TLF30682QVS01 [INFINEON]

The TLF30682QVS01, member of the OPTIREG™ PMIC-family, is a multi-rail supply for ADAS-applications like 76-79GHz radar, multi-purpose camera or display cluster or center stack applications.;
TLF30682QVS01
型号: TLF30682QVS01
厂家: Infineon    Infineon
描述:

The TLF30682QVS01, member of the OPTIREG™ PMIC-family, is a multi-rail supply for ADAS-applications like 76-79GHz radar, multi-purpose camera or display cluster or center stack applications.

集成电源管理电路
文件: 总97页 (文件大小:3596K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Features  
High-efficiency multi-rail power supply chip optimized for the use in  
Advanced Driver Assistance Systems (ADAS)  
Step-down pre-regulator for wide input voltage range from 3.7 V to 35 V  
(40 V limited time) with low over-all power loss and fast transient  
performance. Suitable for operation with ceramic capacitors  
High-efficiency step-down post-regulator for second output voltage  
generation  
Step-up post-regulator with 5 V output voltage  
Voltage monitoring for two external voltage rails including enable signals  
Configurable window watchdog  
16-bit SPI  
Green Product (RoHS compliant)  
Potential applications  
Automotive applications  
Advanced Driver Assistance Systems (ADAS)  
77 GHz radar ECUs  
Camera ECUs  
Human Machine Interface (HMI) applications  
Product validation  
Qualified for automotive applications. Product validation according to AEC-Q100.  
Description  
The OPTIREG™ PMIC TLF30682QVS01 is a multi-output Power Management IC (PMIC) for automotive  
applications. The device consists of a battery connected buck regulator (Buck1) providing 3.3 V to external  
loads and to two low voltage post-regulators. The first post-regulator (Buck2) is a buck regulator providing an  
output voltage of 1.25 V. The second post-regulator (Boost1) provides an output voltage of 5.0 V and is  
intended to supply one or two CAN transceivers.  
The TLF30682QVS01 supports 16-bit SPI communication to a microcontroller. The SPI commands support  
reading status information from the device and control of features such as PWM synchronization and control  
of the power regulators.  
Data Sheet  
1.01  
2019-07-03  
www.infineon.com/dcdc-automotive  
1
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
The device operates at a nominal switching frequency of 2.2 MHz. The switching frequency can be selected via  
SPI with an operating range from 1.8 MHz to 2.5 MHz in steps of 100 kHz. The switching regulators can be  
synchronized to an external clock signal. The TLF30682 can provide a synchronization signal for other DC/DC  
regulators in the system.  
The TLF30682QVS01 provides two voltage monitoring channels with monitoring inputs and enable outputs.  
The monitoring channels can be used to control and monitor external voltage regulators. The external voltage  
regulator can be either LDOs or DC/DC switching regulators.  
Type  
Package  
Marking  
TLF30682QVS01  
PG-VQFN-48  
TLF30682  
S01  
Data Sheet  
2
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Table of Contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2
2.1  
2.2  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin definitions and functions PG-VQFN-48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Quiescent current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.1  
3.2  
3.3  
3.4  
3.4.1  
4
4.1  
Power converters and power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
High voltage step-down regulator – Buck1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Functional description Buck1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Electrical characteristics Buck1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Post-regulator step-down converter – Buck2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Functional description Buck2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Electrical characteristics Buck2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Post-regulator step-up converter – Boost1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Functional description Boost1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Electrical characteristics Boost1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Support of external voltage rails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
4.1.1  
4.1.2  
4.1.2.1  
4.2  
4.2.1  
4.2.2  
4.2.2.1  
4.3  
4.3.1  
4.3.2  
4.3.2.1  
4.4  
5
5.1  
5.2  
5.2.1  
5.2.2  
5.3  
5.4  
5.4.1  
5.5  
Central functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Supply voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Enable functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
ENA pin configurability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Power sequencing and soft-start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Switching frequency generation and clock synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
IOVDD - Overvoltage and undervoltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
6
6.1  
6.1.1  
6.1.2  
6.1.3  
Monitoring functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Monitoring of R1VSx – battery supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Monitoring of output voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Monitoring of external voltage rails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Data Sheet  
3
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
6.1.4  
6.1.5  
6.2  
Monitoring of internal supply voltages and bandgaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
7
7.1  
7.1.1  
7.2  
Microcontroller interface and supervisory functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Microcontroller interface supply – IOVDD pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
SPI introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
SPI write access to protected registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
SPI write initiated state transition request and regulator configuration . . . . . . . . . . . . . . . . . . . . . 48  
Configuration of Buck2 output voltage via SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Reset signal ROT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Electrical characteristics – ROT pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Interrupt signal INT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Electrical characteristics – INT pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Microcontroller programming support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.2.5  
7.3  
7.3.1  
7.4  
7.4.1  
7.5  
7.5.1  
7.6  
8
State machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Operation states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
State transitions and trigger signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
8.1  
8.2  
8.3  
8.4  
9
9.1  
SPI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
SPI register definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Device configuration registers (device start-up default configuration) . . . . . . . . . . . . . . . . . . . . . . . 65  
Read-only registers for protected configuration registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Special device configuration registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
General registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Event status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Device status information registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Device information registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
9.1.1  
9.1.2  
9.1.3  
9.1.4  
9.1.5  
9.1.6  
9.1.7  
10  
11  
12  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Data Sheet  
4
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Block diagram  
1
Block diagram  
R1VSx  
V_S (T30)  
SYNCI  
SYNC_In  
SYNC_Out  
Clock  
Generation  
Buck1  
Driver  
Supply  
Internal  
Supply  
SYNCO  
NC  
Logic  
R1BTSV  
R1BTS  
ENABLE  
R1SWx  
R1PGx  
SMPR  
Buck1  
V_Buck1  
ENA  
ENABLE  
Feedback  
MPS  
R3VS  
IOVDD  
R1FB  
Interface_supply  
INT  
R3SW  
INTERRUPT  
Generator  
Interrupt  
SMPR  
Boost  
V_Boost  
V_Buck2  
SCS  
SCL  
SDI  
R3PG  
R3FB  
SPI_ChipSelect  
SPI_Clock  
Feedback  
SPI  
SPI_DataIn  
R2VS1x  
R2SWx  
SDO  
SPI_DataOut  
SMPR  
Buck2  
WDI  
Window  
Watchdog  
Watchdog_TriggerIn  
R2PGx  
R2FB  
Feedback  
Bandgap 1  
NC  
Fault  
VM1EN  
VM1FB  
Manager  
ExtRail1_Enable  
TM1  
ExtRail1_Feedback  
TM2  
ROT  
UV/OV-Monitoring/  
Enable Handling  
VM2EN  
VM2FB  
ExtRail2_Enable  
μC_Reset  
Bandgap 2  
for V- Mon.  
Reset Generator  
ExtRail2_Feedback  
AG1 AG2  
AG3 AG4 AG5  
AG6  
Figure 1  
Block diagram  
Data Sheet  
5
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Pin configuration  
2
Pin configuration  
2.1  
Pin assignment  
E
SDO 37  
SDI 38  
SCL 39  
24 R2PG2  
23 R2PG1  
22 R2FB  
21 AG4  
SCS 40  
ROT 41  
INT 42  
WDI 43  
TM2 44  
20 R1FB  
19 AG3  
18 AG2  
Top View  
17 AG1  
16 R1BTS  
15 R1SW3  
14 R1SW2  
13 R1SW1  
VM1EN 45  
VM2EN 46  
VM1FB 47  
VM2FB 48  
E
E
Figure 2  
Pin configuration  
2.2  
Pin definitions and functions PG-VQFN-48  
Pin  
Symbol Function  
1
AG5  
Analog ground, pin 5:  
Connect directly (low ohmic and low inductive) to ground.  
2
3
4
5
6
NC  
Not connected:  
Leave the pin floating in the application.  
AG6  
Analog ground, pin 6:  
Connect directly (low ohmic and low inductive) to ground.  
R1BTSV Decoupling pin for internal supply voltage:  
Connect a decoupling capacitor between the pin and R1PGx.  
NC  
Not connected:  
Leave the pin floating in the application.  
ENA  
Enable input:  
A valid enable condition at the pin will enable the device.  
Data Sheet  
6
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Pin configuration  
Pin  
Symbol Function  
7
R1VS1 High voltage regulator supply voltage, pin 1:  
Connect in parallel with R1VS2 and R1VS3 and then to the supply (battery) voltage via  
a reverse protection diode. Additionally connect a capacitor between the pin and  
ground. An EMC filter is recommended.  
8
9
R1VS2 High voltage regulator supply voltage, pin 2:  
Connect in parallel with R1VS1 and R1VS3 and then to the supply (battery) voltage via  
a reverse protection diode. Additionally connect a capacitor between the pin and  
ground. An EMC filter is recommended.  
R1VS3 High voltage regulator supply voltage, pin 3:  
Connect in parallel with R1VS1 and R1VS2 and then to the supply (battery) voltage via  
a reverse protection diode. Additionally connect a capacitor between the pin and  
ground. An EMC filter is recommended.  
10  
11  
12  
13  
14  
15  
R1PG1 High voltage regulator power ground, pin 1:  
Connect in parallel with R1PG2 and R1PG3 and then to the Buck1 output capacitor  
ground terminal to ground.  
R1PG2 High voltage regulator power ground, pin 2:  
Connect in parallel with R1PG1 and R1PG3 and then to the Buck1 output capacitor  
ground terminal to ground.  
R1PG3 High voltage regulator power ground, pin 3:  
Connect in parallel with R1PG1 and R1PG2 and to the Buck1 output capacitor ground  
terminal to ground.  
R1SW1 High voltage regulator power stage output, pin 1:  
Connect in parallel with R1SW2 and R1SW3 and then to the pre-regulator (Buck1)  
output filter inductor.  
R1SW2 High voltage regulator power stage output, pin 2:  
Connect in parallel with R1SW1 and R1SW3 and then to the pre-regulator output filter  
inductor.  
R1SW3 High voltage regulator power stage output, pin 3:  
Connect in parallel with R1SW1 and R1SW2 and then to the pre-regulator output filter  
inductor.  
16  
17  
18  
19  
20  
21  
22  
R1BTS Bootstrap supply voltage:  
Connect via the bootstrap capacitor to the R1SWx pins.  
AG1  
AG2  
AG3  
R1FB  
AG4  
R2FB  
Analog ground, pin 1:  
Connect directly (low ohmic and low inductive) to ground.  
Analog ground, pin 2:  
Connect directly (low ohmic and low inductive) to ground.  
Analog ground, pin 3:  
Connect directly (low ohmic and low inductive) to ground.  
High voltage regulator output voltage feedback pin:  
Connect to the Buck1 output capacitor.  
Analog ground, pin 4:  
Connect directly (low ohmic and low inductive) to ground.  
Post-regulator output voltage feedback pin:  
Connect to the Buck2 output capacitor.  
Data Sheet  
7
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Pin configuration  
Pin  
Symbol Function  
23  
R2PG1 Pre-regulator power ground, pin 1:  
Connect in parallel with R2PG2 and then to the Buck2 output capacitor ground  
terminal to ground.  
24  
R2PG2 Pre-regulator power ground, pin 2:  
Connect in parallel with R2PG1 and then to the Buck2 output capacitor ground  
terminal to ground.  
25  
26  
27  
28  
29  
30  
31  
32  
33  
R2SW1 Post-regulator power stage output, pin 1:  
Connect in parallel with R2SW2 and then to the Buck2 output filter inductor.  
R2SW2 Post-regulator power stage output, pin 2:  
Connect in parallel with R2SW1 and then to the Buck2 output filter inductor.  
R2VS1 Post-regulator supply voltage, pin 1:  
Connect to the Buck1 output capacitor.  
R2VS2 Post-regulator supply voltage, pin 2:  
Connect to the Buck1 output capacitor.  
R3SW1 Regulator 3 power stage output, pin 1:  
Connect to Boost1 inductor and external rectifying diode.  
R3PG1 Regulator 3 power ground, pin 1:  
Connect to Boost1 output capacitor ground terminal to ground.  
R3FB  
TM1  
MPS  
Regulator 3 output voltage feedback pin:  
Connect to Boost1 output capacitor.  
Test mode 1 pin:  
Not for customer use. Leave the pin floating in the application.  
Microcontroller programming mode pin  
Connect to ground for normal operation in the application. Optionally the pin can be  
used for microcontroller programming purposes. For details please refer to the  
application information section.  
34  
35  
IOVDD I/O supply voltage:  
Connect to the I/O supply voltage of the microcontroller.  
SYNCO Synchronization output signal:  
Connect to an optional external switch-mode post-regulator synchronization input.  
The signal delivers the internal switching frequency either in phase or shifted by 180°  
(configurable via SPI). The switch-mode post-regulator synchronizes to the rising  
edge.  
If the pin is not used, it should be left floating.  
36  
SYNCI Synchronization input signal:  
Connect to an optional external synchronization signal to synchronize the switching of  
the internal switch-mode regulators. The feature needs to be enabled via SPI.  
If the pin is not used, it should be left floating.  
37  
38  
SDO  
SDI  
Serial peripheral interface, signal data output:  
SPI signalling port, connect to SPI port "data input" of microcontroller to send status  
information during SPI communication.  
Serial peripheral interface, signal data input:  
SPI signalling port, connect to SPI port "data output" of microcontroller to receive  
commands during SPI communication.  
Data Sheet  
8
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Pin configuration  
Pin  
Symbol Function  
39  
SCL  
SCS  
ROT  
Serial peripheral interface, signal clock:  
SPI signalling port, connect to SPI port "clock" of microcontroller to clock the device  
for SPI communication.  
40  
41  
Serial peripheral interface, signal chip select:  
SPI signalling port, connect to SPI port "chip select" of microcontroller to address the  
device for SPI communication.  
Reset output:  
Open drain structure with internal pull up resistor. A "low" signal at this pin indicates  
a reset event for the microcontroller.  
Connect to microcontroller reset input.  
42  
43  
INT  
Interrupt signal:  
Push-pull output. A "low" pulse at this pin indicates an interrupt, and the  
microcontroller reads the SPI status registers.  
Connect to a non-maskable interrupt port (NMI) of the microcontroller.  
WDI  
TM2  
Watchdog input, trigger signal:  
Input for trigger signal. Connect the "trigger signal output" of the microcontroller to  
the pin.  
If the pin is not used it should be left floating (internal pull-down).  
44  
45  
Test mode 2 pin:  
Not for customer use. Connect the pin to GND in the application.  
VM1EN Enable signal for external voltage rails 1:  
Connect to the enable pin of a optional external voltage regulator 1.  
If the optional external regulator is not used, connect to ground.  
46  
47  
VM2EN Enable signal for external voltage rails 2:  
Connect to the enable pin of a optional external voltage regulator 2.  
If the optional external regulator is not used, connect to ground.  
VM1FB Input for optional external voltage monitoring rail 1:  
Connect an external resistor divider to adjust the overvoltage threshold and the  
undervoltage threshold of the monitored external voltage generated by the optional  
external voltage regulator 1.  
If the optional external regulator is not used, connect to ground.  
48  
VM2FB Input for optional external voltage monitoring rail 2:  
Connect an external resistor divider to adjust the overvoltage threshold and the  
undervoltage threshold of the monitored external voltage generated by the optional  
external voltage regulator 2.  
If the optional external regulator is not used, connect to ground.  
Cooling Tab GND  
EP1  
Cooling tab:  
Internally connected to GND  
Edge pin no 1:  
Keep the area below the pin free of ground or other signals. Do not solder this pin to  
ground or any other signal. This pin must be kept free of soldering.  
EP2  
Edge pin no 2:  
Keep the area below the pin free of ground or other signals. Do not solder this pin to  
ground or any other signal. This pin must be kept free of soldering.  
Data Sheet  
9
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Pin configuration  
Pin  
Symbol Function  
EP3  
Edge pin no 3:  
Keep the area below the pin free of ground or other signals. Do not solder this pin to  
ground or any other signal. This pin must be kept free of soldering.  
EP4  
Edge pin no 4:  
Keep the area below the pin free of ground or other signals. Do not solder this pin to  
ground or any other signal. This pin must be kept free of soldering.  
Data Sheet  
10  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
General product characteristics  
3
General product characteristics  
3.1  
Absolute maximum ratings  
Table 1  
Absolute maximum ratings1)  
Tj = -40°C to 150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ. Max.  
Pin  
MPS  
VMPS  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-5.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
6.0  
6.0  
6.0  
35  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
mA  
P_3.1.1  
IOVDD  
SCS  
VIOVDD  
VSCS  
P_3.1.2  
P_3.1.3  
SCL  
VSCL  
P_3.1.4  
SDI  
VSDI  
P_3.1.5  
SDO  
VSDO  
P_3.1.6  
WDI  
VWDI  
P_3.1.7  
INT  
VINT  
P_3.1.10  
P_3.1.13  
P_3.1.14  
P_3.1.15  
P_3.1.16  
P_3.1.17  
P_3.1.18  
P_3.1.19  
P_3.1.20  
P_3.1.22  
P_3.1.23  
P_3.1.24  
P_3.1.25  
P_3.1.26  
P_3.1.27  
P_3.1.28  
P_3.1.29  
P_3.1.30  
P_3.1.31  
P_3.1.32  
P_3.1.33  
P_3.1.34  
AG1  
VAG1  
AG2  
VAG2  
AG3  
VAG3  
AG4  
VAG4  
AG5  
VAG5  
AG6  
VAG6  
SYNCI  
SYNCO  
TM1  
VSYNCI  
VSYNCO  
VTM1  
2)  
ENA  
VENA  
ENA  
IENA  
R1BTS  
R1BTSV  
R1VS1  
R1VS2  
R1VS3  
R1SW1  
R1SW2  
R1SW3  
R1PG1  
R1PG2  
VR1BTS  
VR1BTSV  
VR1VS1  
VR1VS2  
VR1VS3  
VR1SW1  
VR1SW2  
VR1SW3  
VR1PG1  
VR1PG2  
VR1SWx - 0.3 –  
VR1SWx + 6.0 V  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
6.0  
V
V
V
V
V
V
V
V
V
2)  
35  
2)  
2)  
35  
35  
VR1VSx+2.0  
VR1VSx+2.0  
VR1VSx+2.0  
0.3  
0.3  
Data Sheet  
11  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
General product characteristics  
Table 1  
Absolute maximum ratings1) (cont’d)  
Tj = -40°C to 150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
Typ. Max.  
R1PG3  
VR1PG3  
VR1FB  
0.3  
7.0  
7.0  
7.0  
7.0  
7.0  
0.3  
0.3  
7.0  
7.0  
0.3  
7.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
P_3.1.35  
P_3.1.36  
P_3.1.37  
P_3.1.38  
P_3.1.39  
P_3.1.40  
P_3.1.41  
P_3.1.42  
P_3.1.43  
P_3.1.44  
P_3.1.45  
P_3.1.46  
P_3.1.47  
P_3.1.48  
P_3.1.49  
P_3.1.50  
P_3.1.51  
P_3.1.52  
R1FB  
R2VS1  
VR2VS1  
VR2VS2  
VR2SW1  
VR2SW2  
VR2PG1  
VR2PG2  
VR2FB  
R2VS2  
R2SW1  
R2SW2  
R2PG1  
R2PG2  
R2FB  
R3SW1  
VR3SW1  
VR3PG1  
VR3FB  
R3PG1  
R3FB  
VM1FB  
VVM1FB  
VVM1EN  
VVM2FB  
VVM2EN  
VROT  
VM1EN  
VM2FB  
VM2EN  
ROT  
TM2  
VTM2  
