reset their I/O Queue  
(IOQ) and transaction tracking state machines upon observation of BINIT# assertion.  
Once the BINIT# assertion has been observed, the bus agents will re-arbitrate for  
the FSB and attempt completion of their bus queue and IOQ entries.  
If BINIT# observation is disabled during power-on configuration, a priority agent  
may handle an assertion of BINIT# as appropriate to the error handling architecture  
of the system.  
BNR#  
I/O  
BNR# (Block Next Request) is used to assert a bus stall by any bus agent who is  
unable to accept new bus transactions. During a bus stall, the current bus owner  
cannot issue any new transactions.  
Since multiple agents might need to request a bus stall at the same time, BNR# is a  
wired-OR signal which must connect the appropriate pins of all processor FSB agents.  
In order to avoid wired-OR glitches associated with simultaneous edge transitions  
driven by multiple drivers, BNR# is activated on specific clock edges and sampled on  
specific clock edges.  
3
2
BPM[5:0]#  
I/O  
BPM[5:0]# (Breakpoint Monitor) are breakpoint and performance monitor signals.  
They are outputs from the processor which indicate the status of breakpoints and  
programmable counters used for monitoring processor performance. BPM[5:0]#  
should connect the appropriate pins of all FSB agents.  
BPM4# provides PRDY# (Probe Ready) functionality for the TAP port. PRDY# is a  
processor output used by debug tools to determine processor debug readiness.  
BPM5# provides PREQ# (Probe Request) functionality for the TAP port. PREQ# is  
used by debug tools to request debug operation of the processors.  
BPM[5:4]# must be bussed to all bus agents. Please refer to the appropriate  
platform design guidelines for more detailed information.  
BPRI#  
I
BPRI# (Bus Priority Request) is used to arbitrate for ownership of the processor FSB.  
It must connect the appropriate pins of all processor FSB agents. Observing BPRI#  
active (as asserted by the priority agent) causes all other agents to stop issuing new  
requests, unless such requests are part of an ongoing locked operation. The priority  
agent keeps BPRI# asserted until all of its requests are completed, then releases the  
bus by deasserting BPRI#.  
3
3
BR[1:0]#  
BSEL[2:0]  
I/O  
O
The BR[1:0]# signals are sampled on the active-to-inactive transition of RESET#.  
The signal which the agent samples asserted determines its agent ID. BR0# drives  
the BREQ0# signal in the system and is used by the processor to request the bus.  
These signals do not have on-die termination and must be terminated.  
The BCLK[1:0] frequency select signals BSEL[2:0] are used to select the processor  
input clock frequency. Table 2-2 defines the possible combinations of the signals and  
the frequency associated with each combination. The required frequency is  
determined by the processors, chipset, and clock synthesizer. All FSB agents must  
operate at the same frequency. The Dual-Core Intel Xeon Processor 5000 series  
currently operate at either 667 or 1066 MHz FSB frequency. For more information  
about these signals, including termination recommendations, refer to the appropriate  
platform design guideline.  
COMP[3:0]  
COMP[7:4]  
I
I
COMP[3:0] must be terminated to V on the baseboard using precision resistors.  
SS  
These inputs configure the AGTL+ drivers of the processor. Refer to the appropriate  
platform design guidelines for implementation details.  
COMP[7:4] must be terminated to V on the baseboard using precision resistors.  
TT  
These inputs configure the AGTL+ drivers of the processor. Refer to the appropriate  
platform design guidelines for implementation details.  
62  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Signal Definitions  
Table 5-1.  
Signal Definitions (Sheet 3 of 8)  
Name  
Type  
Description  
Notes  
D[63:0]#  
I/O  
D[63:0]# (Data) are the data signals. These signals provide a 64-bit data path  
between the processor FSB agents, and must connect the appropriate pins on all  
such agents. The data driver asserts DRDY# to indicate a valid data transfer.  
3
D[63:0]# are quad-pumped signals, and will thus be driven four times in a  
common clock period. D[63:0]# are latched off the falling edge of both  
DSTBP[3:0]# and DSTBN[3:0]#. Each group of 16 data signals  
correspond to a pair of one DSTBP# and one DSTBN#. The following table  
shows the grouping of data signals to strobes and DBI#.  
DSTBN#/  
DSTBP#  
Data Group  
DBI#  
D[15:0]#  
D[31:16]#  
D[47:32]#  
D[63:48]#  
0
1
2
3
0
1
2
3
Furthermore, the DBI# signals determine the polarity of the data signals.  
Each group of 16 data signals corresponds to one DBI# signal. When the  
DBI# signal is active, the corresponding data group is inverted and  
therefore sampled active high.  
DBI[3:0]#  
I/O  
DBI[3:0]# (Data Bus Inversion) are source synchronous and indicate the polarity of  
the D[63:0]# signals. The DBI[3:0]# signals are activated when the data on the data  
bus is inverted. If more than half the data bits, within, within a 16-bit group, would  
have been asserted electronically low, the bus agent may invert the data bus signals  
for that particular sub-phase for that 16-bit group.  
3
DBI[3:0]# Assignment to Data Bus  
Bus Signal  
Data Bus Signals  
DBI0#  
DBI1#  
DBI2#  
DBI3#  
D[15:0]#  
D[31:16]#  
D[47:32]#  
D[63:48]#  
DBR#  
O
DBR# is used only in systems where no debug port connector is implemented on the  
system board. DBR# is used by a debug port interposer so that an in-target probe  
can drive system reset. If a debug port connector is implemented in the system,  
DBR# is treated as a no connect for the processor socket. DBR# is not a processor  
signal.  
DBSY#  
I/O  
I
DBSY# (Data Bus Busy) is asserted by the agent responsible for driving data on the  
processor FSB to indicate that the data bus is in use. The data bus is released after  
DBSY# is deasserted. This signal must connect the appropriate pins on all processor  
FSB agents.  
3
3
DEFER#  
DEFER# is asserted by an agent to indicate that a transaction cannot be guaranteed  
in-order completion. Assertion of DEFER# is normally the responsibility of the  
addressed memory or I/O agent. This signal must connect the appropriate pins of all  
processor FSB agents.  
DP[3:0]#  
DRDY#  
I/O  
I/O  
DP[3:0]# (Data Parity) provide parity protection for the D[63:0]# signals. They are  
driven by the agent responsible for driving D[63:0]#, and must connect the  
appropriate pins of all processor FSB agents.  
3
3
DRDY# (Data Ready) is asserted by the data driver on each data transfer, indicating  
valid data on the data bus. In a multi-common clock data transfer, DRDY# may be  
deasserted to insert idle clocks. This signal must connect the appropriate pins of all  
processor FSB agents.  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
63  
Signal Definitions  
Table 5-1.  
Signal Definitions (Sheet 4 of 8)  
Name  
Type  
Description  
Data strobe used to latch in D[63:0]#.  
Notes  
DSTBN[3:0]#  
I/O  
3
Signals  
Associated Strobes  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBN0#  
DSTBN1#  
DSTBN2#  
DSTBN3#  
DSTBP[3:0]#  
I/O  
Data strobe used to latch in D[63:0]#.  
3
Signals  
Associated Strobes  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBP0#  
DSTBP1#  
DSTBP2#  
DSTBP3#  
FERR#/PBE#  
O
FERR#/PBE# (floating-point error/pending break event) is a multiplexed signal and  
its meaning is qualified by STPCLK#. When STPCLK# is not asserted, FERR#/PBE#  
indicates a floating-point error and will be asserted when the processor detects an  
unmasked floating-point error. When STPCLK# is not asserted, FERR#/PBE# is  
similar to the ERROR# signal on the Intel 387 coprocessor, and is included for  
compatibility with systems using MS-DOS*-type floating-point error reporting. When  
STPCLK# is asserted, an assertion of FERR#/PBE# indicates that the processor has a  
pending break event waiting for service. The assertion of FERR#/PBE# indicates that  
the processor should be returned to the Normal state. For additional information on  
the pending break event functionality, including the identification of support of the  
feature and enable/disable information, refer to Vol. 3 of the Intel Architecture  
Software Developer’s Manual and the Intel Processor Identification and the CPUID  
Instruction application note.  
2
FORCEPR#  
I
I
The FORCEPR# (force power reduction) input can be used by the platform to cause  
the Dual-Core Intel Xeon Processor 5000 series to activate the Thermal Control  
Circuit (TCC).  
GTLREF_ADD_C0  
GTLREF_ADD_C1  
GTLREF_ADD_C0 and GTLREF_ADD_C1 determine the signal reference level for  
AGTL+ address and common clock input lands on processor core 0 and processor  
core 1 respectively. GTLREF_ADD is used by the AGTL+ receivers to determine if a  
signal is a logical 0 or a logical 1. Please refer to the appropriate platform design  
guidelines for additional details.  
GTLREF_DATA_C0  
GTLREF_DATA_C1  
I
GTLREF_DATA_C0 AND GTLREF_DATA_C1 determine the signal reference level for  
AGTL+ data input lands on processor core 0 and processor core 1 respectively.  
GTLREF_DATA is used by the AGTL+ receivers to determine if a signal is a logical 0 or  
a logical 1. Please refer to the appropriate platform design guidelines for additional  
details.  
HIT#  
HITM#  
I/O  
I/O  
HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction snoop operation  
results. Any FSB agent may assert both HIT# and HITM# together to indicate that it  
requires a snoop stall, which can be continued by reasserting HIT# and HITM#  
together.  
3
2
IERR#  
O
IERR# (Internal Error) is asserted by a processor as the result of an internal error.  
Assertion of IERR# is usually accompanied by a SHUTDOWN transaction on the  
processor FSB. This transaction may optionally be converted to an external error  
signal (for example, NMI) by system core logic. The processor will keep IERR#  
asserted until the assertion of RESET#.  
This signal does not have on-die termination.  
64  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Signal Definitions  
Table 5-1.  
Signal Definitions (Sheet 5 of 8)  
Name  
Type  
Description  
Notes  
IGNNE#  
I
IGNNE# (Ignore Numeric Error) is asserted to force the processor to ignore a  
numeric error and continue to execute noncontrol floating-point instructions. If  
IGNNE# is deasserted, the processor generates an exception on a noncontrol  
floating-point instruction if a previous floating-point instruction caused an error.  
IGNNE# has no effect when the NE bit in control register 0 (CR0) is set.  
2
IGNNE# is an asynchronous signal. However, to ensure recognition of this signal  
following an I/O write instruction, it must be valid along with the TRDY# assertion of  
the corresponding I/O write bus transaction.  
INIT#  
I
I
INIT# (Initialization), when asserted, resets integer registers inside all processors  
without affecting their internal caches or floating-point registers. Each processor then  
begins execution at the power-on Reset vector configured during power-on  
