WLC1115-68LQXQ [INFINEON]

WLC1115发射端控制器IC集成了USB-PD芯片、Buck压降电路、感应器件、软件和Qi v1.3.2系统解决方案;
WLC1115-68LQXQ
型号: WLC1115-68LQXQ
厂家: Infineon    Infineon
描述:

WLC1115发射端控制器IC集成了USB-PD芯片、Buck压降电路、感应器件、软件和Qi v1.3.2系统解决方案

控制器 光电二极管
文件: 总40页 (文件大小:495K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
WLC1115  
Wireless charging IC (WLC) - Transmitter  
15W with integrated USB Type-C PD  
controller  
General description  
WLC1115 is a highly integrated, Qi compliant wireless power transmitter with integrated USB Type-C Power  
Delivery (PD). WLC1115 complies with the latest Qi specification for 15W applications. WLC1115 is also compliant  
with the latest USB Type-C and PD specifications and is ideal for up to 15W charging applications.  
WLC1115 has integrated gate drivers for the buck and inverter power supplies that are necessary for wireless  
transmitter applications. WLC1115 supports a wide input voltage range and offers many programmable features  
for creating distinct wireless transmitter solutions.  
WLC1115 is a highly programmable wireless power transmitter and integrated USB-PD sink solution with an  
on-chip 32-bit Arm® Cortex®-M0 processor, 128KB flash, 16KB RAM, and 32KB ROM that allows most flash  
available for user application use. It also includes various analog and digital peripherals such as ADC, PWMs, and  
timers. The inclusion of a fully programmable MCU with analog and digital peripherals enables scalable multi-coil  
wireless charging solutions for free positioning transmitter designs.  
Protection  
Potential applications  
- Overcurrent protection (OCP), overvoltage  
• Wireless charging pads for extended power profile  
protection (OVP)  
(EPP) (15W) and basic power profile (BPP) (5W)  
- Supports over-temperature protection through  
integrated ADC circuit and internal temperature  
sensor  
• Smart speakers  
• Portable accessories  
• Furniture and home goods  
• Docking stations  
Temperature range  
- -40°C to +105°C extended industrial temperature  
range  
Package  
• High speed charging support  
- 68 lead QFN 8.0 8.0 0.65mm LD68B 5.7 5.7mm  
EPAD  
Features  
VBUS  
• Qi v1.3.x compliant transmitter (MP-A11 coil)  
USB Type‐C  
Receptacle  
Q5  
Q6  
CVIN  
• Integrated USB-PD controller  
- Supports latest USB-PD 3.0 version  
- Programmable power supply (PPS) mode  
L1  
VBRG  
C1  
VBRG  
CSPO  
- Support for USB PD legacy charging protocols like  
QC 2.0/ 3.0 and AFC[1]  
VBB_1  
RSNS  
CSNO  
• Integrated buck converter controller for VBRIDGE  
(VBRG)  
CBRG  
Q1  
HG1_1  
SW1_1  
Q2  
CZVS1  
Tx Coil  
• Integrated gate drivers for buck converter and  
inverter  
LG1_1  
WLC1115-68LQXQ/T  
VDDD  
CVDDD  
VCCD  
Q3  
Cp  
HG2_1  
SW2_1  
• Integrated Q factor detection  
• Integrated FSK modulator  
Q4  
CZVS2  
LG2_1  
CVCCD  
GPIOs  
ASK_DEMOD  
ASK Demod  
filters  
LED(s)  
• Wide input voltage range: 4.5V-24V  
• Communication ports: I2C, UART  
DEMOD  
Note  
1. Customers must acquire the licensing for QC2.0/3.0 and AFC. For any other legacy charging protocol support, contact  
your local Infineon sales representative.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Logic block diagram  
Logic block diagram  
WLC1115: Wireless Transmitter Controller with Integrated PD  
MCU Subsystem  
Integrated Digital Blocks  
4 x TCPWM  
IO Subsystem  
CC  
®
arm  
SCB X 4  
(2 x I2C, SPI, UART)  
CORTEX-M0  
48 MHZ  
GPIOs  
Buck Controller  
PWM  
Flash  
(128 KB)  
2 X OVT  
High Side & Low  
Side Gate drivers  
SROM  
(32 KB)  
Current Sense  
Amplifier  
SRAM  
(16 KB)  
Wireless Controller with Integrated PD  
Baseband MAC &  
Qi v1.3.x Stack  
System  
Resource  
PHY  
PWM  
Hi-Voltage LDO  
High Side & Low  
Side Gate Drivers  
VBRG OVP, SCP  
Protection  
FOD  
Q Factor, Resonance  
Freq. & Power Loss  
ASK Demodulator  
Voltage & Current  
ASK Decoder  
1 x 8-bit SAR ADC  
NFET Gate Driver w/  
Slew Rate Control  
USB PD Legacy Charging  
Protocols - QC 2.0 / 3.0 & AFC  
Current Sense  
Amplifier  
PPDE/Samsung FC,  
Apple 7.5W  
Note  
2. Customers need to acquire their own licensing for Samsung FC.  
Datasheet  
2 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Table of contents  
Table of contents  
General description ...........................................................................................................................1  
Potential applications........................................................................................................................1  
Features ...........................................................................................................................................1  
Logic block diagram ..........................................................................................................................2  
Table of contents...............................................................................................................................3  
1 Application diagram for 15W transmitter solution with MP-A11 Tx coil ................................................5  
2 Pin information ..............................................................................................................................6  
3 Electrical specifications.................................................................................................................11  
3.1 Absolute maximum ratings ..................................................................................................................................11  
3.2 Device-level specifications ...................................................................................................................................14  
3.3 DC specifications...................................................................................................................................................14  
3.3.1 CPU .....................................................................................................................................................................14  
3.3.2 GPIO....................................................................................................................................................................15  
3.3.3 XRES and POR ....................................................................................................................................................17  
3.4 Digital peripherals.................................................................................................................................................18  
3.4.1 Inverter pulse-width modulation (PWM) for GPIO pins ...................................................................................18  
3.4.2 I2C, UART, SWD interface...................................................................................................................................18  
3.4.3 Memory...............................................................................................................................................................18  
3.5 System resources..................................................................................................................................................19  
3.5.1 Internal main oscillator clock............................................................................................................................19  
3.5.2 PD........................................................................................................................................................................19  
3.5.3 ADC .....................................................................................................................................................................20  
3.5.4 Current sense amplifier (CSA) / ASK amplifier (ASK_P and ASK_N) ................................................................20  
3.5.5 VIN UV/OV ...........................................................................................................................................................21  
3.5.6 Voltage regulation - VBRG .................................................................................................................................21  
3.5.7 NFET gate driver specifications.........................................................................................................................22  
3.5.8 Buck PWM controller .........................................................................................................................................22  
3.5.9 Thermal ..............................................................................................................................................................23  
4 Functional overview .....................................................................................................................24  
4.1 Wireless power transmitter ..................................................................................................................................24  
4.2 WPC system control.................................................................................................................................................................................. 24  
4.2.1 Selection phase..................................................................................................................................................25  
4.2.2 Digital ping phase ..............................................................................................................................................25  
4.2.3 Identification and configuration phase ............................................................................................................25  
4.2.4 Negotiation ........................................................................................................................................................25  
4.2.5 Calibration..........................................................................................................................................................25  
4.2.6 Authentication ...................................................................................................................................................25  
4.2.7 Renegotiation phase..........................................................................................................................................25  
4.2.8 Power transfer phase.........................................................................................................................................26  
4.2.9 Bidirectional in-band communication interface..............................................................................................26  
4.3 Communication from Tx to Rx - FSK ....................................................................................................................26  
4.4 Communication from Rx to Tx - ASK....................................................................................................................27  
4.5 Demodulation .......................................................................................................................................................27  
4.6 Inverter ..................................................................................................................................................................27  
4.7 Rx detection ..........................................................................................................................................................28  
4.7.1 Foreign object detection (FOD).........................................................................................................................29  
4.7.2 Q factor FOD and Resonance Frequency FOD ..................................................................................................29  
4.7.3 Power loss FOD ..................................................................................................................................................29  
4.7.4 Over temperature FOD ......................................................................................................................................29  
4.7.5 Buck regulator....................................................................................................................................................30  
4.8 Buck operating modes..........................................................................................................................................31  