Temperatures  
Junction temperature  
Storage temperature  
ESD susceptibility  
Tj  
-40  
-55  
150  
150  
°C  
°C  
P_3.1.53  
P_4.1.9  
Tstg  
ESD susceptibility all pins VESD,HBM -2  
ESD susceptibility all pins VESD,CDM -500  
2
kV HBM3)  
P_4.1.10  
P_4.1.12  
P_4.1.13  
500  
750  
V
V
CDM4)  
CDM4)  
ESD susceptibility of  
corner pins to GND  
VESD,Corner -750  
1) Not subject to production test, specified by design.  
2) Maximum rating is extended to 40 V for an overall time of 7 minutes during the lifetime of the product (load dump  
requirement)  
3) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5k , 100 pF)  
4) ESD susceptibility, Charged Device Model "CDM" according JEDEC JESD22-C101  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Data Sheet  
12  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
General product characteristics  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
3.2  
Functional range  
Note:  
Within the functional or operating range, the IC operates as described in the circuit description. The  
electrical characteristics are specified within the conditions given in the Electrical Characteristics  
table.  
Table 2  
Functional Range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Supply Voltage Range for  
Normal Operation  
VR1VSx  
VR1VSx  
Tj  
5.0  
35  
V
P_3.2.1  
P_4.2.5  
P_4.2.9  
1)2)  
Supply Voltage Range for  
Reduced Operation  
3.7  
5.0  
V
Junction Temperature  
-40  
150  
°C  
1) When first powered up, a proper startup of the device can only be assured by applying minimum 6 V at pins R1VSx for  
at least 2 ms. The device may start at even lower voltages.  
2) The current capability of Buck1 is reduced to limit the current stress in the device.  
Data Sheet  
13  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
General product characteristics  
3.3  
Thermal resistance  
Note:  
This thermal data was generated in accordance with JEDEC JESD51 standards. For more  
information, go to www.jedec.org.  
Table 3  
Thermal resistance1)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ.  
Max.  
12.2  
22.1  
Junction to case  
RthJC  
K/W  
K/W JEDEC 2s2p,  
measured to pin 1, 3,  
P_4.3.1  
P_3.3.1  
Junction to soldering point RthJSP  
(pin)  
20.1  
17, 18, 19, 21  
Junction to soldering point RthJSP  
34.9  
37.6  
K/W JEDEC 1s0p,  
P_3.3.2  
(pin)  
measured to pin 1, 3,  
17, 18, 19, 21  
Junction to soldering point RthJSP  
(soldering pad)  
11.0  
13.1  
14.7  
18.0  
K/W JEDEC 2s2p  
P_3.3.3  
P_4.3.2  
P_4.3.3  
Junction to soldering point RthJSP  
(soldering pad)  
K/W JEDEC 1s0p  
2)  
Junction to ambient  
RthJA  
37  
K/W  
1) Not subject to production test, specified by design.  
2) Specified RthJA value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The product  
(Chip and Package) was simulated on a 76.2 × 114.3 × 1.5 mm³ board with two inner copper layers (2 × 70 µm Cu,  
2 × 35 µm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.  
Data Sheet  
14  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
General product characteristics  
3.4  
Quiescent current consumption  
Table 4  
Quiescent current consumption  
Tj = -40°C to 150°C, VR1VSx = 9 V to 25 V (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
ACTIVE state  
Iq,OP  
20  
mA  
Tj 85°C  
P_3.4.1  
9 V VR1VSx 25 V  
No load, Watchdog  
disabled  
DISABLED state  
DISABLED state  
FAULT state  
Iq,DIS  
Iq,DIS  
Iq,FLT  
Iq,LCK  
13  
11  
1
17.5  
13.5  
2
µA  
µA  
mA  
µA  
Tj 85°C  
9 V VR1VSx 25 V  
P_3.4.2  
P_3.4.3  
P_3.4.4  
P_3.4.5  
Tj = 25°C  
V
R1VSx = 13.5 V  
Tj 85°C  
9 V VR1VSx 25 V  
LOCKED state  
35  
50  
Tj 85°C  
9 V VR1VSx 25 V  
Data Sheet  
15  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
General product characteristics  
3.4.1  
Typical performance characteristics  
DISABLED state - Quiescent current  
LOCKED state - Quiescent current  
consumption Iq versus supply voltage VR1VSx  
consumption Iq versus supply voltage VR1VSx  
Data Sheet  
16  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Power converters and power management  
4
Power converters and power management  
4.1  
High voltage step-down regulator – Buck1  
4.1.1  
Functional description Buck1  
The high-voltage step-down regulator (Buck1) converts the battery voltage (R1VSx) to the Buck1 voltage.  
A synchronous current-mode-controlled buck converter with internal power switches is integrated for this  
purpose. The output rail VBuck1 can be used as direct supply rail as well as pre-regulated rail for post-  
regulators.  
The N-/N-MOS power stage is driven by an integrated driver circuit supplied by an external boot-strap  
capacitor. The integrated dead-time optimization prevents cross-conduction, minimizes dead-time and  
increases system efficiency. The output voltage is set with an internal voltage divider. Internal compensation  
allows for fast loop performance across a wide range of output capacitance. External tuning of the loop is not  
required. The design supports both ceramic and electrolytic capacitors. For detailed information on the  
selection of the external power stage components, namely the inductor and input/output filter capacitors,  
please refer to Chapter 10.  
The converter offers various configuration options. It offers a selectable switching frequency, which can be  
configured via the SPI. Synchronization of the switching frequency with the other integrated converters as  
well as an external synchronization signal is included. Various protection features, such as overcurrent and  
overtemperature detection, prevent damage to the converter due to fault conditions.  
Vbat  
R1VSx  
R1BTS  
Bandgap 1  
Pre-  
Regulator  
Buck1  
R1SWx  
R1PGx  
V_Buck1  
Feedback  
R1FB  
Logic  
SYNCI  
SYNC_In  
SYNC_Out  
Clock  
Generation  
SYNCO  
Figure 3  
Block Diagram Buck1  
Data Sheet  
17  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Power converters and power management  
Modulation concept  
The converter uses several modulation schemes depending on the operation mode. A PWM scheme is used for  
most of the operating area. It supports synchronization to internal and external clock sources. For light-load  
and high-line operation, pulse-skipping operation is used. This allows for an improved system efficiency and  
ensures a minimum turn-on time to ensure correct operation of the switches.  
The transition between PWM and pulse-skipping is automatically handled by the converter and does not  
require any configuration. The current and voltage thresholds for this transition are dependent on the  
selected power stage components.  
Loop compensation  
The converter uses a cascaded current-mode, voltage-mode control scheme. The inductor current is  
controlled by an inner current-loop, while the output voltage is regulated by the external voltage  
compensation loop. The compensation loop can operate with a range of power stages. For detailed  
information on the selection of the external components, please refer to Chapter 10. The dynamic  
performance of the system is a function of the power stage components and the internal compensation loop.  
Follow the design considerations in Chapter 10 for optimum performance.  
Cycle-by-cycle current limitation  
The device features cycle-by-cycle current limitation to protect the switches and external components in case  
of a fault condition. If a defined current threshold is reached, then the peak current monitoring turns off the  
high-side switch. The device also monitors the current in the low side switch. If the current in the low side  
switch exceeds the overcurrent threshold at the end of the switching period, then the high side switch is not  
turned on in the following switching period. This allows the device to work as a constant current source.  
If the current in the inductor exceeds the overcurrent protection threshold for a defined time, TR1OCP, then an  
overcurrent time-out event is signalized with an interrupt (OCSF1.BUCK1OCW). It is up to the user to decide,  
how to react in this situation, for example by shutting down the converter.  
Overtemperature protection  
The converter includes an overtemperature warning and shutdown function to protect the device against  
damage. If the junction temperature exceeds the overtemperature warning threshold, an overtemperature  
warning flag is set (OTSF1.BUCK1OTW) and an interrupt is generated. If the junction temperature continues  
to rise and exceeds the overtemperature shutdown threshold, then the converter shuts down and generates  
a thermal shut-down (TSD) event. The OTSF0.BUCK1OT status flag is set and can be read by the  
microcontroller after re-entering ACTIVE state.  
The current status of the overtemperature warning can be accessed at OTSTAT0.BUCK1OTW, while  
OTSF1.BUCK1OTW contains the latched information.  
Soft-start  
The integrated soft-start feature limits the in-rush current and allows for smooth start-up of the converter.  
Power-sequencing together with the other output rails is supported. Please refer to Chapter 5.3 for more  
information.  
Data Sheet  
18  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Power converters and power management  
4.1.2  
Electrical characteristics Buck1  
Table 5  
Electrical characteristics Buck1  
Tj = -40°C to 150°C, VR1VSx = 3.7 V to 35 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
12  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Input voltage - TLF30682  
S01  
VR1VSx  
3.7  
35  
V
VR1FB = 3.3 V  
P_4.1.2.1  
P_4.1.2.2  
P_4.1.2.9  
Output voltage – TLF30682 VR1FB  
S01  
3.3  
V
Output voltage tolerance  
Maximum output current  
VR1FB,TOL  
IR1IOUT  
-2  
+2  
%
A
3.5  
2.0  
5.0 V VR1VSx 35 V P_4.1.2.10  
3.7 V VR1VSx < 5.0 V P_4.1.2.11  
Maximum output current – IR1IOUT,DR  
A
derated  
High-side switch on-  
resistance  
RDSOn,R1HS  
45  
77  
145  
160  
135  
150  
mΩ  
mΩ  
mΩ  
mΩ  
5.0 V VR1VSx 35 V P_4.1.2.16  
3.7 V VR1VSx < 5.0 V P_4.1.2.17  
5.0V VR1VSx 35 V P_4.1.2.18  
3.7V VR1VSx < 5.0 V P_4.1.2.19  
High-side switch on-  
resistance derated  
RDSOn,R1HS,DR  
RDSOn,R1LS  
Low-side switch on-  
resistance  
35  
72  
Low-side switch on-  
resistance derated  
RDSOn,R1LS,DR  
P_4.1.2.20  
P_4.1.2.21  
Overcurrent protection  
threshold  
IR1OCP  
tR1OCP  
4.1  
4.5  
6.0  
A
Overcurrent time out  
95  
100  
115  
µs  
P_4.1.2.23  
P_4.1.2.24  
Minimum ON time  
50  
58  
72  
ns  
Minimum ON time P_4.1.2.25  
for internal HS  
control signal. The  
actual ON time on  
the R1SWx pins  
depends on the  
application design.  
Overtemperature warning  
threshold  
Tj,R1OT,WRN  
Tj,R1OT,WRN  
130  
120  
175  
165  
145  
135  
190  
180  
160  
150  
205  
195  
°C  
°C  
°C  
°C  
nF  
1) Tj increasing  
1) Tj decreasing  
1) Tj increasing  
1) Tj decreasing  
P_4.1.2.26  
P_4.1.2.27  
P_4.1.2.28  
P_4.1.2.29  
P_4.1.2.30  
Overtemperature warning  
threshold  
Overtemperature shutdown Tj,R1OT,FLT  
threshold  
Overtemperature shutdown Tj,R1OT,FLT  
threshold  
Bootstrap capacitor  
CR1BST  
100  
Data Sheet  
19  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Power converters and power management  
Table 5  
Electrical characteristics Buck1 (cont’d)  
Tj = -40°C to 150°C, VR1VSx = 3.7 V to 35 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
External power stage components  
Effective inductance LR1  
2)  
2.64  
75  
1
3.3  
100  
5
4.0  
240  
30  
µH  
µF  
P_4.1.2.33  
P_4.1.2.35  
P_4.1.2.36  
2)3)  
Effective output capacitance CR1  
ESR of output capacitance RR1C  
mΩ  
1) Not subject to production test, specified by design.  
2) See Chapter 10 for additional information on the allowed L,C combinations.  
3) Effective capacitance including de-rating over the temperature range, bias voltage and aging. Electrolytic and  
ceramic capacitors are supported.  
4.1.2.1 Typical performance characteristics  
Buck1 output voltage VR1FB  
versus load current IR1IOUT  
Buck1 output voltage VR1FB  
versus supply voltage VR1VSx (drop-out region)  
Data Sheet  
20  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Power converters and power management  
4.2  
Post-regulator step-down converter – Buck2  
Functional description Buck2  
4.2.1  
The low-voltage step-down regulator (Buck2) converts the output voltage of Buck1 into the VBuck2 voltage.  
A synchronous current-mode-controlled buck converter with internal P-/N-MOS power stage is integrated for  
this purpose. The output voltage is set with an internal voltage divider. Internal compensation allows for fast  
loop performance across a wide range of output capacitance. External tuning of the loop is not required. The  
design supports both ceramic and electrolytic capacitors. For detailed information on the selection of the  
external power stage components, namely the inductor and input/output filter capacitors, please refer to  
Chapter 10.  
Synchronization of the switching frequency with the other integrated converters as well as an external  
synchronization signal is included. Various protection features, for example overcurrent, overtemperature  
and overvoltage detection, prevent damage to the converter due to fault conditions.  
Loop compensation  
Due to the integrated loop compensation no external components are required for loop compensation.  
The dynamic performance of the system is a function of the power stage components and the internal  
compensation loop. Follow the design considerations in Chapter 10 for optimum performance.  
Cycle-by-cycle current limitation  
The device features cycle-by-cycle current limitation to protect the switches and external components in case  
of a fault condition. If a defined current threshold is reached, then the peak current monitoring turns off the  
high-side switch. The device also monitors the current in the low side switch. If the current in the low side  
switch exceeds the overcurrent threshold at the end of the switching period, then the high side switch is not  
turned on in the following switching period. This allows the device to work as a constant current source.  
If this operation mode persists for a defined time, an overcurrent time-out event, tR2OCP, is signalized with an  
interrupt (OCSF1.BUCK2OCW). It is up to the user to decide how to react in this situation, by, for example  
shutting down the converter.  
Overtemperature protection  
The converter includes an overtemperature warning and shutdown function to protect the device against  
damage. If the junction temperature exceeds the overtemperature warning threshold, an overtemperature  
warning flag is set (OTSF1.BUCK2OTW) and an interrupt is generated. If the junction temperature continues  
to rise and exceeds the overtemperature shutdown threshold, then the converter shuts down and generates  
a thermal shut-down (TSD) event. The OTSF0.BUCK2OT status flag is set and can be read by the  
microcontroller after re-entering ACTIVE state.  
The current status of the overtemperature warning can be accessed at OTSTAT0.BUCK2OTW, while  
OTSF1.BUCK2OTW contains the latched information.  
Output voltage adjustment via SPI  
The device features output voltage adjustment via SPI. Therefore, the microcontroller can adjust the output  
voltage during ACTIVE state using SPI registers (B2VCTRL, B2VCTRLN). Changes of the output voltage must be  
limited to 50 mV at a time. That means that the register value of B2VCTRL and B2VCTRLN must only be  
changed by +1 or -1. This is important to avoid false triggering of a Buck2 UV or Buck2 OV event. The settling  
time of the output voltage for a 50 mV step is typically 50 µs, but it may be longer depending on the output  
filter selection and load current condition.  
Data Sheet  
21  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Power converters and power management  
Automatic use detection  
The integrated automatic use detection for Buck2 allows the system to detect whether Buck2 is used in the  
application. Therefore, the input voltage on the R2VSx pins is checked prior to startup of Buck2. If the pins are  
connected to the output voltage, a voltage above the detection threshold is present at the pins and the device  
assumes that Buck2 is required in the application. To indicate to the device that Buck2 is not required in the  
application, the R2VSx pins should be connected to R2PGx.  
The result of the detection is stored in HWDECT0.BUCK2AVA in order to allow the microcontroller to verify  
correct detection for the specific application and to differentiate the result from a possible fault present on the  
PCB.  
Soft-start  
The integrated soft-start feature limits the in-rush current and allows for smooth start-up of the converter.  
Power-sequencing together with the other output rails is supported. Please refer to Chapter 5.3 for more  
information.  
Data Sheet  
22  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Power converters and power management  
4.2.2  
Electrical characteristics Buck2  
Table 6  
Electrical characteristics Buck2  
Tj = -40°C to 150°C, VR1VSx = 3.7 V to 35 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
VR1FB  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
4.0  
Input voltage  
VR2VSx  
2.9  
V
V
P_4.2.2.1  
P_4.2.2.3  
Output voltage adjustment VR2FB,RANGE 0.9  
1.3  
range  
Output voltage adjustment VR2FB,STEP  
step size  
50  
mV  
V
VR2FB = VR2FB,RANGE P_4.2.2.4  
Default output voltage  
VR2FB  
1.25  
P_4.2.2.5  
TLF30682  
S01  
Output voltage tolerance  
Maximum output current  
VR2FB,TOL  
IR2IOUT  
-2  
+2  
%
P_4.2.2.10  
P_4.2.2.11  
P_4.2.2.15  
2.0  
A
High-side switch on-  
resistance  
RDSOn,R2HS 60  
113  
180  
mΩ  
VR2VSx = 3.3 V  
Low-side switch on-  
resistance  
RDSOn,R2LS  
35  
80  
140  
mΩ  
VR2VSx = 3.3 V  
P_4.2.2.16  
P_4.2.2.17  
P_4.2.2.18  
Overcurrent protection  
threshold  
IR2,OCP  
tR2,OCP  
2.9  
3.45  
4.0  
A
Overcurrent time out  
95  
100  
115  
µs  
P_4.2.2.20  
P_4.2.2.21  
Minimum ON time  
64  
79  
87  
ns  
Minimum ON time P_4.2.2.22  
for internal HS  
control signal. The  
actual ON time on  
the R2SWx pins is  
dependent on the  
application  
design.  
Overtemperature warning Tj,R2OT,WRN 130  
threshold  
145  
135  
190  
180  
160  
150  
205  
195  
°C  
°C  
°C  
°C  
1) Tj increasing  
1) Tj decreasing  
1) Tj increasing  
1) Tj decreasing  
P_4.2.2.23  
P_4.2.2.24  
P_4.2.2.25  
P_4.2.2.26  
Overtemperature warning Tj,R2OT,WRN 120  
threshold  
Overtemperatureshutdown Tj,R2OT,FLT  
threshold  
175  
165  
Overtemperatureshutdown Tj,R2OT,FLT  
threshold  
External power stage components  
2)  
Effective inductance  
LR2  
1.2  
2.2  
4.0  
µH  
P_4.2.2.28  
Data Sheet  
23  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Power converters and power management  
Table 6  
Electrical characteristics Buck2 (cont’d)  
Tj = -40°C to 150°C, VR1VSx = 3.7 V to 35 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
66  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
2)3)  
Effective output  
capacitance  
CR2  
52  
120  
µF  
P_4.2.2.30  
P_4.2.2.31  
ESR of output capacitance RR2C  
1
5
30  
mΩ  
1) Not subject to production test, specified by design.  
2) See Chapter 10 for additional information on the allowed L, C combinations.  
3) Effective capacitance including de-rating across temperature range, bias voltage and aging. Electrolytic and ceramic  
capacitors are supported.  
4.2.2.1 Typical performance characteristics  
Buck2 output voltage VR2FB  
versus load current IR2IOUT  
Data Sheet  
24  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Power converters and power management  
4.3  
Post-regulator step-up converter – Boost1  
4.3.1  
Functional description Boost1  
The device integrates a dedicated step-up converter to generate a 5 V output voltage rail from the Buck1  
voltage. An asynchronous boost topology with internal low-side switch and an external diode is used.  
Loop compensation  
The Boost1 converter uses an internal compensation circuit with no need for external components.  
For selection of the required external components please refer to Chapter 10.  
Synchronization of the switching frequency with the other integrated converters as well as an external  
synchronization signal is included.  
Overcurrent protection  
The device incorporates an overcurrent protection to protect the internal low-side switch of the boost  
