TLS850F0TAV33ATMA1 [INFINEON]

Fixed Positive LDO Regulator, 3.3V, 0.43V Dropout, PSSO7, GREEN, PLASTIC, TO-263, 7 PIN;
TLS850F0TAV33ATMA1
型号: TLS850F0TAV33ATMA1
厂家: Infineon    Infineon
描述:

Fixed Positive LDO Regulator, 3.3V, 0.43V Dropout, PSSO7, GREEN, PLASTIC, TO-263, 7 PIN

文件: 总36页 (文件大小:1438K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Dropout Linear Voltage Regulator  
TLS850F0TAV33  
TLS850F0TAV33  
Linear Voltage Regulator  
Data Sheet  
Rev. 1.0, 2015-12-01  
Automotive Power  
TLS850F0TAV33  
Table of Contents  
Table of Contents  
1
2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3
3.1  
3.2  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Assignment TLS850F0TAV33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Definitions and Functions TLS850F0TAV33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.1  
4.2  
4.3  
5
Block Description and Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Voltage Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Typical Performance Characteristics Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Typical Performance Characteristics Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Typical Performance Characteristics Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Typical Performance Characteristics Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Standard Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Typical Performance Characteristics Standard Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
5.10  
6
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Selection of External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Input Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Output Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
6.1  
6.2  
6.2.1  
6.2.2  
6.3  
6.4  
6.5  
7
8
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Data Sheet  
2
Rev. 1.0, 2015-12-01  
Low Dropout Linear Voltage Regulator  
TLS850F0TAV33  
1
Overview  
Features  
Wide Input Voltage Range from 3.0 V to 40 V  
Fixed Output Voltage 3.3 V  
Output Voltage Precision ±2 %  
Output Current Capability up to 500 mA  
Ultra Low Current Consumption typ. 40 µA  
Very Low Dropout Voltage typ. 80 mV@100 mA  
Stable with Ceramic Output Capacitor of 1 µF  
Delayed Reset at Power-On: 16.5 ms  
Adjustable Reset Threshold down to 2.50 V  
Figure 1  
PG-TO263-7  
Watchdog with fixed timing and current dependent deactivation: 96 ms,  
Activated at IQ > 5.5 mA  
Enable, Undervoltage Reset, Overtemperature Shutdown  
Output Current Limitation  
Wide Temperature Range  
Green Product (RoHS compliant)  
AEC Qualified  
Data Sheet  
3
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Overview  
Functional Description  
The TLS850F0TAV33 is a high performance very low dropout linear voltage regulator for 3.3 V supply in a PG-  
TO263-7 package.  
With an input voltage range of 3 V to 40 V and very low quiescent of only 40 µA, these regulators are perfectly  
suitable for automotive or any other supply systems connected to the battery permanently. The TLS850F0TAV33  
provides an output voltage accuracy of 2 % and a maximum output current up to 500 mA.  
The new loop concept combines fast regulation and very good stability while requiring only one small ceramic  
capacitor of 1 µF at the output. At currents below 100 mA the device will have a very low typical dropout voltage  
of only 80 mV. The operating range starts already at input voltages of only 3 V (extended operating range). This  
makes the TLS850F0TAV33 also suitable to supply automotive systems that need to operate during cranking  
condition.  
The device can be switched on and off by the Enable feature as described in Chapter 5.5.  
The output voltage is supervised by the Reset feature, including Undervoltage Reset, delayed Reset at Power-On  
and an adjustable lower Reset Threshold, more details can be found in Chapter 5.7.  
In addition, a Watchdog circuit with fixed timing is integrated to monitor the microcontroller‘s operation.  
Internal protection features like output current limitation and overtemperature shutdown are implemented to  
protect the device against immediate damage due to failures like output short circuit to GND, over-current and  
over-temperatures.  
Choosing External Components  
An input capacitor CI is recommended to compensate line influences. The output capacitor CQ is necessary for  
the stability of the regulating circuit. TLS850F0TAV33 is designed to be also stable with low ESR ceramic  
capacitors.  
Type  
Package  
Marking  
TLS850F0TAV33  
PG-TO263-7  
850F0V33  
Data Sheet  
4
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Block Diagram  
2
Block Diagram  
I
Q
Current  
Limitation  
RO/WO  
RADJ  
Reset  
EN  
Enable  
Bandgap  
Reference  
WI  
Temperature  
Shutdown  
Watchdog  
GND  
Figure 2  
Block Diagram TLS850F0TAV33  
Data Sheet  
5
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment TLS850F0TAV33  
1 2 3 4 5 6 7  
Figure 3  
Pin Configuration  
3.2  
Pin Definitions and Functions TLS850F0TAV33  
Pin  
Symbol  
Function  
Input  
1
I
It is recommended to place a small ceramic capacitor (e.g. 100 nF) to GND, close  
to the IC terminals, in order to compensate line influences. See also Chapter 6.2.1  
2
3
EN  
Enable (integrated pull-down resistor)  
Enable the IC with high level input signal;  
Disable the IC with low level input signal;  
RO/WO  
Reset Output / Watchdog Output (intergrated pull-up resistor to Q)  
Open collector output;  
Leave open if the reset and watchdog function are not needed  
4
5
GND  
Ground  
RADJ  
Reset Threshold Adjustment  
Connect to GND to use standard value;  
Connect an external voltage divider to adjust reset threshold  
6
7
WI  
Q
Watchdog Input (integrated pull-down resistor)  
Serve Watchdog with trigger input signal (usable for microcontroller monitoring)  
Output Voltage  
Connect output capacitor CQ to GND close to the IC’s terminals, respecting the  
values specified for its capacitance and ESR in “Functional Range” on Page 8  
Heat  
Slug  
Heat Slug  
Connect to heatsink area;  
Connect to GND  
Data Sheet  
6
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Table 1  
Absolute Maximum Ratings1)  
Tj = -40 °C to +150 °C; all voltages with respect to ground (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Number  
