273804-002 [INTEL]

Ultra-Low Voltage Intel-R Celeron-R Processor (0.13 u in the Micro FC-BGA Package; 超低电压的英特尔-R赛扬-R处理器( 0.13 ü在微FC- BGA封装
273804-002
型号: 273804-002
厂家: INTEL    INTEL
描述:

Ultra-Low Voltage Intel-R Celeron-R Processor (0.13 u in the Micro FC-BGA Package
超低电压的英特尔-R赛扬-R处理器( 0.13 ü在微FC- BGA封装

文件: 总82页 (文件大小:1500K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultra-Low Voltage Intel® Celeron®  
Processor (0.13 µ) in the Micro FC-BGA  
Package  
at 650 MHz and 400 MHz  
Datasheet  
Product Features  
Ultra-Low Voltage Intel® Celeron®  
Processor (0.13µ) with the following  
processor core/bus speeds:  
Micro-FCBGA packaging technologies  
Supports small form factor applied  
computing designs  
650/100 MHz at 1.10 V  
400/100 MHz at 0.95 V  
Exposed die enables more efficient heat  
dissipation  
Supports the Intel Architecture with  
Fully compatible with previous Intel  
Dynamic Execution  
microprocessors  
On-die primary 16-Kbyte instruction cache  
Binary compatible with all applications  
Support for MMX™ technology  
and 16-Kbyte write-back data cache  
On-die second level cache (256-Kbyte)  
with Advanced Transfer Cache  
Architecture  
Support for Streaming SIMD Extensions  
Power Management Features  
Data Prefetch Logic  
Integrated AGTL termination  
Integrated math co-processor  
Quick Start and Deep Sleep modes  
provide low power dissipation  
On-die thermal diode  
Order Number: 273804-002  
May 2003  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY  
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN  
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS  
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES  
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER  
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The Ultra Low Voltage Intel® Celeron® Processor (0.13 µ) in the Micro FC-BGA Package at 650 Mhz and 400 MHz may contain design defects or  
errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling  
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.  
Copyright © Intel Corporation, 2003  
AlertVIEW, AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Connect, CT Media, Dialogic, DM3, EtherExpress,  
ETOX, FlashFile, i386, i486, i960, iCOMP, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Create & Share,  
Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel Play, Intel Play logo, Intel  
SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation, Intel Xeon, Intel XScale, IPLink, Itanium, LANDesk, LanRover, MCS, MMX, MMX  
logo, Optimizer logo, OverDrive, Paragon, PC Dads, PC Parents, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your  
Command, RemoteExpress, Shiva, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside,  
TokenExpress, Trillium, VoiceBrick, Vtune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United  
States and other countries.  
*Other names and brands may be claimed as the property of others.  
2
Datasheet  
Contents  
Contents  
1.0 Introduction....................................................................................................................................9  
1.1  
1.2  
1.3  
1.4  
Overview...............................................................................................................................9  
State of the Data.................................................................................................................10  
Terminology........................................................................................................................10  
References .........................................................................................................................10  
2.0 Ultra-Low Voltage Intel® Celeron® Processor Features...........................................................13  
2.1  
New Features in the Ultra-Low Voltage Intel® Celeron® Processor....................................13  
2.1.1 100-MHz PSB With AGTL Signaling......................................................................13  
2.1.2 256-K On-die Integrated L2 Cache........................................................................13  
2.1.3 Data Prefetch Logic ...............................................................................................13  
2.1.4 Differential Clocking...............................................................................................13  
2.1.5 Signal Differences Between the Mobile Intel® Celeron®  
Processor in BGA2 and Micro-PGA2 Packages and  
the Ultra-Low Voltage Intel® Celeron® Processor in Micro FC-BGA Packages.....13  
Power Management............................................................................................................14  
2.2.1 Clock Control Architecture .....................................................................................14  
2.2.2 Normal State..........................................................................................................14  
2.2.3 Auto Halt State.......................................................................................................14  
2.2.4 Quick Start State....................................................................................................15  
2.2.5 HALT/Grant Snoop State.......................................................................................16  
2.2.6 Deep Sleep State...................................................................................................16  
2.2.7 Operating System Implications of Low-power States ............................................16  
AGTL Signals......................................................................................................................17  
Ultra-Low Voltage Intel® Celeron® Processor CPUID ........................................................17  
2.2  
2.3  
2.4  
3.0 Electrical Specifications .............................................................................................................19  
3.1  
Processor System Signals..................................................................................................19  
3.1.1 Power Sequencing Requirements .........................................................................20  
3.1.2 Test Access Port (TAP) Connection ......................................................................21  
3.1.3 Catastrophic Thermal Protection ...........................................................................21  
3.1.4 Unused Signals......................................................................................................21  
3.1.5 Signal State in Low-power States..........................................................................21  
Power Supply Requirements ..............................................................................................22  
3.2.1 Decoupling Guidelines...........................................................................................22  
3.2.2 Voltage Planes.......................................................................................................23  
3.2.3 PLL RLC Filter Specification..................................................................................23  
3.2.4 Voltage Identification .............................................................................................26  
3.2.5 VTTPWRGD Signal Quality Specification..............................................................27  
System Bus Clock and Processor Clocking........................................................................28  
Maximum Ratings ...............................................................................................................29  
DC Specifications ...............................................................................................................30  
AC Specifications................................................................................................................34  
3.6.1 System Bus, Clock, APIC, TAP, CMOS, and Open-drain AC Specifications ........34  
3.2  
3.3  
3.4  
3.5  
3.6  
4.0 System Signal Simulations.........................................................................................................47  
4.1  
System Bus Clock (BCLK) and PICCLK DC  
Datasheet  
3
Contents  
Specifications and AC Signal Quality Specifications47  
4.2  
4.3  
AGTL AC Signal Quality Specifications..............................................................................48  
Non-AGTL Signal Quality Specifications............................................................................50  
4.3.1 PWRGOOD, VTTPWRGD Signal Quality Specifications ......................................50  
5.0 Mechanical Specifications..........................................................................................................53  
5.1  
5.2  
Surface Mount Micro FC-BGA Package.............................................................................53  
Signal Listings.....................................................................................................................55  
6.0 VCC Thermal Specifications.......................................................................................................65  
6.1 Thermal Diode ....................................................................................................................66  
7.0 Processor Initialization and Configuration ...............................................................................67  
7.1  
Description..........................................................................................................................67  
7.1.1 Quick Start Enable.................................................................................................67  
7.1.2 System Bus Frequency..........................................................................................67  
7.1.3 APIC Enable ..........................................................................................................67  
Clock Frequencies and Ratios............................................................................................67  
7.2  
8.0 Processor Interface.....................................................................................................................69  
8.1  
Alphabetical Signal Reference............................................................................................69  
8.1.1 A[35:3]# (I/O – AGTL)............................................................................................69  
8.1.2 A20M# (I - 1.5V Tolerant) ......................................................................................69  
8.1.3 ADS# (I/O - AGTL).................................................................................................69  
8.1.4 AERR# (I/O - AGTL)..............................................................................................69  
8.1.5 AP[1:0]# (I/O - AGTL) ............................................................................................69  
8.1.6 BCLK, BCLK# (I)....................................................................................................70  
8.1.7 BERR# (I/O - AGTL)..............................................................................................70  
8.1.8 BINIT# (I/O - AGTL)...............................................................................................70  
8.1.9 BNR# (I/O - AGTL) ................................................................................................71  
8.1.10 BP[3:2]# (I/O - AGTL) ............................................................................................71  
8.1.11 BPM[1:0]# (I/O - AGTL) .........................................................................................71  
8.1.12 BPRI# (I - AGTL) ...................................................................................................71  
8.1.13 BREQ0# (I/O - AGTL)............................................................................................71  
8.1.14 BSEL[1:0] (O – 3.3V Tolerant)...............................................................................71  
8.1.15 CLKREF (Analog)..................................................................................................72  
8.1.16 CMOSREF (Analog) ..............................................................................................72  
8.1.17 D[63:0]# (I/O - AGTL) ............................................................................................72  
8.1.18 DBSY# (I/O - AGTL) ..............................................................................................72  
8.1.19 DEFER# (I - AGTL)................................................................................................72  
8.1.20 DEP[7:0]# (I/O - AGTL)..........................................................................................73  
8.1.21 DRDY# (I/O - AGTL)..............................................................................................73  
8.1.22 DPSLP# (I - 1.5 V Tolerant)...................................................................................73  
8.1.23 EDGCTRLP (I-Analog) ..........................................................................................73  
8.1.24 FERR# (O - 1.5 V Tolerant Open-drain)................................................................73  
8.1.25 FLUSH# (I - 1.5 V Tolerant)...................................................................................73  
8.1.26 HIT# (I/O - AGTL), HITM# (I/O - AGTL).................................................................73  
8.1.27 IERR# (O - 1.5 V Tolerant Open-drain) .................................................................74  
8.1.28 IGNNE# (I - 1.5 V Tolerant) ...................................................................................74  
8.1.29 INIT# (I - 1.5 V Tolerant)........................................................................................74  
8.1.30 INTR (I - 1.5 V Tolerant) ........................................................................................74  
4
Datasheet  
Contents  
8.1.31 LINT[1:0] (I - 1.5 V Tolerant)..................................................................................74  
8.1.32 LOCK# (I/O - AGTL) ..............................................................................................75  
8.1.33 NCTRL (I - Analog) ................................................................................................75  
8.1.34 NMI (I - 1.5 V Tolerant) ..........................................................................................75  
8.1.35 PICCLK (I – 2.0 V Tolerant)...................................................................................75  
8.1.36 PICD[1:0] (I/O - 1.5 V Tolerant Open-drain) ..........................................................75  
8.1.37 PLL1, PLL2 (Analog) .............................................................................................75  
8.1.38 PRDY# (O - AGTL) ................................................................................................76  
8.1.39 PREQ# (I - 1.5 V Tolerant) ....................................................................................76  
8.1.40 PWRGOOD (I – 1.8 V Tolerant).............................................................................76  
8.1.41 REQ[4:0]# (I/O - AGTL) .........................................................................................76  
8.1.42 RESET# (I - AGTL)................................................................................................76  
8.1.43 RP# (I/O - AGTL)...................................................................................................77  
8.1.44 RS[2:0]# (I/O - AGTL) ............................................................................................77  
8.1.45 RSP# (I - AGTL) ....................................................................................................77  
8.1.46 RTTIMPEDP (I-Analog) .........................................................................................77  
8.1.47 SMI# (I - 1.5 V Tolerant) ........................................................................................77  
8.1.48 STPCLK# (I - 1.5 V Tolerant).................................................................................77  
8.1.49 TCK (I - 1.5 V Tolerant) .........................................................................................78  
8.1.50 TDI (I - 1.5 V Tolerant)...........................................................................................78  
8.1.51 TDO (O - 1.5 V Tolerant Open-drain) ....................................................................78  
8.1.52 TESTHI[2:1] (I - 1.25 V Tolerant)...........................................................................78  
8.1.53 TESTLO[2:1] (I - 1.5 V Tolerant)............................................................................78  
8.1.54 THERMDA, THERMDC (Analog)...........................................................................78  
8.1.55 TMS (I - 1.5 V Tolerant) .........................................................................................78  
8.1.56 TRDY# (I/O - AGTL) ..............................................................................................78  
8.1.57 TRST# (I - 1.5 V Tolerant) .....................................................................................78  
8.1.58 VID[4:0] (O – Open-drain)......................................................................................79  
8.1.59 V  
(Analog) ........................................................................................................79  
REF  
8.1.60 VTTPWRGD (I – 1.25 V) .......................................................................................79  
Signal Summaries...............................................................................................................79  
8.2  
Figures  
1
2
3
4
5
6
7
8
9
Clock Control States...................................................................................................................15  
PLL RLC Filter ............................................................................................................................23  
PLL Filter Specifications .............................................................................................................24  
VTTPWRGD System-Level Connections ...................................................................................27  
Noise Estimation.........................................................................................................................28  
BCLK (Single Ended)/PICCLK/TCK Generic Clock Timing Waveform.......................................39  
Differential BCLK/BCLK# Waveform (Common Mode) ..............................................................39  
BCLK/BCLK# Waveform (Differential Mode)..............................................................................40  
Valid Delay Timings....................................................................................................................40  
10 Setup and Hold Timings .............................................................................................................40  
11 Cold/Warm Reset and Configuration Timings ............................................................................41  
12 Power-on Sequence and Reset Timings ....................................................................................42  
13 Power Down Sequencing and Timings (V  
Leading)...............................................................43  
CC  
14 Power Down Sequencing and Timings (VCCT Leading)............................................................44  
15 Test Timings (Boundary Scan) ...................................................................................................45  
Datasheet  
5
Contents  
16 Test Reset Timings.....................................................................................................................45  
17 Quick Start/Deep Sleep Timing (BCLK Stopping Method) .........................................................46  
18 Quick Start/Deep Sleep Timing (DPSLP# Assertion Method) ....................................................46  
19 BCLK (Single Ended)/PICCLK Generic Clock Waveform ..........................................................48  
20 Maximum Acceptable Overshoot/Undershoot Waveform...........................................................49  
21 VTTPWRGD Noise Specification ...............................................................................................52  
22 Micro FC-BGA Package – Top and Bottom Isometric Views .....................................................54  
23 Micro FC-BGA Package – Top and Side Views .........................................................................54  
24 Micro FC-BGA Package – Bottom View .....................................................................................55  
25 Ball Map – Top View...................................................................................................................56  
Tables  
1
New and Revised Ultra-Low Voltage Intel® Celeron® Processor (0.13 µ) Signals.....................14  
2
3
4
5
6
7
8
9
Clock State Characteristics ........................................................................................................16  
Ultra-Low Voltage Intel® Celeron® Processor CPUID ................................................................17  
Ultra-Low Voltage Intel® Celeron® Processor CPUID Cache and TLB Descriptors...................17  
System Signal Groups................................................................................................................19  
Recommended Resistors for Ultra-Low Voltage Intel® Celeron® Processor Signals .................20  
PLL Filter Inductor Recommendations .......................................................................................25  
PLL Filter Capacitor Recommendations.....................................................................................25  
PLL Filter Resistor Recommendations .......................................................................................25  
10 Ultra-Low Voltage Intel® Celeron® Processor VID Values .........................................................26  
11 VTTPWRGD Noise Specification ...............................................................................................27  
12 VTTPWRGD Transition Time Specification................................................................................27  
13 Ultra-Low Voltage Intel® Celeron® Processor Absolute Maximum Ratings................................29  
14 Power Specifications for the Ultra-Low Voltage Intel® Celeron® Processor...............................30  
15 VCC Tolerances for the Ultra-Low Voltage Intel® Celeron® Processor: VID = 1.1 V .................31  
16 VCC Tolerances for the Ultra-Low Voltage Intel® Celeron® Processor in the  
