TLT9252VLC [INFINEON]

AEC-Q100 Grade 0;
TLT9252VLC
型号: TLT9252VLC
厂家: Infineon    Infineon
描述:

AEC-Q100 Grade 0

文件: 总50页 (文件大小:1344K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLT9252VLC  
High-Speed CAN FD Transceiver  
1
Overview  
Features  
Fully compliant to ISO 11898-2 (2016) and SAE J2284-4/-5  
Infineon automotive quality  
AEC-Q100 Grade 0 (Ta: -40°C to +150°C) qualification for high temperature mission profiles  
Guaranteed loop delay symmetry to support CAN FD data frames up to 5 MBit/s  
Bus Wake-up Pattern (WUP) function with optimized filter time (0.5µs - 1.8µs) for worldwide OEM usage  
Excellent ESD robustness +/-10kV (HBM) and +/-9kV (IEC 61000-4-2)  
Very low current consumption in Sleep Mode of max. 25µA  
Extended supply range on VCC and VIO supply  
Dual Power Supply Solution via VBAT and VCC for robust behavior during battery cranking  
Fail safe features like TxD time-out, RxD Recessive Clamping and Overtemperature shut-down  
Very low electromagnetic emission (EME) for chokeless usage  
Wide common mode range for electromagnetic immunity (EMI)  
CAN short circuit proof to ground, battery and VCC  
Undervoltage detection on VBAT, VCC and VIO  
Autonomous bus biasing according to ISO 11898-2 (2016)  
Bus Wake-up (WUP) and Local Wake-Up (LWU)  
INH output to control external circuity  
Improved robust local failure diagnosis via NERR output pin  
Green Product (RoHS compliant)  
Potential Applications  
Car powertrain and transmission applications  
Infotainment applications  
Cluster Modules  
Radar applications  
HVAC  
Datasheet  
1
Rev. 1.0  
2019-10-17  
www.infineon.com/automotive-transceiver  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Overview  
Product validation  
Qualified for automotive applications with higher temperature requirements as well as with extended lifetime  
requirements. Product validation according to AEC-Q100.  
Description  
The TLT9252VLC is a transceiver designed for HS CAN networks up to 5 Mbit/s in automotive and industrial  
applications. As an interface between the physical bus layer and the CAN protocol controller, the TLT9252VLC  
drives the signals to the bus and protects the microcontroller against interferences generated within the  
network. Based on the high symmetry of the CANH and CANL signals, the TLT9252VLC provides very low  
electromagnetic emission allowing the operation without a common mode choke. The non-low power modes  
(Normal-operating Mode and Receive-only Mode) and low power modes (Sleep Mode and Stand-by Mode) are  
optimized for reduced current consumption based on the required functionality. Even in Sleep Mode with a  
quiescent current below 25 µA over the full temperature range, the TLT9252VLC is able to detect a Wake-Up  
Pattern (WUP) on the HS CAN bus. The VIO voltage reference input is used to support 3.3 V and 5 V supplied  
microcontrollers. The TLT9252VLC is integrated in an RoHS compliant PG-TSON-14 package and fulfills the  
requirements of the ISO11898-2 (2016).  
Type  
Package  
Marking  
TLT9252VLC  
PG-TSON-14  
T9252V  
Datasheet  
2
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Table of contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Potential Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2
3
3.1  
3.2  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.1  
4.2  
4.3  
5
High-Speed CAN functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
6
6.1  
6.2  
6.3  
6.4  
6.5  
6.5.1  
6.5.2  
6.6  
6.7  
6.8  
6.8.1  
6.8.2  
6.9  
Modes of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Normal-operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Receive-only Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Stand-by Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Go-to-Sleep command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Mode change to Sleep Mode or Stand-by Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Mode Change via EN and NSTB pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Power On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Autonomous bus voltage biasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Wake-Up functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Wake-up Pattern (WUP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Local Wake-Up (LWU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Wake-up: RxD and NERR behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
7
7.1  
7.2  
7.2.1  
7.2.2  
7.2.3  
7.3  
7.4  
7.5  
Fail safe functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Short Circuit Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Undervoltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Undervoltage and power-down detection on VBAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Undervoltage detection on VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Undervoltage detection on VIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Dual Power Supply Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Unconnected logic pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
TxD time-out function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Overtemperature protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
RxD Recessive Clamping detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Delay time for mode change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
7.6  
7.7  
7.8  
8
Diagnosis-flags at NERR and RxD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Datasheet  
3
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
9
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
9.1  
9.2  
9.2.1  
9.2.2  
9.2.3  
9.3  
9.4  
9.5  
9.6  
9.7  
General timing parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Power supply interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Current consumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Undervoltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
INH output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
EN, NSTB and NERR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
CAN controller interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Dynamic transceiver parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Wake-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
General wake-up timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
WUP detection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Local Wake-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
9.8  
9.8.1  
9.8.2  
9.8.3  
10  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
ESD robustness according to IEC61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Voltage adaption to the microcontroller supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Further application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
10.1  
10.2  
10.3  
10.4  
11  
12  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Datasheet  
4
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Block diagram  
2
Block diagram  
VBAT  
10  
11  
7
6
N.C.  
INH  
EN  
3
13  
12  
VCC  
Mode Control  
Logic  
CANH  
CANL  
Driver  
Output  
Stage  
14  
5
Temp.-  
NSTB  
VIO  
Protection  
+
timeout  
Diagnosis &  
Failure  
Logic  
VCC/2,  
2.5V  
1
8
TxD  
Wake-Up  
Detection  
VIO  
Normal  
Receiver  
NERR  
RxD Output  
Control  
Low Power  
Receiver  
VBAT  
VIO  
9
Wake-Up  
WAKE  
Comparator  
4
RxD  
2
GND  
Figure 1  
Block diagram  
Datasheet  
5
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Pin configuration  
3
Pin configuration  
3.1  
Pin assignment  
1
TxD  
NSTB  
CANH  
CANL  
N.C.  
14  
13  
12  
11  
10  
9
GND  
2
PAD  
3
4
5
6
7
VCC  
RxD  
VIO  
EN  
VBAT  
WAKE  
NERR  
INH  
8
(Top-side x-ray view)  
Figure 2  
Pin configuration  
3.2  
Pin definitions  
Table 1  
Pin definitions and functions  
Pin  
Symbol  
Function  
1
TxD  
Transmit Data input  
Integrated “pull-up” current source to VIO;  
Logical “low” to drive a dominant signal on CANH and CANL.  
2
3
GND  
Ground  
VCC  
Transmitter supply voltage  
100 nF decoupling capacitor to GND recommended.  
4
5
6
RxD  
VIO  
Receive Data output  
Logical “low” while a dominant signal is on the HS CAN bus;  
Output voltage adapted to the voltage on the VIO level shift input.  
Level shift input  
Reference voltage for the digital input and output pins;  
100 nF decoupling capacitor to GND recommended.  
EN  
Mode control input  
Integrated “pull-down” current source to GND;  
Logical “high” for Normal-operating Mode.  
Datasheet  
6
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Pin configuration  
Table 1  
Pin definitions and functions (cont’d)  
Pin  
Symbol  
Function  
7
INH  
Inhibit output  
Open drain output to control external circuitry;  
High impedance in Sleep Mode.  
8
NERR  
WAKE  
VBAT  
Error flag output  
Failure and wake-up indication output;  
Active “low”.  
9
Wake-up input  
Local wake-up input, terminated against GND and VBAT  
Wake-up input sensitive on rising and falling edge.  
;
10  
Battery supply voltage  
100 nF decoupling capacitor to GND recommended.  
11  
12  
13  
14  
N.C.  
Not connected  
CANL  
CANH  
NSTB  
Low-level HS CAN bus line  
High-level HS CAN bus line  
Stand-by control input  
Integrated “pull-down” current source to GND;  
Logical “high” for Normal-operating Mode.  
Datasheet  
7
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
General product characteristics  