configuration. The processor continues to handle snoop requests during INIT#  
assertion. INIT# is an asynchronous signal and must connect the appropriate pins of  
all processor FSB agents.  
2
2
LINT[1:0]  
LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins of all FSB  
agents. When the APIC functionality is disabled, the LINT0/INTR signal becomes  
INTR, a maskable interrupt request signal, and LINT1/NMI becomes NMI, a  
nonmaskable interrupt. INTR and NMI are backward compatible with the signals of  
®
those names on the Pentium processor. Both signals are asynchronous.  
These signals must be software configured via BIOS programming of the APIC  
register space to be used either as NMI/INTR or LINT[1:0]. Because the APIC is  
enabled by default after Reset, operation of these pins as LINT[1:0] is the default  
configuration.  
LL_ID[1:0]  
LOCK#  
O
The LL_ID[1:0] signals are used to select the correct loadline slope for the processor.  
The Dual-Core Intel Xeon Processor 5000 series pull these signals to ground on the  
package for a logic 0 as these signals are not connected to the processor die. A logic  
1 is a no-connect on the Dual-Core Intel Xeon Processor 5000 series package.  
I/O  
LOCK# indicates to the system that a transaction must occur atomically. This signal  
must connect the appropriate pins of all processor FSB agents. For a locked series of  
transactions, LOCK# is asserted from the beginning of the first transaction to the end  
of the last transaction.  
3
When the priority agent asserts BPRI# to arbitrate for ownership of the processor  
FSB, it will wait until it observes LOCK# deasserted. This enables symmetric agents  
to retain ownership of the processor FSB throughout the bus locked operation and  
ensure the atomicity of lock.  
MCERR#  
I/O  
MCERR# (Machine Check Error) is asserted to indicate an unrecoverable  
error without a bus protocol violation. It may be driven by all processor  
FSB agents.  
MCERR# assertion conditions are configurable at a system level. Assertion  
options are defined by the following options:  
Enabled or disabled.  
Asserted, if configured, for internal errors along with IERR#.  
Asserted, if configured, by the request initiator of a bus transaction  
after it observes an error.  
Asserted by any bus agent when it observes an error in a bus  
transaction.  
For more details regarding machine check architecture, refer to the IA-32 Software  
Developer’s Manual, Volume 3: System Programming Guide.  
MS_ID[1:0]  
PROCHOT#  
O
O
These signals are provided to indicate the Market Segment for the processor and  
may be used for future processor compatibility or for keying. The Dual-Core Intel  
Xeon Processor 5000 series pull these signals to ground on the package for a logic 0  
as these signals are not connected to the processor die. A logic 1 is a no-connect on  
the Dual-Core Intel Xeon Processor 5000 series package.  
PROCHOT# (Processor Hot) will go active when the processor’s temperature  
monitoring sensor detects that the processor has reached its maximum safe  
operating temperature. This indicates that the Thermal Control Circuit (TCC) has  
been activated, if enabled. The TCC will remain active until shortly after the  
processor deasserts PROCHOT#. See Section 6.2.3 for more details. PROCHOT#  
from each processor socket should be kept separated and not tied together on  
platform designs.  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
65  
Signal Definitions  
Table 5-1.  
Signal Definitions (Sheet 6 of 8)  
Name  
Type  
Description  
Notes  
PWRGOOD  
I
PWRGOOD (Power Good) is an input. The processor requires this signal to be a clean  
indication that all processor clocks and power supplies are stable and within their  
specifications. “Clean” implies that the signal will remain low (capable of sinking  
leakage current), without glitches, from the time that the power supplies are turned  
on until they come within specification. The signal must then transition monotonically  
to a high state.PWRGOOD can be driven inactive at any time, but clocks and power  
must again be stable before a subsequent rising edge of PWRGOOD. It must also  
meet the minimum pulse width specification in Table 2-15, and be followed by a  
1-10 ms RESET# pulse.  
2
The PWRGOOD signal must be supplied to the processor; it is used to protect internal  
circuits against voltage sequencing issues. It should be driven high throughout  
boundary scan operation.  
REQ[4:0]#  
RESET#  
I/O  
REQ[4:0]# (Request Command) must connect the appropriate pins of all processor  
FSB agents. They are asserted by the current bus owner to define the currently  
active transaction type. These signals are source synchronous to ADSTB[1:0]#.  
Refer to the AP[1:0]# signal description for details on parity checking of these  
signals.  
3
3
I
Asserting the RESET# signal resets all processors to known states and invalidates  
their internal caches without writing back any of their contents. For a power-on  
Reset, RESET# must stay active for at least 1 ms after VCC and BCLK have reached  
their proper specifications. On observing active RESET#, all FSB agents will deassert  
their outputs within two clocks. RESET# must not be kept asserted for more than 10  
ms while PWRGOOD is asserted.  
A number of bus signals are sampled at the active-to-inactive transition of RESET#  
for power-on configuration. These configuration options are described in the  
Section 7.1.  
This signal does not have on-die termination and must be terminated on the  
system board.  
RS[2:0]#  
RSP#  
I
I
RS[2:0]# (Response Status) are driven by the response agent (the agent responsible  
for completion of the current transaction), and must connect the appropriate pins of  
all processor FSB agents.  
3
3
RSP# (Response Parity) is driven by the response agent (the agent responsible for  
completion of the current transaction) during assertion of RS[2:0]#, the signals for  
which RSP# provides parity protection. It must connect to the appropriate pins of all  
processor FSB agents.  
A correct parity signal is high if an even number of covered signals are low and low if  
an odd number of covered signals are low. While RS[2:0]# = 000, RSP# is also high,  
since this indicates it is not being driven by any agent guaranteeing correct parity.  
SKTOCC#  
SMI#  
O
I
SKTOCC# (Socket occupied) will be pulled to ground by the processor to indicate that  
the processor is present. There is no connection to the processor silicon for this  
signal.  
SMI# (System Management Interrupt) is asserted asynchronously by system logic.  
On accepting a System Management Interrupt, processors save the current state and  
enter System Management Mode (SMM). An SMI Acknowledge transaction is issued,  
and the processor begins program execution from the SMM handler.  
If SMI# is asserted during the deassertion of RESET# the processor will tri-state its  
outputs.  
2
2
STPCLK#  
I
STPCLK# (Stop Clock), when asserted, causes processors to enter a low power Stop-  
Grant state. The processor issues a Stop-Grant Acknowledge transaction, and stops  
providing internal clock signals to all processor core units except the FSB and APIC  
units. The processor continues to snoop bus transactions and service interrupts while  
in Stop-Grant state. When STPCLK# is deasserted, the processor restarts its internal  
clock to all units and resumes execution. The assertion of STPCLK# has no effect on  
the bus clock; STPCLK# is an asynchronous input.  
TCK  
I
TCK (Test Clock) provides the clock input for the processor Test Bus (also known as  
the Test Access Port).  
TDI  
I
O
TDI (Test Data In) transfers serial test data into the processor. TDI provides the  
serial input needed for JTAG specification support.  
TDO  
TDO (Test Data Out) transfers serial test data out of the processor. TDO provides the  
serial output needed for JTAG specification support.  
TEST_BUS  
Other  
Must be connected to all other processor TEST_BUS signals in the system. See the  
appropriate platform design guideline for termination details.  
66  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Signal Definitions  
Table 5-1.  
Signal Definitions (Sheet 7 of 8)  
Name  
Type  
Description  
Notes  
TESTHI[11:0]  
I
TESTHI[11:0] must be connected to a VTT power source through a resistor for proper  
processor operation. Refer to Section 2.6 for TESTHI grouping restrictions.  
THERMDA  
THERMDA2  
Other  
Other  
O
Thermal Diode Anode. THERMDA connects to processor core 0, THERMDA2 connects  
to processor core 1. Refer to the appropriate platform design guidelines for  
implementation details.  
THERMDC  
THERMDC2  
Thermal Diode Cathode. THERMDC connects to processor core 0. THERMDC2  
connects to processor core 1. Refer to the appropriate platform design guidelines for  
implementation details.  
THERMTRIP#  
Assertion of THERMTRIP# (Thermal Trip) indicates the processor junction  
temperature has reached a temperature beyond which permanent silicon damage  
may occur. Measurement of the temperature is accomplished through an internal  
thermal sensor. Upon assertion of THERMTRIP#, the processor will shut off its  
internal clocks (thus halting program execution) in an attempt to reduce the  
1
processor junction temperature. To protect the processor its core voltage (V ) must  
CC  
be removed following the assertion of THERMTRIP#. Intel is currently evaluating  
whether V must also be removed.  
TT  
Driving of the THERMTRIP# signals is enabled within 10 ms of the assertion of  
PWRGOOD and is disabled on de-assertion of PWRGOOD. Once activated,  
THERMTRIP# remains latched until PWRGOOD is de-asserted. While the de-assertion  
of the PWRGOOD signal will de-assert THERMTRIP#, if the processor’s junction  
temperature remains at or above the trip level, THERMTRIP# will again be asserted  
within 10 ms of the assertion of PWRGOOD.  
TMS  
I
I
TMS (Test Mode Select) is a JTAG specification support signal used by debug tools.  
See the eXtended Debug Port: Debug Port Design Guide for UP and DP Platforms for  
further information.  
TRDY#  
TRST#  
TRDY# (Target Ready) is asserted by the target to indicate that it is ready to receive  
a write or implicit writeback data transfer. TRDY# must connect the appropriate pins  
of all FSB agents.  
I
I
TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST# must be driven  
low during power on Reset.  
V
V
V
provides isolated power for the analog portion of the internal processor core  
CCA  
CCA  
PLL’s. Refer to the appropriate platform design guidelines for complete  
implementation details.  
I
V
provides isolated power for digital portion of the internal processor core  
CCIOPLL  
CCIOPLL  
PLL’s. Follow the guidelines for V  
, and refer to the appropriate platform design  
CCA  
guidelines for complete implementation details.  
VCC_DIE_SENSE  
VCC_DIE_SENSE2  
O
VCC_DIE_SENSE and VCC_DIE_SENSE2 provide an isolated, low impedance  
connection to each processor core power and ground. These signals should be  
connected to the voltage regulator feedback signal, which insures the output voltage  