Deep Sleep State: VID = 1.1 V...................................................................................................31  
17 VCC Tolerances for the Ultra-Low Voltage Intel® Celeron® Processor: VID = 0.95 V ...............32  
18 VCC Tolerances for the Ultra-Low Voltage Intel® Celeron® Processor in the  
Deep Sleep State: VID = 0.95 V.................................................................................................32  
19 AGTL Signal Group DC Specifications.......................................................................................32  
20 AGTL Bus DC Specifications......................................................................................................33  
21 CLKREF, APIC, TAP, CMOS, and Open-drain Signal Group DC Specifications.......................33  
22 System Bus Clock AC Specifications .........................................................................................35  
23 Valid Ultra-Low Voltage Intel® Celeron® Processor Frequencies...............................................35  
24 AGTL Signal Groups AC Specifications .....................................................................................35  
25 CMOS and Open-drain Signal Groups AC Specifications..........................................................36  
26 Reset Configuration AC Specifications and Power On/Power Down Timings............................36  
27 APIC Bus Signal AC Specifications............................................................................................37  
28 TAP Signal AC Specifications ....................................................................................................38  
29 Quick Start/Deep Sleep AC Specifications.................................................................................39  
30 BCLK (Differential) DC Specifications and AC Signal Quality Specifications.............................47  
31 BCLK (Single Ended) DC Specifications and AC Signal Quality Specifications.........................47  
32 PICCLK DC Specifications and AC Signal Quality Specifications..............................................48  
33 100-MHz AGTL Signal Group Overshoot/Undershoot Tolerance  
at the Processor Core.................................................................................................................49  
6
Datasheet  
Contents  
34 Non-AGTL Signal Group Overshoot/Undershoot Tolerance at the Processor Core ..................50  
35 VTTPWRGD Noise Parameter Specification..............................................................................51  
36 VTTPWRGD Transition Parameter Recommendation ...............................................................51  
37 Micro FC-BGA Package Mechanical Specifications...................................................................53  
38 Signal Listing in Order by Ball Number.......................................................................................57  
39 Signal Listing in Order by Signal Name......................................................................................60  
40 Voltage and No-Connect Ball Locations.....................................................................................63  
41 Power Specifications for the Ultra-Low Voltage Intel® Celeron® Processor...............................65  
42 Thermal Diode Interface .............................................................................................................66  
43 Thermal Diode Specifications.....................................................................................................66  
44 BSEL[1:0] Encoding....................................................................................................................72  
45 Input Signals...............................................................................................................................79  
46 Output Signals ............................................................................................................................80  
47 Input/Output Signals (Single Driver) ...........................................................................................80  
48 Input/Output Signals (Multiple Driver).........................................................................................81  
Datasheet  
7
Contents  
Revision History  
Date  
Revision  
Description  
Removed Figure 6, “Illustration of VCC Static and Transient  
Tolerances.  
May 2003  
002  
001  
Removed Figure 7, “Illustration of Deep Sleep VCC Static and  
Transient Tolerances.  
October 2002  
Initial document release  
8
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
1.0  
Introduction  
Using Intel’s advanced 0.13-micron process technology with copper interconnect, the Ultra-Low  
Voltage Intel® Celeron® processor offers high-performance and low power consumption. The  
Ultra-Low Voltage Intel Celeron processor (0.13µ) in the Micro FC-BGA packages (hereafter  
referred to as the ULV Intel Celeron processor) is based on the same core as existing Intel®  
Pentium® III processors. Key performance features include Internet Streaming SIMD instructions,  
Advanced Transfer Cache architecture, and a processor system bus speed of 100 MHz. These  
features are offered in a Micro FC-BGA packages for surface mount small form factor boards.  
The 256-Kbyte integrated L2 cache based on the Advanced Transfer Cache architecture runs at full  
speed and is designed to help improve performance. It complements the system bus by providing  
critical data faster and reducing total system power consumption. The processor also features Data  
Prefetch Logic that speculatively fetches data to the L2 cache, resulting in improved performance.  
The Intel Celeron processor’s 64-bit wide Assisted Gunning Transceiver Logic (AGTL) system bus  
provides a glueless, point-to-point interface for a memory controller hub.  
This document covers the electrical, mechanical, and thermal specifications for the Ultra-Low  
Voltage Intel Celeron processor at 650 MHz at 1.10 V and 400 MHz at 0.95 V.  
1.1  
Overview  
Performance features  
— Supports the Intel Architecture with Dynamic Execution  
— Supports Intel MMXtechnology  
— Supports Streaming SIMD Extensions for enhanced video, sound, and 3D performance  
— Integrated Intel Floating Point Unit compatible with the IEEE 754 standard  
— Data Prefetch Logic  
On-die primary (L1) instruction and data caches  
— 4-way set associative, 32-byte line size, 1 line per sector  
— 16-Kbyte instruction cache and 16-Kbyte write-back data cache  
— Cacheable range controlled by processor programmable registers  
On-die second level (L2) cache  
— 8-way set associative, 32-byte line size, 1 line per sector  
— Operates at full core speed  
— 256-Kbyte ECC protected cache data array  
AGTL system bus interface  
— 64-bit data bus, 100-MHz  
— Uniprocessor, two loads only (processor and chipset)  
— Integrated termination  
Processor clock control  
Datasheet  
9
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
— Quick Start for low power, low exit latency clock “throttling”  
— Deep Sleep mode for lower power dissipation  
Thermal diode for measuring processor temperature  
1.2  
1.3  
State of the Data  
All information in this document is the best available information at the time of publication.  
Revisions of this document will be provided on an as-required basis.  
Terminology  
Term  
Definition  
#
A “#” symbol following a signal name indicates that the signal is active low. This means that when  
the signal is asserted (based on the name of the signal) it is in an electrical low state. Otherwise,  
signals are driven in an electrical high state when they are asserted. In state machine diagrams, a  
signal name in a condition indicates the condition of that signal being asserted  
!
Indicates the condition of that signal not being asserted. For example, the condition “!STPCLK# and  
HS” is equivalent to “the active low signal STPCLK# is unasserted (i.e., it is at 1.5V) and the HS  
condition is true.”  
L
Electrical low signal levels  
Electrical high signal levels  
H
0
Logical low. For example, BD[3:0] = “1010” = “HLHL” refers to a hexadecimal “A,” and D[3:0]# =  
“1010” = “LHLH” also refers to a hexadecimal “A.”  
1
Logical high. For example, BD[3:0] = “1010” = “HLHL” refers to a hexadecimal “A,” and D[3:0]# =  
“1010” = “LHLH” also refers to a hexadecimal “A.”  
ULV  
TBD  
X
Ultra-Low Voltage  
Specifications that are yet to be determined and will be updated in future revisions of the document.  
Don’t care condition  
1.4  
References  
P6 Family of Processors Hardware Developers Manual (244001)  
Intel® Architecture Optimization Reference Manual (245127)  
Intel® Architecture Software Developers Manual  
Volume I: Basic Architecture (245470)  
Volume II: Instruction Set Reference (245471)  
Volume III: System Programming Guide (245472)  
CK-408 (CK-Titan) Clock Synthesizer/Driver Specification (Contact your Intel Field Sales  
Representative)  
Mobile Intel® Pentium® III Processor-M I/O Buffer Models, IBIS Format (Contact your Intel  
Field Sales Representative)  
10  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Intel® Mobile Voltage Positioning -II (IMVP-II) Design Guide (Contact your Intel Field Sales  
Representative)  
Mobile Intel® Pentium® III Processor-M /440MX Platform Design Guide (Contact your Intel  
Field Sales Representative)  
Intel Processor Identification and the CPUID Instruction Application Note AP-485 (241618)  
Datasheet  
11  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
This page intentionally left blank.  
12  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
2.0  
Ultra-Low Voltage Intel® Celeron® Processor  
Features  
®
®
2.1  
New Features in the Ultra-Low Voltage Intel Celeron  
Processor  
2.1.1  
100-MHz PSB With AGTL Signaling  
The ULV Intel® Celeron® processor uses Assisted GTL (AGTL) signaling on the Processor System  
Bus (PSB) interface. The main difference between AGTL and GTL+ used on previous Intel  
processors is V  
= 1.25 V for AGTL versus 1.5 V for GTL+. The lower voltage swing enables  
CCT  
high performance at lower power.  
2.1.2  
2.1.3  
256-K On-die Integrated L2 Cache  
The 256-K on die integrated L2 cache on the ULV Intel Celeron processor is double the L2 cache  
size of previous Intel Celeron processors (0.18 µ). The L2 cache runs at the processor core speed  
and the increased cache size provides superior processing power.  
Data Prefetch Logic  
The ULV Intel Celeron processor features Data Prefetch Logic that speculatively fetches data to the  
L2 cache before an L1 cache request occurs. This reduces transactions between the cache and  
system memory reducing or eliminating bus cycle penalties, resulting in improved performance.  
The processor also includes extensions to memory order and reorder buffers that boost  
performance.  
2.1.4  
2.1.5  
Differential Clocking  
Differential clocking requires the use of two complementary clocks: BCLK and BCLK#. Benefits  
of differential clocking include easier scaling to lower voltages, reduced EMI, and less jitter. All  
references to BCLK in this document apply to BCLK# also even if not explicitly stated. The ULV  
Intel Celeron processor will also support Single Ended Clocking. The processor will configure  
itself for Differential or Single Ended Clocking based on the waveforms detected on the BCLK and  
BCLK#/CLKREF signal lines.  
Signal Differences Between the Mobile Intel® Celeron®  
Processor in BGA2 and Micro-PGA2 Packages and  
the Ultra-Low Voltage Intel® Celeron® Processor in Micro FC-BGA  
Packages  
A list of new and changed signals is shown in Table 1.  
Datasheet  
13  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Table 1. New and Revised Ultra-Low Voltage Intel® Celeron® Processor (0.13 µ) Signals  
Signals  
Function  
BCLK,  
BCLK#  
Differential host clock signals.  
CLKREF  
BSEL[1:0]  
DPSLP#  
NCTRL  
Host Clock reference signal in Single Ended Clocking mode.  
Signals are output only instead of I/O. Refer to Section 3.2.3 for details.  
Deep Sleep pin (replaces SLP# pin on the mobile Celeron processor (0.18 µ))  
AGTL output buffer pull down impedance control.  
Voltage Identification (different implementation from mobile Celeron processor (0.18 µ)). Refer  
to Section 3.2.4 for details.  
VID[4:0]  
Power Good signal for VCCT, which indicates that, the VID signals are stable. Refer to Figure 4  
for VTTPWRGD system level connections.  
VTTPWRGD  
2.2  
Power Management  
2.2.1  
Clock Control Architecture  
The ULV Intel® Celeron® processor clock control architecture (Figure 1) has been optimized for  
leading edge computer designs. The clock control architecture consists of six different clock states:  
Normal, Auto Halt, Quick Start, HALT/Grant Snoop and Deep Sleep states. The Auto Halt state  
provides a low-power clock state that may be controlled through the software execution of the HLT  
instruction. The Quick Start state provides a very low power and low exit latency clock state that  
may be used for hardware controlled “idle” computer states. The Deep Sleep state provides  
extremely low-power states that may be used for “Power-On-Suspend” computer states, which is  
an alternative to shutting off the processor’s power. The exit latency of the Deep Sleep state is 30  
ms in the Intel Celeron processor. Performing state transitions not shown in Figure 1 is neither  
recommended nor supported. Figure 2 provides the clock state characteristics, which are described  
in detail in the following sections.  
2.2.2  
2.2.3  
Normal State  
The Normal state of the processor is the normal operating mode where the processor’s core clock is  
running and the processor is actively executing instructions.  
Auto Halt State  
This is a low-power mode entered by the processor through the execution of the HLT instruction. A  
transition to the Normal state is made by a halt break event (one of the following signals going  
active: NMI, INTR, BINIT#, INIT#, RESET#, FLUSH#, or SMI#).  
Asserting the STPCLK# signal while in the Auto Halt state will cause the processor to transition to  
the Quick Start state. Deasserting STPCLK# will cause the processor to return to the Auto Halt  
state without issuing a new Halt bus cycle.  
14  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
The SMI# interrupt is recognized in the Auto Halt state. The return from the System Management  
Interrupt (SMI) handler may be to either the Normal state or the Auto Halt state. See the Intel®  
Architecture Software Developers Manual, Volume III: System Programmers Guide for more  
information. No Halt bus cycle is issued when returning to the Auto Halt state from the System  
Management Mode (SMM).  
The FLUSH# signal is serviced in the Auto Halt state. After the on-chip and off-chip caches have  
been flushed, the processor will return to the Auto Halt state without issuing a Halt bus cycle.  
Transitions in the A20M# and PREQ# signals are recognized while in the Auto Halt state.  
Figure 1. Clock Control States  
STPCLK#1  
BCLK stopped  
or DPSLP#  
Normal  
HS=false  
Quick Start  
Deep Sleep 2  
(!STPCLK# and !HS)  
or RESET#  
BCLK on  
and !DPSLP#  
STPCLK#1  
halt  
break  
snoop  
serviced  
HLT  
snoop  
occurs  
!STPCLK#  
and HS  
instruction1  
snoop  
occurs  
Auto Halt  
HS=true  
HALT/Grant  
Snoop  
snoop  
V0001-022  
serviced  
NOTES:  
1. State transition does not occur until the Stop Grant or Auto Halt acknowledge bus cycle completes  
Halt break - A20M#, BINIT#, FLUSH#, INIT#, INTR, NMI, PREQ#, RESET#, SMI#, or APIC interrupt  
HLT - HLT instruction executed  
HS - Processor Halt State  
2. Restrictions apply to the use of both methods of entering Deep Sleep. See Deep Sleep state description for  
details.  
2.2.4  
Quick Start State  
The processor is required to be configured for the Quick Start state by strapping the A15# signal  
low. In the Quick Start state the processor is only capable of acting on snoop transactions generated  
by the system bus priority device. Because of its snooping behavior, Quick Start may only be used  
in a uniprocessor (UP) configuration.  
A transition to the Deep Sleep state may be made by stopping the clock input to the processor or  
asserting the DPSLP# signal. A transition back to the Normal state (from the Quick Start state) is  
made only if the STPCLK# signal is deasserted.  
While in this state the processor is limited in its ability to respond to input. It is incapable of  
latching any interrupts, servicing snoop transactions from symmetric bus masters, or responding to  
FLUSH# or BINIT# assertions. While the processor is in the Quick Start state, it will not respond  
Datasheet  
15  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
properly to any input signal other than STPCLK#, RESET#, or BPRI#. If any other input signal  
changes, then the behavior of the processor will be unpredictable. No serial interrupt messages may  
begin or be in progress while the processor is in the Quick Start state.  
RESET# assertion will cause the processor to immediately initialize itself, but the processor will  
stay in the Quick Start state after initialization until STPCLK# is deasserted.  
2.2.5  
2.2.6  
HALT/Grant Snoop State  
The processor will respond to snoop transactions on the system bus while in the Auto Halt or Quick  
Start state. When a snoop transaction is presented on the system bus the processor will enter the  
HALT/Grant Snoop state. The processor will remain in this state until the snoop has been serviced  
and the system bus is quiet. After the snoop has been serviced, the processor will return to its  
previous state. If the HALT/Grant Snoop state is entered from the Quick Start state, then the input  
signal restrictions of the Quick Start state still apply in the HALT/Grant Snoop state, except for  
those signal transitions that are required to perform the snoop.  
Deep Sleep State  
The Deep Sleep state is a very low power state that the processor may enter while maintaining its  
context. The Deep Sleep state is entered by stopping the BCLK and BCLK# inputs to the processor  
or by asserting the DPSLP# signal, while it is in the Quick Start state. Note that either one of the  
methods may be used to enter Deep Sleep but not both at the same time. When BCLK and BCLK#  
are stopped, they must obey the DC levels specified in Table 33.  
The processor will return to the Quick Start state from the Deep Sleep state when the BCLK and  
BCLK# inputs are restarted or the DPSLP# signal is deasserted. Due to the PLL lock latency, there  
is a delay of up to 30 µs after the clocks have started before this state transition happens. PICCLK  
may be removed in the Deep Sleep state. PICCLK should be designed to turn on when BCLK and  
BCLK# turn on or DPSLP# is deasserted when transitioning out of the Deep Sleep state.  
Table 2. Clock State Characteristics  
Clock State  
Normal  
Exit Latency  
Snooping?  
System Uses  
Normal program execution  
N/A  
Yes  
Yes  
Auto Halt  
10 µs  
S/W controlled entry idle mode  
Through snoop, to HALT/  
Grant Snoop state:  
immediate  
Quick Start  
Yes  
H/W controlled entry/exit mobile throttling  
Through STPCLK#, to  
Normal state: 10 µs  
HALT/Grant  
Snoop  
A few bus clocks after  
snoop completion  
Yes  
No  
Supports snooping in the low power states  
H/W controlled entry/exit mobile powered-on  
suspend support  
Deep Sleep 30 µs  
2.2.7  
Operating System Implications of Low-power States  
The time-stamp counter and the performance monitor counters are not ensured to count in the  
Quick Start state. The local APIC timer and performance monitor counter interrupts should be  
disabled before entering the Deep Sleep state or the resulting behavior will be unpredictable.  
16  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
2.3  
AGTL Signals  
The ULV Intel®Celeron® processor system bus signals use a variation of the low-voltage swing  
GTL signaling technology. The AGTL system bus depends on incident wave switching and uses  
flight time for timing calculations of the AGTL signals, as opposed to capacitive derating. Intel  
recommends analog signal simulation of the system bus including trace lengths. Contact your field  
sales representative to receive the IBIS models for the Mobile Intel Celeron processor for  
simulation.  
The AGTL system bus of the ULV Intel Celeron processor is designed to support high-speed data  
transfers with multiple loads on a long bus that behaves like a transmission line. However, in UP  
embedded systems the system bus only has two loads (the processor and the chipset) and the bus  
traces are short. It is possible to change the layout and termination of the system bus to take  
advantage of this environment using the same AGTL I/O buffers. This termination is provided on  
the processor core (except for the RESET# signal).  
2.4  
Ultra-Low Voltage Intel® Celeron® Processor CPUID  
When the CPUID version information is loaded with EAX=01H, the EAX and EBX registers  
contain the values shown in Table 3. After a power-on RESET, the EDX register contains the  
processor version information (type, family, model, stepping). Table 4 shows the CPUID Cache  
and TLB descriptor values after the L2 cache is initialized. See the Intel Processor Identification  
and the CPUID Instruction Application Note AP-485 for further information.  
Table 3. Ultra-Low Voltage Intel® Celeron® Processor CPUID  
EAX[31:0]  
EBX[7:0]  
Model  
[7:4]  
Reserved [31:14]  
Type [13:12]  
Family [11:8]  
Stepping [3:0]  
Brand ID  
X
0
6
B
X
01  
Table 4. Ultra-Low Voltage Intel® Celeron® Processor CPUID Cache and TLB Descriptors  
Cache and TLB Descriptors  
01H, 02H, 03H, 04H, 08H, 0CH, 83H  
Datasheet  
17  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
This page intentionally left blank.  
18  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
3.0  
Electrical Specifications  
3.1  
Processor System Signals  
Table 5 lists the processor system signals by type. All AGTL signals are synchronous with the  
BCLK and BCLK# signals. All TAP signals are synchronous with the TCK signal except TRST#.  
All CMOS input signals may be applied asynchronously.  
Table 5. System Signal Groups  
Group Name  
Signals  
AGTL Input  
BPRI#, DEFER#, RESET#, RSP#  
PRDY#  
AGTL Output  
A[35:3]#, ADS#, AERR#, AP[1:0]#, BERR#, BINIT#, BNR#, BP[3:2]#,  
BPM[1:0]#, BREQ0#, D[63:0]#, DBSY#, DEP[7:0]#, DRDY#, HIT#, HITM#,  
LOCK#, REQ[4:0]#, RP#, RS[2:0]#, TRDY#  
AGTL I/O  
A20M#, DPSLP#, FLUSH#, IGNNE#, INIT#, LINT0/INTR, LINT1/NMI,  
PREQ#, SMI#, STPCLK#  
1.5 V CMOS Input  
1.8 V CMOS Input  
1.5 V Open Drain Output  
3.3 V Open Drain Output  
1.25 V input  
PWRGOOD  
FERR#, IERR#  
BSEL[1:0], VID[4:0]  
VTTPWRGD  
Clock  
BCLK, BCLK# (Differential Mode)  
BCLK (Single Ended Mode)  
PICCLK  
2.5 V Clock Input  
APIC Clock  
APIC I/O  
PICD[1:0]  
Thermal Diode  
TAP Input  
