XDPL8221 [INFINEON]

Digital high power factor XDP™ controller for advanced, dual stage LED drivers with constant voltage primary side regulation;
XDPL8221
型号: XDPL8221
厂家: Infineon    Infineon
描述:

Digital high power factor XDP™ controller for advanced, dual stage LED drivers with constant voltage primary side regulation

文件: 总57页 (文件大小:749K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XDPL822x Controller Family  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Data Sheet  
Revision 1.1  
Features  
UART interface to control driver output and reading operating status  
Flicker-free output dimming by analog reduction of driving current down to 1%  
Integrated two stage digital controller allows a reduced number of external parts, optimizes Bill of  
Materials (BOM) and form factor.  
Two-stage design eliminates AC ripple on output.  
Supports universal AC and DC input voltage (90 V rms to 305 V rms) nominal.  
High efficiency up to 90%  
Multi-control output (Constant Current (CC)/Constant Voltage (CV)/Limited Power (LP))  
Performance and protection related driver parameters are configurable via UART interface allowing for  
design flexibility and optimization.  
Low harmonic distortion (Total Harmonic Distortion (THD) < 15%) down to 30% nominal load  
Integrated 600V high voltage start-up cell ensures fast time to light (< 250 ms)  
Configurable Adaptive Temperature Protection  
Automatic switching of the Power Factor Correction (PFC) between Quasi-Resonant Mode (QRM) and  
Discontinuous Conduction Mode (DCM)  
Automatic switching of the Flyback (FB) between QRM, DCM and Active Burst Mode (ABM)  
Pulse Width Modulation (PWM) dimming input  
For safe operation, the XDPL8221 contains a comprehensive set of protection features with configurable  
reaction like auto-restart or latch:  
Output over-voltage protection (open load)  
Output under-voltage protection (output short)  
VCC over- and under-voltage lockout  
Input over- and under-voltage protection  
Bus over- and under-voltage protection  
Over-current protection for both PFC and FB stages  
Applications  
AC/DC LED Drivers for Light Emitting Diode (LED) luminaires  
Data Sheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Description  
L
Input  
voltage  
CoolMOS™  
GDPFC  
LED+  
LED-  
CSPFC  
CoolMOS™  
GDFB  
CSFB  
N
TEMP  
XDPL8221  
VCC  
HV  
VS  
ZCD  
GND  
UART  
PWM  
PWM  
UART  
GND  
Vsupply  
Figure 1  
Typical Application for XDPL8221  
Product Type  
Package  
PG-DSO-16  
XDPL8221  
Description  
XDPL8221 is a highly integrated next-generation device combining a multimode (QRM and DCM) PFC plus a  
multimode (QRM, DCM and ABM) FB with primary-side regulation. The integration of PFC and FB into a single  
controller enables reduction of external parts and optimizes performance by harmonized operation of the two  
stages.  
The two-stage approach divides the PFC responsibilities from the output current regulations functions. This  
ensures low variation in the output current (flicker) to a non-visible level and allows for low THD , high power  
factor and a greater ability to withstand AC line perturbations.  
XDPL8221 PFC comprises of constant on-time scheme with a THD improvement algorithm to provide a high  
power factor and excellent performance down to 30% nominal load.  
XDPL8221 FB can be configured to operate in Constant Voltage (CV), Constant Current (CC) or Limited Power  
(LP) mode offering a large degree of flexibility.  
The on-chip One Time Programmable Memory (OTP) memory allows user to adjust electrical and performance  
parameters that control the behavior of the circuit. Examples of this include: output current limit or the  
maximum output power. This enables the user of the device to create a platform concept with significantly  
fewer different hardware versions while still covering the same application range.  
The Universal Asynchronous Receiver Transmitter (UART) command interface allows connecting XDPL8221 to  
any microcontroller, wireless interface or sensor for many different applications.  
During low power mode, the XDPL8221 power consumption is less than 100mW.  
Data Sheet  
2
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Table of contents  
Table of contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1
2
3
3.1  
3.1.1  
3.1.2  
3.1.3  
3.1.4  
3.1.5  
3.1.5.1  
3.1.6  
3.1.6.1  
3.1.6.2  
3.1.6.3  
3.1.7  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
PFC Controller Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Shared CS/ZCD Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Quasi-resonant Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Bus Voltage Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Input Voltage Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Multimode Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Frequency Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
THD Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Light Load Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Peak Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Protection Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Bus Under-voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Bus Over-voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Input Under-voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Input Over-voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Other PFC Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Flyback Controller Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Primary Side Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Primary Side Current Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Primary Side Output Voltage Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Output Current Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Output control scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Multimode Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Active Burst Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Flyback Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Protection features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Primary Over-current Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Output Under-voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Output Over-voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
3.1.8  
3.1.8.1  
3.1.8.2  
3.1.8.3  
3.1.8.4  
3.1.8.5  
3.2  
3.2.1  
3.2.1.1  
3.2.1.2  
3.2.1.3  
3.2.1.4  
3.2.1.5  
3.2.1.6  
3.2.2  
3.2.3  
3.2.3.1  
3.2.3.2  
3.2.3.3  
Data Sheet  
3
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Table of contents  
3.2.3.4  
3.2.3.5  
3.2.3.6  
3.2.3.6.1  
3.3  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
Output Over-current Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Output Over-power Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Other Flyback Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Flyback Bus Voltage Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
General Controller Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Configurable Gate Driver Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
External Temperature Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Adaptive temperature protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
PWM Dimming Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
UART Command Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Protection features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Overtemperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
VCC Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
VCC Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
VCC Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Other General Controller Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Protection Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Auto restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Fast Auto Restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Latch Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.3.5  
3.3.6  
3.3.6.1  
3.3.6.2  
3.3.6.3  
3.3.6.4  
3.3.6.5  
3.3.7  
3.3.7.1  
3.3.7.2  
3.3.7.3  
3.3.7.4  
4
Electrical Characteristics and Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
4.1  
4.2  
4.3  
4.4  
5
6
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Data Sheet  
4
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Pin Configuration  
1
Pin Configuration  
Pin assignments and basic pin description information are shown below.  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GDFB  
CSFB  
VCC  
GND  
ZCD  
VS  
N.C.  
N.C.  
UART  
GDPFC  
N.U.  
CSPFC  
TEMP  
PWM  
N.U.  
HV  
PG-DSO-16 (150mil)  
Figure 2  
Table 1  
Pinning of XDPL8221  
Pin Definitions and Functions  
Name  
Pin  
Type  
Function  
GDFB  
1
O
Gate driver for FB:  
The GDFB pin is an output for directly driving a power MOSFET of the FB  
stage.  
CSFB  
2
I
Current sensing for FB:  
The CSFB pin is connected to an external shunt resistor and the source of the  
power MOSFET of the FB stage.  
VCC  
GND  
ZCD  
3
4
5
I
-
I
Voltage supply  
Power and signal ground  
Zero-crossing detection of the FB:  
The ZCD pin is connected to an auxiliary winding of the FB stage for zero-  
crossing detection as well as primary-side output voltage and additional bus  
voltage sensing for functional safety.  
VS  
6
7
8
I
-
I
Bus voltage sensing  
N.U.  
HV  
Not used. Externally to be connected to GND.  
High voltage:  
The HV pin is connected to the rectified input voltage via an external resistor.  
An internal 600 V HV startup-cell is used to initially charge VCC. In addition,  
sampled high-voltage sensing is also used for synchronization with the input  
frequency.  
PWM  
9
I
I
PWM dimming:  
The PWM pin is used as a dimming input.  
TEMP  
10  
External temperature sensor:  
Measurement of external temperature using an Negative Temperature  
Coefficient Thermistor (NTC).  
CSPFC  
11  
I
Current sensing for PFC:  
The CSPFC pin is connected to an external shunt resistor and the source of  
the power MOSFET of the PFC stage.  
Data Sheet  
5
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Block Diagram  
Table 1  
Pin Definitions and Functions (continued)  
Name  
N.U.  
Pin  
12  
Type  
Function  
-
Not used. Externally to be connected to GND.  
GDPFC  
13  
O
Gate driver for PFC:  
The GDPFC pin is an output for directly driving a power MOSFET of the PFC  
stage.  
UART  
14  
I/O  
UART communication:  
The UART pin is used for the UART interface to support parametrization and  
for application commands during run-time.  
N.U.  
N.U.  
15  
16  
-
-
Not used. Externally to be connected to GND.  
Not used. Externally to be connected to GND.  
2
Functional Block Diagram  
The functional block diagram shows the basic data flow from input pins via signal processing to the output pins.  
Power Factor Correction  
Flyback  
Input Voltage  
Sensing and  
Startup  
Output Voltage  
Sensing and Zero  
Crossing Detection  
HV  
GDPFC  
CSPFC  
VS  
ZCD  
PFC Control  
Loop  
Output Current  
Calculation  
CSFB  
GDFB  
Current Sensing and  
Zero Crossing  
Detection  
FB Control Loop  
Bus Voltage  
Sensing  
Adaptive  
Temperature  
Protection  
PWM Dimming  
Sensing  
PWM  
UART  
VCC  
Management  
UART Command  
Interface  
VCC  
External  
Temperature  
Sensing  
TEMP  
Figure 3  
XDPL8221 Simplified Functional Block Diagram  
Data Sheet  
6
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
3
Functional Description  
This chapter provides a summary of the integrated functions and features, and describes the relationships  
between them. The parameters and equations are based on typical values at TA = 25 °C.  
XDPL8221 is a digital dual-stage PFC and FB controller IC supporting PWM dimming functionality. Both stages  
use configurable multi-mode operation to select the best mode of operation for every operation condition.  
Multi-mode operation automatically switches between QRM, DCM and ABM (only for FB)  
XDPL8221 features a comprehensive set of configurable protection modes to detect fault conditions.  
XDPL8221 provides a high degree of flexibility in design-in of the application. A Graphic User Interface (GUI)  
tool supports users in the configuration of the operational and protection parameters.  
Data Sheet  
7
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
3.1  
PFC Controller Features  
The PFC stage ensures high power quality by maximizing the power factor and minimizing harmonic distortion.  
The PFC stage operates in Quasi-Resonant Mode, switching in first valley (QRM1) and Quasi-Resonant Mode,  
switching in valley n (QRMn), to support light load conditions and ensure efficient operation.  
The PFC stage is implemented as a boost converter and provides stabilized Direct Current (DC) voltage rail.  
3.1.1  
Shared CS/ZCD Function  
The PFC stage makes use of combined Current Sense and Zero-Crossing Detection (CS/ZCD) functionality at the  
CSPFC pin.  
During the PFC MOSFET on-time, the CSPFC pin has the function of sensing the PFC inductor current ensuring  
inductor does not enter saturation, and the converter limits maximum switching current.  
The CSPFC pin is connected to an external shunt resistors, which converts the inductor current to voltage. The  
sensed voltage at the CSPFC pin is compared with reference voltages on internal comparators to either limit the  
on-time cycle by cycle or enter the protection mode when over-current happens.  
During the PFC MOSFET off-time, the CSPFC pin has the function of current zero crossing detection (ZCD). This  
detection minimizes the turn-on losses of the PFC MOSFET by ensuring the MOSFET turns-on during the  
resonant valley of the PFC MOSFET drain-source voltage (VDS) (QRM). The CSPFC pin is connected via an  
external resistor divider composed of RZCD,1,PFC and RZCD,2,PFC and a set of diodes to the auxiliary winding of the  
PFC inductor.  
Diode D1 allows positive voltage at the CSPFC pin as the valley detection is implemented by the internal  
hysteretic comparator with a positive reference of nominal THRHYS for falling edges.  
Vg  
L
Vbus  
RZCD,1,PFC  
D1  
GDPFC  
CSPFC  
RZCD,2,PFC  
RCS,PFC  
VCC  
Figure 4  
Shared CS/ZCD Schematic  
3.1.2  
Quasi-resonant Mode  
The quasi-resonant mode maintains a high efficiency level.  
XDPL8221 PFC Quasi-resonant mode reduces PFC MOSFET switching losses and ensures highest possible  
efficiency of the system. See Multi-mode Scheme description for detailed QRM operation in section 3.1.6.  
Data Sheet  
8
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
tsw  
tsw  
iL  
iL,pk  
iL,ave  
tw  
0
t
t
ton  
tLEB  
t1stV  
vCSPFC  
vL,pk  
tosc  
4
0
tdisch  
QRM2  
QRM1  
QRM1  
Figure 5  
PFC QRM2 Waveforms  
Equations for the quasi-resonant operation are shown below. Delay time tw is an additional delay realized in  
each switching cycle when PFC MOSFET turn-on beyond first resonant valley and valley n (n>1) is selected  
(QRMn).  
Vg · ton  
iL, pk  
=
L
iL, pk · L  
Vbus Vg  
tdisch  
=
t1stV = tdisch + tosc/2  
tw = tosc · n 1  
tsw = ton + t1stV + tw  
toff = t1stV + tw  
Equation 1  
3.1.3  
Bus Voltage Sensing  
The PFC output bus voltage is scaled down using a simple resistor divider and measured at the pin VS. A  
capacitor shall be added at the pin to ground to filter high-frequency switching noise.  
Vbus  
RVS,1  
VS  
RVS,2  
Figure 6  
PFC Bus Voltage Sensing Circuit  