converter. Due to the nature of the boost topology the boost output rail is not protected against a short circuit  
directly. However, indirect protection via an undervoltage protection and current limitation of the front-end  
converter (Buck1) is available.  
Automatic use detection  
An automatic use detection is implemented for Boost1 which allows the system to detect if Boost1 is used in  
the application. Therefore, the input voltage on the R3FB pin is checked prior to startup of Boost1. If the R3FB  
pin is connected to the output voltage of Buck1 through the boost inductor and rectifying diode, a voltage  
above the detection threshold is present at the pin and the device assumes that Boost1 is required in the  
application. To indicate to the device that Boost1 is not required in the application, the R3FB pin should be  
connected to R3PG. The result of the detection is stored in HWDECT0.BOOST1AVA in order to allow the  
microcontroller to verify correct detection for the specific application and differentiate the result from a  
possible fault present on the PCB.  
Data Sheet  
25  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Power converters and power management  
4.3.2  
Electrical characteristics Boost1  
Table 7  
Electrical characteristics Boost1  
Tj = -40°C to 150°C, VR1VSx = 3.7 V to 35 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
VR1FB  
5.0  
Unit Note or  
Test Condition  
Number  
Min.  
2.7  
Max.  
4.5  
Input voltage  
VR3VS  
V
P_4.3.2.1  
P_4.3.2.2  
P_4.3.2.3  
P_4.3.2.4  
P_4.3.2.5  
Output voltage  
VR3FB  
V
Output voltage tolerance  
Maximum output current  
VR3FB,TOL  
IR3IOUT  
IR3,OCP  
-2  
2
%
250  
740  
mA  
mA  
Overcurrent detection  
threshold  
820  
900  
Overcurrent time out  
tR3,OCP  
170  
220  
260  
µs  
P_4.3.2.6  
External power stage components  
Effective inductance LR3  
1)  
3.8  
5.5  
1
6.8  
10  
20  
9.8  
18  
50  
µH  
µF  
P_4.3.2.8  
P_4.3.2.10  
P_4.3.2.11  
1)2)  
Effective output capacitance CR3  
ESR of output capacitance RR3C  
mΩ  
1) See Chapter 10 for additional information on the allowed L, C combinations.  
2) Effective capacitance including derating over the temperature range, bias voltage and aging. Electrolytic and ceramic  
capacitors are supported.  
4.3.2.1 Typical performance characteristics  
Boost1 output voltage VR3FB  
versus load current IR3IOUT  
Data Sheet  
26  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Power converters and power management  
4.4  
Support of external voltage rails  
The device supports monitoring of two externally generated voltage rails via voltage monitors. Each voltage  
monitor consists of an enable pin (VMxEN) to control the respective regulator and a monitoring input pin  
(VMxFB) for monitoring the respective voltage rail. The expected voltage on the monitoring input is fixed. If  
higher voltages should be monitored, an external voltage divider may be used to reduce the voltage to the  
expected range.  
Automatic use detection  
The integrated automatic use detection for each voltage monitor allows the system to detect whether it is  
used in the application.  
The device assumes that an external power regulator is connected (and the voltage monitoring is used) when  
it is possible to drive the respective enable pin "high". Conversely, to indicate to the device that a voltage  
monitor is not required by the application, the respective enable pin VMxEN should be connected to ground.  
The result of the detection is stored in HWDECT0.VM1AVA and HWDECT0.VM2AVA respectively, in order to  
allow the microcontroller to verify correct detection for the specific application and differentiate the result  
from a possible fault condition on the PCB.  
Table 8  
Electrical characteristics external voltage rails  
Tj = -40°C to 150°C, VR1VSx = 3.7 V to 35 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Enable signal: VMxEN  
Output level – "high"  
Output level – "low"  
VVMxEN,high  
VVMxEN,low  
0.7  
VIOVDD IVMxEN = -7 mA  
P_4.4.0.1  
P_4.4.0.2  
P_4.4.0.3  
0.7  
V
IVMxEN = -5.5 mA  
VVMxEN = 0.8 V  
Internal pull-down current IVMxEN  
10  
µA  
Monitoring signals: VMxFB  
Nominal input voltage1)  
VVMxFB,nom  
IVMxFB  
0.8  
V
P_4.4.0.4  
P_4.4.0.5  
Input pull-up current  
100  
130  
nA  
VVMxFB = 0.8 V  
1) For information on the monitoring thresholds please refer to Table 14 in Chapter 6.1.3.  
Data Sheet  
27  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Central functions  
5
Central functions  
5.1  
Supply voltages  
The device generates an internal supply voltage from the voltage supplied at the R1VSx pins. This supply  
voltage, R1BTSV, is used to power the driver circuit for the power switches of Buck1. It cannot be used to  
supply any external loads in the system.  
To handle the dynamic gate drive current of the power switches, a ceramic capacitor for decoupling must be  
placed between R1BTSV and the respective ground pin.  
In order to operate the digital outputs of the device, a supply voltage is required at the IOVDD pin. Please refer  
to Chapter 7.1 for detailed information.  
Table 9  
Electrical characteristics supply voltages  
Tj = -40°C to 150°C, VR1VSx = 3.7 V to 35 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Decoupling capacitor for internal supply  
Internal supply decoupling –  
connect between R1BTSV  
and GND  
0.8  
1.0  
1.2  
µF  
P_5.1.1  
Data Sheet  
28  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Central functions  
5.2  
Enable functionality  
The device features an enable functionality which allows powering up the device using the ENA pin. For  
example, this pin may be connected to the outside of the ECU or to a wake output of a CAN transceiver.  
The pin is level-sensitive with a duration-based de-glitching where a "high" signal indicates the "enabled"  
state. With respect to Figure 4, the enable signal is considered "high", when it is above the enable detection  
threshold VENA,high for a minimum time of tENA,det. A signal above the detection threshold for a duration shorter  
than tENA,filt is not considered a valid "high" signal.  
Respectively, the enable signal is considered "low" when it is below VENA,low for a minimum time of tENA,det. A  
signal below the detection threshold for a duration shorter than tENA,filt is not considered a valid "low" signal.  
The state of the enable signal can be accessed at VMONSTAT0.ENA.  
The device incorporates an enable event detection where a "low-to-high" transition or a "high-to-low"  
transition of the enable signal is considered an enable event. Upon detection of an enable event, an interrupt  
is generated (SYSSF1.ENA). Depending on the device state, an enable event may trigger a state transition  
(refer to Chapter 8.3), for example power up the device.  
An enable event does not disable the device automatically. It is up to the microcontroller to react to the  
generated interrupt and react accordingly.  
The state of the enable signal can be accessed at VMONSTAT0.ENA and may be used by the microcontroller  
to determine the current state of the enable signal. This information may be used to differentiate between an  
enable or disable condition on ECU level.  
ENA  
Enable  
Signal  
t
tENA,filt  
tENA,det  
Figure 4  
Enable signal – timing enable event  
5.2.1  
ENA pin configurability  
The ENA pin is by default configured to be edge triggered. The device can only detect an ENA event if the  
voltage on the pin rises from a low level to a high level. The functionality of the ENA pin can be configured by  
the microcontroller as edge-triggered or level-sensitive in register DEVCFG0.ENA_CONFIG.  
If the configuration of the ENA pin is set to level-sensitive, then the device automatically re-enters the ACTIVE  
state from the FAULT state if the ENA pin is high. That means that the device does not enter the LOCKED state  
after three consecutive faults with the ENA pin configured to level-sensitive as long as the ENA pin is high.  
If the device enters the DISABLED state on an SPI request to DEVCTRL/DEVCTRLN, then the DEVCFG0 register  
is reset to the default value. The device can therefore only recognize an ENA event in DISABLED state if the ENA  
pin has a low to high transition.  
Data Sheet  
29  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Central functions  
Table 10  
Electrical characteristics enable signal  
Tj = -40°C to 150°C, VR1VSx = 3.7 V to 35 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Enable signal – pin ENA  
Input level – "high"  
Input level – "low"  
Input hysteresis  
VENA,high  
VENA,low  
VENA,hys  
IENA,high  
IENA,low  
1.30  
1.00  
250  
1.60  
1.20  
400  
3
2.00  
1.40  
550  
5
V
VENA increasing  
P_5.2.1  
P_5.2.2  
P_5.2.3  
P_5.2.4  
P_5.2.5  
P_5.2.6  
P_5.2.7  
V
VENA decreasing  
mV  
µA  
µA  
µs  
µs  
Input current – "high"  
Input current – "low"  
VENA 2V  
0.1  
20  
VENA 1V  
Enable signal, filtering time tENA,filt  
Enable signal, detection  
time  
tENA,det  
40  
5.2.2  
Typical performance characteristics  
ENA pin input levels VENA versus  
junction temperature Tj  
Data Sheet  
30  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Central functions  
5.3  
Power sequencing and soft-start  
The individual output rails are power sequenced to reduce the in-rush current during power-up. A passive  
power sequencing method is used where the individual rails are enabled when the preceding rail is within its  
total operating band, that is between the respective undervoltage and overvoltage fault thresholds.  
Sequence of the output rails:  
Buck1  
Buck2, Boost1  
(VM1), (VM2)  
Power sequencing is active any time a power rail is enabled or disabled, for example at the transition into  
ACTIVE.  
In case a rail is not active, that is the automatic use detection has detected that a rail is not used, this rail is  
skipped during the power sequencing and the subsequent rail is enabled.  
Two conditions must to be fulfilled before the power sequence can proceed to the next stage:  
The output voltage on the individual rails must be above the undervoltage threshold  
The rise time must be completed before the next stage is reached  
For example when Buck1 is ramped up the device waits until the output voltage is above the undervoltage  
threshold and the rise time tBuck1 has elapsed before it initiates the ramping of Buck2 and Boost1. Under  
normal operating conditions the output voltage on Buck1, Buck2 and Boost1 will cross their respective  
undervoltage thresholds before the rise time has elapsed.  
The undervoltage monitoring is enabled as soon as the corresponding rail is enabled. However, the  
undervoltage event is only indicated once the voltage rail has crossed the undervoltage threshold for the first  
time. The short-to-ground detection is active and used as a time out function for the power sequencing, this  
means that, if a voltage rail is not valid within the short-to-ground detection time, a fault event is indicated.  
Depending on the configured response to the short-to-ground event (see Table 25), the device may either  
move into a different state or continue operation and sequencing.  
The overvoltage monitoring is active as soon as the corresponding rails is enabled.  
Data Sheet  
31  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Central functions  
R1VS or ENA  
tSTARTUP  
VBUCK1,UV  
Actual value  
BUCK1  
tBUCK1  
VBUCK2,UV  
Actual value  
BUCK2  
tBUCK2  
VBOOST, UV  
Actual value  
BOOST1  
tBOOST1  
VM1EN  
VVM1,UV  
Actual value  
VM1  
VM2EN  
VVM2,UV  
Actual value  
VM2  
tStartup,Total  
tVM1*  
tRD  
ROT  
Figure 5  
Power sequencing  
The microcontroller reset signal is released with a configurable delay once the microcontroller supply voltage  
is within the operating band for a selectable time period (DEVCFG0.RESDEL). For generation of the  
microcontroller reset signal (ROT), please refer to Chapter 7.3.  
The external voltage regulator monitored by VM1 must have a rise time, tVM1, that is shorter than the short-to-  
ground detection time, tVM1,StG (see Table 14).  
Table 11  
Electrical characteristics power sequencing  
Tj = -40°C to 150°C, VR1VSx = 3.7 V to 35 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
300  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Internal device start up time tSTARTUP  
µs  
µs  
P_5.3.1  
P_5.3.2  
Output voltage rise time  
Buck1  
tBUCK1  
320  
VBUCK1 = 3.3 V  
Data Sheet  
32  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Central functions  
Table 11  
Electrical characteristics power sequencing (cont’d)  
Tj = -40°C to 150°C, VR1VSx = 3.7 V to 35 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
320  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Output voltage rise time  
Buck2  
tBUCK2  
µs  
VBUCK2 = 1.25 V  
P_5.3.4  
P_5.3.5  
Output voltage rise time  
Boost1  
tBOOST1  
640  
µs  
VBUCK1 = 3.3 V,  
V
BOOST1 = 5.0 V  
Data Sheet  
33  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Central functions  
5.4  
Switching frequency generation and clock synchronization  
The switching frequencies for the different integrated converters are generated by an integrated clock  
generation and a clock manager. Synchronization to an external clock signal as well as generation of the  
synchronization signal for external circuits is supported. Spread spectrum modulation for EMC/EMI  
improvements is available for all converters.  
SYNCI  
Spread-  
spectrum  
Modulator  
Internal  
Clock  
Generator  
Clock  
Synchroni-  
zation  
fMain  
fMain  
Main Clock  
Selector  
180°  
180°  
180°  
Buck1  
Selector  
Buck2  
Selector  
Boost1  
Selector  
SYNCO  
Selector  
fSYNCO  
fR1  
fR2  
fR3  
Figure 6  
Clock generation and clock manager  
Main frequency generation  
Figure 6 shows that the internal clock generation uses an internal main frequency to derive the switching  
frequency for the power converters and the external synchronization signal. The main frequency of the system  
can be adjusted using CLKCFG1 within a given range.  
Synchronization  
The power converters can be synchronized to an external clock signal (SYNCI) to improve EMC/EMI  
performance and reduce cross-talk to the loads.  
Table 12 shows the specification of the signal. The clock manager synchronizes the switching frequency to  
this signal according to the configuration in the SPI registers. The synchronization functionality is disabled by  
default.  
To enable synchronization of the switching frequency, an external reference signal is required at the SYNCI pin  
and the synchronization functionality must be enabled via SPI. The external clock source must not be  
removed while the device is running in synchronized mode.  
The device supports a dynamic change of the synchronization frequency during synchronization mode with  
minimal disturbance of the output voltage. It is recommended to keep the same phase and change the  
switching frequency with the next rising edge of the synchronization signal to minimize the impact on the  
output voltage. The output voltage settles within a maximum time of 50 µs.  
In addition, the device features a synchronization output signal SYNCO, which can be used to synchronize an  
external switched-mode post-regulator. The output frequency is equal to the switching frequency of Buck1.  
Data Sheet  
34  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Central functions  
The signal has a 50% duty cycle with a selectable phase shift of 0° or 180° with respect to the main clock. The  
synchronization output is disabled by default. The synchronization output can be enabled via SPI.  
In addition, the phase shift between the individual converters can be adjusted using CLKCFG0. The phase shift  
is defined between rising edge of the clock signal and the rising edge of the switch node for the buck  
converters and the falling edge of the boost converter respectively. Furthermore the converters Buck1 and  
Buck2, as well as SYNCO can be controlled independently with a phase shift of 0° or 180° with respect to the  
main clock.  
Spread-spectrum modulation  
The device incorporates spread-spectrum modulation in order to improve EMC/EMI performance. The spread-  
spectrum modulation is applied to the main clock source, hence affects all power converters. The spread-  
spectrum modulation is disabled by default and can be enabled via SPI register CLKCFG0.SSEN.  
Table 12  
Electrical characteristics frequency generation  
Tj = -40°C to 150°C, VR1VSx = 3.7 V to 35 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Internal clock source  
Frequency  
fMAIN  
1800  
2200  
2500  
kHz  
Switching  
P_5.4.1  
frequency  
selectable via SPI  
Frequency tolerance  
fMAIN,tol  
-10  
10  
%
P_5.4.3  
P_5.4.4  
Frequency adjustment step fMAIN,step  
100  
kHz  
size  
Synchronization input signal SYNCI1)  
Input level – "high"  
Input level – "low"  
Input level hysteresis  
Input capacitance  
Frequency range  
Duty cycle  
VSYNCI, high  
VSYNCI, low  
VSYNCI, hys  
CSYNCI  
0.7  
VIOVDD VSYNCI increasing  
P_5.4.5  
P_5.4.6  
P_5.4.7  
P_5.4.8  
P_5.4.9  
P_5.4.10  
P_5.4.11  
0.8  
V
VSYNCI decreasing  
0.06  
4
VIOVDD  
pF  
2)  
15  
2800  
60  
fSync  
1600  
40  
2200  
50  
30  
kHz  
%
Phase delay between  
ns  
SYNCIN and switching edges  
Output voltage settling time tSync  
50  
µs  
P_5.4.12  
Synchronization output signal SYNCO1)  
Output level – "high"  
Output level – "low"  
Frequency  
VSYNCO, high 0.7  
VIOVDD IIOVDD = -7 mA  
P_5.4.13  
P_5.4.14  
P_5.4.15  
P_5.4.16  
P_5.4.17  
P_5.4.18  
P_5.4.19  
VSYNCO, low  
0.7  
V
IIOVDD = -5.5 mA  
fMAIN  
50  
Duty cycle  
%
Data Sheet  
35  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Central functions  
Table 12  
Electrical characteristics frequency generation (cont’d)  
Tj = -40°C to 150°C, VR1VSx = 3.7 V to 35 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Spread spectrum modulation  
Maximum modulation  
variation from fMAIN,Range  
-7.5  
9
7.5  
%
5 steps  
P_5.4.22  
P_5.4.23  
Modulation frequency  
kHz  
1) The voltage levels on this pin are dependent on the IOVDD supply voltage provided (see Chapter 7.1)  
2) Not subject to production test, specified by design.  
5.4.1  
Typical performance characteristics  
Switching frequency fMAIN  
versus junction temperature Tj  
Data Sheet  
36  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Central functions  
5.5  
IOVDD - Overvoltage and undervoltage detection  
The IOVDD pin is the supply voltage input for the communication interface towards to the microcontroller. The  
pin can be supplied from one of the voltages generated by the TLF30682QVS01.  
The TLF30682QVS01 monitors the voltage on the IOVDD pin. An overvoltage event or an undervoltage event  
triggers a reset and pulls ROT to GND. As long as no reset event occurs, ROT is "high" (VIOVDD) due to an internal  
pull-up resistor and follows VIOVDD. Figure 7 shows an example of various events with delay and deglitching  
times.  
In addition to the undervoltage and overvoltage detection the TLF30682QVS01 also features a short-to-  
ground detection for the IOVDD voltage. If the IOVDD voltage is below the undervoltage threshold for a period  
longer the short-to-ground detection time, then the device generates a short-to-ground event. A short-to-  
ground event on IOVDD triggers a hard reset in the device and the SYSSF0.IOVDDUV.  
VIOVDD  
VIOVDD,OV  
VIOVDD,UV  
1 V  
t
tIOVDD,deg  
tRD  
tIOVDD,deg  
tRD  
tRD  
ROT  
t
Figure 7  
Table 13  
Overvoltage and undervoltage detection  
Electrical characteristics IOVDD - Overvoltage and undervoltage detection  
Tj = -40°C to 150°C, VR1VSx = 3.7 V to 35 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
IOVDD - Overvoltage  
threshold  
VIOVDD,OV  
5.5  
5.8  
V
P_5.6.1  
P_5.6.2  
P_5.6.3  
P_5.6.4  
IOVDD - Overvoltage  
hysteresis  
VIOVDD,OV,Hys 0.4  
2.25  
2.86  
2.25  
%
V
IOVDD - Undervoltage  
threshold  
VIOVDD,UV  
2.74  
IOVDD - Undervoltage  
hysteresis  
VIOVDD,UV,Hys 0.4  
%
Deglitching time  
tIOVDD,deg  
8
20  
µs  
P_5.6.5  
P_5.6.6  
Short-to-ground detection tIOVDD,StG  
3.6  
4.0  
4.4  
ms  
time  
Data Sheet  
37  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Monitoring functions  
6
Monitoring functions  
