272420-007 [INTEL]

Intel386 EX Embedded Microprocessor; 英特尔386 EX嵌入式微处理器
272420-007
型号: 272420-007
厂家: INTEL    INTEL
描述:

Intel386 EX Embedded Microprocessor
英特尔386 EX嵌入式微处理器

微处理器
文件: 总56页 (文件大小:690K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intel386™ EX Embedded  
Microprocessor  
Datasheet  
Product Features  
Static Intel386™ CPU Core  
Low Power Consumption  
Operating Power Supply  
EXTB: 2.7 V to 3.6 V  
Extended Temperature Range  
Integrated Memory Management Unit  
Virtual Memory Support  
Optional On-chip Paging  
—4 Levels of Hardware-enforced  
Protection  
MMU Fully Compatible with MMUs of  
the 80286 and Intel386 DX Processors  
EXTC: 4.5 V to 5.5 V  
Operating Frequency  
20 MHz EXTB at 2.7 V to 3.6 V  
25 MHz EXTB at 3.0 V to 3.6 V;  
25/33 MHz EXTC at 4.5 V to 5.5 V  
Virtual 8086 Mode Allows Execution of  
8086 Software in a Protected and Paged  
System  
Large Uniform Address Space  
64 Megabyte Physical  
Transparent Power-management System  
Architecture  
Intel System Management Mode  
Architecture Extension for Truly  
Compatible Systems  
Power Management Transparent to  
Operating Systems and Application  
Programs  
64 Terabyte Virtual  
—4 Gigabyte Maximum Segment Size  
On-chip Debugging Support Including  
Breakpoint Registers  
Programmable Power-management  
Modes  
Complete System Development Support  
High Speed CHMOS Technology  
Two Package Types  
Powerdown Mode  
Clock Stopping at Any Time  
Only 10–20 µA Typical CPU Sink  
Current  
132-pin Plastic Quad Flatpack  
144-pin Thin Quad Flatpack  
Integrated Peripheral Functions  
Clock and Power Management Unit  
Chip-select Unit  
Full 32-bit Internal Architecture  
8-, 16-, 32-bit Data Types  
—8 General Purpose 32-bit Registers  
Interrupt Control Unit  
Timer/Counter Unit  
Watchdog Timer Unit  
Asynchronous Serial I/O Unit  
Synchronous Serial I/O Unit  
Parallel I/O Unit  
DMA and Bus Arbiter Unit  
Refresh Control Unit  
Runs Intel386 Architecture Software in a  
Cost-effective 16-bit Hardware  
Environment  
Runs Same Applications and Operating  
Systems as the Intel386 SX and Intel386  
DX Processors  
Object Code Compatible with 8086,  
80186, 80286, and Intel386 Processors  
JTAG-compliant Test-logic Unit  
High-performance 16-bit Data Bus  
Two-clock Bus Cycles  
Address Pipelining Allows Use of  
Slower, Inexpensive Memories  
This datasheet applies to devices marked EXTB and EXTC. If you require information about  
devices marked EXSA or EXTA, refer to a previous revision of this datasheet, order number  
272420-004.  
Order Number: 272420-007  
October 1998  
Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual  
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability  
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to  
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not  
intended for use in medical, life saving, or life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The Intel386™ EX Microprocessor may contain design defects or errors known as errata which may cause the product to deviate from published  
specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-  
548-4725 or by visiting Intel's website at http://www.intel.com.  
Copyright © Intel Corporation, 1998  
*Third-party brands and names are the property of their respective owners.  
Datasheet  
Intel386™ EX Embedded Microprocessor  
Contents  
1.0  
2.0  
3.0  
4.0  
Introduction..................................................................................................................7  
Pin Assignment...........................................................................................................8  
Pin Description..........................................................................................................12  
Functional Description...........................................................................................19  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
4.10  
4.11  
Clock Generation and Power Management Unit.................................................19  
Chip-select Unit...................................................................................................19  
Interrupt Control Unit...........................................................................................19  
Timer/Counter Unit..............................................................................................20  
Watchdog Timer Unit...........................................................................................20  
Asynchronous Serial I/O Unit ..............................................................................20  
Synchronous Serial I/O Unit................................................................................21  
Parallel I/O Unit ...................................................................................................21  
DMA and Bus Arbiter Unit ...................................................................................21  
Refresh Control Unit............................................................................................22  
JTAG Test-logic Unit ...........................................................................................22  
5.0  
6.0  
Design Considerations ..........................................................................................23  
5.1  
5.2  
5.3  
Instruction Set .....................................................................................................23  
Component and Revision Identifiers ...................................................................24  
Package Thermal Specifications.........................................................................24  
Electrical Specifications........................................................................................27  
6.1  
6.2  
6.3  
Maximum Ratings................................................................................................27  
DC Specifications................................................................................................28  
AC Specifications ................................................................................................30  
7.0  
Bus Cycle Waveforms............................................................................................47  
Figures  
1
2
3
4
Intel386™ EX Embedded Processor Block Diagram ............................................7  
Intel386™ EX Embedded Processor 132-Pin PQFP Pin Assignment ..................8  
Intel386™ EX Embedded Processor 144-Pin TQFP Pin Assignment.................10  
Maximum Case Temperature vs. Frequency for Typical Power Values  
(132-lead PQFP, V = 5.5 V) .............................................................................25  
cc  
5
6
7
Maximum Case Temperature vs. Frequency for Typical Power Values  
(144-lead TQFP, V = 5.5 V nominal)................................................................25  
cc  
Maximum Case Temperature vs. Frequency for Typical Power Values  
(132-lead PQFP, V = 3.6 V) .............................................................................26  
cc  
Maximum Case Temperature vs. Frequency for Typical Power Values  
(144-lead TQFP, V = 3.6 V)..............................................................................26  
cc  
8
9
10  
Drive Levels and Measurement Points for AC Specifications (EXTC) ................30  
Drive Levels and Measurement Points for AC Specifications (EXTB) ................31  
AC Test Loads.....................................................................................................42  
Datasheet  
3
Intel386™ EX Embedded Microprocessor  
11  
12  
13  
14  
CLK2 Waveform..................................................................................................42  
AC Timing Waveforms — Input Setup and Hold Timing .....................................43  
AC Timing Waveforms — Output Valid Delay Timing.........................................44  
AC Timing Waveforms — Output Valid Delay Timing for  
External Late READY#........................................................................................44  
AC Timing Waveforms — Output Float Delay and HLDA Valid Delay Timing ....45  
AC Timing Waveforms — RESET Setup and Hold Timing and Internal Phase..45  
AC Timing Waveforms — Relative Signal Timing...............................................46  
AC Timing Waveforms — SSIO Timing ..............................................................46  
AC Timing Waveforms — Timer/Counter Timing................................................46  
Basic Internal and External Bus Cycles ..............................................................47  
Nonpipelined Address Read Cycles....................................................................48  
Pipelined Address Cycle .....................................................................................49  
16-bit Cycles to 8-bit Devices (using BS8#)........................................................50  
Basic External Bus Cycles ..................................................................................51  
Nonpipelined Address Write Cycles....................................................................52  
Halt Cycle............................................................................................................53  
Basic Refresh Cycle............................................................................................54  
Refresh Cycle During HOLD/HLDA ....................................................................55  
LOCK# Signal During Address Pipelining ...........................................................56  
Interrupt Acknowledge Cycles.............................................................................56  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
Tables  
1
2
3
4
132-Pin PQFP Pin Assignment .............................................................................9  
144-Pin TQFP Pin Assignment ...........................................................................11  
Pin Type and Output State Nomenclature ..........................................................12  
Intel386™ EX Microprocessor Pin Descriptions .................................................13  
Microprocessor Clocks Per Instruction................................................................23  
5
6
Thermal Resistances (0°C/W) θ , θ ................................................................24  
JA JC  
7
8
9
10  
11  
12  
5 V Intel386 EXTC Processor Maximum Ratings ...............................................27  
3 V Intel386 EXTB Processor Maximum Ratings................................................27  
5-Volt DC Characteristics....................................................................................28  
3-Volt DC Characteristics....................................................................................29  
5-Volt AC Characteristics....................................................................................32  
3-Volt AC Characteristics....................................................................................37  
4
Datasheet  
Intel386™ EX Embedded Microprocessor  
Revision History  
This datasheet applies to devices marked EXTB and EXTC. If you require information about  
devices marked EXSA or EXTA, refer to a previous revision of this datasheet, order number  
272420-004.  
Revision  
Date  
Description  
007  
10/98  
The document was updated to the larger page size. All known device errata for  
the datasheet have been incorporated into this new revision.  
006  
005  
004  
5/96  
12/95  
9/94  
Corrections added.  
This datasheet applied to the new EXTB and EXTC devices.  
This datasheet applied to devices marked EXSA or EXTA.  
Datasheet  
5
Intel386™ EX Embedded Microprocessor  
1.0  
Introduction  
The Intel386™ EXTB embedded processor operates at 20 or 25 MHz at 3 Volts nominal. The  
Intel386 EXTC embedded processor operates at 25 or 33 MHz at 5 Volts. In this datasheet,  
“Intel386 EX processor” refers to both the Intel386 EXTB and EXTC processors.  
The Intel386 EX embedded processor is a highly integrated, 32-bit, fully static processor optimized  
for embedded control applications. With a 16-bit external data bus, a 26-bit external address bus,  
and Intel’s System Management Mode (SMM), the Intel386 EX microprocessor brings the vast  
software library of Intel386 architecture to embedded systems. It provides the performance benefits  
of 32-bit programming with the cost savings associated with 16-bit hardware systems.  
Figure 1. Intel386™ EX Embedded Processor Block Diagram  
Bus Interface  
Unit  
Chip-select  
Unit  
JTAG Unit  
Address  
Clock and Power  
Management Unit  
Processor Core  
DRAM Refresh  
Control Unit  
Data  
Watchdog Timer Unit  
Bus Monitor  
Asynchronous Serial I/O  
2 channels  
(16450 compatible)  
Synchronous Serial I/O  
1 channel, full duplex  
Timer/counter Unit  
3 channels  
(82C54 compatible)  
I/O Ports  
INTR  
Interrupt Control Unit  
DMA Controller  
2 channels  
(8237A compatible)  
and Bus Arbiter Unit  
A2849-02  
Datasheet  
7
Intel386™ EX Embedded Microprocessor  
2.0  
Pin Assignment  
Figure 2. Intel386™ EX Embedded Processor 132-Pin PQFP Pin Assignment  
UCS#  
1
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
FLT#  
CS6#/REFRESH#  
VSS  
LBA#  
D0  
2
DSR1#/STXCLK  
VSS  
3
4
INT7/TMRGATE1  
INT6/TMRCLK1  
INT5/TMRGATE0  
INT4/TMRCLK0  
BUSY#/TMRGATE2  
ERROR#/TMROUT2  
NMI  
5
D1  
6
D2  
7
D3  
8
VCC  
D4  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
D5  
PEREQ/TMRCLK2  
VCC  
D6  
D7  
P3.7/COMCLK  
P3.6/PWRDOWN  
P3.5/INT3  
D8  
VCC  
D9  
P3.4/INT2  
TOP VIEW  
VSS  
D10  
VSS  
P3.3/INT1  
D11  
VCC  
D12  
P3.2/INT0  
D13  
RTS1#/SSIOTX  
RI1#/SSIORX  
DTR1#/SRXCLK  
TCK  
D14  
D15  
TDO  
TDI  
P3.1/TMROUT1/INT8  
P3.0/TMROUT0/INT9  
SMI#  
TMS  
M/IO#  
VCC  
D/C#  
W/R#  
VSS  
READY#  
BS8#  
A25  
VCC  
A24  
VSS  
A23  
A22  
Note:  
NC = No Connection  
A2212-02  
8
Datasheet  
Intel386™ EX Embedded Microprocessor  
Table 1. 132-Pin PQFP Pin Assignment  
Pin  
Symbol  
Pin  
Symbol  
RD#  
Pin  
Symbol  
Pin  
Symbol  
1
UCS#  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
A22  
A23  
VSS  
100 VSS  
2
CS6#/REFRESH#  
VSS  
WR#  
VSS  
101 P1.0/DCD0#  
102 P1.1/RTS0#  
103 CLKOUT  
3
4
LBA#  
D0  
BLE#  
VCC  
A24  
VCC  
5
104 P1.2/DTR0#  
105 P1.3/DSR0#  
106 P1.4/RI0#  
107 P1.5/LOCK#  
108 P1.6/HOLD  
109 VCC  
6
D1  
BHE#  
ADS#  
NA#  
A1  
A25  
SMI#  
7
D2  
8
D3  
P3.0/TMROUT0/INT9  
P3.1/TMROUT1/INT8  
TCK  
9
VCC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
D4  
A2  
D5  
A3  
DTR1#/SRXCLK  
RI1#/SSIORX  
RTS1#/SSIOTX  
P3.2/INT0  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
RESET  
D6  
A4  
P1.7/HLDA  
DACK1#/TXD1  
EOP#/CTS1#  
WDTOUT  
CLK2  
D7  
VSS  
D8  
VCC  
Vcc  
A5  
VCC  
D9  
A6  
P3.3/INT1  
Vss  
A7  
VSS  
VSS  
D10  
D11  
A8  
P3.4/INT2  
DRQ0/DCD1#  
DRQ1/RXD1  
TRST#  
A9  
P3.5/INT3  
D12  
D13  
D14  
D15  
TDO  
TDI  
A10  
A11  
P3.6/PWRDOWN  
P3.7/COMCLK  
VCC  
120 SMIACT#  
121 VCC  
A12  
A13  
A14  
A15  
A16/CAS0  
VCC  
PEREQ/TMRCLK2  
NMI  
122 P2.0/CS0#  
123 P2.1/CS1#  
124 P2.2/CS2#  
125 P2.3/CS3#  
126 P2.4/CS4#  
127 VCC  
ERROR#/TMROUT2  
BUSY#/TMRGATE2  
INT4/TMRCLK0  
INT5/TMRGATE0  
INT6/TMRCLK1  
INT7/TMRGATE1  
VSS  
TMS  
M/IO#  
VCC  
A17/CAS1  
A18/CAS2  
A19  
VSS  
D/C#  
W/R#  
VSS  
128 DACK0#/CS5#  
129 P2.5/RXD0  
130 VSS  
READY#  
BS8#  
A20  
A21  
DSR1#/STXCLK  
FLT#  
131 P2.6/TXD0  
132 P2.7/CTS0#  
Datasheet  
9
Intel386™ EX Embedded Microprocessor  
Figure 3. Intel386™ EX Embedded Processor 144-Pin TQFP Pin Assignment  
UCS#  
1
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
VSS  
CS6#/REFRESH#  
VSS  
LBA#  
D0  
2
FLT#  
3
DSR1#/STXCLK  
VSS  
4
5
INT7/TMRGATE1  
INT6/TMRCLK1  
INT5/TMRGATE0  
INT4/TMRCLK0  
BUSY#/TMRGATE2  
ERROR#/TMROUT2  
NMI  
D1  
6
D2  
7
D3  
8
VCC  
D4  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
VSS  
D5  
98  
97  
VSS  
D6  
96  
PEREQ/TMRCLK2  
VCC  
D7  
95  
D8  
94  
P3.7/COMCLK  
P3.6/PWRDOWN  
P3.5/INT3  
P3.4/INT2  
VSS  
VCC  
D9  
93  
92  
VSS  
D10  
91  
TOP VIEW  
90  
D11  
89  
P3.3/INT1  
VCC  
D12  
88  
D13  
87  
P3.2/INT0  
RTS1#/SSIOTX  
RI1#/SSIORX  
DTR1#/SRXCLK  
VSS  
D14  
86  
VSS  
D15  
85  
84  
TDO  
TDI  
83  
82  
TCK  
TMS  
M/IO#  
VCC  
D/C#  
W/R#  
VSS  
READY#  
BS8#  
VSS  
81  
P3.1/TMROUT1/INT8  
P3.0/TMROUT0/INT9  
SMI#  
80  
79  
78  
A25  
77  
VCC  
76  
A24  
75  
VSS  
74  
A23  
73  
A22  
A2213-03  
10  
Datasheet  
Intel386™ EX Embedded Microprocessor  
Table 2. 144-Pin TQFP Pin Assignment  
Pin  
Symbol  
Pin  
Symbol  
RD#  
Pin  
Symbol  
Pin  
109  
Symbol  
1
UCS#  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
A22  
A23  
VSS  
VSS  
2
CS6#/REFRESH#  
VSS  
WR#  
VSS  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
P1.0/DCD0#  
P1.1/RTS0#  
CLKOUT  
P1.2/DTR0#  
P1.3/DSR0#  
P1.4/RI0#  
P1.5/LOCK#  
P1.6/HOLD  
VCC  
3
4
LBA#  
D0  
BLE#  
VCC  
A24  
VCC  
5
6
D1  
BHE#  
ADS#  
NA#  
A1  
A25  
SMI#  
7
D2  
8
D3  
P3.0/TMROUT0/INT9  
P3.1/TMROUT1/INT8  
TCK  
9
VCC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
D4  
A2  
VSS  
VSS  
VSS  
RESET  
D5  
A3  
DTR1#/SRXCLK  
RI1#/SSIORX  
RTS1#/SSIOTX  
P3.2/INT0  
VSS  
D6  
A4  
P1.7/HLDA  
DACK1#/TXD1  
EOP#/CTS1#  
WDTOUT  
CLK2  
D7  
VSS  
D8  
VCC  
VCC  
A5  
VCC  
D9  
A6  
P3.3/INT1  
VSS  
A7  
VSS  
VSS  
D10  
D11  
D12  
D13  
D14  
VSS  
A8  
P3.4/INT2  
DRQ0/DCD1#  
DRQ1/RXD1  
TRST#  
A9  
P3.5/INT3  
A10  
A11  
P3.6/PWRDOWN  
P3.7/COMCLK  
VCC  
SMIACT#  
VCC  
A12  
VSS  
PEREQ/TMRCLK2  
VSS  
VSS  
D15  
TDO  
TDI  
A13  
A14  
A15  
A16/CAS0  
VCC  
P2.0/CS0#  
P2.1/CS1#  
P2.2/CS2#  
P2.3/CS3#  
P2.4/CS4#  
VCC  
NMI  
ERROR#/TMROUT2  
TMS  
M/IO#  
VCC  
100 BUSY#/TMRGATE2  
101 INT4/TMRCLK0  
102 INT5/TMRGATE0  
103 INT6/TMRCLK1  
104 INT7/TMRGATE1  
105 VSS  
A17/CAS1  
A18/CAS2  
A19  
VSS  
D/C#  
W/R#  
VSS  
DACK0#/CS5#  
P2.5/RXD0  
VSS  
READY#  
BS8#  
VSS  
A20  
A21  
VSS  
106 DSR1#/STXCLK  
107 FLT#  
P2.6/TXD0  
P2.7/CTS0#  
VSS  
108 VSS  
Datasheet  
11  
Intel386™ EX Embedded Microprocessor  
3.0  
Pin Description  
Table 4 lists the Intel386 EX embedded processor pin descriptions. Table 3 defines the  
abbreviations used in the Type and Output States columns of Table 4.  
Table 3. Pin Type and Output State Nomenclature  
Symbol  
Description  
Pin Type  
#
I
O
I/O  
I/OD  
ST  
P
The named signal is active low.  
Standard TTL input signal.  
Standard CMOS output signal.  
Input and output signal.  
Input and open-drain output signal.  
Schmitt-triggered input signal.  
Power pin.  
G
Ground pin.  
Output State  
H(1)  
H(0)  
H(Z)  
H(Q)  
H(X)  
Output driven to VCC during Bus Hold  
Output driven to VSS during Bus Hold  
Output floats during Bus Hold  
Output remains active during Bus Hold  
Output retains current state during Bus Hold  
R(WH)  
R(WL)  
R(1)  
R(0)  
R(Z)  
Output Weakly Held at VCC during Reset  
Output Weakly Held at VSS during Reset  
Output driven to VCC during Reset  
Output driven to VSS during Reset  
Output floats during Reset  
R(Q)  
Output remains active during Reset  
R(X)  
Output retains current state during Reset  
I(1)†  
I(0)  
I(Z)  
I(Q)  
I(X)  
Output driven to VCC during Idle Mode  
Output driven to VSS during Idle Mode  
Output floats during Idle Mode  
Output remains active during Idle Mode  
Output retains current state during Idle Mode  
P(1)  
P(0)  
P(Z)  
P(Q)  
P(X)  
Output driven to VCC during Powerdown Mode  
Output driven to VSS during Powerdown Mode  
Output floats during Powerdown Mode  
Output remains active during Powerdown Mode  
Output retains current state during Powerdown Mode  
The idle mode output states assume that no internal bus master (DMA or RCU) has control of the bus  
during idle mode  
12  
Datasheet  
 