The Analog-to-Digital Converter (ADC) input at the VS pin utilizes two voltage ranges. The wider voltage range  
from 0 to VREF results in lower resolution. The narrower voltage range from 5/6 VREF to 7/6 VREF gives better  
voltage resolution. Steady state operation therefore normally takes place in the high-resolution range and soꢀ  
start operation in the low-resolution range.  
Data Sheet  
9
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
VS  
7/6 VREF  
High  
resolution  
range  
VREF  
5/6 VREF  
Low  
resolution  
range  
0 V  
t
Figure 7  
Sensing Ranges  
3.1.4  
Input Voltage Sensing  
The input voltage is sensed at the HV pin for Alternating Current (AC) zero-crossing detection and protection  
features.  
iac  
vac  
Input  
voltage  
RHV  
Vin  
HV  
C1  
C2  
Figure 8  
Input Voltage Sensing Schematic  
The RHV sense resistor is usually split into two or more resistors for redundancy and safety purposes. A RC filter  
structure to the HV pin is implemented as shown above to reduce the unwanted noise.  
Data Sheet  
10  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
3.1.5  
Control Scheme  
The PFC bus voltage controller embeds a controller that calculates a control output representing load and line  
conditions from the bus voltage error signal.  
The bus voltage controller implements regulation during both soꢀ start and steady states.  
3.1.5.1  
Startup  
At system startup, the PFC initiates soꢀ start to minimize the switching stress on the power MOSFET, diode and  
inductor.  
PFC soꢀ start is executed once the PFC bus voltage is charged due to rectified AC line to a voltage threshold  
Vbus,start,PFC but lower than Vbus,OVP1. The PFC soꢀ start is aborted if the input under- or over-voltage protections  
are triggered. During soꢀ start, the PFC operates in QRM1mode. Once the Vbus,stdy,entr,UV threshold is reached,  
the steady state PFC operation starts.  
Vbus  
Vbus,set  
Vbus,stdy,entr,UV  
Vbus,start,PFC  
t
VCC startup  
passive charging  
steady state  
charging  
Figure 9  
Vbus Soꢀ Start and Regulation  
3.1.6  
Multimode Control Scheme  
The XDPL8221 multi-mode control scheme provides an option to dynamically change the operating point by  
switching between the MOSFET Vds voltage valleys while following a frequency law and applying THD  
optimization.  
The multi-mode controller uses three different modes of operation:  
QRM1: operation occurs during normal operation of the PFC converter at nominal to heavy loads. This  
operation maximizes the efficiency by switching on at the 1st valley of the PFC ZCD signal. This ensures zero  
current switching with a minimum switching losses. During QRM1, the PFC MOSFET is turned on with a  
constant on-time for a line and load condition, while the off- time varies within an AC half-cycle depending  
on the instantaneously rectified AC input voltage. Subsequently, the PFC switching frequency varies within  
each AC half-cycle with the lowest switching frequency at the peak of the AC input voltage and the highest  
switching frequency near the zero crossings of the input voltage.  
QRMn: PFC MOSFET on-time reduces as the load decreases, this results in higher switching frequencies,  
particularly near the zero-crossing of the input voltage. Higher switching frequencies will increase  
switching losses, resulting in poor efficiency at light loads. The XDPL8221 controller extends to the next  
switching valley aꢀer the 1st valley to control the bus voltage following a frequency law which limits the  
switching frequency to minimize the switching losses.  
DCM: The controller regulates the power transfer by adjusting the switching frequency with fixed minimum  
on-time. This enables the light load optimization.  
Data Sheet  
11  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
The multimode optimization consists of the following:  
Frequency law  
THD optimization  
DC switching frequency dithering  
Light load optimization  
3.1.6.1  
Frequency Law  
A PFC converter is used to emulate a resistive load re to the AC input such that iac follows vac in both wave shape  
and phase. The output of the PFC bus voltage controller ton,des,PFC is inversely proportional to the emulated  
resistive load re such that a smaller re or a higher Iac,rms will give a larger ton,des,PFC. Thus, ton,des,PFC varies as the  
AC line voltage magnitude varies and is proportional to the RMS input current Iac,rms  
.
The rule for selecting QRMn is based on the frequency law. A maximum switching frequency fswmax and a  
minimum switching frequency fswmin are defined for the complete ton,des,PFC/Iac,rms range. The frequency law  
ensures that the switching frequency is within the desired frequency range. The frequency law is depicted in the  
figure below.  
fsw  
fswmax  
fswmin  
sample  
ton,des,PFC  
/ Iac,rms  
operating  
point  
Figure 10  
PFC Frequency Law  
As long as the PFC controller operating mode satisfies the frequency law, the operating mode does not change.  
The QR-valley is increased when the highest frequency limit is reached. The QR-valley is decremented when the  
lowest frequency limit is reached.  
To ensure proper ZCD detection before the ZCD signal becomes too small in amplitude, only the first up to  
Nvalley,max,PFC valleys operations are supported.  
3.1.6.2  
THD Optimization  
QRMn selection beyond the first valley during light load and/or AC high line reduces the switching frequency but  
distorts the input current waveform with constant on-time control andTHD may suffer. The multi-mode PFC  
control consists of a THD optimization algorithm that optimizes the applied on-time in order to ensure good  
input current shaping and improved PFC THD performance.  
Data Sheet  
12  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
Vin  
t
ton  
QRM3  
QRM2  
QRM1  
BCM  
t
Figure 11  
THD optimization on-time  
Figure 11 shows the on-time at different valley selection at the same line and load conditions.  
Note:  
Boundary Conduction Mode (BCM) is an operating mode where the switch turns on at the first  
occurrence of inductor zero current .  
3.1.6.3  
Light Load Optimization  
This paragraph describes how the PFC manages light load conditions.  
DCM  
PFC converter will eventually enter DCM operation as load decreases and/or AC line increases to reduce the  
switching frequency and switching losses. XDPL8221 PFC control enters DCM when the internal on-time is less  
than ton,dcm. The PFC leaves DCM when the switching period is less than tsw,min,dcm. When the PFC is operating in  
DCM, the bus voltage controller regulates the switching period keeping the on-time constant. Due to the on-  
time dependency on the input voltage, the PFC enters and exits DCM at different power levels. This has the  
advantage to operate in QRM for an extended power range at low line maintaining high efficiency.  
3.1.7  
Peak Current Limitation  
The peak current through the switching MOSFET is sensed via the PFC shunt resistor RCS,PFC to limit the  
maximum current through the MOSFET, the choke, and freewheeling diode.  
Overcurrent Protection Level 1 (OCP1) is implemented by hardware. If the voltage VCS,PFC across the shunt  
resistor exceeds the over-current threshold VCS,OCP1, PFC for longer than the blanking time tblank,OCP1,PFC, the  
MOSFET is turned off. The MOSFET is turned on when ZCD occurs or the PFC maximum period time-out signal  
triggers the start of the next switching cycle. Overcurrent Protection Level 2 (OCP2) is a second-level  
overcurrent protection implemented by hardware. The OCP2 overcurrent threshold is fixed. The OCP2 blanking  
time is tblank,OCP2,PFC  
.
Data Sheet  
13  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
3.1.8  
Protection Features  
Protections features are triggered if fault conditions are present longer than the blanking times for each  
protection.  
Attention: The controller may continue operation aꢀer exceeding protection thresholds because of  
blanking times as shown in Figure 12. All protection thresholds have to be set with respect to  
tolerances, blanking times and worst case transients.  
Note:  
The blanking time as specified in the csv file does not include the protection notification time.  
Sampled voltage  
Protection  
or sampled current  
Sampled voltage  
triggering  
Overvoltage or Overcurrent  
protection threshold  
Protection  
triggering  
Undervoltage  
protection threshold  
Time  
Time  
tblank  
tblank  
Figure 12  
Blanking Times cause Excess of Threshold  
3.1.8.1  
Bus Under-voltage Protection  
Under-voltage detection of the PFC bus voltage Vbus is sensed at the VS pin.  
The PFC bus voltage is sensed and compared to a configurable under-voltage protection threshold Vbus,UV. If the  
bus voltage is below the threshold for longer than the blanking time tblank,Vbus,UV, the protection will be  
triggered.  
3.1.8.2  
Bus Over-voltage Protection  
Over-voltage detection of the PFC bus voltage Vbus is sensed at the VS pin.  
The PFC bus voltage is sensed and compared to a configurable over-voltage protection threshold Vbus,OVP1 in  
Firmware (FW). If this threshold is exceeded for longer than the blanking time tblank,Vbus,OVP1, the PFC stops  
switching. The PFC resumes operation when Vbus falls below Vbus,stdy,entr,OV  
.
Vbus,OVP2 is implemented in Hardware (HW) and it is fixed at a voltage which is represented as 7/6 VREF at the  
bus voltage sensing pin (VS). The HW permits a blanking time tblank,Vbus,OVP2 to be programmed.  
Data Sheet  
14  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
Vbus  
Vbus,ovp2  
Vbus,ovp1  
Vbus,stdy,entr,OV  
Vbus,set  
Vbus,uv  
t
Figure 13  
Vbus protections  
3.1.8.3  
Input Under-voltage Protection  
Under-voltage detection of the input voltage Vin is sensed at the HV pin.  
Values of Vin,rms are compared to a configurable input undervoltage protection threshold Vin,UV. If the input  
voltage is below the threshold for longer than the blanking time tblank,Vin,UV, the protection will be triggered.  
XDPL8221 features a configurable start-up threshold Vin,start,min to create hysteresis for flicker-free operation  
before the second stage starts switching.  
3.1.8.4  
Input Over-voltage Protection  
Over-voltage detection of the input voltage Vin is sensed at the HV pin.  
Values of Vin,rms are compared to a configurable input over-voltage protection threshold Vin,OV. If the threshold is  
exceeded for longer than the blanking time tblank,Vin,OV, the protection will be triggered. XDPL8221 features a  
configurable start-up threshold Vin,start,max to create hysteresis for flicker-free operation before the second stage  
starts switching.  
Vin  
Vin,OV  
Vin,start,max  
Vin,start,min  
Vin,UV  
t
tstart,delay,FB  
Figure 14  
Vin protections  
Data Sheet  
15  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
3.1.8.5  
Other PFC Protections  
Current Sense (CS) Resistor Short Protection  
The input fuse should be chosen appropriately to protect converter if current-sense resistor is shorted.  
Current Sense (CS) Resistor Open Protection  
CS/ZCD external circuitry pulls the CSPFC pin high when CS resistor is open, OCP2 protection is triggered.  
CSPFC Pin Short to GND Protection  
In case of CSPFC pin short to ground the missing of quasi-resonant oscillations will trigger the CCM Protection.  
CCM Protection  
Continuous conduction mode (CCM) operation may occur during PFC startup for a limited time and is allowed.  
In normal operation, extended CCM operation in the PFC converter is considered a failure.  
Circumstances where the PFC converter may experience CCM operation:  
Shorted PFC bypass diode  
Heavy load step which is out of specification  
Low input voltage outside the normal operating range  
During CCM operation, the magnetizing current in the PFC choke does not decay to zero prior to MOSFET turn-  
on. Quasi-resonant oscillation is missing in the ZCD signal before the maximum switching period time-out is  
reached that turns the MOSFET on. This turn-on event without ZCD oscillation is monitored to protect the PFC  
converter from continuous CCM operation. Extended CCM operation protection is implemented within FW.  
If quasi-resonant oscillation is missing in the ZCD signal for longer than the blanking time tblank,CCM,PFC, the  
protection is triggered.  
Soꢀ Start Failure  
PFC start-up time maybe extended due to abnormally heavy loads or a low input voltages. PFC steady state  
operation may not be reached if tstart,PFC reaches tstart,max,PFC before the soꢀ start has ended, and the protection  
is triggered.  
Data Sheet  
16  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
3.2  
Flyback Controller Features  
The Flyback converter stage provides isolation and primary side control of the output current. Primary side  
regulation of the output current eliminates secondary side control feedback loop circuitry usually needed in  
isolated power converters. This feature reduces part count to reduce costs.  
The Flyback stage features multi-mode operation (QRM, DCM and ABM) which ensures efficiency and  
performance is optimized.  
3.2.1  
Primary Side Regulation  
The XDPL8221 FB stage provides primary side control of output current and output voltage. No external  
feedback components are necessary for the current control.  
Figure 15 shows typical current and voltage waveforms of the FB application operating in QRM1.  
In DCM, the MOSFET will not turn on at the first valley of the resonant oscillation seen at VAUX, but instead  
delayed.  
Primary side regulation of the average output current is accomplished by sensing the primary peak current Ip,pk  
,
the period of conduction of the output diode tdemag and the switching period tsw,FB  
.
The voltage signal VAUX of the auxiliary winding of the transformer contains information on the reflected output  
voltage Vout. The reflected output voltage is measured at the ZCD pin using a resistor divider.  
VAUX  
Reflected output voltage sampling  
Zero crossing detection  
0 V  
Bus voltage sampling  
Valley switching  
Ip  
Is  
time  
Vbus  
Vout  
tCS,sample  
tZCD,sample  
Np Ns  
Na  
Itransformer  
tsw,FB  
Ip,pk  
Ip  
VAUX  
Ip  
Is  
time  
tdemag  
VGD  
time  
Figure 15  
Typical Waveforms of a Flyback Converter  
Data Sheet  
17  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
3.2.1.1  
Primary Side Current Sensing  
The primary side peak current Ip,pk is controlled by the control loop using the VCS,OCP1 level at the CSFB pin. This  
control scheme ensures suppression of any variation in the bus voltage.  
Several delays exist from the time at which the OCP1 level VCS,OCP1 is exceeded at the CSFB pin until the gate  
switches off and the transformer current finally reaches its peak value. For a higher accuracy, the primary peak  
current VCS,SH is sampled a fixed time before turn-off of the gate. The primary side peak current is used to  
calculate the secondary side current and for protection. The propagation delay compensation parameter tPDC  
allows optimization of the accuracy of the primary side peak current:  
V
t
+ t  
CS, SH  
on, FB PDC  
t  
Ip, pk  
=
t
CS, FB on, FB CSFB, offset  
R
Equation 2  
Note:  
If an RC low pass filter is added in front of the CSFB pin, the related low pass filter delay has to be  
included in tPDC  
.
Ip  
VCS,pk  
RCS,FB  
Ip,pk  
=
VCS,SH  
RCS,FB  
t
t
tPDC  
VGD  
tCSFB,offset  
ton,FB  
Figure 16  
Propagation Delay Compensation for accurate Primary Peak Current Calculation  
3.2.1.2  
Primary Side Output Voltage Sensing  