THERMDC, THERMDA  
TCK, TDI, TMS, TRST#  
TDO  
TAP Output  
CLKREF, CMOSREF, EDGECTRLP, NC, NCTRL, PLL1, PLL2, RTTIMPEDP,  
VCC, VCCT, VREF, VSS,  
Power/Other  
NOTES:  
1. VCC is the power supply for the core logic.  
2. PLL1 and PLL2 are power/ground for the PLL analog section. See Section 3.2.2 for details.  
3. VCCT is the power supply for the system bus buffers.  
4. VREF is the voltage reference for the AGTL input buffers.  
5. VSS is system ground.  
The APIC data and TAP outputs are Open-drain and should be pulled up to 1.5 V using resistors  
with the values shown in Table 6. If Open-drain drivers are used for input signals, then they should  
also be pulled up to the appropriate voltage using resistors with the values shown in Table 6.  
Datasheet  
19  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Table 6. Recommended Resistors for Ultra-Low Voltage Intel® Celeron® Processor Signals  
Recommended  
Resistor Value ()  
Ultra-Low Voltage Intel® Celeron® Processor Signal 1, 2  
10 pull-down  
14 pull-up  
BREQ0#3  
NCTRL  
39 pull-up  
TMS  
39 pull-down  
56.2 pull-up  
56.2 pull-down  
110 pull-down  
150 pull-up  
TCK  
PRDY#, RESET#4  
RTTIMPEDP  
EDGECTRLP  
PICD[1:0], TDO  
PREQ#, TDI  
200-300 pull-up  
500 pull-down  
1K pull-up  
TRST#  
BSEL[1:0], TESTHI, VID[4:0], VTTPWRGD  
TESTLO  
1K pull-down  
1.5k pull-up  
3K pull-up  
FERR#, IERR#, PWRGOOD  
FLUSH#  
Additional Pull-up/Pull-down Resistor Recommendations6  
270 pull-up  
680 pull-up  
1.5k pull-up  
SMI#  
STPCLK#  
A20M#, DPSLP#, INIT#, IGNNE#, LINT0/INTR, LINT1/NMI  
NOTES:  
1. The recommendations above are only for signals that are being used. These recommendations are  
maximum values only; stronger pull-ups may be used. Pull-ups for the signals driven by the chipset should  
not violate the chipset specification. Refer to Section 3.1.4 for the required pull-up or pull-down resistors for  
signals that are not being used.  
2. Open-drain signals must never violate the undershoot specification in Section 4.3. Use stronger pull-ups if  
there is too much undershoot.  
3. A pull-down on BREQ0# is an alternative to having the central agent to drive BREQ0# low at reset.  
4. A 56.2 1% terminating resistor connected to VCCT is required.  
5. The following signals are actively driven high by the ICH3-M component and do not need external pull up  
resistors on ICH3-M based platforms: A20M#, DPSLP#, INIT#, IGNNE#, LINT0/INTR, LINT1/NMI, SMI#,  
STPCLK#.  
6. These pull up recommendations apply to systems on which these signals are not actively pulled high such  
as those utilizing the 82443MX chipset.  
3.1.1  
Power Sequencing Requirements  
Unlike the Mobile Intel® Celeron® processor (0.18 µ), the ULV Intel Celeron processor (0.13 µ)  
does have specific power sequencing requirements. The power on sequencing and timings are  
shown in Figure 12 and Table 26. Power down timing requirements are shown in Figure 13, Figure  
14, and Table 26. The V power plane must not rise too fast. At least 200 µs (T ) must pass from  
CC  
R
the time that V is at 10% of its nominal value until the time that V is at 90% of its nominal  
CC  
CC  
value. For more details, refer to the Intel® Mobile Voltage Positioning -II (IMVP-II) Design Guide  
(contact your Field Sales Representative).  
20  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
3.1.2  
Test Access Port (TAP) Connection  
The TAP interface is an implementation of the IEEE 1149.1 (“JTAG”) standard. Due to the voltage  
levels supported by the TAP interface, Intel recommends that the ULV Intel® Celeron® processor  
and the other 1.5-V JTAG specification compliant devices be last in the JTAG chain after any  
devices with 3.3-V or 5.0-V JTAG interfaces within the system. A translation buffer should be used  
to reduce the TDO output voltage of the last 3.3/5.0 V device down to the 1.5-V range that the ULV  
Intel Celeron processor may tolerate. Multiple copies of TMS and TRST# must be provided, one  
for each voltage level.  
A Debug Port and connector may be placed at the start and end of the JTAG chain containing the  
processor, with TDI to the first component coming from the Debug Port and TDO from the last  
component going to the Debug Port. There are no requirements for placing the ULV Intel Celeron  
processor in the JTAG chain, except for those that are dictated by voltage requirements of the TAP  
signals.  
3.1.3  
3.1.4  
Catastrophic Thermal Protection  
The ULV Intel Celeron processor does not support catastrophic thermal protection or the  
THERMTRIP# signal. An external thermal sensor must be used to protect the processor and the  
system against excessive temperatures. If the external thermal sensor detects a processor junction  
temperature of 101° C (maximum), both the V and V  
supplies to the processor must be  
CC  
CCT  
reduced to at least 50% of the nominal values within 500 ms and are recommended to be turned off  
completely within 1 second to prevent damage to the processor. processor temperature must be  
monitored in all states including low power states.  
Unused Signals  
All signals named NC must be unconnected. Unused AGTL inputs, outputs, and bidirectional  
signals should be unconnected. Unused CMOS active low inputs should be connected to 1.5 V and  
unused active high inputs should be connected to V . Unused Open-drain outputs should be  
SS  
unconnected. When tying any signal to power or ground, a resistor will allow for system testability.  
For unused signals, Intel suggests that 1.5-kresistors are used for pull-ups and 1.0-kresistors  
are used for pull-downs.  
PICCLK must be driven with a clock that meets specification and the PICD[1:0] signals must be  
pulled up separately to 1.5 V with 150-resistors, even if the local APIC is not used.  
If the TAP signals are not used then the inputs should be pulled to ground with 1-kresistors and  
TDO should be left unconnected.  
3.1.5  
Signal State in Low-power States  
System Bus Signals  
3.1.5.1  
All of the system bus signals have AGTL input, output, or input/output drivers. Except when  
servicing snoops, the system bus signals are tri-stated and pulled up by the termination resistors.  
Snoops are not permitted in the Deep Sleep state.  
Datasheet  
21  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
3.1.5.2  
CMOS and Open-drain Signals  
The CMOS input signals are allowed to be in either the logic high or low state when the processor  
is in a low-power state. In the Auto Halt state these signals are allowed to toggle. These input  
buffers have no internal pull-up or pull-down resistors and system logic may use CMOS or  
Open-drain drivers to drive them.  
The Open-drain output signals have open drain drivers and external pull-up resistors are required.  
One of the two output signals (IERR#) is a catastrophic error indicator and is tri-stated (and  
pulled-up) when the processor is functioning normally. The FERR# output may be either tri-stated  
or driven to V when the processor is in a low-power state depending on the condition of the  
SS  
floating-point unit. Since this signal is a DC current path when it is driven to V , Intel  
SS  
recommends that the software clears or masks any floating-point error condition before putting the  
processor into the Deep Sleep state.  
3.1.5.3  
Other Signals  
The system bus clocks (BCLK, BCLK#) must be driven in all of the low-power states except the  
Deep Sleep state. The APIC clock (PICCLK) must be driven whenever BCLK and BCLK# are  
driven. Otherwise, it is permitted to turn off PICCLK by holding it at V . BCLK and BCLK#  
SS  
should be obey the DC levels in Table 33.  
In the Auto Halt state, the APIC bus data signals (PICD[1:0]) may toggle due to APIC bus  
messages. These signals are required to be tri-stated and pulled-up when the processor is in the  
Quick Start or Deep Sleep states.  
3.2  
Power Supply Requirements  
3.2.1  
Decoupling Guidelines  
The ULV Intel® Celeron® processor in Micro FC-BGA package has eight 0805IDC, 0.68-µF  
surface mount decoupling capacitors. Six capacitors are on the V supply and two capacitors are  
CC  
on V  
In addition to the package capacitors, sufficient board level capacitors are also necessary  
CCT.  
for power supply decoupling. The guidelines are as follows:  
High and Mid Frequency V decoupling – Place twenty-four 0.22-µF 0603 capacitors  
CC  
directly under the package on the solder side of the motherboard using at least two vias per  
capacitor node. Ten 10-µF X7 6.3V 1206-size ceramic capacitors should be placed around the  
package periphery near the balls. Trace lengths to the vias should be designed to minimize  
inductance. Avoid bending traces to minimize ESL.  
High and Mid Frequency V  
decoupling – Place ten 1-µF X7R 0603 ceramic capacitors  
close to the package. Via and trace guidelines are the same as above.  
CCT  
Bulk V decoupling – Minimum of 1200-µF capacitance with Equivalent Series Resistance  
CC  
(ESR) less than or equal to 3.5 m.  
Bulk V  
decoupling – Platform dependent but recommendation is minimum of 660-µF with  
ESR less than or equal to 7 m.  
CCT  
Refer to the appropriate platform design guidelines for bulk decoupling recommendations.  
22  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
3.2.2  
Voltage Planes  
All V and V pins/balls must be connected to the appropriate voltage plane. All V and  
CCT  
CC  
SS  
V
pins/balls must be connected to the appropriate traces on the system electronics. In addition  
REF  
to the main V , V  
, and V power supply signals, PLL1 and PLL2 provide analog decoupling  
CC  
CCT  
SS  
to the PLL section. PLL1 and PLL2 should be connected according to Figure 2. Do not connect  
PLL2 directly to V . Section 3.2.3 contains the RLC filter specification.  
SS  
Figure 2. PLL RLC Filter  
L1  
R1  
PLL1  
PLL2  
VCCT  
C1  
V0027-01  
3.2.3  
PLL RLC Filter Specification  
Introduction  
3.2.3.1  
All Intel® Celeron® processors have internal PLL clock generators, which are analog in nature and  
require quiet power supplies for minimum jitter. Jitter is detrimental to a system; it degrades  
external I/O timings as well as internal core timings (i.e. maximum frequency). The PLL RLC filter  
specifications for the ULV Intel Celeron processor are the same as those for the mobile Intel  
Pentium® III processor-M, and the Mobile Intel Celeron processor. The general desired topology is  
shown in Figure 2. Excluded from the external circuitry are parasitics associated with each  
component.  
3.2.3.2  
Filter Specification  
The function of the filter is two fold. It protects the PLL from external noise through low-pass  
attenuation. It also protects the PLL from internal noise through high-pass filtering. In general, the  
low-pass description forms an adequate description for the filter.  
The AC low-pass specification, with input at V  
follows:  
and output measured across the capacitor, is as  
CCT  
< 0.2-dB gain in pass band  
< 0.5-dB attenuation in pass band < 1 Hz (see DC drop in next set of requirements)  
34-dB attenuation from 1 MHz to 66 MHz  
28-dB attenuation from 66 MHz to core frequency  
The filter specification (AC) is graphically shown in Figure 3.  
Other requirements:  
Use a shielded type inductor to minimize magnetic pickup  
Datasheet  
23  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
The filter should support a DC current of at least 30 mA  
The DC voltage drop from V  
to PLL1 should be less than 60 mV, which in practice implies  
series resistance of less than 2 . This also means that the pass band (from DC to 1 Hz)  
CCT  
attenuation below 0.43 dB for V = 1.25 V.  
CCT  
3.2.3.3  
Recommendation for Embedded Systems  
Figure 3. PLL Filter Specifications  
0.2 dB  
0 dB  
x dB  
Forbidden  
zone  
-28 dB  
-34 dB  
Forbidden  
zone  
DC  
Passband  
x = 20.log[(Vcct-60 mV)/ Vcct]  
1 Hz  
fpeak  
1 MHz  
66 MHz  
fcore  
High Frequency  
Band  
NOTES:  
1. Diagram is not to scale  
2. No specification for frequencies beyond fcore.  
3. Fpeak, if it exists, should be less than 0.05 MHz.  
The following LC components are recommended. The tables will be updated as other suitable  
components and specifications are identified.  
24  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Table 7. PLL Filter Inductor Recommendations  
Min Damping R  
Needed  
Inductor  
Part Number  
Value  
Tol  
SRF  
Rated I  
DCR  
L1  
L2  
TDK MLF2012A4R7KT  
4.7 µH  
4.7 µH  
10%  
10%  
35 MHz  
47 MHz  
30 mA  
30 mA  
0.56 (1max)  
0.7 (+/-50%)  
0 Ω  
0 Ω  
Murata*  
LQG21N4R7K10  
Murata*  
LQG21C4R7N00  
L3  
4.7 µH  
30%  
35 MHz  
30 mA  
0.3 max  
0.2 (assumed)  
NOTE: Minimum damping resistance is calculated from 0.35 – DCRmin. From vendor provided data, L1 and  
L2 DCRmin is 0.4 and 0.5 respectively, qualifying them for zero required trace resistance. DCRmin  
for L3 is not known and is assumed to be 0.15 . Products with equivalent specifications may also be  
used.  
Table 8. PLL Filter Capacitor Recommendations  
Capacitor  
Part Number  
Value  
Tolerance  
ESL  
ESR  
C1  
C2  
Kemet* T495D336M016AS  
AVX TPSD336M020S0200  
33 µF  
33 µF  
20%  
20%  
2.5 nH  
0.225 Ω  
0.2 Ω  
unknown  
Table 9. PLL Filter Resistor Recommendations  
Resistor  
Part Number  
Value  
1Ω  
Tolerance  
10%  
Power  
R1  
Various  
1/16 W  
To satisfy damping requirements, total series resistance in the filter (from VCCT to the top plate of  
the capacitor) must be at least 0.35 . This resistor may be in the form of a discrete component, or  
routing, or both. For example, if the picked inductor has minimum DCR of 0.25 , then a routing  
resistance of at least 0.10 is required. Be careful not to exceed the maximum resistance rule  
(2 ). For example, if using discrete R1, the maximum DCR of the L should be less than  
2.0 - 1.1 = 0.9 , which precludes using L2 and possibly L1.  
Other routing requirements include:  
The capacitor should be close to the PLL1 and PLL2 pins, with less than 0.1 per route  
(These routes do not count towards the minimum damping resistance requirement).  
The PLL2 route should be parallel and next to the PLL1 route (minimize loop area).  
The inductor should be close to the capacitor; any routing resistance should be inserted  
between VCCT and the inductor.  
Any discrete resistor should be inserted between VCCT and the inductor.  
3.2.3.4  
Comments  
A magnetically shielded inductor protects the circuit from picking up external flux noise. This  
should provide better timing margins than with an unshielded inductor.  
A discrete or routed resistor is required because the LC filter by nature has an under-damped  
response, which may cause resonance at the LC pole. Noise amplification at this band,  
although not in the PLL-sensitive spectrum, could cause a fatal headroom reduction for analog  
circuitry. The resistor serves to dampen the response. Systems with tight space constraints  
Datasheet  
25  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
should consider a discrete resistor to provide the required damping resistance. Too large of a  
damping resistance may cause a large IR drop, which means less analog headroom and lower  
frequency.  
Ceramic capacitors have very high self-resonance frequencies, but they are not available in  
large capacitance values. A high self-resonant frequency coupled with low ESL/ESR is crucial  
for sufficient rejection in the PLL and high frequency band. The recommended tantalum  
capacitors have acceptably low ESR and ESL.  
The capacitor must be close to the PLL1 and PLL2 pins; otherwise the value of the low ESR  
tantalum capacitor is wasted. Note the distance constraint should be translated from the 0.1-Ω  
requirement.  
3.2.4  
Voltage Identification  
There are five voltage identification balls/pins on the ULV Intel® Celeron® processor. These  
signals may be used to support automatic selection of VCC voltages. They are needed to cleanly  
support voltage specification variations on current and future processors. VID[4:0] are defined in  
Table 10. The VID[4:0] signals are open drain on the processor and need pull-up resistors to 3.3 V  
on the motherboard. Refer to the appropriate VR guidelines provided by Intel for additional  
information.  
Table 10. Ultra-Low Voltage Intel® Celeron® Processor VID Values  
VID[4:0]  
VCC (V)  
VID[4:0]  
VCC (V)  
VID[4:0]  
VCC (V)  
VID[4:0]  
VCC (V)  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
1.750  
1.700  
1.650  
1.600  
1.550  
1.500  
1.450  
1.400  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
1.350  
1.300  
1.250  
1.200  
1.150  
1.100  
1.050  
1.000  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
0.975  
0.950  
0.925  
0.900  
0.875  
0.850  
0.825  
0.800  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
0.775  
0.750  
0.725  
0.700  
0.675  
0.650  
0.625  
0.600  
26  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Figure 4 shows the system level connections for the VTTPWRGD signal. Refer to the appropriate  
VR and system level guidelines provided by Intel for more details.  
Figure 4. VTTPWRGD System-Level Connections  
Vcct  
Vcct  
Processor  
Voltage Regulator  
1k  
Vcct  
Vttpwrgd  
(output)  
Vttpwrgd  
(input)  
3.3V  
100k  
10k  
Clock Generator  
Vttpwrgd#  
(input)  
1.2V to 3.3V Level Shifter  
3.2.5  
VTTPWRGD Signal Quality Specification  
The VTTPWRGD signal is an input to the processor used to determine that the VTT power is  
stable and the VID and BSEL signals should be driven to their final state by the processor. To  
ensure the processor correctly reads this signal, it must meet the following requirement while the  
signal is in its transition region of 300 mV to 900 mV. Also, VTTPWRGD should only enter the  
transition region once, after VTT is at nominal values, for the assertion of the signal.  
Table 11. VTTPWRGD Noise Specification  
Parameter  
Specification  
Amount of noise (glitch)  
Less than 100 mV  
In addition, the VTTPWRGD signal should have reasonable transition time through the transition  
region. A sharp edge on the signal transition will minimize the chance of noise causing a glitch on  
this signal. Intel recommends the following transition time for the VTTPWRGD signal.  
Table 12. VTTPWRGD Transition Time Specification  
Parameter  
Recommendation  
Transition time (300 mV to 900 mV)  
Less than or equal to 100 µs  
3.2.5.1  
Transition Region  
The transition region covered by this requirement is 300 mV to 900 mV. Once the VTTPWRGD  
signal is in that voltage range, the processor is more sensitive to noise, which may be present on the  
signal. The transition region when the signal first crosses the 300 mV voltage level and continues  
until the last time it is below 900 mV.  
Datasheet  
27  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
3.2.5.2  
3.2.5.3  
Transition Time  
The transition time is defined as the time the signal takes to move through the transition region. A  
100-µs transition time will ensure that the processor receives a good transition edge.  
Noise  
The signal quality of the VTTPWRGD signal is critical to the correct operation of the processor.  
Every effort should be made to ensure this signal is monotonic in the transition region. If noise or  
glitches are present on this signal, it must be kept to less than 100 mV of a voltage drop from the  
highest voltage level received to that point. This glitch must remain less than 100 mV until the  
excursion ends by the voltage returning to the highest voltage previously received. Please see  
Figure 5 for an example graph of this situation and requirements.  
Figure 5. Noise Estimation  
3.3  
System Bus Clock and Processor Clocking  
The BCLK and BCLK# clock inputs directly control the operating speed of the system bus  
interface. All system bus timing parameters are specified with respect to the crossing point of the  
rising edge of the BCLK input and falling edge of the BCLK# input. The ULV Intel® Celeron®  
processor core frequency is a multiple of the BCLK frequency. The processor core frequency is  
configured during manufacturing. The configured bus ratio is visible to software in the Power-on  
configuration register. See Section 7.2 for details.  
28  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Multiplying the bus clock frequency is necessary to increase performance while allowing for easier  
distribution of signals within the system. Clock multiplication within the processor is provided by  
the internal Phase Lock Loop (PLL), which requires constant frequency BCLK and BCLK# inputs.  
During Reset or on exit from the Deep Sleep state, the PLL requires some amount of time to  
acquire the phase of BCLK and BCLK#. This time is called the PLL lock latency, which is  
specified in Section 3.6, AC timing parameters T18 and T47.  
3.4  
Maximum Ratings  
Table 13 contains the ULV Intel® Celeron® processor stress ratings. Functional operation at the  
absolute maximum and minimum is neither implied nor ensured. The processor should not receive  
a clock while subjected to these conditions. Functional operating conditions are provided in the AC  
and DC tables. Extended exposure to the maximum ratings may affect device reliability. Although  
the processor contains protective circuitry to resist damage from static electric discharge, you  
should always take precautions to avoid high static voltages or electric fields.  
Table 13. Ultra-Low Voltage Intel® Celeron® Processor Absolute Maximum Ratings  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
TStorage  
Storage Temperature  
–40  
–0.5  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
85  
1.75  
1.75  
1.75  
1.75  
2.0  
° C  
V
1
VCC(Abs) Supply Voltage with respect to VSS  
VCCT  
VIN GTL  
VIN125  
VIN15  
System Bus Buffer Voltage with respect to VSS  
V
System Bus Buffer DC Input Voltage with respect to VSS  
1.25 V Buffer DC Input Voltage with respect to VSS  
1.5 V Buffer DC Input Voltage with respect to VSS  
1.8 V Buffer DC Input Voltage with respect to VSS  
2.0 V Buffer DC Input Voltage with respect to VSS  
2.5 V Buffer DC Input Voltage with respect to VSS  
VID ball/pin DC Input Voltage with respect to VSS  
VID Current  
V
2, 3  
4
V
V
5
VIN18  
2.0  
V
6
VIN20  
2.4  
V
7
VIN25  
3.3  
V
9
VINVID  
IVID  
3.465  
3.6  
V
8
-0.3  
mA  
8
NOTES:  
1. The shipping container is only rated for 65° C.  
2. Parameter applies to the AGTL signal groups only. Compliance with both V  
specifications is required.  
IN GTL  
3. The voltage on the AGTL signals must never be below –0.3 V or above 1.75 V with respect to ground.  
4. Parameter applies to CLKREF, TESTHI, VTTPWRGD signals.  
5. Parameter applies to CMOS, Open-drain, APIC, TESTLO and TAP bus signal groups only.  
6. Parameter applies to PWRGOOD signal.  
7. Parameter applies to PICCLK signal.  
8. Parameter applies to each VID pin/ball individually.  
9. Parameter applies to BCLK signal in Single Ended Clocking Mode.  
Datasheet  