 
Intel386™ EX Embedded Microprocessor  
Table 4. Intel386™ EX Microprocessor Pin Descriptions (Sheet 1 of 6)  
Symbol  
Type  
Output States  
Name and Function  
H(Z)  
R(1)  
I(1)  
Address Bus outputs physical memory or port I/O addresses.  
These signals are valid when ADS# is active and remain valid  
until the next T1, T2P, or Ti. During HOLD cycles they are driven  
to a high-impedance state. A18:16 are multiplexed with CAS2:0.  
A25:1  
O
P(1)  
H(Z)  
R(1)  
I(1)  
Address Status indicates that the processor is driving a valid  
bus-cycle definition and address (W/R#, D/C#, M/IO#, A25:1,  
BHE#, BLE#) onto its pins.  
ADS#  
BHE#  
O
O
P(1)  
H(Z)  
R(0)  
I(X)  
Byte High Enable indicates that the processor is transferring a  
high data byte.  
P(0)  
H(Z)  
R(0)  
I(X)  
Byte Low Enable indicates that the processor is transferring a  
low data byte.  
BLE#  
O
I
P(1)  
Bus Size indicates that an 8-bit device is currently being  
addressed.  
BS8#  
Busy indicates that the math coprocessor is busy. If BUSY# is  
sampled LOW at the falling edge of RESET, the processor  
performs an internal self test. BUSY# is multiplexed with  
TMRGATE2 and has a temporary weak pull-up resistor.  
BUSY#  
I
H(Z)  
R(1)  
I(1)  
Cascade Address carries the slave address information from  
the 8259A master interrupt module during interrupt acknowledge  
bus cycles. CAS2:0 are multiplexed with A18:16.  
CAS2:0  
CLK2  
O
ST  
O
P(1)  
Clock Input is connected to an external clock that provides the  
fundamental timing for the device.  
H(Q)  
R(Q)  
I(Q)  
CLKOUT  
CLKOUT is a PH1P clock output.  
P(0)  
Serial Communications Baud Clock is an alternate clock  
source for the asynchronous serial ports. COMCLK is  
multiplexed with P3.7 and has a temporary weak pull-down  
resistor.  
COMCLK  
CS4:0#  
CS6:5#  
I
H(1)  
R(WH)  
I(Q)  
Chip-selects are activated when the address of a memory or I/O  
bus cycle is within the address region programmed by the user.  
They are multiplexed as follows: CS6# with REFRESH#, CS5#  
with DACK0#, and CS4:0# with P2.4:0.  
O
O
P(X)  
H(1)  
R(1)  
I(Q)  
Chip-selects are activated when the address of a memory or I/O  
bus cycle is within the address region programmed by the user.  
They are multiplexed as follows: CS6# with REFRESH#, CS5#  
with DACK0#, and CS4:0# with P2.4:0.  
P(X)  
Clear to Send SIO1 and SIO0 prevent the transmission of data  
to the asynchronous serial port’s RXD1 and RXD0 pins,  
respectively. CTS1# is multiplexed with EOP#, and CTS0# is  
multiplexed with P2.7. CTS1# requires an external pull-up  
resistor. Both have temporary weak pull-up resistors.  
CTS1:0#  
I
NOTES:  
1. X if clock source is internal; Q if clock source is external  
2. Q if JTAG unit is shifting out data, Z if it is not  
Datasheet  
13  
 
