V23848-C18-C56 [INFINEON]

iSFP-Intelligent Small Form-factor Pluggable SONET OC-3 IR-1 / SDH STM S-1.1 Multirate Applications up to 155 Mbit/s; ISFP - 智能小型可插拔SONET OC- 3 IR- 1 / SDH STM S- 1.1多速率应用高达155 Mbit / s的
V23848-C18-C56
型号: V23848-C18-C56
厂家: Infineon    Infineon
描述:

iSFP-Intelligent Small Form-factor Pluggable SONET OC-3 IR-1 / SDH STM S-1.1 Multirate Applications up to 155 Mbit/s
ISFP - 智能小型可插拔SONET OC- 3 IR- 1 / SDH STM S- 1.1多速率应用高达155 Mbit / s的

文件: 总30页 (文件大小:727K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Fiber Optics  
iSFP™ - Intelligent Small Form-factor Pluggable  
SONET OC-3 IR-1 / SDH STM S-1.1  
V23848-C18-C56  
V23848-C19-C56  
Multirate Applications up to 155 Mbit/s  
Single Mode 1310 nm Transceiver with LC™ Connector  
Features  
• Small Form-factor Pluggable (SFP) MSA compatible  
transceiver1)  
• Fully SFF-8472 compatible  
• Incorporating Intelligent – Digital Diagnostic  
Monitoring Interface  
• Internal calibration implementation  
• Advanced release mechanism  
• Easy access, even in belly to belly applications  
• Wire handle release for simplicity  
• Color coded blue tab (single mode)  
• PCI height compatible  
File: 1132  
• Excellent EMI performance  
• Separate and common chassis/signal ground module  
concepts available  
• RJ-45 style LC™ connector system  
• Single power supply (3.3 V)  
• Low power consumption  
File: 1133  
• Small size for high channel density  
• UL-94 V-0 certified  
• ESD Class 1C per JESD22-A114-B (MIL-STD 883D Method 3015.7)  
• According to FCC (Class B) and EN 55022  
• For distances of up to 21 km (see Supported Link Lengths)  
• Fabry Perot laser, PIN photo diode  
• Laser safety according to Class 1 FDA and IEC  
• AC/AC Coupling according to MSA  
• Suitable for multirate applications up to 155 Mbit/s  
• Fast Ethernet (FE) compatible  
• Extended operating temperature range of –40°C to 85°C  
• SFP evaluation kit V23848-S5-V4 available upon request  
• A press fit cage and cage plugs are available as accessory products from Infineon (see  
SFP Accessories)  
1)  
MSA documentation can be found at www.infineon.com/fiberoptics under Transceivers, SFP Transceivers.  
For ordering information see next page.  
iSFP™ is a trademark of Infineon Technologies. LC™ is a trademark of Lucent.  
Data Sheet  
1
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Pin Configuration  
Ordering Information  
Part Number  
Chassis/Signal Grounding Concept  
V23848-C18-C56  
V23848-C19-C56  
Common  
Separated  
Pin Configuration  
1
2
3
4
5
6
7
8
9
10  
V
T
20  
V
T
EE  
EE  
19  
18  
17  
16  
15  
14  
13  
12  
11  
Tx Fault  
TD  
Tx Disable  
TD+  
MOD-DEF(2)  
MOD-DEF(1)  
V
V
T
T
EE  
CC  
CC  
MOD-DEF(0)  
Rate Select  
V
V
R
R
EE  
LOS  
RD+  
V
V
R
R
RD−  
EE  
V
R
EE  
EE  
Bottom of transceiver (as viewed  
through top of transceiver)  
Top of transceiver  
File: 1306  
Figure 1  
iSFP™ Transceiver Electrical Pad Layout  
Data Sheet  
2
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Pin Configuration  
Pin Description  
Pin No. Name  
Logic Level  
N/A  
Function  
1
VEET  
Transmitter Ground1)  
Transmitter Fault Indication2) 8)  
Transmitter Disable3)  
Module Definition 24) 8)  
Module Definition 15) 8)  
Module Definition 06) 8)  
Not connected  
2
Tx Fault  
Tx Disable  
MOD-DEF(2)  
MOD-DEF(1)  
MOD-DEF(0)  
Rate Select  
LOS  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
N/A  
3
4
5
6
7
N/A  
8
LVTTL  
N/A  
Loss Of Signal7) 8)  
Receiver Ground1)  
9
VEER  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VEER  
N/A  
Receiver Ground1)  
Receiver Ground1)  
Inv. Received Data Out9)  
Received Data Out9)  
Receiver Ground1)  
VEER  
N/A  
RD–  
LVPECL  
LVPECL  
N/A  
RD+  
VEER  
VCCR  
N/A  
Receiver Power  
VCCT  
N/A  
Transmitter Power  
Transmitter Ground1)  
Transmit Data In10)  
Inv. Transmit Data In10)  
Transmitter Ground1)  
VEET  
N/A  
TD+  
LVPECL  
LVPECL  
N/A  
TD–  
VEET  
1)  
2)  
3)  
4)  
5)  
6)  
7)  
Common transmitter and receiver ground within the module.  
A high signal indicates a laser fault of some kind and that laser is switched off.  
A low signal switches the transmitter on. A high signal or when not connected switches the transmitter off.  
MOD-DEF(2) is the data line of two wire serial interface for serial ID.  
MOD-DEF(1) is the clock line of two wire serial interface for serial ID.  
MOD-DEF(0) is grounded by the module to indicate that the module is present.  
A low signal indicates normal operation, light is present at receiver input. A high signal indicates the received  
optical power is below the worst case receiver sensitivity.  
Should be pulled up on host board to VCC by 4.7 - 10 k.  
AC coupled inside the transceiver. Must be terminated with 100 differential at the user SERDES.  
AC coupled and 100 differential termination inside the transceiver.  
8)  
9)  
10)  
Data Sheet  
3
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Description  
Description  
The Infineon OC-3 transceiver – part of Infineon iSFP™ family – is compatible to the  
Physical Medium Depend (PMD) sublayer and baseband medium compatible to SONET  
OC-3 IR-1 (Telcordia GR-253-CORE) and SDH STM-1 S-1.1 (ITU-T G.957).  
The appropriate fiber optic cable is 9 µm single mode fiber with LC™ connector.  
Supported Link Lengths  
Category within Standard  
Reach  
max.1)  
Unit  
min.  
SDH STM-1 S-1.1  
0
0
15,000  
21,000  
meters  
SONET OC-3 IR-1  
1)  
Maximum reach over fiber type SM-G.652 as defined by ITU-T G.957 and Telcordia GR-253-CORE standards.  
Longer reach possible depending upon link implementation.  
The Infineon iSFP™ single mode transceiver is a single unit comprised of a transmitter,  
a receiver, and an LC™ receptacle.  