Min. Typ. Max.  
Input I, Enable EN  
Voltage  
VI, VEN  
-0.3  
45  
7
V
V
V
P_4.1.1  
P_4.1.3  
P_4.1.5  
Output Q, Reset/Watchdog Output RO/WO  
Voltage VQ, VRO/WO -0.3  
Watchdog Input WI, Reset Threshold Adjustment RADJ  
Voltage  
VWI, VRADJ -0.3  
7
Temperatures  
Junction Temperature  
Storage Temperature  
ESD Absorption  
Tj  
-40  
-55  
150  
150  
°C  
°C  
P_4.1.7  
P_4.1.8  
Tstg  
ESD Susceptibility to GND  
ESD Susceptibility to GND  
VESD  
VESD  
-2  
2
kV  
V
2) HBM  
3) CDM  
3) CDM  
P_4.1.9  
-500  
-750  
500  
750  
P_4.1.10  
P_4.1.12  
ESD Susceptibility Pin 1, 7 (corner pins) VESD1,7  
to GND  
V
1) Not subject to production test, specified by design.  
2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5 k, 100 pF)  
3) ESD susceptibility, Charged Device Model “CDM” according JEDEC JESD22-C101  
Note:  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not  
designed for continuous repetitive operation.  
Data Sheet  
7
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
General Product Characteristics  
4.2  
Functional Range  
Table 2  
Functional Range  
Tj = -40 °C to +150 °C; all voltages with respect to ground (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
V
Max.  
40  
1)  
Input Voltage Range  
VI  
Q,nom + Vdr  
V
P_4.2.1  
P_4.2.3  
P_4.2.5  
P_4.2.6  
2)  
Extended Input Voltage Range  
Enable Voltage Range  
VI,ext  
VEN  
CQ  
3.0  
0
40  
V
40  
V
3)4)  
Output Capacitor’s  
1
µF  
Requirements for Stability  
3)  
ESR  
ESR(CQ) –  
Tj -40  
100  
150  
P_4.2.7  
P_4.2.9  
Junction Temperature  
°C  
1) Output current is limited internaly and depends on the input voltage, see Electrical Characteristics for more details.  
2) When VI is between VI,ext,min and VQ,nom + Vdr, VQ = VI - Vdr. When VI is below VI,ext,min, VQ can drop down to 0 V.  
3) Not subject to production test, specified by design.  
4) The minimum output capacitance requirement is applicable for a worst case capacitance tolerance of 30%  
Note:Within the functional or operating range, the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the Electrical Characteristics table.  
Data Sheet  
8
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
General Product Characteristics  
4.3  
Thermal Resistance  
Note:This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go  
to www.jedec.org.  
Table 3  
Thermal Resistance  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note /  
Test Condition  
Number  
Min.  
Max.  
Package Version PG-TO263-7  
Junction to Case  
1)  
RthJC  
RthJA  
RthJA  
3
K/W  
K/W  
K/W  
P_4.3.6  
P_4.3.7  
P_4.3.8  
Junction to Ambient  
21  
75  
1)2) 2s2p board  
1)3) 1s0p board,  
Junction to Ambient  
footprint only  
Junction to Ambient  
Junction to Ambient  
RthJA  
42  
34  
K/W  
K/W  
1)3) 1s0p board,  
300 mm2 heatsink  
area on PCB  
1)3) 1s0p board,  
600 mm2 heatsink  
area on PCB  
P_4.3.9  
RthJA  
P_4.3.10  
1) Not subject to production test, specified by design  
2) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product  
(Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm³ board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu).  
Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.  
3) Specified RthJA value is according to JEDEC JESD 51-3 at natural convection on FR4 1s0p board; The Product  
(Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm3 board with 1 copper layer (1 x 70µm Cu).  
Data Sheet  
9
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Block Description and Electrical Characteristics  
5
Block Description and Electrical Characteristics  
5.1  
Voltage Regulation  
The output voltage VQ is divided by a resistor network. This fractional voltage is compared to an internal voltage  
reference and the pass transistor is driven accordingly.  
The control loop stability depends on the output capacitor CQ, the load current, the chip temperature and the  
internal circuit design. To ensure stable operation, the output capacitor’s capacitance and its equivalent series  
resistor (ESR) requirements given in “Functional Range” on Page 8 have to be maintained. For details, also see  
the typical performance graph “Output Capacitor Series Resistor ESR(CQ) versus Output Current IQ” on  
Page 13. As the output capacitor also has to buffer load steps, it should be sized according to the application’s  
needs.  
An input capacitor CI is recommended to compensate line influences. In order to block influences like pulses and  
HF distortion at input side, an additional reverse polarity protection diode and a combination of several capacitors  
for filtering should be used. Connect the capacitors close to the component’s terminals.  
In order to prevent overshoots during start-up, a smooth ramp up function is implemented. This ensures almost  
no output voltage overshoots during start-up, mostly independent from load and output capacitance.  
Whenever the load current exceeds the specified limit, e.g. in case of a short circuit, the output current is limited  
and the output voltage decreases.  
The overtemperature shutdown circuit prevents the IC from immediate destruction under fault conditions (e.g.  
output continuously short-circuit) by switching off the power stage. After the chip has cooled down, the regulator  
restarts. This leads to an oscillatory behavior of the output voltage until the fault is removed. However, junction  
temperatures above 150 °C are outside the maximum ratings and therefore significantly reduce the IC’s lifetime.  
Regulated  
Output Voltage  
Supply  
IQ  
II  
I
Q
RO/WO  
RADJ  
Current  
Limitation  
Reset  
EN  
C
Enable  
CI  
VI  
VQ  
Bandgap  
Reference  
LOAD  
ESR  
Temperature  
Shutdown  
CQ  
WI  
Watchdog  
GND  
Figure 4  
Voltage Regulation  
V
VI  
Vdr  
VQ,nom  
VI,ext,min  
VQ  
t
Figure 5  
Output Voltage vs. Input Voltage  
Data Sheet  
10  
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Block Description and Electrical Characteristics  
Table 4  
Electrical Characteristics Voltage Regulator 3.3 V version  
Tj = -40 °C to +150 °C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified)  
Typical values are given at Tj = 25 °C  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
Output Voltage Precision  
Output Voltage Precision  
VQ  
VQ  
3.23 3.3  
3.37  
3.37  
18  
V
V
0.05 mA < IQ < 500 mA  
4.23 V < VI < 28 V  