 
Intel386™ EX Embedded Microprocessor  
Table 4. Intel386™ EX Microprocessor Pin Descriptions (Sheet 2 of 6)  
Symbol  
Type  
Output States  
Name and Function  
Data Bus inputs data during memory read, I/O read, and  
interrupt acknowledge cycles and outputs data during memory  
and I/O write cycles. During writes, this bus is driven during  
phase 2 of T1 and remains active until phase 2 of the next T1,  
T1P, or Ti. During reads, data is latched on the falling edge of  
phase 2.  
H(Z)  
R(Z)  
P(Z)  
D15:0  
I/O  
H(1)  
R(1)  
I(Q)  
DMA Acknowledge 1 and 0 signal to an external device that the  
processor has acknowledged the corresponding DMA request  
and is relinquishing the bus. DACK1# is multiplexed with TXD1,  
and DACK0# is multiplexed with CS5#.  
DACK1:0#  
D/C#  
O
O
P(X)  
H(Z)  
R(1)  
I(0)  
Data/Control indicates whether the current bus cycle is a data  
cycle (memory or I/O read or write) or a control cycle (interrupt  
acknowledge, halt, or code fetch).  
P(0)  
Data Carrier Detect SIO1 and SIO0 indicate that the modem or  
data set has detected the corresponding asynchronous serial  
channel’s data carrier. DCD1# is multiplexed with DRQ0, and  
DCD0# is multiplexed with P1.0 and has a temporary weak pull-  
up resistor.  
DCD1:0  
I
DMA External Request 1 and 0 indicate that a peripheral  
requires DMA service. DRQ1 is multiplexed with RXD1, and  
DRQ0 is multiplexed with DCD1#.  
DRQ1:0  
I
Data Set Ready SIO1 and SIO0 indicate that the modem or data  
set is ready to establish a communication link with the  
corresponding asynchronous serial channel. DSR1# is  
multiplexed with STXCLK and has a permanent weak pull-up  
resistor, and DSR0# is multiplexed with P1.3 and has a  
temporary weak pull-up resistor.  
DSR1:0#  
DTR1:0#  
I
H(X)  
R(WH)  
I(X)  
Data Terminal Ready SIO1 and SIO0 indicate that the  
corresponding asynchronous serial channel is ready to establish  
a communication link with the modem or data set. DTR1# is  
multiplexed with SRXCLK, and DTR0# is multiplexed with P1.2.  
O
P(X)  
H(Z)  
R(WH)  
I(Z)  
End of Process indicates that the processor has reached  
terminal count during a DMA transfer. An external device can  
also pull this pin LOW. EOP# is multiplexed with CTS1#.  
EOP#  
I/OD  
I
P(Z)  
Error indicates that the math coprocessor has an error condition.  
ERROR# is multiplexed with TMROUT2 and has a temporary  
weak pull-up resistor.  
ERROR#  
Float forces all bidirectional and output signals except TDO to a  
high-impedance state. It has a permanent weak pull-up resistor.  
FLT#  
I
This pin should be tied to VCC through a 3 to 7 KOhm pull-up  
resistor.  
H(1)  
R(WL)  
I(Q)  
Bus Hold Acknowledge indicates that the processor has  
surrendered control of its local bus to another bus master. HLDA  
is multiplexed with P1.7.  
HLDA  
O
I
P(X)  
Bus Hold Request allows another bus master to request control  
of the local bus. HLDA active indicates that bus control has been  
granted. HOLD is multiplexed with P1.6. It has a temporary weak  
pull-down resistor.  
HOLD  
NOTES:  
1. X if clock source is internal; Q if clock source is external  
2. Q if JTAG unit is shifting out data, Z if it is not  
14  
Datasheet  
Intel386™ EX Embedded Microprocessor  
Table 4. Intel386™ EX Microprocessor Pin Descriptions (Sheet 3 of 6)  
Symbol  
Type  
Output States  
Name and Function  
Interrupt Requests are maskable inputs that cause the CPU to  
suspend execution of the current program and then execute an  
interrupt acknowledge cycle. They are multiplexed as follows:  
INT9 with TMROUT0 and P3.0, INT8 with TMROUT1 and P3.1,  
INT7 with TMRGATE1, INT6 with TMRCLK1, INT5 with  
TMRGATE0, INT4 with TMRCLK0, and INT3:0 with P3.5:2.  
INT9, INT8, and INT3:0 have temporary weak pull-down  
resistors.  
INT9:0  
I
H(1)  
R(1)  
I(Q)  
Local Bus Access is asserted whenever the processor provides  
the READY# signal to terminate a bus transaction. This occurs  
when an internal peripheral address is accessed or when the  
chip-select unit provides the READY# signal.  
LBA#  
O
O
O
P(X)  
H(Z)  
R(WH)  
I(X)  
Bus Lock prevents other bus masters from gaining control of the  
system bus.  
LOCK#  
M/IO#  
LOCK# is multiplexed with P1.5.  
P(X)  
H(Z)  
R(0)  
I(1)  
Memory/IO Indicates whether the current bus cycle is a memory  
cycle or an I/O cycle. When M/IO# is HIGH, the bus cycle is a  
memory cycle; when M/IO# is LOW, the bus cycle is an I/O cycle.  
P(1)  
NA#  
NMI  
I
Next Address requests address pipelining.  
Nonmaskable Interrupt Request is a non-maskable input that  
causes the CPU to suspend execution of the current program  
and execute an interrupt acknowledge cycle.  
ST  
Processor Extension Request indicates that the math  
coprocessor has data to transfer to the processor. PEREQ is  
multiplexed with TMRCLK2 and has a temporary weak pull-down  
resistor.  
PEREQ  
P1.5:0  
I
H(X)  
R(WH)  
I(X)  
Port 1, Pins 7:0 are multipurpose bidirectional port pins. They  
are multiplexed as follows: P1.7 with HLDA, P1.6 with HOLD,  
P1.5 with LOCK#, P1.4 with RI0#, P1.3 with DSR0#, P1.2 with  
DTR0#, P1.1 with RTS0#, and P1.0 with DCD0#.  
I/O  
I/O  
I/O  
I/O  
I/O  
P(X)  
H(X)  
R(WL)  
I(X)  
Port 1, Pins 7:0 are multipurpose bidirectional port pins. They  
are multiplexed as follows: P1.7 with HLDA, P1.6 with HOLD,  
P1.5 with LOCK#, P1.4 with RI0#, P1.3 with DSR0#, P1.2 with  
DTR0#, P1.1 with RTS0#, and P1.0 with DCD0#.  
P1.7:6  
P(X)  
H(X)  
R(WH)  
I(X)  
Port 2, Pins 7:0 are multipurpose bidirectional port pins. They  
are multiplexed as follows: P2.7 with CTS0#, P2.6 with TXD0,  
P2.5 with RXD0, and P2.4:0 with CS4:0#.  
P2.7,4:0  
P2.6:5  
P(X)  
H(X)  
R(WL)  
I(X)  
Port 2, Pins 7:0 are multipurpose bidirectional port pins. They  
are multiplexed as follows: P2.7 with CTS0#, P2.6 with TXD0,  
P2.5 with RXD0, and P2.4:0 with CS4:0#.  
P(X)  
H(X)  
R(WL)  
I(X)  
Port 3, Pins 7:0 are multipurpose bidirectional port pins. They  
are multiplexed as follows: P3.7 with COMCLK, P3.6 with  
PWRDOWN, P3.5:2 with INT3:0, and P3.1:0 with TMROUT1:0  
and INT8:9.  
P3.7:0  
P(X)  
NOTES:  
1. X if clock source is internal; Q if clock source is external  
2. Q if JTAG unit is shifting out data, Z if it is not  
Datasheet  
15  
Intel386™ EX Embedded Microprocessor  
Table 4. Intel386™ EX Microprocessor Pin Descriptions (Sheet 4 of 6)  
Symbol  
Type  
Output States  
Name and Function  
H(Q)  
R(WL)  
I(X)  
Powerdown indicates that the processor is in powerdown mode.  
PWRDOWN is multiplexed with P3.6.  
PWRDOWN  
O
P(1)  
H(1)  
R(1)  
I(1)  
RD#  
O
Read Enable indicates that the current bus cycle is a read cycle.  
P(1)  
H(Z)  
R(Z)  
I(Z)  
Ready indicates that the current bus transaction has completed.  
An external device or an internal signal can drive READY#.  
Internally, the chip-select wait-state logic can generate the ready  
signal and drive the READY# pin active.  
READY#  
RESET  
I/O  
ST  
O
P(Z)  
Reset suspends any operation in progress and places the  
processor into a known reset state.  
H(1)  
R(1)  
I(Q)  
Refresh indicates that the current bus cycle is a refresh cycle.  
REFRESH# is multiplexed with CS6#.  
REFRESH#  
P(X)  
Ring Indicator SIO1 and SIO0 indicate that the modem or data  
set has received a telephone ringing signal. RI1# is multiplexed  
with SSIORX, and RI0# is multiplexed with P1.4 and has a  
temporary weak pull-up resistor.  
RI1:0#  
RTS1#  
RTS0#  
I
H(X)  
R(WL)  
I(X)  
Request-to-send SIO1 and SIO0 indicate that corresponding  
asynchronous serial channel is ready to exchange data with the  
modem or data set. RTS1# is multiplexed with SSIOTX, and  
RTS0# is multiplexed with P1.1.  
O
O
P(X)  
H(X)  
R(WH)  
I(X)  
Request-to-send SIO1 and SIO0 indicate that corresponding  
asynchronous serial channel is ready to exchange data with the  
modem or data set. RTS1# is multiplexed with SSIOTX, and  
RTS0# is multiplexed with P1.1.  
P(X)  
Receive Data SIO1 and SIO0 accept serial data from the  
modem or data set to the corresponding asynchronous serial  
channel. RXD1 is multiplexed with DRQ1, and RXD0 is  
multiplexed with P2.5 and has a temporary weak pull-down  
resistor.  
RXD1:0  
I
System Management Interrupt invokes System Management  
Mode (SMM). SMI# is the highest priority external interrupt. It is  
latched on its falling edge and forces the CPU into SMM upon  
completion of the current instruction. SMI# is recognized on an  
instruction boundary and at each iteration for repeat string  
instructions. SMI# cannot interrupt LOCKed bus cycles or a  
currently executing SMM. When the processor receives a  
second SMI# while in SMM, it latches the second SMI# on the  
SMI# falling edge. However, the processor must exit SMM by  
executing a resume instruction (RSM) before it can service the  
second SMI#. SMI# has a permanent weak pull-up resistor.  
SMI#  
ST  
System Management Interrupt Active indicates that the  
processor is operating in System Management Mode (SMM). It  
is asserted when the processor initiates an SMM sequence and  
remains asserted (LOW) until the processor executes the  
resume instruction (RSM).  
H(1)  
R(1)  
I(X)  
SMIACT#  
O
P(X)  
NOTES:  
1. X if clock source is internal; Q if clock source is external  
2. Q if JTAG unit is shifting out data, Z if it is not  
16  
Datasheet  
Intel386™ EX Embedded Microprocessor  
Table 4. Intel386™ EX Microprocessor Pin Descriptions (Sheet 5 of 6)  
Symbol  
Type  
Output States  
Name and Function  
H(Q)  
R(WH)  
SSIO Receive Clock synchronizes data being accepted by the  
synchronous serial port. SRXCLK is multiplexed with DTR1#.  
SRXCLK  
I/O  
I(Q)  
P(X)/P(Q)Note 1  
SSIO Receive Serial Data accepts serial data (most-significant  
bit first) being sent to the synchronous serial port. SSIORX is  
multiplexed with RI1#.  
SSIORX  
SSIOTX  
I
SSIO Transmit Serial Data sends serial data (most-significant  
bit first) from the synchronous serial port. SSIOTX is multiplexed  
with RTS1#.  
H(Q)  
R(WL)  
O
I(Q)  
Intel does not specify a data hold time for SSIOTX. Slower  
external devices may require additional hardware to properly  
interface the SSIO unit.  
P(X)/P(Q)Note 1  
H(Q)  
R(WH)  
SSIO Transmit Clock synchronizes data being sent by the  
synchronous serial port. STXCLK is multiplexed with DSR1.  
STXCLK  
I/O  
I(Q)  
P(X)/P(Q)Note 1  
TAP (Test Access Port) Controller Clock provides the clock  
input for the JTAG logic. It has a permanent weak pull-up  
resistor.  
TCK  
TDI  
I
I
TAP (Test Access Port) Controller Data Input is the serial  
input for test instructions and data. It has a permanent weak pull-  
up resistor.  
H(Z)/H(Q)Note 2  
R(Z)/R(Q)Note 2 TAP (Test Access Port) Controller Data Output is the serial  
TDO  
O
I
I(Z)/I(Q)Note 2  
output for test instructions and data.  
P(Z)/ P(Q)Note 2  
Timer/Counter Clock Inputs can serve as external clock inputs  
for the corresponding timer/counters. (The timer/counters can  
also be clocked internally.) They are multiplexed as follows:  
TMRCLK2 with PEREQ, TMRCLK1 with INT6, and TMRCLK0  
with INT4. TMRCLK2 has a temporary weak pull-down resistor.  
TMRCLK2:0  
Timer/Counter Gate Inputs can control the corresponding  
timer/counter’s counting (enable, disable, or trigger, depending  
on the programmed mode). They are multiplexed as follows:  
TMRGATE2 with BUSY#, TMRGATE1 with INT7, and  
TMRGATE0 with INT5. TMRGATE2 has a temporary weak pull-  
up resistor.  
TMRGATE2:0  
I
Timer/Counter Outputs provide the output of the corresponding  
timer/counter. The form of the output depends on the  
programmed mode. They are multiplexed as follows: TMROUT2  
with ERROR#, TMROUT1 with P3.1 and INT8, and TMROUT0  
with P3.0 and INT9.  
H(Q)  
R(WH)  
TMROUT2  
O
I(Q)  
P(X)/P(Q)Note 1  
Timer/Counter Outputs provide the output of the corresponding  
timer/counter. The form of the output depends on the  
programmed mode. They are multiplexed as follows: TMROUT2  
with ERROR#, TMROUT1 with P3.1 and INT8, and TMROUT0  
with P3.0 and INT9.  
H(Q)  
R(WL)  
TMROUT1:0  
O
I
I(Q)  
P(X)/P(Q)Note 1  
TAP (Test Access Port) Controller Mode Select controls the  
sequence of the TAP controller’s states. It has a permanent  
weak pull-up resistor.  
TMS  
NOTES:  
1. X if clock source is internal; Q if clock source is external  
2. Q if JTAG unit is shifting out data, Z if it is not  
Datasheet  
17  
Intel386™ EX Embedded Microprocessor  
Table 4. Intel386™ EX Microprocessor Pin Descriptions (Sheet 6 of 6)  
Symbol  
Type  
Output States  
Name and Function  
TAP (Test Access Port) Controller Reset resets the TAP  
controller at power-up and each time it is activated. It has a  
permanent weak pull-up resistor.  
TRST#  
ST  
H(Q)  
R(1)  
Transmit Data SIO1 and SIO0 transmit serial data from the  
individual serial channels. TXD1 is multiplexed with DACK1#,  
and TXD0 is multiplexed with P2.6.  
TXD1  
TXD0  
UCS#  
O
O
O
I(Q)  
P(X)/P(Q)Note 1  
H(Q)  
R(WL)  
Transmit Data SIO1 and SIO0 transmit serial data from the  
individual serial channels. TXD1 is multiplexed with DACK1#,  
and TXD0 is multiplexed with P2.6.  
I(Q)  
P(X)/P(Q)Note 1  
H(1)  
R(0)  
I(Q)  
Upper Chip-select is activated when the address of a memory  
or I/O bus cycle is within the address region programmed by the  
user.  
P(X)  
System Power provides the nominal DC supply input. This pin is  
connected externally to a VCC board plane.  
VCC  
P
System Ground provides the 0 V connection from which all  
inputs and outputs are measured. This pin is connected  
externally to a ground board plane.  
VSS  
G
H(Q)  
R(0)  
I(Q)  
Watchdog Timer Output indicates that the watchdog timer has  
expired.  
WDTOUT  
W/R#  
O
O
O
P(X)  
H(Z)  
R(0)  
I(1)  
Write/Read indicates whether the current bus cycle is a write  
cycle or a read cycle. When W/R# is HIGH, the bus cycle is a  
write cycle; when W/R# is LOW, the bus cycle is a read cycle.  
P(1)  
H(1)  
R(1)  
I(1)  
WR#  
Write Enable indicates that the current bus cycle is a write cycle.  
P(1)  
NOTES:  
1. X if clock source is internal; Q if clock source is external  
2. Q if JTAG unit is shifting out data, Z if it is not  
18  
Datasheet  
Intel386™ EX Embedded Microprocessor  
4.0  
Functional Description  
The Intel386 EX microprocessor is a fully static, 32-bit processor optimized for embedded  
applications. It features low power and low voltage capabilities, integration of many commonly  
used DOS-type peripherals, and a 32-bit programming architecture compatible with the large  
software base of Intel386 processors. The following sections provide an overview of the integrated  
peripherals.  
4.1  
Clock Generation and Power Management Unit  
The clock generation circuit includes a divide-by-two counter, a programmable divider for  
generating a prescaled clock (PSCLK), a divide-by-two counter for generating baud-rate clock  
inputs, and Reset circuitry. The CLK2 input provides the fundamental timing for the chip. It is  
divided by two internally to generate a 50% duty cycle Phase1 (PH1) and Phase 2 (PH2) for the  
core and integrated peripherals. For power management, separate clocks are routed to the core  
(PH1C/PH2C) and the peripheral modules (PH1P/PH2P). To help synchronize with external  
devices, the PH1P clock is provided on the CLKOUT output pin.  
Two Power Management modes are provided for flexible power-saving options. During Idle mode,  
the clocks to the CPU core are frozen in a known state (PH1C low and PH2C high), while the  
clocks to the peripherals continue to toggle. In Powerdown mode, the clocks to both core and  
peripherals are frozen in a known state (PH1C low and PH2C high). The Bus Interface Unit will  
not honor any DMA, DRAM refresh, or HOLD requests in Powerdown mode because the clocks to  
the entire device are frozen.  
4.2  
Chip-select Unit  
The Chip-Select Unit (CSU) decodes bus cycle address and status information and enables the  
appropriate chip-selects. The individual chip-selects become valid in the same bus state as the  
address and become inactive when either a new address is selected or the current bus cycle is  
complete.  
The CSU is divided into eight separate chip-select regions, each of which can enable one of the  
eight chip-select pins. Each chip-select region can be mapped into memory or I/O space. A  
memory-mapped chip-select region can start on any 2(n+1) Kbyte address location (where n = 0–15,  
depending upon the mask register). An I/O-mapped chip-select region can start on any 2(n+1) byte  
address location (where n = 0–15, depending upon the mask register). The size of the region is also  
dependent upon the mask used.  
4.3  
Interrupt Control Unit  
The Intel386 EX processor’s Interrupt Control Unit (ICU) contains two 8259A modules connected  
in a cascade mode. These modules are similar to the industry-standard 8259A architecture.  
The Interrupt Control Unit directly supports up to ten external (INT9:0) and up to eight internal  
interrupt request signals. Pending interrupt requests are posted in the Interrupt Request Registers,  
which contain one bit for each interrupt request signal. When an interrupt request is asserted, the  
corresponding Interrupt Request Register bit is set. The 8259A modules can be programmed to  
Datasheet  
19  
Intel386™ EX Embedded Microprocessor  
recognize either an active-high level or a positive transition on the interrupt request lines. An  
internal Priority Resolver decides which pending interrupt request (if more than one exists) is the  
highest priority, based on the programmed operating mode. The Priority Resolver controls the  
single interrupt request line to the CPU. The Priority Resolver’s default priority scheme places the  
master interrupt controller’s IR0 as the highest priority and the master’s IR7 as the lowest. The  
priority can be modified through software.  
Besides the ten interrupt request inputs available to the Intel386 EX microprocessor, additional  
interrupts can be supported by cascaded external 8259A modules. Up to four external 8259A units  
can be cascaded to the master through connections to the INT3:0 pins. In this configuration, the  
interrupt acknowledge (INTA#) signal can be decoded externally using the ADS#, D/C#, W/R#,  
and M/IO# signals.  
4.4  
4.5  
Timer/Counter Unit  
The Timer/Counter Unit (TCU) on the Intel386 EX microprocessor has the same basic  
functionality as the industry-standard 82C54 counter/timer. The TCU provides three independent  
16-bit counters, each capable of handling clock inputs up to 8 MHz. This maximum frequency  
must be considered when programming the input clocks for the counters. Six programmable timer  
modes allow the counters to be used as event counters, elapsed-time indicators, programmable one-  
shots, and in many other applications. All modes are software programmable.  
Watchdog Timer Unit  
The Watchdog Timer (WDT) unit consists of a 32-bit down-counter that decrements every PH1P  
cycle, allowing up to 4.3 billion count intervals. The WDTOUT pin is driven high for sixteen  
CLK2 cycles when the down-counter reaches zero (the WDT times out). The WDTOUT signal can  
be used to reset the chip, to request an interrupt, or to indicate to the user that a ready-hang  
situation has occurred. The down-counter can also be updated with a user-defined 32-bit reload  
value under certain conditions. Alternatively, the WDT unit can be used as a bus monitor or as a  
general-purpose timer.  
4.6  
Asynchronous Serial I/O Unit  
The Intel386 EX microprocessor’s asynchronous Serial I/O (SIO) unit is a Universal  
Asynchronous Receiver/ Transmitter (UART). Functionally, it is equivalent to the National  
Semiconductor NS16450 and INS8250. The Intel386 EX embedded processor contains two full-  
duplex, asynchronous serial channels.  
The SIO unit converts serial data characters received from a peripheral device or modem to parallel  
data and converts parallel data characters received from the CPU to serial data. The CPU can read  
the status of the serial port at any time during its operation. The status information includes the type  
and condition of the transfer operations being performed and any errors (parity, framing, overrun,  
or break interrupt).  
20  
Datasheet  
Intel386™ EX Embedded Microprocessor  
Each asynchronous serial channel includes full modem control support (CTS#, RTS#, DSR#,  
DTR#, RI#, and DCD#) and is completely programmable. The programmable options include  
character length (5, 6, 7, or 8 bits), stop bits (1, 1.5, or 2), and parity (even, odd, forced, or none). In  
addition, it contains a programmable baud-rate generator capable of clock rates from 0 to 512  
Kbaud.  
4.7  
Synchronous Serial I/O Unit  
The Synchronous Serial I/O (SSIO) unit provides for simultaneous, bidirectional communications.  
It consists of a transmit channel, a receive channel, and a dedicated baud-rate generator. The  
transmit and receive channels can be operated independently (with different clocks) to provide  
non-lockstep, full-duplex communications; either channel can originate the clocking signal (Master  
Mode) or receive an externally generated clocking signal (Slave Mode).  
The SSIO provides numerous features for ease and flexibility of operation. With a maximum clock  
input of CLK2/4 to the baud-rate generator, the SSIO can deliver a baud rate of up to 8.25 Mbits  
per second with a processor clock of 33 MHz. Each channel is double buffered. The two channels  
share the baud-rate generator and a multiply-by-two transmit and receive clock. The SSIO supports  
16-bit serial communications with independently enabled transmit and receive functions and gated  
interrupt outputs to the interrupt controller.  
4.8  
4.9  
Parallel I/O Unit  
The Intel386 EX microprocessor has three 8-bit, general-purpose I/O ports. All port pins are  
bidirectional, with TTL-level inputs and CMOS-level outputs. All pins have both a standard  
operating mode and a peripheral mode (a multiplexed function), and all have similar sets of control  
registers located in I/O address space.  
DMA and Bus Arbiter Unit  
The Intel386 EX microprocessor’s DMA controller is a two-channel DMA; each channel operates  
independently of the other. Within the operation of the individual channels, several different data  
transfer modes are available. These modes can be combined in various configurations to provide a  
very versatile DMA controller. Its feature set has enhancements beyond the 8237 DMA family;  
however, it can be configured such that it can be used in an 8237-like mode. Each channel can  
transfer data between any combination of memory and I/O with any combination (8 or 16 bits) of  
data path widths. An internal temporary register that can disassemble or assemble data to or from  
either an aligned or a nonaligned destination or source optimizes bus bandwidth.  
The bus arbiter, a part of the DMA controller, works much like the priority resolving circuitry of a  
DMA. It receives service requests from the two DMA channels, the external bus master, and the  
DRAM Refresh Control Unit. The bus arbiter requests bus ownership from the core and resolves  
priority issues among all active requests when bus mastership is granted.  
Each DMA channel consists of three major components: the Requestor, the Target, and the Byte  
Count. These components are identified by the contents of programmable registers that define the  
memory or I/O device being serviced by the DMA. The Requestor is the device that requires and  
requests service from the DMA controller. Only the Requestor is considered capable of initializing  
Datasheet  
21  
Intel386™ EX Embedded Microprocessor  
or terminating a DMA process. The Target is the device with which the Requestor wishes to  
communicate. The DMA process considers the Target a slave that is incapable of controlling the  
process. The Byte Count dictates the amount of data that must be transferred.  
4.10  
Refresh Control Unit  
The Refresh Control Unit (RCU) simplifies dynamic memory controller design with its integrated  
address and clock counters. Integrating the RCU into the processor allows an external DRAM  
controller to use chip-selects, wait state logic, and status lines.  
The Refresh Control Unit:  
Provides a programmable-interval timer  
Provides the bus arbitration logic to gain control of the bus to run refresh cycles  
Contains the logic to generate row addresses to refresh DRAM rows individually  
Contains the logic to signal the start of a refresh cycle  
The RCU contains a 13-bit address counter that forms the refresh address, supporting DRAMs with  
up to 13 rows of memory cells (13 refresh address bits). This includes all practical DRAM sizes for  
the Intel386 EX microprocessors 64 Mbyte address space.  
4.11  
JTAG Test-logic Unit  
The JTAG Test-logic Unit provides access to the device pins and to a number of other testable areas  
on the device. It is fully compliant with the IEEE 1149.1 standard and thus interfaces with five  
dedicated pins: TRST#, TCK, TMS, TDI, and TDO. It contains the Test Access Port (TAP) finite-  
state machine, a 4-bit instruction register, a 32-bit identification register, and a single-bit bypass  
register. The test-logic unit also contains the necessary logic to generate clock and control signals  
for the Boundary Scan chain.  
Since the test-logic unit has its own clock and reset signals, it can operate autonomously. While the  
rest of the microprocessor is in Reset or Powerdown, the JTAG unit can read or write various  
register chains.  
22  
Datasheet  
Intel386™ EX Embedded Microprocessor  
5.0  
Design Considerations  
This section describes the Intel386 EX microprocessor’s instruction set and its component and  
revision identifiers.  
5.1  
Instruction Set  
The Intel386 EX microprocessor uses the same instruction set as the Intel386 SX microprocessor  
with the following exceptions.  
The Intel386 EX microprocessor has one new instruction (RSM). This Resume instruction causes  
the processor to exit System Management Mode (SMM). RSM requires 338 clocks per instruction  
(CPI).  
The Intel386 EX microprocessor requires more clock cycles than the Intel386 SX microprocessor  
to execute some instructions. Table 5 lists these instructions and the Intel386 EX microprocessor  
clock count. For the equivalent Intel386 SX microprocessor clock count, refer to the “Instruction  
Set Clock Count Summary” table in the Intel386™ SX Microprocessor datasheet (order number  
240187).  
Table 5. Microprocessor Clocks Per Instruction  
Clock Count (1)  
Instruction  
Real Address Mode  
or Virtual 8086 Mode  
Virtual 8086 Mode(2)  
Protected Virtual Address Mode(3)  
POPA  
29  
35  
IN:  
Fixed Port  
Variable Port  
27  
28  
14  
15  
8/29  
9/29  
OUT:  
Fixed Port  
Variable Port  
27  
28  
14  
15  
8/29  
9/29  
INS  
30  
17  
10/32  
OUTS  
31  
18  
11/33  
REP INS  
REP OUTS  
HLT  
31+6n (Note 4)  
30+8n (Note 4)  
17+7n (Note 4)  
11+7n/32+6n (Note 4)  
16+8n (Note 4)  
10+8n/31+8n (Note 4)  
7
7
MOV CR0, reg  
10  
10  
NOTES:  
1. For IN, OUT, INS, OUTS, REP INS, and REP OUTS instructions, add one clock count for each wait state  
generated by the peripheral being accessed (the values in the table are for zero wait state).  
2. The clock count values in this column apply if I/O permission allows I/O to the port in virtual 8086 mode. If  
the I/O bit map denies permission, exception fault 13 occurs; see clock counts for the INT 3 instruction in  
the “Instruction Set Clock Count Summary” table in the Intel386™ SX Microprocessor datasheet (order  
number 240187).  
3. When two clock counts are listed, the smaller value refers to the case where CPL IOPL and the larger  
value refers to the case where CPL>IOPL. CPL is the current privilege level, and IOPL is the I/O privilege  
level.  
4. n = the number of times repeated.  
Datasheet  
23  
 