The device incorporates various features for using the device as a supply backbone. These features include:  
Integrated voltage monitors for the output voltages, see Chapter 6.1.  
Integrated window watchdog for supervising microcontroller timing, see Chapter 7.5.  
6.1  
Voltage monitoring  
6.1.1  
Monitoring of R1VSx – battery supply  
If the battery voltage drops below VR1VSx,UV, then the undervoltage monitoring feature for R1VSx sets the SPI  
status flag GSF.R1VSxUV.  
6.1.2  
Monitoring of output voltages  
The voltage monitoring function supervises the voltages on the feedback pins R1FB, R2FB and R3FB of the  
switched-mode converters with respect to the thresholds for undervoltage and overvoltage, see Table 14.  
Signals exceeding the respective thresholds for a time shorter than the deglitching time are not detected as a  
fault event. When a signal exceeds a threshold for a duration longer than the deglitching time, an undervoltage  
event or an overvoltage event is generated. If the voltage is below the undervoltage threshold for a duration  
longer than the short-to-ground detection time, then the device additionally generates a short-to-ground  
event. In addition to the long short-to-ground detection time the monitoring also features deep undervoltage  
detection for Buck1 and Buck2. If the voltage on the feedback pins R1FB or R2FB drops below the deep  
undervoltage threshold for a duration longer than the deglitching time, then a short-to-ground event is  
generated.  
Depending on the type of fault, the appropriate actions are executed as described in Chapter 8.3.  
The voltage monitoring is activated automatically when the respective power rail is enabled. For information  
on the behavior during sequencing, please refer to Chapter 5.3.  
6.1.3  
Monitoring of external voltage rails  
The device supports monitoring of two external voltage rails on the pins VM1FB, VM2FB. The external voltages  
are compared using window comparators against predefined thresholds. These thresholds define levels  
relative to the assumed nominal input voltage according to Table 14. Resistor dividers are to be used to map  
the output voltage of the respective voltage rail externally.  
Signals exceeding the thresholds for a time shorter than the deglitching time are not detected as a fault event.  
When a signal exceeds the thresholds for a duration longer than the deglitching time, an undervoltage or an  
overvoltage event is generated. If the voltage is below the undervoltage threshold for a duration longer than  
the short-to-ground detection time, then the device generates an additional short-to-ground event.  
Depending on the type of fault, the appropriate actions are executed as described in Chapter 8.3.  
Voltage monitoring is enabled when the respective power rail is enabled. For information on the behavior  
during sequencing, please refer to Chapter 5.3.  
If an overvoltage event or a short-to-ground event occurs, then the device shuts down the respective voltage  
rail to protect the load and the device.  
Data Sheet  
38  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Monitoring functions  
6.1.4  
Monitoring of internal supply voltages and bandgaps  
The integrated voltage monitoring function monitors internal supply voltages in order to ensure proper  
operation. In case proper operation can not be ensured, the device reacts accordingly, see Table 26.  
The device features two independent voltage references:  
for the voltage regulators  
for voltage monitoring  
The device supervises the difference between the voltage references internally.  
In case the difference exceeds a predefined warning threshold, the device generates an interrupt and sets one  
of the following status flags depending on the internal root cause: SYSSF1.BGWARN1 or SYSSF1.BGWARN2.  
Based on this information the system can be designed to react appropriately.  
In case the difference exceeds a predefined fault threshold the device will shut down and change into FAULT  
state, as proper operation of the device can not be ensured. SYSSF0.BGFLT1 or SYSSF0.BGFLT2 is set  
depending on the internal root cause.  
6.1.5  
Electrical characteristics  
Table 14  
Electrical characteristics voltage monitoring  
Tj = -40°C to 150°C, VR1VSx = 3.7 V to 35 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Input voltage battery supply – (R1VSx-AGx)  
Max.  
Undervoltage threshold  
VR1VSx,UV  
4.9  
5.025 5.15  
V
P_6.1.5.1  
P_6.1.5.3  
Output voltage Buck1 – (R1FB-AGx)  
Overvoltage threshold  
VBuck1,OV  
+6.0  
+8.0  
+10  
%
Referenced to  
Buck1 nominal  
output voltage  
VR1FB  
Overvoltage hysteresis  
Undervoltage threshold  
VBuck1,OV,Hys 0.4  
VBuck1,UV -6.0  
2.25  
-10  
%
%
P_6.1.5.5  
P_6.1.5.7  
-8.0  
Referenced to  
Buck1 nominal  
output voltage  
VR1FB  
Undervoltage hysteresis  
VBuck1,UV,Hys 0.4  
VBuck1,DUV -38  
2.25  
-42  
%
%
P_5.2.1.6  
P_6.1.5.9  
Deep undervoltage  
threshold  
-40  
Deep undervoltage  
hysteresis  
VBuck1,DUV,Hys 0.8  
3.15  
%
P_6.1.5.10  
Deglitching time  
tBuck1,deg  
8
-
20  
µs  
P_6.1.5.11  
P_6.1.5.12  
Short-to-ground detection tBuck1,StG  
2.7  
3.0  
3.3  
ms  
time  
P_6.1.5.13  
P_6.1.5.14  
Data Sheet  
39  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Monitoring functions  
Table 14  
Electrical characteristics voltage monitoring (cont’d)  
Tj = -40°C to 150°C, VR1VSx = 3.7 V to 35 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Output voltage Buck2- (R2FB-AGx)  
Overvoltage threshold  
VBuck2,OV  
+6.0  
+8.0  
+10  
%
Referenced to  
Buck2 nominal  
output voltage  
VR2FB  
P_6.1.5.16  
Overvoltage hysteresis  
Undervoltage threshold  
VBuck2,OV,Hys 0.4  
VBuck2,UV -6.0  
2.25  
-10  
%
%
P_6.1.5.18  
P_6.1.5.20  
-8.0  
Referenced to  
Buck2 nominal  
output voltage  
VR2FB  
Undervoltage hysteresis  
VBuck2,UV,Hys 0.4  
VBuck2,DUV -38  
2.25  
-42  
%
%
P_6.1.5.22  
P_6.1.5.23  
Deep undervoltage  
threshold  
-40  
Deep undervoltage  
hysteresis  
VBuck2,DUV,Hys 0.8  
3.15  
%
P_6.1.5.24  
Deglitching time  
tBuck2,deg  
8
-
20  
µs  
P_6.1.5.25  
P_6.1.5.26  
Short-to-ground detection tBuck2,StG  
2.7  
3.0  
3.3  
ms  
time  
Output voltage Boost1 – (R3FB-AGx)  
Overvoltage threshold  
VBoost1,OV  
+6.0  
+8.0  
+10  
%
Referenced to  
Boost1 nominal  
output voltage  
VR3FB  
P_6.1.5.28  
Overvoltage hysteresis  
Undervoltage threshold  
VBoost1,OV,Hys 0.4  
VBoost1,UV -6.0  
2.25  
-10  
%
%
P_6.1.5.30  
P_6.1.5.32  
-8.0  
Referenced to  
Boost1 nominal  
output voltage  
VR3FB  
Undervoltage hysteresis  
Deglitching time  
VBoost1,UV,Hys 0.4  
2.25  
20  
%
P_6.1.5.34  
P_6.1.5.35  
P_6.1.5.36  
tBoost1,deg  
8
-
µs  
ms  
Short-to-ground detection tBoost1,StG  
2.7  
3.0  
3.3  
time  
External voltage monitors VM1 (VM1FB-AGx)  
Overvoltage threshold  
VVM1,OV  
+6.0  
+8.0  
+10  
%
%
Referenced to VM1 P_6.1.5.38  
nominal reference  
voltage VVM1FB,nom  
Overvoltage hysteresis  
VVM1,OV,Hys  
0.4  
2.25  
P_6.1.5.40  
Data Sheet  
40  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Monitoring functions  
Table 14  
Electrical characteristics voltage monitoring (cont’d)  
Tj = -40°C to 150°C, VR1VSx = 3.7 V to 35 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Undervoltage threshold  
VVM1,UV  
-6.0  
-8.0  
-10  
%
Referenced to VM1 P_6.1.5.42  
nominal reference  
voltage VVM1FB,nom  
Undervoltage hysteresis  
Deglitching time  
VVM1,UV,Hys  
tVM1,deg  
0.4  
8
2.25  
20  
%
P_6.1.5.44  
P_6.1.5.45  
P_6.1.5.46  
-
µs  
ms  
Short-to-ground detection tVM1,StG  
2.7  
3.0  
3.3  
time  
External voltage monitor VM2 (VM2FB-AGx)  
Overvoltage threshold  
VVM2,OV  
+6.0  
+8.0  
+10  
%
Referenced to VM2 P_6.1.5.48  
nominal reference  
voltage VVM2FB,nom  
Overvoltage hysteresis  
Undervoltage threshold  
VVM2,OV,Hys  
VVM2,UV  
0.4  
2.25  
-10  
%
%
P_6.1.5.50  
-6.0  
-8.0  
Referenced to VM2 P_6.1.5.52  
nominal reference  
voltage VVM2FB,nom  
Undervoltage hysteresis  
Deglitching time  
VVM2,UV,Hys  
tVM2,deg  
0.4  
8
2.25  
20  
%
P_6.1.5.54  
P_6.1.5.55  
P_6.1.5.56  
-
µs  
ms  
Short-to-ground detection tVM2,StG  
2.7  
3.0  
3.3  
time  
6.2  
Thermal protection  
The device incorporates multiple independent temperature sense elements to monitor its temperature,  
specifically of the high-voltage regulator Buck1 and the post-regulator Buck2. Please refer to the respective  
sections for more information on the individual blocks.  
A third temperature sensor is located in the monitoring block of the device. Table 15 shows the temperature  
thresholds for the sensor in the monitoring block.  
While the temperature is monitored in the individual blocks, the thermal shutdown (TSD) events of these  
measurements are globally collected. For each individual warning and fault event an appropriate bit in the SPI  
registers OTSF0 and OTSF1 is set.  
An overtemperature warning event for any of the three temperature sensors generates an interrupt for the  
microcontroller.  
A thermal shutdown event (TSD) for any of the three sensors triggers a move to the FAULT state. If a thermal  
shutdown event occurs, then the fault time is extended to approximately one second (see Table 27) in order  
to allow the temperature to drop prior to the restart of the device.  
Data Sheet  
41  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Monitoring functions  
Table 15  
Electrical characteristics temperature sensor monitoring block  
VR1VSx = 3.7 V to 35 V; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
145  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Overtemperature warning  
threshold  
Tj,MONOT,WRN 130  
Tj,MONOT,WRN 120  
Tj,MONOT,FLT 175  
Tj,MONOT,FLT 165  
160  
°C  
°C  
°C  
°C  
1) Tj increasing  
1) Tj decreasing  
1) Tj increasing  
1) Tj decreasing  
P_6.2.0.1  
P_6.2.0.2  
P_6.2.0.3  
P_6.2.0.4  
Overtemperature warning  
threshold  
135  
190  
180  
150  
205  
195  
Overtemperature fault  
threshold  
Overtemperature fault  
threshold  
1) Not subject to production test, specified by design.  
Data Sheet  
42  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Microcontroller interface and supervisory functions  
7
Microcontroller interface and supervisory functions  
This section describes the connections between the device and the microcontroller.  
Figure 8 shows that the microcontroller and the device use several signals for communication and for mutual  
monitoring of correct operation. An SPI configures the device and monitors status information. A dedicated  
interrupt signal of the device notifies the microcontroller about any interaction required. To ensure safe  
operation of the microcontroller a watchdog trigger line (WDI) is available. The device can use a reset-output  
signal (ROT) to reset the microcontroller if required.  
μC  
TLF30682  
IOVDD  
INT  
INTERRUPT INPUT  
Interrupt Generator  
SCS  
SCL  
SDI  
SPI  
SPI  
SDO  
μC  
TRIGGER OUTPUT  
WDI  
Window  
Wacthdog  
Series  
protection  
resistors  
ROT  
Reset  
Control  
Reset Generator  
Figure 8  
Interface between the TLF30682 and microcontroller  
7.1  
Microcontroller interface supply – IOVDD pin  
The device can handle microcontrollers with different IO supply voltages. This is accommodated by a  
dedicated supply pin (IOVDD) at which the IO supply voltage is externally supplied to the device. This voltage  
then drives the logic output pins to the microcontroller. It is also used to determine the input thresholds for  
the input cells. The affected pins are:  
SCS  
SCL  
SDI  
SDO  
INT  
ROT  
WDI  
SYNCI  
SYNCO  
Data Sheet  
43  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Microcontroller interface and supervisory functions  
7.1.1  
Electrical characteristics  
Table 16  
Electrical characteristics microcontroller interface supply  
Tj = -40°C to 150°C, VR1VSx = 3.7 V to 35 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Microcontroller interface  
Supply voltage  
VIOVDD  
IIOVDD  
3.0  
5.5  
V
P_7.1.1.1  
P_7.1.1.2  
Supply current  
2.5  
mA  
VIOVDD= 3.3 V  
SDO, SDI and SCL  
switching at  
10 MHz  
SYNCI and SYNCO  
switching at  
2.5 MHz  
SCS, ROT, INT and  
WDI are static  
signals  
Data Sheet  
44  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Microcontroller interface and supervisory functions  
7.2  
Serial peripheral interface (SPI)  
SPI introduction  
7.2.1  
The serial peripheral interface (SPI) is a synchronous serial data link that operates in full duplex mode. The SDI  
pin receives data and the SDO pin transmits data.  
The device communicates in slave mode where the master, for example the microcontroller, provides a clock  
on the SCL pin and initiates the data frame. The device is addressed via a dedicated chip select line (SCS pin).  
Functional description SPI  
The data on pin SDI is captured on the falling edge of the SPI clock signal (pin SCL) and shifted on the rising  
edge of the SPI clock signal. The data on pin SDO is set on the falling edge of SPI clock signal (pin SCL) and  
shifted on the rising edge of the SPI clock signal. The SPI master should capture the data on the falling edge of  
the SPI clock signal.  
An SPI command consists of the following (Figure 9):  
command bit CMD  
6 address bits A0-A5  
8 data bits D0-D7  
parity bit P  
The SPI response for read operations consists of the following:  
command bit CMD  
6 status bits S0-S5  
8 data bits D0-D7  
parity bit P  
For a write operation, the data read on SDI is looped back via SDO.  
t trail  
t lead  
t spi_clk  
t interframe  
SCL  
t max frame duration  
SCS  
P
P
P
CMD  
A5  
A5  
A4  
A4  
A3  
A2  
A2  
A1  
A1  
A0  
A0  
D7  
D7  
D7  
D6  
D6  
D6  
D5  
D5  
D5  
D4  
D4  
D4  
D3  
D3  
D3  
D2  
D2  
D2  
D1  
D1  
D1  
D0  
D0  
D0  
P
P
P
SDI  
1'b1  
A3  
SDO (W)  
1'b1  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
SDO (R)  
Figure 9  
SPI frame format  
The command bit in the SPI command is set to 1’b0 for a read and 1’b1 for a write operation. In the reply, the  
command bit is always set to 1’b1.  
The parity bit P is calculated from the 15 data bits of the SPI message consisting of the CMD bit, the 6 address  
and 8 data bits. The parity bit is set to ‘1’, if the number of ‘1’s in the data bits is odd, that is it is a XOR function  
of the 15 data bits. The receiver of the SPI message should verify the parity bit prior processing the payload of  
the message.  
Data Sheet  
45  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Microcontroller interface and supervisory functions  
The SPI performs several checks on the communication to ensure proper behavior:  
If a parity fault is detected, then the device ignores the data, sets the SPI status bit SPISF.PAR and  
generates an interrupt.  
If a write operation to an invalid address occurs, then the device ignores the data, sets the SPI status  
SPISF.ADDR and generates an interrupt.  
If a read operation from an invalid address occurs, then the device reads all data bits as zero and sets the  
parity bit to a wrong value to indicate an incorrect message to the SPI master. In addition the device sets  
the SPI status bit SPISF.ADDR and generates an interrupt.  
If a write operation with an incorrect number of SPI clock cycles occurs while SCS is "low", then the device  
ignores the data, sets the SPI status SPISF.LEN and generates an interrupt.  
If a read operation with an incorrect number of SPI clock cycles occurs, then the device sets the SPI status  
SPISF.LEN and generates an interrupt to indicate an invalid data message to the SPI master. The SDO pin  
provides the data during this operation. At the end of the message it indicates its correctness.  
If the frame duration exceeds the maximum frame time tSPI_fl, then the device terminates communication  
by disabling the output driver of the SDO pin. In addition the device sets the SPI status bit SPISF.DUR and  
generates an interrupt.  
Interrupts on SPI errors are initiated only after SCS is driven "high" or after a frame time-out occurs.  
Data Sheet  
46  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Microcontroller interface and supervisory functions  
7.2.2  
SPI write access to protected registers  
Certain registers are protected against accidental write operations.  
These so-called protected registers are implemented in pairs where a protected register (for example  
PWDCFG0) is used to store a configuration request, while an associated read-only register (for example  
RWDCFG0) is used to store the currently active configuration.  
By default, write access to protected registers is disabled. The status of the protection can be checked using  
PROTSTAT.LOCK.  
Write access must be enabled using the UNLOCK sequence prior to updating the registers. After completing  
the register update, the configuration must be activated using the LOCK sequence. This disables the write  
access to the protected register and copies the data to the read-only registers.  
After the LOCK sequence an internal configuration time of maximum of 60 µs has to be considered to ensure  
that the new configuration is applied in the device.  
Read access to protected configuration registers is always possible. Read operations invert the data.  
The device does not support updating a single protected register. The microcontroller must ensure that all  
protected registers are configured properly by writing a new value into particular registers and by verifying the  
content of unchanged registers.  
UNLOCK sequence  
An UNLOCK sequence consists of four consecutive key bytes (1: ABH; 2: EFH; 3: 56H; 4: 12H) written into the  
PROTCFG register. The respective SPI write operations must be atomic, so that they are not interrupted by an  
SPI write operation to a different register. Read operations to any register are permitted. The progress of the  
UNLOCK sequence can be monitored in the PROTCFG register where the respective key bit is set for each  
correctly written key byte. If an incorrect UNLOCK sequence occurs due to a wrong key or an SPI write  
operation to a different address, then the device resets the UNLOCK sequence and clears all key bits. The  
device sets the SPISF.LOCK bit and generates an interrupt. The microcontroller must restart the UNLOCK  
sequence.  
LOCK sequence  
A LOCK sequence consists of four consecutive key bytes (1: DFH; 2: 34H; 3: BEH; 4: CAH) written into the  
PROTCFG register. The respective SPI write operations must be atomic, so that they are not interrupted by an  
SPI write operation to a different register. Read operations to any register are permitted. The progress of the  
LOCK sequence can be monitored in the PROTCFG register where the respective key bit is set for each  
correctly written key byte. In case of an incorrect LOCK sequence, that is a wrong key or an SPI write operation  
to a different address, then the device resets the LOCK sequence and clears all key bits. The device sets the  
SPISF.LOCK bit and generates an interrupt. The microcontroller must restart the LOCK sequence.  
Data Sheet  
47  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Microcontroller interface and supervisory functions  
7.2.3  
SPI write initiated state transition request and regulator configuration  
State machine transitions and configuration of output rails can be performed with direct write access to  
dedicated registers. A defined protocol protects the registers from unintended changes.  
In order to request a state transition and/or a change of the configuration of an output rail the request data  
must be written to two separate, inverted registers (DEVCTRL and DEVCTRLN). The write operation must be  
atomic with no other SPI write operation to a different address interrupting the initial write. The data is  
applied on the rising edge of the CS at the end of the second command.  
If an invalid protocol occurs, the device rejects the request, sets the SPI status flag SPISF.DEVCTRL and  
generates an interrupt.  
The following items are invalid requests:  
An SPI write operation to another address interrupting the write operation to DEVCTRL and DEVCTRLN.  
The data in DEVCTRL and DEVCTRLN is not consistent.  
If an invalid state transition request occurs, according to the state machine in Chapter 8, the device ignores  
the transition request without generating an interrupt. The device executes the change in configuration of  