The output voltage is determined by measuring the reflected output voltage on the auxiliary winding. A resistor  
divider adapts the voltage to the operating range of the ZCD pin.  
The output voltage is measured at the ZCD pin using the voltage VZCD,SH at the end of the demagnetization time  
at the time tZCD,sample. The voltage measured at the ZCD pin, the dimensioning of the resistor dividers RZCD,FB,1  
and RZCD,FB,2, transformer turns Ns and Na as well as an offset Vout,offset (caused by the secondary diode, for  
example) are used to calculate the output voltage Vout as follows:  
R
+ R  
N
N
ZCD, FB, 1 ZCD, FB, 2  
s
Vout = VZCD, SH  
+ Vout, offset  
R
ZCD, FB, 2  
a
Equation 3  
Vout is used for Primary Side Regulated (PSR) control loops in CV and LP modes as well as for output over- and  
undervoltage protections.  
Data Sheet  
18  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
Vout,offset  
Na Ns  
RZCD,FB,1  
VOut  
ZCD  
VZCD,SH  
RZCD,FB,2  
Figure 17  
Primary Side Output Voltage Sensing using ZCD S&H  
Note:  
Any relation between VCC and ZCD in self-supplied applications can be decoupled – e.g. by adding a  
linear regulator for VCC.  
Attention: Please note that the time (tdemag) has to be longer than 2.0 μs to ensure that the reflected output  
voltage can be sensed correctly at the ZCD pin.  
3.2.1.3  
Output Current Calculation  
The output current is calculated based on the primary side peak current and the timing of the switching cycle.  
The output current Iout is calculated using the duration of conduction of the output diode tdemag, the switching  
period tsw,FB as well as the number of transformer turns Np, Ns and the transformer coupling Kcoupling. The  
following equation is valid in QRM1 and DCM:  
N
t
p
demag  
Iout  
=
21 Ip, pk  
Kcoupling ⋅  
N t  
s sw, FB  
Equation 4  
In ABM the average output current depends on the number of pulses NABM,PI and the burst period tburst,FB  
:
N
t
N  
demag ABM, PI  
p
Iout  
=
21 Ip, pk  
Kcoupling ⋅  
N
s
t
burst, FB  
Equation 5  
The coupling of the transformer can be approximated using the transformer primary inductance Lp and the  
transformer primary leakage inductance Lp,lk as follows:  
L
p
Kcoupling  
L
+ L  
p
p, lk  
Equation 6  
The calculated current Iout is used for the control loop in the modes CC and LP. The calculated current is also  
used for output overcurrent protection.  
3.2.1.4  
Output control scheme  
The XDPL8221 includes three different control schemes for a CC, CV or LP output.  
Different use cases require the controller to operate according to different operation schemes:  
In the case of typical LED strings, the forward voltage of the LED string determines the output voltage of the  
driver. XDPL8221 operates in CC and drives a constant output current Iout,full to the load. The forward  
voltage of the connected LED string has to be below a configurable maximum value Vout,set  
.
Data Sheet  
19  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
In the case of LED loads including a power stage (e.g. Infineon BCR linear regulators or Infineon DC/DC buck  
ILD2111), XDPL8221 operates in CV, ensuring a constant voltage Vout,set to the load. The total output current  
drawn by the load has to be below a configurable maximum value Iout,full  
.
In the case of a high output current setpoint Iout,full and an overly long LED string which exceeds the  
configurable power limit Pout,set, XDPL8221 operates in LP to ensure that the power limit of the driver is not  
exceeded. The controller reduces the output current automatically, ensuring light output without any  
interruption even for overly long LED strings. The forward voltage of the connected LED string has to be  
below a configurable maximum value Vout,set  
.
For every update of the control loop, the control scheme is selected on the basis of the current operation  
conditions (output voltage Vout and output current Iout) and their distance to the three limiting setpoints  
(Vout,set, Pout,set and Iout,full):  
For CC schemes, the internal reference current Iout,full is weighted according to thermal management and a  
dimming curve to yield Iout,set. The calculated output current Iout is compared with the weighted reference  
current Iout,set to generate an error signal for the output current.  
For CV schemes, the sensed output voltage Vout at the ZCD pin is compared to a reference voltage Vout,set to  
generate an error signal for the output voltage.  
For LP schemes, the output current is limited to a maximum of Iout,set = Pout,set / Vout  
.
Out of these three schemes, for each step the most critical error is selected (see Figure 18):  
1.  
If any setpoint is exceeded, the largest error for power decrease is selected to bring the controller back to  
the desired operating point as quickly as possible.  
2.  
If the current operating conditions are below all three setpoints, the smallest error for power increase is  
selected to avoid overshooting any setpoint.  
The selected error signal is fed into a compensator to control the gate driver switching parameters (i.e. duty  
cycle and frequency) for the power MOSFET of the FB.  
Output  
voltage  
Output  
open  
Pout,set  
Vout,OV  
Vout,set  
Pout,OPP  
Constant voltage  
Limited  
power  
Constant  
current  
Output  
short  
Vout,start  
Vout,UV  
Output current  
Iout,min  
Iout,full Iout,OCP  
Figure 18  
Control scheme for CC/CV/LP modes (non-dimmed)  
In dimming cases, the output current setpoint Iout,set is located between Iout,min and Iout,full and varies according  
to the sensed PWM duty cycle DDIM. Dimming can be visualized by moving the vertical line for the output current  
setpoint in Figure 19 from right to leꢀ.  
Note:  
In the limited power mode, the maximum output current is limited to Iout,set = Pout,set / Vout. which is  
smaller than Iout,full. It can be selected through parameter, whether Iout,set or Iout,full should be mapped  
to 100% dimming level. If the Iout,full is mapped to 100% dimming level in the limited power mode, the  
dimmer will experience the dead-travel between Iout,set and Iout,full (no current change while the  
dimming level is changing).  
Data Sheet  
20  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
Output  
voltage  
Output  
open  
Legend:  
Pout,set  
Operating range  
Vout,OV  
Constant voltage  
Vout,set  
Limited  
power  
Dimming  
Constant  
current  
Output  
short  
Vout,start  
Vout,UV  
Dim-to-Off  
Iout,min  
Output current  
Iout,full  
Figure 19  
Control scheme for CC/CV/LP modes (including dimming)  
One or more of the output control schemes can be deactivated by configuration of the setpoints. Some  
examples are given below:  
The LP scheme is not active for Pout,set > Vout,set * Iout,full. For such a configuration, the controller will only  
select between a CC and CV scheme.  
The CV scheme is not active for Vout,set = Vout,OV as the output overvoltage protection will be triggered.  
The CC scheme is not active for Iout,full = Iout,OC as the output overcurrent protection will be triggered.  
Compensation of output losses  
In case any output of flyback windings is not only supplying a current to LEDs, but also supplying other  
consumers (e.g. bleeders, CDM10VD, etc.), the primary side regulation of the output current will not be  
accurate. Parameter Gloss allows to compensate ohmic losses on the secondary side:  
Iout,corrected = Iout,uncorrected + Gloss * Vout  
Output current slew rate limitation  
As the transient response of the PFC stage is rather slow (especially if the PFC is in low power mode), a fast  
increase of the flyback power can cause a significant undershoot of the bus voltage. To limit this undershoot,  
the rising slew rate of the flyback output current can be limited using parameter Iout,slew,rate,step as shown in  
Figure 20.  
Data Sheet  
21  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
Voltage or  
current  
Vbus,set  
Vbus  
Iout,corrected  
Iout,set  
Iout,slew,rate,step / 160 µs  
Time  
Figure 20  
Output slew rate limitation  
3.2.1.5  
Multimode Scheme  
The control loop of XDPL8221 uses three different switching modes: QRM1 is optimized for high efficiency at  
high loads, DCM is used for medium loads and ABM is used for very light load conditions.  
Power  
VCS,max,FB  
Peak-current controlled  
QRM1  
VCS,min,FB  
tsw,min,FB  
Pmax  
Frequency controlled  
tsw,max,FB  
DCM  
ABM  
Pulse number controlled  
NABM,min  
Pmin  
Bus Voltage  
Vbus,UV  
Vbus,OVP1  
Figure 21  
Flyback Multimode Operation Scheme  
QRM1: This mode maximizes the efficiency by switching on the 1st valley of the VAUX signal. This ensures  
zero current switching with a minimum of switching losses. The power is controlled by regulating the  
primary peak current using VCS,OCP1  
:
2
V
1
2
CS, OCP1  
1
N V  
Pout  
=
Lp ⋅  
L
p
R
V  
t
CS, FB  
CS, OCP1  
s
bus  
out  
OSC, FB  
2
1 +  
+
R
N
V
p
CS, FB V  
bus  
Equation 7  
Data Sheet  
22  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
DCM: This mode is used if VCS,OCP1has reached its minimum value VCS,min,FB. To allow lower output power,  
the controller extends the switching period tsw,FB later than the 1st valley:  
2
V
1
2
CS, min, FB  
1
Pout  
=
Lp ⋅  
R
t
CS, FB  
sw, FB  
Equation 8  
ABM: This mode is used if VCS,OCP1 cannot be reduced and tsw,FB cannot be increased anymore. To reduce  
power transfer, the controller will stop switching for some time, causing bursts of pulses:  
2
V
N
1
2
CS, min, FB  
ABM, PI  
Pout  
=
Lp ⋅  
t
burst, FB  
R
CS, FB  
Equation 9  
The frequency of the bursts is defined by 1/tburst,FB. The pulses of each burst have a peak current of  
VCS,min,FB and a switching frequency of 1/tsw,max,FB. The number of pulses NABM,PI is regulated to control the  
average power transfer during one burst period tburst,FB  
.
The minimum power in DCM is limited by the transformer primary inductance Lp, maximum switching period  
tsw,max,FB, minimum primary peak voltage VCS,min,FB, maximum bus voltage Vbus,OVP1 and two timing parameters:  
2
2
V
V
L
1
2
bus, OVP1  
CS, min, FB  
p
1
Pmin  
=
+ tOCP1, FB + tPDC  
L
R
V
t
p
CS, FB  
bus, OVP1  
sw, max, FB  
Equation 10  
The minimum power in ABM is limited by the transformer primary inductance Lp, burst period tburst,FB  
,
minimum number of pulses NABM,min, minimum primary peak voltage VCS,min,FB, maximum bus voltage Vbus,OVP1  
and two timing parameters:  
2
2
V
V
L
N
t
1
2
bus, OVP1  
CS, min, FB  
p
ABM, min  
Pmin  
=
+ tOCP1, FB + tPDC  
L
R
V
p
CS, FB  
bus, OVP1  
burst, FB  
Equation 11  
Note:  
If the load drops below the minimum load of Pmin, the output voltage will rise up to the output  
overvoltage threshold Vout,OV and trigger the protection. An auto-restart can be used to keep the  
output voltage close to Vout,OV until the load increases again.  
3.2.1.6  
Active Burst Mode  
The sense and control scheme for the active burst mode of the FB is described.  
The typical waveform for the gate drivers, the secondary side flyback transformer current, the output voltage  
and the bus voltage are shown in the figure. The bursts are repeated with a configurable burst period tburst,FB. It  
is advised to choose a burst frequency faster than 200 Hz to ensure a sufficient light quality and reduce output  
ripple. On the other hand, the burst frequency should not be too high as the human ear is more sensitive to  
higher frequencies.  
Data Sheet  
23  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
GDFB  
Vout  
Isec  
Burst  
Burst Pause  
tburst,FB  
Figure 22  
Example Waveforms in Active Burst Mode (not drawn to scale)  
The FB switching pulses of each burst will boost the output voltage to a higher level. During the burst pause, the  
output voltage drops due to the load of the power converter.  
To control the average output current or the average output voltage, the FB controller calculates the average  
secondary current and measures the output voltage once at the beginning and once at the end of each burst.  
These measurements are used to calculate the average output current and average output voltage for the  
complete burst. Based on these average values, the control loop updates the number of pulses per burst.  
3.2.2  
Flyback Startup  
Aꢀer startup, the FB of the XDPL8221 initiates a soꢀ start to minimize the switching stress for the power  
MOSFET and secondary diode.  
The controller switches with a configurable switching frequency of fsw,start,FB and increases the cycle-by-cycle  
current limit in steps of VCS,step with a configurable duration tsoꢀstart for each step. Aꢀer the final VCS,OCP1,start  
limit level has been reached, the output will be charged until the minimum output voltage Vout,start, which  
ensures self-supply has been reached. At this condition, Continuous Conduction Mode (CCM) protection as well  
as output undervoltage protection are activated and the control loop takes over. The starting point for the  
control loop is to operate in ABM at lowest number of pulses, lowest switching frequency and lowest primary  
peak-current. These switching parameters avoid an overshoot of output current for a LED string with low  
forward voltage when dimmed down to a low output current.  
Output voltage  
Peak current  
Soft Start  
Control loop  
active  
Vout  
Vout,start  
VCS,OCP1  
VCS,OCP1,start  
VCS,step  
time  
tsoftstart  
Figure 23  
Flyback Startup Sequence  
Data Sheet  
24  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
3.2.3  
Protection features  
Protections ensure the operation of the controller under restricted conditions. The protection monitoring  
signal(s) sampling rate, protection triggering condition(s) and protection reaction are described in this section.  
Attention: The sampled protection monitoring signal accuracy is subjective to the digital quantization,  
tolerances of components (including Integrated Circuit (IC)) and estimations with indirect  
sensing (e.g. input and output voltage estimations based on ZCD, CS pin signals), while the  
protection level triggering accuracy is subjective to the sampled signal accuracy, sampling  
delay, indirect sensing delay (e.g. reflected output voltage signal cannot be sensed by ZCD pin  
near AC input phase angle of 0° and 180°) and blanking time.  
3.2.3.1  
Primary Over-current Protection  
The primary side over-current protection implemented in hardware covers fault conditions like a short in the  
transformer primary winding or an open CS pin.  
The primary side current is compared to an over-current protection threshold VCS,OCP2. If the threshold is  
exceeded for longer than the blanking time tOCP2,FB, the protection will be triggered.  
3.2.3.2  
Output Under-voltage Protection  
In case of a short of the output or an overload, the output voltage may drop to a low level. Detection of under-  
voltage in the output voltage Vout is enabled by measurement of the reflected voltage at the ZCD pin.  
During operation, the output voltage is compared to a configurable under-voltage protection threshold Vout,UV  
If the threshold is exceeded for longer than the blanking time tblank,out,UV, the protection will be triggered.  
.
During startup,a shorted output or a strong capacitive loading may not allow the controller charging the output  
voltage to Vout,UV,start within a timeout of tstart,max,FB. If this timeout expires the protection will be triggered. The  
timeout starts when the controller starts switching.  
Note:  
The startup under-voltage threshold Vout,UV,start has to be configured sufficiently above the under-  