 
 
 
 
Intel386™ EX Embedded Microprocessor  
5.2  
Component and Revision Identifiers  
To assist users, the microprocessor holds a component identifier and revision identifier in its DX  
register after reset. The upper 8 bits of DX hold the component identifier, 23H. (The lower nibble,  
3H, identifies the Intel386 architecture, while the upper nibble, 2H, identifies the second member  
of the Intel386 microprocessor family.)  
The lower 8 bits of DX hold the revision level identifier. The revision identifier will, in general,  
chronologically track those component steppings that are intended to have certain improvements or  
distinction from previous steppings. The revision identifier will track that of the Intel386 CPU  
whenever possible. However, the revision identifier value is not guaranteed to change with every  
stepping revision or to follow a completely uniform numerical sequence, depending on the type or  
intent of the revision or the manufacturing materials required to be changed. Intel has sole  
discretion over these characteristics of the component. The initial revision identifier for the  
Intel386 EX microprocessor is 09H.  
5.3  
Package Thermal Specifications  
The Intel386 EX microprocessor is specified for operation with a minimum case temperature  
(T  
) of -40° C and a maximum case temperature (T  
) dependent on power  
CASE(MIN)  
CASE(MAX)  
dissipation (see Figures 4 through 7). The case temperature can be measured in any environment to  
determine whether the microprocessor is within the specified operating range. The case  
temperature should be measured at the center of the top surface opposite the pins.  
An increase in the ambient temperature (T ) causes a proportional increase in the case temperature  
A
(T  
) and the junction temperature (T ), which is the junction temperature on the die itself. A  
CASE  
J
packaged device produces thermal resistance between junction and case temperatures (θ ) and  
JC  
between junction and ambient temperatures (θ ). The relationships between the temperature and  
JA  
thermal resistance parameters are expressed by these equations:  
TJ = TCASE + P × θJC  
TA = TJ – P × θJA  
TCASE = TA + P × [θJA θJC]  
P = power dissipated as heat = VCC × ICC  
A safe operating temperature can be calculated from the above equations by using the maximum  
safe TJ of 120° C, the power drawn by the chip in the specific design, and the θ value from Table  
JC  
6. The θ value depends on the airflow (measured at the top of the chip) provided by the system  
JA  
ventilation, board layout, board thickness, and potentially other factors in the design of the  
application. The θ values are given for reference only and are not guaranteed.  
JA  
Table 6. Thermal Resistances (0°C/W) θ , θ  
JA JC  
θJA vs. Airflow (ft/min)  
Package  
θJC  
0
100  
200  
132 PQFP  
144 TQFP  
7
4
28  
36  
24  
31  
22  
27  
Figures 4 through 7 provide maximum case temperature as a function of frequency.  
24  
Datasheet  
 