4
General product characteristics  
4.1  
Absolute maximum ratings  
Table 2  
Absolute maximum ratings1)  
All voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Voltages  
Battery supply voltage  
Transmitter supply voltage  
Digital voltage reference  
VBAT  
VCC  
VIO  
-0.3  
-0.3  
-0.3  
-40  
-40  
-40  
40  
6.0  
6.0  
40  
40  
40  
V
V
V
V
V
V
P_8.1.1  
P_8.1.2  
P_8.1.3  
P_8.1.4  
P_8.1.5  
P_8.1.6  
CANH DC voltage versus GND VCANH  
CANL DC voltage versus GND VCANL  
Differential voltage between VCAN_DIFF  
CANH and CANL  
Voltages at pin WAKE  
Voltages at pin INH  
VWAKE  
VINH  
-27  
40  
V
V
P_8.1.7  
P_8.1.8  
-0.3  
VBAT +  
0.3  
Voltages at digital I/O pins: EN, VMAX_IO1  
NSTB, TxD, RxD, NERR  
-0.3  
-0.3  
6.0  
V
V
P_8.1.9  
Voltages at digital I/O pins: EN, VMAX_IO2  
VIO  
+
P_8.1.10  
NSTB, TxD, RxD, NERR  
0.3  
Currents  
Max. output current on INH  
IINH_Max  
-5  
-5  
5
mA  
mA  
P_8.1.11  
P_8.1.12  
Max. output current on NERR IOut_Max  
and RxD  
Temperatures  
Junction temperature  
Storage temperature  
ESD resistivity  
Tj  
-40  
-55  
160  
150  
°C  
°C  
P_8.1.13  
P_8.1.14  
Tstg  
ESD immunity at CANH, CANL, VESD_HBM_CAN -10  
WAKE and VBAT versus to GND  
10  
kV  
HBM2)  
P_8.1.15  
ESD immunity at all other pins VESD_HBM  
ESD immunity at corner pins VESD_CDM_CP -750  
ESD immunity at any pin VESD_CDM_OP -500  
-2  
2
kV  
V
HBM2)  
CDM3)  
CDM3)  
P_8.1.16  
P_8.1.17  
P_8.1.18  
750  
500  
V
1) Not subject to production test, specified by design.  
2) ESD susceptibility, Human Body Model “HBM” according to ANSI/ESDA/JEDEC JS001 (1.5k , 100 pF.)  
3) ESD susceptibility, Charged Device Model “CDM” according to EIA/JESD22-C101 or ESDA STM 5.3.1.  
Datasheet  
8
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
General product characteristics  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
4.2  
Functional range  
Table 3  
Functional range  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Supply voltages  
Battery supply voltage  
Transmitter supply voltage  
Digital voltage reference  
Thermal parameters  
Junction temperature  
VBAT  
VCC  
VIO  
5.5  
4.5  
3.0  
40  
V
V
V
P_8.2.1  
P_8.2.2  
P_8.2.3  
5.5  
5.5  
Tj  
-40  
150  
°C  
P_8.2.4  
Note:  
Within the functional or operating range, the IC operates as described in the circuit description. The  
electrical characteristics are specified within the conditions given in the Electrical Characteristics  
table.  
4.3  
Thermal resistance  
Note:  
This thermal data was generated according to JEDEC JESD51 standards. Please visit  
www.jedec.org.  
Table 4  
Thermal resistance  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Thermal resistance  
Junction to ambient  
RthJA_TSON14  
51  
K/W 1)2) Exposed Pad  
soldered to PCB  
P_8.3.2  
Thermal shut-down junction temperature  
1)  
Thermal shut-down temperature TJSD  
170 180 190 °C  
10 20  
P_8.3.3  
P_8.3.4  
1)  
Thermal shut-down hysteresis  
T  
5
K
1) Not subject to production test, specified by design.  
2) Specified RthJA value is according to Jedec JESD51-2,-7 at natural convection on FR4 2s2p board; The Product  
(Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm board with 2 inner copper layers (2 × 70 mm Cu,  
2 × 35 mm Cu).  
Datasheet  
9
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
High-Speed CAN functional description  
5
High-Speed CAN functional description  
HS CAN is a serial bus system which connects microcontrollers, sensors and actuators for real-time control  
applications. The use of the Controller Area Network (abbreviated CAN) within road vehicles is described by  
the international standard ISO 11898. According to the 7-layer OSI reference model the physical layer of a  
HS CAN bus system specifies the data transmission from one CAN node to all other available CAN nodes within  
the network. The physical layer specification of a CAN bus system includes all electrical specifications of a CAN  
network. The CAN transceiver is part of the physical layer specification. The TLT9252VLC supports both Bus  
Wake-up Pattern (WUP) functionality and Local Wake-up as defined by the ISO 11898 Standard. Additionally,  
the TLT9252VLC supports CAN Flexible data rate (CAN FD) transmission up to 5 Mbit/s.  
VIO  
=
=
Digital supply voltage  
Transmitter supply voltage  
Transmit data input from  
the microcontroller  
TxD  
VCC  
TxD  
VIO  
=
RxD  
=
Receive data output to  
the microcontroller  
CANH =  
CANL =  
Bus level on the CANH  
input/output  
t
t
Bus level on the CANL  
input/output  
CANH  
CANL  
VDiff  
=
Differential voltage  
VCC  
between CANH and CANL  
VDiff = VCANH VCANL  
VDiff  
VCC  
“dominant” receiver threshold  
“recessive” receiver threshold  
t
RxD  
VIO  
tLoop(H,L)  
tLoop(L,H)  
t
Figure 3  
High-Speed CAN bus signals and logic signals  
Datasheet  
10  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
High-Speed CAN functional description  
The TLT9252VLC is a High-Speed CAN transceiver operating as an interface between the CAN controller and  
the physical bus medium. A HS CAN network is a two wire, differential network which allows data transmission  
rates up to 5 MBit/s. The characteristic for a HS CAN network are the two signal states on the CAN bus:  
dominant and recessive (see Figure 3). The CANH and CANL pins are the interface to the CAN bus and operate  
as an input and output. The RxD and TxD pins are the interface to the microcontroller. The TxD pin is the serial  
data input from the CAN controller. The RxD pin is the serial data output to the CAN controller.  
The HS CAN transceiver TLT9252VLC includes a receiver and a transmitter unit, allowing the transceiver to  
send data to the bus medium and monitors the data from the bus medium at the same time. The HS CAN  
transceiver TLT9252VLC converts the serial data stream which is available on the transmit data input TxD, into  
a differential output signal on the CAN bus, provided by the CANH and CANL pins. The receiver stage of the  
TLT9252VLC monitors the data on the CAN bus and converts it to a serial, single-ended signal on the RxD  
output pin. A logical “low” signal on the TxD pin creates a dominant signal on the CAN bus, followed by a  
logical “low” signal on the RxD pin (see Figure 3). The feature, broadcasting data to the CAN bus and listening  
to the data traffic on the CAN bus simultaneously is essential to support the bit-to-bit arbitration within CAN  
networks.  
The voltage levels for HS CAN transceivers are defined in ISO 11898-2. Whether a data bit is dominant or  
recessive depends on the voltage difference between the CANH and CANL pins:  
VDiff = VCANH - VCANL.  
To transmit a dominant signal to the CAN bus the amplitude of the differential signal VDiff is higher than or  
equal to 1.5 V. To receive a recessive signal from the CAN bus the amplitude of the differential VDiff is lower than  
or equal to 0.5 V.  
In partially supplied CAN networks, participants have different power supply status. Some nodes are powered,  
other nodes are unpowered, or some other nodes are in Low-Power Mode. Therefore the TLT9252VLC provides  
the Sleep Mode in which the device is still able to recognize a Wake-Up Pattern or a local wake-up and signals  
the wake-up event to the external microcontroller via RxD and NERR output pin. The INH output pin allows to  
control an external device e.g. a voltage regulator. The HS CAN transceiver TLT9252VLC provides two Low-  
Power Modes Sleep Mode and Stand-by Mode with optimized very low current consumption.  
The voltage level on the digital input TxD and the digital output RxD is determined by the reference supply  
level at the VIO pin. Depending on the voltage level at the VIO pin, the signal levels on the logic pins (EN, NERR,  
NSTB, TxD and RxD) are compatible with microcontrollers having a 5 V or 3.3 V I/O supply. Usually the digital  
power supply VIO of the transceiver is connected to the I/O power supply of the microcontroller.  
Datasheet  
11  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Modes of operation  
6
Modes of operation  
The TLT9252VLC supports five different Modes of operation (see Figure 4). Each mode with specific  
characteristics in terms of quiescent current, data transmission or failure diagnostic. For the mode selection  
the digital input pins EN and NSTB are used. Both digital input pins are event triggered. A mode change via the  
mode selection pins EN and NSTB is only possible if the power supply voltages VBAT OR VCC AND the digital  
reference voltage VIO is in the functional range.  
EN -> 1  
NSTB -> 1  
Normal-operating  
Mode  
EN = 1  
NSTB = 1  
EN -> 1  
NSTB = 1  
INH = „ON“  
EN -> 0  
NSTB = 1  
EN -> 0  
NSTB -> 0  
EN = 1  
NSTB -> 1  
Receive-only  
Mode  
EN = 0  
NSTB -> 0  
Stand-by Mode  
EN = 0  
EN = 0  
NSTB = 0  
NSTB = 1  
INH = „ON“  
INH = „ON“  
EN = 0  
NSTB -> 1  
VBAT > VBAT_UV  
OR  
VCC > VCC_UV  
EN = 1  
NSTB -> 0  
EN = 0  
EN -> 0  
NSTB -> 1  
NSTB -> 1  
VIO > VIO_UV  
Go-to Sleep  
Power on Reset  
EN -> 1  
NSTB = 0  
Command  
EN = 1  
INH = „OFF“  
EN -> 0  
t < tSLEEP  
NSTB = 0  
EN -> 1  
NSTB -> 0  
For VBAT > VBAT_POD  
INH = „ON“  
NSTB = 0  
INH = „ON“  
t > tSLEEP  
NSTB = 0  
No Wake-up pending  
POR flag reset  
VBAT < VBAT_POD  
AND  
VCC < VCC_UV  
Sleep Mode  
EN = X  
Any Mode  
WUP OR LWU  
detected  
NSTB = 0  
EN = 1  
NSTB -> 1  
VIO > VIO_UV  
INH = „OFF“  