29  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
3.5  
DC Specifications  
Tables 14 through 21 list the DC specifications for the ULV Intel® Celeron® processor.  
Specifications are valid only while meeting specifications for the junction temperature, clock  
frequency, and input voltages. The junction temperature range for all DC specifications is 0° C to  
100° C unless otherwise noted. Care should be taken to read all notes associated with each  
parameter. Unlike the Mobile Intel Pentium® III processor, the Vcc tolerances for the ULV Intel  
Celeron processor are not specified as a percentage of nominal. The tolerances are instead specified  
in the form of load lines for the static and transient cases in Tables 15 through 18.  
Table 14. Power Specifications for the Ultra-Low Voltage Intel® Celeron® Processor  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes1  
1.10  
0.95  
V
V
VCC  
Transient VCC for core logic  
9, 10  
1.10  
0.95  
V
V
VCC,DC  
VCCT  
Static VCC for core logic  
9, 10  
VCC for System Bus Buffers, Transient  
tolerance  
1.138 1.25  
1.188 1.25  
1.362  
1.312  
V
V
± 9%, 7, 10  
± 5%, 2, 10  
VCC for System Bus Buffers, Static  
tolerance  
VCCT,DC  
Current for VCC at core frequency  
7.58  
4.20  
ICC  
A
4
650 MHz and 1.10 V  
400 MHz and 0.95 V  
ICCT  
Current for VCCT  
2.7  
A
A
3, 4  
4
Processor Auto Halt current at  
1.10 V  
0.95 V  
3.09  
1.88  
ICC,AH  
Processor Quick Start current at  
1.10 V  
0.95 V  
2.91  
1.82  
ICC,QS  
A
A
4
4
Processor Deep Sleep Leakage current at  
1.10 V  
0.95 V  
2.65  
1.40  
ICC,DSLP  
ILVID  
dICC/dt  
VID leakage current  
0.5  
mA  
8
VCC power supply current slew rate  
400  
A/µs  
5, 6  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies. Processors will  
comply with the ICCx max specification for the current mode of operation.  
,
2. Static voltage regulation includes: DC output initial voltage set point adjust, output ripple and noise,  
temperature and warm up.  
3. ICCT is the current supply for the system bus buffers, including the on-die termination.  
4. ICCx max  
18, VCCT max  
,
specifications are specified at VCC static (typical) derived from the tolerances in Tables 15 through  
, Tjmax, and under maximum signal loading conditions.  
,
5. Based on simulations and averaged over the duration of any change in current. Use to compute the  
maximum inductance and reaction time of the voltage regulator. This parameter is not tested.  
6. Maximum values specified by design/characterization at nominal VCC and VCCT  
7. VCCx must be within this range under all operating conditions, including maximum current transients. VCCx  
must return to within the static voltage specification, VCCx DC, within 100 µs after a transient event.  
8. VID leakage current is < 100 µA for VID voltages under 3.0 V.  
.
,
9. Typical VCC indicates the VID encoded voltage. Voltage supplied must conform to the load line specification  
shown in Tables 15 through 18.  
10.Voltages are measured at the package ball on the Micro FC-BGA device.  
30  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Table 15. V Tolerances for the Ultra-Low Voltage Intel® Celeron® Processor: VID = 1.1 V  
CC  
ICC (A)  
VCC (V)  
Static  
Min  
Transient  
Typ  
Max  
Min  
Max  
0.0  
1.0  
1.100  
1.096  
1.092  
1.088  
1.084  
1.080  
1.076  
1.072  
1.068  
1.064  
1.060  
1.056  
1.052  
1.048  
1.075  
1.071  
1.067  
1.063  
1.059  
1.055  
1.051  
1.047  
1.043  
1.039  
1.035  
1.031  
1.027  
1.023  
1.125  
1.121  
1.117  
1.113  
1.109  
1.105  
1.101  
1.097  
1.093  
1.089  
1.085  
1.081  
1.077  
1.073  
1.055  
1.051  
1.047  
1.043  
1.039  
1.035  
1.031  
1.027  
1.023  
1.019  
1.015  
1.011  
1.007  
1.003  
1.145  
1.141  
1.137  
1.133  
1.129  
1.125  
1.121  
1.117  
1.113  
1.109  
1.105  
1.101  
1.097  
1.093  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
11.0  
12.0  
13.0  
Table 16. V Tolerances for the Ultra-Low Voltage Intel® Celeron® Processor in the  
CC  
Deep Sleep State: VID = 1.1 V  
ICC (A)  
VCC (V)  
Static  
Min  
Transient  
Typ  
Max  
Min  
Max  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
1.068  
1.064  
1.060  
1.056  
1.052  
1.048  
1.043  
1.039  
1.035  
1.031  
1.027  
1.023  
1.093  
1.089  
1.085  
1.081  
1.077  
1.073  
1.023  
1.019  
1.015  
1.011  
1.007  
1.003  
1.113  
1.109  
1.105  
1.101  
1.097  
1.093  
Datasheet  
31  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Table 17. V Tolerances for the Ultra-Low Voltage Intel® Celeron® Processor: VID = 0.95 V  
CC  
ICC (A)  
VCC (V)  
Static  
Min  
Transient  
Typ  
Max  
Min  
Max  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
0.938  
0.934  
0.930  
0.926  
0.922  
0.918  
0.914  
0.910  
0.906  
0.913  
0.909  
0.905  
0.901  
0.897  
0.893  
0.889  
0.885  
0.881  
0.963  
0.959  
0.955  
0.951  
0.947  
0.943  
0.939  
0.935  
0.931  
0.893  
0.889  
0.885  
0.881  
0.877  
0.873  
0.869  
0.865  
0.861  
0.983  
0.979  
0.975  
0.971  
0.967  
0.963  
0.959  
0.955  
0.951  
Table 18. V Tolerances for the Ultra-Low Voltage Intel® Celeron® Processor in the  
CC  
Deep Sleep State: VID = 0.95 V  
ICC (A)  
VCC (V)  
Static  
Min  
Transient  
Typ  
Max  
Min  
Max  
0.0  
1.0  
2.0  
3.0  
4.0  
0.922  
0.918  
0.914  
0.910  
0.906  
0.897  
0.893  
0.889  
0.885  
0.881  
0.947  
0.943  
0.939  
0.935  
0.931  
0.865  
0.861  
0.857  
0.853  
0.849  
0.967  
0.963  
0.959  
0.955  
0.951  
Table 19. AGTL Signal Group DC Specifications  
Symbol  
Parameter  
Input Low Voltage  
Min  
Max  
Unit  
Notes  
VIL  
-0.15  
VREF-0.2  
VCCT  
V
V
See VCCT,max in  
Table 14  
VIH  
Input High Voltage  
Output High Voltage  
VREF+0.2  
See VCCT,max in  
Table 14  
VOH  
V
RON  
IL  
16.67  
100  
W
2
1
Output Low Drive Strength  
Leakage Current for Inputs, Outputs and I/Os  
µA  
NOTES:  
1. Specification applies to leakage high only, for pins with on die RTT, (0 < V  
2. Refer to IBIS models for I/V characteristics.  
V  
).  
IN/OUT  
CCT  
32  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Table 20. AGTL Bus DC Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VCCT  
VREF  
Bus Termination Voltage  
Input Reference Voltage  
Bus Termination Strength  
1.25  
2/3VCCT  
56  
V
V
1
2/3VCCT – 2%  
50  
2/3VCCT + 2%  
65  
±2%, 2  
RTT  
W
On-die RTT, 3  
NOTES:  
1. Refer to Table 14 for minimum and maximum values.  
2. V should be created from V by a voltage divider.  
REF  
CCT  
3. The RESET# signal does not have an on-die RTT. It requires an off-die 56.2 ±1% terminating resistor connected to V  
.
CCT  
Table 21. CLKREF, APIC, TAP, CMOS, and Open-drain Signal Group DC Specifications  
(Sheet 1 of 2)  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
Input Low Voltage, 1.5 V  
CMOS  
VIL15  
–0.15  
VCMOSREFmin – 300 mV  
V
Input Low Voltage, 1.8 V  
CMOS  
VIL18  
VIH15  
VIH15PICD  
VIH18  
–0.36  
0.36  
2.0  
V
V
V
V
1, 2  
10  
Input High Voltage, 1.5 V  
CMOS  
VCMOSREFmax + 250 mV  
VCMOSREFmax + 200 mV  
1.44  
Input High Voltage, 1.5 V  
PICD[1:0]  
2.0  
11  
Input High Voltage, 1.8 V  
CMOS  
2.0  
1, 2  
All outputs  
are  
Open-drain  
Output High Voltage, 1.5 V  
CMOS  
VOH15  
N/A  
2.0  
1.615  
V
Output High Voltage, 3.3 V  
signals  
VOH33  
VOL33  
3.465  
0.8  
V
V
3.3V + 5%  
Output Low Voltage, 3.3 V  
signals  
VOL  
VCMOSREF  
VCLKREF  
NOTES:  
Output Low Voltage  
CMOSREF Voltage  
CLKREF Voltage  
0.3  
1.10  
1.312  
V
V
V
8
4
9
0.90  
1.187  
1. Parameter applies to the PWRGOOD signal only.  
2. VIlx,min and VIhx,max only apply when BCLK, BCLK# and PICCLK are stopped. PICCLK should be stopped in the low state.  
See Tables 28 and 29 for DC levels when BCLK and BCLK# are stopped.  
3. Measured at 9 mA.  
4. VCMOSREF should be created from a stable 1.5-V supply using a voltage divider. It must track the voltage supply to maintain  
noise immunity. The same 1.5-V supply should be used to power the chipset CMOS I/O buffers that drive these signals.  
5. (0 VIN/OUT VIhx,max).  
6. Specified as the minimum amount of current that the output buffer must be able to sink. However, VOL,max cannot be ensured  
if this specification is exceeded.  
7. Parameter applies to VTTPWRGD signal only.  
8. Applies to non-AGTL signals except BCLK, PWRGOOD, PICCLK, BSEL[1:0], VID[4:0].  
9. ±5% DC tolerance. CLKREF must be generated from the 2.5-V supply used to generate the BCLK signal. AC Tolerance must  
be less than –40 dB @ 1 MHz.  
10.Applies to all TAP and CMOS signals (not to APIC signals).  
11.Applies to PICD[1:0].  
Datasheet  
33  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Table 21. CLKREF, APIC, TAP, CMOS, and Open-drain Signal Group DC Specifications  
(Sheet 2 of 2)  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
Input Low Voltage,  
VTTPWRGD  
VILVTTPWR  
0.4  
V
7
Input High Voltage,  
VTTPWRGD  
VIHVTTPWR  
1.0  
10  
V
7
RON  
IOL  
30  
W
3
6
Output Low Current  
mA  
Leakage Current for Inputs,  
Outputs and I/Os  
IL  
± 100  
µA  
5
NOTES:  
1. Parameter applies to the PWRGOOD signal only.  
2. VIlx,min and VIhx,max only apply when BCLK, BCLK# and PICCLK are stopped. PICCLK should be stopped in the low state.  
See Tables 28 and 29 for DC levels when BCLK and BCLK# are stopped.  
3. Measured at 9 mA.  
4. VCMOSREF should be created from a stable 1.5-V supply using a voltage divider. It must track the voltage supply to maintain  
noise immunity. The same 1.5-V supply should be used to power the chipset CMOS I/O buffers that drive these signals.  
5. (0 VIN/OUT VIhx,max).  
6. Specified as the minimum amount of current that the output buffer must be able to sink. However, VOL,max cannot be ensured  
if this specification is exceeded.  
7. Parameter applies to VTTPWRGD signal only.  
8. Applies to non-AGTL signals except BCLK, PWRGOOD, PICCLK, BSEL[1:0], VID[4:0].  
9. ±5% DC tolerance. CLKREF must be generated from the 2.5-V supply used to generate the BCLK signal. AC Tolerance must  
be less than –40 dB @ 1 MHz.  
10.Applies to all TAP and CMOS signals (not to APIC signals).  
11.Applies to PICD[1:0].  
3.6  
AC Specifications  
3.6.1  
System Bus, Clock, APIC, TAP, CMOS, and Open-drain AC  
Specifications  
All system bus AC specifications for the AGTL signal group are relative to the crossing point of the  
rising edge of the BCLK input and falling edge of the BCLK# input. All AGTL timings are  
referenced to VREF for both 0 and 1 logic levels unless otherwise specified. All APIC, TAP,  
CMOS, and Open-drain signals except PWRGOOD are referenced to 1.0 V. All minimum and  
maximum specifications are at points within the power supply ranges shown in Tables 15 through 18  
and junction temperatures (Tj) in the range 0° C to 100° C unless otherwise noted. Tj must be less  
than or equal to 100° C (or the otherwise-noted given value) for all functional processor states.  
34  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Table 22. System Bus Clock AC Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes1  
System Bus Frequency  
BCLK Period  
100  
10  
MHz  
ns  
T1S1  
2
2
BCLK Period – Instantaneous  
Minimum  
T1S1abs  
9.75  
ns  
T2S1  
T3S1  
BCLK Period Stability  
BCLK High Time  
BCLK Low Time  
BCLK Rise Time  
BCLK Fall Time  
± 250  
ps  
ns  
ns  
ns  
ns  
2, 3, 4  
at >2.0 V  
at <0.5 V  
5
2.70  
2.45  
0.4  
T4S1  
T5S1  
1.6  
1.6  
T6S1  
0.4  
5
NOTES:  
1. All AC timings for AGTL and CMOS signals are referenced to the BCLK rising edge at 1.25 V.  
2. Period, jitter, skew and offset measured at 1.25 V.  
3. Not 100% tested. Specified by design/characterization.  
4. Measured on the rising edge of adjacent BCLKs at 1.25 V. The jitter present must be accounted for as a  
component of BCLK skew between devices.  
5. Measured between 0.5 V and 2.0 V.  
Table 23. Valid Ultra-Low Voltage Intel® Celeron® Processor Frequencies  
BCLK Frequency  
(MHz)  
Core Frequency  
(MHz)  
Power-on Configuration  
bits [27,25:22]  
Frequency Multiplier  
100  
100  
6.5  
4
650  
400  
0, 1111  
0, 0010  
NOTE: While other combinations of bus and core frequencies are defined, operation at frequencies other  
than those listed above will not be validated by Intel and are not ensured. The frequency multiplier is  
programmed into the processor when it is manufactured, and it cannot be changed.  
Table 24. AGTL Signal Groups AC Specifications  
RTT = 56internally terminated to VCCT; VREF = 2/3VCCT; load = 50 ohms  
Symbol  
Parameter  
Min  
Max  
Unit  
Figure  
Notes1  
T7  
T8  
AGTL Output Valid Delay  
AGTL Input Setup Time  
AGTL Input Hold Time  
RESET# Pulse Width  
0.40  
1.30  
1
3.25  
ns  
ns  
ns  
ms  
7
8
2, 3  
4
T9  
8
T10  
1
9, 10  
NOTES:  
1. All AC timings for AGTL signals are referenced to the crossing point of the BCLK rising edge and the  
BCLK# falling edge for Differential Clocking and to the BCLK rising edge at 1.25 V for Single Ended  
Clocking. All AGTL signals are referenced at VREF. RESET# may be asserted (active) asynchronously, but  
must be deasserted synchronously.  
2. Specification is for a minimum 0.40-V swing from VREF-200 mV to VREF+200 mV.  
3. Specification is for a maximum 0.8-V swing from Vcct-0.8 V to Vcct.  
4. After VCC, VCCT, and BCLK, BCLK# become stable and PWRGOOD is asserted.  
Datasheet  
35  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Table 25. CMOS and Open-drain Signal Groups AC Specifications  
Symbol  
Parameter  
Min  
Max  
Unit  
Figure  
Notes1, 2  
1.5V Input Pulse Width, except  
PWRGOOD and LINT[1:0]  
Active and  
inactive states  
T14  
2
BCLKs  
7
T14B  
T15  
LINT[1:0] Input Pulse Width  
6
2
BCLKs  
µs  
7
3
PWRGOOD Inactive Pulse Width  
10  
4, 5  
NOTES:  
1. All AC timings for CMOS and Open-drain signals are referenced to the crossing point of the BCLK rising  
edge and BCLK# falling edge for Differential Clocking and to the rising edge of BCLK at 1.25 V for Single  
Ended Clocking. All CMOS and Open-drain signals are referenced at 1.0 V.  
2. Minimum output pulse width on CMOS outputs is 2 BCLKs.  
3. This specification only applies when the APIC is enabled and the LINT1 or LINT0 signal is configured as an  
edge triggered interrupt with fixed delivery, otherwise specification T14 applies.  
4. When driven inactive, or after VCC, VCCT and BCLK, BCLK# become stable. PWRGOOD must remain  
below VIL18,MAX until all the voltage planes meet the voltage tolerance specifications in Tables 15 through  
18. and BCLK, BCLK# have met the BCLK, BCLK# AC specifications in Tables 30 and 31 for at least 2 µs.  
PWRGOOD must rise error-free and monotonically to 1.8 V.  
5. If the BCLK Settling Time specification (T60) may be ensured at power-on reset then the PWRGOOD  
Inactive Pulse Width specification (T15) is waived and BCLK may start after PWRGOOD is asserted.  
PWRGOOD must still remain below V  
specifications.  
until all the voltage planes meet the voltage tolerance  
IL25,max  
Table 26. Reset Configuration AC Specifications and Power On/Power Down Timings  
(Sheet 1 of 2)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Figure  
Notes  
Reset Configuration Signals  
(A[15:5]#, BREQ0#, FLUSH#, INIT#,  
PICD0) Setup Time  
Before  
deassertion of  
RESET#  
T16  
4
BCLKs  
9
Reset Configuration Signals  
(A[15:5]#, BREQ0#, FLUSH#, INIT#,  
PICD0) Hold Time  
After clock that  
deasserts  
RESET#  
T17  
T18  
2
20  
BCLKs  
ms  
9
Before  
RESET#/PWRGOOD Setup Time  
1
1
10  
deassertion of  
RESET# †  
T18A  
T18B  
VCCT to VTTPWRGD Setup Time  
VCC to PWRGOOD Setup Time  
ms  
ms  
10  
10  
10  
BSEL, VID valid time before  
VTTPWRGD  
T18C  
1
µs  
10  
assertion  
T18D  
T18E  
RESET# inactive to Valid Outputs  
RESET# inactive to Drive Signals  
1
4
BCLK  
9
9
BCLKs  
VCC (nominal) is  
the VID voltage  
setting  
Time from VCC (nominal)-12% to  
PWRGOOD low  
T19A  
0
ns  
11  
All outputs valid after PWRGOOD  
low  
T19B  
T19C  
0
0
ns  
ns  
11  
11  
All inputs required valid after  
PWRGOOD low  
At least 1 ms must pass after PWRGOOD rises above V  
specification until RESET# may be deasserted.  
and BCLK, BCLK# meet their AC timing  
IH18min  
36  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Table 26. Reset Configuration AC Specifications and Power On/Power Down Timings  
(Sheet 2 of 2)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Figure  
Notes  
Time from VCCT-12% to  
VTTPWRGD low  
T20A  
0
ns  
12  
All outputs valid after VTTPWRGD  
low  
T20B  
T20C  
T20D  
0
0
0
ns  
ns  
ns  
12  
12  
12  
All inputs required valid after  
VTTPWRGD low  
VID, BSEL signals valid after  
VTTPWRGD low  
Measurement  
from 300 mV to  
900 mV. Amount  
of noise (glitch)  
less than 100  
T20E  
VTTPWRGD Transition Time  
100  
µs  
mV. See Section  
4.3.1 for details  
At least 1 ms must pass after PWRGOOD rises above V  
specification until RESET# may be deasserted.  
and BCLK, BCLK# meet their AC timing  
IH18min  
Table 27. APIC Bus Signal AC Specifications  
Symbol  
Parameter  
Min  
Max  
Unit  
Figure  
Notes1  
T21  
T22  
T23  
T24  
T25  
T26  
T27  
T28  
PICCLK Frequency  
PICCLK Period  
2
33.3  
500  
MHz  
ns  
2
30  
PICCLK High Time  
PICCLK Low Time  
PICCLK Rise Time  
PICCLK Fall Time  
PICD[1:0] Setup Time  
PICD[1:0] Hold Time  
10.5  
10.5  
0.25  
0.25  
8.0  
ns  
at>1.6 V  
at<0.4 V  
(0.4 V – 1.6 V)  
(1.6 V – 0.4 V)  
3
ns  
3.0  
3.0  
ns  
ns  
ns  
7
7
2.5  
ns  
3
PICD[1:0] Valid Delay  
(Rising Edge)  
1.5  
1.5  
8.7  
T29  
ns  
6
3, 4  
PICD[1:0] Valid Delay  
(Falling Edge)  
12.0  
NOTES:  
1. All AC timings for APIC signals are referenced to the PICCLK rising edge at 1.0 V. All CMOS signals are  
referenced at 1.0 V.  
2. The minimum frequency is 2 MHz when PICD0 is at 1.5 V at reset Referenced to PICCLK Rising Edge.  
3. For Open-drain signals, Valid Delay is synonymous with Float Delay.  
4. Valid delay timings for these signals are specified into 150 to 1.5 V and 0 pF of external load. For real  
system timings these specifications must be derated for external capacitance at 105 ps/pF.  
Datasheet  
37  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Table 28. TAP Signal AC Specifications  
Symbol  
Parameter  
TCK Frequency  
Min  
Max  
Unit  
Figure  
Notes1  
T30  
T31  
T32  
T33  
60  
16.67 MHz  
TCK Period  
ns  
ns  
ns  
TCK High Time  
TCK Low Time  
25.0  
25.0  
VCMOSREF+0.2 V, 2  
VCMOSREF-0.2 V, 2  
(VCMOSREF-0.2 V) –  
T34  
T35  
TCK Rise Time  
TCK Fall Time  
5.0  
5.0  
ns  
ns  
(VCMOSREF+0.2 V), 2, 3  
(VCMOSREF+0.2 V) –  
(VCMOSREF-0.2 V), 2, 3  
T36  
T37  
T38  
T39  
T40  
TRST# Pulse Width  
TDI, TMS Setup Time  
TDI, TMS Hold Time  
TDO Valid Delay  
40.0  
5.0  
ns  
ns  
ns  
ns  
ns  
14  
13  
13  
13  
13  
Asynchronous, 2  
4
4
14.0  
1.0  
10.0  
25.0  
5, 6  
2, 5, 6  
TDO Float Delay  
All Non-Test Outputs Valid  
Delay  
T41  
T42  
2.0  
25.0  
25.0  
ns  
ns  
13  
13  
5, 7, 8  
All Non-Test Outputs Float  
Delay  
2, 5, 7, 8  
T43  
T44  
All Non-Test Inputs Setup Time  
All Non-Test Inputs Hold Time  
5.0  
ns  
ns  
13  
13  
4, 7, 8  
4, 7, 8  
13.0  
NOTES:  
1. All AC timings for TAP signals are referenced to the TCK rising edge at 1.0 V. All TAP and CMOS signals  
are referenced at 1.0 V.  
2. Not 100% tested. Specified by design/characterization.  
3. 1 ns may be added to the maximum TCK rise and fall times for every 1 MHz below 16 MHz.  
4. Referenced to TCK rising edge.  
5. Referenced to TCK falling edge.  
6. Valid delay timing for this signal is specified into 150 terminated to 1.5 V and 0 pF of external load. For  
real system timings these specifications must be derated for external capacitance at 105 ps/pF.  
7. Non-Test Outputs and Inputs are the normal output or input signals (except TCK, TRST#, TDI, TDO, and  
TMS). These timings correspond to the response of these signals due to boundary scan operations.  
8. During Debug Port operation use the normal specified timings rather than the TAP signal timings.  
38  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Table 29. Quick Start/Deep Sleep AC Specifications  
Symbol  
Parameter  
Min Max  
Unit  
Figure  
Notes1  
Quick Start Cycle Completion to Clock Stop or  
DPSLP# assertion  
T45  
100  
BCLKs  
15, 16  
Quick Start Cycle Completion to Input Signals  
Stable  
T46  
0
µs  
15, 16  
T47  
T48  
Deep Sleep PLL Lock Latency  
0
0
30  
µs  
ns  
15, 16  
15, 16  
2
STPCLK# Hold Time from PLL Lock  
Input Signal Hold Time from STPCLK#  
Deassertion  
T49  
8
BCLKs  
15, 16  
NOTES:  
1. Input signals other than RESET# and BPRI# must be held constant in the Quick Start state.  
2. The BCLK, BCLK# Settling Time specification (T60) applies to Deep Sleep state exit under all conditions.  
Figure 6. BCLK (Single Ended)/PICCLK/TCK Generic Clock Timing Waveform  
T
h
T
r
VH  
VTRIP  
CLK  
VL  
T
f
T
l
T
p
D0003-01  
Figure 7. Differential BCLK/BCLK# Waveform (Common Mode)  
V2,V3 (max)  
BCLK#  
Vcross  
BCLK  
V1,V3 (min)  
Datasheet  
39  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Figure 8. BCLK/BCLK# Waveform (Differential Mode)  
T1  
VIH_DIFF  
V4  
0V  
V5  
VIl_DIFF  
T5  
T6  
Figure 9. Valid Delay Timings  
Vc  
Vc  
CLK  
TX  
T
x
V
Valid  
Valid  
Signal  
TPW  
D0004-00  
NOTES:  
1. Tx = T7, T11, T29 (Valid Delay)  
2. Tpw = T14, T14B (Pulse Width)  
3. V = VREF for AGTL signal group; 1.0V for CMOS, Open-drain, APIC, and TAP signal groups  
4. Vc = Crossing point of BCLK rising edge and BCLK# falling edge for BCLK references (Differential Clock)  
= 1.25V (Single Ended Clock)  
Figure 10. Setup and Hold Timings  
Vc  
CLK  
Th  
Ts  
V
Valid  
Signal  
D0005-00  
NOTES:  
1. Ts = T8, T27 (Setup Time)  
2. Th =T9, T28 (Hold Time)  
3. V = VREF for AGTL signals; 1.0 V for CMOS, APIC, and TAP signals  
4. Vc = Crossing point of BCLK rising edge and BCLK# falling edge for BCLK references (Differential Clock)  
= 1.25 V (Single Ended Clock)  
40  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Figure 11. Cold/Warm Reset and Configuration Timings  
VC  
BCLK  
T
u
T
t
RESET#  
V
T
v
T
T
x
w
Configuration  
(A[15:5], BREQ0#,  
FLUSH#, INIT#,  
PICD0)  
Valid  
T
y
PICD[1:0]  
AGTL/non-AGTL  
outputs  
Valid  
T
z
Non-configuration  
inputs  
Active  
D0006-02  
NOTES:  
1. Tt = T9 (AGTL Input Hold Time)  
2. Tu = T8 (AGTL Input Setup Time)  
3. Tv = T10 (RESET# Pulse Width)  
4. Tw = T16 (Reset Configuration Signals (A[15:5]#, BREQ0#, FLUSH#, INIT#, PICD0) Setup Time)  
5. Tx = T17 (Reset Configuration Signals (A[15:5]#, BREQ0#, FLUSH#, INIT#, PICD0) Hold Time)  
6. Ty = T18D (RESET# inactive to Valid Outputs)  
7. Tz = T18E (RESET# inactive to Drive Signals)  
8. Vc = Crossing point of BCLK rising edge and BCLK# falling edge (Differential Clock)  
= 1.25 V (Single Ended Clock)  
Datasheet  
41  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Figure 12. Power-on Sequence and Reset Timings  
BCLK/BCLK#  
VCCT  
T
d
VIHVTTPWR,min  
VTTPWRGD  
VILVTTPWR,max  
T
e
VID[4:0]/  
BSEL[1:0]  
Valid  
CMOSREF/  
CLKREF/VREF  
VCC  
T
a
T
c
VIH18,min  
PWRGOOD  
VIL18,max  