This transceiver supports the LC™ connectorization concept. It is compatible with RJ-45  
style backpanels for high end datacom and telecom applications while providing the  
advantages of fiber optic technology.  
The Infineon single mode OC-3 transceiver is a single unit comprised of a transmitter, a  
receiver, and an LC receptacle. This design frees the customer from many alignment  
and PC board layout concerns. The module is designed for low cost LAN and  
applications with datarates from 10 to 155 Mbit/s. It can be used as the network end  
device interface in workstations, servers, and storage devices, and in a broad range of  
network devices such as bridges, routers, and intelligent hubs, as well as local and wide  
area ATM switches.  
This transceiver operates at up to OC-3 datarates from a single power supply (+3.3 V).  
The 100 differential data inputs and outputs are LVPECL and CML compatible.  
Data Sheet  
4
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Description  
Functional Description of iSFP™ Transceiver  
This transceiver is designed to transmit serial data via single mode cable.  
Tx Fault  
Automatic  
Shut-Down  
Tx Disable  
Tx Coupling Unit  
TD+  
TD−  
Laser  
Driver  
e/o  
Laser  
Power  
Control  
o/e  
Single Mode Fiber  
Monitor  
Rx Coupling Unit  
o/e  
RD+  
Limiting  
Amp  
TIA  
RD−  
LOS  
Digital Diagnostic  
Monitoring Interface  
MOD-DEF(2)  
MOD-DEF(1)  
EEPROM  
Alarm and  
Warning Flags  
File: 1354  
Figure 2  
Functional Diagram  
The receiver component converts the optical serial data into CML compatible electrical  
data (RD+ and RD–). The Loss Of Signal (LOS) shows whether an optical signal is  
present.  
The transmitter converts CML compatible electrical serial data (TD+ and TD–) into  
optical serial data. Data lines are differentially 100 terminated.  
The transmitter contains a laser driver circuit that drives the modulation and bias current  
of the laser diode. The currents are controlled by a power control circuit to guarantee  
constant output power of the laser over temperature and aging. The power control uses  
the output of the monitor PIN diode (mechanically built into the laser coupling unit) as a  
controlling signal, to prevent the laser power from exceeding the operating limits.  
Single fault condition is ensured by means of an integrated automatic shutdown circuit  
that disables the laser when it detects laser fault to guarantee the laser Eye Safety.  
Data Sheet  
5
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Description  
The transceiver contains a supervisory circuit to control the power supply. This circuit  
makes an internal reset signal whenever the supply voltage drops below the reset  
threshold. It keeps the reset signal active for at least 140 milliseconds after the voltage  
has risen above the reset threshold. During this time the laser is inactive.  
A low signal on TxDis enables transmitter. If TxDis is high or not connected the  
transmitter is disabled.  
An enhanced Digital Diagnostic Monitoring Interface (Intelligent) has been incorporated  
into the Infineon Small Form-factor Pluggable (SFP) transceiver. This allows real time  
access to transceiver operating parameters, based on the SFF-8472.  
This transceiver features Internal Calibration. Measurements are calibrated over  
operating temperature and voltage and must be interpreted as defined in SFF-8472.  
The transceiver generates this diagnostic data by digitization of internal analog signals  
monitored by a new diagnostic Integrated Circuit (IC).  
This diagnostic IC has inbuilt sensors to include alarm and warning thresholds. These  
threshold values are set during device manufacture and therefore allow the user to  
determine when a particular value is outside of its operating range.  
Alarm and Warning Flags are given. Alarm Flags indicate conditions likely to be  
associated with an inoperational link and cause for immediate action. Warning Flags  
indicate conditions outside the normally guaranteed bounds but not necessarily causes  
of immediate link failures.  
These enhanced features are in addition to the existing SFP features provided by the  
manufacturer i.e. serial number and other vendor specific data.  
The serial ID interface defines a 256 byte memory map in EEPROM, accessible over a  
2 wire, serial interface at the 8 bit address 1010000X (A0h).  
The Digital Diagnostic Monitoring Interface makes use of the 8 bit address 1010001X  
(A2h), so the originally defined serial ID memory map remains unchanged and is  
therefore backward compatible.  
Digital Diagnostic Monitoring Parameters  
Parameter  
Accuracy SFF-8472  
Accuracy Actual  
±2 dB  
Tx Optical Power  
Rx Optical Power  
Bias Current  
±3 dB  
±3 dB  
±10%  
±3%  
±3 dB  
±10%  
Power Supply Voltage  
Transceiver Temperature  
±3%  
±3°C  
±3°C  
Data Sheet  
6
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Description  
Regulatory Compliance (EMI)  
Feature  
Standard  
EIA/JESD22-A114-B  
Comments  
ESD:  
Class 1C  
Electrostatic Discharge (MIL-STD 883D  
to the Electrical Pins  
method 3015.7)  
Immunity:  
EN 61000-4-2  
IEC 61000-4-2  
Discharges ranging from ±2 kV to  
±15 kV on the receptacle cause no  
damage to transceiver (under  
recommended conditions).  
Against Electrostatic  
Discharge (ESD) to the  
Duplex LC Receptacle  
Immunity:  
Against Radio  
Frequency  
EN 61000-4-3  
IEC 61000-4-3  
With a field strength of 10 V/m,  
noise frequency ranges from  
10 MHz to 2 GHz. No effect on  
transceiver performance between  
the specification limits.  
Electromagnetic Field  
Emission:  
FCC 47 CFR Part 15, Noise frequency range:  
Radiated Field Strength Class B  
CISPR 22  
30 MHz to 18 GHz  