-> : Rising or falling edge detected  
= : State remains stable  
VCC < VCC_UV AND  
tVCC_UV_T 1) expired  
AND tSilence expired  
VIO < VIO_UV AND  
Any Mode  
tVIO_UV_T 1) expired  
AND tSilence expired  
Any Mode  
1)  
Timer armed when VBAT > VBAT_UV  
Figure 4  
Modes of operation  
Datasheet  
12  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Modes of operation  
The following operation modes are available on the TLT9252VLC:  
Normal-operating Mode (Chapter 6.1)  
Receive-only Mode (Chapter 6.2)  
Stand-by Mode (Chapter 6.3)  
Sleep Mode (Chapter 6.5)  
Go-to-Sleep command (Chapter 6.4)  
Depending on the mode, the output driver stage, the receiver stage and the bus biasing are active or inactive.  
Table 5 shows the different operation modes depending on the logic signal on the input pins EN and NSTB  
with the related status of the INH pin and the bus biasing.  
Table 5  
Overview operation modes  
Operation mode  
Normal-operating Mode  
Receive-only Mode  
Stand-by Mode  
EN  
1
NSTB  
INH  
VBAT  
VBAT  
VBAT  
VBAT  
Bus biasing  
VCC/2  
1
1
0
0
0
0
0
VCC/2  
GND 1)  
GND 1)  
GND 1)  
0
2)  
Go-to-Sleep command  
Sleep Mode  
1
0
High-Z  
Power On Reset  
0
follows VBAT  
Floating  
1) Valid if tSilence has expired. The Bus biasing follows the Autonomous Bus Biasing described in Chapter 6.7.  
2) INH stays connected to VBAT as long as tSLEEP has not expired OR if a wake-up is pending OR if the POR flag is set. If tSLEEP  
expires AND no Wake-up is pending AND the POR flag is reset the INH is High Z.  
Datasheet  
13  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Modes of operation  
6.1  
Normal-operating Mode  
In Normal-operating Mode all functions of the TLT9252VLC are available and the device is fully functional. Data  
can be received from the HS CAN bus as well as transmitted to the HS CAN bus.  
The transmitter is active and drives data stream on the TxD input pin to the bus pins CANH and CANL.  
The receiver is active and converts the signals from the bus to a serial data stream on the RxD output pin.  
The bus biasing is connected to VCC/2.  
The TxD time-out function is enabled (see Chapter 7.5).  
The overtemperature protection is enabled (see Chapter 7.6).  
The RxD Recessive Clamping detection is enabled (see Chapter 7.7)  
The undervoltage detection on VBAT, VCC and VIO are enabled (see Chapter 7.2).  
The Local Wake-Up pin is disabled.  
The INH output pin is connected to VBAT  
.
Local failure detection is active and failures are indicated at the NERR output pin (see Chapter 8).  
The TLT9252VLC enters Normal-operating Mode by setting the mode selection pins EN and NSTB to logical  
“high” (see Figure 4 and Table 5). Normal-operating Mode can be entered if VBAT or VCC is in the functional  
range and the reference voltage VIO is in the functional range.  
Possible mode changes are described in Figure 5.  
EN -> 1  
NSTB = 1  
EN -> 0  
NSTB = 1  
Receive-only  
Mode  
Receive-only  
Mode  
EN -> 1  
Stand-by Mode  
NSTB -> 1  
Normal-operating  
Mode  
EN -> 0  
NSTB -> 0  
EN = 1  
Stand-by Mode  
NSTB = 1  
INH = „ON“  
Go-to-Sleep  
Command  
EN = 1  
NSTB -> 1  
Go-to-Sleep  
Command  
EN = 1  
NSTB -> 1  
EN = 1  
NSTB -> 0  
Sleep Mode  
Figure 5  
Mode changes in Normal-operating Mode  
Datasheet  
14  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Modes of operation  
6.2  
Receive-only Mode  
In Receive-only Mode the transmitter is disabled and the receiver is enabled. The TLT9252VLC can receive data  
from the HS CAN bus, but cannot transmit data to the HS CAN bus.  
The transmitter is disabled and the data available on the TxD input is blocked.  
The receiver is active and converts the signals from the bus to a serial data stream on the RxD output pin.  
The bus biasing is connected to VCC/2.  
The TxD time-out function is disabled.  
The RxD Recessive Clamping detection is disabled.  
The overtemperature protection is disabled.  
The undervoltage detection on VBAT, VCC and VIO is enabled (see Chapter 7.2).  
The INH output pin is connected to VBAT  
.
The Local Wake-Up pin is disabled.  
The Power-up flag is signalled at the pin NERR when coming from Standby, Sleep or Go-to Sleep Command  
mode.  
The VCC undervoltage detection is active and an undervoltage is indicated at the NERR output pin when  
coming from Normal-operating Mode (see Chapter 8).  
Conditions for Entering Receive-only Mode:  
The TLT9252VLC enters Receive-only Mode by setting the mode selection pin EN to logical “low” and the NSTB  
to logical “high” (see Figure 4 and Table 5). Receive-only Mode can only be entered if VBAT or VCC is in the  
functional range and the reference voltage VIO is in the functional range.  
Possible mode changes are described in Figure 6.  
EN -> 0  
NSTB = 1  
EN -> 1  
NSTB = 1  
Normal-  
operating Mode  
Normal-  
operating Mode  
EN = 0  
NSTB -> 1  
Stand-by Mode  
Receive-only  
Mode  
EN = 0  
NSTB -> 0  
Stand-by Mode  
EN = 0  
NSTB = 1  
INH = „ON“  
Go-to-Sleep  
Command  
EN -> 0  
NSTB -> 1  
Go-to-Sleep  
Command  
EN = 0  
NSTB -> 1  
EN -> 1  
NSTB -> 0  
Sleep Mode  
Figure 6  
Mode changes in Receive-only Mode  
Datasheet  
15  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Modes of operation  
6.3  
Stand-by Mode  
Stand-by Mode is a low power mode of the TLT9252VLC and the transmitter and the receiver are disabled. In  
Stand-by Mode the transceiver can neither send data to the HS CAN bus nor receive data from the HS CAN bus:  
The transmitter is disabled and the data available on the TxD input is blocked.  
The low power receiver is enabled and monitors the HS CAN bus for a valid Wake-Up Pattern. The RxD  
output pin and NERR display a wake-up event (Chapter 6.9). After Power On Reset RxD and NERR output  
pins are logical “high”. The default value of the RxD and NERR output pins are logical “high” if no wake-up  
event is pending.  
The Local Wake-Up (LWU) pin is active.  
After Power On Reset the bus biasing connected to GND. The conditions for the bus biasing are defined in  
Chapter 6.7.  
TxD Dominant time-out function is disabled.  
RxD Recessive Clamping detection is disabled.  
The overtemperature protection is disabled.  
The undervoltage detection on VBAT, VCC and VIO is enabled (see Chapter 7.2).  
The INH output pin is connected to VBAT  
.
Local failure detection on NERR pin is disabled.  
Conditions for entering the Stand-by Mode:  
After Power On Reset if VBAT or VCC is in the functional range for at least tPONthe TLT9252VLC will enter Stand-  
by Mode. Mode changes by host command are only possible if VIO is in the functional range.  
Stand-by Mode will be entered if a wake-up (WUP or LWU) has been detected in Sleep Mode or Go-to-Sleep  
command.  
The device is in Go-to-Sleep command and the EN pin goes logical “low” before the time t < tSLEEP has  
expired.  
The device is in Normal-operating Mode or Receive-only Mode and the input pins EN and NSTB are set to  
logical “low”.  
Possible mode changes are described in Figure 7.  
EN -> 0  
NSTB -> 0  
EN -> 1  
NSTB -> 1  
Normal-  
operating Mode  
Normal-  
operating Mode  
Receive-only  
EN = 0  
NSTB -> 0  
Mode  
Stand-by Mode  
VBAT > VBAT_UV for at least tPON  
OR  
VCC > VCC_UV for at least tPON  
Receive-only  
Mode  
EN = 0  
NSTB = 0  
INH = „ON“  
EN = 0  
NSTB -> 1  
Power On  
Reset  
EN -> 0  
t < tSLEEP  
NSTB = 0  
Go-to-Sleep  
Command  
Go-to-Sleep  
Command  
EN -> 1  
NSTB = 0  
WUP OR LWU  
detected  
Sleep Mode  
Figure 7  
Mode changes in Stand-by Mode  
Datasheet  
16  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Modes of operation  
6.4  
Go-to-Sleep command  
Go-to-Sleep command is a transition mode allowing external circuitry like a microcontroller to prepare the  
ECU to go to Sleep Mode. The TLT9252VLC stays for the maximum time t = tSLEEP in Go-to-Sleep command. After  
exceeding the time tSLEEP the device changes to Sleep Mode if no wake-up is pending AND the POR flag has  
been reset. If a wake-up is pending OR the POR flag is set the device remains in Go-to-Sleep command and INH  
is connected to VBAT. A wake-up is indicated on the RxD and NERR output pins. A mode change to Sleep Mode  
via Host Command is only possible via the Go-to-Sleep command. The following conditions are valid for the  
Go-to-Sleep command:  
The transmitter is disabled and the data available on the TxD input is blocked.  
The low power receiver is enabled and monitors the HS CAN bus for a valid Wake-Up Pattern. The RxD  
output pin and NERR indicate a wake-up event (Chapter 6.9). The default value of the RxD and NERR  
output pin are logical “high” if no wake-up event is pending.  
The Local Wake-Up pin is active.  
The bus biasing is GND if tSilence is expired. The conditions for the bus biasing are defined in Chapter 6.7.  
The TxD time-out function is disabled.  
The RxD Recessive Clamping detection is disabled.  
The overtemperature protection is disabled.  
The undervoltage detection on VBAT, VCC and VIO are enabled (see Chapter 7.2).  
The INH output pin is connected to VBAT if the timer tSLEEP is not expired OR a wake-up is pending OR the  
POR is set. If tSLEEP is expired and no wake-up is pending and the POR Flag is reset, the INH output pin is high  
impedance.  
Conditions for entering the Go-to-Sleep command:  
Go-to-Sleep command is entered from Normal-operating Mode, Receive-only Mode and Stand-by Mode by  