voltage threshold Vout,UV to allow undershoots at start-up which may occur, especially for resistive  
loads which already consume power from the beginning.  
Attention: Output under-voltage protection is not available while the controller operates in ABM.  
3.2.3.3  
Output Over-voltage Protection  
In case of a open output, the output voltage may rise to a high level. Over-voltage detection of the output  
voltage Vout is provided by measurement at the ZCD pin.  
The output voltage is compared to an over-voltage protection threshold Vout,OV. If the threshold is exceeded for  
longer than the blanking time tblank,out,OV, the protection will be triggered.  
Note:  
The blanking time tblank,Vout,OV must be taken into account because overshoots of the output voltage  
above the protection threshold can occur due to this time.  
Note:  
This protection is usually triggered if the output is open or the output load drops below the minimum  
load Pmin  
.
Attention: Output over-voltage protection is not available while the controller operates in ABM.  
Data Sheet  
25  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
3.2.3.4  
Output Over-current Protection  
Over-current detection in the output current Iout is provided on the basis of the calculated output current.  
The calculated output current is compared to a configurable over-current protection threshold Iout,OC. If the  
threshold is exceeded for longer than the blanking time tblank,out,OC, the protection will be triggered.  
3.2.3.5  
Output Over-power Protection  
Over-power detection in the output power Pout is provided on the basis of the calculated output power.  
The calculated output power is compared to a configurable over-power protection threshold Pout,OP. If the  
threshold is exceeded for longer than the blanking time tblank,out,OP, the protection will be triggered.  
3.2.3.6  
Other Flyback Protections  
XDPL8221 includes additional protections to ensure the integrity and correct flow of the firmware.  
A hardware weak pull-up protects against an open CSFB pin. The CSFB OCP2 will be triggered for an open  
CSFB pin.  
A firmware watchdog protects against the CSFB pin becoming shorted to GND. The protection triggers if the  
sampled CSFB voltage is less than 97.6 mV for longer than the blanking time of tsoꢀstart  
.
A firmware state monitor supervises correct operation of the flyback in QRM1, DCM or ABM. A protection is  
triggered if the flyback enters CCM.  
A firmware plausibility check ensures that both bus voltage measurements using the ZCD andVS pins are  
consistent.  
A firmware watchdog supervises correct data handling of the flyback.  
3.2.3.6.1  
Flyback Bus Voltage Sensing  
The FB can sense the bus voltage using the reflection of bus voltage on the auxiliary winding while the gate is  
turned on. A resistor divider adapts the negative voltage to the operating range of the ZCD pin. This second  
measurement path is required to protect against component failures in the VS measurement path (open loop  
protection for the PFC stage).  
The reflected bus voltage appears as a negative voltage at VAUX. This negative voltage is internally clamped at  
the ZCD pin to the negative voltage VINPCLN. The internal clamping current IZCD is measured at the end of the on-  
time at the time tCS,sample. The measured clamping current of the ZCD pin, the dimensioning of the resistor  
dividers RZCD,FB,1 and RZCD,FB,2 as well as the number of transformer turns Na and Np are used to calculate the  
bus voltage Vbus,FB as follows:  
V
N
N
INPCLN  
p
a
Vbus, FB  
=
IZCD  
+
RZCD, FB, 1 + VINPCLN  
R
ZCD, FB, 2  
Equation 12  
Vbus,FB is used for a plausibility check with the bus voltage Vbus as measured using the VS pin.  
Na Np  
RZCD,FB,1  
Vbus,FB  
IZCD  
ZCD  
VINPCLN  
RZCD,FB,2  
Figure 24  
Bus Voltage Sensing using ZCD Clamp Current  
Data Sheet  
26  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
3.3  
General Controller Features  
XDPL8221 provides general features using device level measurements (DLM) for firmware task scheduling, VCC  
control and temperature control which are independent of the target application.  
3.3.1  
Configurable Gate Driver Strengths  
The gate driver output signals can be configured with respect to their rising slopes for switching on the power  
MOSFET and with respect to their high voltage levels.  
This feature can save BOM components (1 diode & 1 resistor per gate driver) which are conventionally added to  
achieve the same purpose to lower any Electro-Magnetic Interference (EMI).  
3.3.2  
External Temperature Sensing  
The external temperature is measured by measuring the voltage of an NTC with respect to the internal VREF  
voltage.  
Controller  
VREF  
RPU  
TEMP  
VTEMP  
RNTC  
Figure 25  
External Temperature Sensing using NTC  
The controller calculates the resistance of the NTC based on the measured voltage VTemp, the internal reference  
voltage VREF and the internal pull-up resistance RPU  
:
V
R  
Temp  
V  
PU  
Temp  
RNTC  
=
V
REF  
Equation 13  
3.3.3  
Adaptive temperature protection  
XDPL8221 offers adaptive temperature protection using the external temperature sensor. This feature reduces  
the output current according to temperature to protect the load and/or driver against overtemperature.  
As long as the resistance of the NTC is lower than the temperature threshold RNTC,hot of the NTC, the current is  
gradually reduced from the maximum current Iout,set, as shown in Figure 26. If the resistance of the NTC is  
higher than threshold RNTC,hot, the output current is gradually increased again. This allows the controller to  
ensure operation at or below a temperature matching to RNTC,hot  
.
If a reduction down to a minimum current Iout,red is not able to compensate for any continued increase in  
temperature (causing a continuing reduction of NTC resistance), XDPL8221 will trigger external  
overtemperature protection if the external sensor exceeds RNTC,critical  
.
Data Sheet  
27  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
Temperature reduced  
Temperature reduced  
output current  
output current  
Iout,full  
Iout,full  
Iout,red  
Iout,red  
RRNTC,hot  
R<RNTC,hot  
R=RNTC,hot RRNTC,hot R=RNTC,hot  
NTC  
resistance  
Time  
RNTC,hot  
RNTC,critical  
Figure 26  
Adaptive temperature protection for external sensors  
3.3.4  
PWM Dimming Interface  
The duty cycle sensed at the PWM pin is used to determine the output current level. The XDPL8221 can be  
configured to use either a linear or a quadratic dimming curve. Either normal or inverted dimming curves can  
be selected.  
Figure 27 shows the relationship of the PWM duty cycle to the output current target value. Configurable levels  
DDIM,min and DDIM,max ensure that the minimum current Iout,min and maximum current Iout,set can always be  
achieved, thereby making the application robust against component tolerances. The dimming curve can be  
mirrored by changing its direction from normal to inverted PWM duty cycle.  
An optional hysteresis can be enabled for the sensing of the PWM signal. This hysteresis can suppress jitter in  
the PWM signal. Any change of the PWM duty cycle within the hysteresis will not affect the output current.  
Output current  
Iout,set  
Output current  
Iout,set  
Constant  
current  
Constant  
current  
Limited  
power  
Limited  
power  
Iout,min  
Iout,min  
PWM duty cycle  
PWM duty cycle  
DDIM,off  
DDIM,min  
DDIM,max  
DDIM,off  
DDIM,min  
DDIM,max  
DDIM,on  
DDIM,on  
Figure 27  
Selectable Dimming Curves  
Using the optional Dim-to-Off feature, the light output can be stopped without removal of input voltage. In Dim-  
to-Off, the controller will enter auto-restart operation to minimize power consumption. The auto-restart  
recharges the output voltage to a minimum output voltage of Vout,start to measure the PWM duty cycle during a  
time of tblank,DIM,off. Aꢀer tblank,DIM,off, the controller decides if it stays in Dim-to-off by triggering an auto-restart  
or if it starts the control loop. With the Dim-to-Off feature, the output voltage can be maintained in a specific  
range by configuration of the startup voltage Vout,start and auto-restart time tAR, and by dimensioning of an  
active or passive output bleeder. If Vout,start is configured to be low enough below the minimum forward voltage  
of the LED string, the LEDs will show no light in this state.  
Note:  
A sufficient output bleeder is required to allow the controller to maintain the output voltage if the  
Dim-to-Off feature is enabled.  
Dim-to-Off is entered if the PWM duty cycle exceeds the configurable threshold DDIM,off (see purple line in Figure  
27). As soon as the duty cycle exceeds DDIM,on, the controller will start to continuously regulate output voltage or  
output current again.  
Data Sheet  
28  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
In case the product of output current and output voltage would exceed the power limit, the controller will  
automatically enter the LP mode by reducing the output current to achieve the configured power limit (see light  
blue curve in Figure 27). As a consequence, the dimmer may show extended dead travel at the highest output  
level. When dimming down, as soon as the product of dimmed output current and output voltage drops below  
the power limit, the output current will follow the regular dimming curve (green curve).  
3.3.5  
UART Command Interface  
The UART command interface allows to control the operation of the LED driver as well as reading out status  
information from the controller. The electrical UART interface and the protocol are described.  
XDPL8221 uses a common half-duplex UART interface with a baudrate of 57.600 baud. In half-duplex mode,  
both communication partners share one line to exchange data with a wired-AND structure. Therefore, both data  
transmit outputs (driver type: open-drain) are connected together to a common pull-up resistor to maximum  
3.3 V. The value of the resistor define the rise time of the data signal at a 0-1 transition. The data receivers are  
connected to the same line and are always active to detect data collision. Each device also reads the data it is  
currently transmitting and checks the read data against the data that was intended to be written. In case of a  
mismatch, a data collision has occurred.  
The UART communication is based on data bytes with 8 bit width, LSB first as shown in Figure 28. Each data  
transfer starts with a start bit at low level and stops with two stop bits at high level (STOP). The idle level of the  
transmit and receive signals is the high level.  
Start  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Stop  
Figure 28  
UART Byte Frame  
Before a command is send, sending one or multiple SYNC commands (0x7F) is recommended. If a UART sync  
request occurs during a power saving state, the XDPL8221 will first recharge it's VCC voltage before responding  
with an ACK (0x00). Aꢀer the XDPL8221 answered one or more sync requests with ACK, the external master can  
send subsequent GET or SET commands. The UART communication has to finish within a configurable timeout,  
otherwise a VCC undervoltage can occur.  
In case UART communication is requested while the XDPL8221 is in power-saving state, a SYNC command will  
trigger a wakeup. In preparation of the communication, the XDPL8221 will first charge up the VCC. This ensures  
a wakeup with full VCC to be ready for communication. The XDPL8221 will be available for communication for a  
timeout of tUART which can be adjusted based on the VCC capacitance. Aꢀer the timeout, the XDPL8221 will  
continue with the protection reaction which was interrupted by the communication.  
Note:  
The UART line is pulled low for typically 500 µs during an auto-restart of the XDPL8221. This must not  
be misinterpret as UART frame error by other UART devices.  
A GET or SET command frame consists of 9 bytes as listed in Table 2. The time between each byte must not  
exceed tUART,intra-byte. The checksum at the end of the command ensures that XDPL8221 does not react to any  
disturbed communication. The checksum is the XOR combination of the previous bytes of the command.  
Table 2  
UART Commands  
Command  
Class Comm ARG0 ARG1 ARG2 ARG3 ARG4 ARG5 Check  
and  
sum  
SYNC  
0x7F  
-
-
-
-
-
-
-
-
GET status  
0x7C  
0x7C  
0x7C  
0x04  
0x04  
0x04  
0x41  
0x44  
0x45  
ID  
ID  
ID  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xXX  
0xXX  
0xXX  
GET internal temperature  
GET external NTC resistance  
Data Sheet  
29  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
Table 2  
UART Commands (continued)  
Command  
Class Comm ARG0 ARG1 ARG2 ARG3 ARG4 ARG5 Check  
and  
sum  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0x7C  
0x7D  
0xB7  
GET output voltage  
GET RMS input voltage  
GET bus voltage  
GET output current  
SET non-dimmed current  
GET non-dimmed current  
SET dimming level  
GET dimming level  
START  
0x7C  
0x7C  
0x7C  
0x7C  
0x7C  
0x7C  
0x7C  
0x7C  
0x7C  
0x7C  
0x7C  
0x04  
0x04  
0x04  
0x04  
0x84  
0x04  
0x84  
0x04  
0x00  
0x01  
0x84  
0x64  
0x65  
0x66  
0x6A  
0x68  
0x68  
0x84  
0x84  
0x00  
0x00  
0x4F  
ID  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
ID  
0x00  
ID  
0x00  
ID  
0x00  
ID  
Current  
0x00  
ID  
0x00  
ID  
Dimming Level 0x00  
ID  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
STOP1)  
SET sleep2)  
Restrictions apply to the non-dimmed current which can be set via UART SET command:  
Iout,min < current set via UART < Iout,full  
This is the normal operation range. The current will be regulated according to the UART command.  
Current set via UART > Iout,full  
This case would overload the design. The controller will limit the output current to Iout,full  
Current set via UART < Iout,min  
:
:
.
:
This configuration is not allowed as it causes an invalid dimming curve. The UART master must not program  
a current in this range.  
A response frame can consist of either 1 byte or 9 bytes. As the power stage is a noisy environment, the UART  
communication may occasionally be disturbed. In case of a mismatching checksum of the request or an  
incomplete frame, XDPL8221 will not provide any response. If a response to a command is missing, the UART  
master must not send any new request within tUART,error  
.
Table 3  
UART responses to commands  
Response  
ACK/ ARG0 ARG1 ARG2 ARG3 ARG4 ARG5 ARG6 Check  
NACK  
sum  
Successful answer to SYNC or SET 0x00  
-
-
-
-
-
-
-
-
command  
(ACK)  
Successful response to a GET  
command  
0x00  
Value (see  
00  
-
00  
-
00  
-
00  
-
00  
-
0xXX  
-
(ACK) coding below)  
Generic Error Code for general  
protocol purposes or used as a  
non-contextualized generic NACK  
0x01  
-
-
One of the arguments in the  
given command is not valid  
0x02  
0x03  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
The command is not known  
1
This command requires external VCC supply. Without external VCC supply, a VCC undervoltage protection  
will occur.  
To wakeup from sleep by UART, the "UART during Latch" feature needs to be enabled.  
2
Data Sheet  
30  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
The ID field allows to address one out of multiple XDPL8221s on a shared UART bus. Only devices with a  
matching ID will react to a UART command. Commands can use the broadcast ID 0x00 to address any XDPL8221  