EN 55022 Class B  
1)  
This device complies with part 15 of  
the FCC Rules2). Operation is  
subject to the following two  
conditions:  
iSFP™  
V23848-C18-C56  
Tested To Comply  
With FCC Standards  
FOR HOME OR OFFICE USE  
File: 1407  
1 This device may not cause  
harmful interference.  
2 This device must accept any  
interference received, including  
interference that may cause  
undesired operation.  
1)  
2)  
Only for V23848-C18-C56.  
Any kind of modification not expressly approved by Infineon Technologies may affect the regulatory  
compliance of the concerned product. As a consequence thereof this could void the user’s authority to operate  
the equipment.  
Data Sheet  
7
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Technical Data  
Technical Data  
Absolute Maximum Ratings  
Parameter  
Symbol  
Limit Values  
Unit  
min.  
max.  
Data Input Voltage  
VID max  
VIDpk-pk  
TS  
VCC+0.5  
V
Differential Data Input Voltage Swing  
Storage Ambient Temperature  
Operating Case Temperature1)  
Storage Relative Humidity  
Operating Relative Humidity  
Supply Voltage  
5
V
–40  
–40  
5
85  
85  
95  
85  
4
°C  
°C  
%
TC  
RHs  
RHo  
5
%
VCC max  
Idata  
V
Data Output Current  
50  
3
mA  
dBm  
Receiver Optical Input Power  
RxP max  
1)  
Operating case temperature measured at transceiver reference point (in cage through 2nd centre hole from  
rear, see Figure 9).  
Exceeding any one of these values may permanently destroy the device.  
Data Sheet  
8
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Technical Data  
Electrical Characteristics (VCC = 2.97 V to 3.63 V, TC = –40°C to 85°C)  
Parameter  
Symbol  
Values  
typ.  
Unit  
min.  
max.  
Common  
Supply Voltage  
In-rush Current1)  
Power Dissipation  
Transmitter  
VCCVEE 2.97  
3.3  
3.63  
30  
1
V
IIR max  
P
mA  
W
Differential Data Input Voltage VIDpk-pk 500  
3200  
mV  
Swing2)  
Tx Disable Voltage  
Tx Enable Voltage  
Tx Fault High Voltage  
Tx Fault Low Voltage  
Supply Current3)  
Receiver  
TxDis  
TxEn  
TxFH  
TxFL  
ITx  
2
VCC  
0.8  
V
VEE  
2.4  
VEE  
V
VCC  
0.5  
V
V
150  
mA  
Differential Data Output Voltage VODpk-pk 500  
1000  
mV  
Swing4)  
LOS Active  
LOS Normal  
Rise Time5)  
Fall Time5)  
Power Supply Noise Rejection6) PSNR  
Supply Current3)  
LOSA  
LOSN  
tR-Rx  
2.4  
VCC  
V
VEE  
0.5  
V
120  
120  
100  
ps  
tF-Rx  
ps  
mVpp  
mA  
7)  
IRx  
130  
1)  
Measured with MSA recommended supply filter network (Figure 7). Maximum value above that of the steady  
state value.  
Internally AC coupled. Typical 100 differential input impedance.  
MSA defines maximum current at 300 mA.  
Internally AC coupled. Load 50 to GND or 100 differential. For dynamic measurement a tolerance of  
50 mV should be added.  
Measured values are 20% - 80%.  
2)  
3)  
4)  
5)  
6)  
Measured using a 20 Hz to 1 MHz sinusoidal modulation with the MSA recommended power supply filter  
network (Figure 7) in place. A change in sensitivity of less than 1 dB can be typically expected.  
Supply current excluding Rx output load.  
7)  
Data Sheet  
9
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Technical Data  
Optical Characteristics (VCC = 2.97 V to 3.63 V, TC = –40°C to 85°C)  
Parameter  
Symbol  
Values  
typ.  
Unit  
min.  
max.  
Transmitter  
Launched Power (Average)1)  
Extinction Ratio (Dynamic)  
Center Wavelength  
PO  
ER  
λC  
σI  
–15  
8.2  
–8  
dBm  
dB  
1270  
1355  
2.5  
nm  
Spectral Width (rms)  
nm  
Tx Disable Laser Output Power PO-TxDis  
–50  
dBm  
Optical Eye Mask2)  
According to standards  
Jitter Generation (pk-pk)3)  
Jitter Generation (rms)3)  
Rise Time4)  
Jpk-pk Tx  
Jrms Tx  
tR-Tx  
0.033  
0.001  
40  
0.045  
UI  
UI  
ps  
ps  
0.0025  
Fall Time4)  
tF-Tx  
155  
Receiver5)  
Saturation (Average Power)6)  
Sensitivity (Average Power)7)  
@ 155 Mbit/s  
PSAT  
PIN  
–8  
dBm  
dBm  
–32  
–32  
–35  
–28  
–28  
–28  
@ 125 Mbit/s  
@ 10 Mbit/s8)  
LOS Assert Level9)  
LOS Deassert Level9)  
LOS Hysteresis9)  
PLOSA  
PLOSD  
–39  
dBm  
dBm  
dB  
–30  
PLOSA  
0.5  
3
PLOSD  
Input Center Wavelength  
λC  
1260  
1580  
nm  
1)  
Into single mode fiber, 9 µm diameter.  
2)  
Transmitter eye is according to ITU-T G.957 S-1.1 and SONET OC-3 IR-1. Measured with 10% eye mask  
margin.  
3)  
The transceiver is specified to meet the SONET/SDH Jitter performance as outlined in ITU-T G.958 and  
Telcordia GR-253. Jitter Generation is defined as the amount of jitter that is generated by the transceiver. The  
Jitter Generation specifications are referenced to the optical OC-3 signals. If no or minimum jitter is applied to  
the electrical inputs of the transmitter, then Jitter Generation can simply be defined as the amount of jitter on  
the Tx optical output. The SONET specifications for Jitter Generation are 0.01 UI rms, maximum and 0.1 UI  
pk-pk, maximum. For SDH, 10 mUI rms, maximum. Both are measured with a 12 kHz - 1.3 MHz filter in line.  
A UI is a Unit Interval, which is equivalent to one bit slot.  
Values are 20% - 80%, filtered and measured at nominal data rate.  
Receiver characteristics are measured with a worst case reference laser.  
At 9 dB Extinction Ratio of the incoming signal.  
4)  
5)  
6)  
Data Sheet  
10  
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Technical Data  
7)  
Minimum average optical power at which the BER is less than 1x10–10. Measured with a 223–1 NRZ PRBS as  
recommended by ANSI T1E1.2, SONET, and ITU-T G.957.  
8B/10B, K28.5 and equivalent coding only.  
8)  
9)  
See Figure 3.  
1
LOS Level  
0
LOS Assert  
(Minimum)  
Hysteresis  
(Minimum)  
LOS Deassert  
(Maximum)  
Received Optical  
Power Level  
[dBm]  
LOS / Hysteresis  
(Typical)  
File: 1522  
Figure 3  
Data Sheet  