Intel386™ EX Embedded Microprocessor  
Figure 4. Maximum Case Temperature vs. Frequency for Typical Power Values  
(132-lead PQFP, VCC = 5.5 V)  
113.9  
114  
113  
112  
132 Lead PQFP  
112.25  
111  
Tc  
110.7  
(deg C)  
110  
109  
108  
107  
107.8  
16  
20  
25  
33  
Operating Frequency (MHz)  
A3346-02  
Figure 5. Maximum Case Temperature vs. Frequency for Typical Power Values  
(144-lead TQFP, VCC = 5.5 V nominal)  
116  
114.9  
115  
114  
113  
112  
111  
110  
109  
108  
144 Lead TQFP  
113.5  
112.25  
Tc  
(deg C)  
109.8  
16  
20  
25  
33  
Operating Frequency (MHz)  
A3347-02  
Datasheet  
25  
 
 
Intel386™ EX Embedded Microprocessor  
Figure 6. Maximum Case Temperature vs. Frequency for Typical Power Values  
(132-lead PQFP, VCC = 3.6 V)  
117.5  
117.5  
132 Lead PQFP  
117.0  
117.0  
116.5  
Tc  
(deg C)  
116.5  
16  
20  
25  
Operating Frequency (MHz)  
A3348-02  
Figure 7. Maximum Case Temperature vs. Frequency for Typical Power Values  
(144-lead TQFP, VCC = 3.6 V)  
118.0  
144 Lead TQFP  
117.5  
118.0  
117.5  
117.0  
Tc  
(deg C)  
117.0  
16  
20  
25  
Operating Frequency (MHz)  
A3349-01  
26  
Datasheet  
 
 
Intel386™ EX Embedded Microprocessor  
6.0  
Electrical Specifications  
6.1  
Maximum Ratings  
Warning: Stressing the device beyond the “Maximum Ratings” may cause permanent damage. These are  
stress ratings only.  
Table 7. 5 V Intel386 EXTC Processor Maximum Ratings  
Parameter  
Storage Temperature  
Maximum Rating  
–65°C to +150°C  
–0.5 V to 6.5 V  
Supply Voltage with Respect to VSS  
Voltage on Other Pins  
–0.5 V to VCC + 0.5 V  
4.5 V to 5.5 V  
VCC (Digital Supply Voltage)  
TCASE (Case Temperature Under Bias)  
TCASE(MIN)  
TCASE(MAX)  
-40°C  
(see Figures 4 and 5)  
FOSC (Operating Frequency)  
0 MHz to 33 MHz  
Table 8. 3 V Intel386 EXTB Processor Maximum Ratings  
Parameter  
Storage Temperature  
Maximum Rating  
–65°C to +150°C  
–0.5 V to 4.6 V  
Supply Voltage with Respect to VSS  
Voltage on Other Pins  
–0.5 V to VCC + 0.5 V  
20 MHz — 2.7 V to 3.6 V  
25 MHz — 3.0 V to 3.6 V  
VCC (Digital Supply Voltage)  
TCASE (Case Temperature Under Bias)  
TCASE(MIN)  
TCASE(MAX)  
-40°C  
(see Figures 6 and 7)  
FOSC (Operating Frequency)  
0 MHz to 25 MHz  
Datasheet  
27  
Intel386™ EX Embedded Microprocessor  
6.2  
DC Specifications  
Table 9. 5-Volt DC Characteristics  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Test Condition  
Input Low Voltage for all input pins  
except CLK2, TRST#, RESET,  
SMI#, and NMI  
VIL  
–0.3  
0.8  
V
Input High Voltage for all input pins  
except CLK2, TRST#, RESET,  
SMI#, and NMI  
VIH  
2.0  
VCC + 0.3  
0.8  
V
Input Low Voltage for CLK2,  
TRST#, RESET, SMI#, and NMI  
VILC  
VIHC  
-0.3  
V
V
Input High Voltage for CLK2,  
TRST#, RESET, SMI#, and NMI  
VCC-0.8 VCC+0.3  
Output Low Voltage  
VOL  
All pins except Port 3  
Port 3  
0.45  
0.45  
V
V
I
I
OL = 8 mA  
OL = 16 mA  
Output High Voltage  
All output pins  
V
2.45  
2.45  
CC-0.5  
V
V
V
IOH = –0.2 mA  
IOH = –8 mA  
VOH  
All pins except Port 3  
Port 3 pins (2 max)  
IOH = –16 mA  
VOLC  
VOHC  
CLKOUT  
CLKOUT  
0.45  
V
V
IOL = 2 mA  
VCC-0.5  
2.45  
IOH = –0.2 mA  
IOH = –2 mA  
±15  
±15  
0 VIN VCC  
FLT# is not tested for ILI  
ILI  
Input Leakage Current  
Output Leakage Current  
µA  
ILO  
µA 0.45V VOUT VCC  
320  
250  
mA FOSC =33 MHz  
mA FOSC =25 MHz  
(tested with device held in  
reset, inputs held in their  
inactive state)  
ICC  
Supply Current  
110  
85  
mA FOSC =33 MHz  
IIDLE  
Idle Mode Current  
mA  
FOSC =25 MHz  
IPD  
CS  
Powerdown Current  
100  
10  
µA  
Pin Capacitance (any pin to VSS  
)
pF Not tested  
28  
Datasheet  
Intel386™ EX Embedded Microprocessor  
Table 10. 3-Volt DC Characteristics  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Test Condition  
Input Low Voltage for all  
input pins except CLK2,  
TRST#, RESET, SMI#, and  
NMI  
VIL  
–0.3  
0.8  
V
Input High Voltage for all  
input pins except CLK2,  
TRST#, RESET, SMI#, and  
NMI  
VIH  
2.0  
V
CC + 0.3  
V
V
Input Low Voltage for CLK2,  
TRST#, RESET, SMI#, and  
NMI  
VILC  
-0.3  
0.8  
Input High Voltage for CLK2,  
TRST#, RESET, SMI#, and  
NMI  
VIHC  
VCC-0.6  
VCC+0.3  
0.20  
V
V
IOL = 100 µA, 2.7 V VCC 3.6 V  
Output Low Voltage  
(LVCMOS)  
VOL  
All pins except Port 3  
Port 3 pins (2 max)  
0.45  
0.45  
V
V
IOL = 4mA, 3.0 VVCC3.6 V (LVTTL)  
IOL = 8mA, 3.0 VVCC3.6 V (LVTTL)  
VCC-0.2  
V
IOH= -100 µA, 2.7 VVCC3.6 V  
(LVCMOS)  
Output High Voltage  
VOH  
V
CC-0.65  
CC-0.65  
V
V
I
OH= -4mA, 3.0 VVCC3.6V (LVTTL)  
All pins except Port 3  
Port 3  
V
IOH= -8mA, 3.0 VVCC3.6V (LVTTL)  
IOL = 100 µA, 2.7 V VCC 3.6 V  
OL = 1 mA, 3.0 V VCC 3.6 V  
(LVTTL)  
0.2  
0.45  
VOLC  
CLKOUT  
CLKOUT  
V
I
IOH = -100 µA, 2.7 V VCC 3.6 V  
VCC-0.2  
CC-0.65  
VOHC  
V
IOH = -1 mA, 3.0 V VCC 3.6 V  
(LVTTL)  
V
±5  
0 VIN VCC  
FLT# is not tested for ILI  
ILI  
Input Leakage Current  
Output Leakage Current  
µA  
ILO  
±15  
µA 0.45V VOUT VCC  
140  
110  
mA FOSC = 25 MHz, VCC=3.6 V  
mA FOSC = 20 MHz, VCC=3.6 V  
ICC  
Supply Current  
(tested with device held in reset,  
inputs held in their inactive state)  
50  
40  
mA FOSC = 25 MHz, VCC=3.6 V  
IIDLE  
IPD  
Idle Mode Current  
mA  
FOSC = 20 MHz, VCC=3.6 V  
Powerdown Current  
100  
10  
µA  
Pin Capacitance (any pin to  
CS  
pF Not tested  
VSS  
)
Datasheet  
29  
Intel386™ EX Embedded Microprocessor  
6.3  
AC Specifications  
Table 11 lists output delays, input setup requirements, and input hold requirements for the 5 V  
EXTC processor; Table 12 is for the EXTB processor. All AC specifications are relative to the  
CLK2 rising edge crossing the VCC/2 level for the EXTB, or 2.0 Volts for the EXTC.  
Figures 8 and 9 show the measurement points for AC specifications for the EXTB and EXTC  
processors. Inputs must be driven to the indicated voltage levels when AC specifications are  
measured. Output delays are specified with minimum and maximum limits measured as shown.  
The minimum delay times are hold times provided to external circuitry. Input setup and hold times  
are specified as minimums, defining the smallest acceptable sampling window. Within the  
sampling window, a synchronous input signal must be stable for correct operation.  
Outputs ADS#, W/R#, CS5:0#, UCS#, D/C#, M/IO#, LOCK#, BHE#, BLE#, REFRESH#/CS6#,  
READY#, LBA#, A25:1, HLDA and SMIACT# change only at the beginning of phase one. D15:0  
(write cycles) and PWRDOWN change only at the beginning of phase two. RD# and WR# change  
to their active states at the beginning of phase two. RD# changes to its inactive state (end of cycle)  
at the beginning of phase one. See the Intel386™ EX Embedded Microprocessor User's Manual for  
a detailed explanation of early READY# vs. late READY#.  
The READY#, HOLD, BUSY#, ERROR#, PEREQ, BS8#, and D15:0 (read cycles) inputs are  
sampled at the beginning of phase one. The NA#, SMI#, and NMI inputs are sampled at the  
beginning of phase two.  
Figure 8. Drive Levels and Measurement Points for AC Specifications (EXTC)  
Tx  
PH1  
PH2  
b
CLK2  
A
B
OUTPUTS  
(A25:1,BHE#  
BLE#,ADS#,M/IO#  
D/C#W/R#,LOCK#  
HLDA, SMIACT#)  
Min  
Max  
Valid  
Valid  
a
a
Output n+1  
Output n  
A
B
Min  
Max  
Valid  
Valid  
a
Output n  
OUTPUTS  
(D15:0)  
a
Output n+1  
C
D
3.0V  
0V  
INPUTS  
(N/A#,INTR  
NMI,SMI#)  
Valid  
Input  
c
c
C
D
INPUTS  
(READY#,HOLD  
FLT#,ERROR#  
BUSY#,PEREQ  
D15:0,A20)  
3.0V  
0V  
Valid  
Input  
c
c
LEGEND  
a - VCC /2  
b - 2.0V  
c = 1.5V  
A - Maximum Output Delay Spec  
B - Minimum Output Delay Spec  
C - Minimum Input Setup Spec  
D - Minimum Input Hold Spec  
30  
Datasheet  
 
Intel386™ EX Embedded Microprocessor  
Figure 9. Drive Levels and Measurement Points for AC Specifications (EXTB)  
Tx  
PH1  
PH2  
a
CLK2  
A
B
OUTPUTS  
(A25:1,BHE#  
BLE#,ADS#,M/IO#  
D/C#W/R#,LOCK#  
HLDA, SMIACT#)  
Min  
Max  
Valid  
Valid  
a
a
Output n+1  
Output n  
A
B
Min  
Max  
Valid  
Valid  
a
Output n  
OUTPUTS  
(D15:0)  
a
Output n+1  
C
D
2.0V  
0V  
INPUTS  
(N/A#,INTR  
NMI,SMI#)  
Valid  
Input  
b
b
C
D
INPUTS  
(READY#,HOLD  
FLT#,ERROR#  
BUSY#,PEREQ  
D15:0,A20)  
2.0V  
0V  
Valid  
Input  
b
b
LEGEND  
a - VCC/2  
b = 1.5V  
A - Maximum Output Delay Spec  
B - Minimum Output Delay Spec  
C - Minimum Input Setup Spec  
D - Minimum Input Hold Spec  
A2600-02  
Datasheet  
31  
Intel386™ EX Embedded Microprocessor  
Table 11. 5-Volt AC Characteristics (Sheet 1 of 5)  
33 MHz  
25 MHz  
Symbol  
Parameter  
Test Condition  
Min.  
(ns)  
Max.  
(ns)  
Min.  
(ns)  
Max.  
(ns)  
one-half CLK2 frequency  
in MHz (1)  
Operating Frequency  
0
33  
0
25  
t1  
CLK2 Period  
15  
6.25  
4
20  
7
t2a  
t2b  
t3a  
t3b  
t4  
CLK2 High Time  
(2)  
CLK2 High Time  
4
(2)  
CLK2 Low Time  
6.25  
4.5  
7
(2)  
CLK2 Low Time  
5
(2)  
CLK2 Fall Time  
4
7
(2)  
t5  
CLK2 Rise Time  
4
7
(2)  
t6  
A25:1 Valid Delay  
A25:1 Float Delay  
BHE#, BLE#, LOCK# Valid Delay  
SMIACT# Valid Delay  
BHE#, BLE#, LOCK# Float Delay  
4
4
4
4
4
21  
28  
21  
21  
28  
4
4
4
4
4
24  
28  
24  
24  
28  
CL = 50 pF  
(3)  
t7  
t8  
CL = 50 pF  
CL = 50 pF  
(3)  
t8a  
t9  
M/IO#, D/C#, W/R#, ADS#,  
REFRESH# Valid Delay  
t10  
4
4
21  
18  
4
4
24  
22  
CL = 50 pF  
t10a  
RD#, WR# Valid Delay  
WR# Valid Delay for the rising  
edge with respect to phase two  
(external late READY#)  
t10b  
4
4
28  
28  
4
4
28  
28  
(6)  
(3)  
M/IO#, D/C#, W/R#, REFRESH#,  
ADS# Float Delay  
t11  
t12  
D15:0 Write Data Valid Delay  
D15:0 Write Data Float delay  
HLDA Valid Delay  
4
4
23  
22  
18  
4
4
23  
22  
22  
CL = 50 pF  
(3)  
t13  
t14  
4
4
CL = 50 pF  
t15  
NA# Setup Time  
5
5
t16  
NA# Hold Time  
3
3
t19  
READY# Setup Time  
BS8# Setup Time  
8
9
t19a  
11  
11  
NOTE:  
1. Tested at maximum operating frequency and guaranteed by design characterization at lower operating  
frequencies.  
2. These are not tested. They are guaranteed by characterization.  
3. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not  
fully tested.  
4. These inputs may be asynchronous to CLK2. The setup and hold specifications are given to ensure recognition  
within a specific CLK2 period.  
5. These specifications are for information only and are not tested. They are intended to assist the designer in  
selecting memory speeds. For each wait state in the design add two CLK2 cycles to the specification.  
6. This specification assumes that READY# goes active after the rising edge of phase 2, so that WR# goes  
inactive as a result of READY# falling.  
7. This specification assumes that READY# goes active before the rising edge of phase 2, so that WR# goes  
inactive as a result of phase 2 rising.  
8. This specification applies if READY# is generated internally.  
32  
Datasheet  
 