on a shared bus. A broadcast GET command will cause a collision on the shared bus in case multiple devices are  
connected. It is advised to use only GET commands with a device ID to ensure a response from a single, unique  
device.  
Note:  
All IDs of any XDPL8221s on a shared UART bus must be unique!  
The coding of the electrical values to their digital number representation is listed in Table 4. For all 16 bit values  
the lower byte is transferred first.  
Table 4  
Value  
Number Representation of Values  
Conversion Factor  
Offset  
Minimum decimal  
value  
Maximum decimal  
value  
Current  
4096 LSB / A  
81.92 LSB / %  
16 LSB / V  
0
1 (244 µA)  
0 (0 %3))  
1 (62.5 mV)  
0 (0 Ω)  
40960 (10 A)  
8192 (100%)  
8000 (500 V)  
32768 (32.768 kΩ)  
190 (150°C)  
Dimming Level  
Voltage  
0
0
NTC resistance  
Temperature  
1 LSB / Ω  
0
1 LSB / °C  
40  
0 (-40°C)  
The status value of the controller answered to a "GET status" command is coded as listed in Table 5.  
Table 5  
Coding of Status  
Bit  
Description  
15 to 14  
The output current is determined by:  
00: Dimming  
01: Advanced temperature protection  
10: Limited power  
13  
The flyback regulates in  
0: CC or Limited Power mode  
1: CV mode  
12  
The dimming level is determined by:  
0: PWM  
1: UART  
11  
AC or DC input voltage:  
0: AC input voltage  
1: DC input voltage  
10 to 9  
Current protection reaction is  
00: Auto-restart  
01: Fast Auto-restart  
10: Latch  
11: Stop Mode  
8
7
The on-going protection requires a VCC charging for the restart (1) or not (0)  
A protection reaction is on-going (1) or not (0)  
3
A UART dimming level of 0% triggers dim-to-off if it is enabled.  
Data Sheet  
31  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
Table 5  
Coding of Status (continued)  
Bit  
Description  
6
A DLM protection was triggered (ProtectionDLM > 0)  
A FB protection was triggered (ProtectionFB > 0)  
A PFC protection was triggered (ProtectionPFC > 0)  
Bit number of any bit set in either ProtectionPFC, ProtectionFB or ProtectionDLM  
5
4
4)  
3 to 0  
The coding of system protections indicated by the value of the lowest 7 bits (bit 0-6) in the Table 5 is given in the  
following table :  
Table 6  
Coding of System Protections  
Value (bit 6-0)  
000 0000  
001 0001  
001 0010  
001 0011  
001 0100  
001 0101  
001 0110  
001 0111  
010 0000  
010 0001  
010 0010  
010 0011  
010 0100  
010 0101  
010 0110  
010 0111  
010 1000  
010 1001  
010 1010  
010 1011  
010 1100  
100 0000  
100 0001  
100 0010  
100 0011  
100 0100  
System Protections  
No Protection  
Bus Over-voltage Protection Level 2  
Input Under-voltage Protection  
Input Over-voltage Protection  
PFC CCM Protection  
PFC Soꢀ-start Failure Protection  
Bus Under-voltage Protection  
PFC Over-current Protection Level 2  
Flyback CS Pin Short to GND Protection  
Flyback Output Under-voltage Protection at Start-up  
Flyback Output Under-voltage Protection during Operation  
Flyback Output Over-voltage Protection  
Flyback Output Over-current Protection  
Flyback Over-current Protection Level 2  
Flyback CCM Protection  
Flyback Maximum TOSC Exceeding Protection  
Dim-to-off at Start-up  
Dim-to-off during Operation  
Flyback Output Over-power Protection  
Flyback Vbus Plausibility Check Failure Protection  
Flyback Data Missing Protection  
External Over-Temperature Protection  
Internal Over-Temperature Protection  
Task scheduler protection  
VCC Under-voltage Lock Out Protection  
VCC Out of Range Protection  
4
This assumes only one bit will be set in all three signals at a time. If multiple bits would be present, only  
the first error found will be chosen.  
Data Sheet  
32  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
Table 6  
Coding of System Protections (continued)  
Value (bit 6-0)  
100 0101  
System Protections  
RAM Parity Error Protection  
Watch Dog Error Protection  
Clock Check Error Protection  
100 0110  
100 0111  
3.3.6  
Protection features  
Protections ensure the operation of the controller under restricted conditions. The protection monitoring  
signal(s) sampling rate, protection triggering condition(s) and protection reaction are described in this section.  
Attention: The sampled protection monitoring signal accuracy is subjective to the digital quantization,  
tolerances of components (including IC) and estimations with indirect sensing (e.g. input and  
output voltage estimations based on ZCD, CS pin signals), while the protection level triggering  
accuracy is subjective to the sampled signal accuracy, sampling delay, indirect sensing delay  
(e.g. reflected output voltage signal cannot be sensed by ZCD pin near AC input phase angle of 0°  
and 180°) and blanking time.  
3.3.6.1  
Overtemperature Protection  
Overtemperature protection initiates a shutdown once the critical temperature level Tcritical or the critical NTC  
resistance RNTC,critical is exceeded.  
If the internal temperature sensor exceeds Tcritical or the external resistance drops below RNTC,critical, XDPL8221  
will trigger internal or external overtemperature protection.  
Output current  
Iout,full  
Temperature  
Tstart  
Tcritical  
Figure 29  
If the controller is configured to react with auto-restart to internal or external overtemperature protection, it will  
only restart aꢀer the temperature drops below Tstart and the NTC resistance exceeds RNTC,hot  
If latch mode is selected instead, the IC will turn off and only restart aꢀer recycling of input power with a  
temperature below Tcritical  
Temperature protection  
.
.
Note:  
Please note that the internal temperature sensor can only protect external components which have  
sufficient thermal coupling to XDPL8221. The external temperature sensor can be used to protect the  
temperature of external components (e.g. transformer, power MOSFETs or linear regulators).  
3.3.6.2  
VCC Undervoltage Lockout  
A Undervoltage Lockout (UVLO) is implemented in hardware. It ensures defined enabling and disabling of the  
IC operation depending on the supply voltage VVCC at the VCC pin in accordance with defined thresholds.  
The UVLO contains a hysteresis with the voltage thresholds VVCCon for enabling the controller and VUVoff for  
disabling the controller. Once the mains input voltage is applied, current flows through an external resistor into  
the HV pin via the integrated depletion cell and diode to the VCC pin. The controller is enabled once VVCC  
Data Sheet  
33  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
exceeds the threshold VVCCon and enters normal operation if no fault condition is detected. In this phase, VVCC  
will drop until either external supply or the self-supply via the auxiliary winding takes over the supply at the VCC  
pin.  
Note:  
The self-supply via the auxiliary winding must be in place before VVCC falls below the VUVoff threshold.  
Otherwise, the system will perform a fast restart.  
Note:  
It is possible to supply VCC externally from an auxiliary power supply. In this case, the VCC also needs  
initially to ramp to VVCCon to enable the IC.  
3.3.6.3  
VCC Overvoltage Protection  
Overvoltage protection ensures that the voltage at the VCC pin is not exceeded.  
The VCC voltage is compared to a configurable overvoltage protection threshold VVCC,OV. If the threshold is  
exceeded for longer than the blanking time tblank,VCC, the protection will be triggered.  
Note:  
The reaction to this protection is fixed to stop mode to ensure a discharge of VCC.  
3.3.6.4  
VCC Undervoltage Protection  
The VCC voltage is compared to a configurable undervoltage protection threshold VVCC,UV. If the threshold is  
exceeded for longer than the blanking time tblank,VCC, the protection will be triggered.  
3.3.6.5  
Other General Controller Protections  
XDPL8221 includes several protections to ensure the integrity and correct flow of the firmware.  
A hardware watchdog checks correct execution of firmware. A protection is triggered in the event that the  
firmware does not service the watchdog within a defined period.  
A hardware Random Access Memory (RAM) parity check triggers a protection if a bit in the memory changes  
unintentionally.  
A hardware clock check watchdog checks that no clock oscillator is failing.  
A firmware Cyclic Redundancy Check (CRC) at each startup verifies the integrity of firmware code and its  
parameters.  
A firmware task execution watchdog triggers a protection if the firmware tasks are not executed as  
expected.  
3.3.7  
Protection Reactions  
The reaction to each protection can be separately selected. Available reactions may include auto restart, fast  
auto restart, latch or stop mode.  
Figure 30 depicts the timing of an auto-restart reaction:  
1.  
If a protection threshold is exceeded for longer than the related blanking time tblank, the protection is  
triggered.  
2.  
3.  
4.  
Within a maximum t1 = 4 * 40 µs, the gate driver of the power stage related to the protection is disabled.  
Within a maximum t2 = 4 * 40 µs, the gate drivers of other stages are disabled.  
The reaction depends on the configuration of the protection:  
In case of latch mode, the application will enter latch mode at this time. No further steps are done,  
the reaction ends here.  
In case of stop mode, the application will stop and enter UART parametrization mode which allows  
to read out the error code. No further steps are done, the reaction ends here.  
In case of a (fast) auto-restart reaction, the controller will enter a power saving mode for the auto-  
restart time tAR or tAR,fast respectively.  
Data Sheet  
34  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
5.  
The auto restart may include a new VCC charging cycle. The time t3 typically depends on the input  
voltage.  
6.  
7.  
The first power stage will enable its gate driver according to its startup sequence (soꢀ start) again.  
The second power stage will enable its gate driver according to its startup sequence (soꢀ start) again. The  
startup of a subsequent power stage may be delayed by a time t4 depending on any startup condition for  
the subsequent stage.  
Threshold is exceeded  
Protection is triggered  
Related gate driver is disabled  
Other gate drivers are disabled  
Startup, charging of VCC  
Restart of the first stage  
Restart of the second stage  
Value  
Threshold  
Other gate driver  
Related gate driver  
Time  
tblank t1 t2  
tAR  
t3  
t4  
Figure 30  
Protection Reaction for auto-restart  
For some failures the system may eventually not be able to recover. These failures include:  
PFC OVP2  
PFC OCP2  
Bus voltage plausibility check  
Flyback CSFB short to GND  
Flyback OCP2  
Flyback oscillation period too long  
Flyback CCM protection  
Flyback output overcurrent protection  
RAM parity  
Watchdog  
Clock check protection  
VCC out-of-range protection  
Task Execution protection  
For these cases, the controller features a limitation of auto-restarts. The controller will only restart a limited  
number of times NAR,max. Aꢀerward, the controller will latch. The counter for the limited number of restarts is  
reset whenever a restart due to a protection without limitation occurs.  
Data Sheet  
35  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Functional Description  
3.3.7.1  
Auto restart  
When auto restart mode is activated, XDPL8221 stops switching at the GD pins. Aꢀer a configurable auto restart  
time tAR, XDPL8221 initiates a new startup including recharging of VCC and a soꢀ start.  
During the time in which the gate is not switching, the internal HV startup cell is automatically enabled and  
disabled to keep the VCC voltage between the VUVLO and VOVLO thresholds for the supply of XDPL8221. Due to the  
recharging of VCC for a restart, the time between stopping and starting gate driver pulses is longer than tAR  
.
3.3.7.2  
Fast Auto Restart  
When fast auto restart mode is activated, XDPL8221 stops switching at the GD pins. Aꢀer a configurable fast auto  
restart time tAR,fast, XDPL8221 initiates a new startup including recharging of VCC and a soꢀ start.  
During the time in which the gate is not switching, the internal HV startup cell is automatically enabled and  
disabled to keep the VCC voltage between the VUVLO and VOVLO thresholds for the supply of XDPL8221. Due to the  
recharging of VCC for a restart, the time between stopping and starting gate driver pulses is longer than tAR,fast  
.
3.3.7.3  
Latch Mode  
When latch mode is activated, XDPL8221 stops switching at the GD pins. The device stays in this state until input  
voltage is completely removed and the VCC voltage drops below the VUVLO threshold. Only then can XDPL8221  
be restarted by applying input voltage.  
To maintain this state, the internal HV startup cell is automatically enabled and disabled to keep the VCC  
voltage between the VUVLO and VOVLO thresholds for the supply of XDPL8221. The current consumption is  
reduced to a minimum.  
3.3.7.4  
Stop Mode  
When stop mode is activated, XDPL8221 stops switching at the GD pins. XDPL8221 enters UART communication  
mode to allow debugging of the system state.  
Note:  
The VCC for XDPL8221 needs to be supplied by an external source. Without an external supply, VCC will  
drain to VUVLO and XDPL8221 performs a restart.  
Data Sheet  
36  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Electrical Characteristics and Parameters  
4
Electrical Characteristics and Parameters  
All signals are measured with respect to the ground pin, GND. The voltage levels are valid provided other ratings  
are not violated.  
4.1  
Package Characteristics  
Table 7  
Package Characteristics  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
min  
max  
Thermal resistance for PG-  
DSO-16  
RthJA  
119  
K/W  
4.2  
Absolute Maximum Ratings  
Attention: Stresses above the values listed below may cause permanent damage to the device. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
Maximum ratings are absolute ratings; exceeding only one of these values may cause  
irreversible damage to the integrated circuit. These values are not tested during production test.  
Table 8  
Absolute Maximum Ratings  
Symbol Limit Values  
Parameter  
Unit Remarks  
min  
max  
Voltage externally supplied VVCCEXT  
to pin VCC  
–0.5  
26  
V
voltage that can be applied  
to pin VCC by an external  
voltage source  
Voltage at pin GDx  
VGDx  
TJ  
–0.5  
–40  
VVCC + 0.3  
125  
V
if gate driver is not  
configured for digital I/O  
Junction temperature  
°C  
max. operating frequency  
66 MHz fMCLK  
Storage temperature  
Soldering temperature  
Latch-up capability  
TS  
–55  
150  
260  
150  
°C  
TSOLD  
ILU  
°C  
Wave Soldering 5)  
6) Pin voltages acc. to abs.  
max. ratings  
mA  
7)  
8)  
ESD capability HBM  
ESD capability CDM  
Input Voltage Limit  
VHBM  
VCDM  
VIN  
2000  
500  
3.6  
V
V
V
–0.5  
Voltage externally supplied  
to pins GPIO, MFIO, CS, ZCD,  
GPIO, VS, GDx (if GDx is  
configured as digital I/O). (If  
not stated different)  
5
According to JESD22-A111 Rev A.  
6
7
8
Latch-up capability according to JEDEC JESD78D, TA= 85°C.  
ESD-HBM according to ANSI/ESDA/JEDEC JS-001-2012.  
ESD-CDM according to JESD22-C101F.  
Data Sheet  
37  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Electrical Characteristics and Parameters  
Table 8  
Absolute Maximum Ratings (continued)  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
min  
max  
Maximum permanent  
negative clamping current  
for ZCD and CS  
–ICLN_DC  
2.5  
mA  
mA  
RMS  