(that is, processor voltage) remains within specification. Please see the applicable  
platform design guide for implementation details.  
VID[5:0]  
O
VID[5:0] (Voltage ID) pins are used to support automatic selection of power supply  
voltages (V ). These are CMOS signals that are driven by the processor and must be  
CC  
pulled up through a resistor. Conversely, the voltage regulator output must be  
disabled prior to the voltage supply for these pins becomes invalid. The VID pins are  
needed to support processor voltage specification variations. See Table 2-3 for  
definitions of these pins. The VR must supply the voltage that is requested by these  
pins, or disable itself.  
VID_SELECT  
O
O
VID_SELECT is an output from the processor which selects the appropriate VID table  
for the Voltage Regulator. Dual-Core Intel Xeon Processor 5000 series pull this signal  
to ground on the package as this signal is not connected to the processor die.  
VSS_DIE_SENSE  
VSS_DIE_SENSE2  
VSS_DIE_SENSE and VSS_DIE_SENSE2 provide an isolated, low impedance  
connection to each processor core power and ground. These signals should be  
connected to the voltage regulator feedback signal, which insures the output voltage  
(that is, processor voltage) remains within specification. Please see the applicable  
platform design guide for implementation details.  
V
I
V
provides an isolated, internal ground for internal PLL’s. Do not connect directly  
SSA  
SSA  
to ground. This pin is to be connected to V  
circuit.  
and V  
through a discrete filter  
CCA  
CCIOPLL  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
67  
Signal Definitions  
Table 5-1.  
Signal Definitions (Sheet 8 of 8)  
Name  
Type  
Description  
Notes  
V
P
The FSB termination voltage input pins. Refer to Table 2-10 for further details.  
TT  
VTT_OUT  
O
The VTT_OUT signals are included in order to provide a local VTT for some signals that  
require termination to VTT on the motherboard.  
VTTPWRGD  
I
The processor requires this input to determine that the supply voltage for BSEL[2:0]  
and VID[5:0] is stable and within specification.  
Notes:  
1.  
2.  
3.  
For this pin on Dual-Core Intel Xeon Processor 5000 series, the maximum number of symmetric agents is one. Maximum  
number of priority agents is zero.  
For this pin on Dual-Core Intel Xeon Processor 5000 series, the maximum number of symmetric agents is two. Maximum  
number of priority agents is zero.  
For this pin on Dual-Core Intel Xeon Processor 5000 series, the maximum number of symmetric agents is two. Maximum  
number of priority agents is one.  
§
68  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Thermal Specifications  
6 Thermal Specifications  
6.1  
Package Thermal Specifications  
The Dual-Core Intel Xeon Processor 5000 series require a thermal solution to maintain  
temperatures within its operating limits. Any attempt to operate the processor outside  
these operating limits may result in permanent damage to the processor and  
potentially other components within the system. As processor technology changes,  
thermal management becomes increasingly crucial when building computer systems.  
Maintaining the proper thermal environment is key to reliable, long-term system  
operation.  
A complete solution includes both component and system level thermal management  
features. Component level thermal solutions can include active or passive heatsinks  
attached to the processor integrated heat spreader (IHS). Typical system level thermal  
solutions may consist of system fans combined with ducting and venting.  
This section provides data necessary for developing a complete thermal solution. For  
more information on designing a component level thermal solution, refer to the Dual-  
Core Intel® Xeon® Processor 5000 Series Thermal/Mechanical Design Guidelines.  
Note:  
The boxed processor will ship with a component thermal solution. Refer to Chapter 8,  
“Boxed Processor Specifications”for details on the boxed processor.  
6.1.1  
Thermal Specifications  
To allow the optimal operation and long-term reliability of Intel processor-based  
systems, the processor must remain within the minimum and maximum case  
temperature (TCASE) specifications as defined by the applicable thermal profile (refer to  
Table 6-1, Table 6-4 and Table 6-7; Figure 6-1, Figure 6-2 and Figure 6-3). Thermal  
solutions not designed to provide this level of thermal capability may affect the long-  
term reliability of the processor and system. For more details on thermal solution  
design, please refer to the processor thermal/mechanical design guidelines.  
The Dual-Core Intel Xeon Processor 5000 series implement a methodology for  
managing processor temperatures, which is intended to support acoustic noise  
reduction through fan speed control and to ensure processor reliability. Selection of the  
appropriate fan speed is based on the temperature reported by the processor’s Thermal  
Diode. If the diode temperature is greater than or equal to Tcontrol (refer to  
Section 6.2.6), then the processor case temperature must remain at or below the  
temperature specified by the thermal profile (refer to Figure 6-1, Figure 6-2 and  
Figure 6-3). If the diode temperature is less than Tcontrol, then the case temperature  
is permitted to exceed the thermal profile, but the diode temperature must remain at  
or below Tcontrol. Systems that implement fan speed control must be designed to take  
these conditions into account. Systems that do not alter the fan speed only need to  
guarantee the case temperature meets the thermal profile specifications.  
Intel has developed two thermal profiles, either of which can be implemented with the  
Dual-Core Intel Xeon Processor 5000 series. Both ensure adherence to Intel reliability  
requirements. Thermal Profile A (refer to Figure 6-1, Figure 6-2; Table 6-2 and  
Table 6-5) is representative of a volumetrically unconstrained thermal solution (that is,  
industry enabled 2U heatsink). In this scenario, it is expected that the Thermal Control  
Circuit (TCC) would only be activated for very brief periods of time when running the  
most power intensive applications. Thermal Profile B (refer to Figure 6-1 and  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
69  
Thermal Specifications  
Figure 6-2; Table 6-3 and Table 6-6) is indicative of a constrained thermal environment  
(that is, 1U form factor). Because of the reduced cooling capability represented by this  
thermal solution, the probability of TCC activation and performance loss is increased.  
Additionally, utilization of a thermal solution that does not meet Thermal Profile B will  
violate the thermal specifications and may result in permanent damage to the  
processor. Intel has developed these thermal profiles to allow OEMs to choose the  
thermal solution and environmental parameters that best suit their platform  
implementation. Refer to the Dual-Core Intel® Xeon® Processor 5000 Series Thermal/  
Mechanical Design Guidelines for details on system thermal solution design, thermal  
profiles and environmental considerations.  
The Dual-Core Intel Xeon Processor 5063 (MV) supports a single Thermal Profile  
targeted at volumetrically constrained thermal environments (for example, blades, 1U  
form factors.) With this Thermal Profile, it’s expected that the Thermal Control Circuit  
(TCC) would only be activated for very brief periods of time when running the most  
power-intensive applications. Refer to the Dual-Core Intel® Xeon® Processor 5000  
Series Thermal/Mechanical Design Guidelines for further details.  
The upper point of the thermal profile consists of the Thermal Design Power (TDP)  
defined in Table 6-1, Table 6-4, Table 6-7 and the associated TCASE value. It should be  
noted that the upper point associated with Thermal Profile B (x = TDP and y =  
TCASE_MAX_B @ TDP) represents a thermal solution design point. In actuality the  
processor case temperature will not reach this value due to TCC activation (refer to  
Figure 6-1 and Figure 6-2). The lower point of the thermal profile consists of x =  
P_profile_min and y = TCASE_MAX @ P_profile_min. P_profile_min is defined as the  
processor power at which TCASE , calculated from the thermal profile, is equal to 50 °C.  
The case temperature is defined at the geometric top center of the processor IHS.  
Analysis indicates that real applications are unlikely to cause the processor to consume  
maximum power dissipation for sustained time periods. Intel recommends that  
complete thermal solution designs target the Thermal Design Power (TDP) indicated in  
Table 6-1, Table 6-4 and Table 6-7, instead of the maximum processor power  
consumption. The Thermal Monitor feature is intended to help protect the processor in  
the event that an application exceeds the TDP recommendation for a sustained time  
period. For more details on this feature, refer to Section 6.2. To ensure maximum  
flexibility for future requirements, systems should be designed to the Flexible  
Motherboard (FMB) guidelines, even if a processor with lower power dissipation is  
currently planned. The Thermal Monitor feature must be enabled for the  
processor to remain within its specifications.  
Table 6-1.  
Dual-Core Intel Xeon Processor 5000 Series (1066 MHz) Thermal  
Specifications  
Thermal  
Design Power  
(W)  
Minimum  
TCASE  
(°C)  
Maximum TCASE  
(°C)  
Core Frequency  
Notes  
Launch to FMB  
130  
5
Refer to Figure 6-1; Table 6-2; Table 6-3 1, 2, 3, 4, 5  
Notes:  
1.  
These values are specified at V  
for all processor frequencies. Systems must be designed to ensure  
CC_MAX  
the processor is not to be subjected to any static V and I combination wherein V exceeds V at  
CC  
CC  
CC  
CC_MAX  
specified I . Please refer to the loadline specifications in Chapter 2, “Electrical Specifications”.  
CC  
2.  
Thermal Design Power (TDP) should be used for processor thermal solution design targets. TDP is not the  
maximum power that the processor can dissipate. TDP is measured at maximum T  
These specifications are based on final silicon validation/characterization.  
Power specifications are defined at all VIDs found in Table 2-10. The Dual-Core Intel Xeon Processor 5000  
series may be shipped under multiple VIDs for each frequency.  
FMB, or Flexible Motherboard, guidelines provide a design target for meeting all planned processor  
frequency requirements.  
.
CASE  
3.  
4.  
5.  
70  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Thermal Specifications  
Figure 6-1. Dual-Core Intel Xeon Processor 5000 Series (1066 MHz) Thermal Profiles A  
and B  
TCASE_MAX is a thermal solution design point. In actuality, units will not significantly  
exceed TCASE_MAX_A due to TCC activation.  
85  
TCASE_MAX_B@TDP  
TCASE_MAX_A@TDP  
80  
75  
70  
65  
60  
55  
50  
45  
40  
Thermal Profile B  
Y = 0.260*x + 44.2  
Thermal Profile A  
Y = 0.203*x + 42.6  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
Pow er [W]  
Notes:  
1.  
Thermal Profile A is representative of a volumetrically unconstrained platform. Please refer to Table 6-2 for  
