TLI5012B E1000 [INFINEON]

The Infineon TLI5012B E1000 is an 360° angle sensor that detects the orientation of a magnetic field, achieved by measuring sine and cosine angle components with monolithic integrated Giant Magneto Resistance (iGMR) elements. These raw signals (sine and cosine) are digitally processed internally to calculate the angle orientation of the magnetic field (magnet).;
TLI5012B E1000
型号: TLI5012B E1000
厂家: Infineon    Infineon
描述:

The Infineon TLI5012B E1000 is an 360° angle sensor that detects the orientation of a magnetic field, achieved by measuring sine and cosine angle components with monolithic integrated Giant Magneto Resistance (iGMR) elements. These raw signals (sine and cosine) are digitally processed internally to calculate the angle orientation of the magnetic field (magnet).

文件: 总37页 (文件大小:2098K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Angle Sensor  
GMR-Based Angle Sensor  
TLI5012B E1000  
Data Sheet  
Rev. 1.1, 2015-09  
Sense & Control  
TLI5012B E1000  
Data Sheet  
2
Rev. 1.1, 2015-09  
TLI5012B E1000  
Revision History  
Page or Item  
Subjects (major changes since previous revision)  
Rev. 1.1, 2015-09  
Chapter 1.4  
Disclaimer modified  
Trademarks of Infineon Technologies AG  
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™,  
CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™,  
EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™,  
ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™,  
POWERCODE™; PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™,  
ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™,  
thinQ!™, TRENCHSTOP™, TriCore™.  
Other Trademarks  
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,  
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR  
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,  
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.  
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of  
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data  
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of  
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics  
Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA  
MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of  
OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF  
Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™  
of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co.  
TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™  
of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas  
Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes  
Zetex Limited.  
Last Trademarks Update 2011-11-11  
Data Sheet  
3
Rev. 1.1, 2015-09  
TLI5012B E1000  
Table of Contents  
Table of Contents  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
1
Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
1.1  
1.2  
1.3  
1.4  
2
2.1  
2.2  
2.2.1  
2.2.2  
2.2.3  
2.2.4  
2.2.5  
2.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Functional Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Internal Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Oscillator and PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SD-ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Digital Signal Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Sensing Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.4  
2.5  
3
Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4
4.1  
4.2  
4.3  
Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Input/Output characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
GMR Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Angle Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Clock Supply (CLK Timing Definition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
External clock operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Incremental Interface (IIF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Synchronous Serial Communication (SSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
SSC Timing Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
SSC Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Supply Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Internal Supply Voltage Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
4.3.6  
4.3.6.1  
4.4  
4.4.1  
4.4.2  
4.4.2.1  
4.4.2.2  
4.4.3  
4.4.3.1  
4.4.3.2  
4.4.3.3  
4.4.3.4  
V
DD Overvoltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
GND - Off Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
DD - Off Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
V
5
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
5.1  
5.2  
5.3  
5.4  
Data Sheet  
4
Rev. 1.1, 2015-09  
TLI5012B E1000  
Table of Contents  
5.5  
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Data Sheet  
5
Rev. 1.1, 2015-09  
TLI5012B E1000  
List of Figures  
List of Figures  
Figure 1-1 PG-DSO-8 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 2-1 TLI5012B E1000 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 2-2 Sensitive bridges of the GMR sensor (not to scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 2-3 Ideal output of the GMR sensor bridges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 2-4 Pin configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 3-1 Application circuit for TLI5012B E1000 with IIF interface and SSC (using internal CLK). . . . . . . . 14  
Figure 3-2 SSC configuration in sensor-slave mode with push-pull outputs (high-speed application) . . . . . . 15  
Figure 3-3 SSC configuration in sensor-slave mode and open-drain (bus systems). . . . . . . . . . . . . . . . . . . . 15  
Figure 4-1 Allowed magnetic field range as function of junction temperature.. . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 4-2 Offset and amplitude definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 4-3 Additional angle error for temperature changes above 5 Kelvin within 1.5 revolutions . . . . . . . . . 21  
Figure 4-4 Signal path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 4-5 Delay of sensor output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 4-6 External CLK timing definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 4-7 Incremental interface with A/B mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 4-8 Incremental interface with Step/Direction mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 4-9 SSC timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 4-10 SSC data transfer (data-read example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 4-11 SSC data transfer (data-write example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 4-12 SSC bit ordering (read example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 4-13 Update of update registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 4-14 Fast CRC polynomial division circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 4-15 Overvoltage comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 4-16 GND - off comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 4-17 VDD - off comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 5-1 PG-DSO-8 package dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 5-2 Position of sensing element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 5-3 Footprint of PG-DSO-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 5-4 Tape and Reel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Data Sheet  