T
b
RESET#  
V0040-00  
NOTES:  
1. Ta = T15 (PWRGOOD Inactive Pulse Width)  
2. Tb = T18 (RESET#/PWRGOOD Setup Time)  
3. Tc = T18B (Setup time from VCC valid until PWRGOOD assertion)  
4. Td = T18A (Setup time from VCCT valid to VTTPWRGD assertion)  
5. Te = T18C(VID, BSEL valid time before VTTPWRGD assertion)  
42  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Figure 13. Power Down Sequencing and Timings (V Leading)  
CC  
VCCT, VREF  
VCCMOS,  
CMOSREF,  
CLKREF  
VID[4:0]  
BSEL[1:0]  
VTTPWRGD  
VCC  
VCC-12%  
BCLK/BCLK#  
Valid  
Valid  
PICCLK  
Ta  
VIL18  
PWRGOOD  
RESET#  
PICD[1:0]  
Valid  
Valid  
Valid  
Tb  
AGTL OUTPUTS  
OTHER CMOS OUTPUTS  
ALL INPUTS  
Tc  
V0044-00  
NOTES:  
1. Ta = T19A (Time from VCC (nominal) -12% to PWRGOOD low)  
2. Tb = T19B (All outputs valid after PWRGOOD low)  
3. Tc = T19C (All inputs required valid after PWRGOOD low)  
Datasheet  
43  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Figure 14. Power Down Sequencing and Timings (V  
Leading)  
CCT  
VCCT-12%  
VCCT, VREF  
VCMOS,  
CMOSREF,  
CLKREF  
Ta  
VTTPWRGD  
VILVTTPWR  
VID[4:0]  
Valid  
BSEL[1:0]  
VCC  
Tb, Tc, Td  
BCLK/BCLK#  
Valid  
PICCLK  
Valid  
PWRGOOD  
RESET#  
PICD[1:0]  
Valid  
Valid  
Valid  
AGTL OUTPUTS  
OTHER CMOS OUTPUTS  
ALL INPUTS  
V0045-00  
NOTES:  
1. Ta = T20A (Time from VCCT-12% to VTTPWRGD low)  
2. Tb = T20B (All outputs valid after VTTPWRGD low)  
3. Tc = T20C (All inputs required valid after VTTPWRGD low)  
4. Td = T20D (VID, BSEL signals valid after VTTPWRGD low)  
44  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Figure 15. Test Timings (Boundary Scan)  
TCK  
T
T
w
v
0.75V  
TDI, TMS  
T
T
s
r
Input  
Signals  
T
T
u
x
TDO  
T
T
z
y
Output  
Signals  
D0008-01  
NOTES:  
1. Tr = T43 (All Non-Test Inputs Setup Time)  
2. Ts = T44 (All Non-Test Inputs Hold Time)  
3. Tu = T40 (TDO Float Delay)  
4. Tv = T37 (TDI, TMS Setup Time)  
5. Tw = T38 (TDI, TMS Hold Time)  
6. Tx = T39 (TDO Valid Delay)  
7. Ty = T41 (All Non-Test Outputs Valid Delay)  
8. Tz = T42 (All Non-Test Outputs Float Delay)  
Figure 16. Test Reset Timings  
0.75V  
TRST#  
T
q
D0009-01  
NOTE: Tq=T36 (TRST# Pulse Width)  
Datasheet  
45  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Figure 17. Quick Start/Deep Sleep Timing (BCLK Stopping Method)  
Normal  
Quick Start  
Deep Sleep  
Stopped  
Normal  
Quick Start  
BCLK  
Tv  
STPCLK#  
Ty  
Tx  
CPU bus  
DPSLP#  
stpgnt  
Tz  
Tw  
Changing  
Compatibility  
Signals  
Frozen  
V00102-00  
NOTES:  
1. Tv = T45 (Stop Grant Acknowledge Bus Cycle Completion to Clock Shut Off Delay)  
2. Tw = T46 (Setup Time to Input Signal Hold Requirement)  
3. Tx = T47 (Deep Sleep PLL Lock Latency)  
4. Ty = T48 (PLL lock to STPCLK# Hold Time)  
5. Tz = T49 (Input Signal Hold Time)  
Figure 18. Quick Start/Deep Sleep Timing (DPSLP# Assertion Method)  
Normal  
Quick Start  
Deep Sleep  
Normal  
Quick Start  
BCLK  
Tv  
STPCLK#  
Ty  
Tx  
CPU bus  
DPSLP#  
stpgnt  
Tz  
Tw  
Changing  
Compatibility  
Signals  
Frozen  
V00103-00  
NOTES:  
1. Tv = T45 (Stop Grant Acknowledge Bus Cycle Completion to DPSLP# assertion)  
2. Tw = T46 (Setup Time to Input Signal Hold Requirement)  
3. Tx = T47 (Deep Sleep PLL Lock Latency)  
4. Ty = T48 (PLL lock to STPCLK# Hold Time)  
5. Tz = T49 (Input Signal Hold Time)  
46  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
4.0  
System Signal Simulations  
Systems must be simulated using IBIS models to determine if they are compliant with this  
specification. All references to BCLK signal quality also apply to BCLK# for Differential  
Clocking.  
4.1  
System Bus Clock (BCLK) and PICCLK DC  
Specifications and AC Signal Quality Specifications  
Table 30. BCLK (Differential) DC Specifications and AC Signal Quality Specifications  
Symbol  
Parameter  
Min  
Max  
Unit Figure  
Notes  
V1  
V2  
VIL,BCLK  
VIH,BCLK  
-0.2  
0.35  
1.45  
V
V
1
1
0.92  
Undershoot/  
Overshoot, 2  
V3  
VIN Absolute Voltage Range  
-0.2  
1.45  
V
V4  
V5  
BCLK Rising Edge Ringback  
BCLK Falling Edge Ringback  
0.35  
V
V
6
6
3
3
-0.35  
1.45  
BCLK Voltage in Deep Sleep  
State  
VBCLK_DPSLP  
0.4  
0
V
V
4
4
VBCLK_DPSLP  
- 0.2 V  
BCLK# Voltage in Deep Sleep  
State  
VBCLK#_DPSLP  
NOTES:  
1. The clock must rise/fall monotonically between VIL,BCLK and VIH,BCLK.  
2. These specifications apply only when BCLK, BCLK# are running.  
3. The rising and falling edge ringback voltage specified is the minimum (rising) or maximum (falling) voltage  
the differential waveform may go to after passing the VIH_DIFF (rising) or VIL_DIFF (falling) levels.  
VIL_DIFF (max) = -0.57 V, VIH_DIFF (min) = 0.57 V.  
4. Applies when BCLK and BCLK# are stopped in Deep Sleep State.  
Table 31. BCLK (Single Ended) DC Specifications and AC Signal Quality Specifications  
Symbol  
Parameter  
Min Max Unit  
Figure  
Notes  
V1  
V2  
VIL,BCLK  
VIH,BCLK  
IN Absolute Voltage Range  
0.3  
V
V
V
V
V
18  
18  
18  
18  
18  
1
2.2  
1
V3  
V
-0.5 3.1  
2.0  
Undershoot/Overshoot, 2  
Absolute Value, 3  
Absolute Value, 3  
V4  
BCLK Rising Edge Ringback  
BCLK Falling Edge Ringback  
V5  
0.5  
NOTES:  
1. The clock must rise/fall monotonically between VIL,BCLK and VIH,BCLK. BCLK must be stopped in the low  
state.  
2. These specifications apply only when BCLK is running. BCLK may not be above VIH,BCLK,max or below  
V
BCLK,min for more than 50% of the clock cycle.  
IL,  
3. The rising and falling edge ringback voltage specified is the minimum (rising) or maximum (falling) absolute  
voltage the BCLK signal may go to after passing the VIH,BCLK (rising) or VIL,BCLK (falling) voltage limits.  
Datasheet  
47  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Table 32. PICCLK DC Specifications and AC Signal Quality Specifications  
Symbol  
Parameter  
Min Max Unit  
Figure  
Notes  
V1  
V2  
VIL20  
VIH20  
0.4  
2.4  
0.4  
V
V
V
V
V
18  
18  
18  
18  
18  
1
1.6  
-0.5  
1.6  
1
V3  
V
IN Absolute Voltage Range  
Undershoot, Overshoot, 2  
Absolute Value, 3  
Absolute Value, 3  
V4  
PICCLK Rising Edge Ringback  
PICCLK Falling Edge Ringback  
V5  
NOTES:  
1. The clock must rise/fall monotonically between V  
2. These specifications apply only when PICCLK is running. See the DC specifications for when PICCLK is  
and V  
.
IL20  
IH20  
stopped. PICCLK may not be above V  
3. The rising and falling edge ringback voltage specified is the minimum (rising) or maximum (falling) absolute  
or below V  
for more than 50% of the clock cycle.  
IH20,max  
IL20,min  
voltage the PICCLK signal may go to after passing the V  
(rising) or V  
(falling) voltage limits.  
IH20  
IL20  
Figure 19. BCLK (Single Ended)/PICCLK Generic Clock Waveform  
V3max  
V4  
V2  
V1  
V5  
V3min  
V0012-01  
4.2  
AGTL AC Signal Quality Specifications  
Ringback specifications for the AGTL signals are as follows: Ringback below VREF,max + 200 mV  
is not authorized during low to high transitions. Ringback above VREF,min – 200 mV is not  
authorized during high to low transitions.  
Overshoot and undershoot specifications are documented in Table 33 and illustrated in Figure 20.  
48  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Figure 20. Maximum Acceptable Overshoot/Undershoot Waveform  
Time Dependant Overshoot  
Max  
Vss  
Min  
Time Dependant Undershoot  
Table 33. 100-MHz AGTL Signal Group Overshoot/Undershoot Tolerance  
at the Processor Core  
Max VCCT + Overshoot/  
Allowed Pulse Duration (ns) [Tj=100C (see Note 7)]  
Undershoot Magnitude (volts)  
Activity Factor =  
0.01  
Activity Factor =  
0.1  
Activity Factor = 1  
1.78  
1.73  
1.68  
1.63  
1.58  
1.53  
1.48  
1.6  
4.5  
9.5  
20  
0.16  
0.45  
0.95  
2.0  
0.016  
0.045  
0.095  
0.2  
20  
4.2  
0.42  
0.85  
1.9  
20  
8.5  
20  
19  
NOTES:  
1. Under no circumstances should the sum of the Max VCCT and absolute value of the Overshoot/Undershoot  
voltage exceed 1.78 V.  
2. Activity factor of 1 represents the same toggle rate as the 100-MHz clock.  
3. Ringbacks below VCCT cannot be subtracted from overshoots. Lesser undershoot does not allocate longer  
or larger overshoot.  
4. Ringbacks above ground cannot be subtracted from undershoots. Lesser overshoot does not allocate  
longer or larger undershoot.  
5. System designers are encouraged to follow Intel provided AGTL layout guidelines.  
6. All values are specified by design characterization and are not tested.  
7. Tj = 85° C for 1.33 GHz.  
Datasheet  
49  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
4.3  
Non-AGTL Signal Quality Specifications  
Signals driven to the ULV Intel® Celeron® processor should meet signal quality specifications to  
ensure that the processor reads data properly and that incoming signals do not affect the long-term  
reliability of the processor. The overshoot and undershoot specifications for non-AGTL signals are  
shown in Table 34. Ringback must not exceed the CMOS VIH and VIL specification levels in Table  
21.  
Table 34. Non-AGTL Signal Group Overshoot/Undershoot Tolerance at the Processor Core  
Max VCmos + Overshoot/  
Allowed Pulse Duration (ns) [Tj=100C (see Note 6)]  
Undershoot Magnitude (volts)  
Activity Factor = 0.01 Activity Factor = 0.1 Activity Factor = 1  
2.38  
2.33  
2.28  
2.23  
2.18  
2.13  
2.08  
6.5  
13  
29  
60  
60  
60  
60  
0.65  
1.3  
2.9  
6
0.065  
0.13  
0.29  
0.6  
12  
1.2  
26  
2.6  
56  
5.6  
NOTES:  
1. VCMOS(nominal) = 1.5 V.  
2. Under no circumstances should the sum of the Max VCMOS and absolute value of the Overshoot/  
Undershoot voltage exceed 2.38 V.  
3. Activity factor of 1 represents a toggle rate of 33 MHz.  
4. System designers are encouraged to follow Intel provided non-AGTL layout guidelines.  
5. All values are specified by design characterization, and are not tested.  
6. Tj = 85° C for 1.33 GHz.  
4.3.1  
PWRGOOD, VTTPWRGD Signal Quality Specifications  
The processor requires PWRGOOD to be a clean indication that clocks and the power supplies  
(VCC, VCCT, etc.) are stable and within their specifications. Clean implies that the signal will  
remain below V  
and without errors from the time that the power supplies are turned on, until  
IL18  
they come within specification. The signal will then transition monotonically to a high (1.8 V)  
state. The VTTPWRGD signal must also transition monotonically.  
The VTTPWRGD signal is an input to the processor used to determine that the VTT power is  
stable and the VID and BSEL signals should be driven to their final state by the processor. To  
ensure the processor correctly reads this signal, the processor must meet the requirement shown in  
Table 35 while the signal is in its transition region of 300 mV to 900 mV. Also, VTTPWRGD  
should only enter the transition region once, after VTT is at nominal values, for the assertion of the  
signal.  
50  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
4.3.1.1  
VTTPWRGD Noise Parameter Specification  
Table 35. VTTPWRGD Noise Parameter Specification  
Parameter  
Specification  
Amount of noise (glitch)  
Less than 100 mV  
In addition, the VTTPWRGD signal should have reasonable transition time through the transition  
region. A sharp edge on the signal transition will minimize the chance of noise causing a glitch on  
this signal. Intel recommends the following transition time for the VTTPWRGD signal.  
4.3.1.2  
VTTPWRGD Transition Parameter Recommendation  
Table 36. VTTPWRGD Transition Parameter Recommendation  
Parameter  
Recommendation  
Transition time (300 mV to 900 mV)  
Less than or equal to 100 µs  
In addition, the VTT_PWRGD signal should have reasonable transition time through the transition  
region. A sharp edge on the signal transition will minimize the chance of noise causing a glitch on  
this signal. Intel recommends the following transition time for the VTT_PWRGD signal.  
4.3.1.2.1 Transition Region  
The transition region covered by this requirement is 300 mV to 900 mV. Once the VTTPWRGD  
signal is in that voltage range, the processor is more sensitive to noise, which may be present on the  
signal. The transition region when the signal first crosses the 300-mV voltage level and continues  
until the last time it is below 900 mV.  
4.3.1.2.2 Transition Time  
The transition time is defined as the time the signal takes to move through the transition region. A  
100-µs transition time will ensure that the processor receives a good transition edge.  
4.3.1.2.3 Noise  
The signal quality of the VTTPWRGD signal is critical to the correct operation of the processor.  
Every effort should be made to ensure this signal is monotonic in the transition region. If noise or  
glitches are present on this signal, the noise or glitches must be kept to less than 100 mV of a  
voltage drop from the highest voltage level received to that point. This glitch must remain less than  
100 mV until the excursion ends by the voltage returning to the highest voltage previously  
received. See Figure 21 for an example graph of this situation and requirements.  
Datasheet  
51  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Figure 21. VTTPWRGD Noise Specification  
52  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
5.0  
Mechanical Specifications  
5.1  
Surface Mount Micro FC-BGA Package  
The ULV Intel® Celeron® processor is packaged in a surface mount, 479-ball Micro FC-BGA  
package. Mechanical specifications are shown in Table 37. Figure 22 through Figure 24 illustrate  
different views of the package.  
The Micro FC-BGA package may have capacitors placed in the area surrounding the die. Because  
the die-side capacitors are electrically conductive, and only slightly shorter than the die height, care  
should be taken to avoid contacting the capacitors with electrically conductive materials. Doing so  
may short the capacitors, and possibly damage the device or render it inactive. The use of an  
insulating material between the capacitors and any thermal solution should be considered to  
prevent capacitor shorting.  
Table 37. Micro FC-BGA Package Mechanical Specifications  
Symbol  
Parameter  
Overall height, as delivered1  
Min  
Max  
Unit  
A
A2  
b
2.27  
2.77  
mm  
mm  
mm  
mm  
mm  
Die height  
0.854  
0.78  
Ball diameter  
D
Package substrate length  
Package substrate width  
34.9  
34.9  
35.1  
35.1  
E
3
11.18  
10.82  
D1  
E1  
Die length  
Die width  
mm  
mm  
4
3
7.20  
6.85  
4
e
Ball pitch  
1.27  
479  
5
mm  
each  
mm  
mm  
mm  
mm  
mm  
kPa  
g
N
Ball count  
K
K1  
Keep-out outline from edge of package  
Keep-out outline at corner of package  
Capacitor keep-out height  
Package edge to first ball center  
Solder ball coplanarity  
7
K2  
-
0.7  
S
1.625  
0.2  
--  
Pdie  
W
Allowable pressure on the die for thermal solution  
Package weight  
-
689  
4.5  
NOTES:  
1. All dimensions are subject to change.  
2. Overall height as delivered. Values were based on design specifications and tolerances. Final height after  
surface mount depends on OEM motherboard design and SMT process.  
3. Dimension for CPUID = 0x06B1.  
4. Dimension for CPUID = 0x06B4.  
Datasheet  
53  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Figure 22. Micro FC-BGA Package – Top and Bottom Isometric Views  
PACKAGE KEEPOUT  
CAPACITOR AREA  
DIE  
LABEL  
TOP VIEW  
BOTTOM VIEW  
Figure 23. Micro FC-BGA Package – Top and Side Views  
SUBSTRATE KEEPOUT ZONE  
DO NOT CONTACT PACKAGE  
INSIDE THIS LINE  
7 (K1)  
8 places  
0.20  
A
5 (K)  
4 places  
A2  
D1  
35 (D)  
Ø0.78 (b)  
479 places  
K2  
E1  
35 (E)  
PIN A1 CORNER  
NOTE: All dimensions are in millimeters. Values shown are for reference only. See Table 36 for specific details.  
54  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Figure 24. Micro FC-BGA Package – Bottom View  
1.625 (S)  
4 places  
AF  
AD  
AB  
Y
AE  
AC  
AA  
W
U
1.625 (S)  
4 places  
V
T
R
P
N
M
K
L
J
H
G
F
E
D
C
B
A
1
3
13 15 17  
11  
10 12 14 16 18  
5
7
9
19 21 23 25  
25X 1.27  
(e)  
2
4
6
8
22 24 26  
20  
25X 1.27  
(e)  
NOTE: All dimensions are in millimeters. Values shown are for reference only. See Table 39 for specific details.  
5.2  
Signal Listings  
Figure 25 is a top-side view of the ball map of the ULV Intel® Celeron® processor with the voltage  
balls called out. Table 38 lists the signals in ball number order. Table 39 lists the signals in signal  
name order.  
Datasheet  
55  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Figure 25. Ball Map – Top View  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
A
B
A
B
NC  
A10# VREF  
NC  
A17#  
VCCT  
VCCT  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
NC  
A31# BREQ0# A23#  
A27#  
A20#  
A24#  
VSS  
NC  
A35#  
VSS  
A26#  
A34#  
A33#  
A32#  
D0#  
D2#  
D1#  
D15#  
VSS  
D9#  
D4#  
D7#  
VSS  
D5#  
VREF  
D17#  
VCCT  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
D8#  
VSS  
NC  
D10#  
D18#  
VSS  
D11#  
D14#  
D20#  
D13#  
D23#  
D21#  
D25#  
D26#  
D34#  
D31#  
D28#  
D39#  
NC  
VSS  
D24#  
VSS  
D22#  
VSS  
D36#  
VSS  
VCCT  
VSS  
D30#  
NC  
NC  
NC  
VSS  
A16#  
VSS  
A25#  
A28#  
A13#  
VSS  
NC  
VSS  
A21#  
VSS  
A18#  
VSS RESET# VSS  
C
C
A19# VCCT  
A22# VCCT A30# VCCT A29# VCCT BERR# VCCT  
D6#  
VCC  
VSS  
VCC  
VCCT D12# VCCT  
D
D
NC  
VSS  
VCCT  
VSS  
VCC  
VCCT  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCCT  
INIT#  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
D3#  
E
E
VTT  
PWRGD  
NC  
TESTHI  
VSS  
D16#  
VSS  
D19#  
D27#  
D32#  
F
F
NC  
A14#  
G
G
A9#  
A12#  
A4#  
A3#  
A5#  
A15# VCCT  
VCCT  
VSS  
H
H
VSS  
A8#  
VSS  
D29# VREF  
J
J
A7#  
A11# VCCT  
VCCT  
VSS  
VSS  
D33#  
VSS  
D45#  
VSS  
D41#  
VSS  
D57#  
VSS  
D46#  
VSS  
D53#  
VSS  
D38#  
D35#  
D42#  
D48#  
D37#  
NC  
K
K
VSS  
A6#  
VSS  
L
L
REQ4# BNR# REQ1# VCCT  
VCCT  
VSS  
M
N
M
N
TESTLO  
VSS  
VSS  
PLL1  
API#  
VSS  
NC  
RSP#  
VCC  
NC  
VREF PLL2  
VCCT  
VSS  
P
P
NC  
VSS  
NC  
D49#  
D43#  
D47#  
D52#  
D63#  
D59#  
D58#  
D62#  
D61#  
R
R
REQ0# BPRI# VID4  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCCT  
VSS  
D44#  
D51#  
D40#  
D55#  
D54#  
D60#  
D50#  
T
T
REQ2# VSS DEFER# RP#  
U
U
REQ3# HITM# RS2#  
VSS  
VCCT  
VSS  
V
V
RS1#  
VSS LOCK# VCCT  
W
Y
W
Y
TRDY# AERR# DBSY# VSS  
VCCT  
VSS  
DRDY# VSS  
RS0#  
TESTLO  
AA  
AB  
AC  
AD  
AE  
AF  
AA  
AB  
AC  
AD  
AE  
AF  
VREF  
VID0  
HIT#  
VSS  
ADS# VCCT  
VCC  
VSS  
VCC  
TDI  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
TDO  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
NC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCCT  
VSS  
PWR  
AP0#  
D56# VREF  
GOOD  
BCLK  
VID1 A20M# VCCT  
VCCT DEP3# VSS DEP6#  
BCLK#  
CLKREF  
/
CMOS  
REF  
VSS  
SMI#  
NC  
VCCT IGNNE# TCK  
VCCT  
VCCT LINT0 NCTRL PICD1 VCCT PICD0 VCCT BPM 1# BPM 0#  
NC  
DEP7# DEP1# DEP5#  
RTT  
IMPEDP  
VSS  
VID2 VCCT STPCLK# VSS  
VSS  
NC  
VSS  
NC  
VSS BSEL0 VSS  
CMOS  
LINT1  
VSS  
VSS  
NC  
VCCT  
NC  
VSS  
BP3#  
VSS PRDY# VSS DEP0# DEP2# VSS  
EDGE  
CTRLP  
THRMDATHRMDC  
VCCT VCCT  
VID3 IERR# FLUSH# FERR# TMS DPSLP# VREF BSEL1 TESTHI  
TRST#  
PREQ# PICCLK VREF BP2# BINIT# DEP4# VSS  
VSS  
REF  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
VCC  
VSS VCCT Other  
NOTE: A2 pin is de-populated on Micro-FCPGA package.  
56  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Table 38. Signal Listing in Order by Ball Number (Sheet 1 of 4)  
No.  
Signal Name  
No.  
Signal Name  
No.  
Signal Name  
No.  
Signal Name  
A3  
A4  
A10#  
VREF  
NC  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
C1  
VSS  
D4#  
D7  
D8  
VSS  
VCC  
VSS  
E22  
E23  
E24  
E25  
E26  
F1  
VSS  
D16#  
D23#  
VSS  
D19#  
NC  
A5  
VSS  
D9  
A6  
A31#  
BREQ0#  
A23#  
A27#  
A24#  
NC  
D17#  
VSS  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
E1  
VCC  
VSS  
A7  
A8  
D18#  
D14#  
D24#  
VSS  
VCC  
VSS  
A9  
F2  
VSS  
A14#  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
D21#  
D36#  
D27#  
A9#  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
B1  
VCC  
VSS  
F3  
F4  
A35#  
A26#  
A33#  
A32#  
D0#  
NC  
VCC  
VSS  
F5  
C2  
A16#  
A28#  
NC  
F6  
C3  
VCC  
VSS  
F7  
C4  
F8  
C5  
VCCT  
A19#  
VCCT  
A22#  
VCCT  
A30#  
VCCT  
A29#  
VCCT  
BERR#  
VCCT  
D6#  
VCC  
VSS  
F9  
D2#  
C6  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
F25  
F26  
G1  
D15#  
D9#  
C7  
VCC  
D3#  
C8  
D7#  
C9  
D13#  
D22#  
NC  
VREF  
D8#  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
D1  
D10#  
D11#  
VSS  
NC  
E2  
TESTHI  
VTTPWRGD  
VCCT  
VCC  
VCCT  
VCC  
VSS  
E3  
VCCT  
NC  
E4  
E5  
B2  
VSS  
VCCT  
D12#  
VCCT  
D5#  
E6  
B3  
A25#  
VSS  
E7  
B4  
E8  
B5  
A17#  
VSS  
E9  
VCC  
VSS  
B6  
VCCT  
NC  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
B7  
A21#  
VSS  
VCC  
VSS  
B8  
VSS  
B9  
A20#  
VSS  
D20#  
VSS  
VCC  
VSS  
G2  
A5#  
B10  
B11  
B12  
B13  
G3  
A15#  
VCCT  
VCC  
VSS  
A18#  
VSS  
D30#  
NC  
VCC  
VSS  
G4  
G5  
A34#  
D2  
VSS  
VCC  
G6  
Datasheet  
57  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Table 38. Signal Listing in Order by Ball Number (Sheet 2 of 4)  
No.  
Signal Name  
No.  
Signal Name  
No.  
Signal Name  
No.  
Signal Name  
B14  
B15  
B16  
B17  
G25  
G26  
H1  
VSS  
RESET#  
VSS  
D1#  
D3  
D4  
A13#  
VSS  
E18  
E19  
E20  
E21  
P23  
P24  
P25  
P26  
P26  
R1  
VSS  
VCC  
G21  
G22  
G23  
G24  
V2  
VCC  
VSS  
D5  
VCCT  
VCC  
VCCT  
NC  
VSS  
VCCT  
D25#  
VSS  
D6  
VCC  
VSS  
D32#  
A12#  
VSS  
VSS  
A8#  
L4  
VSS  
L5  
D49#  
D41#  
NC  
V3  
LOCK#  
VCCT  
VSS  
L6  
VSS  
V4  
H2  
L21  
L21  
L22  
L23  
L24  
L25  
L26  
M1  
VCC  
VCC  
VSS  
V5  
H2  
NC  
V5  
VSS  
H3  
REQ0#  
BPRI#  
VID4  
VSS  
V6  
VCC  
H4  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
D26#  
D29#  
VREF  
A4#  
VCCT  
D28#  
VSS  
R2  
V21  
V22  
V23  
V24  
V25  
V26  
W1  
W2  
W3  
W4  
W5  
W6  
W21  
W22  
W23  
W24  
W25  
W26  
Y1  
VSS  
H5  
R3  
VCC  
H6  
R4  
VSS  
H21  
H22  
H23  
H24  
H25  
H26  
J1  
D42#  
TESTLO  
VSS  
R5  
VCC  
D63#  
D46#  
D55#  
TRDY#  
AERR#  
DBSY#  
VSS  
R6  
VSS  
M2  
R21  
R22  
R23  
R24  
R25  
R26  
T1  
VCC  
M3  
VSS  
VSS  
M4  
VSS  
VCCT  
D43#  
VSS  
M5  
RSP#  
VCC  
VSS  
M6  
J2  
A7#  
M21  
M22  
M23  
M24  
M25  
M26  
N1  
D44#  
REQ2#  
VSS  
VCC  
J3  
A11#  
VCCT  
VCC  
VSS  
VCC  
VSS  
VCCT  
D34#  
VSS  
D38#  
A3#  
VCC  
VSS  
VSS  
J4  
T2  
VCC  
J5  
D39#  
D45#  
D48#  
VREF  
PLL2  
PLL1  
NC  
T3  
DEFER#  
RP#  
VSS  
J6  
T4  
VCCT  
D59#  
VSS  
J21  
J22  
J23  
J24  
J25  
J26  
K1  
T5  
VSS  
T6  
VCC  
N2  
T21  
T22  
T23  
T24  
T25  
T26  
U1  
VSS  
D54#  
DRDY#  
VSS  
N3  
VCC  
N4  
VSS  
Y2  
N5  
VCC  
VSS  
D47#  
D57#  
D51#  
REQ3#  
HITM#  
RS2#  
VSS  
Y3  
RS0#  
TESTLO  
VSS  
N6  
Y4  
K2  
VSS  
A6#  
N21  
N22  
N23  
N24  
N25  
N26  
VCC  
VSS  
Y5  
K3  
Y6  
VCC  
K4  
VSS  
VSS  
VCC  
VSS  
VCCT  
NC  
U2  
Y21  
Y22  
Y23  
Y24  
VSS  
K5  
U3  
VCC  