setting the NSTB input pin to logical “low” AND EN input pin to logical “high”.  
EN = 1  
NSTB -> 0  
EN = 1  
NSTB -> 1  
Normal-  
operating Mode  
Normal-  
operating Mode  
Receive-only  
Mode  
EN -> 0  
NSTB -> 1  
Go-to Sleep  
Command  
EN = 1  
Receive-only  
Mode  
EN -> 1  
NSTB -> 0  
NSTB = 0  
EN -> 0  
t < tSLEEP  
NSTB = 0  
INH = „ON“  
Stand-by Mode  
Sleep Mode  
t > tSLEEP  
NSTB = 0  
No Wake-up pending  
POR Flag reset  
EN -> 1  
NSTB = 0  
Stand-by Mode  
Figure 8  
Mode changes in Go-to-Sleep command  
Datasheet  
17  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Modes of operation  
6.5  
Sleep Mode  
Sleep Mode is a low power mode of the TLT9252VLC. In Sleep Mode the current consumption is reduced to a  
minimum while the device is still able to detect a Wake-Up Pattern (WUP) on the HS CAN Bus OR a Local Wake-  
Up event on the WAKE pin. The following conditions are valid for the Sleep Mode:  
The transmitter is disabled and the data available on the TxD input is blocked.  
The low power receiver is enabled and monitors the HS CAN bus for a valid Wake-Up Pattern.  
The default value of the RxD and NERR output pin are logical “high” if no wake-up event is pending AND VIO  
is in the functional range (see Chapter 8).  
The Local Wake-Up pin is active.  
The bus biasing is connected to GND. The conditions for the bus biasing are defined in Chapter 6.7.  
The TxD time-out function is disabled.  
The RxD Recessive Clamping detection is disabled.  
The overtemperature protection is disabled.  
The undervoltage detection on VBAT is disabled.  
The undervoltage detection on VCC is disabled.  
The undervoltage detection on VIO is enabled (see Chapter 7.2.3).  
The INH output pin is High-Z.  
Conditions for entering the Sleep Mode:  
The Sleep Mode will be entered if VIO < VIO_UV AND tVIO_UV_T AND tSilence has been expired in Normal-operating  
Mode, Receive-only Mode, Stand-by Mode and Go-to-Sleep command.  
The Sleep Mode will be entered if VCC < VCC_UV AND tVCC_UV_T AND tSilence has been expired in Normal-  
operating Mode, Receive-only Mode, Stand-by Mode and Go-to-Sleep command.  
The Sleep Mode can be entered through Go-to-Sleep command if NSTB is set to logical “low” AND tSLEEP is  
expired AND no wake-up is pending AND the POR flag is reset.  
VCC undervoltage  
AND  
tVCC_UV_T expired  
AND tSilence  
EN = 1  
Normal-  
operating Mode  
NSTB -> 1  
Any Mode  
V
IO > VIO_UV  
Sleep Mode  
EN = X  
VIO undervoltage  
AND  
tVIO_UV_T expired  
AND tSilence  
EN = 0  
Receive-only  
Mode  
Any Mode  
NSTB -> 1  
NSTB = 0  
V
IO > VIO_UV  
INH = „OFF“  
t > tSLEEP  
Stand-by  
Mode  
Go-to-Sleep  
Command  
NSTB = 0  
WUP OR LWU  
detected  
No Wake-up pending  
POR Flag reset  
Figure 9  
Mode changes in Sleep Mode  
6.5.1  
Mode change to Sleep Mode or Stand-by Mode  
If the logical signal on the EN pin goes “low” before the transition time t < tSLEEP has been reached, the  
TLT9252VLC enters Stand-by Mode and the INH pin remains connected to VBAT. In the case the logical signal on  
Datasheet  
18  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Modes of operation  
the EN pin goes “low” after the transition time t > tSLEEP, the TLT9252VLC enters Sleep Mode with the expiration  
of tSLEEP. The signal on the HS CAN bus has no impact to the mode change. The mode of operation can be  
changed regardless if the CAN bus is dominant or recessive.  
NSTB  
tSLEEP  
EN  
t < tSLEEP  
tMode  
INH  
Normal-  
operating Mode  
Mode  
NSTB  
Go-To-Sleep command  
Stand-by Mode  
tSLEEP  
EN  
tMode  
INH  
Normal-  
operating Mode  
Mode  
Go-To-Sleep command  
Sleep Mode  
Assuming VIO and VCC in functional range AND no wake-up is pending AND POR flag is reset  
Figure 10 Mode change to Stand-by Mode or Sleep Mode  
Datasheet  
19  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Modes of operation  
6.5.2  
Mode Change via EN and NSTB pin  
Besides a mode change from Sleep Mode to Stand-by Mode issued by a wake-up event, the mode of operation  
can be changed by changing the signals on the EN and NSTB input pins. Therefore the reference voltage VIO  
has to be in the functional range. According to the mode diagram (see Figure 4) the mode of operation can be  
changed directly from Sleep Mode to Receive-only Mode or Normal-operating Mode. In Sleep Mode once a  
rising edge on the pin NSTB is detected (VIO > VIO_UV) either Normal-operating Mode or Receive-only Mode will  
be entered, depending on the signal on the EN pin. The device will stay in Sleep Mode regardless of the signal  
on the EN input pin if NSTB is statically logical “low”. A mode change to from Sleep Mode to Stand-by Mode is  
only possible via a wake-up event.  
NSTB  
tSLP  
V
V
Log_H  
V
Log_L  
EN  
Log_H  
VLog_L  
INH  
tWU_INH  
0,7 VBAT  
tMode  
tMode  
Normal-  
operating Mode  
Go-To-Sleep  
command  
Mode  
Sleep Mode  
Sleep Mode  
Assuming VIO and VCC in functional range AND no wake-up is pending AND POR flag is reset  
Figure 11 Mode change via EN and NSTB in Sleep Mode  
Datasheet  
20  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Modes of operation  
6.6  
Power On Reset  
In Power On Reset all functions of the TLT9252VLC are disabled and the device is switched off.  
The transmitter and receiver are disabled.  
The bus biasing is connected to High impedance.  
The RxD Recessive Clamping detection is disabled  
The TxD time-out function is disabled.  
The overtemperature protection is disabled.  
The undervoltage detection on VBAT, VCC and VIO is disabled.  
The logical input pins are blocked.  
RxD and NERR output pins are high impedance.  
Local Wake-Up is disabled.  
The INH output pin is connected to VBAT if VBAT > VBAT_POD OR VCC > VCC_UV  
.
Conditions for entering the Power On Reset:  
BAT is below the VBAT_POD AND VCC is below VCC_UV threshold.  
Conditions for leaving the Power On Reset:  
Once the power supply voltage VBAT OR VCC is within the functional range the transceiver enters Stand-by  
Mode within tPON  
V
.
The internal Power On Reset flag will be set. After Power On Reset the TLT9252VLC enters Stand-by Mode.  
Power-up and power-down transition is described in Figure 12:  
Power on Reset  
Stand-by Mode  
EN = 0  
V
BAT > VBAT_UV  
V
BAT < VBAT_POD  
INH = „OFF“  
OR  
AND  
Any Mode  
NSTB = 0  
V
CC > VCC_UV  
V
CC < VCC_UV  
For VBAT > VBAT_POD  
INH = „ON“  
INH = „ON“  
Figure 12 Power-down and power-up behavior  
Datasheet  
21  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Modes of operation  
6.7  
Autonomous bus voltage biasing  
The autonomous bus voltage biasing was introduced for improving complete network EMC performance and  
increasing the reliability of communication performance in networks using CAN networks. The autonomous  
bus voltage biasing is enabled in all modes of Operation. The biasing unit will work independently from other  
transceiver functions and depends only on the status of detected network activity (tSilence). Figure 13  
describes the behavior for active and for low power modes in Detail as well as the status after a power-on reset  
event.  
Ini  
Bus Bias  
off  
Bus recessive > tFilter  
After Power On Reset  
Wait  
Bus dominant > tFilter  
1
Bus Bias  
off  
tWake expired  
Bus recessive > tFilter  
2
Bus Bias  
off  
tWake expired  
Bus dominant  
1)  
> tFilter  
tSilence expired  
AND  
Tranceiver in:  
3
Bus Bias  
on  
Tranceiver in:  
- Sleep Mode  
- Stand-by Mode  
- Go-to-Sleep  
Command  
- Normal Operation Mode  
- Receive Only Mode  
Bus recessive  
Bus dominant  
1)  
1)  
> tFilter  
> tFilter  
tSilence expired  
AND  
Tranceiver in:  
- Sleep Mode  
- Stand-by Mode  
- Go-to-Sleep  
Command  
4
Bus Bias  
on  
1) Restart of tSilence  
Figure 13 Autonomous Bus Voltage Biasing  
In low power modes, in case there has been no activity on the bus for longer than tSilence, the bus pins are  
biased towards GND via the internal resistors. With the detection of a valid Wake-Up Pattern (WUP), the  
internal biasing gets enabled and the biasing is stabilized via internal resistors towards 2.5 V . This activation  
is being performed within the time t > tWU_Bias after the WUP detection.  
Datasheet  
22  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Modes of operation  
6.8  
Wake-Up functions  
There are several possibilities for a mode change from Sleep Mode to another operation mode:  
Wake-Up Pattern (WUP)  
Local Wake-Up (LWU)  
In typical applications the power supplies VCC and VIO are turned off in Sleep Mode. This means a mode change  
can only be caused by an external event as WUP OR LWU. The detection of a valid WUP or LWU triggers a mode  
change from Sleep Mode to Stand-by Mode.  
6.8.1  
Wake-up Pattern (WUP)  
Within the maximum wake-up time tWAKE, the Wake-Up Pattern consists of a dominant signal with the pulse  
width t > tFilter, followed by a recessive signal with the pulse width t > tFilter and another dominant signal with  
the pulse width t > tFilter (see Figure 14).  
t < tWake  
VDiff  
VDiff_LP_D  
t > tFilter  
t > tFilter  
tWU  
VDiff_LP_R  
t > tFilter  
t
VIO  
RxD  
30% of VIO  
30% of VIO  
t
t
VIO  
NERR  
Stand-by Mode  
wake-up  
detected  
Figure 14 Wake-Up Pattern (WUP)  
The diagnostic output NERR and RxD will indicate a valid Wake-Up Pattern on the HS CAN bus.  
A Wake-Up Pattern is not valid under the following conditions:  
A mode change to Normal-operating Mode OR Receive-only Mode is performed during the Wake-Up  