6
Rev. 1.1, 2015-09  
TLI5012B E1000  
List of Tables  
List of Tables  
Table 1-1 Derivate Ordering codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 2-1 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 4-1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 4-2 Operating range and parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 4-3 Input voltage and output currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 4-4 Driver strength characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 4-5 Electrical parameters for 4.5 V < VDD < 5.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 4-6 Electrical parameters for 3.0 V < VDD < 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 4-7 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 4-8 Basic GMR parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 4-9 Angle performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 4-10 Signal processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 4-11 Internal clock timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 4-12 External Clock Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 4-13 Incremental Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 4-14 SSC push-pull timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 4-15 SSC open-drain timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 4-16 Structure of the Command Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 4-17 Structure of the Safety Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 4-18 Bit Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 4-19 Test comparator threshold voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 5-1 Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 5-2 Sensor IC placement tolerances in package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Data Sheet  
7
Rev. 1.1, 2015-09  
TLI5012B E1000  
Product Description  
1
Product Description  
Figure 1-1 PG-DSO-8 package  
1.1  
Overview  
The TLI5012B E1000 is a 360° angle sensor that detects the orientation of a magnetic field. This is achieved by  
measuring sine and cosine angle components with monolithic integrated Giant Magneto Resistance (iGMR)  
elements. These raw signals (sine and cosine) are digitally processed internally to calculate the angle orientation  
of the magnetic field (magnet).  
The TLI5012B E1000 is a pre-calibrated sensor. The calibration parameters are stored in laser fuses. At start-up  
the values of the fuses are written into flip-flops, where these values can be changed by the application-specific  
parameters. Further precision of the angle measurement over a wide temperature range and a long lifetime are  
improved with the internal autocalibration algorithm.  
Data communications are accomplished with a bi-directional Synchronous Serial Communication (SSC) that is  
SPI-compatible. The sensor configuration is stored in registers, which are accessible by the SSC interface.  
Additionally the TLI5012B E1000 has Incremental Interface (IIF),  
Table 1-1 Derivate Ordering codes  
Product Type  
Marking  
Ordering Code  
Package  
TLI5012B E1000  
I12B1000  
SP001415550  
PG-DSO-8  
Data Sheet  
8
Rev. 1.1, 2015-09  
TLI5012B E1000  
Product Description  
1.2  
Features  
The TLI5012B E1000 has the following features and pre-configuration. The configuration can be changed via SSC  
interface.  
Giant Magneto Resistance (GMR)-based principle.  
Integrated magnetic field sensing for angle measurement.  
360° angle measurement with revolution counter and angle speed measurement.  
Max. 1.9° angle error over lifetime and temperature-range with activated auto-calibration  
Synchronous Serial Communication (SSC) with 15 bit representation of absolute angle value (0.01° resolution)  
Incremental Interface (IIF) with 12 bit resolution of angle value on the output (one count per 0.088° angle step).  
Incremental Interface (IIF) in A/B mode with absolut count enabled (provides absolute value at output)  
Fast angle update period (42.7µs).  
Autocalibration mode 1 enabled.  
Prediction disabled.  
Hysteresis set to 0.703°.  
Bus mode operation of multiple sensors on one line is possible with SSC in open-drain configuration.  
Diagnostic functions and status information.  
IFA/IFB/IFC pins set to push-pull output.  
Bi-directional SSC interface. DATA pin set to push-pull output with 8Mbit/s baud rate (2Mbit/s in open-drain).  
IFA/IFB/IFC pins set to strong driver, DATA pin set to strong driver, fast edge.  
Voltage spike filter on input pads disabled.  
Two separate highly accurate single bit SD-ADC.  
RoHS compliant (Pb-free package).  
Halogen-free.  
1.3  
Application Example  
The TLI5012B E1000 GMR-based angle sensor is designed for angular position sensing in industrial and  
consumer applications such as electrical commutated motor (e.g. BLDC), fans or pumps.  
1.4  
Disclaimer  
The qualification of this product is based on JEDEC JESD47 and may reference existing qualification results of  
similar products. Such referring is justified by the structural similarity of the products. The product is not qualified  
and manufactured according to the requirements of Infineon Technologies with regard to automotive applications.  
Data Sheet  
9
Rev. 1.1, 2015-09  
TLI5012B E1000  
Functional Description  
2
Functional Description  
2.1  
Block Diagram  
TLI5012B E1000  
VDD  
VRG  
VRA  
VRD  
GND  
CSQ  
SCK  
DATA  
IFA  
X
GMR  
SD-  
ADC  
Digital  
Signal  
Processing  
Unit  
SSC Interface  
ISM  
CORDIC  
CCU  
Y
GMR  
SD-  
ADC  
Incremental  
Interface  
IFB  
SD-  
ADC  
RAM  
Temp  
IFC  
Fuses  
Osc  
PLL  
Figure 2-1 TLI5012B E1000 block diagram  
2.2  
Functional Block Description  
2.2.1  
Internal Power Supply  
The internal stages of the TLI5012B E1000 are supplied with several voltage regulators:  
GMR Voltage Regulator, VRG  
Analog Voltage Regulator, VRA  
Digital Voltage Regulator, VRD (derived from VRA)  
These regulators are directly connected to the supply voltage VDD  
.
2.2.2  
Oscillator and PLL  
The digital clock of the TLI5012B E1000 is given by the Phase-Locked Loop (PLL), which is by default fed by an  
internal oscillator. In order to synchronize the TLI5012B E1000 with other ICs in a system, the TLI5012B E1000  
Data Sheet  
10  
Rev. 1.1, 2015-09  
TLI5012B E1000  
Functional Description  
can be configured via SSC interface to use an external clock signal supplied on the IFC pin as source for the PLL,  
instead of the internal clock. External clock mode is only available in PWM or SPC interface configuration.  
2.2.3  
SD-ADC  
The Sigma-Delta Analog-Digital-Converters (SD-ADC) transform the analog GMR voltages and temperature  
voltage into the digital domain.  
2.2.4  
Digital Signal Processing Unit  
The Digital Signal Processing Unit (DSPU) contains the:  
Intelligent State Machine (ISM), which does error compensation of offset, offset temperature drift, amplitude  
synchronicity and orthogonality of the raw signals from the GMR bridges, and performs additional features  
such as auto-calibration, prediction and angle speed calculation  