Datasheet  
3 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Table of contents  
4.8.1 Pulse-width modulator (PWM) ..........................................................................................................................31  
4.8.2 Pulse skipping mode (PSM)...............................................................................................................................31  
4.8.3 Forced-continuous-conduction mode (FCCM).................................................................................................31  
4.8.4 Overvoltage protection (OVP) ...........................................................................................................................31  
4.8.5 Overcurrent protection (OCP) ...........................................................................................................................31  
4.8.6 USB-PD controller..............................................................................................................................................31  
4.8.7 MCU.....................................................................................................................................................................32  
4.8.8 ADC .....................................................................................................................................................................32  
4.8.9 Serial communications block (SCB)..................................................................................................................32  
4.8.10 I/O subsystem ..................................................................................................................................................32  
4.8.11 LDOs (VDDD and VCCD)....................................................................................................................................32  
5 Programming the WLC1115 device .................................................................................................33  
5.1 Programming the device Flash over SWD interface............................................................................................33  
6 Ordering information ....................................................................................................................34  
6.1 Ordering code definitions.....................................................................................................................................34  
7 Packaging ....................................................................................................................................35  
8 Package diagram ..........................................................................................................................36  
9 Acronyms.....................................................................................................................................37  
10 Document conventions................................................................................................................38  
10.1 Units of measure .................................................................................................................................................38  
Revision history ..............................................................................................................................39  
Datasheet  
4 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Application diagram for 15W transmitter solution with MP-A11 Tx coil  
1
Application diagram for 15W transmitter solution with MP-A11  
Tx coil  
Figure 1 illustrates a typical application of WLC1115 for 15W, Qi v1.3.x compliant transmitter for fixed frequency  
and voltage control based MP-A11 Qi transmitter coil. The input power to the system is through Type-C PD sink,  
powering the buck converter. The buck converter powers the full bridge inverter which in turn drives the  
transmitter coil. The WLC1115 controls the inverter bridge voltage (VBRG) using the buck converter to regulate  
the power flow to the transmitter coil powering the receiver. A dual Opamp is used for converting the amplitude  
shift key (ASK) modulated power signal into binary signal. WLC1115 uses a digital logic for decoding the binary  
signals. The OPTIGATrust Security IC is interfaced over I2C for authentication requirements per Qi v1.3.x.  
5 m  
VBUS_IN  
10 m  
BB_IN  
NFET_CTRL_1  
VDDD  
VDDD  
9
68  
67  
1
2
5
7
8
6
13  
11  
12 14  
1μF  
1μF  
4
3
PVDD_0  
PGND_0  
66  
CSNI_0  
CSPI_0  
VIN  
65  
61  
62  
48  
49  
PVDD_1  
PGND_1  
VCCD  
0.1μF  
1μF  
55  
54  
DNU2  
DNU1  
10  
COMP  
69  
64  
GND (EPAD)  
GND  
46  
44  
VBB_1  
HG2_1  
34  
GND  
GND  
VDDD  
DP  
Qi PTx Coil  
23  
24  
DP  
43  
45  
DM  
BST2_1  
SW2_1  
DM  
15  
16  
CC1  
CC2  
CC1  
CC2  
390pF  
390pF  
LG2_1 47  
VBB_1  
52  
HG1_1  
WLC1115-68LQXQ/T  
VDDD  
53  
51  
BST1_1  
SW1_1  
LG1_1  
63  
25  
28  
VDDD  
VDDD  
VDDD  
0.1μF  
10μF  
50  
VDDD  
41  
40  
VDDD  
0.1μF 1μF  
ASK_P  
ASK_N  
Config PC  
XRES  
18  
19  
36  
ASK_OUT  
SWD_DAT/HPI_SDA  
SWD_CLK/HPI_SCL  
56  
57  
SWD_DAT/GPIO9  
SWD_CLK/GPIO10  
USB-I2C*  
VDDD  
ASK_DEMOD  
ASK_SEL  
Dual Opamp  
VDDD  
I2C_SDA  
I2C_SCL  
29  
SDA_SEC  
Optiga Trust  
Charge  
30  
33  
31  
32  
37  
SCL_SEC  
QCOMP2  
QCOMP1  
OPTIGA RESET  
RES_SEC  
UART/GPIO7  
(
Qi v1.3.x EPP)  
USB-UART*  
59  
26  
27  
60  
58  
39  
Debug PC  
Oscillator  
(optional)  
NOTE:  
1/ Sink FET is Optional  
2/ Optiga Trust Charge is required for Qi v1.3.x EPP 15W only  
These are External Dongle Board not part of Solution HW  
*
Figure 1  
Application diagram for 15W transmitter solution with MP-A11 Tx coil  
Datasheet  
5 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Pin information  
2
Pin information  
Table 1  
WLC1115 pinouts  
Pin function for 15W  
Pin#  
Pin name  
MP-A11 application  
firmware  
Pin description  
Buck converter switching node (DC-DC bank 1) and input to zero  
current detector for low side gate driver. Connect this pin to  
switch node of buck with a short and wide trace.  
1
2
3
SW1_0  
Low side gate driver output for buck converter (DC-DC bank 1).  
Connect to the buck Low side FET gate. Use a wide trace to  
minimize inductance of this connection.  
LG1_0  
Ground for gate driver (DC-DC). Connect all grounds (GND) and  
PGND pins (PNGD_0 and PGND_1) together. Connect directly PCB  
ground plane and Exposed pad (E-PAD).  
PGND_0  
Connect to VDDD and to decoupling capacitors (1µF and 0.1µF),  
as close to the IC as possible.  
4
5
PVDD_0  
LG2_0  
Low side gate driver output for DC-DC bank 2.  
Float this pin for 15W MP-A11 application.  
Input rail of inverter bridge, connected to output of the buck  
converter. Connect this to the buck side terminal of current sense  
resistor for inverter bridge input current sensing. Use a dedicated  
(Kelvin) trace for this connection.  
6
VBB_0  
Switching node (DC-DC bank 2).  
7
8
SW2_0  
HG2_0  
BST2_0  
COMP  
Connect this pin directly to the E-PAD.  
High side gate driver output of DC-DC bank 2.  
Float this pin for 15W MP-A11 application.  
Bootstrap power supply for DC-DC bank 2.  
9
Connect this pin to VDDD via a Schottky diode.  
Error amplifier (EA) output for buck controller.  
Connect the RC compensation network to GND.  
10  
Positive input of current sensing amplifier of inverter bridge input  
current. Connect to positive terminal of the output current sense  
resistor (VBB_0).  
11  
CSPO  
Negative input of current sensing amplifier of inverter bridge  
input current. Connect to negative terminal of the current sense  
resistor.  
12  
13  
14  
CSNO  
VBRG  
Feedback pin for buck output voltage. Connect it to buck output  
before inverter bridge input current sense resistor.  
Inverter input power supply voltage. Connect to buck output  
before inverter bridge input current sense resistor. Used as weak  
discharge of VBRG.  
VBRG_DIS  
Type-C connector configuration channel 1. Connect directly to  
the CC1 pin on the port’s Type-C connector and to a capacitor  
(recommended value 390pF) to ground.  
15  
16  
CC1  
CC2  
Type-C connector configuration channel 2. Connect directly to  
the CC2 pin on the port’s Type-C connector and to a capacitor  
(recommended value 390pF) to ground.  
17  
18  
NFET_CTRL_0  
ASK_OUT  
NFET gate driver output. Float this pin if it is not used.  
ASK voltage/current sensing path.  
IC output for ASK signal processing.  
Input for ASK signal decoding. Connect external ASK comparator  
output to this pin. Short this pin to pin-36 (ASK_SEL).  
19  
20  
ASK_DEMOD  
Inverter gate driver input signal for inverter bank 1.  
Short this pin to pin-22. PWM_OUT.  
GD_OVR_HB_1  
PWM_IN1  
Datasheet  
6 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Pin information  
Table 1  
Pin#  
WLC1115 pinouts (continued)  
Pin function for 15W  
Pin name  
MP-A11 application  
firmware  
Pin description  
Inverter gate driver input signal for inverter bank 2.  
Short this pin to pin-22 PWM_OUT.  
21  
22  
GD_OVR_HB_2  
PWM_IN2  
Inverter PWM signal output used for the inverter gate drive  
inputs. Short this pin to pin 20 (PWM_IN1) and pin 21 (PWN_IN2).  
PWM_OUT  
Default USB D+ / configurable GPIO. For support of legacy  
charging AFC and QC. IC does not support USB data transmission  
on this pin.  
23  
24  
25  
63  
DP/GPIO1  
DM/GPIO2  
DP  
Default USB D- / configurable GPIO. For support of legacy  
charging AFC and QC. IC does not support USB data transmission  
on this pin.  
DM  
VDDD 5V LDO output from VIN. Connect a ceramic bypass  
capacitor (recommended value 1µF) from this pin to GND close  
to the IC. Connect all VDDD pins together.  
VDDD  
XRES  
VDDD 5V LDO output from VIN. Connect a ceramic bypass  
capacitor (recommended value 10µF) from this pin to GND close  
to the IC. Connect all VDDD pins together.  
Default LED1 for 15W MP-A11 application/configurable GPIO.  
Float this pin if it is not used.  
26  
27  
28  
GPIO3  
GPIO4  
LED1  
LED2  
Default LED2 for 15W MP-A11 application/configurable GPIO.  
Float this pin if it is not used.  
External reset – active low, internally pulled-up (~6k).  
Float this pin if it is not used.  
2
Used for interfacing as Master, with OPTIGA™ Trust I C SDA. The  
29  
GPIO5/SCB0  
SDA_SEC  
pin is configured for open drain connection, connect an external  
pull-up resistor. Float this pin if it is not used.  
2
Used for interfacing with OPTIGA™ Trust I C SCL. The pin is  
30  
31  
32  
33  
GPIO6/SCB0  
GPIO7/SCB1  
SCL_SEC  
configured for open drain connection, connect an external  
pull-up resistor. Float this pin if it is not used.  
Default UART Tx for debug/configurable GPIO.  
Float this pin if it is not used.  
UART/GPIO7  
Q-factor based foreign object detection (FOD) pre-charge  
measurement input for frequency counting. Short this pin to pin  
37 (QCOMP1).  
QCOMP2  
GND  
RESET for OPTIGA™ Trust IC. Configured for using OPTIGA™ Trust  
in low power mode. Float this pin if it is not used.  
GPIO8  
RES_SEC  
34, 64  
35  
Ground. Connect directly to the E-PAD and to ground plane.  
NFET gate driver output. Float this pin if it is not used.  
NFET_CTRL_1  
Input for ASK signal decoding. Short this pin to pin-19  
(ASK_DEMOD).  
36  
37  
ASK_SEL  
Q-factor based FOD pre-charge measurement input for peak  
voltage detect. Short this pin to pin 32 (QCOMP2).  
QCOMP1  
BB_IN  
Input voltage to BUCK (DC-DC) controller. Connect to USB Type-C  
connector's VBUS pin. If EMI filter/choke is used after Type-C  
connector then connect it to output of the EMI filter/choke.  
38  
39  
Input voltage feedback of buck (DC-DC). Connect to USB Type-C  
connector's VBUS pin. If EMI filter/choke is used after Type-C  
connector then connect it to output of the EMI filter/choke.  
VBUS_IN  
Negative input of ASK voltage sensing signal input to internal  
amplifier.  
40  
41  
ASK_N  
ASK_P  
Positive input of ASK voltage sensing signal input to internal  
amplifier.  
Datasheet  
7 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Pin information  
Table 1  
Pin#  
WLC1115 pinouts (continued)  
Pin function for 15W  
Pin name  
MP-A11 application  
firmware  
Pin description  
ASK voltage sensing comparator output. Float this pin if it is not  
used.  
42  
43  
ASK_TST  
Bootstrap power supply for (inverter bank 2) inverter high side  
gate driver. Connect a capacitor (recommended value 0.1µF)  
from this pin to SW2_1. Also, connect a Schottky diode from  