Pattern.  
The maximum wake-up time tWAKE expires before a valid WUP has been detected.  
The transceiver is powered down (VBAT < VBAT_POD AND VCC < VCC_POD).  
In Stand-by Mode the RxD output pin and the NERR diagnostic pin display the WUP detection (Details see  
Chapter 8).  
Datasheet  
23  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Modes of operation  
6.8.2  
Local Wake-Up (LWU)  
The WAKE input pin works bi-sensitive, meaning it is able to detect a rising and falling edge as a wake-up event.  
Designed to withstand up to 40 V the WAKE pin can be directly connected to VBAT. The Local Wake-Up detection  
works for VBAT > VBAT_UV. The Local Wake-Up timings and behavior is described in Figure 15.  
t < tWAKE_filter  
t > tWAKE_filter  
V
WAKE  
VWAKE_TH  
LWU detected  
t > tWAKE_filter  
t < tWAKE_filter  
V
WAKE  
VWAKE_TH  
LWU detected  
Figure 15 Local Wake-Up  
The filter time tWAKE_filter is implemented to protect the TLT9252VLC against unintended Wake-Ups, caused by  
spikes on the WAKE pin. The wake-up thresholds VWAKE_TH depend on the level of the VBAT power supply. In  
Stand-by Mode the RxD output pin and the NERR diagnostic pin display the wake-up event (Details see  
Chapter 8). Once a LWU has been recognized in Sleep Mode the device goes to Stand-by mode and the INH  
output pin is connected to VBAT  
.
Datasheet  
24  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Modes of operation  
6.9  
Wake-up: RxD and NERR behavior  
The RxD and NERR output pin will signal a wake up event to the microcontroller (see Chapter 8). In Sleep  
Mode, Stand-by Mode and Go-to-Sleep command by default values of RxD and NERR are logical “high” when  
no wake-up event has been detected. If a valid wake up pattern (WUP) is detected, RxD and NERR will be  
logical “low”. If a Local Wake-Up (LWU) is detected the RXD will be logical “low” and NERR will be logical  
“high”.If both, LWU and WUP have been detected, then the WUP detection has higher priority and RxD and  
NERR pin are set to logical “low”, regardless if a LWU event is pending.  
WUP detected  
Mode  
RxD  
Sleep Mode  
Stand-by Mode  
tMode  
RxD remains logical „low“  
NERR remains logical „low“  
t
NERR  
Assuming VCC OR VBAT is in the functional range  
t
Figure 16 RxD and NERR: WUP detection (VIO not supplied)  
WUP detected  
Mode  
RxD  
Sleep Mode  
Stand-by Mode  
tMode  
30% VIO  
RxD remains logical „low“  
NERR remains logical „low“  
t
t
NERR  
30% VIO  
Assuming VCC OR VBAT is in the functional range  
Figure 17 RxD and NERR: WUP detection (permanently supplied VIO)  
Datasheet  
25  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Modes of operation  
LWU detected  
Mode  
RxD  
Sleep Mode  
Stand-by Mode  
tMode  
RxD remains logical „low“  
t
t
INH  
VIO  
0.7 x VBAT  
VIO_UV  
t
t
NERR  
NERR goes logical „high“  
Assuming VCC OR VBAT is in the functional range  
NERR goes logical „high“ when VIO > VIO_UV  
Figure 18 RxD and NERR: LWU detection (VIO not supplied)  
LWU detected  
Mode  
RxD  
Sleep Mode  
Stand-by Mode  
tMode  
30% VIO  
RxD goes logical „low“  
t
t
NERR  
NERR remains logical „high“  
Assuming VCC OR VBAT is in the functional range  
Figure 19 RxD and NERR: LWU detection (permanently supplied VIO)  
Datasheet  
26  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Fail safe functions  
7
Fail safe functions  
7.1  
Short Circuit Protection  
The CANH and CANL bus pins are proven to withstand a short circuit fault against GND and against the supply  
voltages. A current limiting circuit protects the transceiver against damages.  
7.2  
Undervoltage detection  
The TLT9252VLC has three independent undervoltage detections: VBAT, VCC and VIO. Undervoltage events may  
have impact on the functionality of the device and also may change the mode of operation (see Chapter 6).  
7.2.1  
Undervoltage and power-down detection on VBAT  
The power-down is detected if the power supply VBAT is below VBAT_POD for more than the glitch filter time  
VBAT_filter. This glitch filter is implemented in order to prevent an undervoltage detection due to short voltage  
t
transients on VBAT. In case of an power-down detection on VBAT the TLT9252VLC is switched off (Power On  
Reset). If VBAT recovers (VBAT > VBAT_UV) the TLT9252VLC enters by default Stand-by Mode. If VBAT > VBAT_POD the  
INH output pin is connected to VBAT. Figure 20 shows the undervoltage scenario.  
VBAT  
VBAT_UV  
VBAT_POD  
tVBAT_filter  
tPON  
tVBAT_filter  
t
Mode  
Any Mode  
Power On Reset  
Stand-by Mode 1)  
1) Assuming EN = NSTB = „0"  
VCC = 0V  
Figure 20  
VBAT power-down undervoltage detection (VCC not available)  
If an undervoltage is detected VBAT < VBAT_UV for t > tVBAT_filter the Local Wake-Up function is disabled (Figure 21).  
In Stand-by Mode, Go-to-Sleep Mode and Sleep Mode  
VBAT  
VBAT_UV  
VBAT_POD  
tVBAT_filter tVBAT_Recovery  
tVBAT_filter  
tVBAT_filter  
t
Local  
Wake  
Evaluation  
Enabled  
Disabled  
Enabled  
Figure 21  
VBAT undervoltage detection  
Datasheet  
27  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Fail safe functions  
7.2.2  
Undervoltage detection on VCC  
An undervoltage on VCC is detected if the VCC supply is below VCC_UV for more than the glitch filter time tVCC_filter  
.
This glitch filter is implemented in order to prevent an undervoltage detection due to short voltage transients  
on VCC. The following actions will be performed if a undervoltage has been detected:  
The NERR pin switches from logical “high” to “low” (In Normal-operating Mode and Receive-only Mode).  
The transmitter is disabled (Normal-operating Mode).  
The transmitter will be re-enabled if the VCC > VCC_UV for more than the glitch filter time t > tVCC_filter + tVCC_RECOVERY  
in Normal-operating Mode.  
Normal-operating Mode  
VIO and VBAT are within the functional range  
VCC  
VCC_UV  
tVCC_RECOVERY  
tVCC_filter  
tVCC_filter  
tVCC_filter  
t
Transmitter:  
NERR  
enabled  
disabled  
„0"  
enabled  
„1"  
„1"  
Figure 22 VCC short-term undervoltage detection (VBAT in functional range)  
VIO and VBAT are within the functional range  
VCC  
VCC_UV  
tVCC_filter  
tVCC_filter  
tVCC_UV_T  
t
enabled  
„1"  
disabled  
Transmitter  
NERR  
„0"  
„1"  
Sleep Mode1)  
Mode  
Normal-operating Mode  
1) Assuming no bus communication monitored and tSilence has expired  
Figure 23  
VCC long-term undervoltage detection  
Datasheet  
28  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Fail safe functions  
The VCC long-term undervoltage timer tVCC_UV_T is armed once VBAT is in the functional range. If the VCC voltage  
drops below VCC_UV for longer than t > tVCC_UV_T AND no communication is monitored on the HS CAN Bus (tSilence  
is expired), this will trigger a mode change from any mode to Sleep Mode. If during the undervoltage event,  
communication is monitored and tSilence does not expire, the device remains in the current mode of operation.  
7.2.3  
Undervoltage detection on VIO  
An undervoltage on VIO is detected if the power supply VIO is below VIO_UV. As long as VIO < VIO_UV any signal on  
the logic input pins EN, NSTB and TxD will be blocked (see Figure 24). The default value of NERR and RxD if VIO  
> VIO_UV is logical “high”.  
VBAT OR VCC is within the functional range  
VIO  
VIO_UV  
tVIO_filter  
tVIO_filter  
tVIO_filter  
t
Enabled  
Enabled  
Blocked  
Figure 24  
VIO short-term undervoltage detection  
The VIO long-term undervoltage timer tVIO_UV_T is armed once VBAT is in the functional range. If the VIO voltage  
drops below VIO_UV for longer than t > tVIO_UV_T AND no communication is monitored on the HS CAN bus (tSilence  
is expired), this will trigger a mode change to Sleep Mode (see Figure 25). If during the undervoltage event,  
communication is monitored and tSilence does not expire, the device does not enter Sleep Mode.  
Normal-operating Mode: VBAT OR VCC is within the functional range  
VIO  
VIO_UV  
tVIO_filter  
tVIO_UV_T  
t
Logic  
Input pin  
enabled  
blocked  
Mode  
Any Mode  
Sleep Mode 1)  
1) Assuming no bus communication monitored and tSilence expired  
Figure 25  
VIO long-term undervoltage detection  
Datasheet  
29  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Fail safe functions  
In Low-power Mode (Stand-by Mode, Sleep Mode, Go-to-Sleep Command) bus communication requires at  
valid WUP detection (see Chapter 6.8.1). In Normal-operating Mode or Receive-only mode a single dominant  
period of t > tfilter is reflecting bus communication.  
7.3  
Dual Power Supply Solution  
The integrated Dual Power Supply Concept of TLT9252VLC offers the possibility to supply the device with VBAT  
OR/AND VCC pin. During VBAT battery supply cranking, the TLT9252VLC remains functional if VCC stays in the  
functional range.  
7.4  
Unconnected logic pins  
The integrated pull-up and pull-down resistors at the digital input pins force the TLT9252VLC into fail safe  
behavior if the input pins are not connected and floating (see Table 6).  
Table 6  
Input signal  
TxD  
Logical inputs when unconnected  
Default state  
“High”  
Comment  
“Pull-up” current source to VIO  
“Pull-down” current source to GND  
“Pull-down” current source to GND  
EN  
“Low”  
NSTB  
“Low”  
7.5  
TxD time-out function  
The TxD time-out feature protects the CAN bus against permanent blocking in case the logical signal on the  