COordinate Rotation DIgital Computer (CORDIC), which contains the trigonometric function for angle  
calculation  
Capture Compare Unit (CCU), which is used to generate the PWM and SPC signals  
Random Access Memory (RAM), which contains the configuration registers  
Laser Fuses, which contain the calibration parameters for the error-compensation and the IC default  
configuration, which is loaded into the RAM at startup  
2.2.5  
Interfaces  
Bi-directional communication with the TLI5012B E1000 is enabled by a three-wire SSC interface. In parallel to the  
SSC interface, an Incremental Interface (IIF) can be selected, which is available on the IFA, IFB, IFC pins.  
2.3  
Sensing Principle  
The Giant Magneto Resistance (GMR) sensor is implemented using vertical integration. This means that the  
GMR-sensitive areas are integrated above the logic part of the TLI5012B E1000 device. These GMR elements  
change their resistance depending on the direction of the magnetic field.  
Four individual GMR elements are connected to one Wheatstone sensor bridge. These GMR elements sense one  
of two components of the applied magnetic field:  
X component, Vx (cosine) or the  
Y component, Vy (sine)  
With this full-bridge structure the maximum GMR signal is available and temperature effects cancel out each other.  
In Figure 2-2, the arrows in the resistors represent the magnetic direction which is fixed in the reference layer. If  
the external magnetic field is parallel to the direction of the Reference Layer, the resistance is minimal. If they are  
anti-parallel, resistance is maximal.  
The output signal of each bridge is only unambiguous over 180° between two maxima. Therefore two bridges are  
oriented orthogonally to each other to measure 360°.  
With the trigonometric function ARCTAN2, the true 360° angle value is calculated out of the raw X and Y signals  
from the sensor bridges.  
Data Sheet  
11  
Rev. 1.1, 2015-09  
TLI5012B E1000  
Functional Description  
GMR Resistors  
VX  
VY  
0°  
S
N
ADCX+  
ADCX-  
GND  
ADCY+  
ADCY-  
VDD  
90°  
Figure 2-2 Sensitive bridges of the GMR sensor (not to scale)  
Attention: Due to the rotational placement inaccuracy of the sensor IC in the package, the sensors 0°  
position may deviate by up to 3° from the package edge direction indicated in Figure 2-2.  
Y Component (SIN)  
VY  
X Component (COS)  
VX  
V
VX (COS)  
0°  
90°  
180°  
270°  
360°  
Angle α  
VY (SIN)  
Figure 2-3 Ideal output of the GMR sensor bridges  
Data Sheet  
12  
Rev. 1.1, 2015-09  
TLI5012B E1000  
Functional Description  
2.4  
Pin Configuration  
8
7
6
5
Center of Sensitive  
Area  
1
2
3
4
Figure 2-4 Pin configuration (top view)  
2.5  
Pin Description  
Table 2-1 Pin Description  
Pin No.  
Symbol  
In/Out  
Function  
1
2
3
4
5
6
7
8
IFC (IIF_IDX)  
SCK  
O
I
Interface C: IIF Index  
SSC Clock  
CSQ  
I
SSC Chip Select  
SSC Data  
DATA  
I/O  
O
-
IFA (IIF_A)  
VDD  
Interface A: IIF Phase A  
Supply Voltage  
Ground  
GND  
-
IFB (IIF_B)  
O
Interface B: IIF Phase B  
Data Sheet  
13  
Rev. 1.1, 2015-09  
TLI5012B E1000  
Application Circuits  
3
Application Circuits  
The application circuits in this chapter show the various communication possibilities of the TLI5012B E1000. The  
pin output mode configuration is device-specific and it can be either push-pull or open-drain. The bit IFAB_OD  
(register IFAB, 0DH) indicates the output mode for the IFA, IFB and IFC pins. The SSC pins are by default push-  
pull (bit SSC_OD, register MOD_3, 09H).  
Figure 3-1 shows a basic block diagram of a TLI5012B E1000 with Incremental Interface and SSC configuration.  
The derivate TLI5012B E1000 is by default configured with push-pull IFA (IIF_A), IFB (IIF_ B) and IFC (IIF_IDX)  
pins.  
VDD (3.0 – 5.5V)  
TLI5012B E1000  
100nF  
VRG  
VRA  
VRD  
*)  
CSQ  
X
GMR  
SD-  
ADC  
Digital  
Signal  
Processing  
Unit  
*)  
SCK  
SSC  
SSC Interface  
**)  
DATA  
ISM  
CORDIC  
CCU  
Y
GMR  
SD-  
ADC  
IFA (IIF_A)  
IFB (IIF_B)  
Incremental  
Interface  
IIF  
SD-  
ADC  
RAM  
Temp  
IFC (IIF_IDX)  
GND  
Fuses  
Osc  
PLL  
*) recommended, e.g. 100  
**) recommended, e.g. 470Ω  
Figure 3-1 Application circuit for TLI5012B E1000 with IIF interface and SSC (using internal CLK)  
In case that the IFA, IFB and IFC pins are configurated via the SSC interface as open-drain pins, three resistors  
(one for each line) between output line and VDD would be recommended (e.g. 2.2kΩ).  
Data Sheet  
14  
Rev. 1.1, 2015-09  
TLI5012B E1000  
Application Circuits  
Synchronous Serial Communication (SSC) configuration  
In Figure 3-1 the SSC interface has the default push-pull configuration (see details in Figure 3-2). Series resistors  
on the DATA, SCK (serial clock signal) and CSQ (chip select) lines are recommended to limit the current in the  
erroneous case that either the sensor pushes high and the microcontroller pulls low at the same time or vice versa.  
The resistors in the SCK and CSQ lines are only necessary in case of disturbances or noise.  
(SSC Slave) TLI5012B E1000  
µC (SSC Master)  
**)  
MTSR  
DATA  
Shift Reg.  
Shift Reg.  
EN  
EN  
MRST  
SCK  
*)  
SCK  
Clock Gen.  
*)  
CSQ  
CSQ  
*) optional, e.g. 100  
**) optional, e.g. 470Ω  
Figure 3-2 SSC configuration in sensor-slave mode with push-pull outputs (high-speed application)  
It is also possible to use an open-drain setup for the DATA, SCK and CSQ lines. This setup is designed to  
communicate with a microcontroller in a bus system, together with other SSC slaves (e.g. two TLI5012B E1000  
devices for redundancy reasons). This mode can be activated using the bit SSC_OD.  
The open-drain configuration can be seen in Figure 3-3. Series resistors on the DATA, SCK, and CSQ lines are  
recommended to limit the current in case either the microcontroller or the sensor are accidentally switched to push-  
pull. A pull-up resistor of typ. 1 kΩ is required on the DATA line.  
(SSC Slave) TLI5012B E1000  
µC (SSC Master)  
typ. 1k  
*)  
*)  
MTSR  
DATA  
Shift Reg.  
Shift Reg.  
MRST  
SCK  
*)  
SCK  
Clock Gen.  
*)  
CSQ  
CSQ  
*) optional, e.g. 100Ω  
Figure 3-3 SSC configuration in sensor-slave mode and open-drain (bus systems)  
Data Sheet  
15  
Rev. 1.1, 2015-09  
TLI5012B E1000  
Specification  
4
Specification  
4.1  
Absolute Maximum Ratings  
Table 4-1 Absolute maximum ratings  
Parameter Symbol  
Values  
Typ.  
Unit Note / Test Condition  
Min.  
-0.5  
Max.  
6.5 V  
Voltage on VDD pin with respect to VDD  
ground (VSS)  
Max 40 h/Lifetime  
Voltage on any pin with respect to VIN  
ground (VSS)  
-0.5  
-40  
6.5 V  
V
DD + V  
0.5  
Junction temperature  
TJ  
B
125 °C  
Magnetic field induction  
200 mT Max. 5 min @ TA = 25°C  
150 mT Max. 5 h @ TA = 25°C  
Storage temperature  
TST  
-40  
125 °C  
Without magnetic field  
Attention: Stresses above the max. values listed here may cause permanent damage to the device.  
Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability. Maximum ratings are absolute ratings; exceeding only one of these values may  
cause irreversible damage to the device.  
4.2  
Operating Range  
The following operating conditions must not be exceeded in order to ensure correct operation of the TLI5012B  
E1000. All parameters specified in the following sections refer to these operating conditions, unless otherwise  