P_5.1.23  
P_5.1.24  
P_5.1.27  
3.23 3.3  
0.05 mA < IQ < 200 mA  
3.72 V < VI < 40 V  
Output Voltage Start-up  
slew rate  
dVQ/dt 3.0  
7.5  
V/ms VI > 18 V/ms  
CQ = 1 µF  
0.33 V < VQ < 2.97 V  
650 1100 mA 0 V < VQ < 3.1 V  
Output Current Limitation  
IQ,max  
501  
P_5.1.29  
P_5.1.31  
Load Regulation  
steady-state  
VQ,load -20  
-1.5  
5
mV  
IQ = 0.05 mA to 500 mA  
VI = 6 V  
Line Regulation  
steady-state  
VQ,line -15  
0
15  
mV  
VI = 8 V to 32 V  
IQ = 5 mA  
P_5.1.33  
P_5.1.36  
P_5.1.37  
P_5.1.38  
P_5.1.39  
P_5.1.40  
Dropout Voltage  
Vdr = VI - VQ  
Vdr  
200 430 mV 1) IQ = 250 mA  
Dropout Voltage  
Vdr = VI - VQ  
Vdr  
80  
63  
175 mV 1) IQ = 100 mA  
Power Supply Ripple Rejection  
PSRR  
Tj,sd  
Tj,sdh  
dB  
2) fripple = 100 Hz  
ripple = 0.5 Vpp  
V
Overtemperature Shutdown  
Threshold  
151  
200 °C  
2) Tj increasing  
Overtemperature Shutdown  
Threshold Hysteresis  
15  
K
2) Tj decreasing  
1) Measured when the output voltage VQ has dropped 100 mV from the nominal value obtained at VI = 13.5V  
2) Not subject to production test, specified by design  
Data Sheet  
11  
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Block Description and Electrical Characteristics  
5.2  
Typical Performance Characteristics Voltage Regulator  
Typical Performance Characteristics  
Output Voltage VQ versus  
Junction Temperature Tj  
Dropout Voltage Vdr versus  
Junction Temperature Tj  
3.5  
350  
IQ = 100mA  
IQ = 100 mA  
IQ = 250 mA  
3.45  
3.4  
300  
VQ = 3.3 V  
250  
200  
150  
100  
50  
3.35  
3.3  
3.25  
3.2  
3.15  
3.1  
0
−40  
0
50  
100  
150  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Load Regulation VQ,load versus  
Output Current Change IQ  
Line Regulation VQ,line versus  
Input Voltage VI  
8
0
−2  
IQ = 5 mA  
Tj = −40 o  
Tj = 25 o  
Tj = 150 oC  
C
C
6
4
−4  
−6  
2
−8  
−10  
−12  
0
−2  
−4  
−6  
−8  
−14  
VI = 6 V  
−16  
Tj = −40 o  
C
Tj = 25 o  
Tj = 150 oC  
100 200  
C
−18  
−20  
0
300  
IQ [mA]  
400  
500  
10  
15  
20  
25  
30  
VI [V]  
Data Sheet  
12  
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Block Description and Electrical Characteristics  
Output Voltage VQ versus  
Input Voltage VI  
Power Supply Ripple Rejection PSRR versus  
ripple frequency f  
4
80  
Tj = 25 o  
C
Tj = −40 °C  
Tj = 25 °C  
3.5  
70  
60  
50  
40  
30  
20  
10  
0
Tj = 150 °C  
IQ = 100 mA  
3
2.5  
2
1.5  
1
IQ = 10 mA  
Q = 1 μF  
ripple = 0.5 Vpp  
0.5  
0
C
V
10−2  
10−1  
100  
101  
102  
103  
0
1
2
3
4
5
6
VI [V]  
f [kHz]  
Output Capacitor Series Resistor ESR(CQ) versus  
Output Current IQ  
Maximum Output Current IQ versus  
Input Voltage VI  
103  
1200  
1000  
800  
Unstable Region  
102  
101  
Stable Region  
600  
100  
400  
VQ = 0 V  
Tj = −40 o  
Tj = 25 o  
Tj = 150 oC  
30  
10−1  
C
200  
0
CQ = 1 μF  
C
Tj = 25 o  
C
10−2  
0.05  
0
10  
20  
VI [V]  
40  
1
10  
IQ [mA]  
100  
500  
Data Sheet  
13  
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Block Description and Electrical Characteristics  
Dropout Voltage Vdr versus  
Output Current IQ  
500  
Tj = 25 o  
C
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
100  
200  
300  
400  
500  
IQ [mA]  
Data Sheet  
14  
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Block Description and Electrical Characteristics  
5.3  
Current Consumption  
Table 5  
Electrical Characteristics Current Consumption  
Tj = -40 °C to +150 °C, VI = 13.5 V (unless otherwise specified)  
Typical values are given at Tj = 25 °C  
Conditions of other pins: WI = GND  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
Current Consumption  
Iq = II  
Iq,off  
Iq,off  
Iq  
1.3  
5
µA  
µA  
µA  
V
V
EN = 0 V; Tj < 105 °C  
EN = 0.4 V; Tj < 125 °C  
P_5.3.1  
P_5.3.3  
P_5.3.4  
Current Consumption  
Iq = II  
8
Current Consumption  
Iq = II - IQ  
40  
52  
IQ = 0.05 mA  
Tj = 25 °C  
Watchdog disabled  
Current Consumption  
Iq = II - IQ  
Iq  
Iq  
62  
62  
77  
82  
µA  
µA  
IQ = 0.05 mA  
Tj < 125 °C  
Watchdog disabled  
1) IQ = 500 mA  
P_5.3.7  
Current Consumption  
P_5.3.11  
Iq = II - IQ  
Tj < 125 °C  
Watchdog enabled  
1) Not subject to production test, specified by design  
Data Sheet  
15  
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Block Description and Electrical Characteristics  
5.4  
Typical Performance Characteristics Current Consumption  
Typical Performance Characteristics  
Current Consumption Iq versus  
Output Current IQ  
Current Consumption Iq versus  
Input Voltage VI  
200  
100  
Tj = 25 o  
C
Tj = −40 °C  
180  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Tj = 25 °C  
Tj = 150 °C  
160  
VEN = 5 V  
IQ = 50 uA  
140  
120  
100  
80  
60  
40  
20  
0
0
100  
200  
300  
400  
500  
5
10  
15  
20  
VI [V]  
25  
30  
35  
40  
IQ [mA]  
Data Sheet  
16  
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Block Description and Electrical Characteristics  
5.5  
Enable  
The TLS850F0TAV33 can be switched on and off by the Enable feature: Connect a HIGH level as specified below  
(e.g. the battery voltage) to pin EN to enable the device; connect a LOW level as specified below (e.g. GND) to  
shut it down. The enable has a built in hysteresis to avoid toggling between ON/OFF state, if signals with slow  
slopes are applied to the EN input.  
Table 6  
Electrical Characteristics Enable  
Tj = -40 °C to +150 °C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified)  
Typical values are given at Tj = 25 °C  
Parameter  
Symbol  
Values  
Unit  
Note / Test Condition  
Number  
Min. Typ. Max.  
High Level Input Voltage  
Low Level Input Voltage  
Enable Threshold Hysteresis  
High Level Input Current  
High Level Input Current  
VEN,H  
VEN,L  
VEN,Hy  
IEN,H  
2
V
VQ settled  
VQ 0.1 V  
P_5.5.1  
P_5.5.2  
P_5.5.3  
P_5.5.4  
P_5.5.6  
P_5.5.7  
0.8  
V
100  
mV  
µA  
µA  
MΩ  
3.5  
22  
2.6  
V
V
EN = 3.3 V  
IEN,H  
EN 18 V  
Enable internal pull-down resistor REN  
0.95 1.5  
Data Sheet  
17  
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Block Description and Electrical Characteristics  
5.6  
Typical Performance Characteristics Enable  
Typical Performance Characteristics  
Input Current IIN versus  
Input Voltage VIN (condition: VEN = 0 V)  
Enabled Input Current IEN versus  
Enabled Input Voltage VEN  
30  
50  
Tj = −40 °C  
Tj = −40 °C  
45  