Maximum transient negative –ICLN_TR  
clamping current for ZCD  
and CS  
10  
pulse < 500ns  
Maximum negative transient –VIN_ZCD  
input voltage for ZCD  
1.5  
3.0  
2.5  
V
pulse < 500ns  
pulse < 500ns  
RMS  
Maximum negative transient –VIN_CS  
input voltage for CS  
V
Maximum permanent  
positive clamping current for  
CS  
ICLP_DC  
mA  
Maximum transient positive ICLP_TR  
clamping current for CS  
10  
mA  
mA  
µA  
pulse < 500ns  
Maximum current into pin  
VIN  
IAC  
10  
for charging operation  
Maximum sum of input  
clamping high currents for  
digital input stages of device  
ICLH_sum  
300  
limits for each individual  
digital input stage have to  
be respected  
Voltage at HV pin  
VHV  
-0.5  
600  
V
4.3  
Operating Conditions  
The recommended operating conditions are shown for which the DC Electrical Characteristics are valid.  
Table 9  
Operating Range  
Symbol  
Parameter  
Limit Values  
min  
Unit Remarks  
max  
125  
Junction Temperature  
Lower VCC limit  
TJ  
–40  
°C  
V
max. 66 MHz fMCLK  
VVCC  
VUVOFF  
device is held in reset when  
VVCC < VUVOFF  
Voltage externally supplied VVCCEXT  
to VCC pin  
24  
V
V
maximum voltage that can  
be applied to pin VCC by an  
external voltage source  
Gate driver pin voltage  
VGD  
–0.5  
VVCC + 0.3  
4.4  
DC Electrical Characteristics  
The electrical characteristics provide the spread of values applicable within the specified supply voltage and  
junction temperature range, TJ from -40 °C to +125 °C.  
Devices are tested in production at TA = 25 °C. Values have been verified either with simulation models or by  
device characterization up to 125 °C.  
Data Sheet  
38  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Electrical Characteristics and Parameters  
Typical values represent the median values related to TA = 25 °C. All voltages refer to GND, and the assumed  
supply voltage is VVCC = 18 V if not otherwise specified.  
Note:  
Not all values given in the tables are tested during production testing. Values not tested are explicitly  
marked.  
Attention: The Vcc pin voltage must be higher than 3.4V before the voltage of any other pins (except GND  
and HV pins) exceeds 1.2V.  
Table 10  
Power Supply Characteristics  
Parameter  
Symbol  
Min.  
Values  
Typ.  
Unit Note or Test Condition  
Max.  
VCC_ON threshold  
VVCCon  
VSELF  
V
Self-powered startup  
(default)  
VCC_ON_SELF threshold VSELF  
19  
20.5  
22  
V
dVVCC/dt = 0.2 V/ms  
VCC_ON_SELF delay  
tSELF  
2.1  
µs  
Reaction time of VVCC  
monitor  
VCC_UVOFF current  
IVCCUVOFF  
5
20  
40  
µA  
VVCC < VSELF(min) - 0.3 V  
or VVCC < VEXT(min) -  
0.3 V9)  
UVOFF threshold  
VUVOFF  
ΔUVOFF  
6.0  
V
SYS_CFG0.SELUVTHR = 0  
0B  
UVOFF threshold  
tolerance  
±5  
%
This value defines the  
tolerance of VUVOFF  
UVOFF filter constant  
tUVOFF  
VUVLO  
600  
ns  
V
1V overdrive  
UVLO (UVWAKE)  
threshold  
VUVOFF  
1.25  
·
UVWAKE threshold  
tolerance  
ΔUVLO  
tUVLO  
VOVLO  
tOVLO  
VADCVCC  
RADCVCC  
0.6  
0.6  
0
±5  
2.2  
%
µs  
V
This value defines the  
tolerance of VUVLO  
UVLO (UVWAKE) filter  
constant  
1 V overdrive  
OVLO (OVWAKE)  
threshold  
VSELF  
OVLO (OVWAKE) filter  
constant  
2.4  
µs  
V
1 V overdrive  
10)  
Nominal range 0% to  
100%  
VREF  
92  
VADCVCC = 0.09 · VVCC  
11)12)  
Reduced VCC range for  
ADC measurement  
8
%
9
Tested at VVCC = 5.5 V  
Theoretical minimum value, real minimum value is related to VUVOFF threshold.  
Operational values.  
10  
11  
12  
Note that the system is turned off if VVCC < VUFOFF  
.
Data Sheet  
39  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Electrical Characteristics and Parameters  
Table 10  
Power Supply Characteristics (continued)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
Maximum error for ADC  
measurement (8-bit  
result)  
TET0VCC  
3.8  
5.2  
LSB8  
Maximum error for ADC  
measurement (8-bit  
result)  
TET256VCC  
LSB8  
Gate driver current  
consumption excl. gate  
charge current  
IVCCGD  
0.26  
11  
0.35  
13  
mA Tj ≤ 125°C  
VCC quiescent current in IVCCPMD0  
PMD0  
mA All registers have reset  
values, clock is active at  
66 MHz, CPU is stopped,  
Tj ≤ 85 °C  
VCC quiescent current in IVCCPMD0  
PMD0  
14.5  
0.45  
0.23  
mA All registers have reset  
values, clock is active at  
66 MHz, CPU is stopped,  
Tj ≤ 125 °C  
VCC quiescent current in IVCCPSMD3  
power saving mode  
PSDM3 with standby  
logic active  
0.25  
0.14  
mA Tj ≤ 125 °C  
WU_PWD_CFG = 28H  
VCC quiescent current in IVCCPSMD4  
power saving mode  
mA Tj ≤ 125 °C  
WU_PWD_CFG = 00H  
PSDM4 with standby  
logic active  
Table 11  
Electrical Characteristics of the GDFB Pin  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
APD low voltage (active  
pull-down while device is  
not powered or gate  
VAPD  
1.6  
V
IGD = 5 mA  
driver is not enabled)  
RPPD value  
RPPD  
ΔPPD  
RGDL  
600  
kΩ  
%
Ω
Permanent pull-down  
resistor inside gate  
driver  
RPPD tolerance  
±25  
4.4  
Permanent pull-down  
resistor inside gate  
driver  
Driver output low  
impedance for GD0  
TJ ≤ 125 °C, IGD = 0.1 A  
Data Sheet  
40  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Electrical Characteristics and Parameters  
Table 11  
Electrical Characteristics of the GDFB Pin (continued)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
Nominal output high  
voltage in PWM mode  
VGDH  
10.5  
V
GDx_CFG.VOL = 3,  
IGDH = –1 mA  
Output voltage tolerance ΔVGDH  
±5  
%
Tolerance of  
programming options if  
VGDH > 10 V, IGDH = –1 mA  
Rail-to-rail output high  
voltage  
VGDHRR  
VVCC– 0.5  
VVCC  
V
If VVCC < programmed  
VGDH and output at high  
state  
Output high current in  
PWM mode for GD0  
–IGDH  
100  
mA GDx_CFG.CUR = 8  
Output high current  
tolerance in PWM mode  
ΔIGDH  
±15  
%
Calibrated 13)  
Discharge current for  
GD0  
IGDDIS  
800  
mA VGD = 4 V and driver at  
low state  
Output low reverse  
current  
–IGDREVL  
IGDREVH  
100  
mA Applies if VGD < 0 V and  
driver at low state  
Output high reverse  
current in PWM mode  
1/6 of IGDH  
Applies if  
VGD > VGDH + 0.5 V (typ)  
and driver at high state  
Table 12  
Electrical Characteristics of the CSFB Pin  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
–0.5  
Max.  
Input voltage operating VINP  
range  
3.0  
V
OCP2 comparator  
reference voltage,  
derived from VVDDA, given  
values assuming  
VOCP2  
1.6  
V
SYS_CFG0.OCP2 = 00B  
VVDDA = VVDDA,typ  
Threshold voltage  
tolerance  
ΔVOCP2  
±5  
%
Voltage divider tolerance  
Comparator propagation tOCP2PD  
delay  
15  
35  
ns  
ns  
ns  
Minimum comparator  
input pulse width  
tOCP2PW  
30  
OCP2F comparator  
propagation delay  
tOCP2FPD  
70  
170  
dVCS/dt = 100 V/µs  
13  
referred to GDx_CFG.CUR = 16  
Data Sheet  
41  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Electrical Characteristics and Parameters  
Table 12  
Electrical Characteristics of the CSFB Pin (continued)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
190  
Delay from VCS crossing tCSGDxOCP2 125  
VCSOCP2 to begin of GDx  
turn-off (IGD0 > 2mA)  
135  
ns  
dVCS/dt = 100 V/µs;  
fMCLK = 66 MHz. GDx  
driven by QR_GATE  
FIL_OCP2.STABLE = 3  
OCP1 operating range  
VOCP1  
0
VREF/2  
1266  
V
RANGE =00B  
OCP1 threshold at full  
scale setting  
VOCP1FS  
1192  
1229  
mV RANGE =00B  
(CS_OCP1LVL=FFH) for  
CS0  
Delay from VCS crossing tCSOCP1  
VCSOCP1 to CS_OCP1  
rising edge, 1.2 V range  
90  
170  
250  
ns  
Input signal slope dVCS/  
dt = 150 mV/µs. This  
slope represents a use  
case of a switch-mode  
power supply with  
minimum input voltage.  
Delay from CS_OCP1  
rising edge to QR_GATE  
falling edge  
tOCP1GATE  
1
3
12  
5
ns  
ns  
ns  
STB_RET31.  
OCP_ASM_SEL=0  
Delay from QR_GATE  
falling edge to start of  
GDx turn-off  
tGATEGDx  
GDx driven by QR_GATE.  
Measured up to  
IGDx > 2 mA  
OCP1 comparator input tOCP1PW  
single pulse width filter  
60  
95  
Shorter pulses than min.  
are suppressed, longer  
pulses than max. are  
passed  
Nominal S&H operating VCSH  
range 0% to 100%  
0
VREF/2  
92  
V
CS_ICR.RANGE =00B  
Reduced S&H operating RRCVSH  
range  
8
%
CS_ICR.RANGE =00B  
Operational values  
Maximum error of CS0  
S&H for corrected  
measurement (8-bit  
result)  
TET0CS0S  
4.7  
LSB CS_ICR.RANGE =00B  
Maximum error of CS0  
S&H for corrected  
measurement (8-bit  
result)  
TET256CS0S  
6.0  
LSB CS_ICR.RANGE =00B  
Nominal S&H operating VCSH  
range 0% to 100%  
0
VREF/6  
80  
V
CS_ICR.RANGE =11B  
Reduced S&H operating RRCVSH  
range  
20  
%
CS_ICR.RANGE =11B  
Operational values  
Data Sheet  
42  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Electrical Characteristics and Parameters  
Table 12  
Electrical Characteristics of the CSFB Pin (continued)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
Maximum error of CS0  
S&H for corrected  
measurement (8-bit  
result)  
TET0CS0S  
8.0  
8.7  
LSB CS_ICR.RANGE =11B  
Maximum error of CS0  
S&H for corrected  
measurement (8-bit  
result)  
TET256CS0S  
LSB CS_ICR.RANGE =11B  
S&H delay of input buffer tCSHST  
510  
ns  
Referring to jump in  
input voltage. Limits the  
minimum gate driver Ton  
time.  
Table 13  
Electrical Characteristics of the ZCD Pin  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
–0.5  
Max.  
Input voltage operating VINP  
range  
3.3  
V
Input clamping current, ICLH  
high  
100  
µA  
Zero-crossing threshold VZCTHR  
15  
30  
40  
50  
70  
70  
mV  
Comparator propagation tZCPD  
delay  
ns  
dVZCD/dt = 4 V/µs  
Input voltage negative  
clamping level  
–VINPCLN  
140  
0
180  
220  
4
mV Analog clamp activated  
Nominal I/V-conversion –IIV  
operating range 0% to  
100%  
mA CRNG =00B Gain = 600  
mV/mA  
Reduced I/V-conversion RRIV  
operating range  
5
80  
%
Maximum error for  
corrected ADC  
measurement (8-bit  
result)  
TET0IV  
4.1  
LSB8 CRNG =00B  
Maximum error for  
corrected ADC  
measurement (8-bit  
result)  
TET256IV  
9.7  
LSB8 CRNG =00B  
Data Sheet  
43  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Electrical Characteristics and Parameters  
Table 13  
Electrical Characteristics of the ZCD Pin (continued)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
Maximum deviation  
between ZCD clamp  
voltage and trim result  
stored in OTP  
EZCDClp  
±5  
%
–IIV > 0.25 mA  
IV-conversion delay of  
input buffer  
tIVST  
VZSH  
0
900  
ns  
V
Refers to jump in input  
current14)  
Nominal S&H input  
voltage range 0% to  
100%  
2/3 · VREF  
SHRNG =0B  
Nominal S&H input  
voltage range 0% to  
100%  
VZSH  
VREF /2  
7/6 · VREF  
V
SHRNG =1B  
Reduced S&H input  
voltage range  
RRZVSH  
4
95  
%
Maximum error for  
corrected ADC  
measurement (8-bit  
result)  
TET0ZVS0  
3.7  
LSB8 SHRNG =0B  
LSB8 SHRNG =0B  
LSB8 SHRNG =1B  
LSB8 SHRNG =1B  
Maximum error for  
corrected ADC  
measurement (8-bit  
result)  
TET256ZVS0  
TET0ZVS1  
4.9  
4.2  
5.8  
Maximum error for  
corrected ADC  
measurement (8-bit  
result)  
Maximum error for  
corrected ADC  
measurement (8-bit  
result)  
TET256ZVS1  
S&H delay of input buffer tZSHST  
referring to jump of input  
voltage  
1.0  
1.6  
µs  
µs  
SHRNG =0BTj ≤ 125 °C  
S&H delay of input buffer tZSHST  
referring to jump of input  
voltage  
SHRNG =1BTj ≤ 125 °C  
14  
Limits the minimum gate driver Ton time.  
Data Sheet  
44  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Electrical Characteristics and Parameters  
Table 14  
Electrical Characteristics of the VS Pin  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
VREF  
Nominal measurement  
range 0% to 100%  
VVS  
VVS  
0
V
V
Gain 1, no offset  
Nominal measurement  
range 0% to 100%  
5/6·VREF  
7/6·VREF  
Gain 3, with offset  
Reduced operating range RRVVS  
Reduced operating range RRVVS  
5
95  
90  
4.1  
%
%
Gain 1, no offset  
10  
Gain 3, with offset  
Maximum error for  
corrected measurement  
(8-bit result)  
TET0VS  
LSB8 Range 1, no offset  
LSB8 Range 1, no offset  
LSB8 Range 2, with offset  
LSB8 Range 2, with offset  
V
Maximum error for  
corrected measurement  
(8-bit result)  
TET256VS  
TET0VS  
5.6  
Maximum error for  
corrected measurement  
(8-bit result)  
12.0  
12.9  
Maximum error for  
corrected measurement  
(8-bit result)  
TET256VS  
Overvoltage comparator THROV  
threshold  
2.70  
2.8  
2.90  
300  
Overvoltage comparator tPDOV  
propagation delay  
µs  
Step at input  
Table 15  
Electrical Characteristics of the HV Pin  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
Leakage current at HV  
pin  
IHVleak  
IMEAS  
0
10  
µA  
VHV = 600 V HV startup  
cell disabled  
Nominal current for  
measurement path 0% to  
100%  
9.6  
mA CURRNG = 11B  
Reduced measurement  
range for current path  
RRIMEAS  
TET0DP  
5
78  
%
CURRNG = 11B.  
Operational values.  
Maximum error for  
corrected ADC  
5.7  
LSB8 CURRNG = 11B  
measurement (8-bit  
result, temperature gain  
correction applied)  
Data Sheet  
45  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Electrical Characteristics and Parameters  
Table 15  
Electrical Characteristics of the HV Pin (continued)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
Maximum error for  
corrected ADC  
TET256DP  
6.3  
LSB8 CURRNG = 11B  
measurement (8-bit  
result, temperature gain  
correction applied)  
Table 16  
Electrical Characteristics of the PWM Pin  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
Input capacitance  
Input low voltage  
Input high voltage  
CINPUT  
VIL  
10  
1.0  
pF  
V
VIH  
2.0  
–5  
V
Input leakage current, no ILK  
pull device  
+1  
µA  
µA  
µA  
VMFIO = 0 V / 3 V  
Input low current with  
active weak pull-up WPU  
–ILPU  
30  
90  
90  
Measured at max. VIL  
Measured at min. VIH  
Input high current with  
active weak pull-down  
WPD  
IHPD  
300  
Pull-up resistor value  
RPU  
2.25  
kΩ  
%
RPU=1111B  
Pull-up resistor tolerance ΔRPU  
±20  
2000  
95  
Overall tolerance  
PWM input frequency  
PWM duty cycle  
fPWM  
500  
5
Hz  
%
DPWM  
Table 17  
Electrical Characteristics of the TEMP Pin  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
MFIO reference voltage  
VMFIOREF  
VMFIO  
0
VREF  
V
V
Selection = VREF  
Gain = 1  
Nominal range 0% to  
100%  
VREF  
Reduced operating range RRVMFIO  
4
96  
%
Gain = 1. Operational  
values.  
Maximum error for  
corrected measurement  
(8-bit result)  
TET0MFI0  
4.0  
LSB8 Gain = 1  
Maximum error for  
corrected measurement  
(8-bit result)  
TET256MFI0  
4.8  
LSB8 Gain = 1  
Data Sheet  
46  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Electrical Characteristics and Parameters  
Table 17  
Electrical Characteristics of the TEMP Pin (continued)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
Offset calibration voltage VCAL  
VMFIOREF/8  
V
Offset calibration voltage ΔVCAL  
±3  
LSB Ref. to VMFIOREF =VREF  
Gain = 1  
,
,
absolute tolerance  
Offset calibration voltage ΔVCAL_TMP  
variation over  
±1  
LSB Ref. to VMFIOREF =VREF  
Gain = 1  
temperature  
Pull-up resistor value  
RPU  
11  
kΩ  
%
RPU=0110B  
Pull-up resistor tolerance ΔRPU  
±20  
Overall tolerance  
Table 18  
Electrical Characteristics of the CSPFC Pin  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
–0.5  
Max.  
Input voltage operating VINP  
range  
3.0  
V
OCP1 operating range  
VOCP1  
0
VREF/2  
V
V
RANGE =00B  
OCP2 comparator  
reference voltage,  
derived from VVDDA, given  
values assuming  
VOCP2  
1.6  
SYS_CFG0.OCP2 = 00B  
VVDDA = VVDDA,typ  
Threshold voltage  
tolerance  
ΔVOCP2  
±5  
%