K6  
VSS  
U4  
VSS  
K21  
D37#  
U5  
VCC  
D58#  
58  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Table 38. Signal Listing in Order by Ball Number (Sheet 3 of 4)  
No.  
Signal Name  
No.  
Signal Name  
No.  
Signal Name  
No.  
Signal Name  
K22  
K23  
VCC  
VSS  
P1  
NC  
VSS  
API#  
NC  
U6  
VSS  
VCC  
Y25  
Y26  
D53#  
D60#  
P2  
U21  
K24  
D31#  
D33#  
D35#  
REQ4#  
BNR#  
REQ1#  
VCC  
P3  
U22  
VSS  
AA1  
VREF  
K25  
P4  
U23  
VCCT  
D52#  
VSS  
AA2  
HIT#  
K26  
P5  
NC  
U24  
AA3  
ADS#  
L1  
P6  
VCC  
VSS  
VCC  
VCC  
VSS  
D61#  
D56#  
VREF  
BCLK  
VID1  
A20M#  
VCCT  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCCT  
DEP3#  
VSS  
U25  
AA4  
VCCT  
VCC  
L2  
P21  
U26  
D40#  
RS1#  
TDO  
AA5  
L3  
P22  
V1  
AA6  
VSS  
AA7  
AA8  
AA9  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AA23  
AA24  
AA25  
AA26  
AB1  
AB2  
AB3  
AB4  
AB5  
AB6  
AB7  
AB8  
AB9  
AB10  
AB22  
AB23  
AB24  
AB25  
AB26  
AC1  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AE1  
AE26  
AF1  
VSS  
VSS  
VCCT  
NC  
VCCT  
VCCT  
VID3  
VCC  
AF2  
VSS  
VCCT  
LINT0  
NCTRL  
PICD1  
VCCT  
PICD0  
VCCT  
BPM1#  
BPM0#  
NC  
AF3  
VCC  
AF4  
IERR#  
FLUSH#  
FERR#  
TMS  
VSS  
AF5  
VCC  
AC2  
AF6  
VSS  
AC3  
AF7  
VCC  
AC4  
AF8  
DPSLP#  
VREF  
VSS  
AC5  
AF9  
VCC  
AC6  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
AF22  
AF23  
AF24  
AF25  
AF26  
BSEL1  
TESTHI  
CMOSREF  
THRMDA  
THRMDC  
TRST#  
EDGECTRLP  
NC  
VSS  
AC7  
VCC  
AC8  
VSS  
AC9  
DEP7#  
DEP1#  
DEP5#  
VSS  
VCC  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AC21  
AC22  
AC23  
AC24  
AC25  
VSS  
VCCT  
D62#  
VSS  
AE2  
VID2  
AE3  
VCCT  
STPCLK#  
VSS  
NC  
D50#  
VID0  
VSS  
AE4  
PREQ#  
PICCLK  
VREF  
AE5  
AE6  
INIT#  
VSS  
AP0#  
PWRGOOD  
VSS  
AE7  
BP2#  
AE8  
NC  
BINIT#  
DEP4#  
VSS  
AE9  
VSS  
VCC  
AE10  
AE11  
AE12  
AE13  
AE14  
NC  
VSS  
VSS  
VSS  
VCC  
BSEL0  
VSS  
VSS  
VCC  
LINT1  
Datasheet  
59  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Table 38. Signal Listing in Order by Ball Number (Sheet 4 of 4)  
No.  
Signal Name  
No.  
Signal Name  
No.  
Signal Name  
No.  
Signal Name  
AB11  
VSS  
AC26  
DEP6#  
AE15  
VSS  
BCLK#/  
CLKREF  
AB12  
VCC  
AD1  
AE16  
RTTIMPEDP  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
AD8  
AD9  
AD10  
VSS  
SMI#  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
VSS  
VCCT  
VSS  
NC  
CMOSREF  
VCCT  
TDI  
BP3#  
VSS  
PRDY#  
VSS  
VCCT  
IGNNE#  
TCK  
DEP0#  
DEP2#  
Table 39. Signal Listing in Order by Signal Name (Sheet 1 of 3)  
No.  
Signal Name  
Signal Buffer Type  
No.  
Signal Name  
Signal Buffer Type  
K1  
J1  
A3#  
A4#  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AF23  
L2  
BINIT#  
BNR#  
BP2#  
AGTL I/O  
AGTL I/O  
G2  
K3  
J2  
A5#  
AF22  
AE20  
AD22  
AD21  
R2  
AGTL I/O  
A6#  
BP3#  
AGTL I/O  
A7#  
BPM0#  
BPM1#  
BPRI#  
BREQ0#  
BSEL0  
BSEL1  
CMOSREF  
CMOSREF  
D0#  
AGTL I/O  
H3  
G1  
A3  
J3  
A8#  
AGTL I/O  
A9#  
AGTL Input  
AGTL I/O  
A10#  
A11#  
A12#  
A13#  
A14#  
A15#  
A16#  
A17#  
A18#  
A19#  
A20#  
A21#  
A22#  
A23#  
A24#  
A7  
AE12  
AF10  
AD5  
AF12  
A16  
B17  
A17  
D23  
B19  
C20  
C16  
A20  
A22  
A19  
3.3 V CMOS Output  
3.3 V CMOS Output  
CMOS Reference Voltage  
CMOS Reference Voltage  
AGTL I/O  
H1  
D3  
F3  
G3  
C2  
B5  
B11  
C6  
B9  
B7  
C8  
A8  
A10  
D1#  
AGTL I/O  
D2#  
AGTL I/O  
D3#  
AGTL I/O  
D4#  
AGTL I/O  
D5#  
AGTL I/O  
D6#  
AGTL I/O  
D7#  
AGTL I/O  
D8#  
AGTL I/O  
D9#  
AGTL I/O  
60  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Table 39. Signal Listing in Order by Signal Name (Sheet 2 of 3)  
No.  
Signal Name  
Signal Buffer Type  
No.  
Signal Name  
Signal Buffer Type  
B3  
A25#  
A26#  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
1.5V CMOS Input  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
Clock Input  
Clock Input  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
A23  
A24  
C18  
D24  
B24  
A18  
E23  
B21  
B23  
E26  
C24  
F24  
D10#  
D11#  
AGTL I/O  
AGTL I/O  
A13  
A9  
A27#  
D12#  
AGTL I/O  
C3  
A28#  
D13#  
AGTL I/O  
C12  
C10  
A6  
A29#  
D14#  
AGTL I/O  
A30#  
D15#  
AGTL I/O  
A31#  
D16#  
AGTL I/O  
A15  
A14  
B13  
A12  
AC3  
AA3  
W2  
A32#  
D17#  
AGTL I/O  
A33#  
D18#  
AGTL I/O  
A34#  
D19#  
AGTL I/O  
A35#  
D20#  
AGTL I/O  
A20M#  
ADS#  
AERR#  
AP0#  
AP1#  
BCLK  
BCLK#/CLKREF  
BERR#  
D29#  
D21#  
AGTL I/O  
D25  
E24  
B25  
G24  
H24  
F26  
D22#  
AGTL I/O  
D23#  
AGTL I/O  
AB3  
P3  
D24#  
AGTL I/O  
D25#  
AGTL I/O  
AC1  
AD1  
C14  
H25  
C26  
K24  
G26  
K25  
J24  
K26  
F25  
N26  
J26  
M24  
U26  
P25  
L26  
R24  
R26  
M25  
V25  
T24  
D26#  
AGTL I/O  
D27#  
AGTL I/O  
L24  
D28#  
AGTL I/O  
AF24  
AD26  
AC26  
AD24  
Y1  
DEP4#  
DEP5#  
DEP6#  
DEP7#  
DRDY#  
DPSLP#  
EDGECTRLP  
FERR#  
FLUSH#  
HIT#  
AGTL I/O  
D30#  
AGTL I/O  
D31#  
AGTL I/O  
D32#  
AGTL I/O  
D33#  
AGTL I/O  
D34#  
AF8  
AF16  
AF6  
AF5  
AA2  
U2  
1.5 V CMOS Input  
AGTL Control  
1.5 V Open Drain Output  
1.5 V CMOS Input  
AGTL I/O  
D35#  
D36#  
D37#  
D38#  
D39#  
HITM#  
IERR#  
IGNNE#  
INIT#  
AGTL I/O  
D40#  
AF4  
AD9  
AE6  
AD15  
V3  
1.5 V Open Drain Output  
1.5 V CMOS Input  
1.5 V CMOS Input  
1.5 V CMOS Input  
AGTL I/O  
D41#  
D42#  
D43#  
INTR/LINT0  
LOCK#  
NMI/LINT1  
NCTRL  
PICCLK  
D44#  
D45#  
AE14  
AD16  
AF20  
1.5 V CMOS Input  
AGTL impedance control  
1.8 V APIC Clock Input  
D46#  
D47#  
Datasheet  
61  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Table 39. Signal Listing in Order by Signal Name (Sheet 3 of 3)  
No.  
Signal Name  
Signal Buffer Type  
No.  
Signal Name  
Signal Buffer Type  
M26  
P24  
D48#  
D49#  
AGTL I/O  
AGTL I/O  
AD19  
AD17  
N3  
PICD0  
PICD1  
1.5 V Open Drain I/O  
1.5 V Open Drain I/O  
PLL Analog Voltage  
PLL Analog Voltage  
AGTL Output  
1.5 V CMOS Input  
1.8 V CMOS Input  
AGTL I/O  
AA26  
T26  
D50#  
AGTL I/O  
PLL1  
D51#  
AGTL I/O  
N2  
PLL2  
U24  
Y25  
D52#  
AGTL I/O  
AE22  
AF19  
AB4  
R1  
PRDY#  
PREQ#  
PWRGOOD  
REQ0#  
REQ1#  
REQ2#  
REQ3#  
REQ4#  
RESET#  
RP#  
D53#  
AGTL I/O  
W26  
V26  
D54#  
AGTL I/O  
D55#  
AGTL I/O  
AB25  
T25  
D56#  
AGTL I/O  
L3  
AGTL I/O  
D57#  
AGTL I/O  
T1  
AGTL I/O  
Y24  
D58#  
AGTL I/O  
U1  
AGTL I/O  
W24  
Y26  
D59#  
AGTL I/O  
L1  
AGTL I/O  
D60#  
AGTL I/O  
B15  
T4  
AGTL Input  
AB24  
AA24  
V24  
D61#  
AGTL I/O  
AGTL I/O  
D62#  
AGTL I/O  
Y3  
RS0#  
AGTL I/O  
D63#  
AGTL I/O  
V1  
RS1#  
AGTL I/O  
W3  
DBSY#  
DEFER#  
DEP0#  
DEP1#  
DEP2#  
DEP3#  
TCK  
AGTL I/O  
U3  
RS2#  
AGTL I/O  
T3  
AGTL Input  
AGTL I/O  
M5  
RSP#  
AGTL Input  
AE24  
AD25  
AE25  
AC24  
AD10  
AD7  
AD11  
E2  
AE16  
AD3  
AE4  
RTTIMPEDP  
SMI#  
AGTL Pull-up Control  
1.5 V CMOS Input  
1.5 V CMOS Input  
AGTL I/O  
AGTL I/O  
STPCLK#  
AGTL I/O  
1.5V JTAG Clock Input  
JTAG Input  
JTAG Output  
Test Use Only  
Test Use Only  
Test Use Only  
Test Use Only  
Thermal Diode Anode  
AC2  
AE2  
AF3  
R3  
VID1  
VID2  
Voltage Identification  
Voltage Identification  
TDI  
TDO  
VID3  
Voltage Identification  
TESTHI  
TESTHI  
TESTLO  
TESTLO  
THERMDA  
VID4  
Voltage Identification  
AF11  
M1  
A4  
VREF  
VREF  
VREF  
VREF  
AGTL Reference Voltage  
AGTL Reference Voltage  
AGTL Reference Voltage  
AGTL Reference Voltage  
A21  
N1  
Y4  
AF13  
AF9  
Thermal Diode  
Cathode  
AF14  
THERMDC  
AF21  
VREF  
AGTL Reference Voltage  
AF7  
W1  
TMS  
TRDY#  
TRST#  
VID0  
JTAG Input  
AGTL I/O  
AA1  
AB26  
H26  
E3  
VREF  
VREF  
AGTL Reference Voltage  
AGTL Reference Voltage  
AGTL Reference Voltage  
VCCT power good signal  
AF15  
AB1  
JTAG Input  
VREF  
Voltage Identification  
VTTPWRGD  
62  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Table 40. Voltage and No-Connect Ball Locations  
Signal  
Name  
Pin/Ball Numbers  
A2, A5, A11, B1, C1, C4, C22, D1, D26, E1, F1, L5, N4, N24, P1, P4, P5, P26, AD4, AD13, AD23,  
AE8, AE10, AF17, AF18  
NC  
D6, D8, D10, D12, D14, D16, D18, D20, D22, E5, E7, E9, E11, E13, E15, E17, E19, E21, F6, F8,  
F10, F12, F14, F16, F18, F20, F22, G5, G21, H6, H22, J5, J21, K6, K22, L21, M6, M22, N5, N21,  
P6, P22, R5, R21, T6, T22, U5, U21, V6, V22, W5, W21, Y6, Y22, AA5, AA7, AA9, AA11, AA13,  
AA15, AA17, AA19, AA21, AB6, AB8, AB10, AB12, AB14, AB16, AB18, AB20, AB22, AC5,  
AC7, AC9, AC11, AC13, AC15, AC17, AC19, AC21  
VCC  
A26, C5, C7, C9, C11, C13, C15, C17, C19, C21, D5, E4, E6, G4, G23, J4, J23, L4, L23, N23,  
R23, U23, V4, W23, AA4, AA23, AC4, AC23, AD6, AD8, AD12, AD14, AD18, AD20, AE3, AE18,  
AF1, AF2  
VCCT  
A25, B2, B4, B6, B8, B10, B12, B14, B16, B18, B20, B22, B26, C23, C25, D2, D4, D7, D9, D11,  
D13, D15, D17, D19, D21, E8, E10, E12, E14, E16, E18, E20, E22, E25, F2, F4, F5, F7, F9, F11,  
F13, F15, F17, F19, F21, F23, G6, G22, G25, H2, H4, H5, H21, H23, J6, J22, J25, K2, K4, K5,  
K21, K23, L6, L22, L25, M2, M3, M4, M21, M23, N6, N22, N25, P2, P21, P23, R4, R6, R22, R25,  
T2, T5, T21, T23, U4, U6, U22, U25, V2, V5, V21, V23, W4, W6, W22, W25, Y2, Y5, Y21, Y23,  
AA6, AA8, AA10, AA12, AA14, AA16, AA18, AA20, AA22, AA25, AB2, AB5, AB7, AB9, AB11,  
AB13, AB15, AB17, AB19, AB21, AB23, AC6, AC8, AC10, AC12, AC14, AC16, AC18, AC20,  
AC22, AC25, AD2, AE1, AE5, AE7, AE9, AE11, AE13, AE15, AE17, AE19, AE21, AE23, AE26,  
AF25, AF26  
VSS  
NOTE: A2 pin is de-populated on the Micro-FCPGA package.  
Datasheet  
63  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
This page intentionally left blank.  
64  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
6.0  
V Thermal Specifications  
CC  
In order to achieve proper cooling of the processor, a thermal solution (e.g., heat spreader, heat  
pipe, or other heat transfer system) must make firm contact to the exposed processor die. The  
processor die must be clean before the thermal solution is attached or the processor may be  
damaged.  
Table 41 provides the Thermal Design Power (TDP) dissipation and the minimum and maximum  
TJ temperatures for the ULV Intel® Celeron® processor. The thermal solution should be designed  
to ensure the junction temperature never exceeds the specified value while operating at the  
Thermal Design Power. Additionally, a secondary fail-safe mechanism in hardware should be  
provided to shutdown the processor at 101° C to prevent permanent damage, as described in  
Section 3.1.3. TDP is a thermal design power specification based on the worst case power  
dissipation of the processor while executing publicly available software under normal operating  
conditions at nominal voltages. Contact your Intel Field Sales Representative for further  
information.  
Table 41. Power Specifications for the Ultra-Low Voltage Intel® Celeron® Processor  
Thermal  
Thermal  
Symbol  
Core Frequency/Voltage  
Design Power Design Power Unit  
Notes  
(typ)  
(max)  
650 MHz and 1.10 V  
400 MHz and 0.95 V  
7.00  
3.40  
8.30  
4.23  
TDP  
W
At 100° C, 1, 4  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
Auto Halt power at  
1.10 V  
0.95 V  
1.9  
1.0  
PAH  
W
W
At 50° C, 2  
At 50° C, 2  
Quick Start power at  
1.10 V  
0.95 V  
1.7  
0.9  
PQS  
Deep Sleep power at  
1.10 V  
0.95 V  
1.6  
0.7  
PDSLP  
W
At 35° C, 2  
3
TJ  
Junction Temperature  
0
100  
° C  
NOTES:  
1. TDP (typ) is defined as the worst case power dissipated by the processor while executing publicly  
available software under normal operating conditions at nominal voltages that meet the load line  
specifications. The TDP number shown is a specification based on Icc (maximum) and indirectly tested by  
Icc (maximum) testing. The Intel TDP specification is a recommended design point and is not  
representative of the absolute maximum power the processor may dissipate under worst case conditions.  
2. Not 100% tested. These power specifications are determined by characterization of the processor currents  
at higher temperatures and extrapolating the values for the temperature indicated.  
3. TJ is measured with the on-die thermal diode.  
4. TDP (max) is defined as the worst case power dissipated by the processor while executing a worst case  
instruction mix, operating at typical Vcc and under normal operating conditions.  
Datasheet  
65  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
6.1  
Thermal Diode  
The ULV Intel® Celeron® processor has an on-die thermal diode that should be used to monitor the  
die temperature (TJ). A thermal sensor located on the motherboard, or a stand-alone measurement  
kit, should monitor the die temperature of the processor for thermal management or  
instrumentation purposes. Tables 42 and 43 provide the diode interface and specifications.  
Note: The reading of the thermal sensor connected to the thermal diode will not necessarily reflect the  
temperature of the hottest location on the die. This is due to inaccuracies in the thermal sensor, on-  
die temperature gradients between the location of the thermal diode and the hottest location on the  
die, and time based variations in the die temperature measurement. Time based variations may  
occur when the sampling rate of the thermal diode (by the thermal sensor) is slower than the rate at  
which the TJ temperature may change.  
Table 42. Thermal Diode Interface  
Signal Name  
Pin/Ball Number  
Signal Description  
THERMDA  
THERMDC  
AF13  
AF14  
Thermal diode anode  
Thermal diode cathode  
Table 43. Thermal Diode Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
n
n
Diode Ideality Factor (5-150 µA)  
Diode Ideality Factor (5-300 µA)  
1.0011  
1.0003  
1.0067  
1.0091  
1.0122  
1.0178  
1, 2, 3, 4, 6  
1, 2, 3, 5, 6  
NOTES:  
1. Intel does not support or recommend operation of the thermal diode under reverse bias. Intel does not  
support or recommend operation of the thermal diode when the processor power supplies are not within  
their specified tolerance range.  
2. Characterized at 100° C.  
3. Not 100% tested. Specified by design/characterization.  
4. Specified for Forward Bias Current = 5 µA (min) and 150 µA (max).  
5. Specified for Forward Bias Current = 5 µA (min) and 300 µA (max).  
6. The ideality factor, n, represents the deviation from ideal diode behavior as exemplified by the diode  
equation: Where Is = saturation current, q = electronic charge, Vd = voltage across the diode,  
k = Boltzmann Constant, and T = absolute temperature (Kelvin).  
IFW = IS ⋅ (eqVD – 1)  
66  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
7.0  
Processor Initialization and Configuration  
7.1  
Description  
The ULV Intel® Celeron® processor has some configuration options that are determined by  
hardware and some that are determined by software. The processor samples its hardware  
configuration at reset on the active-to-inactive transition of RESET#. The P6 Family of Processors  
Developers Manual describes these configuration options. Some of the configuration options for  
the ULV Intel Celeron processor are described in the remainder of this section.  
7.1.1  
Quick Start Enable  
Quick Start enabling is mandatory on the ULV Intel Celeron processor by strapping A15# low.  
When the STPCLK# signal is asserted it will enter the Quick Start state when A15# is sampled  
active on the RESET# signal’s active-to-inactive transition. The Quick Start state supports snoops  
from the bus priority device but it does not support symmetric master snoops nor is the latching of  
interrupts supported. A “1” in bit position 5 of the Power-on Configuration register indicates that  
the Quick Start state has been enabled.  
7.1.2  
7.1.3  
System Bus Frequency  
The current generation ULV Intel Celeron processor will only function with a system bus  
frequency of 100 MHz.  
APIC Enable  
The processor APIC must be hardware enabled by pulling the PICD[1:0] signals separately up to  
1.5 V and supplying an active PICCLK to the processor. Software may be used to disable the APIC  
if it is not being used, after PICD[1:0] are sampled high when RESET# is deasserted and the  
processor has started executing instructions.  
7.2  
Clock Frequencies and Ratios  
The ULV Intel Celeron processor uses a clock design in which the bus clock is multiplied by a ratio  
to produce the processor’s internal (or core) clock. The ratio used is programmed into the processor  
during manufacturing. The bus ratio programmed into the processor is visible in bit positions 22 to  
25 and 27 of the Power-on Configuration register. Table 23 shows the 5-bit codes in the Power-on  
Configuration register and their corresponding bus ratios.  
Datasheet  
67  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
This page intentionally left blank.  
68  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
8.0  
Processor Interface  
8.1  
Alphabetical Signal Reference  
8.1.1  
A[35:3]# (I/O – AGTL)  
The A[35:3]# (Address) signals define a 236-byte physical memory address space. When ADS# is  
active, these signals transmit the address of a transaction; when ADS# is inactive, these signals  
transmit transaction information. These signals must be connected to the appropriate pins/balls of  
both agents on the system bus. The A[35:24]# signals are protected with the AP1# parity signal,  
and the A[23:3]# signals are protected with the AP0# parity signal.  
On the active-to-inactive transition of RESET#, each processor bus agent samples A[35:3]# signals  
to determine its power-on configuration. See P6 Family of Processors Developers Manual for  
details.  
8.1.2  
8.1.3  
A20M# (I - 1.5V Tolerant)  
If the A20M# (Address-20 Mask) input signal is asserted, the processor masks physical address bit  
20 (A20#) before looking up a line in any internal cache and before driving a read/write transaction  
on the bus. Asserting A20M# emulates the 8086 processor's address wrap-around at the 1-Mbyte  
boundary. Assertion of A20M# is only supported in Real mode.  
ADS# (I/O - AGTL)  
The ADS# (Address Strobe) signal is asserted to indicate the validity of a transaction address on  
the A[35:3]# signals. Both bus agents observe the ADS# activation to begin parity checking,  
protocol checking, address decode, internal snoop or deferred reply ID match operations associated  
with the new transaction. This signal must be connected to the appropriate pins/balls on both agents  
on the system bus.  
8.1.4  
AERR# (I/O - AGTL)  
The AERR# (Address Parity Error) signal is observed and driven by both system bus agents, and if  
used, must be connected to the appropriate pins/balls of both agents on the system bus. AERR#  
observation is optionally enabled during power-on configuration; if enabled, a valid assertion of  
AERR# aborts the current transaction.  
If AERR# observation is disabled during power-on configuration, a central agent may handle an  
assertion of AERR# as appropriate to the error handling architecture of the system.  
8.1.5  
AP[1:0]# (I/O - AGTL)  
The AP[1:0]# (Address Parity) signals are driven by the request initiator along with ADS#,  
A[35:3]#, REQ[4:0]# and RP#. AP1# covers A[35:24]#. AP0# covers A[23:3]#. A correct parity  
signal is high if an even number of covered signals is low and low if an odd number of covered  
signals are low. This allows parity to be high when all the covered signals are high. AP[1:0]#  
should be connected to the appropriate pins/balls on both agents on the system bus.  
Datasheet  
69  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
8.1.6  
BCLK, BCLK# (I)  
The BCLK and BCLK# signals determines the system bus frequency.  
On systems with Differential Clocking, both system bus agents must receive these signals to drive  
their outputs and latch their inputs on the BCLK rising edge and BCLK# falling edge. All external  
timing parameters are specified with respect to the crossing point of the BCLK rising edge and  
BCLK# falling edge.  
On systems with Single Ended Clocking, both system bus agents must receive the BCLK signal to  
drive their outputs and latch their inputs on the BCLK rising edge. All external timing parameters  
are specified with respect to the BCLK signal. The BCLK# signal functions as the CLKREF input.  
8.1.7  
BERR# (I/O - AGTL)  
The BERR# (Bus Error) signal is asserted to indicate an unrecoverable error without a bus protocol  
violation. It may be driven by either system bus agent and must be connected to the appropriate  
pins/balls of both agents, if used. However, the ULV Intel® Celeron® processors do not observe  
assertions of the BERR# signal.  
BERR# assertion conditions are defined by the system configuration. Configuration options enable  
the BERR# driver as follows:  
Enabled or disabled  
Asserted optionally for internal errors along with IERR#  
Asserted optionally by the request initiator of a bus transaction after it observes an error  
Asserted by any bus agent when it observes an error in a bus transaction  
8.1.8  
BINIT# (I/O - AGTL)  
The BINIT# (Bus Initialization) signal may be observed and driven by both system bus agents and  
must be connected to the appropriate pins/balls of both agents, if used. If the BINIT# driver is  
enabled during the power-on configuration, BINIT# is asserted to signal any bus condition that  
prevents reliable future information.  
If BINIT# is enabled during power-on configuration, and BINIT# is sampled asserted, all bus state  
machines are reset and any data which was in transit is lost. All agents reset their rotating ID for  
bus arbitration to the state after reset, and internal count information is lost. The L1 and L2 caches  
are not affected.  
If BINIT# is disabled during power-on configuration, a central agent may handle an assertion of  
BINIT# as appropriate to the Machine Check Architecture (MCA) of the system.  
70  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
8.1.9  
BNR# (I/O - AGTL)  
The BNR# (Block Next Request) signal is used to assert a bus stall by any bus agent that is unable  
to accept new bus transactions. During a bus stall, the current bus owner cannot issue any new  
transactions.  
Since multiple agents may need to request a bus stall simultaneously, BNR# is a wired-OR signal  
that must be connected to the appropriate pins/balls of both agents on the system bus. In order to  
avoid wire-OR glitches associated with simultaneous edge transitions driven by multiple drivers,  
BNR# is activated on specific clock edges and sampled on specific clock edges.  
8.1.10  
8.1.11  
BP[3:2]# (I/O - AGTL)  
The BP[3:2]# (Breakpoint) signals are the System Support group Breakpoint signals. They are  
outputs from the processor that indicate the status of breakpoints.  
BPM[1:0]# (I/O - AGTL)  
The BPM[1:0]# (Breakpoint Monitor) signals are breakpoint and performance monitor signals.  
They are outputs from the processor that indicate the status of breakpoints and programmable  
counters used for monitoring processor performance.  
8.1.12  
8.1.13  
BPRI# (I - AGTL)  