discrete points that constitute the thermal profile.  
Implementation of Thermal Profile A should result in virtually no TCC activation. Furthermore, utilization of  
thermal solutions that do not meet processor Thermal Profile A will result in increased probability of TCC  
activation and may incur measurable performance loss. (Refer to Section 6.2 for details on TCC activation.)  
Thermal Profile B is representative of a volumetrically constrained platform. Please refer to Table 6-3 for  
discrete points that constitute the thermal profile.  
Implementation of Thermal Profile B will result in increased probability of TCC activation and measurable  
performance loss. Furthermore, utilization of thermal solutions that do not meet Thermal Profile B do not  
meet the processor’s thermal specifications and may result in permanent damage to the processor.  
2.  
3.  
4.  
®
®
5.  
Refer to the Dual-Core Intel Xeon processor 5000 Series Thermal/Mechanical Design Guidelines for  
system and environmental implementation details.  
Table 6-2.  
Dual-Core Intel Xeon Processor 5000 Series (1066 MHz) Thermal Profile A  
Table  
Power (W)  
T
(° C)  
Power (W)  
T
(° C)  
CASE_MAX  
50.0  
CASE_MAX  
59.9  
P_profile_min =36.5  
_A  
85  
90  
40  
45  
50  
55  
60  
65  
70  
75  
80  
50.7  
60.9  
51.7  
95  
61.9  
52.8  
100  
105  
110  
115  
120  
125  
130  
62.9  
53.8  
63.9  
54.8  
64.9  
55.8  
65.9  
56.8  
67.0  
57.8  
68.0  
58.8  
69.0  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
71  
Thermal Specifications  
Table 6-3.  
Dual-Core Intel Xeon Processor 5000 Series (1066 MHz) Thermal Profile B  
Table  
Power (W)  
T
(° C)  
Power (W)  
T
(° C)  
CASE_MAX  
50.0  
52.0  
53.3  
54.6  
55.9  
57.2  
58.5  
59.8  
61.1  
62.4  
63.7  
CASE_MAX  
65.0  
66.3  
67.6  
68.9  
70.2  
71.5  
72.8  
74.1  
75.4  
76.7  
78.0  
P_profile_min =22.3  
_B  
80  
85  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
90  
95  
100  
105  
110  
115  
120  
125  
130  
Table 6-4.  
Dual-Core Intel Xeon Processor 5000 Series (667 MHz) Thermal Specifications  
Thermal  
Core Frequency Design Power  
(W)  
Minimum  
TCASE  
(°C)  
Maximum TCASE  
(°C)  
Notes  
Launch to FMB  
95  
5
Refer to Figure 6-2;  
Table 6-5; Table 6-6  
1, 2, 3, 4,  
5
Notes:  
1.  
These values are specified at V  
for all processor frequencies. Systems must be designed to ensure  
CC_MAX  
the processor is not to be subjected to any static V and I combination wherein V exceeds V at  
CC  
CC  
CC  
CC_MAX  
specified I . Please refer to the loadline specifications in Chapter 2, “Electrical Specifications.”  
Thermal Design Power (TDP) should be used for processor thermal solution design targets. TDP is not the  
CC  
2.  
maximum power that the processor can dissipate. TDP is measured at maximum T  
These specifications are based on final silicon validation/characterization.  
Power specifications are defined at all VIDs found in Table 2-10. The Dual-Core Intel Xeon Processor 5000  
series may be shipped under multiple VIDs for each frequency.  
FMB, or Flexible Motherboard, guidelines provide a design target for meeting all planned processor  
frequency requirements.  
.
CASE  
3.  
4.  
5.  
72  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Thermal Specifications  
Figure 6-2. Dual-Core Intel Xeon Processor 5000 Series (667 MHz) Thermal Profiles  
TCASE_MAX is a thermal solution design point. In actuality, units will not significantly exceed  
TCASE_MAX_A due to TCC activation.  
70  
TCASE_MAX_B@TDP  
65  
TCASE_MAX_A@TDP  
60  
Thermal Profile B  
Y = 0.260*x + 42.3  
55  
Thermal Profile A  
Y = 0.203*x + 41.7  
50  
45  
40  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Pow er [W]  
Notes:  
1.  
Thermal Profile A is representative of a volumetrically unconstrained platform. Please refer to Table 6-5 for  
discrete points that constitute the thermal profile.  
Implementation of Thermal Profile A should result in virtually no TCC activation. Furthermore, utilization of  
thermal solutions that do not meet processor Thermal Profile A will result in increased probability of TCC  
activation and may incur measurable performance loss. (Refer to Section 6.2 for details on TCC activation).  
Thermal Profile B is representative of a volumetrically constrained platform. Please refer to Table 6-6 for  
discrete points that constitute the thermal profile.  
Implementation of Thermal Profile B will result in increased probability of TCC activation and measurable  
performance loss. Furthermore, utilization of thermal solutions that do not meet Thermal Profile B do not  
meet the processor’s thermal specifications and may result in permanent damage to the processor.  
2.  
3.  
4.  
®
®
5.  
Refer to the Dual-Core Intel Xeon Processor 5000 Series Thermal/Mechanical Design Guidelines for  
system and environmental implementation details.  
Table 6-5.  
Dual-Core Intel Xeon Processor 5000 Series (667 MHz) Thermal Profile A  
Table  
Power (W)  
T
(° C)  
Power (W)  
T
(° C)  
CASE_MAX  
50.0  
CASE_MAX  
57.9  
P_profile_min =40.9  
_A  
80  
85  
90  
95  
45  
50  
55  
60  
65  
70  
75  
50.8  
59.0  
51.9  
60.0  
52.9  
61.0  
53.9  
54.9  
55.9  
56.9  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
73  
Thermal Specifications  
Table 6-6.  
Dual-Core Intel Xeon 5000 Series (667 MHz) Thermal Profile B Table  
Power (W)  
T
(° C)  
Power (W)  
T
(° C)  
CASE_MAX  
50.0  
CASE_MAX  
61.8  
P_profile_min =29.6  
_B  
75  
80  
85  
90  
95  
35  
40  
45  
50  
55  
60  
65  
70  
51.4  
63.1  
52.7  
64.4  
54.0  
65.7  
55.3  
67.0  
56.6  
57.9  
59.2  
60.5  
Table 6-7.  
Dual-Core Intel Xeon Processor 5063 (MV) Thermal Specifications  
Thermal  
Core Frequency Design Power  
(W)  
Minimum  
TCASE  
(°C)  
Maximum TCASE  
(°C)  
Notes  
Launch to FMB  
95  
5
Refer to Figure 6-3;  
Table 6-8  
1, 2, 3, 4,  
5
Notes:  
1.  
These values are specified at V  
for all processor frequencies. Systems must be designed to ensure  
CC_MAX  
the processor is not to be subjected to any static V and I combination wherein V exceeds V at  
CC  
CC  
CC  
CC_MAX  
specified I . Please refer to the loadline specifications in Chapter 2, “Electrical Specifications.”  
CC  
2.  
Thermal Design Power (TDP) should be used for processor thermal solution design targets. TDP is not the  
maximum power that the processor can dissipate. TDP is measured at maximum T  
These specifications are based on final silicon validation/characterization.  
Power specifications are defined at all VIDs found in Table 2-10. The Dual-Core Intel Xeon Processor 5000  
series may be shipped under multiple VIDs for each frequency.  
FMB, or Flexible Motherboard, guideline provide a design target for meeting all planned processor  
frequency requirements.  
.
CASE  
3.  
4.  
5.  
74  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Thermal Specifications  
Figure 6-3. Dual-Core Intel Xeon Processor 5063 (MV) Thermal Profile  
Thermal Profile  
70  
TCASE_MAX@TDP  
65  
Thermal Profile  
Y = 0.260*x + 42.3  
60  
55  
50  
45  
40  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Power [W]  
Notes:  
1.  
Thermal Profile is representative of a volumetrically constrained platform. Please refer to Table 6-8 for  
discrete points that constitute the thermal profile.  
2.  
Implementation of Thermal Profile should result in virtually no TCC activation. Furthermore, utilization of  
thermal solutions that do not meet Thermal Profile will not meet the processor’s thermal specifications and  
may result in permanent damage to the processor.  
®
®
3.  
Refer to the Dual-Core Intel Xeon Processor 5000 Series Thermal/Mechanical Design Guidelines for  
system and environment implementation details.  
Table 6-8.  
Dual-Core Intel Xeon Processor 5063 (MV) Thermal Profile Table  
Power (W)  
T
(° C)  
Power (W)  
T
(° C)  
CASE_MAX  
50.0  
CASE_MAX  
61.8  
P_profile_min =29.6  
_B  
75  
80  
85  
90  
95  
35  
40  
45  
50  
55  
60  
65  
70  
51.4  
63.1  
52.7  
64.4  
54.0  
65.7  
55.3  
67.0  
56.6  
57.9  
59.2  
60.5  
6.1.2  
Thermal Metrology  
The minimum and maximum case temperatures (TCASE) specified in Table 6-2,  
Table 6-3, Table 6-5, and Table 6-6 are measured at the geometric top center of the  
processor integrated heat spreader (IHS). Figure 6-4 illustrates the location where  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
75  
Thermal Specifications  
TCASE temperature measurements should be made. For detailed guidelines on  
temperature measurement methodology, refer to the Dual-Core Intel® Xeon®  
Processor 5000 Series Thermal/Mechanical Design Guidelines.  
Figure 6-4. Case Temperature (TCASE) Measurement Location  
Note: Figure is not to scale and is for reference only.  
76  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Thermal Specifications  
6.2  
Processor Thermal Features  
6.2.1  
Thermal Monitor  
The Thermal Monitor (TM1) feature helps control the processor temperature by  
activating the Thermal Control Circuit (TCC) when the processor silicon reaches its  
maximum operating temperature. The TCC reduces processor power consumption as  
needed by modulating (starting and stopping) the internal processor core clocks. The  
Thermal Monitor (TM1) must be enabled for the processor to be operating within  
specifications. The temperature at which Thermal Monitor activates the thermal control  
circuit is not user configurable and is not software visible. Bus traffic is snooped in the  
normal manner, and interrupt requests are latched (and serviced during the time that  
the clocks are on) while the TCC is active.  
When the Thermal Monitor is enabled and a high temperature situation exists (that is,  
TCC is active), the clocks will be modulated by alternately turning the clocks off and on  
at a duty cycle specific to the processor (typically 30 -50%). Cycle times are processor  
speed dependent and will decrease as processor core frequencies increase. A small  
amount of hysteresis has been included to prevent rapid active/inactive transitions of  
the TCC when the processor temperature is near its maximum operating temperature.  
Once the temperature has dropped below the maximum operating temperature, and  
the hysteresis timer has expired, the TCC goes inactive and clock modulation ceases.  
With a thermal solution designed to meet Thermal Profile A, it is anticipated that the  
TCC would only be activated for very short periods of time when running the most  
power intensive applications. The processor performance impact due to these brief  
periods of TCC activation is expected to be so minor that it would be immeasurable. A  
thermal solution that is designed to Thermal Profile B may cause a noticeable  
performance loss due to increased TCC activation. Thermal Solutions that exceed  
Thermal Profile B will exceed the maximum temperature specification and affect the  
long-term reliability of the processor. In addition, a thermal solution that is significantly  
under designed may not be capable of cooling the processor even when the TCC is  