Tj = 25 °C  
Tj = 25 °C  
25  
Tj = 150 °C  
Tj = 150 °C  
40  
35  
30  
25  
20  
15  
10  
5
VEN = 0V  
20  
15  
10  
5
0
0
0
10  
20  
30  
40  
0
10  
20  
30  
40  
VIN [V]  
VEN [V]  
Output Voltage VQ versus  
time (EN switched ON)  
6
5
4
3
2
1
0
IQ = 100 mA  
Tj = −40 °C  
Tj = 25 °C  
Tj = 150 °C  
VEN  
0
500  
1000  
t [us]  
1500  
2000  
Data Sheet  
18  
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Block Description and Electrical Characteristics  
5.7  
Reset  
The TLS850F0TAV33’s output voltage is supervised by the Reset feature, including Undervoltage Reset, delayed  
Reset at Power-On and an adjustable Reset Threshold.  
The Undervoltage Reset function sets the pin RO/WO to LOW, in case VQ is falling for any reason below the Reset  
Threshold VRT,low  
.
When the regulator is powered on, the pin RO/WO is held at LOW for the duration of the Power-On Reset Delay  
Time trd.  
Supply  
I
Q
VDD  
CQ  
RRO /WO,int  
Control  
RO/WO  
Reset  
S
R
IRO/WO  
Reference  
OR  
Q
OR  
Micro-  
Controller  
RADJ ,1  
Timer  
RADJ  
IRADJ  
GND  
GND  
RADJ ,2  
Figure 6  
Block Diagram Reset Circuit  
Reset Delay Time  
The Reset Delay Time trd is fix defined according to Table 7.  
Table 7  
Reset DelayTime  
Reset delay timing  
trd  
fix  
16.5 ms  
Power-On Reset Delay Time  
The power-on reset delay time is defined by the parameter trd and allows a microcontroller and oscillator to start  
up. This delay time is the time period from exceeding the upper reset switching threshold VRT,high until the reset is  
released by switching the reset output “RO/WO” from “LOW” to “HIGH”.  
Undervoltage Reset Delay Time  
Unlike the power-on reset delay time, the undervoltage reset delay time is defined by the parameter trd and  
considers an output undervoltage event where the output voltage VQ trigger the VRT,low threshold.  
Reset Blanking Time  
The reset blanking time trr,blank avoids that short undervoltage spikes trigger an unwanted reset “low” signal.  
Data Sheet  
19  
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Block Description and Electrical Characteristics  
Reset Reaction Time  
In case the output voltage of the regulator drops below the output undervoltage lower reset threshold VRT,low, the  
reset output “RO/WO” is set to low, after the delay of the internal reset reaction time trr,int. The reset blanking time  
t
rr,blank is part of the reset reaction time trr,int  
.
Reset Output “RO/WO”  
The reset output “RO/WO” is an open collector output with an integrated pull-up resistor. In case a lower-ohmic  
“RO/WO” signal is desired, an external pull-up resistor can be connected to the output “Q”. Since the maximum  
“RO/WO” sink current is limited, the minimum value of the optional external resistor “RRO/WO,ext” is given in Table  
“Reset Output / Watchdog Output RO/WO” on Page 22.  
Reset Output “RO/WO” Low for VQ 1 V  
In case of an undervoltage reset condition reset output “RO/WO” is held “low” for VQ 1 V, even if the input voltage  
VI is 0 V. This is achieved by supplying the reset circuit from the output capacitor.  
Reset Adjust Function  
The undervoltage reset switching threshold can be adjusted according to the application’s needs by connecting  
an external voltage divider (RADJ1, RADJ2) at pin “RADJ”. For selecting the default threshold connect pin “RADJ” to  
GND. The reset adjustment range for the TLS850F0TAV33 is given in Reset Threshold Adjustment Range.  
When dimensioning the voltage divider, take into consideration that there will be an additional current constantly  
flowing through the resistors.  
With a voltage divider connected, the reset switching threshold VRT,new is calculated as follows  
(neglecting the Reset Adjust Pin Current IRADJ):  
VRT,lo,new = VRADJ,th × (RADJ,1 + RADJ,2) / RADJ,2  
(1)  
with  
V
RT,lo,new: Desired undervoltage reset switching threshold.  
R
V
ADJ,1, RADJ,2: Resistors of the external voltage divider, see Figure 6.  
RADJ,th: Reset adjust switching threshold given in Reset Adjustment Switching Threshold.  
Data Sheet  
20  
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Block Description and Electrical Characteristics  
VI  
t
t < trr,blank  
VQ  
VRH  
VRT,high  
VRT,low  
1 V  
t
trd  
trr,int  
trd  
trr,int  
trd  
trr,int  
VRO/WO  
trd  
1V  
VRO/WO,low  
t
Thermal  
Shutdown  
Input  
Voltage Dip  
Under-  
voltage  
Spike at Over-  
output load  
Figure 7  
Typical Timing Diagram Reset  
Data Sheet  
21  
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Block Description and Electrical Characteristics  
Table 8  
Electrical Characteristics Reset  
Tj = -40 °C to +150 °C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified)  
Typical values are given at Tj = 25 °C  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
Output Undervoltage Reset 3V3 Version only  
Output Undervoltage Reset Upper VRT,high  
Switching Threshold  
3.08 3.15 3.22  
V
V
VQ increasing  
P_5.7.5  
P_5.7.6  
Output Undervoltage Reset Lower VRT,low  
Switching Threshold - Default  
3.0  
60  
3.05 3.13  
VQ decreasing  
RADJ = GND  
Output Undervoltage Reset  
Switching Hysteresis  
VRT,hy  
VRH  
100  
mV RADJ connected to GND P_5.7.7  
Output Undervoltage Reset  
100 250  
mV RADJ = GND  
P_5.7.8  
Headroom VQ - VRT  
Reset Threshold Adjustment  
Reset Adjustment Switching  
Threshold  
VRADJ,th  
1.15 1.20 1.25  
V
V
P_5.7.9  
Reset Threshold Adjustment Range VRT,range  
2.5  
2.9  
for VQ,nom = 3.3 V  
P_5.7.11  
Reset Output / Watchdog Output RO/WO  
Reset Output Watchdog Output  
Low Voltage  
VRO/WO,low  
0.2  
20  
0.4  
36  
V
1 V VQ VRT;  
R
P_5.7.16  
RO/WO 5.1 kΩ  
Reset Output Watchdog Output  
Internal Pull-Up Resistor  
RRO/WO,int 13  
RRO/WO,ext 5.1  
kΩ  
kΩ  
internally connected to Q P_5.7.17  
Reset Output Watchdog Output  
External Pull-up Resistor to VQ  
1 V VQ VRT;  
RO/WO 0.4 V  
P_5.7.18  
V
Reset Delay Timing  
Reset Delay Time  
trd  
13.2 16.5 19.8 ms  
Fixed Timing  
1) for VQ,nom = 3.3 V  
P_5.7.39  
P_5.7.22  
P_5.7.23  
Reset blanking time  
trr,blank  
6
7
µs  
µs  
Internal Reset Reaction Time  
trr,int  
20  
for VQ,nom = 3.3 V  
1) Not subject to production test, specified by design.  
Data Sheet  
22  
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Block Description and Electrical Characteristics  
5.8  
Typical Performance Characteristics Reset  