output rails.  
7.2.4  
Configuration of Buck2 output voltage via SPI  
The output voltage of Buck2 can be configured with direct write access to dedicated registers. A specific  
protocol is used to avoid unintentional changes to the registers.  
In order to request a change of the Buck2 output voltage the configuration data must be written to two  
separate, inverted registers (B2VCTRL and B2VCTRLN). The write operation must be atomic with no other SPI  
write operation to a different address interrupting the initial write. The data is applied on the rising edge of the  
CS at the end of the second command.  
If an invalid protocol occurs, the device rejects the request, sets the SPI status flag SPISF.B2VCTRL and  
generates an interrupt.  
The following items are invalid requests:  
An SPI write operation to another address interrupting the write operation to B2VCTRL and B2VCTRLN.  
The data in B2VCTRL.B2VOUTF and B2VCTRLN.B2VOUTF is not consistent.  
If a Buck2 output voltage configuration request is invalid, the device ignores the request without generating  
an interrupt.  
Data Sheet  
48  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Microcontroller interface and supervisory functions  
7.2.5  
Electrical characteristics  
Table 17  
Electrical characteristics SPI  
Tj = -40°C to 150°C, VR1VSx = 3.7 V to 35 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
SPI chip select – SCS  
Valid input level – "high"  
Valid input level – "low"  
Input hysteresis  
VSCS, high  
VSCS, low  
VSCS, hys  
ISCS  
0.7  
VIOVDD VSCS increasing  
P_7.2.5.1  
P_7.2.5.2  
P_7.2.5.3  
P_7.2.5.4  
P_7.2.5.5  
0.8  
V
VSCS decreasing  
0.06  
-55  
4
VIOVDD  
µA  
Pull-up current  
-180  
VIOVDD 5.0 V  
1)  
Input capacitance  
CSCS  
15  
pF  
SPI clock, pin SCL  
Valid input level – "high"  
Valid input level – "low"  
Input hysteresis  
VSCL, high  
VSCL, low  
VSCL, hys  
ISCL  
0.7  
VIOVDD VSCL increasing  
P_7.2.5.6  
P_7.2.5.7  
P_7.2.5.8  
P_7.2.5.9  
P_7.2.5.10  
0.8  
V
VSCL decreasing  
0.06  
-55  
4
VIOVDD  
µA  
Pull-up current  
-180  
VIOVDD 5.0 V  
1)  
Input capacitance  
CSCL  
15  
pF  
SPI data input, pin SDI  
Valid input level – "high"  
Valid input level – "low"  
Input hysteresis  
VSDI, high  
VSDI, low  
VSDI, hys  
ISDI  
0.7  
VIOVDD VSDI increasing  
P_7.2.5.11  
P_7.2.5.12  
P_7.2.5.13  
P_7.2.5.14  
P_7.2.5.15  
0.8  
V
VSDI decreasing  
0.06  
135  
4
VIOVDD  
µA  
Pull-down current  
Input capacitance  
330  
15  
VSDI = VIOVDD  
1)  
CSDI  
pF  
SPI data output, pin SDO  
Output level – "high"  
Output level – "low"  
Output rise time  
VSDO, high  
VSDO, low  
tSDO,rise  
tSDO,fall  
0.7  
4
VIOVDD ISDO = -7 mA  
P_7.2.5.16  
P_7.2.5.17  
P_7.2.5.18  
P_7.2.5.19  
P_7.2.5.20  
P_7.2.5.21  
0.7  
25  
25  
15  
10  
V
ISDO = -5.5 mA  
ns  
ns  
pF  
µA  
CSDO,Load = 50 pF  
Output fall time  
CSDO,Load = 50 pF  
1)  
Output tristate capacitance CSDO,tri  
Output tristate leakage ISDO,tri  
-10  
1) Not subject to production test, specified by design.  
Data Sheet  
49  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Microcontroller interface and supervisory functions  
O
P
J
SCS  
L
N
C
E
D
M
A
B
K
SCL  
SDI  
F
G
H
Q
I
SDO  
A : t SPI_wsclkl  
B : t SPI_wsclkh  
C : t SPI_clk  
D : t SPI_clkr  
E : t SPI_clkf  
F : t SPI_su  
G : t SPI_hi  
H : t SPI_a  
I : t SPI_v  
J : t SPI_fl  
K : t SPI_dis  
L : t SPI_lead  
M : t SPI_lag  
N : t SPI_td  
O : t SPI_csf  
P : t SPI_csr  
Q : t SPI_dr  
Figure 10 SPI timing  
Table 18  
Electrical characteristics SPI timing  
Tj = -40°C to 150°C, VR1VSx = 3.7 V to 35 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
CLK_SPI operating  
frequency  
fSPI_clk  
10  
MHz –  
P_7.2.5.22  
CLK signal duty cycle DSCL  
45  
45  
45  
50  
55  
%
P_7.2.5.23  
P_7.2.5.24  
P_7.2.5.25  
P_7.2.5.26  
P_7.2.5.27  
P_7.2.5.28  
P_7.2.5.29  
P_7.2.5.30  
P_7.2.5.31  
CLK_SPI "high" time tSPI_wsclkh  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLK_SPI "low" time  
CLK_SPI fall time  
CLK_SPI fall time  
CLK_SPI rise time  
CLK_SPI rise time  
CLK_SPI lead time  
CLK_SPI lag time  
tSPI_wsclkl  
tSPI_clkf  
tSPI_clkf  
tSPI_clkr  
tSPI_clkr  
tSPI_lead  
tSPI_lag  
100  
fSPI_clk < 1 MHz  
fSPI_clk 1 MHz  
fSPI_clk < 1 MHz  
fSPI_clk 1 MHz  
0.1/fSPI_clk  
100  
0.1/fSPI_clk  
100  
50  
SPI chip select (SCS) tSPI_csr  
rise time  
200  
tSPI_lead = 100 ns P_7.2.5.32  
tSPI_lead > 100 ns P_7.2.5.33  
tSPI_lead = 100 ns P_7.2.5.34  
tSPI_lead > 100 ns P_7.2.5.35  
SPI chip select (SCS) tSPI_csr  
rise time  
0.2 × tSPI_lead ns  
200 ns  
0.2 × tSPI_lead ns  
ns  
SPI chip select (SCS) tSPI_csf  
rise time  
SPI chip select (SCS) tSPI_csf  
fall time  
SPI data input (SDI)  
setup  
tSPI_su  
10  
P_7.2.5.36  
Data Sheet  
50  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Microcontroller interface and supervisory functions  
Table 18  
Electrical characteristics SPI timing (cont’d)  
Tj = -40°C to 150°C, VR1VSx = 3.7 V to 35 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
SPI data input (SDI)  
hold time  
tSPI_hi  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
P_7.2.5.37  
SPI data output (SDO) tSPI_v  
valid after CLK_SPI  
36 +  
(0.1/fSPI_clk)  
CSDO,load = 50 pF P_7.2.5.38  
fSPI_clk > =1 MHz  
SPI data output (SDO) tSPI_v  
valid after CLK_SPI  
136  
35  
CSDO,load = 50 pF P_7.2.5.39  
f
SPI_clk < 1 MHz  
SPI write propagation tSPI_wpd  
delay SDI to SDO  
P_7.2.5.40  
SPI data output (SDO) tSPI_a  
access  
50  
CSDO,load = 50 pF P_7.2.5.41  
P_7.2.5.42  
CSDO,load = 50 pF P_7.2.5.43  
SPI data output (SDO) tSPI_lag  
lag  
50  
SPI data output (SDO) tSPI_dis  
disable time  
100  
Sequential transfer  
delay  
tSPI_td  
350  
P_7.2.5.44  
P_7.2.5.45  
Frame duration (SCS tSPI_fl  
1.85  
"low")  
Data Sheet  
51  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Microcontroller interface and supervisory functions  
7.3  
Reset signal ROT  
Reset output pin ROT  
The reset output pin ROT is an open drain structure. As soon as a reset condition occurs, the ROT pin is pulled  
below VROT,low. Once the internal reset signal is released, an internal pull-up current pulls the ROT pin towards  
the microcontroller supply voltage VIOVDD. An external pull-up resistor may be connected between the ROT and  
IOVDD pins to speed up the transition. As soon as all events leading to the reset are cleared and the reset delay  
time expires, the device releases the internal reset signal.  
Reset events  
Several different internal events can trigger an activation of the reset signal. Please refer to Table 26 for  
detailed information on the respective events. Additionally the reset signal is activated when voltage supply  
rails are out of their total operating band. Information on the respective voltage rails can be found in Table 25.  
Sometimes the activation of the reset is coupled with a deactivation of the supply signals to generate a hard  
reset. During a hard reset the ROT pin is forced "low" and the supply rails of the microcontroller are turned off.  
During a soft reset the ROT pin is forced "low", while the supply voltages remain in operation.  
7.3.1  
Electrical characteristics – ROT pin  
Table 19  
Electrical characteristics ROT pin  
Tj = -40°C to 150°C, VR1VSx = 3.7 V to 35 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Reset output pin ROT  
Pull-up current  
IROT,high  
VROT,low  
VROT,low  
tROT,fall  
-180  
-120  
µA  
V
VROT 2.0V  
P_7.3.1.1  
P_7.3.1.2  
P_7.3.1.3  
P_7.3.1.5  
Output level – "low"  
Output level – "low"  
0.4  
0.4  
25  
VIOVDD = 5.0 V  
ROT = 3.5 mA  
VIOVDD = 3.3 V  
ROT = 3.5 mA  
I
V
I
Output fall time  
Reset timing  
ns  
CROT,load = 50 pF  
Reset cycle time  
tcycle  
tRD  
10  
µs  
P_7.3.1.6  
P_7.3.1.7  
Reset delay time –  
adjustment range  
20  
2000  
tcycle  
1)  
Reset delay time – default  
value  
100  
tcycle  
P_7.3.1.8  
1) The default configuration for the reset contributor might not generate a reset at the first start up of the device.  
Data Sheet  
52  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Microcontroller interface and supervisory functions  
7.4  
Interrupt signal INT  
An interrupt is generated to inform the connected microcontroller that a non-severe event has occurred. This  
allows the microcontroller to perform proper action based on the source of the interrupt. A single low-active  
interrupt line is used.  
If one or more new flags in the interrupt flag registers (Chapter 9.1.5) are set, then the device indicates an  
interrupt to the microcontroller.  
Interrupt pin INT  
The interrupt pin INT is a push-pull output using the microcontroller supply voltage VIOVDD  
.
The device indicates an interrupt by pulling the INT pin "low". If all register flags are cleared via SPI, then the  
device drives the interrupt line "high".  
The interrupt signal is subject to a minimum "low" time, tINT, which means that the interrupt pin will remain  
"low" for this time even if the interrupt is serviced faster. The implemented interrupt minimum "high" timing  
keeps the interrupt "high" for a minimum time of tINT,high. If a new interrupt is triggered during this time period,  
the interrupt signal remains "high" and indicates the interrupt after the minimum "high" time, tINT,high, elapses.  
The interrupt time-out, tINTTO, is implemented after which the device drives the interrupt signal "high",  
regardless of whether the interrupt is serviced or not. In this case the device generates a missed interrupt  
event and sets GSF.INTMISS. This does not generate another interrupt. The microcontroller must read this  
flag autonomously.  
7.4.1  
Electrical characteristics – INT pin  
Table 20  
Electrical characteristics INT pin  
Tj = -40°C to 150°C, VR1VSx = 3.7 V to 35 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Interrupt signal INT  
Output level – "high"  
Output level – "low"  
Output rise time  
VINT,high  
VINT,low  
tINT,rise  
tINT,fall  
tINT,low  
0.7  
VIOVDD IINT = -7 mA  
P_7.4.1.1  
P_7.4.1.2  
P_7.4.1.3  
P_7.4.1.4  
P_7.4.1.5  
0.7  
25  
25  
110  
V
IINT = -5.5 mA  
CINT,load = 50 pF  
CINT,load = 50 pF  
ns  
ns  
µs  
Output fall time  
Minimum interrupt "low"  
time  
90  
100  
Interrupt "low" time-out  
tINTTO  
270  
270  
300  
300  
330  
µs  
ROT signal for the P_7.4.1.6  
microcontroller  
must be released:  
ROT = “high”  
Minimum interrupt "high"  
time  
tINT,high  
330  
µs  
P_7.4.1.7  
Data Sheet  
53  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Microcontroller interface and supervisory functions  
7.5  
Window watchdog  
Principle of operation  
The integrated window watchdog (WWD) can monitor the microcontroller. The monitored microcontroller  
must provide periodical triggering during the "open window". A trigger signal can consist of a falling edge on  
the WDI pin or an SPI write operation to the register WWDSCMD, depending on the configuration. Failure to  
provide correct trigger signals will lead to an increase of the window watchdog failure counter, which is used  
to monitor the fault events. If the window watchdog failure counter reaches a configurable threshold, it then  
triggers an appropriate response.  
Normal operation  
Within the "open window" a trigger signal is expected. If the device receives a trigger signal during the "open  
window", the window watchdog then terminates the "open window" cycle and starts the "closed window"  
cycle with a duration of tWD,CW, followed by another "open window" cycle. If the window watchdog error  
counter is greater than zero, any valid window watchdog trigger signal decrements the window watchdog  
error counter by 1. This does not generate an interrupt.  
In normal operation no trigger signal is allowed during the "closed window". If the device receives a trigger  
signal within the "closed window", the window watchdog recognizes an invalid WWD trigger signal. The  
window watchdog terminates the "closed window" cycle with an invalid trigger signal and starts another  
"open window" cycle. Any invalid WWD trigger signal increments the window watchdog error counter by 2.  
This then generates an interrupt.  
If the device does not receive any valid trigger signal during the "open window" cycle, then the window  
watchdog recognizes invalid WWD triggering, increments the window watchdog error counter by 2 and starts  
another "open window". This also generates an interrupt.  
Configuration  
The following parameters of the window watchdog can be configured via SPI in ACTIVE:  
The trigger signal can be configured as either pin triggering (pin WDI) or triggering via SPI command  
(register WWDSCMD). The default configuration is the triggering via SPI.  
The duration of the "open window" and "closed window" cycles can be modified according to the  
application needs (combination of cycle time WDCYC and number of cycles for open window OW and  
closed window CW).  
The threshold for the window watchdog error counter overflow can be configured.  
Initialization  
As soon as the device releases the microcontroller reset output (ROT) it enables the window watchdog in  
ACTIVE state. After activation the watchdog opens a so-called "long open window" (LOW) cycle of duration of  
tWD,LOW. During the "long open window" cycle the window watchdog expects a valid trigger signal (or a change  
of configuration).  
The default configuration expects watchdog triggering via SPI. Therefore, glitches at the microcontroller  
output connected to the WDI have no effect during startup and initialization.  
The microcontroller can change the configuration of the window watchdog during the "long open window"  
cycle. After a reconfiguration the window watchdog restarts with the new configuration. The window  
watchdog starts a regular "open window" cycle accordingly, expecting a valid trigger signal by the selected  
triggering input.  
Data Sheet  
54  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Microcontroller interface and supervisory functions  
Watchdog trigger signals  
Two different trigger sources can be selected as watchdog trigger signal. This can be either an SPI write  
operation to WWDSCMD or a valid trigger event on the watchdog input pin WDI.  
The WDI pin has an integrated pull-down current source. A falling edge (transition from VWDI,high to VWDI,low) on  
the pin is considered a trigger signal for the watchdog. The rising edge can occur at any time and is not  
considered a trigger signal. For calculation of the external provided WDI the watchdog sampling time (tWDI_filter  
)
has to be considered. For SPI watchdog trigger the positive edge of signal chip select (SCS) must be  
considered.  
Watchdog error counter and event generation  
The window watchdog includes a watchdog error counter for invalid watchdog trigger events. The device  
compares the watchdog error counter to the window watchdog error threshold continuously. If the counter  
exceeds the threshold, it generates a window watchdog error event. The window watchdog error threshold is  
configurable via SPI.  
7.5.1  
Electrical characteristics  
Table 21  
Electrical characteristics window watchdog function  
Tj = -40°C to 150°C, VR1VSx = 3.7 V to 35 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
10  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Watchdog cycle time,  
configuration option 0  
tWDCYC  
tWDCYC  
tLOW  
9.5  
10.5  
µs  
µs  
ms  
P_7.5.1.1  
P_7.5.1.2  
P_7.5.1.3  
Watchdog cycle time,  
configuration option 1  
95  
100  
600  
105  
630  
Long open window time  
Watchdog input, pin WDI  
Watchdog sampling time  
Valid input level – "high"  
Valid input level – "low"  
Input hysteresis  
570  
tWDI_filter  
VWDI, high  
VWDI, low  
VWDI, hyst  
IWDI  
380  
0.7  
400  
420  
µs  
P_7.5.1.4  
P_7.5.1.5  
P_7.5.1.6  
P_7.5.1.7  
P_7.5.1.8  
P_7.5.1.9  
VIOVDD VWDI increasing  
0.8  
V
VWDI decreasing  
0.06  
135  
4
VIOVDD  
µA  
Pull-down current  
330  
15  
1)  
Input capacitance  
CWDI  
pF  
1) Not subject to production test, specified by design.  
7.6  
Microcontroller programming support  
The device includes a feature to support programming of microcontroller’s firmware during production or in  
the field by preventing periodic reset triggering during the initialization period.  
Programming mode can be enabled by pulling the MPS pin "high". In programming mode the reset generation  
to the microcontroller is modified, so that fault events of microcontroller monitoring features do not generate  
a microcontroller reset. All other monitoring features that generate a microcontroller reset are still active (see  
Table 25). The interrupt generation and the state transitions are still active. However, the initialization timer  
is disabled, so that the device can remain in ACTIVE state.  
Data Sheet  
55  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Microcontroller interface and supervisory functions  
Operation of the internal state machine and the programming mode are independent, which allows the  
transition to any state while the microcontroller programming mode is active. However, the microcontroller  
monitoring is still active and will move the device into ACTIVE state. Therefore, leave the device in ACTIVE state  
during a programming operation.  
Voltage monitoring is active and generates the respective fault events. This may generate interrupts or move  
the device into FAULT state depending on the nature of the event.  
Table 22  
Electrical characteristics microcontroller programming mode  
Tj = -40°C to 150°C, VR1VSx = 3.7 V to 35 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
MPS pin  
Valid input level – "high"  
Valid input level – "low"  
Input hysteresis  
VMPS, high  
VMPS, low  
VMPS, hys  
IMPS  
2.4  
V
VMPS increasing  
P_7.8.0.1  
P_7.8.0.2  
P_7.8.0.3  
P_7.8.0.4  
P_7.8.0.5  
0.8  
V
VMPS decreasing  
1)  
350  
140  
4
mV  
µA  
pF  
Pull-down current  
330  
15  
VMPS=5.0V  
1)  
Input capacitance  
CMPS  
1) Not subject to production test, specified by design.  
Data Sheet  
56  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
State machine  
8
State machine  
8.1  
Introduction  
The integrated state machine controls operation in different situations. Figure 11 shows the complete state-  
diagram. Table 23 and Table 24 describe each state and the transitions.  
LOCKED  
VM1, VM2  
Watchdog  
OFF  
Buck1  
OFF  
Boost1  
Buck2  
OFF  
ROT  
OFF  
REGISTERS  
OFF  
LOW  
EVENTS  
Enable ev  
o t  
Fault has occured three times  
and  
DEVCFG0.ENA_CONFIG = 0  
SPI: Got  
en  
DEV  
CF  
t
G0.ENA_C  
o
and  
L
OCKED  
ONFIG = 0  
FAULT  
ACTIVE  
DISABLED  
SPI: Go to DISABLED  
Enable event  
VM1, VM2  
Watchdog  
VM1, VM2  
Watchdog  
VM1, VM2  
Watchdog  
Timer expired  
OFF  
Buck1  
OFF  
Boost1  
ON*  
Buck1  
ON*  
Boost1  
OFF  
Buck1  
OFF  
Boost1  
Buck2  
Buck2  
Buck2  
OFF  
ROT  
OFF  
REGISTERS  
OFF  
ON  
ROT  
ON*  
REGISTERS  
ON*  
OFF  
ROT  
OFF  
REGISTERS  
OFF  
LOW  
EVENTS  
ACTIVE**  
ALL  
LOW  
NONE  
Generate interrupt  
Move to FAULT State  
POR event  
Generate ROT  
Boost1:  
VM2:  
UV  
Buck1:  
Buck2:  
Boost1:  
VM1:  
IOVDD:  
Monitoring:  
Bandgap faults  
OV, StG, TSD  
Internal Supply  
UV, OV  
Buck1:  
Buck2:  
VM1:  
UV  
UV  
UV  
UV  
OV, UV, StG  
OV, StG, TSD  
OV, StG  
OV, StG  
OV, StG  
TSD  
Watchdog error counter increased  
Over-temperature warnings  
Bandgap warnings  
IOVDD:  
Watchdog error counter overflow  
INIT timer expired  
R1VSx UV warning  
REACTION ON DETECTED FAULTS  
*: Switched ON by entering the ACTIVE then selectable via SPI  
**: ROT will be ACTIVE (pulled high) after the reset delay time has expired  
Figure 11 State machine  
Data Sheet  
57  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
State machine  
8.2  
Operation states  
ACTIVE  
The ACTIVE state is the first state that the device enters after power-on. The device powers up all voltage rails  
and expects configuration from the microcontroller within the initialization time window according to the INIT  
timer.  
On deactivation of the microcontroller reset the INIT timer starts. If the following conditions are fulfilled, then  
the INIT timer stops:  
The device receives valid SPI communication from the microcontroller.  
The window watchdog is serviced once according to its configuration.  