Voltage divider tolerance  
Comparator propagation tOCP2PD  
delay  
15  
35  
ns  
ns  
ns  
ns  
Minimum comparator  
input pulse width  
tOCP2PW  
30  
OCP2F comparator  
propagation delay  
tOCP2FPD  
70  
170  
190  
dVCS/dt = 100 V/µs  
Delay from VCS crossing tCSGDxOCP2 125  
VCSOCP2 to begin of GDx  
135  
dVCS/dt = 100 V/µs;  
fMCLK = 66 MHz. GDx  
driven by QR_GATE  
FIL_OCP2.STABLE = 3  
turn-off (IGD0 > 2mA)  
Nominal S&H operating VCSH  
range 0% to 100%  
0
VREF/2  
90  
V
CS_ICR.RANGE =00B  
Operational values  
1 → 0 transition  
Reduced S&H operating RRCVSH  
range  
4
%
V
Hysteretic comparator  
threshold  
THRHYS  
0.54  
Data Sheet  
47  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Electrical Characteristics and Parameters  
Table 18  
Electrical Characteristics of the CSPFC Pin (continued)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
Hysteretic comparator  
threshold  
THRHYS  
ΔTHRHYS  
tPDHYS  
1.53  
V
0 → 1 transition  
Hysteretic comparator  
threshold tolerance  
±120  
mV  
ns  
ns  
ns  
Hysteretic comparator  
propagation delay  
90  
40  
Rising edge  
Falling edge  
Hysteretic comparator  
propagation delay  
tPDHYS  
Hysteretic comparator  
minimum input pulse  
width  
tPWHYS  
300  
Table 19  
Electrical Characteristics of the UART Pin  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
Input clamping current, –ICLL  
low  
100  
100  
1.6  
µA  
µA  
V
only digital input  
only digital input  
IGD = 5 mA  
Input clamping current, ICLH  
high  
APD low voltage (active  
pull-down while device is  
not powered or gate  
VAPD  
driver is not enabled)  
Input capacitance  
Input low voltage  
Input high voltage  
CINPUT  
VIL  
25  
1.0  
pF  
V
VIH  
2.1  
30  
V
Input low current with  
–ILPU  
90  
µA  
Measured at max. VIL  
active weak pull-up WPU  
UART baudrate  
fUART  
-5%  
57600  
+5%  
500  
baud  
µs  
Time between bytes  
within a UART frame  
tUART,intra-  
byte  
Waiting time aꢀer a  
tUART,error  
15  
ms  
missing response  
Data Sheet  
48  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Electrical Characteristics and Parameters  
Table 20  
Electrical Characteristics of the GDPFC Pin  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
APD low voltage (active  
pull-down while device is  
not powered or gate  
VAPD  
1.6  
V
IGD = 5 mA  
driver is not enabled)  
RPPD value  
RPPD  
600  
kΩ  
%
Permanent pull-down  
resistor inside gate  
driver  
RPPD tolerance  
ΔPPD  
±25  
Permanent pull-down  
resistor inside gate  
driver  
Driver output low  
impedance for GD1/2  
RGDL  
VGDH  
7.0  
Ω
V
TJ ≤ 125 °C, IGD = 0.1 A  
Nominal output high  
voltage in PWM mode  
10.5  
GDx_CFG.VOL = 3,  
IGDH = –1 mA  
Output voltage tolerance ΔVGDH  
±5  
%
Tolerance of  
programming options if  
VGDH > 10 V, IGDH = –1 mA  
Rail-to-rail output high  
voltage  
VGDHRR  
VVCC– 0.5  
VVCC  
V
If VVCC < programmed  
VGDH and output at high  
state  
Output high current in  
PWM mode for GD1/2  
–IGDH  
104  
mA GDx_CFG.CUR = 24  
Output high current  
tolerance in PWM mode  
ΔIGDH  
±15  
%
Calibrated 15)  
Discharge current for  
GD1/2  
IGDDIS  
500  
mA VGD = 4 V and driver at  
low state  
Output low reverse  
current  
–IGDREVL  
IGDREVH  
100  
mA Applies if VGD < 0 V and  
driver at low state  
Output high reverse  
current in PWM mode  
1/6 of IGDH  
Applies if  
VGD > VGDH + 0.5 V (typ)  
and driver at high state  
15  
referred to GDx_CFG.CUR = 16  
Data Sheet  
49  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Electrical Characteristics and Parameters  
Table 21  
Electrical Characteristics of the A/D Converter  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
16)  
Integral non-linearity  
INL  
1
LSB8  
Table 22  
Electrical Characteristics of the Reference Voltage  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
Reference voltage  
VREF  
2.428  
V
VREF overall tolerance  
ΔVREF  
±1.5  
%
Trimmed, Tj ≤ 125 °C and  
aging  
Table 23  
Electrical Characteristics of the OTP Programming  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
7.35  
Max.  
7.65  
OTP programming  
voltage at the VCC pin for  
range C000H to CFFFH  
VPP  
7.5  
V
V
Operational values  
Operational values  
OTP programming  
voltage at the VCC pin for  
range D000H to DFFFH  
VPP  
9.0  
VVCC  
OTP programming  
current  
IPP  
1.6  
mA Programming of 4 bits in  
parallel  
Table 24  
Electrical Characteristics of the Clock Oscillators  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
19.2  
Max.  
21.1  
Master clock oscillation tMCLK  
period including all  
variations  
20.0  
ns  
%
In reference to 50 MHz  
fMCLK  
Main clock oscillator  
frequency variation of  
stored DPARAM  
ΔMCLK  
–3.2  
+2.0  
Temperature driꢀ and  
aging only, 50 MHz fMCLK  
frequency  
Standby clock oscillator fSTBCLK  
frequency  
96  
90  
100  
100  
104  
110  
kHz Trimming tolerance at  
TA = 25 °C  
Standby clock oscillator fSTBCLK  
frequency  
kHz Overall tolerance  
16  
ADC capability measured via channel MFIO without errors due to switching of neighbouring pins, e.g. gate  
drivers, measured with STC = 5. MFIO buffer non-linearity masked out by taking ADC output values ≥ 30  
only.  
Data Sheet  
50  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Electrical Characteristics and Parameters  
Table 25  
Electrical Characteristics of the Temperature Sensor  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
190  
Temperature sensor ADC ADCTEMP  
output operating range  
0
LSB ADCTEMP = 40 +  
temperature / °C)  
Temperature sensor  
tolerance  
ΔTEMP  
±6  
K
Incl. ADC conversion  
accuracy at 3 σ  
Data Sheet  
51  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Package Dimensions  
5
Package Dimensions  
The package dimensions of PG-DSO-16 are provided.  
Figure 31  
Package Dimensions for PG-DSO-16  
Dimensions in mm.  
Note:  
Note:  
You can find all of our packages, packing types and other package information on our Infineon  
Internet page “Products”: http://www.infineon.com/products.  
Data Sheet  
52  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
References  
6
References  
1.  
2.  
3.  
4.  
5.  
Infineon Technologies AG: XDPL8221 Design Guide  
Infineon Technologies AG: XDPL8221 Reference Board Test Report  
Infineon Technologies AG: CoolMOS P7 power MOSFETs, http://www.infineon.com/P7  
Infineon Technologies AG: .dp Vision User Manual  
Infineon Technologies AG: .dp Interface Gen2 which can be ordered at http://ehitex.com/programmer/  
486/.dp-interface-board-gen2  
6.  
7.  
Infineon Technologies AG: .dp Interface Gen2 User Manual  
Infineon Technologies AG: XDP Programming Manual  
Revision History  
Major changes since previous revision  
Revision History  
Revision  
Description  
1.1  
Indication of ambient temperature for IC is deleted.  
UART dimming changed from duty cycle to dimming level.  
Minor Change of wording  
1.0  
Minor change of wording  
Glossary  
ABM  
Active Burst Mode (ABM)  
Active Burst Mode is an operating mode of a switched-mode power supply for very light load conditions. The  
controller switches in bursts of pulses with a pause between bursts in which no switching is done.  
AC  
Alternating Current (AC)  
An Alternating Current is a form of power supply in which the flow of electric charge periodically reverses  
direction.  
ADC  
Analog-to-Digital Converter (ADC)  
An analog-to-digital converter is a device that converts a continuous physical quantity (usually voltage) to a  
digital number that represents the quantity's amplitude.  
BOM  
Bill of Materials (BOM)  
A bill of materials is a list of the raw materials, sub-assemblies, intermediate assemblies, sub-components,  
parts and the quantities of each needed to manufacture an end product.  
CC  
Constant Current (CC)  
Constant Current is a mode of a power supply in which the output current is kept constant regardless of the  
load.  
Data Sheet  
53  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Glossary  
CCM  
Continuous Conduction Mode (CCM)  
Continuous Conduction Mode is an operational mode of a switching power supply in which the current is  
continuously flowing and does not return to zero.  
CRC  
Cyclic Redundancy Check (CRC)  
A cyclic redundancy check is an error-detecting code commonly used to detect accidental changes to raw data.  
CV  
Constant Voltage (CV)  
Constant Voltage is a mode of a power supply in which the output voltage is kept constant regardless of the  
load.  
DAC  
Digital-to-Analog Converter (DAC)  
A digital-to-analog converter is a device that converts digital data into an analog signal (typically voltage).  
DC  
Direct Current (DC)  
A Direct Current is a form of power supply in which the flow of electric charge is only into one direction.  
DCM  
Discontinuous Conduction Mode (DCM)  
Discontinuous Conduction Mode is an operational mode of a switching power supply in which the current starts  
and returns to zero.  
ECG  
Electronic Control Gear (ECG)  
An electronic control gear is a power supply which provides one or more light module(s) with the appropriate  
voltage or current.  
EMI  
Electro-Magnetic Interference (EMI)  
Also called Radio Frequency Interference (RFI), this is a (usually undesirable) disturbance that affects an  
electrical circuit due to electromagnetic radiation emitted from an external source. The disturbance may  
interrupt, obstruct, or otherwise degrade or limit the effective performance of the circuit.  
FB  
Flyback (FB)  
A flyback converter is a power converter with the inductor split to form a transformer, so that the voltage ratios  
are multiplied with an additional advantage of galvanic isolation between the input and any outputs.  
FW  
Firmware (FW)  
A proprietary soꢀware exploiting a set of functions.  
GUI  
Graphic User Interface (GUI)  
A graphical user interface is a type of interface that allows users to interact with electronic devices through  
graphical icons and visual indicators.  
HW  
Hardware (HW)  
The collection of physical elements that comprise a computer system.  
Data Sheet  
54  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Glossary  
IC  
Integrated Circuit (IC)  
A miniaturized electronic circuit that has been manufactured in the surface of a thin substrate of semiconductor  
material. An IC may also be referred to as micro-circuit, microchip, silicon chip, or chip.  
IIR  
Infinite Impulse Response (IIR)  
Infinite impulse response is a property applying to many linear time-invariant systems. Common examples of  
linear time-invariant systems are most electronic and digital filters. Systems with this property have an impulse  
response which does not become exactly zero past a certain point, but continues indefinitely.  
LED  
Light Emitting Diode (LED)  
A light-emitting diode is a two-lead semiconductor light source which emits light when activated.  
LP  
Limited Power (LP)  
Limited Power is a mode of a power supply in which the output power is limited regardless of the load.  
NTC  
Negative Temperature Coefficient Thermistor (NTC)  
A negative temperature coefficient thermistor is a type of resistor whose resistance declines over temperature.  
OCP1  
Overcurrent Protection Level 1 (OCP1)  
The Overcurrent Protection Level 1 is limiting the current in a switched-mode power supply to limit the power  
delivered to the output of the power supply.  
OCP2  
Overcurrent Protection Level 2 (OCP2)  
The Overcurrent Protection Level 2 is protecting the current in a switched-mode power supply from exceeding a  
maximum threshold.  
OTP  
One Time Programmable Memory (OTP)  
A One-Time Programmable memory is a form of memory to which data can be written once. Aꢀer writing, the  
data is stored permanently and cannot be further changed.  
PF  
Power Factor (PF)  
Power factor is the ratio between the real power and the apparent power.  
PFC  
Power Factor Correction (PFC)  
Power factor correction increases the power factor of an AC power circuit closer to 1 which corresponds to  
minimizing the reactive power of the power circuit.  
PSR  
Primary Side Regulated (PSR)  
A Primary Side Regulated power supply controls its operation based on a property sensed on primary side of an  
isolated power supply.  
PWM  
Pulse Width Modulation (PWM)  
Pulse-width modulation is a technique to encode an analog value into the duty cycle of a pulsing signal with  
arbitrary amplitude.  
Data Sheet  
55  
Revision 1.1  
2018-10-31  
XDPL8221 Digital PFC+Flyback Controller IC  
XDP Digital Power  
Glossary  
QRM  
Quasi-Resonant Mode (QRM)  
Quasi-Resonant Mode is an operating mode of a switched-mode power supply which maximizes efficiency. This  
is achieved by only switching at preferred times when switching losses are low.  
QRM1  
Quasi-Resonant Mode, switching in first valley (QRM1)  
Quasi-Resonant Mode is an operating mode of a switched-mode power supply which maximizes efficiency. This  
is achieved by switching at the occurrence of the first valley of a signal which corresponds to a time when  
switching losses are low.  
QRMn  
Quasi-Resonant Mode, switching in valley n (QRMn)  
Quasi-Resonant Mode is an operating mode of a switched-mode power supply which maximizes efficiency. This  
is achieved by switching at the occurence of an nth valley of a signal which corresponds to a time when  
switching losses are low.  
RAM  
Random Access Memory (RAM)  
Random-access memory is a form of computer data storage which allows data items to be read and written  
regardless of the order in which data items are accessed.  
THD  
Total Harmonic Distortion (THD)  
The total harmonic distortion of a signal is a measurement of the harmonic distortion present and is defined as  
the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency.  
UART  
Universal Asynchronous Receiver Transmitter (UART)  
A universal asynchronous receiver transmitter is used for serial communications over a peripheral device serial  
port by translating data between parallel and serial forms.  
USB  
Universal Serial Bus (USB)  
Universal Serial Bus is an industry standard that defines cables, connectors and communications protocols  
used in a bus for connection, communication, and power supply between computers and electronic devices.  
UVLO  
Undervoltage Lockout (UVLO)  
The Undervoltage-Lockout is an electronic circuit used to turn off the power of an electronic device in the event  
of the voltage dropping below the operational value.  
Data Sheet  
56  
Revision 1.1  
2018-10-31  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
Edition 2018-10-31  
Published by  
IMPORTANT NOTICE  
WARNINGS  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”) .  
With respect to any examples, hints or any typical values  
stated herein and/or any information regarding the  
application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities of  
any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer’s compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer’s products and any use of the product of  
Infineon Technologies in customer’s applications.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or  
any consequences of the use thereof can reasonably  
be expected to result in personal injury  
Infineon Technologies AG  
81726 Munich, Germany  
©
2018 Infineon Technologies AG  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Document reference  
IFX-ddk1479303396071  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to such  
application.  