Typical Performance Characteristics  
Undervoltage Reset Threshold VRT versus  
Junction Temperature Tj  
Power On Reset Delay Time trd versus  
Junction Temperature Tj  
25  
20  
15  
10  
5
3.5  
3.4  
3.3  
3.2  
3.1  
3
2.9  
2.8  
IQ = 1 mA  
VQ = 3.3 V  
2.7  
2.6  
2.5  
RADJ set to GND  
VRT, high  
VRT, low  
0
50  
Tj [°C]  
100  
150  
−40  
0
50  
Tj [°C]  
100  
150  
Internal Reset Reaction Time trr,int versus  
Junction Temperature Tj  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
−40  
0
50  
100  
150  
Tj [°C]  
Data Sheet  
23  
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Block Description and Electrical Characteristics  
5.9  
Standard Watchdog  
The TLS850F0TAV33 features a load dependent watchdog function. The watchdog function monitors a  
microcontroller, including time base failures. In case of a missing falling edge within a certain pulse repetition time,  
the watchdog output “RO/WO” is set to “low”.  
The watchdog uses an internal oscillator as timebase. The effective trigger window is derived from the watchdog  
timebase.  
The watchdog output signal is provided by a combined Reset Output / Watchdog Output “RO/WO” pin.  
Supply  
I
Q
VDD  
CQ  
RRO /WO,int  
RO/WO  
Reset  
IRO/WO  
Reference  
Control  
WD core  
Micro-  
Controller  
Control  
GND  
WI  
IWI  
GND  
Figure 8  
Block Diagram Watchdog Circuit  
Watchdog Timing  
Figure 9 shows the state diagram of the watchdog (WD) and the mode selection. After power-on, the reset output  
signal at the “RO/WO” pin (microcontroller reset) is kept LOW for the reset delay time trd. With the LOW to HIGH  
transition of the signal at “RO/WO” the device starts the watchdog ignore time tWI.i. Next, the WD starts the  
watchdog trigger time (time frame within a trigger at WI must occur).  
From now on, the timing of the signal on WI from the microcontroller must fit to the WD-trigger time tWI,tr. A Re-  
Trigger of the WD-trigger time is done with a HIGH-to-LOW transient at the WI-pin within the active tWI,tr  
.
Watchdog Output “RO/WO”  
The watchdog output “RO/WO” is an open collector output with an integrated pull-up resistor. In case a lower-  
ohmic “RO/WO” signal is desired, an external pull-up resistor can be connected to the output “Q”. Since the  
maximum “RO/WO” sink current is limited, the minimum value of the optional external resistor “RRO/WO,ext” is given  
in Table “Reset Output / Watchdog Output RO/WO” on Page 22. A HIGH to LOW transition of the watchdog  
trigger signal on pin WI is taken as a trigger. A watchdog signal is generated (“RO/WO” goes LOW), if there is no  
trigger pulse during the Watchdog trigger time.  
Data Sheet  
24  
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Block Description and Electrical Characteristics  
VI  
t
VRT,high  
VRT,low  
VQ  
t
IQ  
IQ,W,act  
IQ,W,deact  
t
Current Controlled  
WD-turn off  
Trigger  
VWI  
trd  
(WD-trigger time tWI,tr  
96ms  
)
Ignore Time  
tWI,i  
96ms *)  
96ms *)  
96ms *)  
96ms *)  
16.5ms typ.  
t
t
t
WD Trigger  
NO WD Trigger  
WD Trigger  
WD Trigger  
WD Trigger  
Don’t care WI  
during t WO,low and  
ignore time  
Don’t care WI  
during WD-off  
and ignore time  
Don’t care WI  
during trd and ignore time  
Power  
Fail  
VRO/WO  
trd  
tWO,low  
No WO assertion during  
Current shut down  
Normal operation  
Normal operation  
trr,int  
*) watchdog trigger time interrupted by correct WI signal serving the watchdog  
Figure 9  
Typical Watchdog Timing Diagram, Watchdog and Reset Modes  
Watchdog Input “WI”  
The watchdog is triggered by a falling edge at the watchdog input pin “WI”. The amplitude and slope of this signal  
has to comply with the specification (Table “Watchdog Input WI” on Page 26). For details regarding test pulses,  
see Figure 10 “Test Pulses Watchdog Input WI” on Page 25.  
VWI  
tWI,ph  
VWI,high  
tWI,pl  
VWI,low  
dVWI / dt  
t
Figure 10 Test Pulses Watchdog Input WI  
Data Sheet  
25  
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Block Description and Electrical Characteristics  
Table 9  
Electrical Characteristics Watchdog  
Tj = -40 °C to +150 °C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified)  
Typical values are given at Tj = 25 °C  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
Watchdog Timing  
Watchdog Ignore Time  
Watchdog Trigger Time  
Watchdog Output Low Time  
tWI,i  
12.8 16  
76.8 96  
19.2 ms  
115.2 ms  
P_5.9.1  
P_5.9.2  
P_5.9.6  
tWI,tr  
tWO,low  
6.4  
8
9.6  
ms  
Load Dependent Watchdog Activation  
Watchdog Activation Current  
Threshold  
IQ,W,act  
IQ,W,deact  
IQ,W,hy  
5.5  
mA for VQ,nom = 3.3 V:  
VI > 4.23 V;  
P_5.9.45  
high current condition must  
be applied at least for the  
time of tW,filter,max  
Watchdog Deactivation Current  
Threshold  
1
mA for VQ,nom = 3.3 V:  
P_5.9.46  
VI > 4.23 V;  
low current condition must  
be applied at least for the  
time of tW,filter,max  
Watchdog Deactivation Current  
Hysteresis  
0.35  
mA for VQ,nom = 3.3 V:  
P_5.9.47  
P_5.9.14  
P_5.9.15  
VI > 4.23 V;  
Watchdog Minimum Filter Time  
state transition by current  
tW,IQ,filter, 100  
µs  
µs  
1) – see Page 27  
min  
Watchdog Maximum Filter Time tW,IQ,filter,  
500  
1) – see Page 27  
state transition by current  
max  
Watchdog Input WI  
2)  
Watchdog Input  
Low Signal Valid  
VWI,low  
VWI,high  
tWI,ph  
0.8  
V
P_5.9.16  
P_5.9.17  
P_5.9.19  
P_5.9.20  
P_5.9.21  
2)  
Watchdog Input  
High Signal Valid  
2.0  
1
V
2)  
Watchdog Input  
High Signal Pulse Length  
µs  
µs  
V/µs  
V
V
V
VWI,high  
WI  
WI  
2)  
2)  
Watchdog Input  
Low Signal Pulse Length  
tWI,pl  
1
VWI,low  
< VWI < VWI,high  
Watchdog Input  
Signal Slew Rate  
dVWI/dt  
1
WI,low  
High Level Input Current  
IWI,H  
3.5  
2.6  
µA  
V
WI = 3.3 V  
P_5.9.22  
P_5.9.23  
Watchdog Input internal pull-down RWI  
0.9  
1.5  
MΩ  
resistor  
Watchdog Disable Threshold  
WI Signal Value  
VWI,dis  
1.15  
1.40  
V
for VQ,nom = 3.3 V:  
VI > 4.6 V;  
P_5.9.24  
signal must be applied for  
> tW,filter,max to deactivate  
and activate the watchdog  
Data Sheet  
26  
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Block Description and Electrical Characteristics  
Table 9  
Electrical Characteristics Watchdog (cont’d)  
Tj = -40 °C to +150 °C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified)  