noted. Table 4-2 is valid for -40°C < TJ < 125°C unless otherwise noted.  
Table 4-2 Operating range and parameters  
Parameter  
Symbol  
Values  
Typ.  
5.0  
Unit Note / Test Condition  
Min.  
3.0  
Max.  
5.5 V  
1)  
Supply voltage  
Supply current  
VDD  
IDD  
14  
16 mA  
Magnetic induction at TJ =  
25°C2)3)  
BXY  
30  
30  
30  
25  
50 mT -40°C < TJ < 125°C  
60 mT -40°C < TJ < 100°C  
70 mT -40°C < TJ < 85°C  
30 mT Additional angle error of 0.1°  
Extended magnetic induction  
range at TJ = 25°C2)3)  
BXY  
Angle range  
POR level  
Ang  
0
360 °  
VPOR  
VPORhy  
2.0  
2.9 V  
mV  
Power-on reset  
POR hysteresis  
30  
Data Sheet  
16  
Rev. 1.1, 2015-09  
TLI5012B E1000  
Specification  
Table 4-2 Operating range (cont’d)and parameters  
Parameter  
Symbol  
Values  
Typ.  
5
Unit Note / Test Condition  
Min.  
Max.  
Power-on time4)  
Fast Reset time5)  
tPon  
7 ms VDD > VDDmin;  
tRfast  
0.5 ms Fast reset is triggered by  
disabling startup BIST  
(S_BIST = 0), then enabling  
chip reset (AS_RST = 1)  
1) Directly blocked with 100-nF ceramic capacitor  
2) Values refer to a homogeneous magnetic field (BXY) without vertical magnetic induction (BZ = 0mT).  
3) See Figure 4-1  
4) During “Power-on time,” write access is not permitted (except for the switch to External Clock which requires a readout as  
a confirmation that external clock is selected)  
5) Not subject to production test - verified by design/characterization  
The field strength of a magnet can be selected within the colored area of Figure 4-1. By limitation of the junction  
temperature, a higher magnetic field can be applied. In case of a maximum temperature TJ = 100°C, a magnet  
with up to 60mT at TJ = 25°C is allowed.  
It is also possible to widen the magnetic field range for higher temperatures. In that case, additional angle errors  
have to be considered.  
100  
90  
80  
70  
70  
60  
65  
60  
50  
54  
50  
44  
40  
30  
30  
26  
+0.1° angle error @ 25mT  
-40  
25  
85 100  
125  
Temperature (°C)  
Figure 4-1 Allowed magnetic field range as function of junction temperature.  
Data Sheet  
17  
Rev. 1.1, 2015-09  
TLI5012B E1000  
Specification  
4.3  
Characteristics  
4.3.1  
Input/Output characteristics  
The indicated parameters apply to the full operating range, unless otherwise specified. The typical values  
correspond to a supply voltage VDD = 5.0 V and 25 °C, unless individually specified. All other values correspond  
to -40 °C < TJ < 125°C.  
Within the register MOD_3, the driver strength and the slope for push-pull communication can be varied depending  
on the sensor output. The driver strength is specified in Table 4-3 and the slope fall and rise time in Table 4-4.  
Table 4-3 Input voltage and output currents  
Parameter  
Symbol  
Values  
Min. Typ.  
Unit Note / Test Condition  
Max.  
5.5 V  
DD+ 0.3 V  
-25 mA PAD_DRV =’0x’, sink current1)2)  
Input voltage  
VIN  
-0.3  
V
Output current (DATA-Pad)  
IQ  
-5 mA PAD_DRV =’10’, sink current1)2)  
-0.4 mA PAD_DRV =’11’, sink current1)2)  
-15 mA PAD_DRV =’0x’, sink current1)2)  
-5 mA PAD_DRV =’1x’, sink current1)2)  
Output current (IFA / IFB / IFC - IQ  
Pad)  
1) Max. current to GND over open-drain output  
2) At VDD = 5 V  
Table 4-4 Driver strength characteristic  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Output rise/fall time  
tfall, trise  
8 ns  
DATA, 50 pF,  
PAD_DRV=’00’1)2)  
28 ns  
45 ns  
DATA, 50 pF,  
PAD_DRV=’01’1)2)  
DATA, 50 pF,  
PAD_DRV=’10’1)2)  
130 ns  
15 ns  
30 ns  
DATA, 50 pF,  
PAD_DRV=’11’1)2)  
IFA/IFB, 20 pF,  
PAD_DRV=’0x’1)2)  
IFA/IFB, 20 pF,  
PAD_DRV=’1x’1)2)  
1) Valid for push-pull output  
2) Not subject to production test - verified by design/characterization  
Data Sheet  
18  
Rev. 1.1, 2015-09  
TLI5012B E1000  
Specification  
Table 4-5 Electrical parameters for 4.5 V < VDD < 5.5 V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Input signal low-level  
Input signal high level  
Output signal low-level  
VL5  
0.3 VDD  
V
V
VH5  
VOL5  
0.7 VDD  
1 V  
DATA; IQ = -25 mA (PAD_DRV=’0x’),  
IQ = -5 mA (PAD_DRV=’10’), IQ = -0.4  
mA (PAD_DRV=’11’)  
1 V  
IFA,B,C; IQ = -15 mA (PAD_DRV=’0x’),  
IQ = -5 mA (PAD_DRV=’1x’)  
Pull-up current1)  
IPU  
-10  
-10  
10  
-225 μA  
-150 μA  
225 μA  
150 μA  
CSQ  
DATA  
Pull-down current2)  
IPD  
SCK  
10  
IFA, IFB, IFC  
1) Internal pull-ups on CSQ and DATA pin are always enabled.  
2) Internal pull-downs on IFA, IFB and IFC are enabled during startup and in open-drain mode, internal pull-down on SCK is  
always enabled.  
Table 4-6 Electrical parameters for 3.0 V < VDD < 3.6 V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Input signal low-level  
Input signal high level  
Output signal low-level  
VL3  
0.3 VDD  
V
V
VH3  
VOL3  
0.7 VDD  
0.9 V  
DATA; IQ = -15 mA  
(PAD_DRV=’0x’), IQ = -3 mA  
(PAD_DRV=’10’), IQ = -0.24 mA  
(PAD_DRV=’11’)  
0.9 V  
IFA,IFB; IQ = - 10 mA  
(PAD_DRV=’0x’), IQ = -3 mA  
(PAD_DRV=’1x’)  
Pull-up current1)  
IPU  
-3  
-3  
3
-225 μA  
-150 μA  
225 μA  
150 μA  
CSQ  
DATA  
Pull-down current2)  
IPD  
SCK  
3
IFA, IFB, IFC  
1) Internal pull-ups on CSQ and DATA pin are always enabled.  
2) Internal pull-downs on IFA, IFB and IFC are enabled during startup and in open-drain mode, internal pull-down on SCK is  
always enabled.  
Data Sheet  
19  
Rev. 1.1, 2015-09  
TLI5012B E1000  
Specification  
4.3.2  
ESD Protection  
Table 4-7 ESD protection  
Parameter  
Symbol  
Values  
Unit  
Notes  
Min.  
Max.  
±4.0 kV  
±0.5 kV  
1)  
2)  
ESD voltage  
VHBM  
VCDM  
1) Human Body Model (HBM) according to ANSI/ESDA/JEDEC JS-001  
2) Charged Device Model (CDM) according to JESD22-C101  
4.3.3  
GMR Parameters  
All parameters apply over BXY = 30mT and TA = 25°C, unless otherwise specified.  
Table 4-8 Basic GMR parameters  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
X, Y output range  
X, Y amplitude2)  
RGADC  
AX, AY  
±23230 digits Operating range1)  
15781 digits At ambient temperature  
20620 digits Operating range1)  
112.49 %  
6000 9500  
3922  
X, Y synchronicity3)  
X, Y offset4)  
k
87.5  
-2048  
-11.25  
100  
0
OX, OY  
ϕ
+2047 digits  
X, Y orthogonality error  
X, Y amplitude without magnet  
0
+11.24 °  
+4096 digits Operating range1)  
X0, Y0  
1) Not subject to production test - verified by design/characterization  
2) See Figure 4-2  
3) k = 100*(AX/AY)  
4) OY=(YMAX + YMIN) / 2; OX = (XMAX + XMIN) / 2  
VY  
+A  
Offset  
0
0°  
90°  
180°  
270°  
360°  
Angle  
-A  
Figure 4-2 Offset and amplitude definition  
Data Sheet  
20  
Rev. 1.1, 2015-09  
TLI5012B E1000  
Specification  
4.3.4  
Angle Performance  
After internal calculation, the sensor has a remaining error, as shown in Table 4-9. The error value refers to BZ=  
0mT and the operating conditions given in Table 4-2 “Operating range and parameters” on Page 16.  
The overall angle error represents the relative angle error. This error describes the deviation from the reference  
line after zero-angle definition. It is valid for a static magnetic field. If the magnetic field is rotating during the  
measurement, an additional propagation error is caused by the angle delay time (see Table 4-10 “Signal  
processing” on Page 23), which the sensor needs to calculate the angle from the raw sine and cosine values  