If the INIT timer is not stopped and expires, then an initialization error is detected. The first initialization error  
triggers a soft reset, which activates the reset signal ROT, but no state transition. The second initialization  
error triggers a hard reset, which activates the reset signal ROT and shuts down the supply rails, thus the  
device enters FAULT state and the system restarts.  
The microcontroller can request a transition from ACTIVE state to either DISABLED or LOCKED state with an  
SPI command. On an SPI request to change the state to DISABLED or LOCKED the TLF30682QVS01 enters the  
FAULT state for 20 ms before it enters the requested state. This is done to ensure a proper discharge of the  
output voltages of all switching regulators before the device can be re-enabled.  
DISABLED  
During DISABLED state the device is powered off and it only monitors the enable signal (ENA) for a valid enable  
condition. Once a valid enable event is detected, the device enters ACTIVE state and expects configuration  
from the microcontroller. In DISABLED state the register content of all registers is reset. The device needs to  
be configured again during the ACTIVE state.  
FAULT  
On detection of a severe fault the device enters FAULT state. In FAULT state all regulators are switched off and  
the microcontroller reset (ROT) is asserted. The device remains in FAULT state for the specified fault time prior  
to a transition into ACTIVE state. In FAULT state the event registers are retained to store the reason for entering  
the FAULT state. All other device registers are reset.  
A soft reset condition on the first detection of a fault condition triggers the reset signal ROT, but no state  
transition. If the device detects the same soft reset fault condition again, then it increases the severity of the  
fault to a severe fault. In this case the device enters the FAULT state. This applies for all soft reset faults except  
the Window Watchdog error counter overflow.  
LOCKED  
The device enters LOCKED state after three severe faults, brought on by expiration of the initialization counter  
or by request of the microcontroller. The power consumption in LOCKED state is reduced. The device remains  
in LOCKED state until it detects the next valid enable event. In LOCKED state only a limited set of the event  
registers are retained to store the reason for entering the LOCKED state. All other device registers are reset.  
Data Sheet  
58  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
State machine  
Table 23  
Operational states functional overview.  
ACTIVE  
FAULT  
LOCKED  
DISABLED  
Block or function  
Buck1  
ON  
ON  
ON  
ON  
ON  
R
OFF  
OFF  
OFF  
OFF  
OFF  
R
R
R
R
R
OFF  
OFF  
OFF  
OFF  
OFF  
R
R
R
R
R
OFF  
OFF  
OFF  
OFF  
OFF  
R
R
R
R
R
Buck2  
RW  
RW  
RW  
RW  
Boost1  
VM1  
VM2  
Window watchdog ON  
RW  
OFF  
R
OFF  
R
OFF  
R
Microcontroller  
reset – ROT  
ACTIVE  
R
-
"low"  
R
-
"low"  
R
-
"low"  
-
R
-
Persistent registers All  
Event  
Event  
registers  
registers  
registers  
ON: Function is automatically activated when entering the state . Function may be configured via SPI  
within the current state.  
SEL: Function is operating as configured via SPI (during the mode transition or within the current operation  
mode).  
OFF: Function is automatically deactivated when entering the operation mode.  
R: The state of the feature cannot be changed in the current operation mode.  
RW: The state of the feature can be changed in the current operation mode.  
"high": The signal is "high" in this operation mode.  
"low": The signal is "low" in this operation mode.  
ACTIVE: The reset signal may generate a reset event (edge) in this operation mode.  
Data Sheet  
59  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
State machine  
8.3  
State transitions and trigger signals  
This section describes the state transitions of the integrated state machine.  
Table 24 shows the static state transitions with the respective source and destination states, the condition  
required to trigger the state transition and a transition specific action executed during the transition.  
Each row refers to one state transition. With multiple conditions in the same row all of the conditions must be  
met.  
Table 24  
Source  
State Transitions  
Destination  
ACTIVE  
Condition  
Action  
Unpowered  
Device supplied  
First POR event  
ACTIVE  
ACTIVE  
ACTIVE  
DISABLED  
FAULT  
DISABLED  
LOCKED  
FAULT  
SPI command  
SPI command  
Hard reset fault detected  
Enable event  
ACTIVE  
Generate MCU reset  
Generate MCU reset  
ACTIVE  
FAULT timer expired  
FAULT  
LOCKED  
Hard reset fault has  
occurred three times.1)  
LOCKED  
ACTIVE  
Enable event  
Generate MCU reset  
1) ENA pin must be configured as edge-triggered or the ENA pin must be low to trigger the transition from FAULT to  
LOCKED state  
Table 25 and Table 26 show the mapping between the fault events and the associated actions.  
Data Sheet  
60  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
State machine  
Table 25  
Event  
Event response mapping – voltage rails  
Move to  
FAULT  
Move to  
ACTIVE  
Generate  
RESET  
Move to  
DISABLED  
No transition  
Generate interrupt  
Buck1: OV  
Buck1: UV  
Buck1: StG  
X
X
X
Buck2: OV  
Buck2: UV  
Buck2: StG  
X
X
X
Boost1: OV  
Boost1: UV  
Boost1: StG  
X
X
X
VM1: OV  
VM1: UV  
VM1: StG  
X
X
X
VM2: OV  
VM2: UV  
VM2: StG  
X
X
X
Data Sheet  
61  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
State machine  
Table 26  
Event  
Event response mapping – other events  
Move to  
FAULT  
Move to  
ACTIVE  
Generate  
RESET  
Move to  
DISABLED  
No transition  
Generate  
interrupt  
WWD: counter increase  
X
X
X
X
WWD: counter overflow  
INIT timer expired – first time  
INIT timer expired – second time  
Internal protection: band gap warning  
Internal protection: band gap fault  
IOVDD: OV  
X
X
X
X
IOVDD: UV  
X
IOVDD: StG  
X1)  
Internal protection: internal supplies  
(UV,OV)  
Buck1: OT warning  
Buck1: OT fault  
X
X
X
X
X
X
Buck2: OT warning  
Buck2: OT fault  
Monitoring: OT warning  
Monitoring: OT fault  
1) If the TLF30682QVS01an detects an UV or OV fault condition on the internal supplies, then it turns of completely. The  
TLF30682QVS01 enters the ACTIVE state when the UV or OV condition is no longer present.  
8.4  
Electrical characteristics  
Table 27  
Electrical characteristics state machine  
Tj = -40°C to 150°C; VR1VSx = 3.7 V to 35 V; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
600  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Initialization time-out (INIT tINIT  
550  
650  
ms  
timer)  
Fault time  
tFault  
20  
ms  
ms  
µs  
Fault time TSD  
State transition time  
tFault,TSD  
ttrans  
1000  
100  
Data Sheet  
62  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
9
SPI registers  
Table 28  
Abbreviations  
R0  
R1  
R2  
Register is reset on a POR event and on a transition into DISABLE state.  
Register is reset with reset class R0 and additionally on a transition into LOCKED state.  
Register is reset with reset class R1 and additionally on a microcontroller reset.  
r
Bit is readable (read-only).  
rw  
Bit is readable and writable (read-write).  
rw1p  
rw1c  
Bit is protected. Read data is inverted. Write via LOCK/UNLOCK mechanism only.  
Bit is readable and can be cleared by a write operation with 1.  
Bit is updated based on hardware inputs (flags).  
rwhc  
rwhu  
Bit is readable and writable. After a write operation with 1 an operation is triggered  
which upon its completion sets the bit to 0.  
Bit is readable and writable.  
Bit is updated based on hardware inputs (flags).  
Table 29  
Register overview  
Register ID  
Description  
Address Reset Reset Page  
Value Class  
DEVCFG0  
CLKCFG0  
CLKCFG1  
PROTCFG  
PWDCFG0  
RWDCFG0  
PWDCFG1  
RWDCFG1  
PWDCFG2  
RWDCFG2  
B2VCTRL  
B2VCTRLN  
GSF  
Device configuration 0  
00H  
01H  
02H  
03H  
06H  
07H  
08H  
09H  
0AH  
0BH  
10H  
11H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
F3H  
00H  
04H  
00H  
9BH  
9BH  
46H  
46H  
78H  
78H  
02H  
0DH  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
R0  
R2  
R2  
R2  
R2  
R2  
R2  
R2  
R2  
R2  
R1  
R1  
R0  
R0  
R1  
R0  
R1  
R1  
R0  
R0  
Page 65  
Page 66  
Page 67  
Page 74  
Page 67  
Page 69  
Page 68  
Page 69  
Page 68  
Page 70  
Page 73  
Page 73  
Page 76  
Page 77  
Page 78  
Page 79  
Page 79  
Page 80  
Page 81  
Page 82  
Clock configuration 0  
Clock configuration 1  
Configuration protection  
Protected watchdog configuration 0  
Read-only watchdog configuration 0  
Protected watchdog configuration 1  
Read-only watchdog configuration 1  
Protected Watchdog Configuration 2  
Read-only watchdog configuration 2  
Buck2 output voltage control  
Buck2 output voltage control inverted  
Global status flags  
SYSSF0  
System status flags – faults  
SYSSF1  
System status flags – interrupts  
Microcontroller status flags 0 – faults  
Microcontroller status flags 1 – warnings  
SPI status flags  
MCUSF0  
MCUSF1  
SPISF  
MONSF0  
MONSF1  
Voltage monitoring status flags 0 – short to ground 20H  
Voltage monitoring status flags 1 – overvoltage  
21H  
Data Sheet  
63  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
Table 29  
Register overview (cont’d)  
Register ID  
Description  
Address Reset Reset Page  
Value Class  
MONSF2  
OTSF0  
Voltage monitoring status flags 2 – undervoltage  
Overtemperature events 0 – faults  
Overtemperature flags 1 – warnings  
Overcurrent flags – warnings  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
33H  
34H  
35H  
37H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
01H  
00H  
00H  
00H  
00H  
03H  
R0  
R0  
R1  
R1  
R1  
R1  
R1  
R2  
R2  
R2  
R1  
R1  
R1  
Page 83  
Page 84  
Page 84  
Page 85  
Page 86  
Page 86  
Page 87  
Page 88  
Page 89  
Page 74  
Page 71  
Page 72  
Page 89  
OTSF1  
OCSF1  
OTSTAT0  
Overtemperature status 0 – warnings  
VMONSTAT0 Voltage monitoring  
DEVSTAT  
Device state information  
PROTSTAT  
WWDSTAT  
WWDSCMD  
DEVCTRL  
Protection status information  
Window watchdog status information  
Window watchdog service command  
Device state control  
DEVCTRLN  
MPSSTAT0  
Device state control inverted  
Microcontroller programming support status  
information  
B2VSTAT  
HWDECT0  
DEVID  
Buck2 output voltage status  
Hardware option information  
Device identification  
39H  
3BH  
3CH  
02H  
D3H  
10H  
R1  
R1  
R1  
Page 90  
Page 91  
Page 92  
Data Sheet  
64  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
9.1  
SPI register definition  
9.1.1  
Device configuration registers (device start-up default configuration)  
DEVCFG0  
Device configuration 0  
(00H)  
ResetValue:F3H  
7
6
5
4
3
2
1
0
VM2ENAS  
VM1ENAS BOOST1ENAS BUCK2ENAS ENA_CONFIG  
RESDEL  
r
r
r
r
rw  
rw  
Field  
Bits  
Type Description  
VM2ENAS  
7
r
External voltage monitoring 2 enable at start up  
0H disabled  
1H enabled  
Reset: 1H  
VM1ENAS  
6
r
External voltage monitoring 1 enable at start up  
0H disabled  
1H enabled  
Reset: 1H  
BOOST1ENAS  
BUCK2ENAS  
ENA_CONFIG  
RESDEL  
5
r
Boost1 enable at start up  
0H disabled  
1H enabled  
Reset: 1H  
4
r
Buck2 enable at start up  
0H disabled  
1H enabled  
Reset: 1H  
3
rw  
rw  
ENA pin configuration  
0H edge triggered  
1H level sensitive  
Reset: 0H  
2:0  
Reset release delay time  
00H 200 µs  
01H 400 µs  
02H 800 µs  
03H 1 ms  
04H 2 ms  
05H 4 ms  
06H 10 ms  
07H 20 ms  
Reset: 3H  
Data Sheet  
65  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
CLKCFG0  
Clock configuration 0  
(01H)  
ResetValue:00H  
7
6
5
4
3
2
1
0
nu  
PHBUCK2  
PHBUCK1  
PHSO  
nu  
SSEN  
SIEN  
SOEN  
r
rw  
rw  
rw  
r
rw  
rwhc  
rw  
Field  
nu  
Bits  
7
Type Description  
r
Not used  
PHBUCK2  
PHBUCK1  
PHSO  
6
rw  
Buck2 phase alignment  
0H 0° phase shift  
1H 180° phase shift  
Reset: 0H  
5
4
rw  
rw  
Buck1 phase alignment  
0H 0° phase shift  
1H 180° phase shift  
Reset: 0H  
External clock synchronization phase alignment  
0H 0° phase shift  
1H 180° phase shift  
Reset: 0H  
nu  
3
2
r
Not used  
SSEN  
rw  
Spread spectrum modulation enable  
0H disabled  
1H enabled  
Reset: 0H  
SIEN  
1
0
rwhc  
rw  
External clock synchronization input enable  
0H disabled  
1H enabled  
Reset: 0H  
SOEN  
External clock synchronization output enable  
0H disabled  
1H enabled  
Reset: 0H  
Data Sheet  
66  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
CLKCFG1  
Clock configuration 1  
(02H)  
ResetValue:04H  
7
6
5
4
3
2
1
0
nu  
FREQSEL  
r
rw  
Field  
nu  
Bits  
7:3  
Type Description  
r
Not used  
FREQSEL  
2:0  
rw  
Main switching frequency  
0H 1.8 MHz  
1H 1.9 MHz  
2H 2.0 MHz  
3H 2.1 MHz  
4H 2.2 MHz  
5H 2.3 MHz  
6H 2.4 MHz  
7H 2.5 MHz  
Reset: 4H  
PWDCFG0  
Protected watchdog configuration 0  
(06H)  
ResetValue:9BH  
7
6
5
4
3
2
1
0
WWDETHR  
WWDEN  
nu  
WWDTSEL  
WDCYC  
rwp  
rwp  
r
rwp  
rwp  
Field  
Bits  
Type Description  
WWDETHR  
7:4  
rwp  
Window watchdog error threshold  
0H  
1H  
...  
0
1
FH 15  
Reset: 9H  
WWDEN  
3
rwp  
Window watchdog enable  
0B disabled  
1B enabled  
Reset: 1H  
nu  
2
1
r
Not used  
WWDTSEL  
rwp  
Window watchdog trigger selection  
0B external WDI input used as WWD trigger  
1B WWD is triggered by SPI write to WWDSCMD register  
Reset: 1H  
Data Sheet  
67  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
Field  
Bits  
Type Description  
rwp Watchdog cycle time  
WDCYC  
0
0B 10 µs tick period  
1B 100 µs tick period  
Reset: 1H  
PWDCFG1  
Protected watchdog configuration 1  
(08H)  
ResetValue:46H  
7
6
5
4
3
2
1
0
nu  
CW  
r
rwp  
Field  
nu  
Bits  
7
Type Description  
r
Not used  
CW  
6:0  
rwp  
Window watchdog closed window size  
00H 0 watchdog cycles  
01H 50 watchdog cycles  
02H 100 watchdog cycles  
...  
7FH 6350 watchdog cycles  
Reset: 46H  
PWDCFG2  
Protected Watchdog Configuration 2  
(0AH)  
ResetValue:78H  
7
6
5
4
3
2
1
0
nu  
OW  
r
rwp  
Field  
nu  
Bits  
7
Type Description  
r
Not used  
OW  
6:0  
rwp  
Window watchdog open window size  
00H 50 watchdog cycles  
01H 50 watchdog cycles  
02H 100 watchdog cycles  
...  
7FH 6350 watchdog cycles  
Reset: 78H  
Data Sheet  
68  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
9.1.2  
Read-only registers for protected configuration registers  
RWDCFG0  
Read-only watchdog configuration 0  
(07H)  
ResetValue:9BH  
7
6
5
4
3
2
1
0
WWDETHR  
WWDEN  
nu  
WWDTSEL  
WDCYC  
r
r
r
r
r
Field  
Bits  
Type Description  
WWDETHR  
7:4  
r
Window watchdog error threshold ACTIVE  
0H  
1H  
...  
0
1
FH 15  
Reset: 9H  
WWDEN  
3
r
Window watchdog enable STATUS  
0B disabled  
1B enabled  
Reset: 1H  
nu  
2
1
r
r
Not used  
WWDTSEL  
Window watchdog trigger selection ACTIVE  
0B external WDI input used as WWD trigger  
1B WWD is triggered by SPI write to WWDSCMD register  
Reset: 1H  
WDCYC  
0
r
Watchdog cycle time ACTIVE  
0B 10 µs tick period  
1B 100 µs tick period  
Reset: 1H  
RWDCFG1  
Read-only watchdog configuration 1  
(09H)  
ResetValue:46H  
7
6
5
4
3
2
1
0
nu  
CW  
r
r
Field  
nu  
Bits  
Type Description  
Not used  
7
r
Data Sheet  
69  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
Field  
CW  
Bits  
Type Description  
Window watchdog closed window size ACTIVE  
6:0  
r
00H 0 watchdog cycles  
01H 50 watchdog cycles  
02H 100 watchdog cycles  
...  
7FH 6350 watchdog cycles  
Reset: 46H  
RWDCFG2  
Read-only watchdog configuration 2  
(0BH)  
ResetValue:78H  
7
6
5
4
3
2
1
0
nu  
OW  
r
r
Field  
nu  
Bits  
7
Type Description  
r
r
Not used  
OW  
6:0  
Window watchdog open window size ACTIVE  
00H 50 watchdog cycles  
01H 50 watchdog cycles  
02H 100 watchdog cycles  
...  
7FH 6350 watchdog cycles  
Reset: 78H  
Data Sheet  
70  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
9.1.3  
Special device configuration registers  
The registers in this section are specially protected by a defined access procedure. This procedure is based on  
the access to two individual registers writing inverted information. For detailed information please refer to  
Chapter 7.2.3.  
DEVCTRL  
Device state control  
(34H)  
ResetValue:00H  
7
6
5
4
3
2
1
0
VM2EN  
VM1EN  
BOOST1EN  
BUCK2EN  
nu  
STATEREQ  
rw  
rw  
rw  
rw  
r
rw  
Field  
Bits  
Type Description  
VM2EN  
7
rw  
rw  
rw  
rw  
External voltage monitoring 2 enable request  
0H disable  
1H enable  
Reset: 0H  
VM1EN  
6
5
4
External voltage monitoring 1 enable request  
0H disable  
1H enable  
Reset: 0H  
BOOST1EN  
BUCK2EN  
Boost1 enable request  
0H disable  
1H enable  
Reset: 0H  
Buck2 enable request  
0H disable  
1H enable  
Reset: 0H  
nu  
3
r
Not used  
STATEREQ  
2:0  
rw  
Device state request  
00H Reserved  
01H ACTIVE state  
02H Reserved  
03H DISABLED state  
04H Reserved  
05H Reserved  
06H Reserved  
07H LOCKED state  
Reset: 0H  
Data Sheet  
71  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
DEVCTRLN  
Device state control inverted  
(35H)  
ResetValue:00H  
7
6
5
4
3
2
1
0
VM2EN  
VM1EN  
BOOST1EN  
BUCK2EN  
nu  
STATEREQ  
rw  
rw  
rw  
rw  
r
rw  
Field  
Bits  
Type Description  
VM2EN  
7
rw  
rw  
rw  
rw  
External voltage monitoring 2 enable request  
0H enable  
1H disable  
Reset: 0H  
VM1EN  
6
5
4
External voltage monitoring 1 enable request  
0H enable  
1H disable  
Reset: 0H  
BOOST1EN  
BUCK2EN  
Boost1 enable request  
0H enable  
1H disable  
Reset: 0H  
Buck2 enable request  
0H enable  
1H disable  
Reset: 0H  
nu  
3
r
Not used  
STATEREQ  
2:0  
rw  
Device state request  
07H Reserved  
06H ACTIVE state  
05H Reserved  
04H DISABLED state  
03H Reserved  
02H Reserved  
01H Reserved  
00H LOCKED state  
Reset: 0H  
Data Sheet  
72  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
B2VCTRL  
Buck2 output voltage control  
(10H)  
ResetValue:02H  
7
6
5
4
3
2
1
0
nu  
B2VOUTF  
r
rwhu  
Field  
nu  
Bits  
7:4  
Type Description  
Not used  
r
B2VOUTF  
3:0  
rwhu Buck2 output voltage setting fine resolution  
0H 1.30 V  
1H 1.20 V  
2H 1.25 V  
3H 1.15 V  
4H 1.10 V  
5H 1.00 V  
6H 1.05 V  
7H 0.95 V  
8H 0.90 V  
Reset: 02H  
B2VCTRLN  
Buck2 output voltage control inverted  
(11H)  
ResetValue:0DH  
7
6
5
4
3
2
1
0
nu  
B2VOUTF  
r
rwhu  
Field  
nu  
Bits  
7:4  
Type Description  
Not used  
r
B2VOUTF  
3:0  
rwhu Buck2 output voltage setting fine resolution  
FH 1.30 V  
EH 1.20 V  
DH 1.25 V  
CH 1.15 V  
BH 1.10 V  
AH 1.00 V  
9H 1.05 V  
8H 0.95 V  
7H 0.90 V  
Reset: 0DH  
Data Sheet  
73  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
9.1.4  
General registers  
PROTCFG  
Configuration protection  
(03H)  
ResetValue:00H  
7
6
5
4
3
2
1
0
KEY  
rw  
Field  
KEY  
Bits  
Type Description  
rw Protection key  
Reset: 00H  
7:0  
WWDSCMD  
Window watchdog service command  
(33H)  
ResetValue:00H  
7
6
5
4
3
2
1
0
TRIG_STATU  
S
nu  
TRIG  
r
r
rw  
Field  
Bits  
Type Description  
TRIG_STATUS  
7
r
Window watchdog last trigger received via SPI  
Reset: 00H  
nu  
6:1  
0
r
Not used  
TRIG  
rw  
Window watchdog trigger command  
Reset: 00H  
Data Sheet  
74  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
9.1.5  
Event status registers  
The event status registers of the device are organized hierarchically. The global status register is used to  
collect information of the status flags set in other registers to enable the user to speed up the event source  
determination.  
A bit in the global status register is automatically set, when a bit in the respective status register is set (event  
based, not level based).  
If a bit in the global status register is set, the user should read out the corresponding status register for the  
detailed information on the event source.  
The bits in the global status flag register can be cleared without effect on the other status registers. Clearing a  
bit in any of the other status registers does not reset the corresponding bit in the global status register.  
Data Sheet  
75  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
GSF  
Global status flags  
(1AH)  
ResetValue:00H  
7
6
5
4
3
2
1
0
INTMISS  
nu  
R1VSxUV  
OT  
MON  
SPI  
MCU  
SYS  
r
r
rw1c  
rw1c  
rw1c  
rw1c  
rw1c  
rw1c  
Field  
Bits  
Type Description  
INTMISS  
7
r
Interrupt time out event  
0H no event  
1H event occurred, cleared by hardware when all other flags in IF are  