VDDD to BST2_1.  
BST2_1  
High side gate driver for inverter FET (inverter bank 2). Connect  
to the Inverter bank 2, high side FET gate. Use a wide trace to  
minimize inductance of this connection.  
44  
45  
46  
HG2_1  
SW2_1  
VBB_1  
Inverter switching node for inverter bank 2. Connect this pin to  
the inverter bank 2 switching node with a short and wide trace.  
Inverter input voltage sense. Connect to inverter input voltage,  
after the current sense resistor. Use a dedicated (Kelvin) trace for  
this connection.  
Low side gate driver for inverter FET (inverter bank 2). Connect to  
the inverter bank 2 low side FET gate.  
47  
48  
49  
50  
51  
52  
LG2_1  
PVDD_1  
PGND_1  
LG1_1  
Connect to VDDD pin. Connect bypass capacitors (recommended  
values 1µF and 0.1µF) as close to the IC as possible.  
Ground for inverter gate driver. Connect directly to PCB ground  
plane and E-PAD. Connect all GND and PGND pins together.  
Low side gate driver for inverter FET (inverter bank 1). Connect to  
the inverter bank 1 Low side FET gate.  
Inverter switching node for inverter bank 1. Connect this pin to  
the Inverter bank 1 switching node with a short and wide trace.  
SW1_1  
HG1_1  
High side gate driver for inverter FET (inverter bank 1). Connect  
to the inverter bank 1 high side FET gate.  
Bootstrap power supply for (inverter bank 1) inverter high side  
gate driver. Connect a capacitor (recommended values 0.1µF)  
from this pin to SW1_1. Also, connect a Schottky diode from  
VDDD to BST1_1.  
53  
BST1_1  
Negative input of input current sense amplifier for inverter.  
Float this pin if it is not used.  
54  
55  
56  
57  
CSNI_1  
CSPI_1  
DNU1  
DNU2  
Positive input of input current sense amplifier for inverter.  
Float this pin if it is not used.  
2
Used for I C/SWD register access or programming/configurable  
GPIO9/SCB3/SWD_DAT  
SWD_DAT/GPIO9  
GPIO.  
2
Used for I C/SCL register access or programming/configurable  
GPIO10/SCB3/SWD_CLK SWD_CLK/GPIO10  
GPIO.  
Tx coil temperature measurement via thermistor monitoring for  
15W MP-A11 application/configurable GPIO. Float this pin if it is  
not used.  
58  
GPIO11/SCB3  
TEMP_FB  
59  
60  
GPIO12/SCB3  
GPIO12  
Configurable GPIO. Float this pin if it is not used.  
Default used as input for external clock/configurable GPIO.  
Float this pin if it is not used.  
GPIO13/CLK_IN  
GPIO13/CLK_IN  
4.5V–24V input supply. Connect a decoupling capacitor  
61  
62  
VIN  
(recommended value 0.1µF) from this pin to GND close to this pin.  
1.8V LDO output for Arm®-M0 power and 1.8V references.  
Connect a decoupling capacitor (recommended value 0.1µF)  
from this pin to ground. Not for external use or loading.  
VCCD  
Positive input of USB input current sense amplifier (DC-DC).  
Connect to the positive terminal of the input current sense  
resistor. Use a dedicated (Kelvin) connection.  
65  
CSPI_0  
Datasheet  
8 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Pin information  
Table 1  
Pin#  
WLC1115 pinouts (continued)  
Pin function for 15W  
Pin name  
MP-A11 application  
firmware  
Pin description  
Negative input of USB input current sense amplifier t (DC-DC).  
Connect to the negative terminal of the input current sense  
resistor. Use a dedicated (Kelvin) connection.  
66  
67  
68  
CSNI_0  
Bootstrap power supply for buck (DC-DC) high side gate driver.  
Connect a capacitor (recommended value 0.1µF) from this pin to  
SW1_0. Also, connect a Schottky diode from VDDD to BST1_0.  
BST1_0  
High side gate driver output of buck converter (DC-DC bank 1).  
Connect to the buck high side FET gate. Use a wide trace to  
minimize inductance of this connection.  
HG1_0  
EPAD  
Exposed ground pad. Connect directly to ground plane and pins  
34 and 64.  
DC‐DC  
bank 1  
Inverter  
bank 1  
Inverter  
bank 2  
NFET_CTRL_1  
HG2_1  
SW2_1  
HG1_1  
HG1_0  
SW1_0  
SW1_1  
LG1_1  
LG2_1  
LG1_0  
[3]  
Figure 2  
WLC1115 key pin mapping with buck and inverter power supplies  
Note  
3. Refer Figure 2 for an overview of key WLC1115 pin mapping to power input, current sense and gate drivers of buck and  
inverter power supplies.  
Datasheet  
9 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Pin information  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
SW1_0  
SW1_1  
LG1_1  
1
LG1_0  
2
PGND_0  
PGND_1  
PVDD_1  
LG2_1  
3
PVDD_0  
4
LG2_0  
5
VBB_0  
VBB_1  
6
SW2_1  
HG2_1  
SW2_0  
7
HG2_0  
8
EPAD  
BST2_0  
BST2_1  
9
ASK_TST  
COMP  
10  
ASK_P  
CSPO  
11  
ASK_N  
CSNO  
12  
VBUS_IN  
BB_IN  
VBRG  
13  
14  
VBRG_DIS  
QCOMP1  
ASK_SEL  
NFET_CTRL_1  
CC1  
15  
CC2  
16  
NFET_CTRL_0  
17  
Figure 3  
WLC1115 68-QFN pinout  
Datasheet  
10 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Electrical specifications  
3
Electrical specifications  
3.1  
Absolute maximum ratings  
Table 2  
Absolute maximum ratings[4]  
Exceeding maximum ratings may shorten the useful life of the device.  
All specifications are valid for -40°C TA 105°C and TJ 125°C, except where noted.  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Description  
Maximum input supply  
voltage  
VIN  
40  
Maximum supply voltage  
relative to VSS  
VDDD, PVDD  
VBUS  
6
Max VBRG_DIS (P0/P1)  
voltage relative to VSS  
24  
24  
24  
V
Max voltage on CC and  
ASK_SEL pins  
CC_0, ASK_SEL  
QCOMP1  
Max voltage on QCOMP1  
pins  
–0.7  
Current limited to 1mA for -0.7V  
minimum specification.  
QCOMP2  
GPIO  
Input to QCOMP2  
Inputs to GPIO  
–0.7  
–0.5  
VDDD + 0.5  
VDDD + 0.5  
Maximum current per  
GPIO  
IGPIO  
–25  
25  
mA  
V
GPIO injection current,  
Absolute max, current injected  
per pin  
IGPIO_INJECTION Max for VIH > VDDD, and  
Min for VIL < VSS  
–0.5  
0.5  
Electrostatic discharge  
Applicable for all pins except  
CC1_0, CC2_0, ASK_SEL,  
QCOMP1 pins.  
ESD_HBM  
(ESD) human body model  
(HBM)  
2000  
1100  
ESDHBM for CC1 and CC2  
pins for both ports  
Only applicable to CC1_0, CC2_0,  
ASK_SEL, QCOMP1 pins  
ESD_HBM_CC  
ESD_CDM  
ESD charged device model 500  
Charged device model ESD  
LU  
TJ  
Pin current for latch-up  
Junction temperature  
–100  
–40  
100  
125  
mA  
°C  
Note  
4. Usage above the absolute maximum conditions listed in Table 2 may cause permanent damage to the device. Exposure  
to absolute maximum conditions for extended periods of time may affect device reliability. The maximum storage  
temperature is 150°C in compliance with JEDEC Standard JESD22-A103, high temperature storage life. When used below  
absolute maximum conditions but above normal operating conditions, the device may not operate to specification.  
Datasheet  
11 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Electrical specifications  
Table 3  
Pin#  
Pin based absolute maximum ratings  
Pin function for 15W  
Pin name  
MP-A11 application  
firmware  
Absolute minimum (V) Absolute maximum (V)  
1
2
SW1_0  
-0.7  
-0.5  
-0.3  
-0.3  
-0.5  
-0.3  
-0.3  
-0.5  
0
35  
PVDD+0.5  
0.3  
[5]  
LG1_0  
3
PGND_0  
PVDD_0  
4
VDD  
[5]  
5
LG2_0  
PVDD+0.5  
24  
6
VBB_0  
SW2_0  
7
24  
[5, 6]  
8
HG2_0 (w.r.t SW2_0)  
PVDD+0.5  
PVDD+0.5  
PVDD+0.5  
24  
[5, 6, 7]  
9
BST2_0 (w.r.t SW2_0)  
[5]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25, 63  
26  
27  
28  
29  
30  
31  
32  
33  
34,64  
35  
36  
37  
Notes  
COMP  
-0.5  
-0.3  
-0.3  
-0.3  
-0.3  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.3  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.7  
-0.5  
-0.3  
-0.5  
-0.5  
-0.7  
CSPO  
CSNO  
24  
VBRG  
24  
VBRG_DIS  
CC1  
24  
24  
CC2  
24  
NFET_CTRL_0  
32  
[5]  
ASK_OUT  
PVDD+0.5  
PVDD+0.5  
PVDD+0.5  
PVDD+0.5  
PVDD+0.5  
PVDD+0.5  
PVDD+0.5  
6
[5]  
ASK_DEMOD  
[5]  
GD_OVR_HB_1  
PWM_IN1  
PWM_IN2  
[5]  
GD_OVR_HB_2  
[5]  
PWM_OUT  
[5]  
DP/GPIO1  
DP  
[5]  
DM/GPIO2  
DM  
VDDD  
[5]  
GPIO3  
LED1  
LED2  
PVDD+0.5  
PVDD+0.5  
PVDD+0.5  
PVDD+0.5  
PVDD+0.5  
PVDD+0.5  
PVDD+0.5  
PVDD+0.5  
0.3  
[5]  
GPIO4  
[5]  
XRES  
[5]  
GPIO5/SCB0  
GPIO6/SCB0  
GPIO7/SCB1  
SDA_SEC  
SCL_SEC  
[5]  
[5]  
UART/GPIO7  
[5, 8]  
QCOMP2  
GND  
[5]  
GPIO8  
RES_SEC  
NFET_CTRL_1  
ASK_SEL  
32  
24  
[8]  
QCOMP1  
24  
5. Max voltage cannot exceed 6 V.  
6. Max absolute voltage w.r.t GND must not exceed 40V.  
7. Min absolute voltage w.r.t GND must not be lower than -0.3V.  
8. Current limited to 1mA for -0.7V minimum specification only.  
Datasheet  
12 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Electrical specifications  
Table 3  
Pin#  
Pin based absolute maximum ratings (continued)  
Pin function for 15W  
Pin name  
MP-A11 application  
firmware  
Absolute minimum (V) Absolute maximum (V)  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
65  
66  
67  
68  
BB_IN  
VBUS_IN  
ASK_N  
ASK_P  
-0.3  
-0.3  
-0.3  
-0.3  
-0.5  
0
24  
24  
24  
24  
[5]  
ASK_TST  
PVDD+0.5  
PVDD+0.5  
PVDD+0.5  
24  
[5, 6, 7]  
BST2_1 (w.r.t SW2_1)  
HG2_1 (w.r.t SW2_1)  
SW2_1  
[5, 6]  
-0.5  
-0.7  
-0.3  
-0.5  
-0.3  
-0.3  
-0.5  
-0.7  
-0.5  
0
VBB_1  
24  
[5]  
LG2_1  
PVDD+0.5  
VDDD  
0.3  
PVDD_1  
PGND_1  
[5]  
LG1_1  
PVDD+0.5  
35  
SW1_1  
[5, 6]  
HG1_1 (w.r.t SW1_1)  
PVDD+0.5  
PVDD+0.5  
40  
[5, 6, 7]  
BST1_1 (w.r.t SW1_1)  
CSNI_1  
DNU1  
-0.3  
-0.3  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.3  
-0.3  
-0.3  
-0.3  
0
CSPI_1  
DNU2  
40  
[5]  
GPIO9/SCB3/SWD_DAT  
SWD_DAT/GPIO9  
SWD_CLK/GPIO10  
TEMP_FB  
PVDD+0.5  
PVDD+0.5  
PVDD+0.5  
PVDD+0.5  
PVDD+0.5  
40  
[5]  
GPIO10/SCB3/SWD_CLK  
[5]  
GPIO11/SCB3  
[5]  
GPIO12/SCB3  
GPIO12  
[5]  
GPIO13/CLK_IN  
GPIO13/CLK_IN  
VIN  
VCCD  
2
CSPI_0  
CSNI_0  
40  
40  
[5, 6, 7]  
BST1_0 (w.r.t SW1_0)  
HG1_0 (w.r.t SW1_0)  
EPAD  
PVDD+0.5  
PVDD+0.5  
0.3  
[5, 6]  
-0.5  
-0.3  
Notes  
5. Max voltage cannot exceed 6 V.  
6. Max absolute voltage w.r.t GND must not exceed 40V.  
7. Min absolute voltage w.r.t GND must not be lower than -0.3V.  
8. Current limited to 1mA for -0.7V minimum specification only.  
Datasheet  
13 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Electrical specifications  
3.2  
Device-level specifications  
All specifications are valid for -40°C TA 105°C and TJ 125°C, except where noted.  
3.3  
DC specifications  
Table 4  
DC specifications (Operating conditions)  
Spec ID  
Parameter  
VIN  
Description  
Min  
Typ  
Max  
Unit  
Details/conditions  
SID.PWR#1  
Input supply voltage  
4.5  
24  
VDDD output voltage  
range  
5.5V < VINS < 24V;  
Max load = 150 mA  
SID.PWR#2  
VDDD  
4.6  
5.5  
V
4.5V < VIN < 5.5V;  
Max load = 20 mA  
SID.PWR#3  
VDDD_MIN  
VDDD dropout voltage VIN - 0.2  
SID.PWR#20 VBRG  
SID.PWR#5 VCCD  
VBRG_0 output range  
VCCD output voltage  
3
22  
VIN > VBRG  
1.8  
87  
TA = 25°C, VIN = 12V.  
CC IO in Transmit or Receive,  
no I/O sourcing current,  
Operating quiescent  
SID.PWR#25 IDD_ACT48M current at 0.4MHz  
switching frequency  
mA No VCONN load current,  
CPU at 48MHz,  
buck and inverter ON,  
3-nF gate driver capacitance.  
3.3.1  
CPU  
Table 5  
CPU specifications  
Spec ID  
SID.CLK#4  
SYS.XRES#5 TxRES  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/conditions  
FCPU  
CPU input frequency  
48  
MHz  
External reset pulse  
width  
5
µs  
Power-up to “Ready  
2
SYS.FES#1  
T_PWR_RDY  
to accept I C/CC  
5
25  
ms  
command”  
Datasheet  
14 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Electrical specifications  
3.3.2  
GPIO  
All specifications are valid for -40°C TA 105°C and TJ 125°C, except where noted.  
Table 6  
GPIO specifications  
Parameter  
Details/  
Spec ID  
Description  
Min  
Typ  
Max  
Unit  
Conditions  
GPIO DC specifications  
Input voltage HIGH  
threshold  
SID.GIO#9  
SID.GIO#10  
SID.GIO#7  
SID.GIO#8  
SID.GIO#2  
SID.GIO#3  
SID.GIO#4  
SID.GIO#5  
V
V
V
V
0.7 × VDDD  
IH_CMOS  
IL_CMOS  
OH  
CMOS input  
Input voltage LOW  
threshold  
0.3 × VDDD  
V
Output voltage HIGH  
level  
VDDD – 0.6  
IOH = –4mA  
IOL = 10mA  
Output voltage LOW  
level  
0.6  
8.5  
8.5  
2
OL  
Pull-up resistor when  
enabled  
Rpu  
Rpd  
3.5  
3.5  
5.6  
5.6  
k  
Pull-down resistor  
when enabled  
Input leakage current  
(absolute value)  
TA = 25°C,  
VDDD = 3V  
I
nA  
IL  
3
Capacitance on  
DP, DM pins  
C
C
Max pin capacitance  
22  
PIN_A  
PIN  
pF  
–40°C < TA < +105°C,  
All VDDD,  
SID.GIO#6  
Max pin capacitance  
7
all other I/Os  
Input hysteresis,  
SID.GIO#13  
SID.GIO#14  
V
V
100  
VDDD > 2.7V  
HYSTTL  
LVTTL, VDDD > 2.7V  
mV  
Input hysteresis  
CMOS  
0.1 × VDDD  
HYSCMOS  