11  
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Technical Data  
Timing of Control and Status I/O  
Parameter  
Symbol  
Values  
min. max.  
Unit  
Condition  
Tx Disable  
Assert Time  
t_off  
10  
µs  
Time from rising edge of Tx  
Disable to when the optical  
output falls below 10% of  
nominal  
Tx Disable  
Negate Time  
t_on  
1
ms  
ms  
Time from falling edge of Tx  
Disable to when the modulated  
optical output rises above 90%  
of nominal  
Time to Initialize, t_init  
Including Reset  
of Tx Fault  
300  
100  
From power on or negation of  
Tx Fault using Tx Disable  
Tx Fault Assert t_fault  
Time  
µs  
µs  
µs  
µs  
Time from fault to Tx Fault on  
Tx Disable to  
Reset  
t_reset  
10  
Time Tx Disable must be held  
high to reset Tx Fault  
LOS Assert Time t_loss_on  
100  
100  
Time from LOS state to Rx  
LOS assert  
LOS Deassert  
Time  
t_loss_off  
Time from non-LOS state to Rx  
LOS deassert  
Data Sheet  
12  
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Technical Data  
I/O Timing of Soft Control and Status Functions  
Parameter  
Symbol  
Max.  
Unit  
Condition  
Value  
Tx Disable assert  
time  
t_off  
100  
100  
300  
ms  
Time from Tx Disable bit set1)  
until optical output falls below  
10% of nominal  
Tx Disable deassert t_on  
time  
ms  
ms  
Time from Tx Disable bit  
cleared until optical output  
rises above 90% of nominal  
Time to initialize,  
including reset of  
Tx Fault  
t_init  
Time from power on or  
negation of Tx Fault using  
Tx Disable until transmitter  
output is stable2)  
Tx Fault assert time t_fault  
100  
100  
100  
100  
ms  
ms  
ms  
ms  
Time from fault to Tx Fault bit  
set  
LOS assert time  
t_loss_on  
Time from LOS state to  
Rx LOS bit set  
LOS deassert time t_loss_off  
Time from non-LOS state to  
Rx LOS bit cleared  
Rate select change t_rate_sel  
time3)  
Time from change of state of  
Rate Select bit1) until receiver  
bandwidth is in conformance  
with appropriate specification  
Serial ID clock rate4) f_serial_clock 400  
kHz  
ms  
N/A  
Analog parameter  
data ready  
t_data  
1000  
From power on to data ready,  
bit 0 of byte 110 set  
Serial bus hardware t_serial  
ready  
300  
ms  
Time from power on until  
module is ready for data  
transmission  
1)  
Measured from falling clock edge after stop bit of write transaction.  
2)  
3)  
4)  
See Gigabit Interface Converter (GBIC). SFF-0053, Rev. 5.5, September 27, 2000.  
Not implemented.  
The maximum clock rate of the serial interface is defined by the I2C bus interface standard.  
Data Sheet  
13  
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Eye Safety  
Eye Safety  
This laser based single mode transceiver is a Class 1 product. It complies with IEC  
60825-1/A2: 2001 and FDA performance standards for laser products (21 CFR 1040.10  
and 1040.11) except for deviations pursuant to Laser Notice 50, dated July 26, 2001.  
CLASS 1 LASER PRODUCT  
To meet laser safety requirements the transceiver shall be operated within the Absolute  
Maximum Ratings.  
Note: All adjustments have been made at the factory prior to shipment of the devices.  
No maintenance or alteration to the device is required.  
Tampering with or modifying the performance of the device will result in voided  
product warranty.  
Failure to adhere to the above restrictions could result in a modification that is  
considered an act of “manufacturing”, and will require, under law, recertification of  
the modified product with the U.S. Food and Drug Administration (ref. 21 CFR  
1040.10 (i)).  
Laser Emission Data  
Wavelength  
1310 nm  
Maximum total output power  
15.6 mW / 11.9 dBm  
(as defined by IEC: 7 mm aperture at 14 mm distance)  
Beam divergence (full angle) / NA (half angle)  
11° / 0.1 rad  
FDA  
IEC  
Complies with 21 CFR  
1040.10 and 1040.11  
Class 1 Laser Product  
File: 1401  
Figure 4  
Required Labels  
Laser  
Emission  
Tx  
Top view  
Rx  
File: 1333  
Figure 5  
Laser Emission  
Data Sheet  
14  
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Application Notes  
Application Notes  
EMI Recommendations  
To avoid electromagnetic radiation exceeding the required limits set by the standards,  
please take note of the following recommendations.  
When Gigabit switching components are found on a PCB (e.g. multiplexer,  
serializer-deserializer, clock data recovery, etc.), any opening of the chassis may leak  
radiation; this may also occur at chassis slots other than that of the device itself. Thus  
every mechanical opening or aperture should be as small as feasible and its length  
carefully considered.  
On the board itself, every data connection should be an impedance matched line (e.g.  
strip line or coplanar strip line). Data (D) and Data-not (Dn) should be routed  
symmetrically. Vias should be avoided. Where internal termination inside an IC or a  
transceiver is not present, a line terminating resistor must be provided. The decision of  
how best to establish a ground depends on many boundary conditions. This decision  
may turn out to be critical for achieving lowest EMI performance. At RF frequencies the  
ground plane will always carry some amount of RF noise. Thus the ground and VCC  
planes are often major radiators inside an enclosure. As a general rule, for small systems  
such as PCI cards placed inside poorly shielded enclosures, the common ground  
scheme has often proven to be most effective in reducing RF emissions. In a common  
ground scheme, the PCI card becomes more equipotential with the chassis ground. As  
a result, the overall radiation will decrease. In a common ground scheme, it is strongly  
recommended to provide a proper contact between signal ground and chassis ground at  