active continuously. Refer to the Dual-Core Intel® Xeon® Processor 5000 Series  
Thermal/Mechanical Design Guidelines for information on designing a thermal solution.  
The duty cycle for the TCC, when activated by the TM1, is factory configured and  
cannot be modified. The TM1 does not require any additional hardware, software  
drivers, or interrupt handling routines.  
6.2.2  
On-Demand Mode  
The processor provides an auxiliary mechanism that allows system software to force  
the processor to reduce its power consumption. This mechanism is referred to as “On-  
Demand” mode and is distinct from the Thermal Monitor feature. On-Demand mode is  
intended as a means to reduce system level power consumption. Systems utilizing the  
Dual-Core Intel Xeon Processor 5000 series must not rely on software usage of this  
mechanism to limit the processor temperature. If bit 4 of the  
IA32_CLOCK_MODULATION MSR is set to a ‘1, the processor will immediately reduce  
its power consumption via modulation (starting and stopping) of the internal core clock,  
independent of the processor temperature. When using On-Demand mode, the duty  
cycle of the clock modulation is programmable via bits 3:1 of the same  
IA32_CLOCK_MODULATION MSR. In On-Demand mode, the duty cycle can be  
programmed from 12.5% on/ 87.5% off to 87.5% on/12.5% off in 12.5% increments.  
On-Demand mode may be used in conjunction with the Thermal Monitor; however, if  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
77  
Thermal Specifications  
the system tries to enable On-Demand mode at the same time the TCC is engaged, the  
factory configured duty cycle of the TCC will override the duty cycle selected by the On-  
Demand mode.  
6.2.3  
PROCHOT# Signal  
An external signal, PROCHOT# (processor hot) is asserted when the processor die  
temperature has reached its factory configured trip point. If Thermal Monitor is enabled  
(note that Thermal Monitor must be enabled for the processor to be operating within  
specification), the TCC will be active when PROCHOT# is asserted. The processor can  
be configured to generate an interrupt upon the assertion or de-assertion of  
PROCHOT#. Refer to the Intel Architecture Software Developer’s Manual for specific  
register and programming details.  
PROCHOT# is designed to assert at or a few degrees higher than maximum TCASE (as  
specified by Thermal Profile A) when dissipating TDP power and cannot be interpreted  
as an indication of processor case temperature. This temperature delta accounts for  
processor package, lifetime and manufacturing variations and attempts to ensure the  
Thermal Control Circuit is not activated below maximum TCASE when dissipating TDP  
power. There is no defined or fixed correlation between the PROCHOT# trip  
temperature, the case temperature or the thermal diode temperature. Thermal  
solutions must be designed to the processor specifications and cannot be adjusted  
based on experimental measurements of TCASE, PROCHOT#, or Tdiode on random  
processor samples.  
6.2.4  
FORCEPR# Signal  
The FORCEPR# (force power reduction) input can be used by the platform to cause the  
Dual-Core Intel Xeon Processor 5000 series to activate the TCC. If the Thermal Monitor  
is enabled, the TCC will be activated upon the assertion of the FORCEPR# signal.  
Assertion of the FORCEPR# signal will activate TCC for both processor cores. The TCC  
will remain active until the system deasserts FORCEPR#. FORCEPR# is an  
asynchronous input. FORCEPR# can be used to thermally protect other system  
components. To use the VR as an example, when FORCEPR# is asserted, the TCC  
circuit in the processor will activate, reducing the current consumption of the processor  
and the corresponding temperature of the VR.  
It should be noted that assertion of FORCEPR# does not automatically assert  
PROCHOT#. As mentioned previously, the PROCHOT# signal is asserted when a high  
temperature situation is detected. A minimum pulse width of 500 µs is recommended  
when FORCEPR# is asserted by the system. Sustained activation of the FORCEPR#  
signal may cause noticeable platform performance degradation. Refer to the  
appropriate platform design guidelines for details on implementing the FORCEPR#  
signal feature.  
6.2.5  
THERMTRIP# Signal  
Regardless of whether or not Thermal Monitor is enabled, in the event of a catastrophic  
cooling failure, the processor will automatically shut down when the silicon has reached  
an elevated temperature (refer to the THERMTRIP# definition in Table 5-1). At this  
point, the FSB signal THERMTRIP# will go active and stay active as described in  
Table 5-1. THERMTRIP# activation is independent of processor activity and does not  
generate any bus cycles. Intel also recommends the removal of VTT.  
78  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Thermal Specifications  
6.2.6  
Tcontrol and Fan Speed Reduction  
Tcontrol is a temperature specification based on a temperature reading from the  
thermal diode. The value for Tcontrol will be calibrated in manufacturing and configured  
for each processor. The Tcontrol value is set identically for both processor cores. The  
Tcontrol temperature for a given processor can be obtained by reading the  
IA32_TEMPERATURE_TARGET MSR in the processor. The Tcontrol value that is read  
from the IA32_TEMPERATURE_TARGET MSR must be converted from Hexadecimal to  
Decimal and added to a base value of 60° C. The value of Tcontrol may vary from 0x00h  
to 0x1Eh.  
When Tdiode is above Tcontrol, then TCASE must be at or below TCASE_MAX as defined by  
the thermal profile. (Refer to Figure 6-1, Figure 6-2 and Figure 6-3 ; Table 6-2,  
Table 6-3, Table 6-5, Table 6-6 and Table 6-8). Otherwise, the processor temperature  
can be maintained at or below Tcontrol.  
6.2.7  
Thermal Diode  
The Dual-Core Intel Xeon Processor 5000 series incorporates an on-die PNP transistor  
whose base emitter junction is used as a thermal “diode, one per core, with its  
collector shorted to Ground. A thermal sensor located on the system board may  
monitor the die temperature of the processor for thermal management and fan speed  
control. Table 6-9, Table 6-11 and Table 6-12 provide the “diode” parameters and  
interface specifications. Two different sets of “diode” parameters are listed in Table 6-9  
and Table 6-11. The Diode Model parameters (Table 6-9) apply to traditional thermal  
sensors that use the Diode Equation to determine the processor temperature.  
Transistor Model parameters (Table 6-11) have been added to support thermal sensors  
that use the transistor equation method. The Transistor Model may provide more  
accurate temperature measurements when the diode ideality factor is closer to the  
maximum or minimum limits. This thermal “diode” is separate from the Thermal  
Monitor’s thermal sensor and cannot be used to predict the behavior of the Thermal  
Monitor.  
When calculating a temperature based on thermal diode measurements, a number of  
parameters must be either measured or assumed. Most devices measure the diode  
ideality and assume a series resistance and ideality trim value, although some are  
capable of also measuring the series resistance. Calculating the temperature is then  
accomplished by using the equations listed under Table 6-9. In most temperature  
sensing devices, an expected value for the diode ideality is designed-in to the  
temperature calculation equation. If the designer of the temperature sensing device  
assumes a perfect diode, the ideality value (also called ntrim) will be 1.000. Given that  
most diodes are not perfect, the designers usually select an ntrim value that more  
closely matches the behavior of the diodes in the processor. If the processors diode  
ideality deviates from that of ntrim, each calculated temperature will be offset by a fixed  
amount. The temperature offset can be calculated with the equation:  
Terror(nf) = Tmeasured X (1- nactual/ntrim  
)
where Terror(nf) is the offset in degrees C, Tmeasured is in Kelvin, nactual is the measured  
ideality of the diode, and ntrim is the diode ideality assumed by the temperature sensing  
device.  
In order to improve the accuracy of diode based temperature measurements, a new  
register (Tdiode_Offset) has been added to Dual-Core Intel Xeon Processor 5000 series  
which will contain thermal diode characterization data. During manufacturing each  
processor’s thermal diode will be evaluated for its behavior relative to a theoretical  
diode. Using the equation above, the temperature error created by the difference  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
79  
Thermal Specifications  
between ntrim and the actual ideality of the particular processor will be calculated. This  
value (Tdiode_Offset) will be programmed into the new diode correction MSR and then  
added to the Tdiode_Base value can be used to correct temperatures read by diode  
based temperature sensing devices.  
If the ntrim value used to calculating Tdiode_Offset differs from the ntrim value used in a  
temperature sensing device, the Terror(nf) may not be accurate. If desired, the  
Tdiode_Offset can be adjusted by calculating nactual and then recalculating the offset  
using the actual ntrim as defined in the temperature sensor manufacturers’ datasheet.  
The parameters used to calculate the Thermal Diode (Tdiode) Correction Factor are  
listed in Table 6-12. For Dual-Core Intel Xeon Processor 5000 series, the range of  
Tdiode Correction Factor is ±14°C.  
.
Table 6-9.  
Thermal Diode Parameters using Diode Model  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
I
Forward Bias Current  
Diode Ideality Factor  
Series Resistance  
5
-
200  
1.050  
6.24  
µA  
-
1
FW  
n
1.000  
2.79  
1.009  
4.52  
2, 3, 4  
2, 3, 5  
R
T
Ω
Notes:  
1.  
2.  
3.  
4.  
Intel does not support or recommend operation of the thermal diode under reverse bias.  
Characterized across a temperature range of 50-80°C.  
Not 100% tested. Specified by design characterization.  
The ideality factor, n, represents the deviation from ideal diode behavior as exemplified by the diode  
qVD/nkT  
equation: I  
= I * (e  
- 1)  
FW  
S
Where I = saturation current, q = electronic charge, V = voltage across the diode, k = Boltzmann  
S
D
Constant, and T = absolute temperature (Kelvin).  
5.  
The series resistance, R , is provided to allow for a more accurate measurement of the junction  
T
temperature. R , as defined, includes the lands of the processor but does not include any socket resistance  
T
or board trace resistance between the socket and external remote diode thermal sensor. R can be used by  
T
remote diode thermal sensors with automatic series resistance cancellation to calibrate out this error term.  
Another application is that a temperature offset can be manually calculated and programmed into an offset  
register in the remote diode thermal sensors as exemplified by the equation:  
Terror = [R * (N-1) * I min] / [nk/q *ln N]  
T
FW  
Where Terror=sensor temperature error, N=sensor current ratio, k=Boltzmann Constant, q=electronic  
charge.  