GPIO AC specifications  
Rise time in Fast  
Strong mode  
SID.GIO#16  
SID.GIO#17  
SID.GIO#18  
SID.GIO#19  
T
T
T
T
2
2
12  
12  
60  
60  
RISEF  
FALLF  
RISES  
FALLS  
Fall time in Fast  
Strong mode  
ns  
Rise time in Slow  
Strong mode  
10  
10  
Fall time in Slow  
Strong mode  
Cload = 25pF  
GPIO FOUT;  
SID.GIO#20  
SID.GIO#21  
SID.GIO#22  
F
F
F
3.0V VDDD 5.5V.  
Fast Strong mode.  
16  
7
GPIO_OUT1  
GPIO_OUT2  
GPIO_IN  
GPIO FOUT;  
3.0V VDDD 5.5V.  
Slow Strong mode.  
MHz  
mA  
GPIO input operating  
frequency;  
48  
-40°C TA +105°C  
3.0 V VDDD 5.5 V.  
GPIO OVT DC specifications  
Max / min current  
in to any input or  
output, pin-to-pin,  
pin-to-supply  
SID.GPIO_20VT_  
GPIO_20VT latch up  
current limits  
GPIO_20VT_I_LU  
–140  
140  
GIO#4  
Datasheet  
15 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Electrical specifications  
Table 6  
GPIO specifications (continued)  
Details/  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Conditions  
SID.GPIO_20VT_  
GIO#5  
GPIO_20VT pull-up  
resistor value  
–40°C TA ≤  
GPIO_20VT_RPU  
3.5  
8.5  
+105°C, All VDDD  
kΩ  
GPIO_20VT  
pull-down resistor  
value  
SID.GPIO_20VT_  
GIO#6  
–40°C TA ≤  
GPIO_20VT_RPD  
GPIO_20VT_IIL  
3.5  
8.5  
2
+105°C, All VDDD  
GPIO_20VT input  
leakage current  
(absolute value)  
SID.GPIO_20VT  
_GIO#16  
nA +25°C TA, 3V VDDD  
SID.GPIO_20VT  
_GIO#17  
GPIO_20VT pin  
capacitance  
–40°C TA ≤  
pF  
GPIO_20VT_CPIN  
GPIO_20VT_Voh  
GPIO_20VT_Vol  
10  
+105°C, All VDDD  
SID.GPIO_20VT  
_GIO#33  
GPIO_20VT output  
voltage high level  
VDDD - 0.6  
IOH = -4mA  
IOL = 8mA  
SID.GPIO_20VT  
_GIO#36  
GPIO_20VT output  
voltage low level  
2
0.6  
V
SID.GPIO_20VT  
_GIO#41  
GPIO_20VT_Vih_ GPIO_20VT LVTTL  
–40°C TA ≤  
LV TTL  
input  
+105°C, All VDDD  
SID.GPIO_20VT  
_GIO#42  
GPIO_20VT_Vil_  
LV TTL  
GPIO_20VT LVTTL  
input  
–40°C TA ≤  
0.8  
+105°C, All VDDD  
SID.GPIO_20VT  
_GIO#43  
GPIO_20VT_  
Vhysttl  
GPIO_20VT input  
hysteresis LVTTL  
–40°C TA ≤  
mV  
100  
+105°C, All VDDD  
GPIO_20VT  
SID.GPIO_20VT  
_GIO#45  
GPIO_20VT_  
ITOT_G PIO  
V (GPIO_20VT Pin)  
maximum total sink  
pin current to ground  
95  
mA  
> VDDDs  
GPIO OVT AC specifications  
GPIO_20VT Rise time  
in Fast Strong Mode  
SID.GPIO_20VT_70 GPIO_20VT_TriseF  
1
1
15  
15  
70  
70  
GPIO_20VT Fall time  
in Fast Strong Mode  
SID.GPIO_20VT_71 GPIO_20VT_TfallF  
ns  
SID.GPIO_20VT_  
GIO#46  
GPIO_20VT_  
TriseS  
GPIO_20VT Rise time  
in Slow Strong Mode  
10  
10  
SID.GPIO_20VT_  
GIO#47  
GPIO_20VT Fall time  
in Slow Strong Mode  
All VDDD,  
GPIO_20VT_TfallS  
Cload = 25pF  
GPIO_20VT GPIO  
SID.GPIO_20VT_  
GIO#48  
GPIO_20VT_FGPIO Fout;  
33  
_OUT1  
3V VDDD 5.5V.  
Fast Strong mode.  
GPIO_20VT GPIO Fout;  
3V VDDD 5.5V.  
Slow Strong mode.  
SID.GPIO_20VT_  
GIO #50  
GPIO_20VT_FGPIO  
_OUT3  
MHz  
7
8
GPIO_20VTGPIOinput  
operating frequency;  
3V VDDD 5.5V  
SID.GPIO_20VT_  
GIO #52  
GPIO_20VT_FGPIO  
_IN  
All VDDD  
Datasheet  
16 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Electrical specifications  
3.3.3  
XRES and POR  
All specifications are valid for -40°C TA 105°C and TJ 125°C, except where noted.  
Table 7 XRES specifications  
Details/  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
conditions  
XRES DC specifications  
Input voltage HIGH  
SID.XRES#1  
SID.XRES#2  
SID.XRES#3  
SID.XRES#4  
V
V
0.7 × VDDD  
IH_XRES  
IL_XRES  
threshold on XRES pin  
V
CMOS input  
Input voltage LOW  
0.3 × VDDD  
threshold on XRES pin  
Input capacitance on  
XRES pin  
C
7
pF  
IN_XRES  
Input voltage  
V
0.05 × VDDD  
mV  
HYSXRES  
hysteresis on XRES pin  
Imprecise POR (IPOR) specifications  
SID185  
SID186  
V
V
POR rising trip voltage  
POR falling trip voltage  
0.80  
0.70  
1.50  
1.4  
RISEIPOR  
-40°C < TA < +105°C,  
V
V
all VDDD  
FALLIPOR  
Precise POR (POR) specifications  
Brown-out detect  
SID190  
SID192  
V
V
(BOD) trip voltage in  
active/sleep modes  
1.48  
1.1  
1.62  
1.5  
FALLPPOR  
FALLDPSLP  
-40°C < TA < +105°C,  
all VDDD  
BOD trip voltage in  
Deep Sleep mode  
Datasheet  
17 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Electrical specifications  
3.4  
Digital peripherals  
All specifications are valid for -40°C TA 105°C and TJ 125°C, except where noted.  
The following specifications apply to the Timer/counter/PWM peripherals in the Timer mode.  
3.4.1  
Inverter pulse-width modulation (PWM) for GPIO pins  
Table 8  
PWM AC specifications  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Unit Details/conditions  
SID.TCPWM.1 PWM_OUT  
Operating frequency  
85  
127.7  
600  
kHz PWM_OUT pin  
Minimum possible  
width of overflow,  
underflow, and CC  
ns (counter equals  
compare value)  
Output trigger pulse  
width  
SID.TCPWM.3 T  
2/Fc  
PWMEXT  
outputs.  
Fc = System clock.  
3.4.2  
I2C, UART, SWD interface  
Table 9  
Communication interface specifications  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/conditions  
2
Fixed I C AC specifications  
SID153  
Fixed UART AC specifications  
SID16  
SWD interface specifications  
F
Bit rate  
1
1
Mbps –  
Mbps –  
I2C1  
F
Bit rate  
UART  
SID.SWD#1  
SID.SWD#2  
SID.SWD#3  
SID.SWD#4  
SID.SWD#5  
F_SWDCLK1  
3.0V VDDIO 5.5V  
14  
MHz  
ns  
T_SWDI_SETUP  
T_SWDI_HOLD  
T_SWDO_VALID  
T_SWDO_HOLD  
0.25 × T  
0.25 × T  
0.50 × T  
T = 1/f SWDCLK  
1
3.4.3  
Memory  
Table 10  
Flash AC specifications  
Spec ID  
Parameter  
FLASH_WRITE  
FLASH_ERASE  
Description  
Min  
Typ  
Max  
20  
Unit  
Details/conditions  
Row (block) write time  
(erase and program)  
SID.MEM#2  
SID.MEM#1  
SID.MEM#5  
SID178  
Row erase time  
15.5  
7
ms  
FLASH_ROW_  
PGM  
Row program time after  
erase  
T
Bulk erase time (32KB)  
35  
BULKERASE  
Total device program  
time  
SID180  
T
7.5  
s
DEVPROG  
SID.MEM#6  
SID182  
FLASH  
Flash write endurance  
Flash retention,  
100k  
20  
cycles 25°C < T < 55°C  
ENPB  
A
F
RET1  
RET2  
T < 55°C, 100K P/E cycles  
A
years –  
Flash retention,  
SID182A  
Datasheet  
F
10  
T < 85°C, 10K P/E cycles  
A
18 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Electrical specifications  
3.5  
System resources  
All specifications are valid for -40°C TA 105°C and TJ 125°C, except where noted.  
3.5.1  
Internal main oscillator clock  
Table 11  
IMO AC, clock specifications  
Details/  
Spec ID  
IMO AC specifications  
Parameter  
Description  
Min  
Typ Max  
Unit  
conditions  
Frequency variation at  
48MHz (trimmed)  
SID.CLK#13  
F
–2  
+2  
%
3.0V < VDDD < 5.5V  
IMOTOL  
SID226  
T
IMO start-up time  
IMO frequency  
7
µs  
STARTIMO  
SID.CLK#1  
F
24  
48  
MHz  
IMO  
External clock specifications  
-40°C < T < 105°C;  
A
External clock input  
frequency  
3.0 V < VDDD <  
5.5V. Tolerance  
50 ppm.  
SID.305  
EXTCLKFREQ  
48  
MHz  
3.5.2  
PD  
Table 12  
PD DC specifications  
Spec ID  
Parameter  
Description  
Min  
Typ Max Unit Details/conditions  
Transmitter output high  
voltage  
SID.DC.cc_shvt.1 vSwing  
1.05  
1.2  
V
0.075  
Transmitter output low  
voltage  
SID.DC.cc_shvt.2 vSwing_low  
Transmitter output  
impedance  
SID.DC.cc_shvt.3 zDriver  
SID.DC.cc_shvt.4 zBmcRx  
33  
10  
75  
Receiver input impedance  
M  
Pull down termination  
resistance when acting as  
UFP  
SID.DC.cc_shvt.8 Rd  
4.59  
5.61  
k  
CC impedance to ground  
when disabled  
SID.DC.cc_shvt.10 zOPEN  
108  
0.61  
1.16  
0.3  
CC voltages on UFP  
side-standard USB  
SID.DC.cc_shvt.15 UFP_default_0 p66  
SID.DC.cc_shvt.16 UFP_1.5A_1p23  
SID.DC.cc_shvt.17 Vattach_ds  
0.7  
1.31  
0.6  
V
CC voltages on UFP  
side-1.5A  
Deep Sleep attach  
threshold  
%
SID.DC.cc_shvt.18 Rattach_ds  
SID.DC.cc_shvt.19 VTX_step  
Deep Sleep pull-up resistor  
TX drive voltage step size  
10  
80  
50  
k  
120  
mV  
Datasheet  
19 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Electrical specifications  
3.5.3  
ADC  
All specifications are valid for -40°C TA 105°C and TJ 125°C, except where noted.  
Table 13  
ADC DC specifications  
Details/  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
conditions  
SID.ADC.1  
SID.ADC.2  
Resolution  
ADC resolution  
8
Bits –  
Reference voltage  
generated from  
bandgap  
INL  
Integral non-linearity  
-1.5  
-2.5  
1.5  
2.5  
Reference voltage  
LSB generated from  
VDDD  
Differential  
SID.ADC.3  
SID.ADC.4  
SID.ADC.5  
DNL  
non-linearity  
Reference voltage  
generated from  
bandgap  
Gain Error  
VREF_ADC1  
Gain error  
-1.5  
1.5  
Reference voltage  
generated from  
VDDD  
Reference voltage of  
ADC  
VDDDmin  
VDDDmax  
V
Reference voltage  
generated from  
deep sleep  
Reference voltage of  
ADC  
SID.ADC.6  
VREF_ADC2  
1.96  
2.0  
2.04  
reference  
3.5.4  
Current sense amplifier (CSA) / ASK amplifier (ASK_P and ASK_N)  
Table 14  
CSA/ASK amplifier specifications  
Spec ID  
Parameter  
Description  
Min Typ Max Unit  
Details/conditions  
HS CSA DC specifications  
CSA short circuit  
SID.HSCSA.7  
Csa_SCP_Acc1  
protection (SCP) at 6A with -10  
10  
10  
5/10/20msense resistor  
CSA SCP at 10A with  
-10  
SID.HSCSA.8  
SID.HSCSA.9  
SID.HSCSA.10  
Csa_SCP_Acc2  
Csa_OCP_1A  
Csa_OCP_5A  
5/10/20msense resistor  
Active mode  
CSA OCP at 1A with  
104 130 156  
117 130 143  
5/10/20msense resistor  
%
CSA OCP for 5A with  
5/10/20msense resistor  
CSA sense accuracy.  
Active mode.  
SID.HSCSA.13  
Csa_CBL_MON_Acc2 Vsense > 10mV  
3.5  
3.0 V < VDDD < 5.5 V.  
T = 25°C.  
A
CSA AC specifications  
Delay from SCP threshold  
trip to external NFET  
power gate turn off  
SID.HSCSA.AC.1  
SID.HSCSA.AC.2  
T
3.5  
8
1 nF NFET gate  
3 nF NFET gate  
SCP_GATE  
µs  
Delay from SCP threshold  
trip to external NFET  
power gate turn off  
T
SCP_GATE_1  
Datasheet  
20 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Electrical specifications  
3.5.5  
VIN UV/OV  
All specifications are valid for -40°C TA 105°C and TJ 125°C, except where noted.  
Table 15  
VIN UV/OV specifications  
Parameter  
Spec ID  
Description  
Min Typ Max Unit Details/conditions  
Overvoltage threshold  
accuracy, 4V-11V  
SID.UVOV.1  
SID.UVOV.2  
SID.UVOV.3  
SID.UVOV.4  
SID.UVOV.5  
VTHOV1  
VTHOV2  
VTHUV1  
VTHUV2  
VTHUV3  
-3  
-3.2  
-4  
3
3.2  
4
Overvoltage threshold  
accuracy, 11V-21.5V  
Undervoltage threshold  
accuracy, 3V-3.3V  
%
Active mode  
Undervoltage threshold  
accuracy, 3.3V-4.0V  
-3.5  
-3  
3.5  
3
Undervoltage threshold  
accuracy, 4.0V-21.5V  
3.5.6  
Voltage regulation - VBRG  
Table 16  
VBRG specifications  
Spec ID  
Parameter  
Description  
Min Typ Max Unit Details/conditions  
VBRG discharge specifications  
20V NMOS ON resistance for  
DS = 1  
SID.VBUS.DISC.1 R_DIS1  
500  
250  
125  
2000  
1000  
500  
20V NMOS ON resistance for  
DS = 2  
SID. VBUS.DISC.2 R_DIS 2  
SID. VBUS.DISC.3 R_DIS 4  
SID. VBUS.DISC.4 R_DIS 8  
SID. VBUS DISC.5 R_DIS 16  
20V NMOS ON resistance for  
DS = 4  
Ω
Measured at 0.5V  
20V NMOS ON resistance for  
DS = 8  
62.5  
31.25  
250  
125  
10  
20V NMOS ON resistance for  
DS = 16  
Error percentage of final VBRG  
value from setting  
When VBRG is  
SID. VBUS.DISC.6 VBRG_stop_error  
%
discharged to 5V  
Voltage regulation DC specifications  
VBB output voltage range  
SID.DC.VR.1  
SID.DC.VR.2  
VBB  
VR  
3.0  
-5  
22  
+5  
V
VBB voltage regulation accuracy  
±3  
%
VIN supply below which chip will  
get reset  
SID.DC.VR.3  
SID.VREG.1  
VIN_UVLO  
TSTART  
1.7  
3.0  
V
Total startup time for the  
regulator supply outputs  
Specification for  
VDDD LDO  
200  
µs  
Datasheet  
21 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Electrical specifications  
3.5.7  
NFET gate driver specifications  
All specifications are valid for -40°C TA 105°C and TJ 125°C, except where noted.  
Table 17 NFET gate driver specifications  
Spec ID  
Parameter  
Description  
Min Typ Max Unit Details/conditions  
NFET gate driver DC specifications  
Gate to source overdrive during  
ON condition  
SID.GD.1  
SID.GD.2  
GD_VGS  
GD_RPD  
4.5  
5
10  
2
V
NFET driver is ON  
Applicable on  
Resistance when pull-down  
enabled  
kΩ NFET_CTRL to turn  
off external NFET.  
NFET gate driver AC specifications  
NFET_CTRL Low to High  
(1V to VBUS + 1V) with 3nF  
external capacitance.  
SID.GD.3  
SID.GD.4  
T
T
2
5
7
10  
ms VBUS = 5V  
ON  
NFET_CTRL High to Low  
(90% to 10%) with 3nF external  
capacitance.  
µs VBUS = 21.5V  
OFF  
3.5.8  
Buck PWM controller  
Table 18  
PWM controller specifications  
Spec ID  
Parameter  
Description  
Min Typ Max Unit Details/conditions  