from the MR bridges. In fast-turning applications, prediction can be enabled to reduce this propagation error.  
Table 4-9 Angle performance  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Min. Typ. Max.  
Overall angle error at 25°C  
αErr  
1.0 °  
1.9 °  
Including lifetime drift1)2)3)  
Including temperature & lifetime drift1)2)3)4)  
.
Overall angle error -40°C...125°C αErr  
1) Including hysteresis error, caused by revolution direction change  
2) Relative error after zero angle definition  
3) With autocalibration (pre-configured by default). No temperature changes >5 Kelvin within 1.5 revolutions considered.  
4) Not subject to production test - verified by design/characterization  
Autocalibration enables online parameter calculation and therefore reduces the angle error due to temperature  
and lifetime drifts. The TLI5012B E1000 needs 1.5 revolutions to generate new autocalibration parameters. These  
parameters are continuously updated. The parameters are updated in a smooth way (one Least-Significant Bit  
within the chosen range or time) to avoid an angle jump on the output.  
If the temperature changes by more than 5 Kelvin during 1.5 revolutions an additional error has to be added to the  
specified angle error in Table 4-9. This error depends on the temperature change (Delta Temperature) as well as  
from the initial temperature (Tstart) as shown in Figure 4-3. Once the temperature stabilizes and the application  
completes 1.5 revolutions, then the angle error is as specified in Table 4-9.  
For negative Delta Temperature changes (from higher to lower temperatures) the additional angle error will be  
smaller than the corresponding positive Delta Temperature changes (from lower to higher temperatures) shown  
in Figure 4-3. The Figure 4-3 applies to the worst case.  
2.5  
2
1.5  
1
0.5  
0
Tstart -40°C  
Tstart -20°C  
Tstart 25°C  
Tstart 85°C  
Tstart 105°C  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160  
Delta Temperature (Kelvin) within 1.5 revolutions  
Figure 4-3 Additional angle error for temperature changes above 5 Kelvin within 1.5 revolutions  
Data Sheet 21 Rev. 1.1, 2015-09  
TLI5012B E1000  
Specification  
4.3.5  
Signal Processing  
TLI5012B E1000  
Microcontroller  
X
GMR  
SD-  
ADC  
Filter  
Angle  
Calculation  
IF  
Y
GMR  
SD-  
ADC  
Filter  
tdelIF  
tadelSSC  
tadelIIF  
Figure 4-4 Signal path  
The signal path of the TLI5012B E1000 is depicted in Figure 4-4. It consists of the GMR-bridge, ADC, filter and  
angle calculation. The delay time between a physical change in the GMR elements and a signal on the output  
depends on the filter and interface configurations. In fast turning applications, this delay causes an additional  
rotation speed dependent angle error.  
The TLI5012B E1000 has an optional prediction feature, which serves to reduce the speed dependent angle error  
in applications where the rotation speed does not change abruptly. Prediction uses the difference between current  
and last two angle values to approximate the angle value which will be present after the delay time (see  
Figure 4-5). The output value is calculated by adding this difference to the measured value, according to  
Equation (4.1).  
(4.1)  
α (t +1) = α (t) + α (t 1) α (t 2)  
Sensor output  
Angle  
With  
Without  
Prediction  
Prediction  
Magnetic field  
direction  
time  
tadel  
tupd  
Figure 4-5 Delay of sensor output  
Data Sheet  
22  
Rev. 1.1, 2015-09  
TLI5012B E1000  
Specification  
Table 4-10 Signal processing  
Parameter  
Symbol  
Values  
Typ.  
42.7  
85.3  
170.6  
85  
Unit  
Note / Test Condition  
Min.  
Max.  
Filter update period  
tupd  
μs  
μs  
μs  
FIR_MD = 1 (default)1)  
FIR_MD = 21)  
FIR_MD = 31)  
FIR_MD = 11)  
FIR_MD = 21)  
FIR_MD = 31)  
FIR_MD = 11)  
FIR_MD = 21)  
FIR_MD = 31)  
Angle delay time without  
prediction2)  
tadelSSC  
95 μs  
150  
165 μs  
300 μs  
135 μs  
200 μs  
330 μs  
50 μs  
275  
tadelIIF  
120  
180  
305  
Angle delay time with prediction2) tadelSSC  
45  
FIR_MD = 1; PREDICT =  
11)  
65  
105  
75  
70 μs  
115 μs  
90 µs  
FIR_MD = 2; PREDICT =  
11)  
FIR_MD = 3; PREDICT = 1  
1)  
tadelIIF  
FIR_MD = 1; PREDICT =  
11)  
95  
110 µs  
150 µs  
FIR_MD = 2; PREDICT =  
11)  
135  
FIR_MD = 3; PREDICT = 1  
1)  
Angle noise (RMS)  
NAngle  
0.08  
0.05  
0.04  
°
°
°
FIR_MD = 11)  
FIR_MD = 21)(default)  
FIR_MD = 31)  
1) Not subject to production test - verified by design/characterization  
2) Valid at constant rotation speed  
All delay times specified in Table 4-10 are valid for an ideal internal oscillator frequency of 24 MHz. For the exact  
timing, the variation of the internal oscillator frequency has to be taken into account (see Chapter 4.3.6)  
Data Sheet  
23  
Rev. 1.1, 2015-09  
TLI5012B E1000  
Specification  
4.3.6  
Clock Supply (CLK Timing Definition)  
The internal clock supply of the TLI5012B E1000 is subject to production-specific variations, which have to be  
considered for all timing specifications.  
Table 4-11 Internal clock timing specification  
Parameter  
Symbol  
Values  
Typ.  
24  
Unit  
Note / Test Condition  
Min.  
22.3  
3.7  
Max.  
Digital clock  
fDIG  
fCLK  
26.3 MHz  
4.4 MHz  
Internal oscillator frequency  
4.0  
4.3.6.1  
External clock operation  
In order to fix the IC timing and synchronize the TLI5012B E1000 with other ICs in a system, it can be switched to  
operate with an external clock signal supplied to the IFC pin. The clock input signal must fulfill certain  
requirements:  
The high or low pulse width must not exceed the specified values, because the PLL needs a minimum pulse  
width and must be spike-filtered.  
The duty cycle factor should typically be 50%, but it can vary between 30% and 70%.  
The PLL is triggered at the positive edge of the clock. If more than 2 edges are missing, a chip reset is  
generated automatically and the sensor restarts with the internal clock. This is indicated by the S_RST, and  
CLK_SEL bits, and additionally by the Safety Word (see Chapter 4.4.2.2).  
tCLK  
tCLKh  
tCLKl  
VH  
VL  
t
Figure 4-6 External CLK timing definition  
Table 4-12 External Clock Specification  
Parameter  
Symbol  
Values  
Typ.  
4.0  
Unit  
Note / Test Condition  
Min.  
3.7  
30  
Max.  
Input frequency  
CLK duty cycle1)2)  
CLK rise time  
fCLK  
4.4 MHz  
70 %  
CLKDUTY  
tCLKr  
50  
30 ns  
From VL to VH  
From VH to VL  
CLK fall time  
tCLKf  
30 ns  
1) Minimum duty cycle factor: tCLKh(min) / tCLK with tCLK= 1 / fCLK  
2) Maximum duty cycle factor: tCLKh(max) / tCLK with tCLK= 1 / fCLK  
Data Sheet  
24  
Rev. 1.1, 2015-09  
TLI5012B E1000  
Specification  
4.4  
Interfaces  
4.4.1  
Incremental Interface (IIF)  
The Incremental Interface (IIF) emulates the operation of an optical quadrature encoder with a 50% duty cycle. It  
transmits a square pulse per angle step, where the width of the steps can be configured from 9bit (512 steps per  
full rotation) to 12bit (4096 steps per full rotation) within the register MOD_4 (IFAB_RES). The rotation direction is  
given either by the phase shift between the two channels IFA and IFB (A/B mode) or by the level of the IFB channel  
(Step/Direction mode), as shown in Figure 4-7 and Figure 4-8. The incremental interface can be configured for  