The BPRI# (Bus Priority Request) signal is used to arbitrate for ownership of the system bus. It  
must be connected to the appropriate pins/balls on both agents on the system bus. Observing  
BPRI# active (as asserted by the priority agent) causes the processor to stop issuing new requests,  
unless such requests are part of an ongoing locked operation. The priority agent keeps BPRI#  
asserted until all of its requests are completed and then releases the bus by deasserting BPRI#.  
BREQ0# (I/O - AGTL)  
The BREQ0# (Bus Request) signal is a processor Arbitration Bus signal. The processor indicates  
that it wants ownership of the system bus by asserting the BREQ0# signal.  
During power-up configuration, the central agent must assert the BREQ0# bus signal. The  
processor samples BREQ0# on the active-to-inactive transition of RESET#. Optionally, this signal  
may be grounded with a 10-resistor.  
8.1.14  
BSEL[1:0] (O – 3.3V Tolerant)  
The BSEL[1:0] (Select Processor System Bus Speed) signal is used to configure the processor for  
the system bus frequency. The chipset and system clock generator also uses the BSEL signals. The  
VTTPWRGD signal informs the processor to output the BSEL signals. During power up the BSEL  
signals will be indeterminate for a small period of time. The chipset and clock generator should not  
sample the BSEL signals until the VTTPWRGD signal is asserted. The assertion of the  
VTTPWRGD signal indicates that the BSEL signals are stable and driven to a final state by the  
processor. Refer to Figure 12 for the timing relationship between the BSEL and VTTPWRGD  
signals.  
Datasheet  
71  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Table 44 shows the encoding scheme for BSEL[1:0]. The only supported system bus frequency for  
the ULV Intel® Celeron® processor is 100 MHz. If another frequency is used, then the processor is  
not ensured to function properly.  
Table 44. BSEL[1:0] Encoding  
BSEL[1:0]  
System Bus Frequency  
01  
100 MHz  
8.1.15  
8.1.16  
CLKREF (Analog)  
The CLKREF (System Bus Clock Reference) signal provides a reference voltage to define the trip  
point for the BCLK signal on platforms supporting Single Ended Clocking. This signal should be  
connected to a resistor divider to generate 1.25 V from the 2.5-V supply. A minimum of 1-µF  
decoupling capacitance is recommended on CLKREF. On systems with Differential Clocking, the  
CLKREF pin functions as the BCLK# input.  
CMOSREF (Analog)  
The CMOSREF (CMOS Reference Voltage) signal provides a DC level reference voltage for the  
CMOS input buffers. CMOSREF must be generated from a stable 1.5V supply (815 chipset  
family), 2.5 V (440MX chipset family) and must meet the VCMOSREF specification. The same  
1.5 V (815 chipset family) or 2.5 V (440MX chipset family) supply should be used to power the  
chipset CMOS I/O buffers that drive the CMOS signals. The Thevenin equivalent impedance of the  
VCMOSREF generation circuits must be less than 0.5 K /1 K (i.e., top resistor 500 , bottom  
resistor 1 K ) for the Intel 815 Chipset family. The Thevenin equivalent impedance of the  
VCMOSREF generation circuits must be less than 0.75 K /0.5 K (i.e., top resistor 750 ,  
bottom resistor 500 ) for the Intel 440MX chipset family.  
8.1.17  
8.1.18  
D[63:0]# (I/O - AGTL)  
The D[63:0]# (Data) signals are the data signals. These signals provide a 64-bit data path between  
both system bus agents, and must be connected to the appropriate pins/balls on both agents. The  
data driver asserts DRDY# to indicate a valid data transfer.  
DBSY# (I/O - AGTL)  
The DBSY# (Data Bus Busy) signal is asserted by the agent responsible for driving data on the  
system bus to indicate that the data bus is in use. The data bus is released after DBSY# is  
deasserted. This signal must be connected to the appropriate pins/balls on both agents on the  
system bus.  
8.1.19  
DEFER# (I - AGTL)  
The DEFER# (Defer) signal is asserted by an agent to indicate that the transaction cannot be  
ensured in-order completion. Assertion of DEFER# is normally the responsibility of the addressed  
memory agent or I/O agent. This signal must be connected to the appropriate pins/balls on both  
agents on the system bus.  
72  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
8.1.20  
8.1.21  
8.1.22  
DEP[7:0]# (I/O - AGTL)  
The DEP[7:0]# (Data Bus ECC Protection) signals provide optional ECC protection for the data  
bus. They are driven by the agent responsible for driving D[63:0]#, and must be connected to the  
appropriate pins/balls on both agents on the system bus if they are used. During power-on  
configuration, DEP[7:0]# signals may be enabled for ECC checking or disabled for no checking.  
DRDY# (I/O - AGTL)  
The DRDY# (Data Ready) signal is asserted by the data driver on each data transfer, indicating  
valid data on the data bus. In a multi-cycle data transfer, DRDY# may be deasserted to insert idle  
clocks. This signal must be connected to the appropriate pins/balls on both agents on the system  
bus.  
DPSLP# (I - 1.5 V Tolerant)  
The DPSLP# (Deep Sleep) signal, when asserted in the Quick Start state, causes the processor to  
enter the Deep Sleep state. In order to return to the Quick Start state BCLK, BCLK# must be  
running and the DPSLP# pin must be deasserted.  
8.1.23  
8.1.24  
EDGCTRLP (I-Analog)  
The EDGCTRLP (Edge Rate Control) signal is used to configure the edge rate of the AGTL output  
buffers. Connect the signal to VSS with a 110-, 1% resistor.  
FERR# (O - 1.5 V Tolerant Open-drain)  
The FERR# (Floating-point Error) signal is asserted when the processor detects an unmasked  
floating-point error. FERR# is similar to the ERROR# signal on the Intel 387 coprocessor, and it is  
included for compatibility with systems using DOS-type floating-point error reporting.  
8.1.25  
8.1.26  
FLUSH# (I - 1.5 V Tolerant)  
When the FLUSH# (Flush) input signal is asserted, the processor writes back all internal cache  
lines in the Modified state and invalidates all internal cache lines. At the completion of a flush  
operation, the processor issues a Flush Acknowledge transaction. The processor stops caching any  
new data while the FLUSH# signal remains asserted.  
On the active-to-inactive transition of RESET#, each processor bus agent samples FLUSH# to  
determine its power-on configuration.  
HIT# (I/O - AGTL), HITM# (I/O - AGTL)  
The HIT# (Snoop Hit) and HITM# (Hit Modified) signals convey transaction snoop operation  
results, and must be connected to the appropriate pins/balls on both agents on the system bus.  
Either bus agent may assert both HIT# and HITM# together to indicate that it requires a snoop stall,  
which may be continued by reasserting HIT# and HITM# together.  
Datasheet  
73  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
8.1.27  
IERR# (O - 1.5 V Tolerant Open-drain)  
The IERR# (Internal Error) signal is asserted by the processor as the result of an internal error.  
Assertion of IERR# is usually accompanied by a SHUTDOWN transaction on the system bus. This  
transaction may optionally be converted to an external error signal (e.g., NMI) by system logic.  
The processor will keep IERR# asserted until it is handled in software or with the assertion of  
RESET#, BINIT, or INIT#.  
8.1.28  
8.1.29  
IGNNE# (I - 1.5 V Tolerant)  
The IGNNE# (Ignore Numeric Error) signal is asserted to force the processor to ignore a numeric  
error and continue to execute non-control floating-point instructions. If IGNNE# is deasserted, the  
processor freezes on a non-control floating-point instruction if a previous instruction caused an  
error. IGNNE# has no affect when the NE bit in control register 0 (CR0) is set.  
INIT# (I - 1.5 V Tolerant)  
The INIT# (Initialization) signal is asserted to reset integer registers inside the processor without  
affecting the internal (L1 or L2) caches or the floating-point registers. The processor begins  
execution at the power-on reset vector configured during power-on configuration. The processor  
continues to handle snoop requests during INIT# assertion. INIT# is an asynchronous input.  
If INIT# is sampled active on RESET#'s active-to-inactive transition, then the processor executes  
its built-in self-test (BIST).  
8.1.30  
8.1.31  
INTR (I - 1.5 V Tolerant)  
The INTR (Interrupt) signal indicates that an external interrupt has been generated. INTR becomes  
the LINT0 signal when the APIC is enabled. The interrupt is maskable using the IF bit in the  
EFLAGS register. If the IF bit is set, the processor vectors to the interrupt handler after completing  
the current instruction execution. Upon recognizing the interrupt request, the processor issues a  
single Interrupt Acknowledge (INTA) bus transaction. INTR must remain active until the INTA  
bus transaction to ensure its recognition.  
LINT[1:0] (I - 1.5 V Tolerant)  
The LINT[1:0] (Local APIC Interrupt) signals must be connected to the appropriate pins/balls of  
all APIC bus agents, including the processor and the system logic or I/O APIC component. When  
APIC is disabled, the LINT0 signal becomes INTR, a maskable interrupt request signal, and  
LINT1 becomes NMI, a non-maskable interrupt. INTR and NMI are backward compatible with the  
same signals for the Pentium processor. Both signals are asynchronous inputs.  
Both of these signals must be software configured by programming the APIC register space to be  
used either as NMI/INTR or LINT[1:0] in the BIOS. If the APIC is enabled at reset, then  
LINT[1:0] is the default configuration.  
74  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
8.1.32  
LOCK# (I/O - AGTL)  
The LOCK# (Lock) signal indicates to the system that a sequence of transactions must occur  
atomically. This signal must be connected to the appropriate pins/balls on both agents on the  
system bus. For a locked sequence of transactions, LOCK# is asserted from the beginning of the  
first transaction through the end of the last transaction.  
When the priority agent asserts BPRI# to arbitrate for bus ownership, it waits until it observes  
LOCK# deasserted. This enables the processor to retain bus ownership throughout the bus locked  
operation and ensure the atomicity of lock.  
8.1.33  
8.1.34  
NCTRL (I - Analog)  
The NCTRL signal provides the AGTL pull down impedance control. The processor samples this  
input to determine the N-channel pull-down device strength when it is the driving agent. An  
external 14 (1% tolerance) pull-up resistor to VCCT is required for this signal. Refer to platform  
design guide for implementation details.  
NMI (I - 1.5 V Tolerant)  
The NMI (Non-Maskable Interrupt) indicates that an external interrupt has been generated. NMI  
becomes the LINT1 signal when the APIC is disabled. Asserting NMI causes an interrupt with an  
internally supplied vector value of two. An external interrupt-acknowledge transaction is not  
generated. If NMI is asserted during the execution of an NMI service routine, it remains pending  
and is recognized after the IRET is executed by the NMI service routine. At most, one assertion of  
NMI is held pending. NMI is rising edge sensitive.  
8.1.35  
8.1.36  
PICCLK (I – 2.0 V Tolerant)  
The PICCLK (APIC Clock) signal is an input clock to the processor and system logic or I/O APIC  
that is required for operation of the processor, system logic, and I/O APIC components on the  
APIC bus.  
PICD[1:0] (I/O - 1.5 V Tolerant Open-drain)  
The PICD[1:0] (APIC Data) signals are used for bi-directional serial message passing on the APIC  
bus. They must be connected to the appropriate pins/balls of all APIC bus agents, including the  
processor and the system logic or I/O APIC components. If the PICD0 signal is sampled low on the  
active-to-inactive transition of the RESET# signal, then the APIC is hardware disabled. For the  
ULV Intel® Celeron® processor, the APIC is required to be hardware enabled as described in  
Section 7.1.3.  
8.1.37  
PLL1, PLL2 (Analog)  
The PLL1 and PLL2 signals provide isolated analog decoupling is required for the internal PLL.  
See Section 3.2.2 for a description of the analog decoupling circuit.  
Datasheet  
75  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
8.1.38  
8.1.39  
8.1.40  
PRDY# (O - AGTL)  
The PRDY# (Probe Ready) signal is a processor output used by debug tools to determine processor  
debug readiness.  
PREQ# (I - 1.5 V Tolerant)  
The PREQ# (Probe Request) signal is used by debug tools to request debug operation of the  
processor.  
PWRGOOD (I – 1.8 V Tolerant)  
PWRGOOD (Power Good) is a 1.8-V tolerant input. The processor requires this signal to be a  
clean indication that clocks and the power supplies (VCC, VCCT, etc.) are stable and within their  
specifications. Clean implies that the signal will remain low, (capable of sinking leakage current)  
and without glitches, from the time that the power supplies are turned on, until they come within  
specification. The signal will then transition monotonically to a high (1.8 V) state. Figure 12  
through Figure 14 illustrate the relationship of PWRGOOD to other system signals. PWRGOOD  
may be driven inactive at any time, but clocks and power must again be stable before the rising  
edge of PWRGOOD. It must also meet the minimum pulse width specified in Table 25 (Section  
3.6) and be followed by a 1 ms RESET# pulse.  
The PWRGOOD signal, which must be supplied to the processor, is used to protect internal circuits  
against voltage sequencing issues. The PWRGOOD signal should be driven high throughout  
boundary scan operation.  
8.1.41  
8.1.42  
REQ[4:0]# (I/O - AGTL)  
The REQ[4:0]# (Request Command) signals must be connected to the appropriate pins/balls on  
both agents on the system bus. They are asserted by the current bus owner when it drives A[35:3]#  
to define the currently active transaction type.  
RESET# (I - AGTL)  
Asserting the RESET# signal resets the processor to a known state and invalidates the L1 and L2  
caches without writing back Modified (M state) lines. For a power-on type reset, RESET# must  
stay active for at least 1 ms after VCC and BCLK, BCLK# have reached their proper DC and AC  
specifications and after PWRGOOD has been asserted. When observing active RESET#, all bus  
agents will deassert their outputs within two clocks. RESET# is the only AGTL signal that does not  
have on-die AGTL termination. A 56.2 1% terminating resistor connected to VCCT is required.  
A number of bus signals are sampled at the active-to-inactive transition of RESET# for the power-  
on configuration. The configuration options are described in Section 4.0 and in the P6 Family of  
Processors Developers Manual.  
Unless its outputs are tri-stated during power-on configuration, after an active-to-inactive transition  
of RESET#, the processor optionally executes its built-in self-test (BIST) and begins program  
execution at reset-vector 000FFFF0H or FFFFFFF0H. RESET# must be connected to the  
appropriate pins/balls on both agents on the system bus.  
76  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
8.1.43  
RP# (I/O - AGTL)  
The RP# (Request Parity) signal is driven by the request initiator and provides parity protection on  
ADS# and REQ[4:0]#. RP# should be connected to the appropriate pins/balls on both agents on the  
system bus.  
A correct parity signal is high if an even number of covered signals is low and low if an odd  
number of covered signals are low. This definition allows parity to be high when all covered  
signals are high.  
8.1.44  
8.1.45  
RS[2:0]# (I/O - AGTL)  
The RS[2:0]# (Response Status) signals are driven by the response agent (the agent responsible for  
completion of the current transaction) and must be connected to the appropriate pins/balls on both  
agents on the system bus.  
RSP# (I - AGTL)  
The RSP# (Response Parity) signal is driven by the response agent (the agent responsible for  
completion of the current transaction) during assertion of RS[2:0]#. RSP# provides parity  
protection for RS[2:0]#. RSP# should be connected to the appropriate pins/balls on both agents on  
the system bus.  
A correct parity signal is high if an even number of covered signals are low, and it is low if an odd  
number of covered signals are low. During Idle state of RS[2:0]# (RS[2:0]#=000), RSP# is also  
high since it is not driven by any agent ensuring correct parity.  
8.1.46  
8.1.47  
RTTIMPEDP (I-Analog)  
The RTTIMPEDP (RTT Impedance/PMOS) signal is used to configure the on-die AGTL  
termination. Connect the RTTIMPEDP signal to VSS with a 56.2-, 1% resistor.  
SMI# (I - 1.5 V Tolerant)  
The SMI# (System Management Interrupt) is asserted asynchronously by system logic. On  
accepting a System Management Interrupt, the processor saves the current state and enters System  
Management Mode (SMM). An SMI Acknowledge transaction is issued, and the processor begins  
program execution from the SMM handler.  
8.1.48  
STPCLK# (I - 1.5 V Tolerant)  
The STPCLK# (Stop Clock) signal, when asserted, causes the processor to enter a low-power  
Quick Start state. The processor issues a Stop Grant Acknowledge special transaction and stops  
providing internal clock signals to all units except the bus and APIC units. The processor continues  
to snoop bus transactions and service interrupts while in the Quick Start state. When STPCLK# is  
deasserted and other conditions in are met, the processor restarts its internal clock to all units and  
resumes execution. The assertion of STPCLK# has no affect on the bus clock.  
Datasheet  
77  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
8.1.49  
8.1.50  
8.1.51  
8.1.52  
8.1.53  
8.1.54  
TCK (I - 1.5 V Tolerant)  
The TCK (Test Clock) signal provides the clock input for the test bus (also known as the test access  
port).  
TDI (I - 1.5 V Tolerant)  
The TDI (Test Data In) signal transfers serial test data to the processor. TDI provides the serial  
input needed for JTAG support.  
TDO (O - 1.5 V Tolerant Open-drain)  
The TDO (Test Data Out) signal transfers serial test data from the processor. TDO provides the  
serial output needed for JTAG support.  
TESTHI[2:1] (I - 1.25 V Tolerant)  
The TESTHI[2:1] (Test input High) signals are used during processor test and need to be pulled  
high during normal operation.  
TESTLO[2:1] (I - 1.5 V Tolerant)  
The TESTLO[2:1] (Test input Low) signals are used during processor test and needs to be pulled to  
ground during normal operation.  
THERMDA, THERMDC (Analog)  
The THERMDA (Thermal Diode Anode) and THERMDC (Thermal Diode Cathode) signals  
connect to the anode and cathode of the on-die thermal diode.  
8.1.55  
8.1.56  
TMS (I - 1.5 V Tolerant)  
The TMS (Test Mode Select) signal is a JTAG support signal used by debug tools.  
TRDY# (I/O - AGTL)  
The TRDY# (Target Ready) signal is asserted by the target to indicate that the target is ready to  
receive write or implicit write-back data transfer. TRDY# must be connected to the appropriate  
pins/balls on both agents on the system bus.  
8.1.57  
TRST# (I - 1.5 V Tolerant)  
The TRST# (Test Reset) signal resets the Test Access Port (TAP) logic. The ULV Intel Celeron  
processors do not self-reset during power on; therefore, it is necessary to drive this signal low  
during power-on reset.  
78  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
8.1.58  
8.1.59  
VID[4:0] (O – Open-drain)  
The VID[4:0] (Voltage ID) pins/balls may be used to support automatic selection of power supply  
voltages. Refer to Section 3.2.4 for details.  
V
(Analog)  
REF  
The VREF (AGTL Reference Voltage) signal provides a DC level reference voltage for the AGTL  
input buffers. A voltage divider should be used to divide VCCT by 2/3. Resistor values of 1.00 kΩ  
and 2.00 kare recommended. Decouple the VREF signal with three 0.1-µF high-frequency  
capacitors close to the processor.  
8.1.60  
VTTPWRGD (I – 1.25 V)  
The VTTPWRGD signal informs the processor to output the VID signals. During power up, the  
VID signals will be in an indeterminate state for a small period of time. The voltage regulator  
should not sample and/or latch the VID signals until the VTTPWRGD signal is asserted. The  
assertion of the VTTPWRGD signal indicates that the VID signals are stable and are driven to the  
final state by the processor. Refer to Figure 12 for the power up sequence. (Also see Section 4.3.1.)  
8.2  
Signal Summaries  
Table 45. Input Signals (Sheet 1 of 2)  
Name  
A20M#  
Active Level  
Low  
Clock  
Signal Group  
Qualified  
Asynch  
CMOS  
System Bus  
System Bus  
System Bus  
System Bus  
CMOS  
Always  
Always  
BCLK  
BCLK#  
BPRI#  
High  
Low  
Low  
Low  
Low  
Low  
Low  
High  
High  
High  
High  
High  
Low  
High  
Low  
Low  
Low  
Always  
BCLK  
BCLK  
Asynch  
Asynch  
Asynch  
Asynch  
Asynch  
Asynch  
Asynch  
Always  
DEFER#  
FLUSH#  
IGNNE#  
INIT#  
Always  
Always  
CMOS  
Always  
System Bus  
CMOS  
Always  
INTR  
APIC disabled mode  
APIC enabled mode  
APIC disabled mode  
LINT[1:0]  
NMI  
APIC  
CMOS  
NCTRL  
PICCLK  
PREQ#  
PWRGOOD  
RESET#  
RSP#  
APIC  
Always  
Always  
Always  
Always  
Always  
Always  
Asynch  
Asynch  
BCLK  
BCLK  
Asynch  
Implementation  
Implementation  
System Bus  
System Bus  
CMOS  
SMI#  
Datasheet  
79  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Table 45. Input Signals (Sheet 2 of 2)  
Name  
Active Level  
Clock  
Signal Group  
Qualified  
STPCLK#  
TCK  
Low  
Asynch  
Implementation  
JTAG  
Always  
High  
TDI  
TCK  
JTAG  
TMS  
TCK  
JTAG  
TRST#  
VTTPWRGD  
Low  
Asynch  
Asynch  
JTAG  
High  
Power/Other  
Table 46. Output Signals  
Name  
Active Level  
Clock  
Signal Group  
BSEL[1:0]  
FERR#  
IERR#  
High  
Low  
Low  
Low  
High  
High  
Asynch  
Asynch  
Asynch  
BCLK  
Open-drain  
Open-drain  
Open-drain  
Implementation  
JTAG  
PRDY#  
TDO  
TCK  
VID[4:0]  
Asynch  
Power/Other  
Table 47. Input/Output Signals (Single Driver)  
Name  
Active Level  
Clock  
Signal Group  
Qualified  
A[35:3]#  
ADS#  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
ADS#, ADS#+1  
Always  
AP[1:0]#  
BREQ0#  
BP[3:2]#  
BPM[1:0]#  
D[63:0]#  
DBSY#  
ADS#, ADS#+1  
Always  
Always  
Always  
DRDY#  
Always  
DEP[7:0]#  
DRDY#  
LOCK#  
DRDY#  
Always  
Always  
REQ[4:0]#  
RP#  
ADS#, ADS#+1  
ADS#, ADS#+1  
Always  
RS[2:0]#  
TRDY#  
Response phase  
80  
Datasheet  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
Table 48. Input/Output Signals (Multiple Driver)  
Name  
Active Level  
Clock  
Signal Group  
Qualified  
AERR#  
BERR#  
BINIT#  
BNR#  
Low  
Low  
Low  
Low  
Low  
Low  
High  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
PICCLK  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
APIC  
ADS#+3  
Always  
Always  
Always  
Always  
Always  
Always  
HIT#  
HITM#  
PICD[1:0]  
Datasheet  
81  
Ultra-Low Voltage Intel® Celeron® Processor — 650 MHz and 400 MHz  
This page intentionally left blank.  
82  
Datasheet  