TxD pin is continuously “low”. A continuous “low” signal on the TxD pin might have its root cause in a locked-  
up microcontroller or in a short circuit on the printed circuit board, for example. In Normal-operating Mode, a  
logical “low” signal on the TxD pin for the time t > tTXD_TO enables the TxD time-out feature and the TLT9252VLC  
disables the transmitter (see Figure 26) and sets the NERR output pin to logical “low”. The receiver is still  
active and the data on the bus continues to be monitored by the RxD output pin.  
Normal-operating Mode  
TxD  
t
t > tTXD_TO  
TxD time–out released  
TxD time-out  
CANH  
CANL  
t
t
RxD  
NERR  
Figure 26 TxD time-out function  
Datasheet  
30  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Fail safe functions  
Figure 26 illustrates how the transmitter is deactivated and re-activated.To release the transmitter after a TxD  
time-out event, the TLT9252VLC requires a signal change on the TxD input pin from logical “low” to logical  
“high”.  
7.6  
Overtemperature protection  
The TLT9252VLC has an integrated overtemperature detection to protect the TLT9252VLC against thermal  
overstress of the transmitter. The overtemperature protection is active in Normal-operating Mode and is  
disabled in all other Modes. The temperature sensor provides one temperature threshold: TJSD.When the  
temperature exceeds the threshold TJSD the transmitter is disabled. This overtemperature event will be  
signaled as logical “low” on the NERR output pin in Normal-operating Mode. After the device has cooled down,  
the transmitter is re-enabled and NERR returns to logical “high”. A hysteresis is implemented within the  
temperature sensor.  
TJSD (shut down temperature)  
cool down  
TJ  
ΔT  
switch-on transmitter  
t
t
CANH  
CANL  
TxD  
RxD  
t
t
Figure 27 Overtemperature protection  
7.7  
RxD Recessive Clamping detection  
The RxD Recessive Clamping detection is only active in Normal-operating Mode. In Normal-operating mode a  
permanent logical “high” signal on the RxD pin indicates the external microcontroller, there is no  
communication on the HS CAN bus. The microcontroller then can transmit a message to the CAN bus, only if  
the bus is in recessive state. In case the logical “high” signal on the RxD pin is caused by a a failure, like a short  
circuit RxD to VIO, the RxD signal does not reflect the signal on the HS CAN bus. In this case the microcontroller  
is able to place a message on the CAN bus at any time and corrupts the CAN messages on the bus. If the  
TLT9252VLC detects a logical “high” signal on the RxD pin while the bus is dominant for t > tRRC the RxD  
Recessive Clamping flag is set along with disabling the transmitter in Normal-operating Mode. In order to  
avoid any data collision on the CAN bus, the transmitter is disabled in Normal-operating Mode as long as the  
RxD-Recessive Clamping is present. In Normal-operating Mode the TLT9252VLC indicates the RxD clamping by  
a logical “low” signal on the NERR pin. On detection the transmitter is disabled immediately, so that the  
corrupted, non-synchronized node is prevented from disturbing the remaining bus traffic. The corrupted node  
Datasheet  
31  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Fail safe functions  
is then excluded from communication. The TLT9252VLC releases the failure flag and the output stage if the  
RxD clamping failure disappears. Whenever the pin RXD becomes dominant while the bus signal is dominant  
for t > tRRC the RxD Recessive Clamping flag is reset along with enabling the transmitter again in Normal-  
operating Mode (see Figure 28).  
Normal-operating Mode  
VIO and VBAT are within the functional range  
RxD  
t
tRRC  
tRRC  
Vdiff  
0.9V  
tRRC_NERR  
tRRC_NERR  
„1"  
„0"  
„1"  
RxD Recessive  
Clamping detected  
RxD Recessive  
Clamping reset  
Figure 28 RxD Recessive Clamping in Normal-operating Mode  
7.8  
Delay time for mode change  
The HS CAN transceiver TLT9252VLC changes the modes of operation within the time window tMode. During  
mode changes from low-power mode to Normal-operating Mode or low-power mode to Receive-only Mode,  
the RxD output pin is set to logical “high” and does not reflect the status on the CANH and CANL input pins.  
Datasheet  
32  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Diagnosis-flags at NERR and RxD  
8
Diagnosis-flags at NERR and RxD  
Table 7  
NSTB  
1
Diagnosis-flags at NERR and RxD  
EN  
INH  
Mode  
Event  
NERR1) RxD1)  
1
VBAT  
Normal-operating No failure detected  
1
0
“Low”: bus  
Dominant,  
“High”: bus  
recessive  
VCC undervoltage  
Overtemperature  
TxD time-out  
RxD recessive clamping  
1
0
VBAT  
Receive-only  
Stand-by  
No failure detected  
1
0
“Low”: bus  
Dominant,  
“High”: bus  
recessive  
Power-Up-Flag2) OR  
CC undervoltage  
V
0
0
0
0
VBAT  
WUP detected  
0
1
1
1
0
0
0
1
1
0
LWU detected  
No Wake-up event detected  
No Wake-up event detected  
No Wake-up event detected3)  
High-Z Sleep  
1) Only valid if VIO is in the functional range.  
2) Power-Up-Flag only available if VBAT or VCC is in the functional range for at least tPON. Power-Up-Flag will be cleared  
once entering Normal-operating Mode.  
3) Valid if VIO = 0 V.  
Datasheet  
33  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Diagnosis-flags at NERR and RxD  
Whenever the pin RXD becomes dominant while The HS CAN Bus is  
Dominant for  
t > tRRC, the RXD Recessive Clamping Flag is reset.  
Whenever the pin TxD Is dominant for t > tTxD_TO the TxD Dominant  
Flag is set. If VCC < VCC_UV for t > tVCC_filter the VCC undervoltage flag  
is set. If VCC recovers for t > tVCC_filter + tVCC_Recovery in Normal-  
operating Mode the NERR goes high and the VCC undervoltage flag is  
reset. If an overtemperature is detected the overtemperature flag is set.  
If no overtemperature is detected the Overtemperature Flag is reset. In  
Normal-operating mode And Receive-only mode failure recovery is  
reflected on the pin NERR going HIGH again.  
Normal-operating Mode:  
(NERR = 0)  
Transmitter blocked:  
TxD Dom. Timeout  
Overtemperature  
RxD Recessive Clamping  
VCC undervoltage  
Local Failure Flags are: VCC Undervoltage, RxD Recessive Clamping, TxD  
Dominant Timeout, Overtemperature  
NSTB = 1  
EN = 0  
NSTB = 1  
EN = 1  
Normal-operating Mode  
Receive-only Mode  
Local Failure Flags  
cleared  
NSTB = 1  
EN = 1  
The POR Flag is signaled at the  
pin NERR in Receive-only Mode  
mode when coming from  
Standby, Sleep or Go-to Sleep  
Command mode. It is set if The  
supply voltages VBAT OR VCC  
recover to functional range after  
NSTB = 1  
EN = 1  
Receive-only Mode:  
(NERR = 0)  
Power-up Flag  
VBAT < VBAT_POD  
Receive-only Mode:  
VCC undervoltage Flag is set in Receive-only  
Mode when VCC VCC_UV for  
tVCC_filter and coming from Normal-  
operating Mode. If VCC recovers for  
tVCC_filter + tVCC_Recovery in Receive-only  
Mode the NERR goes high and the  
undervoltage flag is reset.  
(NERR = 0)  
<
t >  
Transmitter blocked:  
VCC undervoltage  
a
Power On Reset Event. The  
t
>
POR Flag is reset once the  
Normal-operating  
entered.  
mode  
is  
NSTB = 0  
EN = 0  
NSTB = 1  
EN = 0  
Sleep Mode  
NSTB = 0  
EN = 0  
NSTB = 0  
EN = 0  
As long as the POR flag OR WUP  
Flag OR LWU Flag is set a mode  
change via Host Command to  
Sleep Mode is not possible.  
Go-To-Sleep  
Command Mode  
Stand-by Mode  
Sleep Mode/Stand-by  
Mode:  
Wake-up Source Flag  
NERR = 0: WUP  
NERR = 1: LWU  
Default flag settings:  
Power-Up Flag „SET“  
Bus Wake-up Flag „RESET“  
Local Wake-up Flag „RESET“  
VCC Undervoltage Flag „RESET“  
RxD Recessive Clamping „RESET“  
Overtemperature Flag „RESET“  
TxD Dominant Flag „RESET“  
V
BAT > VBAT_UV  
Figure 29 Diagnosis flowchart  
Datasheet  
34  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Electrical characteristics  
9
Electrical characteristics  
The electrical characteristics are specified in the defined temperature range. Beyond this temperature range  
and below the absolute maximum rating the TLT9252VLC operates as described in the circuit description,  
parameter deviation is possible.  
9.1  
General timing parameter  
Table 8  
General timing parameter  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; 5.5 V < VBAT < 40 V; RL = 60 ; -40°C < TJ < 150°C;  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Power-up delay time  
tPON  
500 µs  
See Figure 20  
P_9.1.1  
P_9.1.2  
P_9.1.3  
P_9.1.4  
Delay time for mode change tMode  
CAN bus silence time-out tSilence  
20  
µs  
s
0.6 0.9 1.2  
Min. hold time in Go-to-Sleep tSleep  
10  
25  
50  
µs  
See Figure 10  
command  
RxD Recessive Clamping  
detection time  
tRRC  
1.2 1.8  
µs  
µs  
See Figure 28  
See Figure 28  
P_9.1.5  
P_9.1.6  
RxD Recessive Clamping  
indication delay  
tRRC_NERR  
-
-
1
9.2  
Power supply interface  
9.2.1  
Current consumptions  
Table 9  
Current consumptions  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; 5.5 V < VBAT < 40 V; RL = 60 ; -40°C < TJ < 150°C;  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Normal-operating Mode  
V
BAT supply current  
IBAT_NM  
ICC_NM_D  
ICC_NM_R  
IIO_NM  
0.8  
35  
1.2  
48  
mA  
mA  
mA  
µA  
INH = not  
connected  
P_9.2.1  
P_9.2.2  
P_9.2.3  
P_9.2.4  
VCC supply current  
dominant bus signal  
VCC supply current  
recessive bus signal  
1.0  
2.0  
4.0  
8.0  
VIO supply current  
steady state,  
TxD= VIO  
Receive-only Mode  
Datasheet  