A/B mode or Step/Direction mode in register MOD_1 (IIF_MOD).  
Using the Incremental Interface requires an up/down counter on the microcontroller, which counts the pulses and  
thus keeps track of the absolute position. The counter can be synchronized periodically by using the SSC interface  
in parallel. The angle value (AVAL register) read out by the SSC interface can be compared to the stored counter  
value. In case of a non-synchronization, the microcontroller adds the difference to the actual counter value to  
synchronize the TLI5012B E1000 with the microcontroller.  
After startup, the IIF transmits a number of pulses which correspond to the actual absolute angle value. Thus, the  
microcontroller gets the information about the absolute position. The Index Signal that indicates the zero crossing  
is available on the IFC pin.  
Sensors with preset IIF are available as TLI5012B E1000.  
A/B Mode  
The phase shift between phases A and B indicates either a clockwise (A follows B) or a counterclockwise (B  
follows A) rotation of the magnet.  
Incremental Interface  
(A/B Mode)  
90° el . Phase shift  
VH  
Phase A  
VL  
VH  
Phase B  
VL  
Counter  
0
1
2
3
4
5
6
7
6
5
4
3
2
1
Figure 4-7 Incremental interface with A/B mode  
Step/Direction Mode  
Phase A pulses out the increments and phase B indicates the direction.  
Incremental Interface  
(Step/Direction Mode)  
VH  
Step  
VL  
VH  
Direction  
VL  
Counter  
0
1
2
3
4
5
6
7
6
5
4
3
2
1
Figure 4-8 Incremental interface with Step/Direction mode  
Data Sheet  
25  
Rev. 1.1, 2015-09  
TLI5012B E1000  
Specification  
Table 4-13 Incremental Interface  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Incremental output frequency  
Index pulse width  
fInc  
t0°  
1.0 MHz  
Frequency of phase A and  
phase B1)  
1)  
5
μs  
1) Not subject to production test - verified by design/characterization  
Data Sheet  
26  
Rev. 1.1, 2015-09  
TLI5012B E1000  
Specification  
4.4.2  
Synchronous Serial Communication (SSC)  
The 3-pin SSC interface consists of a bi-directional push-pull (tri-state on receive) or open-drain data pin  
(configurable with SSC_OD bit) and the serial clock and chip-select input pins. The SSC Interface is designed to  
communicate with a microcontroller peer-to-peer for fast applications.  
4.4.2.1  
SSC Timing Definition  
tCSs  
tCSh  
tCSoff  
tSCKp  
CSQ  
tSCKh  
tSCKl  
SCK  
DATA  
tDATAs tDATAh  
Figure 4-9 SSC timing  
SSC Inactive Time (CSoff)  
The SSC inactive time defines the delay time after a transfer before the TLI5012B E1000 can be selected again.  
Table 4-14 SSC push-pull timing specification  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
1)  
1)  
1)  
SSC baud rate  
CSQ setup time  
CSQ hold time  
CSQ off  
fSSC  
8.0  
Mbit/s  
ns  
tCSs  
105  
tCSh  
105  
600  
120  
40  
ns  
tCSoff  
ns  
SSC inactive time1)  
1)  
SCK period  
tSCKp  
tSCKh  
tSCKl  
125  
ns  
1)  
1)  
1)  
1)  
1)  
SCK high  
ns  
SCK low  
30  
ns  
DATA setup time  
DATA hold time  
Write read delay  
Update time  
SCK off  
tDATAs  
tDATAh  
twr_delay  
tCSupdate  
tSCKoff  
25  
ns  
40  
ns  
130  
1
ns  
μs  
See Figure 4-131)  
1)  
170  
ns  
1) Not subject to production test - verified by design/characterization  
Data Sheet  
27  
Rev. 1.1, 2015-09  
TLI5012B E1000  
Specification  
Table 4-15 SSC open-drain timing specification  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
SSC baud rate  
CSQ setup time  
CSQ hold time  
CSQ off  
fSSC  
2.0  
Mbit/s Pull-up Resistor = 1k1)  
1)  
tCSs  
300  
ns  
1)  
tCSh  
400  
600  
500  
ns  
tCSoff  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
ns  
SSC inactive time1)  
1)  
SCK period  
tSCKp  
tSCKh  
tSCKl  
1)  
1)  
1)  
1)  
1)  
SCK high  
190  
190  
SCK low  
DATA setup time  
DATA hold time  
Write read delay  
Update time  
SCK off  
tDATAs  
tDATAh  
twr_delay  
tCSupdate  
tSCKoff  
25  
40  
130  
1
See Figure 4-131)  
1)  
170  
1) Not subject to production test - verified by design/characterization  
4.4.2.2  
SSC Data Transfer  
The SSC data transfer is word-aligned. The following transfer words are possible:  
Command Word (to access and change operating modes of the TLI5012B E1000)  
Data words (any data transferred in any direction)  
Safety Word (confirms the data transfer and provides status information)  
twr_delay  
SAFETY-WORD  
COMMAND  
READ Data 1  
READ Data2  
SSC-Master is driving DATA  
SSC-Slave is driving DATA  
Figure 4-10 SSC data transfer (data-read example)  
twr_delay  
SAFETY-WORD  
COMMAND  
WRITE Data 1  
SSC-Master is driving DATA  
SSC-Slave is driving DATA  
Figure 4-11 SSC data transfer (data-write example)  
Data Sheet  
28  
Rev. 1.1, 2015-09  
TLI5012B E1000  
Specification  
Command Word  
SSC Communication between the TLI5012B E1000and a microcontroller is initiated by a command word. The  
structure of the command word is shown in Table 4-16. If an update is triggered by shortly pulling low CSQ without  
a clock on SCK a snapshot of all system values is stored in the update registers simultaneously. A read command  
with the UPD bit set then allows to readout this consistent set of values instead of the current values. Bits with an  
update buffer are marked by an “u” in the Type column in register descriptions.  
Table 4-16 Structure of the Command Word  
Name  
Bits  
Description  
RW  
[15]  
Read - Write  
0: Write  
1: Read  
Lock  
UPD  
[14..11]  
[10]  
4-bit Lock Value  
0000B: Default operating access for addresses 0x00:0x04  
1010B: Configuration access for addresses 0x05:0x11  
Update-Register Access  
0: Access to current values  
1: Access to values in update buffer  
ADDR  
ND  
[9..4]  
[3..0]  
6-bit Address  
4-bit Number of Data Words  
Safety Word  
The safety word consists of the following bits:  
Table 4-17 Structure of the Safety Word  
Name  
Bits  
Description  
STAT1)  
Chip and Interface Status  
[15]  
[14]  
Indication of chip reset or watchdog overflow (resets after readout) via SSC  
0: Reset occurred  
1: No reset  
System error (e.g. overvoltage; undervoltage; VDD-, GND- off; ROM;...)  
0: Error occurred (S_VR; S_DSPU; S_OV; S_XYOL: S_MAGOL; S_FUSE;  
S_ROM; S_ADCT)  
1: No error  
[13]  
[12]  
Interface access error (access to wrong address; wrong lock)  
0: Error occurred  
1: No error  
Valid angle value (NO_GMR_A = 0; NO_GMR_XY = 0)  
0: Angle value invalid  
1: Angle value valid  
RESP  
CRC  
[11..8]  
[7..0]  
Sensor number response indicator  
The sensor number bit is pulled low and the other bits are high  
Cyclic Redundancy Check (CRC)  
1) When an error occurs, the corresponding status bit in the safety word remains “low” until the STAT register (address 00H)  
is read via SSC interface.  
Data Sheet  
29  
Rev. 1.1, 2015-09  
TLI5012B E1000  
Specification  
Bit Types  
The types of bits used in the registers are listed here:  
Table 4-18 Bit Types  
Abbreviation  
Function  
Read  
Description  
r
Read-only registers  
Read and write registers  
w
u
Write  
Update  
Update buffer for this bit is present. If an update is issued and the Update-  
Register Access bit (UPD in Command Word) is set, the immediate values  
are stored in this update buffer simultaneously. This allows a snapshot of all  