every location where possible. This concept is designed to avoid hotspots which are  
places of highest radiation, caused when only a few connections between chassis and  
signal grounds exist. Compensation currents would concentrate at these connections,  
causing radiation. However, as signal ground may be the main cause for parasitic  
radiation, connecting chassis ground and signal ground at the wrong place may result in  
enhanced RF emissions.  
For example, connecting chassis ground and signal ground at a front  
panel/bezel/chassis by means of a fiber optic transceiver/cage may result in a large  
amount of radiation especially where combined with an inadequate number of grounding  
points between signal ground and chassis ground. Thus the transceiver becomes a  
single contact point increasing radiation emissions. Even a capacitive coupling between  
signal ground and chassis ground may be harmful if it is too close to an opening or an  
aperture. For a number of systems, enforcing a strict separation of signal ground from  
chassis ground may be advantageous, providing the housing does not present any slots  
or other discontinuities. This separate ground concept seems to be more suitable in large  
systems where appropriate shielding measures have also been implemented.  
Data Sheet  
15  
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Application Notes  
In many situations the question on which ground concept to implement in the design  
cannot be easily decided prior to the receipt of first EMI measurement results. Infineon  
thus offers both module versions; V23848-Xx8-Xxx for common ground and  
V23848-Xx9-Xxx for separate ground concept.  
The return path of RF current must also be considered. Thus a split ground plane  
between Tx and Rx paths may result in severe EMI problems irrespective of which  
module ground concept has been applied.  
The bezel opening for a transceiver should be sized so that all contact springs of the  
transceiver cage make good electrical contact with the face plate. Please consider that  
the PCB may behave like a dielectric waveguide. With a dielectric constant of 4, the  
wavelength of the harmonics inside the PCB will be half of that in free space. Thus even  
the smallest PCBs may have unexpected resonances.  
Large systems can have many openings in the front panel for SFP transceivers. In  
typical applications, not all of these ports will hold transceivers; some may be  
intentionally left empty. These empty slots may emit significant amounts of radiation.  
Thus it is recommended that empty ports be plugged with an EMI plug as shown in  
Figure 6. Infineon offers an EMI/dust plug, P/N V23818-S5-B1.  
Data Sheet  
16  
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Application Notes  
SFP Accessories  
Cage:  
Infineon Technologies  
Host Board Connector:  
Tyco Electronics  
Part Number: V23838-S5-N1/V23838-S5-N1-BB Part Number: 1367073-1  
Cage EMI/Dust Plug:  
Cage Dust Plug:  
Infineon Technologies  
Part Number: V23818-S5-B1  
Infineon Technologies  
Part Number: V23818-S5-B2  
CAGE  
HOST BOARD  
CONNECTOR  
CAGE EMI/DUST PLUG  
iSFP™  
HOST BOARD  
DUST PLUG  
File: 1521  
Figure 6  
Data Sheet  
17  
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Application Notes  
EEPROM Serial ID Memory Contents (A0h), V23848-C18-C56  
Addr. Hex ASCII Name/Description  
Addr. Hex ASCII Name/Description  
0
03  
04  
07  
00  
10  
02  
00  
00  
00  
00  
00  
05  
02  
00  
0F  
96  
00  
00  
00  
00  
49  
6E  
66  
69  
6E  
65  
6F  
6E  
20  
46  
4F  
20  
Identifier  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
47  
6D  
62  
48  
00  
00  
03  
19  
56  
32  
33  
38  
34  
38  
2D  
43  
31  
38  
2D  
43  
35  
36  
20  
20  
46  
33  
41  
39  
05  
1E  
00  
BA  
G
m
b
Vendor name  
1
Extended identifier  
Connector  
2
3
Transceiver optical  
compatibility  
H
4
Reserved  
5
Vendor OUI  
6
7
8
V
2
3
8
4
8
-
Vendor part number  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Encoding  
BR, nominal  
Reserved  
Length (9 µm) - km  
Length (9 µm)  
Length (50 µm)  
Length (62.5 µm)  
Length (copper)  
Reserved  
C
1
8
-
C
5
6
I
Vendor name  
n
f
i
n
e
o
n
F
3
A
9
Vendor revision,  
product status  
dependent  
Wavelength  
Reserved  
F
O
Check sum of  
bytes 0 - 62  
Data Sheet  
18  
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Application Notes  
EEPROM Serial ID Memory Contents (A0h), V23848-C18-C56 (cont’d)  
Addr. Hex ASCII Name/Description  
Addr. Hex ASCII Name/Description  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
00  
1A  
00  
5E  
Transceiver signal  
options  
96  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
Vendor specific  
EEPROM  
97  
98  
BR, maximum  
99  
BR, minimum  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
Vendor serial number  
20  
20  
20  
20  
20  
20  
20  
20  
Vendor manufacturing  
date code  
20  
20  
68  
Diagnostic monitoring  
type  
93  
94  
95  
B0  
01  
125  
126  
127  
20  
20  
20  
Enhanced options  
SFF-8472 compliance  
Low order 8 bits of the  
sum of the contents of  
all the bytes from byte  
64 to byte 94, inclusive  
128 - 00  
255  
Vendor specific.  
Reserved for future  
use  
Data Sheet  
19  
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Application Notes  
EEPROM Serial ID Memory Contents (A0h), V23848-C19-C56  
Addr. Hex ASCII Name/Description  
Addr. Hex ASCII Name/Description  
0
03  
04  
07  
00  
10  
02  
00  
00  
00  
00  
00  
05  
02  
00  
0F  
96  
00  
00  
00  
00  
49  
6E  
66  
69  
6E  
65  
6F  
6E  
20  
46  
4F  
20  
Identifier  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
47  
6D  
62  
48  
00  
00  
03  
19  
56  
32  
33  