 
 
 
 
 
 
Intel386™ EX Embedded Microprocessor  
Table 11. 5-Volt AC Characteristics (Sheet 2 of 5)  
33 MHz  
25 MHz  
Symbol  
Parameter  
Test Condition  
Min.  
(ns)  
Max.  
(ns)  
Min.  
(ns)  
Max.  
(ns)  
t20  
t21  
t22  
t23  
t24  
t25  
t26  
t27  
t27a  
t28  
t28a  
READY#, BS8# Hold Time  
D15:0 Read Setup Time  
D15:0 Read Hold Time  
HOLD Setup Time  
HOLD Hold Time  
4
7
4
8
3
5
2
6
6
6
6
4
7
4
8
3
5
3
6
6
6
6
RESET Setup Time  
RESET Hold Time  
NMI Setup Time  
(4)  
(4)  
(4)  
(4)  
SMI# Setup Time  
NMI Hold Time  
SMI# Hold Time  
PEREQ, ERROR#, BUSY# Setup  
Time  
t29  
t30  
6
5
6
5
(4)  
(4)  
PEREQ, ERROR#, BUSY# Hold  
Time  
t31  
t32  
t33  
READY# Valid Delay  
READY# Float Delay  
LBA# Valid Delay  
4
4
4
24  
34  
20  
4
4
4
26  
34  
22  
CL = 30 pF  
24 (25 in  
SMM)  
t34  
CS6:0#, UCS# Valid Delay  
4
4
30  
CL = 30 pF  
CL = 30 pF  
t35  
t36  
CLKOUT Valid Delay  
2
4
9
2
4
14  
18  
PWRDOWN Valid Delay  
15  
A25:1, BHE#, BLE# Valid to WR#  
Low  
t41  
0
0
0
0
0
0
t41a  
t42  
UCS#, CS6:0# Valid to WR# Low  
A25:1, BHE#, BLE# Hold After  
WR# High  
(6)  
UCS#, CS6:0# Hold after WR#  
High  
t42a  
0
0
A25:1. BHE#, BLE# Hold After  
WR# High  
t42b  
10  
10  
(7, 8)  
NOTE:  
1. Tested at maximum operating frequency and guaranteed by design characterization at lower operating  
frequencies.  
2. These are not tested. They are guaranteed by characterization.  
3. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not  
fully tested.  
4. These inputs may be asynchronous to CLK2. The setup and hold specifications are given to ensure recognition  
within a specific CLK2 period.  
5. These specifications are for information only and are not tested. They are intended to assist the designer in  
selecting memory speeds. For each wait state in the design add two CLK2 cycles to the specification.  
6. This specification assumes that READY# goes active after the rising edge of phase 2, so that WR# goes  
inactive as a result of READY# falling.  
7. This specification assumes that READY# goes active before the rising edge of phase 2, so that WR# goes  
inactive as a result of phase 2 rising.  
8. This specification applies if READY# is generated internally.  
Datasheet  
33  
Intel386™ EX Embedded Microprocessor  
Table 11. 5-Volt AC Characteristics (Sheet 3 of 5)  
33 MHz  
25 MHz  
Symbol  
Parameter  
Test Condition  
Min.  
(ns)  
Max.  
(ns)  
Min.  
(ns)  
Max.  
(ns)  
2CLK2  
–10  
2CLK2  
– 10  
t43  
D15:0 Output Valid to WR# High  
(5)  
(3)  
CLK2  
–10  
CLK2  
–10  
t44  
D15:0 Output Hold After WR# High  
CLK2  
+ 10  
CLK2  
+ 10  
t45  
WR# High to D15:0 Float  
WR# Pulse Width  
2CLK2  
–10  
2CLK2  
–10  
t46  
t47  
t47a  
t48  
(7)  
(5)  
(5)  
(5)  
A25:1, BHE#, BLE# Valid to D15:0  
Valid  
4CLK2 -  
28  
4CLK2-  
31  
UCS#, CS6:0# Valid to D15-D0  
Valid  
4CLK2 -  
31  
4CLK2 -  
35  
3CLK2 –  
25  
3CLK2 –  
29  
RD# Low to D15:0 Input Valid  
t49  
t50  
D15:0 Hold After RD# High  
RD# High to D15:0 Float  
0
0
CLK2  
CLK2 (3)  
A25:1, BHE#, BLE# Hold After  
RD# High  
t51  
0
0
0
0
UCS#, CS6:0# Hold after RD#  
High  
t51a  
t52  
3CLK2  
–10  
3CLK2  
–10  
RD# Pulse Width  
Synchronous Serial I/O (SSIO) Unit  
STXCLK, SRXCLK Frequency  
(Master Mode)  
t100  
CLK2/8  
CLK2/8  
CLK2/8 (Unit is MHz)  
CLK2/8 (Unit is MHz)  
STXCLK, SRXCLK Frequency  
(Slave Mode)  
t101  
t102  
t103  
t104  
STXCLK, SRXCLK Low Time  
STXCLK, SRXCLK High Time  
STXCLK Low to SSIOTX Delay  
7CLK2/2  
7CLK2/2  
7CLK2/2  
7CLK2/2  
(2)  
(2)  
3CLK2  
3CLK2  
SSIORX to SRXCLK High Setup  
Time  
t105  
0
0
(2)  
t106  
SSIORX from SRXCLK Hold Time 3CLK2  
3CLK2  
NOTE:  
1. Tested at maximum operating frequency and guaranteed by design characterization at lower operating  
frequencies.  
2. These are not tested. They are guaranteed by characterization.  
3. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not  
fully tested.  
4. These inputs may be asynchronous to CLK2. The setup and hold specifications are given to ensure recognition  
within a specific CLK2 period.  
5. These specifications are for information only and are not tested. They are intended to assist the designer in  
selecting memory speeds. For each wait state in the design add two CLK2 cycles to the specification.  
6. This specification assumes that READY# goes active after the rising edge of phase 2, so that WR# goes  
inactive as a result of READY# falling.  
7. This specification assumes that READY# goes active before the rising edge of phase 2, so that WR# goes  
inactive as a result of phase 2 rising.  
8. This specification applies if READY# is generated internally.  
34  
Datasheet  
Intel386™ EX Embedded Microprocessor  
Table 11. 5-Volt AC Characteristics (Sheet 4 of 5)  
33 MHz  
25 MHz  
Symbol  
Parameter  
Test Condition  
Min.  
(ns)  
Max.  
(ns)  
Min.  
(ns)  
Max.  
(ns)  
Timer Control Unit (TCU) Inputs  
t107  
t108  
t109  
t110  
t111  
TMRCLKn Frequency  
TMRCLKn Low  
8
8
(Unit is MHz)  
60  
60  
50  
50  
60  
60  
50  
50  
TMRCLKn High  
TMRGATEn High Width  
TMRGATEn Low Width  
TMRGATEn to TMRCLK Setup  
Time (external TMRCLK only)  
t112  
10  
11  
10  
11  
TMRGATEn to TMRCLK Hold  
Time (external TMRCLK only)  
t112a  
Timer Control Unit (TCU) Outputs  
TMRGATEn Low to TMROUT  
Valid  
t113  
29  
29  
32  
32  
t114  
TMRCLKn Low to TMROUT Valid  
Interrupt Control Unit (ICU) Inputs  
D7:0 Setup Time  
t115  
7
4
7
4
(INTA# Cycle 2)  
D7:0 Hold Time  
t116  
(INTA# Cycle 2)  
Interrupt Control Unit (ICU) Outputs  
t117  
DMA Unit Inputs  
DREQ Setup Time  
CLK2 High to CAS2:0 Valid  
25  
28  
t118  
t119  
t120  
15  
4
15  
4
(Sync Mode)  
DREQ Hold Time  
(Sync Mode)  
(2)  
(2)  
DREQ Setup Time  
(Async Mode)  
9
9
DREQ Hold Time  
(Async Mode)  
t121  
9
9
NOTE:  
1. Tested at maximum operating frequency and guaranteed by design characterization at lower operating  
frequencies.  
2. These are not tested. They are guaranteed by characterization.  
3. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not  
fully tested.  
4. These inputs may be asynchronous to CLK2. The setup and hold specifications are given to ensure recognition  
within a specific CLK2 period.  
5. These specifications are for information only and are not tested. They are intended to assist the designer in  
selecting memory speeds. For each wait state in the design add two CLK2 cycles to the specification.  
6. This specification assumes that READY# goes active after the rising edge of phase 2, so that WR# goes  
inactive as a result of READY# falling.  
7. This specification assumes that READY# goes active before the rising edge of phase 2, so that WR# goes  
inactive as a result of phase 2 rising.  
8. This specification applies if READY# is generated internally.  
Datasheet  
35  
Intel386™ EX Embedded Microprocessor  
Table 11. 5-Volt AC Characteristics (Sheet 5 of 5)  
33 MHz  
25 MHz  
Symbol  
Parameter  
Test Condition  
Min.  
(ns)  
Max.  
(ns)  
Min.  
(ns)  
Max.  
(ns)  
EOP# Setup Time  
t122  
t123  
t124  
t125  
15  
15  
(Sync Mode)  
EOP# Hold Time  
(Sync Mode)  
4
9
9
4
9
9
EOP# Setup Time  
(Async Mode)  
EOP# Hold Time  
(Async Mode)  
DMA Unit Outputs  
t126  
t127  
t128  
DACK# Output Valid Delay  
4
4
4
21  
25  
25  
4
4
4
25  
25  
25  
EOP# Active Delay  
EOP# Float Delay  
(3)  
JTAG Test-logic Unit  
t129  
TCK Frequency  
10  
10  
(Unit is MHz)  
NOTE:  
1. Tested at maximum operating frequency and guaranteed by design characterization at lower operating  
frequencies.  
2. These are not tested. They are guaranteed by characterization.  
3. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not  
fully tested.  
4. These inputs may be asynchronous to CLK2. The setup and hold specifications are given to ensure recognition  
within a specific CLK2 period.  
5. These specifications are for information only and are not tested. They are intended to assist the designer in  
selecting memory speeds. For each wait state in the design add two CLK2 cycles to the specification.  
6. This specification assumes that READY# goes active after the rising edge of phase 2, so that WR# goes  
inactive as a result of READY# falling.  
7. This specification assumes that READY# goes active before the rising edge of phase 2, so that WR# goes  
inactive as a result of phase 2 rising.  
8. This specification applies if READY# is generated internally.  
36  
Datasheet  
Intel386™ EX Embedded Microprocessor  
Table 12. 3-Volt AC Characteristics (Sheet 1 of 5)  
25 MHz  
3.0 V to 3.6 V  
20 MHz  
2.7 V to 3.6 V  
Symbol  
Parameter  
Test Condition  
Min.  
(ns)  
Max.  
(ns)  
Min.  
(ns)  
Max.  
(ns)  
one-half CLK2 frequency  
in MHz(1)  
Operating Frequency  
0
25  
0
20  
t1  
CLK2 Period  
20  
7
25  
8
t2a  
t2b  
t3a  
t3b  
t4  
CLK2 High Time  
CLK2 High Time  
CLK2 Low Time  
CLK2 Low Time  
CLK2 Fall Time  
CLK2 Rise Time  
A25:1 Valid Delay  
A25:1 Float Delay  
(2)  
4
5
(2)  
7
8
(2)  
5
6
(2)  
7
7
8
8
(2)  
t5  
(2)  
t6  
4
4
32  
29  
4
4
36  
36  
CL = 50 pF  
(3)  
t7  
BHE#, BLE#, LOCK# Valid  
Delay  
t8  
4
4
4
32  
32  
23  
4
4
4
34  
34  
32  
CL = 50 pF  
CL = 50 pF  
(3)  
t8a  
t9  
SMIACT# Valid Delay  
BHE#, BLE#, LOCK# Float  
Delay  
M/IO#, D/C#, W/R#, ADS#,  
REFRESH# Valid Delay  
t10  
4
4
32  
30  
4
4
34  
32  
CL = 50 pF  
t10a  
RD#, WR# Valid Delay  
WR# Valid Delay for the rising  
edge with respect to phase  
two (external late READY#)  
t10b  
4
4
37  
30  
4
4
37  
34  
(6)  
(3)  
M/IO#, D/C#, W/R#,  
REFRESH#, ADS# Float  
Delay  
t11  
t12  
D15:0 Write Data Valid Delay  
D15:0 Write Data Float delay  
HLDA Valid Delay  
4
4
31  
20  
30  
4
4
34  
28  
32  
CL = 50 pF  
(3)  
t13  
t14  
4
4
CL = 50 pF  
t15  
NA# Setup Time  
9
9
t16  
NA# Hold Time  
12  
15  
NOTE:  
1. Tested at maximum operating frequency and guaranteed by design characterization at lower operating  
frequencies.  
2. These are not tested. They are guaranteed by characterization.  
3. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not  
fully tested.  
4. These inputs may be asynchronous to CLK2. The setup and hold specifications are given to ensure  
recognition within a specific CLK2 period.  
5. These specifications are for information only and are not tested. They are intended to assist the designer in  
selecting memory speeds. For each wait state in the design add two CLK2 cycles to the specification.  
6. This specification assumes that READY# goes active after the rising edge of phase 2, so that WR# goes  
inactive as a result of READY# falling.  
7. This specification assumes that READY# goes active before the rising edge of phase 2, so that WR# goes  
inactive as a result of phase 2 rising.  
8. This specification applies if READY# is generated internally.  
Datasheet  
37  
 