necessary system parameters at the same time.  
Data communication via SSC  
SSC Transfer  
twr_delay  
Command Word  
Data Word (s)  
SCK  
DATA  
CSQ  
MSB 14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
LSB  
MSB  
1
LSB  
RW  
LOCK  
UPD  
ADDR  
LENGTH  
SSC -Master is driving DAT A  
SSC -Slave is driving DAT A  
Figure 4-12 SSC bit ordering (read example)  
Update -Signal  
Update -Event  
Command Word  
MSB  
Data Word (s)  
SCK  
DATA  
CSQ  
LSB  
LSB  
tCSupdate  
SSC -Master is driving DAT A  
SSC-Slave is driving DAT A  
Figure 4-13 Update of update registers  
The data communication via SSC interface has the following characteristics:  
The data transmission order is Most-Significant Bit (MSB) first, Last-Significant Bit (LSB) last.  
Data is put on the data line with the rising edge on SCK and read with the falling edge on SCK.  
The SSC Interface is word-aligned. All functions are activated after each transmitted word.  
After every data transfer with ND 1, the 16-bit Safety Word is appended by the TLI5012B E1000.  
A “high” condition on the Chip Select pin (CSQ) of the selected TLI5012B E1000 interrupts the transfer  
immediately. The CRC calculator is automatically reset.  
After changing the data direction, a delay twr_delay (see Table 4-15) has to be implemented before continuing  
the data transfer. This is necessary for internal register access.  
If in the Command Word the number of data is greater than 1 (ND > 1), then a corresponding number of  
consecutive registers is read, starting at the address given by ADDR.  
Data Sheet  
30  
Rev. 1.1, 2015-09  
TLI5012B E1000  
Specification  
In case an overflow occurs at address 3FH, the transfer continues at address 00H.  
If in the Command Word the number of data is zero (ND = 0), the register at the address given by ADDR is  
read, but no Safety Word is sent by the TLI5012B E1000. This allows a fast readout of one register.  
At a rising edge of CSQ without a preceding data transfer (no SCK pulse, see Figure 4-13), the content of all  
registers which have an update buffer is saved into the buffer. This procedure serves to take a snapshot of all  
relevant sensor parameters at a given time. The content of the update buffer can then be read by sending a  
read command for the desired register and setting the UPD bit of the Command Word to “1”.  
After sending the Safety Word, the transfer ends. To start another data transfer, the CSQ has to be deselected  
once for at least tCSoff  
.
By default, the SSC interface is set to push-pull. The push-pull driver is active only if the TLI5012B E1000 has  
to send data, otherwise the DATA pin is set to high-impedance.  
Cyclic Redundancy Check (CRC)  
This CRC is according to the J1850 Bus Specification.  
Every new transfer restarts the CRC generation.  
Every Byte of a transfer will be taken into account to generate the CRC (also the sent command(s)).  
Generator polynomial: X8+X4+X3+X2+1, but for the CRC generation the fast-CRC generation circuit is used  
(see Figure 4-14)  
The seed value of the fast CRC circuit is ’11111111B’.  
The remainder is inverted before transmission.  
Serial  
CRC  
X7  
X6  
X5  
X4  
X3  
X2  
X1  
X0  
xor  
&
xor  
1
1
1
1
1
1
1
xor  
xor  
1
Input  
output  
TX_CRC  
parallel  
Remainder  
Figure 4-14 Fast CRC polynomial division circuit  
Data Sheet  
31  
Rev. 1.1, 2015-09  
TLI5012B E1000  
Specification  
4.4.3  
Supply Monitoring  
The internal voltage nodes of the TLI5012B E1000 are monitored by a set of comparators in order to ensure error-  
free operation. An over- or undervoltage condition must be active at least 256 periods of the digital clock to set the  
corresponding error bits in the Status register. This works as digital spike suppression.  
Over- or undervoltage errors trigger the S_VR bit of Status register. This error condition is signaled via the in the  
Safety Word of the SSC protocol, the status nibble of the SPC interface or the lower diagnostic range of the PWM  
interface.  
Table 4-19 Test comparator threshold voltages  
Parameter  
Symbol  
Values  
Typ.  
2.80  
2.80  
2.80  
6.05  
2.70  
-0.55  
0.55  
10  
Unit  
Note / Test Condition  
Min.  
Max.  
1)  
1)  
1)  
1)  
1)  
1)  
1)  
1)  
Overvoltage detection  
VOVG  
VOVA  
V
V
V
V
V
V
V
μs  
VOVD  
VDD overvoltage  
VDD undervoltage  
GND - off voltage  
VDD - off voltage  
Spike filter delay  
VDDOV  
VDDUV  
VGNDoff  
VVDDoff  
tDEL  
1) Not subject to production test - verified by design/characterization  
4.4.3.1  
Internal Supply Voltage Comparators  
Every voltage regulator has an overvoltage (OV) comparator to detect malfunctions. If the nominal output voltage  
of 2.5 V is larger than VOVG, VOVA and VOVD, then this overvoltage comparator is activated.  
4.4.3.2  
VDD Overvoltage Detection  
The overvoltage detection comparator monitors the external supply voltage at the VDD pin.  
VDDA  
REF  
-
10µs  
Spike  
VDD  
VRG  
VRA  
VRD  
xxx_OV  
Filter  
+
GND  
Figure 4-15 Overvoltage comparator  
GND  
4.4.3.3  
GND - Off Comparator  
The GND - Off comparator is used to detect a voltage difference between the GND pin and SCK. This circuit can  
detect a disconnection of the supply GND Pin.  
Data Sheet  
32  
Rev. 1.1, 2015-09  
TLI5012B E1000  
Specification  
VDD  
VDDA  
Diode-  
reference  
SCK  
GND  
+dV  
-
1µs  
Mono  
Flop  
10µs  
Spike  
Filter  
GND_OFF  
+
GND  
Figure 4-16 GND - off comparator  
4.4.3.4  
VDD - Off Comparator  
The VDD - Off comparator detects a disconnection of the VDD pin supply voltage. In this case, the TLI5012B E1000  
is supplied by the SCK and CSQ input pins via the ESD structures.  
VDDA  
VDD  
-
1µs  
Mono  
Flop  
10µs  
Spike  
Filter  
VVDDoff  
-dV  
VDD_OFF  
CSQ  
SCK  
+
GND  
GND  
Figure 4-17 VDD - off comparator  
Data Sheet  
33  
Rev. 1.1, 2015-09  
TLI5012B E1000  
Package Information  
5
Package Information  
5.1  
Package Parameters  
Table 5-1 Package Parameters  
Parameter  
Symbol Limit Values  
Min. Typ. Max.  
Unit  
Notes  
Thermal resistance  
RthJA  
RthJC  
RthJL  
150  
200 K/W  
75 K/W  
85 K/W  
Junction to air1)  
Junction to case  
Junction to lead  
260°C  
Soldering moisture level  
Lead Frame  
MSL 3  
Cu  
Sn 100%  
Plating  
> 7 μm  
1) according to Jedec JESD51-7  
5.2  
Package Outline  
Figure 5-1 PG-DSO-8 package dimension  
Data Sheet  
34  
Rev. 1.1, 2015-09  
TLI5012B E1000  
Package Information  
Figure 5-2 Position of sensing element  
Table 5-2 Sensor IC placement tolerances in package  
Parameter  
Values  
Unit  
Notes  
Min.  
-200  
Max.  
200 µm  
position eccentricity  
in X- and Y-direction  
rotation  
tilt  
-3  
-3  
3 °  
3 °  
affects zero position offset of sensor  
5.3  
Footprint  
0.65  
1.27  
Figure 5-3 Footprint of PG-DSO-8  
Data Sheet  
35  
Rev. 1.1, 2015-09  
TLI5012B E1000  
Package Information  
5.4  
Packing  
0.3  
8
1.75  
2.1  
6.4  
Figure 5-4 Tape and Reel  
5.5  
Marking  
Position  
1st Line  
2nd Line  
3rd Line  
Marking  
I12B1000  
xxx  
Description  
See ordering table on Page 8  
Lot code  
Gxxxx  
G..green, 4-digit..date code  
Processing  
Note: For processing recommendations, please refer to Infineon’s Notes on processing  
Data Sheet  
36  
Rev. 1.1, 2015-09  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