80  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Thermal Specifications  
Table 6-10. Thermal Diode Interface  
Land Name  
Land Number  
Description  
THERMDA  
AL1  
AK1  
AJ7  
diode anode  
diode cathode  
diode anode  
diode cathode  
THERMDC  
THERMDA2  
THERMDC2  
AH7  
.
Table 6-11. Thermal Diode Parameters using Transistor Model  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
I
Forward Bias Current  
Emitter Current  
Transistor Ideality  
-
5
-
-
200  
200  
µA  
µA  
-
1, 2  
FW  
I
5
E
n
0.997  
0.391  
2.79  
1.001  
-
1.005  
0.760  
6.24  
3, 4, 5  
3, 4  
Q
Beta  
-
R
Series Resistance  
4.52  
3, 6  
T
Ω
Notes:  
1.  
2.  
3.  
4.  
5.  
Intel does not support or recommend operation of the thermal diode under reverse bias.  
Same as I in the diode model in Table 6-9.  
Characterized across a temperature range of 50-80°C.  
Not 100% tested. Specified by design characterization.  
The ideality factor, n , represents the deviation from ideal transistor model behavior as exemplified by the  
equation for the collector current: I = I * (e  
FW  
Q
qVBE/n kT  
- 1)  
BE  
C
S
Q
Where I = saturation current, q = electronic charge, V = voltage across the transistor based emitter  
S
junction (same nodes as V ), k = Boltzmann Constant, and T = absolute temperature (Kelvin).  
The series resistance, R provided in Table 6-9 can be used for more accurate readings as needed.  
D
6.  
T
Table 6-12. Parameters for Tdiode Correction Factor  
Symbol  
Parameter  
Typ  
Unit  
Notes  
n
Diode Ideality used to calculate  
Tdiode_Offset  
1.008  
1
trim  
Tdiode_Base  
0
°C  
1
Notes:  
1.  
®
®
See the Dual-Core Intel Xeon Processor 5000 Series Thermal/Mechanical Design Guidelines for more  
information on how to use the Tdiode_Offset, Tdiode_Base and n  
parameters for fan speed control.  
trim  
§
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
81  
Thermal Specifications  
82  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Features  
7 Features  
7.1  
Power-On Configuration Options  
Several configuration options can be configured by hardware. The Dual-Core Intel Xeon  
Processor 5000 series samples its hardware configuration at reset, on the active-to-  
inactive transition of RESET#. For specifics on these options, please refer to Table 7-1.  
The sampled information configures the processor for subsequent operation. These  
configuration options cannot be changed except by another reset. All resets reconfigure  
the processor, for reset configuration purposes, the processor does not distinguish  
between a “warm” reset (PWRGOOD signal remains asserted during reset) and a  
“power-on” reset.  
Table 7-1.  
Power-On Configuration Option Lands  
Configuration Option  
Output tri state  
Land Name  
Notes  
SMI#  
A3#  
1,2  
1,2  
1,2  
Execute BIST (Built-In Self Test)  
In Order Queue de-pipelining (set IOQ depth to  
1)  
A7#  
Disable MCERR# observation  
Disable BINIT# observation  
Disable bus parking  
A9#  
A10#  
1,2  
1,2  
A15#  
1,2  
Symmetric agent arbitration ID  
Force single logical processor  
BR[1:0]#  
A31#  
1,2  
1,2,3  
Notes:  
1.  
2.  
3.  
Asserting this signal during RESET# will select the corresponding option.  
Address pins not identified in this table as configuration options should not be asserted during RESET#.  
This mode is not tested.  
7.2  
Clock Control and Low Power States  
The Dual-Core Intel Xeon Processor 5000 series support the Enhanced HALT  
Powerdown state in addition to the HALT Powerdown state and Stop-Grant states to  
reduce power consumption by stopping the clock to internal sections of the processor,  
depending on each particular state. See Figure 7-1 for a visual representation of the  
processor low power states.  
The Enhanced HALT state is enabled by default in the Dual-Core Intel Xeon Processor  
5000 series. The Enhanced HALT state must remain enabled via the BIOS for the  
processor to remain within its specifications. For processors that are already running at  
the lowest core to bus ratio for its nominal operating point, the processor will transition  
to the HALT Powerdown state instead of the Enhanced HALT state.  
The Stop Grant state requires chipset and BIOS support on multiprocessor systems. In  
a multiprocessor system, all the STPCLK# signals are bussed together, thus all  
processors are affected in unison. The Hyper-Threading Technology feature adds the  
conditions that all logical processors share the same STPCLK# signal internally. When  
the STPCLK# signal is asserted, the processor enters the Stop Grant state, issuing a  
Stop Grant Special Bus Cycle (SBC) for each processor or logical processor. The chipset  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
83  
Features  
needs to account for a variable number of processors asserting the Stop Grant SBC on  
the bus before allowing the processor to be transitioned into one of the lower processor  
power states. Refer to the applicable chipset specification for more information.  
7.2.1  
7.2.2  
Normal State  
This is the normal operating state for the processor.  
HALT or Enhanced Powerdown States  
The Enhanced HALT power down state is enabled by default in the Dual-Core Intel Xeon  
Processor 5000 series. The Enhanced HALT power down state must remain enabled  
via the BIOS. The Enhanced HALT state requires support for dynamic VID transitions in  
the platform.  
7.2.2.1  
HALT Powerdown State  
HALT is a low power state entered when all logical processors have executed the HALT  
or MWAIT instruction. When one of the logical processors executes the HALT or MWAIT  
instruction, that logical processor is halted; however, the other processor continues  
normal operation. The processor will transition to the Normal state upon the occurrence  
of SMI#, BINIT#, INIT#, LINT[1:0] (NMI, INTR), or an interrupt delivered over the  
front side bus. RESET# will cause the processor to immediately initialize itself.  
The return from a System Management Interrupt (SMI) handler can be to either  
Normal Mode or the HALT Power Down state. Refer to the IA-32 Intel® Architecture  
Software Developer's Manual, Volume III: System Programming Guide for more  
information.  
The system can generate a STPCLK# while the processor is in the HALT Power Down  
state. When the system deasserts the STPCLK#, the processor will return execution to  
the HALT state.  
While in HALT Power Down state, the processor will process front side bus snoops and  
interrupts.  
7.2.2.2  
Enhanced HALT Powerdown State  
Enhanced HALT state is a low power state entered when all logical processors have  
executed the HALT or MWAIT instructions. When one of the logical processors executes  
the HALT instruction, that logical processor is halted; however, the other processor  
continues normal operation. The Enhanced HALT state is generally a lower power state  
than the Stop Grant state.  
The processor will automatically transition to a lower core frequency and voltage  
operating point before entering the Enhanced HALT state. Note that the processor FSB  
frequency is not altered; only the internal core frequency is changed. When entering  
the low power state, the processor will first switch to the lower bus ratio and then  
transition to the lower VID.  
While in the Enhanced HALT state, the processor will process bus snoops.  
The processor exits the Enhanced HALT state when a break event occurs. When the  
processor exits the Enhanced HALT state, it will first transition the VID to the original  
value and then change the bus ratio back to the original value.  
84  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Features  
The Enhanced HALT state must be enabled by way of the BIOS for the processor to  
remain within its specifications. The Enhanced HALT state requires support for dynamic  
VID transitions in the platform.  
Figure 7-1. Stop Clock State Machine  
HALT or MWAIT Instruction and  
HALT Bus Cycle Generated  
Enhanced HALT or HALT State  
BCLK running  
Normal State  
INIT#, BINIT#, INTR, NMI, SMI#,  
RESET#, FSB interrupts  
Normal execution  
Snoops and interrupts allowed  
Snoop  
Event  
Occurs Serviced  
Snoop  
Event  
STPCLK#  
Asserted  
STPCLK#  
De-asserted  
Enhanced HALT Snoop or HALT  
Snoop State  
BCLK running  
Service snoops to caches  
Snoop Event Occurs  
Snoop Event Serviced  
Stop Grant State  
Stop Grant Snoop State  
BCLK running  
BCLK running  
Snoops and interrupts allowed  
Service snoops to caches  
7.2.3  
Stop-Grant State  
When the STPCLK# pin is asserted, the Stop-Grant state of the processor is entered 20  
bus clocks after the response phase of the processor-issued Stop Grant Acknowledge  
special bus cycle. Once the STPCLK# pin has been asserted, it may only be deasserted  
once the processor is in the Stop Grant state. For the Dual-Core Intel Xeon Processor  
5000 series, all logical processor cores will enter the Stop-Grant state once the  
STPCLK# pin is asserted. Additionally, all logical cores must be in the Stop Grant state  
before the deassertion of STPCLK#.  
Since the AGTL+ signal pins receive power from the front side bus, these pins should  
not be driven (allowing the level to return to VTT) for minimum power drawn by the  
termination resistors in this state. In addition, all other input pins on the front side bus  
should be driven to the inactive state.  
BINIT# will not be serviced while the processor is in Stop-Grant state. The event will be  
latched and can be serviced by software upon exit from the Stop Grant state.  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
85  
Features  
RESET# will cause the processor to immediately initialize itself, but the processor will  
stay in Stop-Grant state. A transition back to the Normal state will occur with the de-  
assertion of the STPCLK# signal.  
A transition to the Grant Snoop state will occur when the processor detects a snoop on  
the front side bus (see Section 7.2.4.1).  
While in the Stop-Grant state, SMI#, INIT#, BINIT# and LINT[1:0] will be latched by  
the processor, and only serviced when the processor returns to the Normal state. Only  
one occurrence of each event will be recognized upon return to the Normal state.  
While in Stop-Grant state, the processor will process snoops on the front side bus and it  
will latch interrupts delivered on the front side bus.  
The PBE# signal can be driven when the processor is in Stop-Grant state. PBE# will be  
asserted if there is any pending interrupt latched within the processor. Pending  
interrupts that are blocked by the EFLAGS.IF bit being clear will still cause assertion of  
PBE#. Assertion of PBE# indicates to system logic that it should return the processor to  
the Normal state.  
7.2.4  
Enhanced HALT Snoop or HALT Snoop State,  
Stop Grant Snoop State  
The Enhanced HALT Snoop state is used in conjunction with the Enhanced HALT state.  
If the Enhanced HALT state is not enabled in the BIOS, the default Snoop state entered  
will be the HALT Snoop state. Refer to the sections below for details on HALT Snoop  
state, Stop Grant Snoop state and Enhanced HALT Snoop state.  
7.2.4.1  
HALT Snoop State, Stop Grant Snoop State  