cleared.  
Reset: 0H  
nu  
6
5
r
Not used  
R1VSxUV  
rw1c  
Battery voltage undervoltage event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
OT  
4
rw1c  
Overtemperature or overcurrent monitoring event flag:  
OTSF0,OTSF1, OCSF1  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
MON  
SPI  
3
2
1
0
rw1c  
rw1c  
rw1c  
rw1c  
Voltage monitoring event flag: MONSF0, MONSF1, MONSF2  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
SPI event flag: SPISF  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
MCU  
SYS  
MCU event flag: MCUSF0,MCUSF1  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
System event flag: SYSSF0,SYSSF1  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
Data Sheet  
76  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
SYSSF0  
System status flags – faults  
(1BH)  
ResetValue:00H  
7
6
5
4
3
2
1
0
BGFLT2  
BGFLT1  
IOVDDOV  
IOVDDUV  
nu  
FUSEERR  
rw1c  
rw1c  
rw1c  
rw1c  
r
rw1c  
Field  
Bits  
Type Description  
BGFLT2  
7
rw1c  
rw1c  
rw1c  
rw1c  
Bandgap fault event 2  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
BGFLT1  
6
5
4
Bandgap fault event 1  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
IOVDDOV  
IOVDDUV  
IOVDD overvoltage event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
IOVDD undervoltage event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
nu  
3:1  
0
r
Not used  
FUSEERR  
rw1c  
Double bit error in fuse memory  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
Data Sheet  
77  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
SYSSF1  
System status flags – interrupts  
(1CH)  
ResetValue:00H  
7
6
5
4
3
2
1
0
BGWARN2  
BGWARN1 ENA_PWRUP  
nu  
SYNC  
ENA  
CFG2  
CFG  
rw1c  
rw1c  
rw1c  
r
rw1c  
rw1c  
rw1c  
rw1c  
Field  
Bits  
Type Description  
BGWARN2  
BGWARN1  
ENA_PWRUP  
7
rw1c  
rw1c  
rw1c  
Bandgap warning event 2  
(VBG1+4%>VBG2)  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
6
5
Bandgap warning event 1  
(VBG1-4%<VBG2)  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
Device wake-up condition  
0H device wake-up on a power-on-reset event, write 0 – no action  
1H device wake-up on ENA event, write 1 to clear the flag  
Reset: 0H  
nu  
4
3
r
Not used  
SYNC  
rw1c  
External clock synchronization fault event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
ENA  
CFG2  
CFG  
2
1
0
rw1c  
rw1c  
rw1c  
Enable interrupt event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
Output voltage configuration change fault event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
Supervision functions configuration change fault event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
Data Sheet  
78  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
MCUSF0  
Microcontroller status flags 0 – faults  
(1DH)  
ResetValue:00H  
7
6
5
4
3
2
1
0
HARDRES  
SOFTRES  
nu  
WWDF  
nu  
INITF  
rw1c  
rw1c  
rw1c  
rw1c  
r
rw1c  
Field  
Bits  
Type Description  
HARDRES  
SOFTRES  
7
rw1c  
Hard reset event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
6
rw1c  
Soft reset event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
nu  
5:4  
3
rw1c  
rw1c  
Not used  
WWDF  
Window watchdog fault event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
nu  
2:1  
0
r
Not used  
INITF  
rw1c  
INIT timer error event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
MCUSF1  
Microcontroller status flags 1 – warnings  
(1EH)  
ResetValue:00H  
7
6
5
4
3
2
1
0
nu  
WWDMISS  
nu  
r
rw1c  
r
Field  
nu  
Bits  
7:4  
3
Type Description  
r
Not used  
WWDMISS  
rw1c  
Window watchdog missed trigger event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
nu  
2:0  
r
Not used  
Data Sheet  
79  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
SPISF  
SPI status flags  
(1FH)  
Reset Value:00H  
7
6
5
4
3
2
1
0
nu  
B2VCTRL  
DEVCTRL  
LOCK  
DUR  
ADDR  
LEN  
PAR  
r
rw1c  
rw1c  
rw1c  
rw1c  
rw1c  
rw1c  
rw1c  
Field  
nu  
Bits  
7
Type Description  
r
Not used  
B2VCTRL  
DEVCTRL  
LOCK  
6
rw1c  
SPI protocol B2VCTRL access error event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
5
4
3
rw1c  
rw1c  
rw1c  
SPI protocol DEVCTRL access error event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
SPI protocol LOCK or UNLOCK access error event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
DUR  
SPI duration error event  
Chip select signal CS "low" for more than 2 ms  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
ADDR  
LEN  
2
1
rw1c  
rw1c  
SPI invalid address error event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
SPI frame length error event  
Number of detected SPI clock cycles different than 16  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
PAR  
0
rw1c  
SPI parity error event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
Data Sheet  
80  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
MONSF0  
Voltage monitoring status flags 0 – short to ground(20H)  
Reset Value:00H  
7
6
5
4
3
2
1
0
VM2STG  
VM1STG  
nu  
BOOST1STG  
nu  
BUCK2STG BUCK1STG  
rw1c rw1c  
rw1c  
rw1c  
r
rw1c  
r
Field  
Bits  
Type Description  
VM2STG  
VM1STG  
7
rw1c  
rw1c  
External voltage monitoring 2 short to ground event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
6
External voltage monitoring 1 short to ground event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
nu  
5
4
r
Not used  
BOOST1STG  
rw1c  
Boost1 short to ground event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
nu  
3:2  
1
r
Not used  
BUCK2STG  
rw1c  
Buck2 short to ground event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
BUCK1STG  
0
rw1c  
Buck1 short to ground event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
Data Sheet  
81  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
MONSF1  
Voltage monitoring status flags 1 – overvoltage (21H)  
ResetValue:00H  
7
6
5
4
3
2
1
0
VM2OV  
VM1OV  
nu  
BOOST1OV  
nu  
BUCK2OV  
BUCK1OV  
rw1c  
rw1c  
r
rw1c  
r
rw1c  
rw1c  
Field  
Bits  
Type Description  
VM2OV  
VM1OV  
7
rw1c  
rw1c  
External voltage monitoring 2 overvoltage event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
6
External voltage monitoring 1 overvoltage event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
nu  
5
4
r
Not used  
BOOST1OV  
rw1c  
Boost1 overvoltage event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
nu  
3:2  
1
r
Not used  
BUCK2OV  
rw1c  
Buck2 overvoltage event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
BUCK1OV  
0
rw1c  
Buck1 overvoltage event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
Data Sheet  
82  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
MONSF2  
Voltage monitoring status flags 2 – undervoltage(22H)  
ResetValue:00H  
7
6
5
4
3
2
1
0
VM2UV  
VM1UV  
nu  
BOOST1UV  
nu  
BUCK2UV  
BUCK1UV  
rw1c  
rw1c  
r
rw1c  
r
rw1c  
rw1c  
Field  
Bits  
Type Description  
VM2UV  
VM1UV  
7
rw1c  
rw1c  
External voltage monitoring 2 undervoltage event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
6
External voltage monitoring 1 undervoltage event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
nu  
5
4
r
Not used  
BOOST1UV  
rw1c  
Boost1 undervoltage event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
nu  
3:2  
1
r
Not used  
BUCK2UV  
rw1c  
Buck2 undervoltage event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
BUCK1UV  
0
rw1c  
Buck1 undervoltage event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
Data Sheet  
83  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
OTSF0  
Overtemperature events 0 – faults  
(23H)  
ResetValue:00H  
7
6
5
4
3
2
1
0
MONOT  
nu  
BUCK2OT  
BUCK1OT  
rw1c  
r
rw1c  
rw1c  
Field  
Bits  
Type Description  
MONOT  
7
rw1c  
Monitoring overtemperature fault event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
nu  
6:2  
1
r
Not used  
BUCK2OT  
rw1c  
Buck2 overtemperature fault event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
BUCK1OT  
OTSF1  
0
rw1c  
Buck1 overtemperature fault event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
Overtemperature flags 1 – warnings  
(24H)  
ResetValue:00H  
7
6
5
4
3
2
1
0
MONOTW  
nu  
BUCK2OTW BUCK1OTW  
rw1c rw1c  
rw1c  
r
Field  
Bits  
Type Description  
MONOTW  
7
rw1c  
Monitoring overtemperature warning event  
0H no event, write 0 – no action  
1B event detected – write 1 to clear flag  
Reset: 0H  
nu  
6:2  
1
r
Not used  
BUCK2OTW  
rw1c  
Buck2 overtemperature warning event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
BUCK1OTW  
0
rw1c  
Buck1 overtemperature warning event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
Data Sheet  
84  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
OCSF1  
Overcurrent flags – warnings  
(25H)  
ResetValue:00H  
7
6
5
4
3
2
1
0
nu  
BOOST1OCW  
nu  
BUCK2OCW BUCK1OCW  
rw1c rw1c  
r
rw1c  
r
Field  
nu  
Bits  
7:5  
4
Type Description  
r
Not used  
BOOST1OCW  
rw1c  
Boost1 overcurrent warning event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
nu  
3:2  
1
r
Not used  
BUCK2OCW  
rw1c  
Buck2 overcurrent warning event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
BUCK1OCW  
0
rw1c  
Buck1 overcurrent warning event  
0H no event, write 0 – no action  
1H event occurred, write 1 to clear the flag  
Reset: 0H  
Data Sheet  
85  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
9.1.6  
Device status information registers  
The device status information registers reflect the current status of the device irrespective of the latched  
status information in the interrupt flag registers. Therefore, reading these registers reflects the current status  
of the device, for example the currently active power rails or the temperature warnings.  
OTSTAT0  
Overtemperature status 0 – warnings  
(26H)  
ResetValue:00H  
7
6
5
4
3
2
1
0
MONOTW  
nu  
BUCK2OTW BUCK1OTW  
r
r
r
r
Field  
Bits  
Type Description  
MONOTW  
7
r
Monitoring overtemperature warning STATUS  
0H no overtemperature warning  
1B overtemperature warning present  
Reset: 0H  
nu  
6:2  
1
r
r
Not used  
BUCK2OTW  
Buck2 overtemperature warning STATUS  
0H no overtemperature warning  
1B overtemperature warning present  
Reset: 0H  
BUCK1OTW  
VMONSTAT0  
0
r
Buck1 overtemperature warning STATUS  
0H no overtemperature warning  
1B overtemperature warning present  
Reset: 0H  
Voltage monitoring  
(27H)  
Reset Value:00H  
7
6
5
4
3
2
1
0
VM2OK  
VM1OK  
R1VSxUV  
BOOST1OK  
SYNCOK  
ENA  
BUCK2OK  
BUCK1OK  
r
r
r
r
r
r
r
r
Field  
Bits  
Type Description  
VM2OK  
VM1OK  
7
r
External voltage monitoring 2 STATUS  
0H output rail disabled or not in total operation band  
1H output rail enabled and in total operation band  
Reset: 0H  
6
r
External voltage monitoring 1 STATUS  
0H output rail disabled or not in total operation band  
1H output rail enabled and in total operation band  
Reset: 0H  
Data Sheet  
86  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
Field  
Bits  
Type Description  
Battery undervoltage STATUS  
R1VSxUV  
5
r
r
r
r
r
r
0H battery voltage undervoltage not present.  
1H battery voltage undervoltage present.  
Reset: 0H  
BOOST1OK  
SYNCOK  
ENA  
4
3
2
1
0
Boost1 STATUS  
0H output rail disabled or not in total operation band  
1H output rail enabled and in total operation band  
Reset: 0H  
External clock synchronization STATUS  
0H clock synchronization is not operating  
1H clock synchronization is operating.  
Reset: 0H  
Enable signal level  
0H enable signal is "low"  
1H enable signal is "high"  
Reset: 0H  
BUCK2OK  
BUCK1OK  
Buck2 STATUS  
0H output rail disabled or not in total operation band  
1H output rail enabled and in total operation band  
Reset: 0H  
Buck1 STATUS  
0H output rail disabled or not in total operation band  
1H output rail enabled and in total operation band  
Reset: 0H  
DEVSTAT  
Device state information  
(28H)  
ResetValue:00H  
7
6
5
4
3
2
1
0
VM2EN  
VM1EN  
BOOST1EN  
BUCK2EN  
nu  
STATE  
r
r
r
r
r
r
Field  
Bits  
Type Description  
VM2EN  
7
r
r
r
External voltage monitoring 2 enable STATUS  
0H voltage is disabled  
1H voltage is enabled  
Reset: 0H  
VM1EN  
6
5
External voltage monitoring 1 enable STATUS  
0H voltage is disabled  
1H voltage is enabled  
Reset: 0H  
BOOST1EN  
Boost 1 enable STATUS  
0H voltage is disabled  
1H voltage is enabled  
Reset: 0H  
Data Sheet  
87  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
Field  
Bits  
Type Description  
BUCK2EN  
4
r
Buck 2 enable STATUS  
0H voltage is disabled  
1H voltage is enabled  
Reset: 0H  
nu  
3
r
r
Not used  
STATE  
2:0  
Device state  
0H reserved  
1H ACTIVE state  
2H reserved  
3H reserved  
4H reserved  
5H reserved  
6H reserved  
7H reserved  
Reset: 0H  
PROTSTAT  
Protection status information  
(29H)  
ResetValue:01H  
7
6
5
4
3
2
1
0
KEY4OK  
KEY3OK  
KEY2OK  
KEY1OK  
nu  
LOCK  
r
r
r
r
r
r
Field  
Bits  
Type Description  
KEY4OK  
KEY3OK  
KEY2OK  
KEY1OK  
7
r
r
r
r
Fourth protection key valid STATUS  
0H key not valid  
1H key valid  
Reset: 0H  
6
5
4
Third protection key valid STATUS  
0H key not valid  
1H key valid  
Reset: 0H  
Second protection key valid STATUS  
0H key not valid  
1H key valid  
Reset: 0H  
First protection key valid STATUS  
0H key not valid  
1H key valid  
Reset: 0H  
nu  
3:1  
0
r
r
Not used  
LOCK  
Lock STATUS  
0H access to protected registers is unlocked.  
1H access to protected registers is locked.  
Reset: 0H  
Data Sheet  
88  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
WWDSTAT  
Window watchdog status information  
(2AH)  
ResetValue:00H  
7
6
5
4
3
2
1
0
nu  
WWDECNT  
r
r
Field  
nu  
Bits  
7:4  
Type Description  
r
r
Not used  
Window watchdog error counter level  
WWDECNT  
3:0  
0H  
1H  
...  
0
1
FH 15  
Reset: 0H  
MPSSTAT0  
Microcontroller programming support status information(37H)  
ResetValue:03H  
7
6
5
4
3
2
1
0
nu  
MPSSTAT  
r
r
Field  
nu  
Bits  
7:4  
Type Description  
r
r
Not used  
MPSSTAT  
3:0  
MPS STATUS  
3H device in operating mode  
6H device in programming mode  
9H device in test mode (production test mode, read-back only)  
Reset: 3H  
Data Sheet  
89  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
B2VSTAT  
Buck2 output voltage status  
(39H)  
ResetValue:02H  
7
6
5
4
3
2
1
0
BUCK2VOUTC  
BUCK2VOUTF  
r
r
Field  
Bits  
Type Description  
BUCK2VOUTC 7:4  
r
Buck2 output voltage setting coarse resolution STATUS  
0H Range 0.9 – 1.3 V. Fine resolution is evaluated.  
1H 1.5 V  
2H 1.8 V  
3H 2.45 V  
4H 3.3 V  
Reset: 00H  
BUCK2VOUTF  
3:0  
r
Buck2 output voltage setting fine resolution STATUS  
0H 1.30 V  
1H 1.20 V  
2H 1.25 V  
3H 1.15 V  
4H 1.10 V  
5H 1.00 V  
6H 1.05 V  
7H 0.95 V  
8H 0.90 V  
Reset: 02H  
Data Sheet  
90  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
9.1.7  
Device information registers  
HWDECT0  
Hardware option information  
(3BH)  
ResetValue:D3H  
7
6
5
4
3
2
1
0
VM2AVA  
VM1AVA  
nu  
BOOST1AVA  
nu  
BUCK2AVA  
FRE  
r
r
r
r
r
r
r
Field  
Bits  
Type Description  
VM2AVA  
VM1AVA  
7
r
External voltage monitoring 2 automatic use detection  
0H VM2 is not used in this application.  
1H VM2 is used in this application.  
Reset: 1H  
6
r
External voltage monitoring 1 automatic use detection  
0H VM1 is not used in this application.  
1H VM1 is used in this application.  
Reset: 1H  
nu  
5
4
r
r
Not used  
BOOST1AVA  
Boost1 automatic use detection  
0H Boost1 is not used in this application.  
1H Boost1 is used in this application.  
Reset: 1H  
nu  
3:2  
1
r
r
Not used  
BUCK2AVA  
Buck2 automatic use detection  
0H Buck2 is not used in this application.  
1H Buck2 is used in this application.  
Reset: 1H  
FRE  
0
r
Frequency selection information  
0H LF frequency setting  
1H HF frequency setting  
Reset: 1H  
Data Sheet  
91  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
SPI registers  
DEVID  
Device identification  
(3CH)  
ResetValue:10H  
7
6
5
4
3
2
1
0
DEVTYPE  
r
Field  
Bits  
Type Description  
Device family  
DEVTYPE  
7:0  
r
10H TLF30682 device  
Reset: 10H  
Data Sheet  
92  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Application information  
10  
Application information  
The component values recommended in this section are typical values. The component names in Table 30  
refer to the application diagram in Figure 12.  
Note:  
The following information is given as a hint for the implementation of the device only and shall not  
be regarded as a description or warranty of a certain functionality, condition or quality of the device.  
Please contact us for additional supportive documentation.  
For further information you may contact http://www.infineon.com/  
Table 30  
Recommended values for the passive components in the application diagram (see  
Figure 12)  
Name  
Value  
Comments  
LBuck1  
3.3 µH  
Buck1 inductor  
It is recommended to chose an inductor with a saturation current which is  
greater than the Buck1 over-current protection threshold IR1,OCP  
.
CBuck1_1  
10 µF  
Buck1 output capacitor #1  
This capacitor should be placed close to the R2VSx input of Buck2 and  
connected between the R2VSx and R2PGx pins directly.  
It is recommended to use a ceramic capacitor in X7R material with a voltage  
rating of 6.3 V or higher.  
CBuck1_2  
CBuck1_3  
47 µF  
Buck1 output capacitors #2 and #3  
It is recommended to use a ceramic capacitor in X7R material with a voltage  
rating of 6.3 V or higher.  
CBuck1_BST  
100 nF  
2.2 µH  
22 µF  
Buck1 bootstrap capacitor  
It is recommended to use a ceramic capacitor in X7R material with a voltage  
rating of 16 V or higher.  
LBuck2  
Buck2 inductor  
It is recommended to choose an inductor with a saturation current which is  
greater than the Buck2 over-current protection threshold IR2,OCP  
.
CBuck2_1  
CBuck2_2  
CBuck2_3  
Buck2 output capacitors #1 to #3  
It is recommended to use a ceramic capacitor in X7R material with a voltage  
rating of 6.3 V or higher.  
LBoost1  
6.8 µH  
100nF  
10 µF  
Boost1 inductor  
It is recommended to chose an inductor with a saturation current which is  
greater than the Boost1 over-current protection threshold IR3,OCP  
.
CBoost1_1  
Boost1 output capacitor #1  
It is recommended to use a ceramic capacitor in X7R material with a voltage  
rating of 10 V or higher.  
CBoost1_2  
Boost1 output capacitor #2  
It is recommended to use a ceramic capacitor in X7R material with a voltage  
rating of 10 V or higher.  
Note:  
This following figure is a very simplified example of an application circuit. The function must be  
verified in the real application.  
Data Sheet  
93  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Application information  
R1VSx  
V_S (T30)  
SYNCI  
SYNC_In  
SYNC_Out  
Clock  
Generation  
Buck1  
Driver  
Supply  
Internal  
Supply  
SYNCO  
NC  
Logic  
R1BTSV  
R1BTS  
CBuck1_BST  
LBuck1  
ENABLE  
R1SWx  
R1PGx  
SMPR  
Buck1  
VBuck1  
ENA  
ENABLE  
Feedback  
MPS  
IOVDD  
R1FB  
Interface_supply  
LBoost1  
INT  
R3SW  
INTERRUPT  
Generator  
Interrupt  
SMPR  
Boost  
CBoost1_2  
VBoost1  
SCS  
SCL  
SDI  
R3PG  
R3FB  
CBoost1_1  
SPI_ChipSelect  
SPI_Clock  
Feedback  
SPI  
SPI_DataIn  
R2VS1x  
R2SWx  
SDO  
SPI_DataOut  
LBuck2  
SMPR  
Buck2  
WDI  
Window  
Watchdog  
VBuck2  
Watchdog_TriggerIn  
R2PGx  
R2FB  
Feedback  
Bandgap 1  
NC  
Fault  
VM1EN  
VM1FB  
Manager  
ExtRail1_Enable  
TM1  
ExtRail1_Feedback  
TM2  
ROT  
UV/OV-Monitoring/  
Enable Handling  
VM2EN  
VM2FB  
ExtRail2_Enable  
μC_Reset  
Bandgap 2  
for V- Mon.  
Reset Generator  
ExtRail2_Feedback  
AG1 AG2  
AG3 AG4 AG5  
AG6  
Figure 12 Application diagram  
Data Sheet  
94  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Package information  
11  
Package information  
Figure 13 PG-VQFN-481)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Further information on packages  
https://www.infineon.com/packages  
1) Dimensions in mm  
Data Sheet  
95  
1.01  
2019-07-03  
OPTIREG™ PMIC TLF30682QVS01  
Power Management IC  
Revision History  
12  
Revision History  
Revision Date  
Changes  
1.01  
1.0  
2019-07-03 Updated meta data.  
2019-04-05 Initial release of data sheet.  
Data Sheet  
96  
1.01  
2019-07-03  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2019-07-03  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2019 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
Document reference  