 
 
 
Intel386™ EX Embedded Microprocessor  
Table 12. 3-Volt AC Characteristics (Sheet 2 of 5)  
25 MHz  
3.0 V to 3.6 V  
20 MHz  
2.7 V to 3.6 V  
Symbol  
Parameter  
Test Condition  
Min.  
(ns)  
Max.  
(ns)  
Min.  
(ns)  
Max.  
(ns)  
t19  
t19a  
t20  
t21  
t22  
t23  
t24  
t25  
t26  
t27  
t27a  
t28  
t28a  
READY# Setup Time  
BS8# Setup Time  
READY#, BS8# Hold Time  
D15:0 Read Setup Time  
D15:0 Read Hold Time  
HOLD Setup Time  
HOLD Hold Time  
15  
17  
4
17  
19  
4
9
11  
6
6
17  
5
22  
5
RESET Setup Time  
RESET Hold Time  
NMI Setup Time  
12  
4
13  
4
16  
16  
16  
16  
16  
16  
16  
16  
(4)  
(4)  
(4)  
(4)  
SMI# Setup Time  
NMI Hold Time  
SMI# Hold Time  
PEREQ, ERROR#, BUSY#  
Setup Time  
t29  
t30  
14  
5
16  
5
(4)  
(4)  
PEREQ, ERROR#, BUSY#  
Hold Time  
t31  
t32  
t33  
READY# Valid Delay  
READY# Float Delay  
LBA# Valid Delay  
4
4
4
33  
33  
31  
4
4
4
42  
42  
40  
CL = 30 pF  
33 (34 in  
SMM)  
t34  
CS6:0#, UCS# Valid Delay  
4
4
42  
CL = 30 pF  
CL = 30 pF  
t35  
t36  
CLKOUT Valid Delay  
4
4
14  
26  
4
4
18  
29  
PWRDOWN Valid Delay  
A25:1, BHE#, BLE# Valid to  
WR# Low  
t41  
0
0
0
0
0
0
UCS#, CS6:0# Valid to WR#  
Low  
t41a  
A25:1, BHE#, BLE# Hold  
After WR# High  
t42  
(6)  
NOTE:  
1. Tested at maximum operating frequency and guaranteed by design characterization at lower operating  
frequencies.  
2. These are not tested. They are guaranteed by characterization.  
3. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not  
fully tested.  
4. These inputs may be asynchronous to CLK2. The setup and hold specifications are given to ensure  
recognition within a specific CLK2 period.  
5. These specifications are for information only and are not tested. They are intended to assist the designer in  
selecting memory speeds. For each wait state in the design add two CLK2 cycles to the specification.  
6. This specification assumes that READY# goes active after the rising edge of phase 2, so that WR# goes  
inactive as a result of READY# falling.  
7. This specification assumes that READY# goes active before the rising edge of phase 2, so that WR# goes  
inactive as a result of phase 2 rising.  
8. This specification applies if READY# is generated internally.  
38  
Datasheet  
Intel386™ EX Embedded Microprocessor  
Table 12. 3-Volt AC Characteristics (Sheet 3 of 5)  
25 MHz  
3.0 V to 3.6 V  
20 MHz  
2.7 V to 3.6 V  
Symbol  
Parameter  
Test Condition  
Min.  
(ns)  
Max.  
(ns)  
Min.  
(ns)  
Max.  
(ns)  
UCS#, CS6:0# Hold after  
WR# High  
t42a  
t42b  
t43  
0
0
A25:1. BHE#, BLE# Hold  
After WR# High  
10  
10  
(7, 8)  
D15:0 Output Valid to WR#  
High  
2CLK2  
– 10  
2CLK2  
– 10  
(5)  
D15:0 Output Hold After WR#  
High  
CLK2  
–10  
CLK2  
–10  
t44  
CLK2  
+ 10  
CLK2  
+10  
t45  
WR# High to D15:0 Float  
WR# Pulse Width  
(3)  
2CLK2  
–10  
2CLK2  
–10  
t46  
t47  
t47a  
t48  
(7)  
(5)  
(5)  
(5)  
A25:1, BHE#, BLE# Valid to  
D15:0 Valid  
4CLK2-  
41  
4CLK2  
- 45  
UCS#, CS6:0# Valid to D15-  
D0 Valid  
4CLK2 -  
42  
4CLK2  
- 53  
3CLK2 –  
39  
3CLK2  
– 43  
RD# Low to D15:0 Input Valid  
t49  
t50  
D15:0 Hold After RD# High  
RD# High to D15:0 Float  
0
0
CLK2  
CLK2  
(3)  
A25:1, BHE#, BLE# Hold  
After RD# High  
t51  
0
0
0
0
UCS#, CS6:0# Hold after  
RD# High  
t51a  
t52  
3CLK2  
–13  
3CLK2  
–15  
RD# Pulse Width  
Synchronous Serial I/O (SSIO) Unit  
STXCLK, SRXCLK  
t100  
CLK2/8  
CLK2/8  
CLK2/8 (Unit is MHz)  
CLK2/8 (Unit is MHz)  
(2)  
Frequency (Master Mode)  
STXCLK, SRXCLK  
t101  
Frequency (Slave Mode)  
7CLK2/  
2
7CLK2/  
2
t102  
STXCLK, SRXCLK Low Time  
NOTE:  
1. Tested at maximum operating frequency and guaranteed by design characterization at lower operating  
frequencies.  
2. These are not tested. They are guaranteed by characterization.  
3. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not  
fully tested.  
4. These inputs may be asynchronous to CLK2. The setup and hold specifications are given to ensure  
recognition within a specific CLK2 period.  
5. These specifications are for information only and are not tested. They are intended to assist the designer in  
selecting memory speeds. For each wait state in the design add two CLK2 cycles to the specification.  
6. This specification assumes that READY# goes active after the rising edge of phase 2, so that WR# goes  
inactive as a result of READY# falling.  
7. This specification assumes that READY# goes active before the rising edge of phase 2, so that WR# goes  
inactive as a result of phase 2 rising.  
8. This specification applies if READY# is generated internally.  
Datasheet  
39  
Intel386™ EX Embedded Microprocessor  
Table 12. 3-Volt AC Characteristics (Sheet 4 of 5)  
25 MHz  
3.0 V to 3.6 V  
20 MHz  
2.7 V to 3.6 V  
Symbol  
Parameter  
Test Condition  
Min.  
(ns)  
Max.  
(ns)  
Min.  
(ns)  
Max.  
(ns)  
7CLK2/  
2
7CLK2/  
2
t103  
t104  
t105  
t106  
STXCLK, SRXCLK High Time  
(2)  
(2)  
STXCLK Low to SSIOTX  
Delay  
3CLK2  
3CLK2  
SSIORX to SRXCLK High  
Setup Time  
0
0
SSIORX from SRXCLK Hold  
Time  
3CLK2  
3CLK2  
Timer Control Unit (TCU) Inputs  
t107  
t108  
t109  
t110  
t111  
TMRCLKn Frequency  
TMRCLKn Low  
8
8
(Unit is MHz)  
60  
60  
50  
50  
60  
60  
50  
50  
TMRCLKn High  
TMRGATEn High Width  
TMRGATEn Low Width  
TMRGATEn to TMRCLK  
Setup Time (external  
TMRCLK only)  
t112  
10  
19  
15  
19  
TMRGATEn to TMRCLK Hold  
Time (external TMRCLK only)  
t112a  
Timer Control Unit (TCU) Outputs  
TMRGATEn Low to TMROUT  
Valid  
t113  
44  
48  
52  
52  
TMRCLKn Low to TMROUT  
Valid  
t114  
NOTE:  
1. Tested at maximum operating frequency and guaranteed by design characterization at lower operating  
frequencies.  
2. These are not tested. They are guaranteed by characterization.  
3. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not  
fully tested.  
4. These inputs may be asynchronous to CLK2. The setup and hold specifications are given to ensure  
recognition within a specific CLK2 period.  
5. These specifications are for information only and are not tested. They are intended to assist the designer in  
selecting memory speeds. For each wait state in the design add two CLK2 cycles to the specification.  
6. This specification assumes that READY# goes active after the rising edge of phase 2, so that WR# goes  
inactive as a result of READY# falling.  
7. This specification assumes that READY# goes active before the rising edge of phase 2, so that WR# goes  
inactive as a result of phase 2 rising.  
8. This specification applies if READY# is generated internally.  
40  
Datasheet  
Intel386™ EX Embedded Microprocessor  
Table 12. 3-Volt AC Characteristics (Sheet 5 of 5)  
25 MHz  
3.0 V to 3.6 V  
20 MHz  
2.7 V to 3.6 V  
Symbol  
Parameter  
Test Condition  
Min.  
(ns)  
Max.  
(ns)  
Min.  
(ns)  
Max.  
(ns)  
Interrupt Control Unit (ICU) Inputs  
D7:0 Setup Time  
t115  
9
6
11  
6
(INTA# Cycle 2)  
D7:0 Hold Time  
t116  
(INTA# Cycle 2)  
Interrupt Control Unit (ICU) Outputs  
t117  
DMA Unit Inputs  
DREQ Setup Time  
CLK2 High to CAS2:0 Valid  
36  
46  
t118  
t119  
t120  
t121  
t122  
t123  
t124  
t125  
19  
4
21  
4
(Sync Mode)  
DREQ Hold Time  
(Sync Mode)  
(2)  
(2)  
DREQ Setup Time  
(Async Mode)  
11  
11  
17  
4
11  
11  
21  
4
DREQ Hold Time  
(Async Mode)  
EOP# Setup Time  
(Sync Mode)  
EOP# Hold Time  
(Sync Mode)  
EOP# Setup Time  
(Async Mode)  
11  
11  
11  
11  
EOP# Hold Time  
(Async Mode)  
DMA Unit Outputs  
t126  
t127  
t128  
DACK# Output Valid Delay  
4
4
4
31  
27  
27  
4
4
4
33  
33  
33  
EOP# Active Delay  
EOP# Float Delay  
(3)  
JTAG Test-logic Unit  
t129  
TCK Frequency  
10  
10  
(Unit is MHz)  
NOTE:  
1. Tested at maximum operating frequency and guaranteed by design characterization at lower operating  
frequencies.  
2. These are not tested. They are guaranteed by characterization.  
3. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not  
fully tested.  
4. These inputs may be asynchronous to CLK2. The setup and hold specifications are given to ensure  
recognition within a specific CLK2 period.  
5. These specifications are for information only and are not tested. They are intended to assist the designer in  
selecting memory speeds. For each wait state in the design add two CLK2 cycles to the specification.  
6. This specification assumes that READY# goes active after the rising edge of phase 2, so that WR# goes  
inactive as a result of READY# falling.  
7. This specification assumes that READY# goes active before the rising edge of phase 2, so that WR# goes  
inactive as a result of phase 2 rising.  
8. This specification applies if READY# is generated internally.  
Datasheet  
41  
Intel386™ EX Embedded Microprocessor  
Figure 10. AC Test Loads  
CPU Output  
C
L
Figure 11. CLK2 Waveform  
t
1
t
2a  
t
2b  
A
CLK2  
B
C
t
t
5
4
t
t
3b  
3a  
A = Vcc – 0.8 for Vcc = 4.5 – 5.5, Vcc – 0.6 for Vcc = 2.7 – 3.6  
B = Vcc/2  
C = 0.8V  
42  
Datasheet  
Intel386™ EX Embedded Microprocessor  
Figure 12. AC Timing Waveforms — Input Setup and Hold Timing  
TX  
PH2  
PH1  
TX  
PH2  
PH1  
TX  
CLK2  
t
t
t
t
t
t
19a, 118, 120 119, 121  
t
t
t
122, 124  
123, 125  
t
t
19  
20  
READY# (Input)  
BS8#  
DREQ  
EOP# (Input)  
t
t
23  
24  
HOLD  
t
t
116  
22  
115  
21  
t
t
D15:0  
(Input)  
t
t
29  
30  
BUSY#  
ERROR#  
PEREQ  
t
t
16  
15  
NA#  
t
t
28a  
27a  
t
t
27  
28  
NMI  
SMI#  
A2736-01  
Datasheet  
43  
Intel386™ EX Embedded Microprocessor  
Figure 13. AC Timing Waveforms — Output Valid Delay Timing  
TX  
PH2  
PH1  
TX  
PH2  
PH1  
TX  
CLK2  
t
t
8, 8a  
Max  
Max  
Max  
Min  
Min  
Min  
Valid n  
Valid n+1  
Valid n+1  
BHE#, BLE#  
LOCK#, SMIACT#  
t
t
t
t
10, 31, 33  
126, 127  
t
t
W/R#, M/IO#, D/C#  
ADS#,REFRESH#  
LBA#, DACK#  
Valid n  
EOP# (Output)  
READY# (Output)  
t
t
10a, 6, 34  
A25:1, CS6:0#,UCS#,  
RD# Inactive  
Valid n  
Valid n+1  
Max  
t
t
, t  
117, 10a 12  
Min  
D15:0, CAS2:0  
RD#, WR# Active,  
WR# Inactive  
Valid n  
Valid n+1  
(early READY#)  
HLDA  
A2737-01  
Figure 14. AC Timing Waveforms — Output Valid Delay Timing for  
External Late READY#  
T1  
T1  
T2  
CLK2  
ADS#  
External  
READY#  
t10b  
WR#  
A4398-01  
44  
Datasheet  
Intel386™ EX Embedded Microprocessor  
Figure 15. AC Timing Waveforms — Output Float Delay and HLDA Valid Delay Timing  
Th  
TI or T1  
PH2  
PH1  
PH2  
PH1  
PH2  
CLK2  
t
8
t
9
Max  
Max  
Min  
Min  
Min  
Min  
Min  
BHE#, BLE#  
LOCK#  
(High Z)  
t
t
t
32, 11  
10  
Max  
Max  
Max  
W/R#, M/IO#  
D/C#, ADS#  
REFRESH#  
(High Z)  
t
READY# (Output)  
t
6
7
Min Max  
A25:1  
D15:0  
(High Z)  
Max  
t
t
13  
12  
Max  
Min  
Min  
(High Z)  
t
Also applies to data float when write  
cycle is followed by read or idle.  
13  
t
t
14  
14  
Max  
Min  
Max  
Min  
HLDA  
A2738-01  
Figure 16. AC Timing Waveforms — RESET Setup and Hold Timing and Internal Phase  
Initialization Sequence  
PH2  
Reset  
PH2 or PH1  
PH2 or PH1  
PH1  
CLK2  
t
26  
RESET  
t
25  
Datasheet  
45  
Intel386™ EX Embedded Microprocessor  
Figure 17. AC Timing Waveforms — Relative Signal Timing  
T1  
T2  
Ti  
CLK2  
PH2  
A25:1, BLE#, BHE#  
UCS#, CS6:0#  
t42  
t41a  
t41  
t42a  
t46  
t43  
WR#  
t44  
t45  
D15:0 (Out)  
RD#  
t51  
t51a  
t52  
t48  
t50  
t47a  
t49  
t47  
D15:0 (In)  
A2705-01  
Figure 18. AC Timing Waveforms — SSIO Timing  
t100, t101  
t102  
t103  
STXCLK  
SSIOTX  
t104  
Valid TX Data  
t100, t101  
t102  
t103  
SRXCLK  
SSIORX  
t105  
t106  
Valid RX Data  
A2712-01  
Figure 19. AC Timing Waveforms — Timer/Counter Timing  
t107  
t108  
t111  
t109  
TMRCLK  
t112  
t112a  
t110  
TMRGATE  
TMROUT  
t114  
t113  
46  
Datasheet  
Intel386™ EX Embedded Microprocessor  
7.0  
Bus Cycle Waveforms  
Figures 20 through 30 present various bus cycles that are generated by the processor. What is  
shown in the figure is the relationship of the various bus signals to CLK2. These figures along with  
the information present in AC Specifications allow the user to determine critical timing analysis for  
a given application.  
Figure 20. Basic Internal and External Bus Cycles  
Idle  
Cycle 1  
Cycle 2  
Cycle 3  
Idle  
Cycle 4  
Idle  
Cycle  
Nonpipelined Nonpipelined Nonpipelined Cycle Nonpipelined Cycle  
External  
(Write)  
Internal  
(Read)  
Internal  
(Write)  
External  
(Read)  
[Late Ready]  
[Early Ready]  
T1  
T2  
T1  
T2  
T1  
T2  
Ti  
T1  
T2  
Ti  
Ti  
State  
CLK2  
CLKOUT  
A25:1, BHE#  
BLE#, D/C#  
M/IO#  
Valid 1  
Valid 2  
Valid 3  
Valid 4  
REFRESH#  
W/R#  
WR#  
RD#  
ADS#  
NA#  
READY#  
End Cycle 2  
End Cycle 3  
End Cycle 1  
End Cycle 4  
LBA#  
BS8#  
Valid 1  
Valid 2  
Valid 3  
Out 3  
Valid 4  
LOCK#  
In  
In  
Out 1  
D15:0  
2
4
A2486-03  
Datasheet  
47  
 