38  
34  
38  
2D  
43  
31  
39  
2D  
43  
35  
36  
20  
20  
46  
33  
41  
39  
05  
1E  
00  
BB  
G
m
b
Vendor name  
1
Extended identifier  
Connector  
2
3
Transceiver optical  
compatibility  
H
4
Reserved  
5
Vendor OUI  
6
7
8
V
2
3
8
4
8
-
Vendor part number  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Encoding  
BR, nominal  
Reserved  
Length (9 µm) - km  
Length (9 µm)  
Length (50 µm)  
Length (62.5 µm)  
Length (copper)  
Reserved  
C
1
9
-
C
5
6
I
Vendor name  
n
f
i
n
e
o
n
F
3
A
9
Vendor revision,  
product status  
dependent  
Wavelength  
Reserved  
F
O
Check sum of  
bytes 0 - 62  
Data Sheet  
20  
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Application Notes  
EEPROM Serial ID Memory Contents (A0h), V23848-C19-C56 (cont’d)  
Addr. Hex ASCII Name/Description  
Addr. Hex ASCII Name/Description  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
00  
1A  
00  
5E  
Transceiver signal  
options  
96  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
Vendor specific  
EEPROM  
97  
98  
BR, maximum  
99  
BR, minimum  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
Vendor serial number  
20  
20  
20  
20  
20  
20  
20  
20  
Vendor manufacturing  
date code  
20  
20  
68  
Diagnostic monitoring  
type  
93  
94  
95  
B0  
01  
125  
126  
127  
20  
20  
20  
Enhanced options  
SFF-8472 compliance  
Low order 8 bits of the  
sum of the contents of  
all the bytes from byte  
64 to byte 94, inclusive  
128 - 00  
255  
Vendor specific.  
Reserved for future  
use  
Data Sheet  
21  
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Application Notes  
Digital Diagnostic Monitoring Interface – Intelligent  
Alarm and Warning Thresholds (2-Wire Address A2h)  
Address # Bytes Name  
Description  
MSB at low address  
Value  
95°C1)  
00 - 01  
02 - 03  
04 - 05  
06 - 07  
08 - 09  
10 - 11  
12 - 13  
14 - 15  
16 - 17  
18 - 19  
20 - 21  
22 - 23  
24 - 25  
26 - 27  
28 - 29  
30 - 31  
32 - 33  
34 - 35  
36 - 37  
38 - 39  
40 - 55  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
16  
Temp High Alarm  
Temp Low Alarm  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
–40°C1)  
90°C1)  
–35°C1)  
3.7 V2)  
2.85 V2)  
3.63 V2)  
2.97 V2)  
70 mA  
Temp High Warning  
Temp Low Warning  
Voltage High Alarm  
Voltage Low Alarm  
Voltage High Warning  
Voltage Low Warning  
Bias High Alarm  
Bias Low Alarm  
4 mA  
Bias High Warning  
Bias Low Warning  
Tx Power High Alarm  
Tx Power Low Alarm  
Tx Power High Warning  
Tx Power Low Warning  
Rx Power High Alarm  
Rx Power Low Alarm  
Rx Power High Warning  
Rx Power Low Warning  
Reserved  
60 mA  
5 mA  
–7 dBm  
–16 dBm  
–8 dBm  
–15 dBm  
–7 dBm  
–32 dBm  
–8 dBm  
–28 dBm  
Reserved for future  
monitored quantities  
1)  
A delta exists between actual transceiver temperature and value shown as measurement is taken internal to  
an IC located on the underside of the iSFP™ PCB.  
Transceiver voltage measured after input filter with typical 0.1 V voltage drop.  
2)  
Data Sheet  
22  
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Application Notes  
Calibration Constants for External Calibration Option (2-Wire Address A2h)  
Address # Bytes Name  
Description  
Value  
56 - 59  
60 - 63  
64 - 67  
68 - 71  
72 - 75  
76 - 77  
4
4
4
4
4
2
Rx_PWR (4)  
Rx_PWR (3)  
Rx_PWR (2)  
Rx_PWR (1)  
Rx_PWR (0)  
Tx_I (Slope)  
Single precision floating point  
calibration data, Rx optical power.  
0
0
0
1
0
1
Fixed decimal (unsigned)  
calibration data, laser bias current.  
78 - 79  
80 - 81  
82 - 83  
84 - 85  
86 - 87  
88 - 89  
90 - 91  
2
2
2
2
2
2
2
Tx_I (Offset)  
Fixed decimal (signed two’s  
complement) calibration data,  
laser bias current.  
0
1
0
1
0
1
0
Tx_PWR (Slope) Fixed decimal (unsigned)  
calibration data, transmitter  
coupled output power.  
Tx_PWR (Offset) Fixed decimal (signed two’s  
complement) calibration data,  
transmitter coupled output power.  
T (Slope)  
T (Offset)  
V (Slope)  
V (Offset)  
Fixed decimal (unsigned)  
calibration data, internal module  
temperature.  
Fixed decimal (signed two’s  
complement) calibration data,  
internal module temperature.  
Fixed decimal (unsigned)  
calibration data, internal module  
supply voltage.  
Fixed decimal (signed two’s  
complement) calibration data,  
internal module supply voltage.  
92 - 94  
95  
3
1
Reserved  
Reserved  
Check sum  
Byte 95 contains the low order  
8 bits of the sum of bytes 0 - 94.  
Data Sheet  
23  
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Application Notes  
A/D Values and Status Bits (2-Wire Address A2h)  
Byte Bit Name Description  
Converted Analog Values. Calibrated 16 Bit Data.  
96  
All  
Temperature MSB  
Internally measured module  
temperature1)  
97  
98  
All  
All  
Temperature LSB  
VCC MSB  
Internally measured supply voltage  
in transceiver  
99  
All  
All  
All  
All  
All  
All  
All  
All  
VCC LSB  
100  
101  
102  
103  
104  
105  
106  
Tx Bias MSB  
Tx Bias LSB  
Tx Power MSB  
Tx Power LSB  
Rx Power MSB  
Rx Power LSB  
Reserved MSB  
Internally measured Tx Bias Current  
Measured Tx output power  
Measured Rx input power  
Reserved for 1st future definition of  
digitized analog input  
107  
108  
109  
All  
All  
All  
Reserved LSB  
Reserved MSB  
Reserved LSB  
Reserved for 1st future definition of  
digitized analog input  
Reserved for 2nd future definition of  
digitized analog input  
Reserved for 2nd future definition of  
digitized analog input  
Optional Status/Control Bits  
110  
7
Tx Disable State2)  
Digital state of the Tx Disable Input  
Pin  
110  
6
Soft Tx Disable2)  
Read/write bit that allows software  
disable of laser. Writing 1 disables  
laser  
110  
110  
5
4
Reserved  