相关型号:

TLF35584QKVS1

 如需数据表和进一步帮助,请联系您的销售代表或技术援助中心 (TAC) 前/后稳压器概念:升压和降压/ LDO和跟踪器 功能安全集成 (功能支持 ASIL-D) 动力系统 xEV 底盘/安全 Access to complete OPTIREG™ PMIC technical documentation including data sheets, app notes, etc.: 1. To get access to the full technical documentation you need access to the MyInfineon Collaboration Portal 2. Please register* under myinfineon.com with your company e-mail address and with this, request access to the MyInfineon Collaboration Portal. (*If you are already registered at myinfineon.com, follow the guideline from page 6.) Click here to see the step-by-step instructions to get registered. 3. In case you need further assistance, please fill in the form to our Technical Assistance Center or contact support@infineon.com  
INFINEON

TLF35584QKVS2

如需数据表和进一步帮助,请联系您的销售代表或技术援助中心 (TAC)   前/后稳压器概念:升压和降压/ LDO和跟踪器 功能安全集成 (功能支持 ASIL-D) 动力系统 xEV 底盘/安全 Access to complete OPTIREG™ PMIC technical documentation including data sheets, app notes, etc.: 1. To get access to the full technical documentation you need access to the MyInfineon Collaboration Portal 2. Please register* under myinfineon.com with your company e-mail address and with this, request access to the MyInfineon Collaboration Portal. (*If you are already registered at myinfineon.com, follow the guideline from page 6.) Click here to see the step-by-step instructions to get registered. 3. In case you need further assistance, please fill in the form to our Technical Assistance Center or contact support@infineon.com  
INFINEON

TLF35584QVHS1

The TLF35584QVHS1 is a multiple output system supply for safety-relevant applications supplying 5V-μC, transceivers, and sensors by an efficient and flexible pre-/post-regulator concept over a wide input voltage range.
INFINEON

TLF35584QVHS2

The TLF35584QVHS2 is a multiple output system supply for safety-relevant applications supplying 5V-μC, transceivers, and sensors by an efficient and flexible pre-/post-regulator concept over a wide input voltage range.
INFINEON

TLF35584QVVS1

如需数据表和进一步帮助,请联系您的销售代表或技术援助中心 (TAC)   Access to complete OPTIREG™ PMIC technical documentation including data sheets, app notes, etc.: 1. To get access to the full technical documentation you need access to the MyInfineon Collaboration Portal 2. Please register* under myinfineon.com with your company e-mail address and with this, request access to the MyInfineon Collaboration Portal. (*If you are already registered at myinfineon.com, follow the guideline from page 6.) Click here to see the step-by-step instructions to get registered. 3. In case you need further assistance, please fill in the form to our Technical Assistance Center or contact support@infineon.com  
INFINEON

TLF35584QVVS1XUMA2

Power Supply Management Circuit, Fixed, 1 Channel, PQCC48, VQFN-48
INFINEON

TLF35584QVVS2

如需数据表和进一步帮助,请联系您的销售代表或技术援助中心 (TAC) Access to complete OPTIREG™ PMIC technical documentation including data sheets, app notes, etc.: 1. To get access to the full technical documentation you need access to the MyInfineon Collaboration Portal 2. Please register* under myinfineon.com with your company e-mail address and with this, request access to the MyInfineon Collaboration Portal. (*If you are already registered at myinfineon.com, follow the guideline from page 6.) Click here to see the step-by-step instructions to get registered. 3. In case you need further assistance, please fill in the form to our Technical Assistance Center or contact support@infineon.com  
INFINEON

TLF35584QVVS2XUMA2

Power Supply Management Circuit, Fixed, 1 Channel, PQCC48, VQFN-48
INFINEON

TLF4277

active antenna supply
INFINEON

TLF4277-2EL

Adjustable Positive LDO Regulator, 5V Min, 12V Max, 0.25V Dropout, PDSO14, SSOP-14
INFINEON

TLF42772ELXUMA1

Adjustable Positive LDO Regulator,
INFINEON

TLF42772ELXUMA2

Adjustable Positive LDO Regulator, 5V Min, 12V Max, 0.5V Dropout, PDSO14, SSOP-14
INFINEON