PWM controller specifications  
PWM.1  
GD1  
FSW  
Buck switching frequency  
150  
85  
600  
600  
Pins PWM_IN1 and  
PWM_IN2 are  
kHz  
%
Fsw Gd Ovr  
Inverter switching frequency  
connected to pin  
PWM_OUT.  
Spread spectrum frequency  
dithering span  
PWM.2  
FSS  
10  
Buck gate driver specifications  
Top-side gate driver  
DR.1  
DR.2  
DR.3  
DR.4  
DR.5  
DR.6  
R_HS_PU  
R_HS_PD  
R_LS_PU  
R_LS_PD  
Dead_HS  
Dead_LS  
2
on-resistance - gate pull-up  
Top-side gate driver  
1.5  
2
on-resistance - gate pull-down  
Ω
Bottom-side gate driver  
on-resistance - gate pull-up  
Bottom-side gate driver  
1.5  
30  
30  
on-resistance - gate pull-down  
Dead time before high-side rising  
edge  
Dead time before low-side rising  
edge  
ns  
ns  
DR.7  
DR.8  
Tr_HS  
Tf_HS  
Top-side gate driver rise time  
Top-side gate driver fall time  
25  
20  
NFET gate driver specifications  
DR.9  
Tr_LS  
Tf_LS  
Bottom-side gate driver rise time  
Bottom-side gate driver fall time  
25  
20  
DR.10  
Datasheet  
22 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Electrical specifications  
3.5.9  
Thermal  
All specifications are valid for -40°C TA 105°C and TJ 125°C, except where noted.  
Table 19  
Spec ID  
SID.OTP.1  
Thermal specifications  
Parameter  
Description  
Min Typ Max Unit Details/conditions  
120 125 130 °C  
OTP  
Thermal shutdown  
Datasheet  
23 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Functional overview  
4
Functional overview  
4.1  
Wireless power transmitter  
WLC1115 supports wireless power transfer between power transmitter (TX) and power receiver (RX), based on  
inductive power transfer technology (IPT). The Tx runs an alternating electrical current through the Tx coil(s) to  
generate an alternating magnetic field in accordance with Faraday's law. This magnetic field is mutually coupled  
to the Rx coil inside the power receiver and is transformed back into an alternating electrical current that is  
rectified and stored on a Vrect capacitor bank to power the Rx load.  
Before the power transfer begins, the Rx and Tx communicate with each other to establish that a valid Rx device  
has been placed and they negotiate the level of power to be transferred during the charging cycle. The digital  
communication used by Tx and Rx is in-band communication. The communication from Tx to Rx is frequency shift  
key (FSK) modulation and from Rx to Tx is amplitude shift key (ASK) modulation. The WLC1115 solution is  
compliant with the Qi v1.3.x standard up to 15W. The WLC1115 operates in both BPP or EPP depending on the  
capabilities of the Rx that gets placed by the user.  
WLC1115 offers a highly integrated wireless power transmitter solution with a USB Type-C PD controller following  
the Qi v1.3.x standard. This includes ready to use firmware stack with a robust demodulation scheme for  
continuous power transfer and reliable FOD to ensure safety. WLC1115 firmware stack comes with a high level of  
configurable options to enable differentiation by application using the configuration utility tool.  
4.2  
WPC system control  
WLC1115 controls the wireless power system in compliance with Qi standard version 1.3.x. The system control  
covers power transfer, system monitoring, and various phases of operation under BPP or EPP receivers  
depending on the Rx type placed onto the Tx pad.  
Error  
Calibration  
Failure  
Or  
Error  
Negotiation  
Failure  
Or  
Error  
Start  
Selection  
No  
Response  
or  
No power  
nedded  
Negotiation  
Successful  
Object  
Detected  
Renegotiation  
Requested  
Renegotiation  
Negotiation  
Calibration  
Renegotiation  
Completed  
Ping  
Calibration  
Successful  
Is  
No  
Receiver  
Present  
Power Transfer  
As per Negotiation  
Authentication  
Required  
Yes  
Negotiation  
Requested  
Power Transfer  
Limited to 5W  
Identification  
Error  
&
Is  
Configuration  
Yes  
Authentication  
Challenge  
Succesful  
No Negotiation  
Requested  
(<5W PRx)  
No  
Power Transfer  
Complete  
Or  
Error  
Figure 4  
WPC system control flow chart (negotiation, calibration and authentication are for EPP  
only)[9]  
Note  
9. The Functional overview section only describes the Qi specification. However, IC can support wireless charging pro-  
prietary power delivery extensions (PPDE)/Samsung FC.  
Datasheet  
24 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Functional overview  
4.2.1  
Selection phase  
The Tx monitors the interface surface using low energy signals (analog ping or Q-factor) to detect objects'  
placement and removal. The Analog Ping energy is limited such that impedance changes above the Tx coil may  
be detected without powering or waking up the receiver. The WLC1115 sets the Bridge (VBRG) voltage powering  
the inverter to a low voltage to generate sufficient energy to measure for any interface impedance changes  
without transferring any power during the selection phase.  
4.2.2  
Digital ping phase  
In this phase, the Tx sends a power signal that is sufficient to power the receiver and prompt a response. This  
signal is called Digital Ping and the magnitude and length of time are predefined by the WPC Tx specifications.  
The Digital Ping phase ends when no response is detected or the Rx responds with a signal strength packet (SSP).  
When the Tx receives a valid SSP, the Digital Ping is extended and the system proceeds to the Identification and  
Configuration phase.  
4.2.3  
Identification and configuration phase  
In this phase, the Tx identifies whether the Rx belongs to BPP or EPP profile. Additionally, in this phase, the Tx  
obtains configuration information such as the maximum amount of power that the Rx may require at its output.  
The power transmitter uses this information to create a Power Transfer Contract.  
If the receiver is a BPP type then the power transmitter enters into the power transfer phase at the completion of  
the ID and Config phase as shown in Figure 8 or with EPP receivers it proceeds to the negotiation phase if  
requested by the Rx.  
4.2.4  
Negotiation  
In this phase, the EPP power receiver negotiates with the power transmitter to fine-tune the power transfer  
contract. For this purpose, the power receiver sends negotiation requests to the power transmitter, which the  
power transmitter can grant or deny.  
In compliance with Q-factor FOD, the Tx will compare the Q-factor reported by the Rx with its own measurement  
to determine if the Q-factor of the coil is appropriate for the Rx that has been placed (EPP only). If the Tx Q-factor  
reading is too low it will flag a QFOD alarm and return to the selection phase.  
4.2.5  
Calibration  
When this phase is requested, the Tx will ACK the request and commence with the EPP Rx to enable and enter the  
calibration phase to calibrate for transmitter power losses at two fixed receiver loads. This system’s power loss  
information will be used by the Tx to detect the presence of foreign objects on the interface surface during the  
power delivery phase.  
4.2.6  
Authentication  
Post successful calibration, Tx enters into power transfer mode limited to 5W. In this mode, Rx can request and  
challenge Tx for authentication. In case of successful authentication, Tx proceeds with negotiated power  
delivery. If authentication challenge is not successful then Tx continues to be in power transfer mode, limited to  
5W. WLC1115 provides an I2C port for interfacing with OPTGATrust Charge IC to enable authentication.  
4.2.7  
Renegotiation phase  
In this phase, the EPP Rx can request to adjust the power transfer contract. This phase may be aborted  
prematurely without changing the power transfer contract.  
Datasheet  
25 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Functional overview  
4.2.8  
Power transfer phase  
In this phase, the Tx transfers power to the Rx and the power level is determined by the control error packets  
(CEP) and limited by the guaranteed power contract. Power loss FOD is also enabled and utilized to prevent  
excessive power loss which could result in FO heating.  
1. CEP: These packets are used by the Tx to adjust the amount of power being sent. The CEP may be positive,  
negative, or 0. The Tx adjusts its operating point based on the value of the CEP. The CEP packet must be  
received every 1.8s (configurable) or power will be withdrawn along with other constraints that specify when  
a CEP may be sent by the Rx as defined in the WPC specifications.  
2. Received power packet (RPP): The packet (8 bits for BPP and 24 bits for EPP) contains power received by  
receiver. The RPP is used by the Tx to determine if the power loss is safe or excessive based on the FOD  
thresholds contained in the FW.  
3. End power transmit (EPT): The Rx may send an EPT packet anytime to inform Tx to withdraw/terminate the  
power delivery. The Tx will end the power transfer immediately if an EPT packet is received.  
The Rx and Tx communicate with each other by modulating the carrier wave used to transfer power. The  
following sections describe the communication layer used and defined by the WPC.  
4.2.9  
Bidirectional in-band communication interface  
The Qi standard requires bi-directional in-band communication between Tx and Rx. The communication from Tx  
to Rx is FSK and is implemented by the Tx alternating the carrier wave frequency. The communication from Rx to  
Tx is ASK and is created by modulating the load on the Rx side causing a reflection to appear on the Tx which is  
filtered and decoded.  
4.3  
Communication from Tx to Rx - FSK  
The power transmitter communicates to the power receiver using frequency shift keying, in which the power  
transmitter modulates the operating frequency of the power signal.  
In FSK, the Tx changes its operating frequency between the current operating frequency (fOP) to an alternate  
frequency (fMOD) in the modulated state. The difference between these two frequencies is characterized by two  
parameters that are determined during the initial ID and config stage of the wireless power connection:  
• Polarity: This parameter determines whether the difference between fMOD and fOP is positive or negative.  
• Depth: This parameter determines the magnitude of the difference between fOP and fMOD in Hertz (Hz).  
The Tx uses a differential bi-phase encoding scheme to modulate data bits to the carrier wave. For this purpose,  
the Tx aligns each data bit to segments of 512 cycles of the carrier wave frequency.  
Figure 5  
Example of differential bi-phase encoding - FSK  
Datasheet  
26 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Functional overview  
4.4  
Communication from Rx to Tx - ASK  
In the ASK communication scheme, the Rx modulates the amount of power that it draws from the Tx power signal.  
The Tx detects this through as a modulation of the Tx current and/or voltage and uses a demodulation scheme  
to convert the modulated signal into a binary signal.  
The Rx shall use a differential bi-phase encoding scheme to modulate data bits onto the power signal. For this  
purpose, the power receiver shall align each data bit to a full period t of an internal clock signal, such that the  
CLK  
start of a data bit coincides with the rising edge of the clock signal. This internal clock (INTCLK) signal shall have  
a frequency fCLK = 2kHz 4%. tCLK is time period of the INTCLK clock.  
Figure 6  
Example of differential bi-phase encoding - ASK  
When the Tx receives a modulated signal from the Rx the information is decoded and the Tx will react to the  
packet according to the type and the WPC specification.  
4.5  
Demodulation  
The WLC1115 ASK demodulating and decoding scheme works by detecting voltage and current variations in the  
Tx coil caused by the Rx modulation signal. The voltage path for ASK uses an external band pass filter to filter the  
demod signal out of the carrier wave. The current sense uses the bridge current sense resistor and an integrated  
differential amplifier to sense the ASK variations. Both ASK sensing paths can be multiplexed to the external  
Opamp filter and comparator to improve communication in low signal-to-noise environments or conditions.  
Figure 7 shows the demodulation path used for current and voltage sensing of the modulation signal for packet  
decoding.  
COIL‐SNS  
ASK_P  
Low pass &  
Peak  
detector  
High  
pass  
filter  
ASK_DEMOD  
Pulse  
amplifier  
ASK_AMP  
Volt Path  
ASK_OUT  
Comparator  
ASK_N  
5V  
CSPO_0  
ASK_AMP  
Current  
Path  
CSNO_0  
Figure 7  