Typical values are given at Tj = 25 °C  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
Watchdog Minimum Filter Time  
state transition by WI  
tWI,filter,min 100  
µs  
µs  
3) – see Page 28  
3) – see Page 28  
P_5.9.25  
P_5.9.26  
Watchdog Maximum Filter Time tWI,filter,max  
500  
state transition by WI  
Reset Output / Watchdog Output RO/WO is defined in chapter Reset Output / Watchdog Output RO/WO  
1) Not subject to production test, specified by design.  
2) For details on applied test pulse, see Figure 10  
3) Not subject to production test, specified by design.  
Watchdog Trigger Time  
The Watchdog Trigger Time tWI,tr is fixed to a static value according to Table 10.  
Table 10 Watchdog Trigger Time  
Watchdog trigger timing  
tWI,tr,typ  
fix to  
96 ms  
Watchdog deactivation by current control  
The Watchdog is load dependent inactive. This ensures, that if the microcontroller is in a power save mode  
(IQ IQ,W,deact) and not able to provide a correct watchdog trigger signal at pin “WI”, no watchdog signal  
“RO/WO = low” is generated. The transition from an active to an inactive state will be performed after a dead time  
of tW,IQ,filter,max, when output current keeps below the deactivation threshold. This protects against an unintended  
entering of the watchdog deactivation state caused by short dynamic current drops. In case of very short current  
drops up to the time of tW,IQ,filter,min, the activation state will definitely be kept. These scenarios are also valid for the  
transition from deactivation to activation state. For details see also  
IQ  
IQ  
Scenario „D“  
>tWO,low  
<tWO,low  
IQ,W,act  
IQ,W,act  
IQ,W,deact  
IQ,W,deact  
t
t
t
t
t
t
VRO/WO  
VRO/WO  
VRO/WO  
VRO/WO  
WD disabled  
Scenario „A“  
WD-trigger time tWI,tr *)  
WD disabled  
WD disabled  
ignore time tWI,i  
ignore time tWI,i  
ignore time tWI,i  
WD-trigger time tWI,tr  
WD-trigger time tWI,tr  
tWO,low  
ignore time tWI,i  
WD-trigger time tWI,tr  
*) interrupted by entering in „Watchdog deactivation by current control“  
Watchdog filter time tW,IQ,filter  
Scenario „B“  
WD-trigger time tWI,tr  
tWO,low  
WD-trigger time tWI,tr  
Scenario „C“  
WD-trigger time tWI,tr  
tWO,low  
WD disabled  
*)  
WD-trigger time tWI,tr  
Figure 11 Watchdog Output behavior for Watchdog deactivation by current control  
Data Sheet  
27  
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Block Description and Electrical Characteristics  
Scenario “A”  
In scenario “A” the watchdog logic expects a next trigger at WI pin within the WD-trigger time tWI,tr. This state is  
interrupted by the low current load state (IQ IQ,W,deact). During this state, the watchdog is disabled. The watchdog  
output signal “RO/WO” will stay high while the watchdog is disabled. After leaving the low current load state  
(IQ IQ,W,act), an ignore window tWI,i follows. After this, the watchdog trigger time tWI,tr starts. This behavior is  
defined for cases with a low current load time greater than tWO,low  
.
Scenario “B”  
In scenario “B” the watchdog is not served within WD-trigger time tWI,tr with an trigger event at WI pin. As a result  
the “RO/WO” is set to low. This state is interrupted by the low current load state (IQ IQ,W,deact). During this state,  
the watchdog is disabled. The watchdog output signal “RO/WO” is kept in low state for tWO,low and then the  
“RO/WO” is set to high. After leaving the low current load state (IQ IQ,W,act), an ignore window tWI,i follows. After  
this, the watchdog trigger time tWI,tr starts. This behavior is defined for cases with a low current load time greater  
than tWO,low  
.
Scenario “C”  
In scenario “C” the watchdog is not served within WD-trigger time tWI,tr with an trigger event at WI pin. As a result  
the “RO/WO” is set to low. After this an ignore window follows. This state is interrupted by the low current load  
state (IQ IQ,W,deact). During this state, the watchdog is disabled. The watchdog output signal “RO/WO” will stay  
high while the watchdog is disabled. After leaving the low current load state (IQ IQ,W,act), an ignore window tWI,i  
follows. After this, the watchdog trigger time tWI,tr starts. This behavior is defined for cases with a low current load  
time greater than tWO,low  
.
Scenario “D”  
In scenario “D” the watchdog is not served within WD-trigger time tWI,tr with a trigger event at WI pin. As a result  
the “RO/WO” is set to low. This state is interrupted by the low current load state (IQ IQ,W,deact). During this state,  
the watchdog is disabled. The watchdog output signal “RO/WO” is kept in low state for the time of low current load  
state. After leaving the low current load state (IQ IQ,W,act), an ignore window tWI,i follows. After this, the watchdog  
trigger time tWI,tr starts. This behavior is defined for cases with a low current load time less than tWO,low  
.
Watchdog deactivation by external signal (pin “WI”)  
Note:Disabling the watchdog should only considered when the application is not running in the normal operating  
conditions as the safe operation is not ensured any more. Example would be the flashing process of the  
microcontroller.  
The Watchdog can be disabled by connecting a voltage level between the range of 1.15 V to 1.40 V to WI. By  
entering the Watchdog deactivation, the “RO/WO” signal behaves like it is described in . The transition from active  
to an inactive state will be performed after a dead time of tWI,filter,max, when correct level to WI pin is applied. This  
protects against the unintended entering of watchdog deactivation state. After leaving the deactivation voltage  
range 1.15 V to 1.40 V, the Watchdog is again active and starts with an ignore window. This scenario is also valid  
for the transition from deactivation to activation state.  
Data Sheet  
28  
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Block Description and Electrical Characteristics  
VWI  
VWI  
Scenario „D“  
<tWO,low  
>tWO,low  
VWI,dis.high  
VWI,dis,low  
VWI,dis.high  
VWI,dis,low  
t
t
t
t
t
VRO/WO  
VRO/WO  
VRO/WO  
VRO/WO  
WD disabled  
Scenario „A“  
WD-trigger time tWI,tr *)  
WD disabled  
WD disabled  
ignore time tWI,i  
ignore time tWI,i  
ignore time tWI,i  
WD-trigger time tWI,tr  
WD-trigger time tWI,tr  
tWO,low  
ignore time tWI,i  
WD-trigger time tWI,tr  
t