相关型号:

XDPP1100-Q024

英飞凌推出业界中尺寸最小的 24 引脚 VQFN 封装数字电源控制器。这款高度集成的可编程XDP™ 数字电源控制器 XDPP1100-Q024 可提供先进的电源控制解决方案。该产品面向广泛的直流-直流电源应用,并支持各种隔离和非隔离拓扑。
INFINEON

XDPP1100-Q040

XDPP1100-Q040 是一款高度集成的可编程 XDP™数字电源控制器。该器件为各种直流-直流电源应用提供高级电源控制解决方案,并支持各种隔离和非隔离拓扑。
INFINEON

XDPS21071

Switching Controller,
INFINEON

XDPS21081

英飞凌 XDPS21081 是一款反激式控制器IC,其初级侧引入 ZVS (零电压开关),通过简化电路和经济型开关来实现更高的工作效率。与传统的谷值开关方案相比,通过驱动外部低压开关产生负电流使主高压开关 MOSFET 放电,从而进一步降低开关损耗。 为了以同步整流实现更高效率,XDPS21081 多模式数字强制准谐振 (FQR) 反激控制器 IC 通过谷值检测来确保 DCM (非连续导通模式)工作模式,从而实现更安全可靠的运行。
INFINEON

XDPS2201

XDP™ 数字电源 XDPS2201是一种多模式、数字可配置的混合反激控制器,它结合了传统简化的反激拓扑结构和谐振变换器的性能。通过使用两个高压MOSFET,例如CoolMOSTM,混合反激XDPS2201控制器能够在不对称半桥反激拓扑中驱动高压侧和低压侧MOSFET。通过调节正负磁化电流的方法,可以在初级实现零电压开关和次级实现零电流开关,提高了效率。此外,变压器漏感能量被回收,更进一步提高效率。
INFINEON

XDR1

REIBAHLE HEXIBIT3 BIS 7MM
ETC

XDRA821UXXGALM

Dual Arm Cortex-A72, quad Cortex-R5F, 4-port Ethernet switch, and a PCIe controller | ALM | 433 | -40 to 125
TI

XDS510

Comprehensive DSP Tool Solutions
SPECTRUM

XDS510PP

Comprehensive DSP Tool Solutions
SPECTRUM

XDS560R

XDS560R USB JTAG Emulator with 14-pin JTAG Header
SPECTRUM

XDT3F112X

Power Transformer,
COOPER

XDT3F75X

Power Transformer,
COOPER