WLC1115 voltage and current demodulation path for ASK  
4.6  
Inverter  
The WLC1115 uses the integrated buck controller to generate the bridge voltage used to power the full-bridge  
inverter that powers the Tx resonance tank to deliver power to the Rx. The inverter supports a wide input  
operating voltage range (3V to 22V) for power transfer. The integrated gate drivers of the WLC1115 are designed  
to control a full bridge or half-bridge Inverter depending on the WPC specification type and operating scenario.  
The inverter is capable of operating at switching frequencies between 85kHz and 600kHz but are typically limited  
to 110kHz to 148kHz. During the power transfer phase, the inverter responds to Rx CEP packets by adjusting the  
operating frequency or adjusting the bridge voltage. The power control method (variable voltage or variable  
frequency) is determined by the WPC specification but may be altered in order to promote better interoperability  
and user experience.  
Datasheet  
27 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Functional overview  
4.7  
Rx detection  
During the selection phase, the Tx will periodically poll the interface to detect impedance changes in order to  
quickly send a Digital Ping within 0.5s of a user placing an Rx. During this phase, the WLC1115 is able to distinguish  
between large ferrous objects (such as keys or coins) and regular Rx devices using Q factor, input current, or shifts  
in resonance frequency to attempt FOD before power transfer. In case of marginally high input current or  
resonance shifts, the Tx will commence to Digital Ping in order to guarantee a connection with a valid Rx is made  
in a timely manner. The typical sequence of operations used to scan the interface for Rx placement (or removal  
if an EPT is received during power transfer) is shown in Figure 8.  
0
time (s)  
APING  
Interval (s)  
DPING  
Interval (s)  
Figure 8  
Typical selection phase Rx detection timing diagram  
Figure 9 describes the process used during the selection phase for quick Rx detection and connection.  
Yes  
Tx  
Power  
up  
Run Q‐  
factor and  
DPING  
Goto  
APING  
@interval  
Rx  
Object  
Detected?  
DPING  
interval?  
Detected?  
Yes  
No  
Go to  
power  
XFER  
Figure 9  
Typical selection phase flow chart for Rx detection and connection  
The Rx detection in Figure 9 also covers foreign object detection. The foreign object is identified by using Q  
factor. In case of foreign object detection, the process flow proceeds to analog ping (APNG). Further details about  
foreign object detection is covered in “Foreign object detection (FOD)” on page 29.  
Datasheet  
28 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Functional overview  
4.7.1  
Foreign object detection (FOD)  
WLC1115 supports enhanced FOD as per Qi v1.3.x standard. This includes FOD based on Q factor, resonance  
frequency, power loss, and over temperature (if a thermistor is used).  
4.7.2  
Q factor FOD and Resonance Frequency FOD  
WLC1115 offers integrated Q factor and resonance frequency measurements for QFOD pre-power delivery. The  
measurements are made using the internal comparators QCOMP1 and QCOMP2 and the simple external  
components to charge the resonance capacitor and then discharge by shorting the LC tank and observing the  
resulting oscillation and voltage decay. The measurement of the Q factor is performed directly before every  
digital ping. The number of cycle count ‘N’ between two coil voltages V1 and V2 and period between  
corresponding rising edge pulses are used for Q factor and resonance frequency measurement as shown in  
Figure 10.  
V1  
V2  
COIL‐SNS  
C1  
Q_COMP  
Cp  
R1  
R2  
SW1_1  
SW2_1  
VDDD  
Lp  
T_period  
C2  
Q‐Factor = π*N/ [LN(V1/V2)]  
N
Resonance Frequency = 1 / T_period  
Figure 10  
WLC1115 Q factor measurement schematic and signal  
4.7.3  
Power loss FOD  
WLC1115 supports power loss FOD during power transfer. The power loss FOD uses the Tx power measured at  
the buck output and is the product of the bridge voltage and the bridge current (current is sensed at inputs  
CSPO_0 and CSNO_0). This result for Tx power is further adjusted by tuning FOD coefficients to account for  
inverter losses and friendly metal losses. After computing the calibrated Tx power the result is compared against  
the latest RPP value sent by the Rx. If the difference between Tx_Power_Calibrated and RPP exceeds the Ploss  
threshold then an FOD event is logged. To prevent erroneous disconnects and improve user experience the  
WLC1115 will only disconnect the power for Ploss FOD in the event that three consecutive Ploss threshold  
breaches occur. The FOD coefficients and the Ploss thresholds are configurable to adapt to the system design.  
4.7.4  
Over temperature FOD  
The WLC1115 is able to monitor interface temperature if an external NTC thermistor is connected and placed in  
contact with the Tx coil. This can be enabled to disconnect the Tx from the Rx in the event that the Tx coil  
temperature exceeds a configurable threshold.  
Datasheet  
29 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Functional overview  
4.7.5  
Buck regulator  
The buck regulator powers the inverter at the input node VBRG to enable power transfer per Qi. The buck  
regulator of WLC1115 requires input and output bypass capacitors as well as two FETs and an inductor. The  
necessary external components and connections are shown in Figure 11. The buck also offers current protection  
using a cycle-by-cycle current sense amplifier connected across resistance CSR1, integrated high and low side  
gate drivers, and automatic PWM generation for output voltage control. The effective capacitance and inductor  
have been deliberately selected to optimize buck performance and any substitutions should be made using  
equivalent components as those found in the reference schematic and using hardware design guidelines.  
VBRG  
5 m  
5/10/20 m  
VBB_1  
USB  
PD  
CSR1  
CSR2  
VDDD  
VDDD  
WLC1115  
Figure 11  
WLC1115 typical buck regulator schematic for VBRG generation  
The WLC1115’s buck controller provides two N-channel MOSFET gate drivers: complete with a floating high-side  
gate driver via HG1_0 and a ground-referenced low-side driver via LG1_0 pins. The gate drivers are powered by  
VDDD and are a nominal voltage of 5 V. The Buck regulator switching frequency is programmable and can be set  
between 150kHz and 600kHz. In order to prevent EMI related issue’s gate drivers, have programmable drive  
strength, dead-time, and can be run in a dithering mode to spread the radiated spectrum energy levels. An  
external capacitor and Schottky diode from the BST1_0 pin are used for the high-side gate drive power supply.  
Furthermore, the high and low-side gate driver blocks include zero-crossing detector (ZCD) to implement  
discontinuous-conduction mode (DCM) mode with diode emulation.  
The WLC1115’s buck controller uses an integrated error amplifier for output voltage regulation. The error  
amplifier is a trans-conductance type amplifier with a single compensation pin (COMP_0) which requires the RC  
filter shown in the reference schematic to be connected from this pin to GND.  
The WLC1115 supports high-voltage (22V) VBRG discharge circuitry and upon detection of device disconnection,  
faults, or hard resets, the chip may discharge the VBRG node to vSafe5V and/or vSafe0V within the time limits  
specified in the USB PD specification.  
Datasheet  
30 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Functional overview  
4.8  
Buck operating modes  
4.8.1  
Pulse-width modulator (PWM)  
The WLC1115 has a PWM generator to control the external FETs using the integrated gate drivers in peak current  
mode control. This is the primary operating mode when the buck is loaded by the inverter and power transfer is  
in progress.  
4.8.2  
Pulse skipping mode (PSM)  
The WLC1115 buck has two firmware-selectable operating modes to optimize efficiency and reduce losses under  
light load conditions: Pulse-skipping mode (PSM) and forced-continuous-conduction mode (FCCM). In PSM, the  
controller reduces the total number of switching pulses without reducing the active switching frequency by  
working in “bursts” of normal nominal-frequency switching interspersed with intervals without switching. The  
output voltage thus increases during a switching burst and decreases during a quiet interval. This mode results  
in minimal losses with a tradeoff of having higher output voltage ripple. When in this mode, WLC1115 devices  
monitor the voltage across the buck sync FET to detect when the inductor current reaches zero; when this occurs,  
the WLC1115 devices switch off the buck sync FET to prevent reverse current flow from the output capacitors (i.e.  
diode emulation mode).  
4.8.3  
Forced-continuous-conduction mode (FCCM)  
In forced-continuous-conduction mode (FCCM), the nominal switching frequency is maintained at all times, with  
the inductor current going below zero (i.e. “backwards” or from the output to the input) for a portion of the  
switching cycle as necessary to maintain the output voltage and current. This keeps the output voltage ripple to  
a minimum at the cost of light-load efficiency.  
4.8.4  
Overvoltage protection (OVP)  
The WLC1115 offers two types of overvoltage protections. The device monitors and limits VIN and VBRG. In case  
of a USB VIN overvoltage event detected, WLC1115 can be configured to shutdown the Type-C port completely.  
In case of VBRG over voltage events, the buck regulator is immediately shut down. The IC can be re-enabled after  
a physical disconnect and reconnect. The over-voltage fault thresholds are configurable.  
4.8.5  
Overcurrent protection (OCP)  
The WLC1115 protects the inverter from over-current and short-circuit faults by monitoring the bridge current  
and continuously inspecting for over-current events using the internal CSAs that check the voltage on the current  
sense resistor. Similar to OVP, the OCP and SCP fault thresholds and response times are configurable as well. The  
IC can be re-enabled after a physical disconnect and reconnect.  
4.8.6  
USB-PD controller  
The WLC1115 interfaces directly to Type-C USB power supplies and travel adaptors (TA). The WLC1115 manages  
the incoming power supply throughout operation using the D+, D-, and CC lines. The WLC1115 manages the  
USB-PD physical communication layer, the VCONN switches, as well as monitoring to prevent under-voltage  
events caused by drawing too much power from the supply. The WLC1115 offers all the necessary electrical  
controls to be fully compliant with revisions 3.0 and 2.0 of the USB-PD specification and includes SCP.  
The USB-PD physical layer consists of the power transmitter and power receiver that communicates BMC  
encoded data over the CC channel per the PD 3.0 standard. All communication is half-duplex. The physical layer  
or PHY includes collision avoidance to minimize communication errors on the channel. The WLC1115 uses the RP  
and RD resistors to implement connection detection and plug orientation detection. The RD resistor establishes  
the role of the transmitter system as a USB sink. The device supports PPS operation at all valid voltages from 3V  
to 22V when connected to a power adaptor.  
Further, the WLC1115 device supports USB-PD extended messages containing data of up to 260 bytes by  
implementing a chunking mechanism; messages are limited to revision 2.0 sizes unless both source and sink  
confirm and negotiate compatibility with longer message lengths.  
Datasheet  
31 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Functional overview  
The WLC1115 USB controller also supports battery charger emulation and detection (source and sink) for USB  
legacy QC 2.0/3.0 & AFC protocols.  
4.8.7  
MCU  
The Cortex®-M0 in WLC1115 device is a 32-bit MCU, which is optimized for low-power operation with extensive  
clock gating. The device utilizes an interrupt controller (the NVIC block) with 32 interrupt inputs and a wakeup  
interrupt controller (WIC), which can wake the processor up from Deep Sleep mode. Additionally, the WLC1115  
device has 128-KB Flash and 32-KB ROM for nonvolatile storage. ROM stores libraries for device drivers such as  
2
I C, SPI, and so on. The main wireless power firmware is stored in Flash memory to provide the flexibility to store  
code for all wireless power features, enable the use of configuration tables, and allow firmware upgrades to meet  