Rx Rate Select State2)  
Digital state of the SFP Rx Rate  
Select Input Pin  
110  
3
Soft Rx Rate Select2)  
Read/write bit that allows software  
Rx rate select. Writing 1 selects full  
bandwidth operation. Not  
implemented.  
Data Sheet  
24  
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Application Notes  
A/D Values and Status Bits (2-Wire Address A2h) (cont’d)  
Byte  
Bit  
Name  
Description  
110  
2
Tx Fault  
Digital state of the Tx Fault Output  
Pin  
110  
110  
1
0
LOS  
Digital state of the LOS Output Pin  
Data_Ready_Bar  
Indicates transceiver has achieved  
power up and data is ready  
111  
7 - 0  
Reserved  
Reserved  
1)  
Temperature measurement is performed on an IC located on the underside of the iSFP™ PCB.  
Not implemented.  
2)  
Data Sheet  
25  
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Application Notes  
Alarm and Warning Flags (2-Wire Address A2h)  
Byte  
Bit  
Name  
Description  
112  
7
Temp High Alarm  
Set when internal temperature  
exceeds high alarm level  
112  
112  
112  
112  
112  
112  
112  
113  
113  
6
5
4
3
2
1
0
7
6
Temp Low Alarm  
Set when internal temperature is  
below low alarm level  
VCC High Alarm  
Set when internal supply voltage  
exceeds high alarm level  
VCC Low Alarm  
Set when internal supply voltage is  
below low alarm level  
Tx Bias High Alarm  
Tx Bias Low Alarm  
Tx Power High Alarm  
Tx Power Low Alarm  
Rx Power High Alarm  
Rx Power Low Alarm  
Set when Tx Bias current exceeds  
high alarm level  
Set when Tx Bias current is below  
low alarm level  
Set when Tx output power exceeds  
high alarm level  
Set when Tx output power is below  
low alarm level  
Set when received power exceeds  
high alarm level  
Set when received power is below  
low alarm level  
113  
113  
113  
113  
113  
113  
114  
115  
116  
5
Reserved Alarm  
Reserved Alarm  
Reserved Alarm  
Reserved Alarm  
Reserved Alarm  
Reserved Alarm  
Reserved  
4
3
2
1
0
All  
All  
7
Reserved  
Temp High Warning  
Set when internal temperature  
exceeds high warning level  
116  
116  
6
5
Temp Low Warning  
Set when internal temperature is  
below low warning level  
VCC High Warning  
Set when internal supply voltage  
exceeds high warning level  
Data Sheet  
26  
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Application Notes  
Alarm and Warning Flags (2-Wire Address A2h) (cont’d)  
Byte  
Bit  
Name  
Description  
116  
4
VCC Low Warning  
Set when internal supply voltage is  
below low warning level  
116  
116  
116  
116  
117  
117  
3
2
1
0
7
6
Tx Bias High Warning  
Tx Bias Low Warning  
Tx Power High Warning  
Tx Power Low Warning  
Rx Power High Warning  
Rx Power Low Warning  
Set when Tx bias current exceeds  
high warning level  
Set when Tx bias current is below  
low warning level  
Set when Tx output power exceeds  
high warning level  
Set when Tx output power is below  
low warning level  
Set when received power exceeds  
high warning level  
Set when received power is below  
low warning level  
117  
117  
117  
117  
117  
117  
118  
119  
5
Reserved Warning  
Reserved Warning  
Reserved Warning  
Reserved Warning  
Reserved Warning  
Reserved Warning  
Reserved  
4
3
2
1
0
All  
All  
Reserved  
Vendor Specific Memory Addresses (2-Wire Address A2h)  
Address # Bytes Name  
Description  
120 -127 8  
Vendor Specific  
Vendor specific  
User EEPROM (2-Wire Address A2h)  
Address # Bytes Name  
Description  
128 - 247 120  
248 - 255 8  
User EEPROM  
Vendor Specific  
User writable EEPROM  
Vendor specific control functions  
Data Sheet  
27  
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Application Notes  
Single Mode 1310 nm iSFP™ Transceiver, AC/AC TTL  
Host Board  
Infineon  
iSFP™  
3.3 V  
Transceiver  
1 µH  
VCC  
T
16  
1 µH  
10 µF  
0.1 µF  
Protocol VCC  
1)  
0.1 µF  
xx  
Protocol VCC  
4.7 to  
10 k  
VEE  
T
1/17/20  
3
4.7 to  
10 kΩ  
Tx Disable  
Tx Fault  
TD–  
Tx Disable  
Tx Fault  
2
0.1 µF  
19  
Laser  
Driver  
100 Ω  
TD+  
18  
15  
0.1 µF  
VCC  
R
1)  
4.7 to  
10 kΩ  
10 µF  
0.1 µF  
xx  
Protocol IC  
ASIC IC  
VEE  
R
9/10/11/14  
0.1 µF  
13  
RD+  
Pre-Amp./  
Post Amp.  
100 Ω  
0.1 µF  
RD–  
LOS  
12  
8
LOS  
Rate Select 2)  
7
Rate Select 2)  
Diagnostic IC / EEPROM  
3.3 V  
6
5
4
4.7 to  
10 kΩ  
4.7 to  
10 kΩ  
4.7 to  
10 kΩ  
MOD-DEF(0) MOD-DEF(1)  
MOD-DEF(2)  
PLD / PAL  
1) Design criterion of the capacitor used is the resonant frequency and its value must be in the order of the nominal  
data rate. Use of single layer capacitors recommended. Short trace lengths are mandatory.  
2) Not implemented.  
File: 1319  
Figure 7  
Example iSFP™ Host Board Schematic and  
Recommended Host Board Supply Filtering Network  
Data Sheet  
28  
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Package Outlines  
Package Outlines  
56.5  
47.5  
6.25  
13.7  
Dimensions in mm  
Figure 8  
File: 1215  
TRANSCEIVER TEMPERATURE  
REFERENCE POINT  
29.80  
Dimensions in mm  
File: 1224  
Figure 9  
Data Sheet  
29  
2004-06-25  
V23848-C18-C56  
V23848-C19-C56  
Revision History:  
2004-06-25  
DS4  
Previous Version:  
2003-08-13  
Page  
Subjects (major changes since last revision)  
V23848-C19-C56 added  
“Preliminary Data Sheet” removed  
iSFP™ trademark added  
Title changed  
1
7, 9, 10,  
Tables changed  
18, 22, 24  
11  
15  
17  
28  
Figure 3 added  
EMI Recommendations changed  
SFP Accessories changed  
Figure 7 Host Board Schematic changed  
Edition 2004-06-25  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
81669 München, Germany  
© Infineon Technologies AG 2004.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as a guarantee of  
characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  