相关型号:

27380B102JO0

High-Voltage Mica Capacitors Rectangular Case, High-Current and High-Voltage Circuits
CDE

27380B103GO0

Mica Capacitor, Mica, 8000V, 2% +Tol, 2% -Tol, 0.01uF, Chassis Mount
CDE

27380B103JO0

High-Voltage Mica Capacitors Rectangular Case, High-Current and High-Voltage Circuits
CDE

27380B201JO0

High-Voltage Mica Capacitors Rectangular Case, High-Current and High-Voltage Circuits
CDE

27380B202JO0

High-Voltage Mica Capacitors Rectangular Case, High-Current and High-Voltage Circuits
CDE

27380B251JO0

High-Voltage Mica Capacitors Rectangular Case, High-Current and High-Voltage Circuits
CDE

27380B302JO0

High-Voltage Mica Capacitors Rectangular Case, High-Current and High-Voltage Circuits
CDE

27380B402JO0

High-Voltage Mica Capacitors Rectangular Case, High-Current and High-Voltage Circuits
CDE

27380B452JO0

High-Voltage Mica Capacitors Rectangular Case, High-Current and High-Voltage Circuits
CDE

27380B501JO0

High-Voltage Mica Capacitors Rectangular Case, High-Current and High-Voltage Circuits
CDE

27380B502JO0

High-Voltage Mica Capacitors Rectangular Case, High-Current and High-Voltage Circuits
CDE

27380B602JO0

High-Voltage Mica Capacitors Rectangular Case, High-Current and High-Voltage Circuits
CDE