the latest USBPD specifications and application requirements. The device may be reset anytime by toggling the  
XRES pin to force a full hardware and software reset.  
The WLC1115 devices support external clock (EXTCLK) or INTCLK for the MCU and all internal sub-systems that  
require clocks. To use the internal clock, float the CLK_IN pin. To use the optional external clock, provide a single  
ended clock to the CLK_IN pin oscillating at 48MHz.  
The TCPWM block of the WLC1115 device has four timers, counters, or PWM (TCPWM) generators. These timers  
are used by FW to run the wireless power Tx system as required by WPC and USB compliance directives. The  
WLC1115 device also has a watchdog timer (WDT) that can be used by FW for various timeout events.  
4.8.8  
ADC  
The WLC1115 device has 8-bit SAR ADCs available for general purpose analog-to-digital conversion applications  
within the chip and system. The ADCs are accessed from the GPIOs or directly on power supply pins through an  
on-chip analog mux. See the “Electrical specifications” on page 11 for detailed specifications of the ADCs.  
4.8.9  
Serial communications block (SCB)  
2
The WLC1115 devices have four SCB blocks that can be configured for I C, SPI, or UART. These blocks implement  
2
2
full multi-master and slave I C interfaces capable of multi-master arbitration. I C is compatible with the standard  
Philips I2C specification V3.0. These blocks operate at speeds of up to 1Mbps and have flexible buffering options  
to reduce interrupt overhead and latency for the CPU. The SCB blocks support 8-byte deep FIFOs for Receive and  
Transmit to decrease the time needed to interface by the MCU also reducing the need for clock stretching caused  
by the CPU not having read data on time.  
4.8.10  
I/O subsystem  
The WLC1115 devices have 13 GPIOs but many of them have dedicated functions for 15W MP-A11 applications  
such as I2C comm, LED and temperature sensing in the wireless power application and cannot be repurposed.  
The GPIOs output states have integrated controls modes that can be enabled by FW which include: weak pull-up  
with strong pull-down, strong pull-up with weak pull-down, open drain with strong pull-down, open drain with  
strong pull-up, strong pull-up with strong pull-down, disabled, or weak pull-up with weak pull-down and offer  
selectable slew rates for dV/dt output control. When GPIOs are used as inputs they can be configured to support  
different input thresholds (CMOS or LVTTL).  
During POR, the GPIO blocks are forced to the disable state preventing any excess currents from flowing.  
4.8.11  
LDOs (VDDD and VCCD)  
The WLC1115 has two integrated LDO regulators. The VDDD LDO is powered by VIN and provides 5V for the GPIOs,  
gate drivers, and other internal blocks. The total load on VDDD LDO must be less than 150mA including internal  
consumption. VDDD LDO will be externally loaded as shown in the reference schematic. For connecting any  
additional external load on it, contact Infineon technical support. The VDDD 5V supply is externally routed to  
various pins and they should all be externally shorted together. The VCCD LDO is a 1.8V LDO regulator and is  
powered by VDDD. Do not externally load VCCD. Both LDOs must have ceramic bypass capacitors placed from  
each pin to ground close to the WLC1115 device.  
Datasheet  
32 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Programming the WLC1115 device  
5
Programming the WLC1115 device  
There are two ways to program application firmware into a WLC1115 device:  
1. Programming the device flash over SWD Interface  
2
2. Application firmware update over specific interfaces (CC, I C)  
Generally, the WLC1115 devices are programmed over the SWD interface only during development or during the  
manufacturing process of the end-product. Once the end-product is manufactured, the WLC1115 device  
application firmware can be updated via the appropriate bootloader interface. Infineon strongly recommends  
2
customers to use the configuration utility to turn off the Application FW Update over CC or I C interface in the  
firmware that is updated into WLC1115’s flash before mass production. This prevents unauthorized firmware  
from being updated over the CC interface in the field. If you desire to retain the application firmware update over  
2
CC/I C interfaces features post-production for on-field firmware updates, contact your local Infineon sales  
representative for further guidelines.  
5.1  
Programming the device Flash over SWD interface  
The WLC1115 family of devices can be programmed using the SWD interface. Infineon provides the MiniProg4  
programming kit (CY8CKIT-005 MiniProg4 Kit) which can be used to program the flash and debug firmware. The  
Flash is programmed by downloading the information from a hex file.  
As shown in Figure 12, the SWD_DAT and SWD_CLK pins are connected to the host programmer’s SWDIO (data)  
and SWDCLK (clock) pins respectively. During SWD programming, the device can be powered by the host  
programmer by connecting its VTARG (power supply to the target device) to the VDDD pins of the WLC1115 device.  
If the WLC1115 device is powered using an onboard power supply, it can be programmed using the “Reset  
Programming” option. For more details, refer the WLCXXXX programming specification.  
VDD  
Host Programmer  
WLC1115  
VDDD  
VTRAG  
VDDD  
10uF  
0.1 uF  
1 uF  
0.1 uF  
SWDCLK  
SWD_CLK  
SWD_DAT  
XRES  
SWDIO  
XRES  
V
CCD  
GND  
GND  
0.1 uF  
GND  
Figure 12  
Connecting the programmer to WLC1115  
Datasheet  
33 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Ordering information  
6
Ordering information  
Table 20 lists the WLC1115 ordering part numbers and applications.  
Table 20  
WLC1115 ordering part numbers  
Power  
MPN  
Application  
WLC1115-68LQXQ  
WLC1115-68LQXQT  
Qi v1.3.x EPP Tx  
Qi v1.3.x EPP Tx - Tape and reel option  
15W  
6.1  
Ordering code definitions  
WLC  
X
X
XX -- XX XX  
X
X
X
T: Tape and reel (Optional)  
Grade/temperature range: Q = Extended industrial grade (–40°C to + 105°C)  
Lead: X = Pb-free  
Package type: LQ = QFN  
Number of pins in the package  
Wattage: 15 = 15W;  
Type-: 1 = Tx, 2 = Rx, 3 = Tx-Rx , 4 = Custom  
Product type: 1 = First-Generation product family  
Marketing code: WLC = Wireless Charging  
Datasheet  
34 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Packaging  
7
Packaging  
Table 21  
Parameter  
Package characteristics  
Description  
Test conditions  
Min  
Typ  
Max  
125  
14.8  
4.3  
Unit  
T
Operating junction temperature  
Package JA  
-40  
25  
°C  
J
TJA  
TJB  
TJC  
Package JB  
°C/W  
Package JC  
12.9  
Table 22  
Solder reflow peak temperature  
Maximum time within 5°C of  
peak temperature  
Package  
Maximum peak temperature  
68-pin QFN  
260°C  
30 seconds  
Table 23  
Package moisture sensitivity level (MSL), IPC/JEDEC J-STD-2  
Package  
MSL  
68-pin QFN  
MSL 3  
Datasheet  
35 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Package diagram  
8
Package diagram  
NOTES:  
DIMENSIONS  
SYMBOL  
e
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. N IS THE TOTAL NUMBER OF TERMINALS.  
MIN.  
0.30  
NOM.  
0.40 BSC  
68  
17  
0.40  
MAX.  
0.50  
3
DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS MEASURED  
BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP. IF THE TERMINAL HAS  
THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE  
DIMENSION "b" SHOULD NOT BE MEASURED IN THAT RADIUS AREA.  
ND REFERS TO THE NUMBER OF TERMINALS ON D SIDE.  
N
ND  
L
b
D2  
E2  
D
0.15  
5.60  
5.60  
0.20  
5.70  
0.25  
5.80  
5.80  
4
5
6
PIN #1 ID ON TOP WILL BE LOCATED WITHIN THE INDICATED ZONE.  
COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK  
SLUG AS WELL AS THE TERMINALS.  
5.70  
8.00 BSC  
E
A
8.00 BSC  
7. JEDEC SPECIFICATION NO. REF. : N/A.  
8. INDEX FEATURE CAN EITHER BE AN OPTION 1 : "MOUSE BITE" OR  
OPTION 2 : CHAMFER.  
-
-
-
0.65  
0.05  
A1  
A3 (Option 1)  
A3 (Option 2)  
R
0.00  
0.203 REF  
0.152 REF  
0.20 TYP  
0.75 MIN  
K
002-31802 *C  
Figure 13  
68LD QFN (8 8) device package drawing  
Datasheet  
36 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Acronyms  
9
Acronyms  
Table 24  
Acronym  
ACK  
Acronyms used in this document  
Description  
Acronym  
POR  
PPDE  
PPS  
Description  
Acknowledge  
Power-on reset  
ADC  
Analog-to-digital converter  
Advanced RISC machine, a CPU architecture  
Amplitude shift key  
proprietary power delivery extensions  
Programmable power supply  
Pulse-skipping mode  
Arm®  
ASK  
PSM  
PWM  
QFOD  
RPP  
BPP  
Basic power profile  
Pulse-width modulator  
BMC  
CEP  
BiPhase mark code  
Q factor FOD  
Control error packet  
Received power packet  
CC  
Configuration channel  
Current sense amplifier  
Discontinuous-conduction mode  
Error amplifier  
RCP  
Reverse current protection  
Power receiver  
CSA  
Rx  
DCM  
EA  
SAR  
Successive approximation register  
Short circuit protection  
SCP  
EPP  
Extended power profile  
End power transfer  
SPI  
Serial peripheral interface  
Signal strength packet  
EPT  
SSP  
ESD  
Electrostatic discharge  
Field effect transistor  
SWD  
TCPWM  
Tx  
Serial wire debug, a test protocol  
Timer/counter pulse-width modulation  
Power transmitter  
FET  
FCCM  
Forced-continuous-conduction mode  
Universal asynchronous receiver  
transmitter  
FOD  
Foreign object detection  
UART  
FO  
Foreign object  
UFP  
USB  
UV  
Upstream facing port  
Universal serial bus  
Undervoltage  
FSK  
FW  
Frequency shift key  
Firmware  
GPIO  
HBM  
HS  
General-purpose I/O  
Human body model  
High speed  
WDT  
WIC  
WPC  
ZCD  
Watchdog timer  
Wakeup interrupt controller  
Wireless power consortium  
Zero-crossing detector  
2
I C  
Inter-integrated circuit  
Integrated circuit  
IC  
IMO  
IPT  
Internal main oscillator  
Inductive power transfer technology  
Linear drop out  
LDO  
MCU  
NTC  
NVIC  
OCP  
Opamp  
OTP  
OV  
Microcontroller unit  
Negative temperature coefficient  
Nested vectored interrupt controller  
Overcurrent protection  
Operational amplifier  
Over temperature protection  
Overvoltage  
OVP  
PCB  
PD  
Overvoltage protection  
Printed circuit board  
Power delivery  
Datasheet  
37 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Document conventions  
10  
Document conventions  
10.1  
Units of measure  
Table 25  
Symbol  
°C  
Units of measure  
Unit of measure  
degree Celsius  
Hz  
hertz  
KB  
1024 bytes  
kilohertz  
kHz  
k  
LSB  
MHz  
M  
µA  
kilo ohm  
least significant bit  
megahertz  
mega-ohm  
microampere  
microfarad  
microhenry  
microsecond  
microvolt  
microwatt  
milliampere  
millimeter  
millisecond  
millivolt  
µF  
µH  
µs  
µV  
µW  
mA  
mm  
ms  
mV  
nA  
nanoampere  
nanosecond  
nanovolt  
ohm  
ns  
nV  
%
percent  
pF  
picofarad  
second  
s
V
volt  
W
watt  
Datasheet  
38 of 40  
002-34241 Rev. *B  
2022-04-22  
Wireless charging IC (WLC) - Transmitter 15W with integrated  
USB Type-C PD controller  
Revision history  
Revision history  
Document  
Date of release  
Description of changes  
version  
*B  
2022-04-22  
Publish to web.  
Datasheet  
39 of 40  
002-34241 Rev. *B  
2022-04-22  
Please read the Important Notice and Warnings at the end of this document  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
For further information on the product, technology,  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”).  
Edition 2022-04-22  
Published by  
delivery terms and conditions and prices please  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
Infineon Technologies AG  
81726 Munich, Germany  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement of  
intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2022 Infineon Technologies AG.  
All Rights Reserved.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
In addition, any information given in this document  
is subject to customer’s compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and standards  
concerning customer’s products and any use of the  
product of Infineon Technologies in customer’s  
applications.  
Do you have a question about this  
document?  
Go to www.infineon.com/support  
authorized  
representatives  
of  
Infineon  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of the  
product or any consequences of the use thereof can  
reasonably be expected to result in personal injury.  
Document reference  
002-34241 Rev. *B  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