TLI5012BE1000

Analog Circuit
INFINEON

TLI5012BE1000XUMA1

Analog Circuit, 1 Func, PDSO8, DSO-8
INFINEON

TLIN1021A-Q1

具有抑制和唤醒功能的汽车类故障保护 LIN 收发器
TI

TLIN1021ADDFRQ1

具有抑制和唤醒功能的汽车类故障保护 LIN 收发器 | DDF | 8
TI

TLIN1021ADRBRQ1

具有抑制和唤醒功能的汽车类故障保护 LIN 收发器 | DRB | 8 | -40 to 125
TI

TLIN1021ADRQ1

具有抑制和唤醒功能的汽车类故障保护 LIN 收发器 | D | 8 | -40 to 125
TI

TLIN1022A-Q1

具有显性状态超时的汽车类双路本地互连网络 (LIN) 收发器
TI

TLIN1022ADMTRQ1

具有显性状态超时的汽车类双路本地互连网络 (LIN) 收发器 | DMT | 14 | -40 to 125
TI

TLIN1022ADRQ1

具有显性状态超时的汽车类双路本地互连网络 (LIN) 收发器 | D | 14 | -40 to 125
TI

TLIN1024A-Q1

具有显性状态超时的汽车类四路本地互连网络 (LIN) 收发器
TI

TLIN1024ARGYRQ1

具有显性状态超时的汽车类四路本地互连网络 (LIN) 收发器 | RGY | 24 | -40 to 125
TI

TLIN1027-Q1

Automotive local interconnect network (LIN) transceiver for K-Line applications
TI