*) interrupted by entering in „Watchdog deactivation by WI pin“  
Watchdog filter time tW,IQ,filter  
Scenario „B“  
WD-trigger time tWI,tr  
tWO,low  
WD-trigger time tWI,tr  
Scenario „C“  
WD-trigger time tWI,tr  
tWO,low  
WD disabled  
*)  
WD-trigger time tWI,tr  
Figure 12 Watchdog Output behavior for Watchdog deactivation by WI pin  
Scenario “A”  
In scenario “A” the watchdog logic expects a next trigger at WI pin within the WD-trigger time tWI,tr. This state is  
interrupted by setting VWI to the disable condition (VWI,dis,low VWI VWI,dis,high). During this state, the watchdog is  
disabled. The watchdog output signal “RO/WO” will stay high while the watchdog is disabled. After leaving the  
disable condition (VWI VWI,dis,high or VWI VWI,dis,low), an ignore window tWI,i follows. After this, the watchdog trigger  
time tWI,tr starts. This behavior is defined for cases with a low current load time greater than tWO,low  
.
Scenario “B”  
In scenario “B” the watchdog is not served within WD-trigger time tWI,tr with an trigger event at WI pin. As a result  
the “RO/WO” is set to low. This state is interrupted by setting VWI to the disable condition  
(VWI,dis,low VWI VWI,dis,high). During this state, the watchdog is disabled. The watchdog output signal “RO/WO” is  
kept in low state for tWO,low and then the “RO/WO” is set to high. After leaving the disable condition (VWI VWI,dis,high  
or VWI VWI,dis,low), an ignore window tWI,i follows. After this, the watchdog trigger time tWI,tr starts. This behavior is  
defined for cases with a low current load time greater than tWO,low  
.
Scenario “C”  
In scenario “C” the watchdog is not served within WD-trigger time tWI,tr with an trigger event at WI pin. As a result  
the “RO/WO” is set to low. After this an ignore window follows. This state is interrupted by setting VWI to the disable  
condition (VWI,dis,low VWI VWI,dis,high). During this state, the watchdog is disabled. The watchdog output signal  
“RO/WO” will stay high while the watchdog is disabled. After leaving the disable condition (VWI VWI,dis,high or  
VWI VWI,dis,low), an ignore window tWI,i follows. After this, the watchdog trigger time tWI,tr starts. This behavior is  
defined for cases with a low current load time greater than tWO,low  
.
Scenario “D”  
In scenario “D” the watchdog is not served within WD-trigger time tWI,tr with a trigger event at WI pin. As a result  
the “RO/WO” is set to low. This state is interrupted by setting VWI to the disable condition  
(VWI,dis,low VWI VWI,dis,high). During this state, the watchdog is disabled. The watchdog output signal “RO/WO” is  
kept in low state for the time of low current load state. After leaving the disable condition (VWI VWI,dis,high or  
VWI VWI,dis,low), an ignore window tWI,i follows. After this, the watchdog trigger time tWI,tr starts. This behavior is  
defined for cases with a low current load time less than tWO,low  
.
Data Sheet  
29  
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Block Description and Electrical Characteristics  
5.10  
Typical Performance Characteristics Standard Watchdog  
Typical Performance Characteristics  
Watchdog Trigger Time tWI,tr versus  
Junction Temperature Tj  
Watchdog Output Low Time tWO,low versus  
Junction Temperature Tj  
15  
IQ = 10 mA  
120  
100  
80  
10  
60  
5
40  
20  
IQ = 10 mA  
0
0
−40  
0
50  
100  
150  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Watchdog Activation/Deactivation Current IQ,W,act  
,
Watchdog Disable VWI,dis Threshold versus  
Junction Temperature Tj  
IQ,W,deact versus Junction Temperature Tj  
3
2.5  
2
7
6
5
4
3
2
1.5  
1
0.5  
1
IQ = 10 mA  
IQ,W,deact  
low  
high  
IQ,W,act  
0
0
0
50  
Tj [°C]  
100  
150  
0
50  
Tj [°C]  
100  
150  
Data Sheet  
30  
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Application Information  
6
Application Information  
6.1  
Application Diagram  
Note:The following information is given as a hint for the implementation of the device only and shall not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device.  
Supply  
Regulated Output Voltage  
I
Q
RO/WO  
RADJ  
Load  
e . g.  
Micro  
Controller  
XC22xx  
DI1  
Current  
Limitation  
Reset  
EN  
D
C
C
I1  
CQ  
I 2  
I2  
R1  
1 µF  
100nF  
< 45V  
47µF  
Enable  
Bandgap  
Reference  
WI  
Temperature  
Shutdown  
R2  
Watchdog  
GND  
GND  
e.g. Ignition  
Figure 13 Application Diagram  
Note:This is a very simplified example of an application circuit. The function must be verified in the real application.  
6.2  
Selection of External Components  
6.2.1  
Input Pin  
The typical input circuitry for a linear voltage regulator is shown in the application diagram above.  
A ceramic capacitor at the input, in the range of 100 nF to 470 nF, is recommended to filter out the high frequency  
disturbances imposed by the line e.g. ISO pulses 3a/b. This capacitor must be placed very close to the input pin  
of the linear voltage regulator on the PCB.  
An aluminum electrolytic capacitor in the range of 10 µF to 470 µF is recommended as an input buffer to smooth  
out high energy pulses, such as ISO pulse 2a. This capacitor should be placed close to the input pin of the linear  
voltage regulator on the PCB.  
An overvoltage suppressor diode can be used to further suppress any high voltage beyond the maximum rating  
of the linear voltage regulator and protect the device against any damage due to over-voltage.  
The external components at the input are not mandatory for the operation of the voltage regulator, but they are  
recommended in case of possible external disturbances.  
6.2.2  
Output Pin  
An output capacitor is mandatory for the stability of linear voltage regulators.  
The requirement to the output capacitor is given in “Functional Range” on Page 8. The graph “Output  
Capacitor Series Resistor ESR(CQ) versus Output Current IQ” on Page 13 shows the stable operation range  
of the device.  
Data Sheet  
31  
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Application Information  
TLS850F0TAV33 is designed to be also stable with low ESR capacitors. According to the automotive  
requirements, ceramic capacitors with X5R or X7R dielectrics are recommended.  
The output capacitor should be placed as close as possible to the regulator’s output and GND pins and on the  
same side of the PCB as the regulator itself.  