WLC1115-68LQXQT

WLC1115 无线充电发射器 IC,带 USB-PD、Buck、传感、软件及 Qi v1.3.2 系统解决方案
INFINEON

WLC60

WLC60 Heavy Duty LED Light - PWM Dimmable
BANNER

WLC60CG640GAR

WLC60 Heavy Duty LED Light
BANNER

WLC60CW340APWMQ

WLC60 Heavy Duty LED Light - PWM Dimmable
BANNER

WLC60CW340ARPWMQ

WLC60 Heavy Duty LED Light - PWM Dimmable
BANNER

WLC60CW340GAPWMQ

WLC60 Heavy Duty LED Light - PWM Dimmable
BANNER

WLC60CW340GARPWMQ

WLC60 Heavy Duty LED Light - PWM Dimmable
BANNER

WLC60CW640APWMQ

WLC60 Heavy Duty LED Light - PWM Dimmable
BANNER

WLC60CW640ARPWMQ

WLC60 Heavy Duty LED Light - PWM Dimmable
BANNER

WLC60CW640GAPWMQ

WLC60 Heavy Duty LED Light - PWM Dimmable
BANNER

WLC60CW640GARPWMQ

WLC60 Heavy Duty LED Light - PWM Dimmable
BANNER

WLC60XW340APWMQ

WLC60 Heavy Duty LED Light - PWM Dimmable
BANNER