Intel386™ EX Embedded Microprocessor  
Figure 21. Nonpipelined Address Read Cycles  
Idle  
Cycle 1  
Non-pipelined  
External  
Cycle 2  
Non-pipelined  
External  
Idle  
Ti  
(Read)  
(Read)  
Ti  
T1  
T2  
T1  
T2  
T2  
CLK2  
CLKOUT  
BHE#, BLE#, A25:1  
M/IO#, D/C#  
Valid1  
Valid2  
REFRESH#  
W/R#  
WR#  
RD#  
ADS#  
NA#  
READY#  
End Cycle  
End Cycle  
LBA#  
BS8#  
LOCK#  
D15:0  
Valid1  
Valid2  
In1  
In2  
A2487-03  
48  
Datasheet  
Intel386™ EX Embedded Microprocessor  
Figure 22. Pipelined Address Cycle  
Cycle 1  
Pipelined  
(Write)  
Cycle 2  
Non-pipelined  
(Read)  
Cycle 3  
Pipelined  
(Write)  
Cycle 4  
Pipelined  
(Read)  
[Late Ready]  
[Late Ready]  
T1P  
T2P  
T2P  
T1P  
T2  
T2P  
T1P  
T2i  
T2P  
T1P  
T2  
CLK2  
CLKOUT  
BHE#, BLE#, A25:1,  
Valid2  
Valid3  
Valid4  
M/IO#, D/C#  
ADS# is asserted as  
soon as the CPU has  
another bus cycle to  
perform, which is not  
always immediately  
after NA# is asserted.  
W/R#  
WR#  
RD#  
ADS#  
Note ADS# is  
asserted in  
every T2P state.  
As long as the CPU enters the T2P  
state during Cycle 3, address  
pipelining is maintained in Cycle 4.  
NA#  
Asserting NA# more  
NA# could have been asserted in T1P  
if desired. Assertion now is the latest  
time possible to allow the CPU to enter  
T2P state to maintain pipelining in cycle 3.  
than once during  
any cycle has no  
additional effects  
READY#  
LBA#  
BS8#  
Valid 1  
LOCK#  
D15:0  
Valid 2  
Valid 3  
Valid 4  
In  
Out  
Out 1  
Out 3  
2
A2477-03  
Datasheet  
49  
Intel386™ EX Embedded Microprocessor  
Figure 23. 16-bit Cycles to 8-bit Devices (using BS8#)  
Low Byte  
Write  
[Late Ready]  
High Byte  
Write  
[Late Ready]  
Low Byte  
Read  
High Byte  
Read  
Idle  
Cycles  
State  
CLK2  
T1  
T2  
T1  
T2  
T1  
T2  
T1  
T2  
Ti  
Ti  
CLKOUT  
A25:1  
M/IO#  
D/C#  
Valid 1  
Valid 2  
BLE#  
BHE#  
W/R#  
WR#  
RD#  
ADS#  
NA#  
Must be high  
READY#  
BS8#  
Valid 1  
Valid 2  
LOCK#  
D15:8  
D7:0  
Data Out High  
Data  
In  
Data  
Data Out  
Low  
Data Out  
High  
In  
Low  
High  
A3375-01  
50  
Datasheet  
Intel386™ EX Embedded Microprocessor  
Figure 24. Basic External Bus Cycles  
Cycle 1  
Cycle 2  
Idle  
Cycle 3  
Cycle 4  
Nonpipelined Nonpipelined Cycle Nonpipelined Nonpipelined  
External  
(Write)  
External  
(Read)  
External  
(Write)  
External  
(Read)  
[Late Ready]  
[Late Ready]  
State  
CLK2  
T1  
T2  
T1  
T2  
Ti  
T1  
T2  
T1  
T2  
CLKOUT  
A25:1, BHE#  
BLE#, D/C#  
M/IO#  
Valid 1  
Valid 2  
Valid 3  
Valid 4  
REFRESH#  
W/R#  
WR#  
RD#  
ADS#  
NA#  
READY#  
LBA#  
BS8#  
LOCK#  
Valid 1  
Valid 2  
Valid 3  
Valid 4  
Out 1  
In 2  
Out 3  
In 4  
D15:0  
A2305-02  
Datasheet  
51  
Intel386™ EX Embedded Microprocessor  
Figure 25. Nonpipelined Address Write Cycles  
Idle  
Cycle 1  
Nonpipelined  
External  
(Write)  
[Late Ready]  
Cycle 2  
Nonpipelined  
External  
(Write)  
[Early Ready]  
Idle  
Ti  
Ti  
T1  
T2  
T1  
T2  
T2  
CLK2  
CLKOUT  
BHE#, BLE#, A25:1  
M/IO#, D/C#  
Valid1  
Valid2  
REFRESH#  
W/R#  
WR#  
RD#  
ADS#  
NA#  
READY#  
End Cycle 1  
End Cycle 2  
LBA#  
BS8#  
Valid 2  
LOCK#  
D15:0  
Valid 1  
Out 1  
Out 2  
A2488-02  
52  
Datasheet  
Intel386™ EX Embedded Microprocessor  
Figure 26. Halt Cycle  
Cycle 1  
Cycle 2  
Idle  
Nonpipelined Nonpipelined  
(Write)  
(Halt)  
[Late Ready]  
T1  
T2  
T1  
T2  
Ti  
Ti  
Ti  
Ti  
CLK2  
CLKOUT  
CPU remains halted until INTR, SMI#,  
NMI, or RESET is asserted.  
BHE#, A1, M/IO#, W/R#  
Valid 1  
Valid 1  
CPU responds to HOLD input  
while in the HALT state.  
A25:2, BLE#, D/C#  
WR#  
RD#  
ADS#  
NA#  
READY#  
LBA#  
Valid 1  
Valid 2  
LOCK#  
D15:0  
Float  
Undefined  
Out  
HALT cycle must be acknowledged by READY# asserted. This READY# could be  
generated internally or externally.  
A2492-02  
Datasheet  
53  
Intel386™ EX Embedded Microprocessor  
Figure 27. Basic Refresh Cycle  
Idle  
Cycle 1  
Nonpipelined  
External  
Idle  
Ti  
Cycle 2  
Refresh  
Idle  
Cycle 3  
Nonpipelined  
External  
(Write)  
[Late Ready]  
(Read)  
Ti  
T1  
T2  
T1  
T2  
T2  
Ti  
Ti  
T1  
T2  
CLK2  
CLKOUT  
UCS#, CS6:0#,  
BHE#, BLE#  
M/IO#, D/C#  
Valid 1  
Valid 3  
Valid 1  
Valid 2  
Valid 3  
A25:1  
REFRESH#  
W/R#  
WR#  
RD#  
ADS#  
NA#  
READY#  
LBA#  
Valid 1  
Valid 2  
Out  
LOCK#  
D15:0  
Float  
In  
HOLD  
HLDA  
A2491-02  
54  
Datasheet  
Intel386™ EX Embedded Microprocessor  
Figure 28. Refresh Cycle During HOLD/HLDA  
Idle  
Ti  
HOLD  
Acknowledge  
Idle  
Ti  
Idle  
HOLD  
Acknowledge  
Cycle 1  
Refresh  
Th  
Th  
Th  
T1  
T2  
Ti  
Ti  
Th  
Th  
CLK2  
CLKOUT  
Floating  
Floating  
BHE#, BLE#  
M/IO#, D/C#  
REFRESH#  
A25:1  
Floating  
Floating  
Floating  
Floating  
Valid 1  
W/R#  
WR#  
RD#  
Floating  
Floating  
Floating  
Floating  
ADS#  
NA#  
READY#  
LBA#  
Floating  
Floating  
Floating  
LOCK#  
D15:0  
HOLD  
HLDA  
Due to refresh pending.  
A2493-02  
Datasheet  
55  
Intel386™ EX Embedded Microprocessor  
Figure 29. LOCK# Signal During Address Pipelining  
Unlocked  
Bus Cycle  
Locked  
Bus Cycle  
Locked  
Bus Cycle  
Unlocked  
Bus Cycle  
CLKOUT  
Address Asserted  
BLE#, BHE#, A25:1  
LOCK Deasserted  
LOCK#  
READY#  
A2489-02  
Figure 30. Interrupt Acknowledge Cycles  
Previous Interrupt  
Idle  
Interrupt  
Acknowledge  
Cycle 2  
Idle  
Acknowledge  
Cycle 1  
Cycle  
(Four bus states)  
(Internal)  
(Internal)  
T2  
T1  
T2  
Ti  
Ti  
Ti  
Ti  
T1  
T2  
Ti  
Ti  
CLK2  
CLKOUT  
BHE#  
BLE#, A25:19,  
CAS2:0,A15:3, A1  
M/IO#, D/C#, W/R#  
A2  
WR#  
RD#  
ADS#  
READY#  
LBA#  
LOCK#  
A2490-03  
56  
Datasheet  

相关型号:

27242200

Passive module - FLKM 50/32M/IN/LA/DV
PHOENIX

27242208

System connectors - FLKM-HD15SUB/B-PA-INLINE/SO136
PHOENIX

27242214

Front adapters - FLKM 10-PA-ROC800
PHOENIX

27242215

Adapter - RAD-ADP-RSMA/F-SMA/F
PHOENIX

27242220

Front adapters - FLKM-PA-2D15/HW/DI/C300
PHOENIX

27242292

Front adapters - FLKM-PA-D25/HW/AID16/C300
PHOENIX

27242608

Interface module - FLKM 50/DO326/S7-300
PHOENIX

27242700

Passive module - FLKM 50/32M/IN/LA/DV
PHOENIX

27243

79-4498 SERIES HEADER CONNECTOR, 10 POSITION WITH CENTER SLOT CUSTOMER DWG
WINCHESTER

272480120

Board Connector, 24 Contact(s), 3 Row(s), Male, Straight, Solder Terminal,
MOLEX

272480130

Board Connector, 24 Contact(s), 3 Row(s), Male, Straight, Solder Terminal,
MOLEX

272480210

Board Connector, 24 Contact(s), 3 Row(s), Female, Straight, Solder Terminal,
MOLEX