35  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Electrical characteristics  
Table 9  
Current consumptions (cont’d)  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; 5.5 V < VBAT < 40 V; RL = 60 ; -40°C < TJ < 150°C;  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
0.8  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
VBAT supply current  
VCC supply current  
VIO supply current  
IBAT_ROM  
ICC_ROM  
IIO_ROM  
1.2  
mA  
µA  
µA  
INH = not  
connected  
P_9.2.5  
P_9.2.6  
P_9.2.7  
33  
50  
TxD= VIO,  
V
BAT > 12 V  
2.0  
8.0  
steady state,  
TxD= VIO  
Stand-by Mode  
VBAT supply current  
IBAT_STB  
22  
50  
µA  
INH = n.c.,  
P_9.2.8  
VBAT < 18 V,  
t
Silence expired,  
WAKE = GND  
VCC supply current  
ICC_STB  
IIO_STB  
2.0  
2.0  
8.0  
5.0  
µA  
µA  
TxD= VIO,  
P_9.2.11  
P_9.2.12  
V
BAT > 12 V  
VIO supply current  
Sleep Mode  
TxD= VIO  
VBAT supply current  
IBAT_SLP  
12.0  
25.0  
µA  
VCC = VIO = 0 V,  
VBAT < 18 V,  
P_9.2.13  
bus biasing = GND,  
INH = n.c.  
VBAT supply current TJ < 85°C IBAT_SLP_85  
18.0  
µA  
VCC = VIO = 0 V,  
INH = n.c.,  
P_9.2.14  
bus biasing = GND,  
V
BAT < 18 V,  
TJ < 85°C 1);  
TxD= VIO,  
V
CC supply current  
ICC_SLP  
IIO_SLP  
0.5  
2.0  
5.0  
5.0  
µA  
µA  
P_9.2.16  
P_9.2.17  
V
BAT > 12 V  
VIO supply current  
TxD= VIO;  
1) Not subject to production test, specified by design  
9.2.2  
Undervoltage detection  
Table 10 Undervoltage detection  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; 5.5 V < VBAT < 40 V; RL = 60 ; -40°C < TJ < 150°C;  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Undervoltage detection VBAT  
Undervoltage detection  
threshold  
VBAT_UV  
4.8  
5.1  
5.5  
V
P_9.2.18  
Datasheet  
36  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Electrical characteristics  
Table 10 Undervoltage detection (cont’d)  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; 5.5 V < VBAT < 40 V; RL = 60 ; -40°C < TJ < 150°C;  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
4.0  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Power-down threshold  
VBAT_POD  
tVBAT_filter  
3.0  
4.5  
V
Falling edge,  
CC = 0V  
P_9.2.20  
P_9.2.22  
V
VBAT undervoltage glitch  
50  
µs  
See Figure 20  
filter  
Undervoltage detection VCC  
Undervoltage detection  
threshold  
VCC_UV  
4.0  
4.25  
4.5  
V
See Figure 22  
P_9.2.24  
Undervoltage glitch filter  
tVCC_filter  
10  
µs  
µs  
ms  
See Figure 22  
See Figure 22  
See Figure 23  
P_9.2.27  
P_9.2.28  
P_9.2.29  
Undervoltage recovery time tVCC_RECOVERY 15  
25  
380  
35  
Response time VCC for long- tVCC_UV_T  
term undervoltage  
300  
450  
detection  
Undervoltage detection VIO  
Undervoltage detection  
threshold  
VIO_UV  
2.4  
2.65  
3.0  
V
See Figure 24  
P_9.2.30  
Undervoltage glitch filter  
tVIO_filter  
10  
µs  
See Figure 24  
See Figure 25  
P_9.2.32  
P_9.2.33  
Response time VIO for long- tVIO_UV_T  
term undervoltage  
300  
380  
450  
ms  
detection  
9.2.3  
INH output  
Table 11 INH output  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; 5.5 V < VBAT < 40 V; RL = 60 ; -40°C < TJ < 150°C;  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Analog output INH  
Output voltage INH enabled VINH  
VBAT -0.8 –  
V
IINH = - 0.2 mA,  
Normal-operating  
Mode,  
P_9.2.34  
Receive-only  
Mode,  
Stand-by Mode,  
Go-to-Sleep  
command  
Absolute leakage current  
IINH_Leak  
–5.0  
µA VINH = 0 V,  
P_9.2.35  
Sleep Mode  
Datasheet  
37  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Electrical characteristics  
9.3  
EN, NSTB and NERR  
Table 12 EN, NSTB and NERR  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; 5.5 V < VBAT < 40 V; RL = 60 ; -40°C < TJ < 150°C;  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
VIO  
Mode control inputs EN, NSTB  
“High” level input range  
“Low” level input range  
VMODE_H  
0.7 x  
VIO  
+
V
V
P_9.3.1  
P_9.3.2  
0.3V  
VMODE_L  
-0.3 V  
0.3 x  
VIO  
“High” level input current  
“Low” level input current  
Diagnosis output NERR  
IMODE_H  
IMODE_L  
20  
220  
2.0  
µA  
µA  
VMode = VIO  
VMODE = 0 V  
P_9.3.3  
P_9.3.4  
-2.0  
“High” level output current INERR_H  
“Low” level output current INERR_L  
-4.0  
4.0  
-1.0  
mA  
mA  
VNERR = VIO - 0.4 V  
VNERR = 0.4 V  
P_9.3.5  
P_9.3.6  
1.0  
9.4  
CAN controller interface  
Table 13 CAN controller interface  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; 5.5 V < VBAT < 40 V; RL = 60 ; -40°C < TJ < 150°C;  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Receiver output RxD  
“High” level output current IRxD_H  
“Low” level output current IRxD_L  
Transmitter input TxD  
-4.0  
4.0  
-1.0  
mA  
mA  
VRxD = VIO - 0.4 V,  
Diff < 0.5 V  
VRxD = 0.4 V,  
Diff > 0.9 V  
P_9.4.1  
P_9.4.2  
V
1.0  
V
“High” level input voltage  
threshold  
VTxD_H  
0.5 x  
VIO  
0.7 x  
VIO  
V
V
Recessive state  
Dominant state  
P_9.4.4  
P_9.4.5  
“Low” level input voltage  
threshold  
VTxD_L  
0.3 x  
VIO  
0.4 x  
VIO  
“High” level input current  
“Low” level input current  
ITxD_H  
ITxD_L  
-2.0  
-200  
1
2.0  
-20.0  
4
µA  
µA  
ms  
VTxD = VIO  
VTxD = 0 V  
P_9.4.7  
P_9.4.8  
TxD permanent dominant  
time-out  
tTxD_TO  
2.45  
Normal-operating P_9.4.9  
Mode, see  
Figure 26  
1)  
Input capacitance  
CTxD  
10  
pF  
P_9.4.10  
1) Not subject to production test, specified by design.  
Datasheet  
38  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Electrical characteristics  
9.5  
Transmitter  
Table 14 Transmitter  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; 5.5 V < VBAT < 40 V; RL = 60 ; -40°C < TJ < 150°C;  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Bus transmitter  
CANH, CANL recessive output VCANL/H  
voltage  
2.0 2.5 3.0  
V
Normal-operating  
Mode,  
P_9.5.1  
Receive-only Mode,  
V
TxD = VIO,  
No load  
CANH, CANL recessive output VDiff_R_NM  
=
-50  
50  
mV VTxD = VIO,  
P_9.5.2  
P_9.5.3  
voltage difference  
VCANH - VCANL  
No load  
CANH dominant output  
voltage  
VCANH  
2.75  
4.5  
V
V
V
VTxD = 0 V,  
50 < RL < 65 ,  
4.75V < VCC < 5.25  
Normal-operating Mode  
CANL dominant output  
voltage  
VCANL  
0.5  
2.25  
VTxD = 0 V,  
50 < RL < 65 ,  
4.75V < VCC < 5.25  
P_9.5.4  
P_9.5.5  
Normal-operating Mode  
CANH, CANL dominant output VDiff_D  
1.5 2.0 2.5  
VTxD = 0 V,  
voltage difference:  
50 < RL < 65 ,  
4.75V < VCC < 5.25  
VDiff_D = VCANH - VCANL  
Normal-operating Mode  
CANH, CANL dominant output VDiff_D_EXT_BL 1.4  
voltage difference  
extended bus load  
VDiff_D = VCANH - VCANL  
Normal-operating Mode  
3.3  
5.0  
V
V
VTxD = 0 V,  
RL = 45 < RL < 70,  
4.75V < VCC < 5.25  
P_9.5.6  
P_9.5.7  
CANH, CANL dominant  
output voltage difference high  
extended bus load  
VDiff_D_HEXT_BL 1.5  
VTxD = 0 V,  
RL = 2240 1),  
4.75 V < VCC < 5.25,  
static behavior  
Normal-operating mode  
VDiff = VCANH - VCANL  
CANH, CANL recessive  
output voltage  
Sleep Mode  
VCANL_H  
VDiff_SLP  
VSYM  
-0.1  
-0.2  
0.1  
0.2  
V
V
-
No load  
No load  
P_9.5.8  
P_9.5.9  
CANH, CANL recessive  
output voltage difference  
Sleep Mode  
Driver symmetry  
0.9 1.0 1.1  
RL = 60 Ω, C1 = 4.7 nF 1)2) P_9.5.10  
VSYM = (VCANH + VCANL)/VCC  
Datasheet  
39  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Electrical characteristics  
Table 14 Transmitter (cont’d)  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; 5.5 V < VBAT < 40 V; RL = 60 ; -40°C < TJ < 150°C;  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
-115 -75 -40  
CANH short circuit current  
ICANHSC  
mA VCANHshort = -3 V,  
t < tTXD_TO  
TxD = 0 V,  
VCC = 5 V  
115 mA VCANLshort = 18 V,  
t < tTXD_TO  
P_9.5.11  
,
V
CANL short circuit current  
ICANLSC  
40  
75  
P_9.5.12  
,
V
V
TxD = 0 V,  
CC = 5 V  
Leakage current CANH  
Leakage current CANL  
ICANH_Ik  
-5  
-5  
5
µA  
VCC =VBAT = VIO = 0 V3),  
0 V < VCANH 5 V,  
VCANH = VCANL  
VCC =VBAT = VIO = 0 V3),  
0 V < VCANL 5 V,  
P_9.5.14  
P_9.5.15  
P_9.5.16  
ICANL_Ik  
5
µA  
V
CANH = VCANL  
V/µs 1)30% to 70% of  
measured differential  
CANH, CANL output voltage  
difference slope, recessive to  
dominant  
Vdiff_slope_rd  
70  
bus voltage,  
C2 = 100 pF, RL = 60 Ω,  
4.75 V < VCC < 5.25 V  
CANH, CANL output voltage  
difference slope, dominant to  
recessive  
Vdiff_slope_dr  
70  
V/µs 1)30% to 70% of  
P_9.5.17  
measured differential  
bus voltage,  
C2 = 100 pF, RL = 60 Ω,  
4.75 V < VCC < 5.25 V  
1) Not subject to production test, specified by design.  
2) VSYM shall be observed during dominant and recessive state and also during the transition from dominant to recessive  
and vice versa, while TxD is stimulated by a square wave signal with a frequency of 1 MHz.  
3) Additional requirement VIO = VCC connected via 47 kto GND.  
9.6  
Receiver  
Table 15 Receiver  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; 5.5 V < VBAT < 40 V; RL = 60 ; tBit(min) = 500 ns; tBit(Flash) = 200 ns;  
-40°C < TJ < 150°C;  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Bus receiver  
Common mode range  
VCMR  
-12  
12  
V
P_9.6.1  
Datasheet  
40  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Electrical characteristics  
Table 15 Receiver (cont’d)  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; 5.5 V < VBAT < 40 V; RL = 60 ; tBit(min) = 500 ns; tBit(Flash) = 200 ns;  
-40°C < TJ < 150°C;  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Differential receiver  
threshold dominant  
Normal-operating Mode  