In case of rapid transients of input voltage or load current, the capacitance should be dimensioned in accordance  
and verified in the real application that the output stability requirements are fulfilled.  
6.3  
Thermal Considerations  
Knowing the input voltage, the output voltage and the load profile of the application, the total power dissipation  
can be calculated:  
PD = (VI - VQ) × IQ + VI × Iq  
(2)  
with  
PD: continuous power dissipation  
VI : input voltage  
VQ: output voltage  
IQ: output current  
Iq: quiescent current  
The maximum acceptable thermal resistance RthJA can then be calculated:  
RthJA,max = ( Tj,max - Ta ) / PD  
(3)  
with  
T
j,max: maximum allowed junction temperature  
Ta: ambient temperature  
Based on the above calculation the proper PCB type and the necessary heat sink area can be determined with  
reference to the specification in “Thermal Resistance” on Page 9.  
Example  
Application conditions:  
VI = 13.5 V  
VQ = 3.3 V  
IQ = 175 mA  
Ta = 85 °C  
Calculation of RthJA,max  
:
PD = (VI VQ) × IQ + VI × Iq  
= (13.5 V – 3.3 V) × 175 mA  
= 1.785 W  
(VI × Iq can be neglected because of very low Iq)  
RthJA,max = (Tj,max Ta) / PD  
= (150 °C – 85 °C) / 1.785 W = 36.41 K/W  
Data Sheet  
32  
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Application Information  
As a result, the PCB design must ensure a thermal resistance RthJA lower than 36.41 K/W. According to “Thermal  
Resistance” on Page 9, at least 600 mm2 heatsink area is needed on the FR4 1s0p PCB, or the FR4 2s2p board  
can be used to ensure a proper cooling for the TLS850F0TAV33 in package.  
6.4  
Reverse Polarity Protection  
TLS850F0TAV33 is not self protected against reverse polarity faults and must be protected by external  
components against negative supply voltage. An external reverse polarity diode is needed. The absolute  
maximum ratings of the device as specified in “Absolute Maximum Ratings” on Page 7 must be kept.  
6.5  
Further Application Information  
For further information you may contact http://www.infineon.com/  
Data Sheet  
33  
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Package Outlines  
7
Package Outlines  
4.4  
±0.1  
±0.2  
1.27  
0.05  
10  
0...0.3  
8.51)  
A
B
2.4  
0.1  
0...0.15  
±0.1  
7x 0.6  
1.27  
6x  
8° MAX.  
M
0.25  
A B  
0.1  
B
1) Typical  
Metal surface min. X = 7.25, Y = 6.9  
All metal surfaces tin plated, except area of cut.  
PG-TO263-7  
Figure 14 PG-TO263-7  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with  
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e  
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Data Sheet  
34  
Rev. 1.0, 2015-12-01  
TLS850F0TAV33  
Revision History  
8
Revision History  
Revision  
Date  
Changes  
Data Sheet - Initial version  
1.0  
2015-12-01  
Data Sheet  
35  
Rev. 1.0, 2015-12-01  
Trademarks of Infineon Technologies AG  
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™,  
EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, LITIX™, MIPAQ™,  
ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™,  
ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SPOC™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.  
Other Trademarks  
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited,  
UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of  
Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay  
Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association  
Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc.  
MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA  
MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave  
Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™  
of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc.  
TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas  
Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.  
Last Trademarks Update 2011-11-11  
www.infineon.com  
Edition 2015-12-01  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
Legal Disclaimer  
The information given in this document shall in  
no event be regarded as  
Warnings  
Due to technical requirements, components  
may contain dangerous substances. For  
information on the types in question, please  
contact the nearest Infineon Technologies  
Office. Infineon Technologies components may  
be used in life-support devices or systems only  
with the express written approval of Infineon  
Technologies, if a failure of such components  
can reasonably be expected to cause the failure  
of that life-support device or system or to affect  
the safety or effectiveness of that device or  
system. Life support devices or systems are  
intended to be implanted in the human body or  
to support and/or maintain and sustain and/or  
protect human life. If they fail, it is reasonable to  
assume that the health of the user or other  
persons may be endangered.  
a guarantee of  
conditions or characteristics. With respect to any  
examples or hints given herein, any typical  
values stated herein and/or any information  
regarding the application of the device, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation, warranties of non-  
infringement of intellectual property rights of  
any third party.  
© 2015 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Information  
For further information on technology, delivery  
terms and conditions and prices, please contact  
the nearest Infineon Technologies Office  
(www.infineon.com).  

相关型号:

TLS850F0TAV50

Fixed Positive LDO Regulator, 5V, 0.425V Dropout, PSSO7, GREEN, PLASTIC, TO-263, 7 PIN
INFINEON

TLS850F0TAV50ATMA1

Fixed Positive LDO Regulator, 5V, 0.425V Dropout, PSSO7, GREEN, PLASTIC, TO-263, 7 PIN
INFINEON
INFINEON

TLS857J008C1F

CAPACITOR, TANTALUM, NON SOLID, POLARIZED, 8V, 850uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY

TLS857M008C1F

CAPACITOR, TANTALUM, NON SOLID, POLARIZED, 8V, 850uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY

TLS866J100C1F

CAPACITOR, TANTALUM, NON SOLID, POLARIZED, 100V, 86uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY

TLS866K100C1F

CAPACITOR, TANTALUM, NON SOLID, POLARIZED, 100V, 86uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY

TLS866M100C1F

CAPACITOR, TANTALUM, NON SOLID, POLARIZED, 100V, 86uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY
SAMTEC
SAMTEC
SAMTEC
SAMTEC