The processor will respond to snoop or interrupt transactions on the front side bus  
while in Stop-Grant state or in HALT Power Down state. During a snoop or interrupt  
transaction, the processor enters the HALT/Grant Snoop state. The processor will stay  
in this state until the snoop on the front side bus has been serviced (whether by the  
processor or another agent on the front side bus) or the interrupt has been latched.  
After the snoop is serviced or the interrupt is latched, the processor will return to the  
Stop-Grant state or HALT Power Down state, as appropriate.  
7.2.4.2  
7.3  
86  
Enhanced HALT Snoop State  
The Enhanced HALT Snoop state is the default Snoop state when the Enhanced HALT  
state is enabled via the BIOS. The processor will remain in the lower bus ratio and VID  
operating point of the Enhanced HALT state.  
While in the Enhanced HALT Snoop state, snoops and interrupt transactions are  
handled the same way as in the HALT Snoop state. After the snoop is serviced or the  
interrupt is latched, the processor will return to the Enhanced HALT state.  
Enhanced Intel SpeedStep® Technology  
The Dual-Core Intel Xeon Processor 5000 series support Enhanced Intel SpeedStep  
Technology. This technology enables the processor to switch between multiple  
frequency and voltage points, which results in platform power savings. Enhanced Intel  
SpeedStep Technology requires support for dynamic VID transitions in the platform.  
Switching between voltage/frequency states is software controlled.  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Features  
Note:  
Not all Dual-Core Intel Xeon Processor 5000 series are capable of supporting Enhanced  
Intel SpeedStep Technology. More details on which processor frequencies will support  
this feature will be provided in future releases of the Dual-Core Intel® Xeon® Processor  
5000 Series Specification Update when available.  
Enhanced Intel SpeedStep Technology creates processor performance states (P-states)  
or voltage/frequency operating points. P-states are lower power capability states within  
the Normal state as shown in Figure 7-1. Enhanced Intel SpeedStep Technology  
enables real-time dynamic switching between frequency and voltage points. It alters  
the performance of the processor by changing the bus to core frequency ratio and  
voltage. This allows the processor to run at different core frequencies and voltages to  
best serve the performance and power requirements of the processor and system. The  
Dual-Core Intel Xeon Processor 5000 series have hardware logic that coordinates the  
requested processor voltage between the processor cores. The highest voltage that is  
requested for either of the processor cores is selected for that processor. Note that the  
front side bus is not altered; only the internal core frequency is changed. In order to  
run at reduced power consumption, the voltage is altered in step with the bus ratio.  
The following are key features of Enhanced Intel SpeedStep Technology:  
• Multiple voltage/frequency operating points provide optimal performance at  
reduced power consumption.  
• Voltage/frequency selection is software controlled by writing to processor MSR’s  
(Model Specific Registers), thus eliminating chipset dependency.  
— If the target frequency is higher than the current frequency, VCC is incremented  
in steps (+12.5 mV) by placing a new value on the VID signals and the  
processor shifts to the new frequency. Note that the top frequency for the  
processor can not be exceeded.  
— If the target frequency is lower than the current frequency, the processor shifts  
to the new frequency and VCC is then decremented in steps (-12.5 mV) by  
changing the target VID through the VID signals.  
§
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
87  
Features  
88  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Boxed Processor Specifications  
8 Boxed Processor Specifications  
8.1  
Introduction  
Intel boxed processors are intended for system integrators who build systems from  
components available through distribution channels. The Dual-Core Intel® Xeon®  
Processor 5000 series will be offered as an Intel boxed processor.  
Intel will offer the Dual-Core Intel Xeon Processor 5000 series boxed processor with  
two heat sink configurations available for each processor frequency: 1U passive/2U  
active combination solution and a 2U passive only solution. The 1U passive/2U active  
combination solution is based on a 1U passive heat sink with a removable fan that will  
be pre-attached at shipping. This heat sink solution is intended to be used as either a  
1U passive heat sink or a 2U+ active heat sink. Although the active combination  
solution with removable fan mechanically fits into a 2U keepout, additional design  
considerations may need to be addressed to provide sufficient airflow to the fan inlet.  
The 1U passive/2U active combination solution in the active fan configuration is  
primarily designed to be used in a pedestal chassis where sufficient air inlet space is  
present and strong side directional airflow is not an issue. The 1U passive/active  
combination solution with the fan removed and the 2U passive thermal solution require  
the use of chassis ducting and are targeted for use in rack mount servers. The  
retention solution used for these products is called the Common Enabling Kit, or CEK.  
The CEK base is compatible with both thermal solutions and uses the same hole  
locations as the Intel® Xeon® processor with 800 MHz FSB.  
The 1U passive/active combination solution will utilize a removable fan with a 4-pin  
pulse width modulated (PWM) T-diode control. Use of a 4-pin PWM T-diode controlled  
active thermal solution helps customers meet acoustic targets in pedestal platforms  
through the motherboards’s ability to directly control the RPM of the processor heat  
sink fan. Please see Section 8.3 for more details. Figure 8-1 through Figure 8-3 are  
representations of the two heat sink solutions.  
Figure 8-1. Boxed Dual-Core Intel Xeon Processor 5000 Series 1U Passive/2U Active  
Combination Heat Sink (With Removable Fan)  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
89  
Boxed Processor Specifications  
Figure 8-2. Boxed Dual-Core Intel Xeon Processor 5000 Series 2U Passive Heat Sink  
Figure 8-3. 2U Passive Dual-Core Intel Xeon Processor 5000 Series Thermal Solution  
(Exploded View)  
Heat sink screw  
springs  
Heat sink  
screws  
Heat sink  
Heat sink standoffs  
Thermal Interface  
Material  
Motherboard  
and  
processor  
Protective Tape  
CEK spring  
Chassis pan  
Notes:  
1.  
2.  
3.  
The heat sinks represented in these images are for reference only, and may not represent the final boxed  
processor heat sinks.  
The screws, springs, and standoffs will be captive to the heat sink. This image shows all of the components  
in an exploded view.  
It is intended that the CEK spring will ship with the base board and be pre-attached prior to shipping.  
8.2  
Mechanical Specifications  
This section documents the mechanical specifications of the boxed processor.  
90  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Boxed Processor Specifications  
8.2.1  
Boxed Processor Heat Sink Dimensions (CEK)  
The boxed processor will be shipped with an unattached thermal solution. Clearance is  
required around the thermal solution to ensure unimpeded airflow for proper cooling.  
The physical space requirements and dimensions for the boxed processor and  
assembled heat sink are shown in Figure 8-4 through Figure 8-8. Figure 8-9 through  
Figure 8-10 are the mechanical drawings for the 4-pin board fan header and 4-pin  
connector used for the active CEK fan heat sink solution.  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
91  
Boxed Processor Specifications  
Figure 8-4. Top Side Board Keep-Out Zones (Part 1)  
92  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Boxed Processor Specifications  
Figure 8-5. Top Side Board Keep-Out Zones (Part 2)  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
93  
Boxed Processor Specifications  
Figure 8-6. Bottom Side Board Keep-Out Zones  
94  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Boxed Processor Specifications  
Figure 8-7. Board Mounting Hole Keep-Out Zones  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
95  
Boxed Processor Specifications  
Figure 8-8. Volumetric Height Keep-Ins  
96  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Boxed Processor Specifications  
Figure 8-9. 4-Pin Fan Cable Connector (For Active CEK Heat Sink)  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
97  
Boxed Processor Specifications  
Figure 8-10. 4-Pin Base Board Fan Header (For Active CEK Heat Sink)  
98  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Boxed Processor Specifications  
8.2.2  
Boxed Processor Heat Sink Weight  
8.2.2.1  
Thermal Solution Weight  
The 1U passive/2U active combination heat sink solution and the 2U passive heat sink  
solution will not exceed a mass of 1050 grams. Note that this is per processor, so a dual  
processor system will have up to 2100 grams total mass in the heat sinks. This large  
mass will require a minimum chassis stiffness to be met in order to withstand force  
during shock and vibration.  
See Section 3 for details on the processor weight.  
8.2.3  
Boxed Processor Retention Mechanism and  
Heat Sink Support (CEK)  
Baseboards and chassis designed for use by a system integrator should include holes  
that are in proper alignment with each other to support the boxed processor. Refer to  
the Server System Infrastructure Specification (SSI-EEB 3.6, TEB 2.1 or CEB 1.1).  
These specification can be found at: http://www.ssiforum.org.  
Figure 8-3 illustrates the Common Enabling Kit (CEK) retention solution. The CEK is  
designed to extend air-cooling capability through the use of larger heat sinks with  
minimal airflow blockage and bypass. CEK retention mechanisms can allow the use of  
much heavier heat sink masses compared to legacy limits by using a load path directly  
attached to the chassis pan. The CEK spring on the secondary side of the baseboard  
provides the necessary compressive load for the thermal interface material. The  
baseboard is intended to be isolated such that the dynamic loads from the heat sink are  
transferred to the chassis pan via the stiff screws and standoffs. The retention scheme  
reduces the risk of package pullout and solder joint failures.  
All components of the CEK heat sink solution will be captive to the heat sink and will  
only require a Phillips screwdriver to attach to the chassis pan. When installing the  
CEK, the CEK screws should be tightened until they will no longer turn easily. This  
should represent approximately 8 inch-pounds of torque. Avoid applying more than 10  
inch-pounds of torque; otherwise, damage may occur to retention mechanism  
components.  
8.3  
Electrical Requirements  
8.3.1  
Fan Power Supply (Active CEK)  
The 4-pin PWM/T-diode controlled active thermal solution is being offered to help  