Receive-only Mode  
VDiff_D  
0.9  
V
VCMR  
P_9.6.2  
1)  
Differential range dominant VDiff_D_Range 0.9  
Normal-operating Mode  
Receive-only Mode  
8.0  
V
V
VCMR  
P_9.6.3  
P_9.6.4  
Differential receiver  
threshold recessive  
Normal-operating Mode  
Receive-only Mode  
VDiff_R  
0.5  
VCMR  
1)  
1)  
Differential range recessive VDiff_R_Range -3.0  
Normal-operating Mode,  
Receive-only Mode  
0.5  
V
VCMR  
P_9.6.5  
P_9.6.6  
Differential receiver  
hysteresis  
VDiff_Hys  
30  
mV VCMR  
Normal-operating Mode,  
Receive-only Mode  
Single ended internal  
resistance  
RCAN_H,  
RCAN_L  
6
50  
kRecessive state  
-2 V < VCANH,L < 7 V  
P_9.6.7  
P_9.6.8  
P_9.6.9  
P_9.6.10  
P_9.6.11  
Input resistance deviation  
between CANH and CANL  
Ri  
-3.0  
12  
3.0  
100  
40  
%
Recessive state  
CANH = VCANL = VCC = 5 V  
V
Differential internal  
resistance  
RDiff  
CIn  
kRecessive state  
-2 V < VCANH,L < 7 V  
pF 2)Recessive state  
Input capacitance CANH,  
CANL versus GND  
20  
10  
Differential input  
capacitance  
CInDiff  
20  
pF 2)Recessive state  
1) Not subject to production test, specified by design.  
2) Not subject to production test, specified by design, S2P-Method, f = 10 MHz.  
Datasheet  
41  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Electrical characteristics  
9.7  
Dynamic transceiver parameter  
Table 16 Propagation delay and CAN FD parameters  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; 5.5 V < VBAT < 40 V; RL = 60 ; tBit(min) = 500 ns; tBit(Flash) = 200 ns;  
-40°C < TJ < 150°C;  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Propagation delay characteristic  
Propagation delay,  
TxD to RxD  
tLoop  
80  
175  
500  
215  
ns  
ns  
CL = 100 pF,  
CRxD = 15 pF, see  
Figure 31  
P_9.7.1  
P_9.7.6  
Received recessive bit width tBit(RxD)_2M  
at 2 MBit/s  
400  
120  
435  
155  
-65  
-45  
550  
220  
530  
210  
40  
CL = 100 pF,  
C
RxD = 15 pF,  
t
Bit = 500 ns,  
see Figure 32  
Received recessive bit width tBit(RxD)_5M  
at 5 MBit/s  
200  
500  
200  
ns  
ns  
ns  
ns  
ns  
CL = 100 pF,  
CRxD = 15 pF,  
P_9.7.7  
P_9.7.8  
P_9.7.9  
P_9.7.10  
P_9.7.11  
t
Bit = 200 ns,  
see Figure 32  
Transmitted recessive bit  
width at 2 MBit/s  
tBit(Bus)_2M  
CL = 100 pF,  
C
RxD = 15 pF,  
tBit = 500 ns  
(see Figure 32)  
Transmitted recessive bit  
width at 5 MBit/s  
tBit(Bus)_5M  
CL = 100 pF,  
C
RxD = 15 pF,  
t
Bit = 200 ns;  
(see Figure 32)  
Receiver timing symmetry at tRec_2M  
2 MBit/s  
tRec_2M = tBit(RxD)_2M  
tBit(Bus)_2M  
CL = 100 pF,  
CRxD = 15 pF,  
tBit = 500 ns,  
-
see Figure 32  
Receiver timing symmetry at tRec_5M  
5 MBit/s  
15  
CL = 100 pF,  
CRxD = 15 pF,  
tRec_5M = tBit(RxD)_5M  
-
t
Bit = 200 ns,  
tBit(Bus)_5M  
see Figure 32  
Datasheet  
42  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Electrical characteristics  
VCC  
VIO  
100 nF  
100 nF  
TLT9252V  
INH  
TxD  
RxD  
EN  
RINH  
CRxD  
VBAT  
100 nF  
NSTB  
NERR  
WAKE  
CANH  
RL/2  
CL  
C1  
RL/2  
CANL  
GND  
Figure 30 Test circuit for dynamic characteristics  
TxD  
0.7 x VIO  
0.3 x VIO  
t
t
td(L),T  
td(H),T  
VDiff  
0.9 V  
0.5 V  
td(H),R  
td(L),R  
tLoop(H,L)  
tLoop(L,H)  
RxD  
0.7 x VIO  
0.3 x VIO  
t
Figure 31 Timing diagrams for dynamic characteristics  
TxD  
0.7 x VIO  
0.3 x VIO  
0.3 x VIO  
t
t
5 x tBit  
tBit  
tLoop(H,L)  
tBit(Bus)  
VDiff = VCANH - VCANL  
VDiff  
0.9 V  
0.5 V  
tLoop(L,H)  
tBit(RxD)  
RxD  
0.7 x VIO  
0.3 x VIO  
t
Figure 32 Recessive bit time for five dominant bits followed by one recessive bit  
Datasheet  
43  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Electrical characteristics  
9.8  
Wake-up  
9.8.1  
General wake-up timings  
Table 17 General wake-up timings  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; 5.5 V < VBAT < 40 V; RL = 60 ; -40°C < TJ < 150°C;  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
INH wake-up delay time  
tWU_INH  
30.0  
µs  
VBAT = 14.0 V,  
INH = 100 k,  
P_9.8.1  
R
see Figure 33  
Bias reaction time  
tWU_Bias  
100  
µs  
See Figure 33  
P_9.8.2  
LWU, WUP detected  
VBAT  
INH pin  
70% of VBAT  
t
tWU_INH  
tMode  
Mode  
Sleep Mode  
Stand-by Mode  
2,5V  
tWU_Bias  
Bus Biasing  
Connected to GND  
Figure 33 Wake-up detection  
Datasheet  
44  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Electrical characteristics  
9.8.2  
WUP detection characteristics  
Table 18 WUP detection  
4.75 V < VCC < 5.25 V; 3.0 V < VIO < 5.5 V; 5.5 V < VBAT < 40 V; RL = 60 ; -40°C < TJ < 150°C;  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Differential range dominant VDiff_D_SLP_Range 1.15  
low power modes  
8.0  
V
VCMR  
VCMR  
VCMR  
VCMR  
P_9.8.4  
P_9.8.5  
P_9.8.6  
P_9.8.7  
Differential input threshold VDiff_D_SLP  
dominant low power modes  
1.15  
0.4  
V
1)  
+Differential range recessive VDiff_R_SLP_Range -3.0  
low power modes  
V
Differential input threshold VDiff_R_SLP  
0.4  
V
recessive low power modes  
CAN activity filter time  
Bus wake-up time-out  
Bus wake-up delay time  
tFilter  
tWAKE  
tWU  
0.5  
0.8  
1.8  
µs  
Figure 14  
P_9.8.9  
10.0  
5.0  
ms Figure 14  
µs Stand-by Mode,  
Figure 14  
P_9.8.10  
P_9.8.11  
1) Not subject to production test, specified by design.  
9.8.3  
Local Wake-Up  
Table 19 Local Wake-Up  
4.75 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; 5.5 V < VBAT < 40 V; RL = 60 ; -40°C < TJ < 150°C;  
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Local Wake-Up detection  
threshold  
VWAKE_TH  
VWAKE_TH  
IWAKE_H  
0.35 x 0.5 x  
VBAT VBAT  
0.25 x 0.5 x  
0.65x  
VBAT  
V
5.5 V < VBAT < 32 V P_9.8.12  
Local Wake-Up detection  
threshold  
0.75 x  
VBAT  
V
32 V < VBAT < 40 V  
P_9.8.13  
P_9.8.15  
P_9.8.16  
P_9.8.17  
VBAT  
VBAT  
“High” level input current  
(pull-up)  
-20  
-9  
-2  
µA  
µA  
µs  
“Low” level input current  
(pull-down)  
IWAKE_L  
2
9
20  
70  
Wake pulse filter time  
tWAKE_Filter  
10  
25  
Figure 15  
Datasheet  
45  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Application information  
10  
Application information  
10.1  
ESD robustness according to IEC61000-4-2  
Tests for ESD robustness according to IEC61000-4-2 “Gun test” (150 pF, 330 ) have been performed. The  
results and test conditions are available in a separate test report.  
Table 20 ESD robustness according to IEC61000-4-2  
Performed Test  
Result Unit  
Remarks  
1)Positive pulse  
Electrostatic discharge voltage at pin CANH and +9  
CANL, VBAT, WAKE versus GND  
kV  
Electrostatic discharge voltage at pin CANH and -9  
CANL, VBAT, WAKE versus GND  
kV  
1)Negative pulse  
1) ESD susceptibility “ESD GUN” according to GIFT / ICT paper: “EMC Evaluation of CAN Transceivers, version 03/02/IEC  
TS62228”, section 4.3. (DIN EN61000-4-2).  
Tested by external test facility (IBEE Zwickau).  
10.2  
Voltage adaption to the microcontroller supply  
To adapt the digital input and output levels of the TLT9252VLC to the I/O levels of the microcontroller, connect  
the power supply pin VIO to the microcontroller voltage supply (see Figure 34).  
Note:  
In case the digital supply voltage VIO is not required in the application, connect the digital supply  
voltage VIO to the transmitter supply VCC  
.
Datasheet  
46  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Application information  
10.3  
Application example  
VBAT  
I
Q1  
Q2  
22 uF  
TLE4476D  
GND  
100 nF  
CANH  
CANL  
EN  
100 nF  
22 uF  
100 nF  
3
5
120  
Ohm  
VCC  
VIO  
TLT9252V  
VIO  
1
7
10  
13  
12  
Out  
In  
INH  
TxD  
4
RxD  
14  
VBAT  
Out  
NSTB  
CANH  
CANL  
Microcontroller  
e.g. XC22xx  
6
8
Out  
In  
EN  
NERR  
WAKE  
optional:  
3.3k  
GND  
9
Ohm  
common mode choke  
GND  
2
20k  
Ohm  
I
Q1  
Q2  
22 uF  
TLE4476D  
GND  
100 nF  
EN  
100 nF  
22 uF  
100 nF  
3
5
VCC  
VIO  
TLT9252V  
VIO  
1
7
10  
13  
12  
Out  
In  
INH  
TxD  
4
RxD  
14  
VBAT  
Out  
NSTB  
CANH  
CANL  
Microcontroller  
e.g. XC22xx  
6
8
Out  
In  
EN  
NERR  
WAKE  
optional:  
3.3k  
GND  
Ohm  
9
common mode choke  
120  
Ohm  
GND  
2
20k  
Ohm  
CANH  
CANL  
example ECU design  
Figure 34 Application circuit  
10.4  
Further application information  
Please contact us for information regarding the pin FMEA.  
For further information you may visit: http://www.infineon.com/  
Datasheet  
47  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Package outline  
11  
Package outline  
Figure 35 PG-TSON-14  
Green product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Datasheet  
48  
Rev. 1.0  
2019-10-17  
TLT9252VLC  
High-Speed CAN FD Transceiver  
Revision history  
12  
Revision history  
Revision  
Date  
Changes  
1.0  
2019-10-17 Initial datasheet  
Datasheet  
49  
Rev. 1.0  
2019-10-17  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2019-10-17  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2019 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
Document reference  
Z8F66182131  

相关型号:

TLT9255WLC

AEC-Q100 Grade 0
INFINEON

TLU1410A-00-12

PCB Terminal,
WINCHESTER

TLU1410A-1-12

PCB Terminal,
WINCHESTER

TLU1410A-10-12

PCB Terminal
WINCHESTER

TLU1410A-11-12

PCB Terminal,
WINCHESTER

TLU1410A-112-12

PCB Terminal,
WINCHESTER

TLU1410A-113-12

PCB Terminal
WINCHESTER

TLU1410A-17-12

PCB Terminal,
WINCHESTER

TLU1410A-18-12

PCB Terminal,
WINCHESTER

TLU1410A-2-12

暂无描述
WINCHESTER

TLU1410A-3-12

PCB Terminal,
WINCHESTER

TLU1410A-34-12

PCB Terminal,
WINCHESTER