相关型号:

V23848-C19-C56

iSFP-Intelligent Small Form-factor Pluggable SONET OC-3 IR-1 / SDH STM S-1.1 Multirate Applications up to 155 Mbit/s
INFINEON

V23848-H18-C56

iSFP-Intelligent Small Form-factor Pluggable SONET OC-12/OC-3 IR-1 / SDH STM S-4.1/S-1.1 Multirate Applications up to 622 Mbit/s
INFINEON

V23848-H19-C56

iSFP-Intelligent Small Form-factor Pluggable SONET OC-12/OC-3 IR-1 / SDH STM S-4.1/S-1.1 Multirate Applications up to 622 Mbit/s
INFINEON

V23848-M15-C56

iSFP-Intelligent Small Form-factor Pluggable 1.25 Gigabit Ethernet 2.125/1.0625 Gbit/s Fibre Channel Single Mode 1310 nm Transceiver with LC Connector
INFINEON

V23848-M15-C656

iSFP-Intelligent Small Form-factor Pluggable 1.25 Gigabit Ethernet 2.125/1.0625 Gbit/s Fibre Channel Single Mode 1310 nm Transceiver with LC Connector
INFINEON

V23848-M15-C756

iSFP-Intelligent Small Form-factor Pluggable 1.25 Gigabit Ethernet 2.125/1.0625 Gbit/s Fibre Channel Single Mode 1310 nm Transceiver with LC Connector
INFINEON

V23848-M305-C56

iSFP-Intelligent Small Form-factor Pluggable 1.25 Gigabit Ethernet 2.125/1.0625 Gbit/s Fibre Channel Multimode 850 nm Transceiver with LC Connector
INFINEON

V23848-N15-C456

iSFP-Intelligent Small Form-factor Pluggable SONET OC-48 SR-1 / SDH STM I-16 Multirate Applications up to 2.67 Gbit/s
INFINEON

V23848-N15-C56

iSFP-Intelligent Small Form-factor Pluggable SONET OC-48 SR-1 / SDH STM I-16 Multirate Applications up to 2.67 Gbit/s
INFINEON

V23848-N15-C656

iSFP⑩ - Intelligent Small Form-factor Pluggable SONET OC-48 IR-1 / SDH STM S-16.1 Multirate Applications up to 2.67 Gbit/s
INFINEON

V23848-N305-C56

iSFP-Intelligent Small Form-factor Pluggable 2.5 Gbit/s InfiniBand 1X-SX Multimode 850 nm Transceiver with LC Connector
INFINEON

V23849-R35-C55

iSFP-Intelligent Small Form-factor Pluggable 1.25 Gigabit Ethernet 4.25/2.125/1.0625 Gbit/s Fibre Channel
INFINEON