provide better control over pedestal chassis acoustics. This is achieved though more  
accurate measurement of processor die temperature through the processor’s  
temperature diode (T-diode). Fan RPM is modulated through the use of an ASIC located  
on the baseboard that sends out a PWM control signal to the 4th pin of the connector  
labeled as Control. This thermal solution requires a constant +12 V supplied to pin 2 of  
the active thermal solution and does not support variable voltage control or 3-pin PWM  
control. See Table 8-2 for details on the 4-pin active heat sink solution connectors.  
If the 4-pin active fan heat sink solution is connected to an older 3-pin baseboard CPU  
fan header it will default back to a thermistor controlled mode, allowing compatibility  
with legacy 3-wire designs. When operating in thermistor controlled mode, fan RPM is  
automatically varied based on the TINLET temperature measured by a thermistor  
located at the fan inlet of the heat sink solution.  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
99  
Boxed Processor Specifications  
The fan power header on the baseboard must be positioned to allow the fan heat sink  
power cable to reach it. The fan power header identification and location must be  
documented in the suppliers platform documentation, or on the baseboard itself. The  
baseboard fan power header should be positioned within 177.8 mm [7 in.] from the  
center of the processor socket.  
Table 8-1.  
Table 8-2.  
PWM Fan Frequency Specifications for 4-Pin Active CEK Thermal Solution  
Description  
Min Frequency  
Nominal Frequency  
Max Frequency  
Unit  
PWM Control  
21,000  
25,000  
28,000  
Hz  
Frequency Range  
Fan Specifications for 4-pin Active CEK Thermal Solution  
Typ  
Steady  
Max  
Steady  
Max  
Startup  
Description  
Min  
Unit  
+12 V: 12 volt fan power supply  
IC: Fan Current Draw  
10.8  
N/A  
2
12  
1
12  
1.25  
2
13.2  
1.5  
2
V
A
SENSE: SENSE frequency  
2
Pulses per fan  
revolution  
Figure 8-11. Fan Cable Connector Pin Out for 4-Pin Active CEK Thermal Solution  
Table 8-3.  
Fan Cable Connector Pin Out for 4-Pin Active CEK Thermal Solution  
Pin Number  
Signal  
Color  
1
2
3
4
Ground  
Black  
Yellow  
Green  
Blue  
Power: (+12 V)  
Sense: 2 pulses per revolution  
Control: 21 KHz-28 KHz  
8.3.2  
Boxed Processor Cooling Requirements  
As previously stated the boxed processor will be available in two product  
configurations. Each configuration will require unique design considerations. Meeting  
the processor’s temperature specifications is also the function of the thermal design of  
the entire system, and ultimately the responsibility of the system integrator. The  
processor temperature specifications are found in Chapter 6, “Thermal Specifications”  
of this document.  
100  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Boxed Processor Specifications  
8.3.2.1  
1U Passive/2U Active Combination Heat Sink Solution (1U Rack  
Passive)  
In the 1U configuration it is assumed that a chassis duct will be implemented to provide  
sufficient airflow to pass through the heat sink fins. Currently the actual airflow target  
is within the range of 15-27 CFM. The duct should be designed as precisely as possible  
and should not allow any air to bypass the heat sink (0” bypass) and a back pressure of  
0.38 in. H2O. It is assumed that a 40°C TLA is met. This requires a superior chassis  
design to limit the TRISE at or below 5°C with an external ambient temperature of 35°C.  
Following these guidelines will allow the designer to meet Thermal Profile B and  
conform to the thermal requirements of the processor.  
8.3.2.2  
1U Passive/2U Active Combination Heat Sink Solution (Pedestal  
Active)  
The active configuration of the combination solution is designed to help pedestal  
chassis users to meet the thermal processor requirements without the use of chassis  
ducting. It may be still be necessary to implement some form of chassis air guide or air  
duct to meet the TLA temperature of 40°C depending on the pedestal chassis layout.  
Also, while the active thermal solution is designed to mechanically fit into a 2U  
volumetric, it may require additional space at the top of the thermal solution to allow  
sufficient airflow into the heat sink fan. Therefore, additional design criteria may need  
to be considered if this thermal solution is used in a 2U rack mount chassis, or in a  
chassis that has drive bay obstructions above the inlet to the fan heat sink. Use of the  
active configuration in rackmount chassis is not recommended.  
It is recommended that the ambient air temperature outside of the chassis be kept at  
or below 35°C. The air passing directly over the processor thermal solution should not  
be preheated by other system components. Meeting the processor’s temperature  
specification is the responsibility of the system integrator.  
8.3.2.3  
2U Passive Heat Sink Solution (2U+ Rack or Pedestal)  
A chassis duct is required for the 2U passive heat sink. In this configuration the thermal  
profile (see Section 6) should be followed by supplying 27 CFM of airflow through the  
fins of the heat sink with a 0” or no duct bypass and a back pressure of 0.182 in. H2O.  
The TLA temperature of 40°C should be met. This may require the use of superior  
design techniques to keep TRISE at or below 5°C based on an ambient external  
temperature of 35°C.  
8.4  
Boxed Processor Contents  
A direct chassis attach method must be used to avoid problems related to shock and  
vibration, due to the weight of the thermal solution required to cool the processor. The  
board must not bend beyond specification in order to avoid damage. The boxed  
processor contains the components necessary to solve both issues. The boxed  
processor will include the following items:  
• Dual-Core Intel Xeon Processor 5000 series  
• Unattached Heat Sink Solution  
• 4 screws, 4 springs, and 4 heat sink standoffs (all captive to the heat sink)  
• Thermal Interface Material (pre-applied on heat sink)  
• Installation Manual  
• Intel Branding Logo  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
101  
Boxed Processor Specifications  
The other items listed in Figure 8-3 that are required to compete this solution will be  
shipped with either the chassis or boards. They are as follows:  
• CEK Spring (supplied by baseboard vendors)  
• Heat sink standoffs (supplied by chassis vendors)  
§
102  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
Debug Tools Specifications  
9 Debug Tools Specifications  
Please refer to the eXtended Debug Port: Debug Port Design Guide for UP and DP  
Platforms and the appropriate platform design guidelines for information regarding  
debug tool specifications. Section 1.3 provides collateral details.  
9.1  
Debug Port System Requirements  
The Dual-Core Intel Xeon Processor 5000 series debug port is the command and  
control interface for the In-Target Probe (ITP) debugger. The ITP enables run-time  
control of the processors for system debug. The debug port, which is connected to the  
FSB, is a combination of the system, JTAG and execution signals. There are several  
mechanical, electrical and functional constraints on the debug port that must be  
followed. The mechanical constraint requires the debug port connector to be installed in  
the system with adequate physical clearance. Electrical constraints exist due to the  
mixed high and low speed signals of the debug port for the processor. While the JTAG  
signals operate at a maximum of 75 MHz, the execution signals operate at the common  
clock FSB frequency. The functional constraint requires the debug port to use the JTAG  
system via a handshake and multiplexing scheme.  
In general, the information in this chapter may be used as a basis for including all run-  
control tools in Dual-Core Intel Xeon Processor 5000 series-based system designs,  
including tools from vendors other than Intel.  
Note:  
The debug port and JTAG signal chain must be designed into the processor board to  
utilize the XDP for debug purposes except for interposer solutions.  
9.2  
Target System Implementation  
9.2.1  
System Implementation  
Specific connectivity and layout guidelines for the Debug Port are provided in the  
eXtended Debug Port: Debug Port Design Guide for UP and DP Platforms and the  
appropriate platform design guidelines.  
9.3  
Logic Analyzer Interface (LAI)  
Intel is working with two logic analyzer vendors to provide logic analyzer interfaces  
(LAIs) for use in debugging Dual-Core Intel Xeon Processor 5000 series systems.  
Tektronix and Agilent should be contacted to obtain specific information about their  
logic analyzer interfaces. The following information is general in nature. Specific  
information must be obtained from the logic analyzer vendor.  
Due to the complexity of Dual-Core Intel Xeon Processor 5000 series-based  
multiprocessor systems, the LAI is critical in providing the ability to probe and capture  
FSB signals. There are two sets of considerations to keep in mind when designing a  
Dual-Core Intel Xeon Processor 5000 series-based system that can make use of an LAI:  
mechanical and electrical.  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  
103  
Debug Tools Specifications  
9.3.1  
Mechanical Considerations  
The LAI is installed between the processor socket and the processor. The LAI plugs into  
the socket, while the processor plugs into a socket on the LAI. Cabling that is part of  
the LAI egresses the system to allow an electrical connection between the processor  
and a logic analyzer. The maximum volume occupied by the LAI, known as the keepout  
volume, as well as the cable egress restrictions, should be obtained from the logic  
analyzer vendor. System designers must make sure that the keepout volume remains  
unobstructed inside the system. Note that it is possible that the keepout volume  
reserved for the LAI may include differerent requirements from the space normally  
occupied by the heatsink. If this is the case, the logic analyzer vendor will provide a  
cooling solution as part of the LAI.  
9.3.2  
Electrical Considerations  
The LAI will also affect the electrical performance of the FSB, therefore it is critical to  
obtain electrical load models from each of the logic analyzer vendors to be able to run  
system level simulations to prove that their tool will work in the system. Contact the  
logic analyzer vendor for electrical specifications and load models for the LAI solution  
they provide.  
§
104  
Dual-Core Intel® Xeon® Processor 5000 Series Datasheet  

相关型号:

313065

Dual-Core Intel Xeon Processor
INTEL

313072-002

Advanced Memory Buffer
INTEL

313079-001

Dual-Core Intel Xeon Processor
INTEL

3130LL

HALL-EFFECT SWITCHES
ALLEGRO

3130LT

HALL-EFFECT SWITCHES
ALLEGRO

3130U

HALL-EFFECT SWITCHES
ALLEGRO

3130UA

HALL-EFFECT SWITCHES
ALLEGRO

3131-1-00-15-00-00-08-0

PCB Terminal, ROHS COMPLIANT
MILL-MAX

3131-1-00-80-00-00-08-0

PCB Terminal, ROHS COMPLIANT
MILL-MAX

3131-11.7

11.7 MHz Center Frequency
KR

3131-117

11.7 MHz Center Frequency
KR

3131-16.6

16.6 MHz Center Frequency
KR