TLF12501 [INFINEON]

current sensing, current & temperture reporting, over-current protection & flag, over-temperature protection & shutdown, high-side short detection & flag, bootstrap under-voltage protection, VDRV under-voltage lockout, 3.3V tri-state PWM-input, auto-sleep- & deep-sleep-mode;
TLF12501
型号: TLF12501
厂家: Infineon    Infineon
描述:

current sensing, current & temperture reporting, over-current protection & flag, over-temperature protection & shutdown, high-side short detection & flag, bootstrap under-voltage protection, VDRV under-voltage lockout, 3.3V tri-state PWM-input, auto-sleep- & deep-sleep-mode

文件: 总22页 (文件大小:950K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Restricted  
TLF12501 Automotive 60A OptiMOSTM Power Stage  
1
Description  
Qualified for automotive applications requiring AEC-Q100 Rev H Grade 1 Compliance  
High frequency, low profile DC-DC converters  
The TLF12501 integrated power-stage contains a low quiescent current synchronous buck gate-driver IC which is  
co-packed with control and synchronous MOSFETs. The package is optimized for PCB layout, heat transfer,  
driver/MOSFET control timing, and minimal switch node ringing when layout guidelines are followed. The paired  
gate driver and MOSFET combination enables higher efficiency at lower output voltages required by cutting edge  
CPU, GPU and DDR memory designs.  
The internal MOSFET sensing achieves superior current sense accuracy vs. best-in-class controller based Inductor  
DCR sense methods.  
Protection includes IC temperature reporting and over temperature protection feature (OTP with thermal  
shutdown), cycle-by-cycle over-current protection (OCP), control MOSFET short detection (HSS - High side short  
detection), VDRV and bootstrap under-voltage protection. The TLF12501 also features "refreshing" of bootstrap  
capacitor to prevent the bootstrap capacitor from over-discharging.  
Operation of up to 2 MHz switching frequency enables high performance transient response, allowing  
miniaturization of output inductors, as well as input and output capacitors while maintaining industry leading  
efficiency.  
Features  
Integrated driver, control MOSFET Q1 and synchronous MOSFET Q2  
On-chip MOSFET Current sensing and reporting at 5uA/A.  
Input voltage (VIN) range of 4.25 V to 16 V  
VCC and VDRV supply of 4.25 V to 5.5 V  
Output voltage range from 0.225 V up to 5.5 V at VIN = 12 V  
Output current capability of 60 A  
Operation up to 2 MHz  
VDRV under-voltage lockout (UVLO)  
Bootstrap under-voltage protection  
8mV / °C temperature analog output  
Over-temperature protection and thermal shutdown  
Cycle-by-cycle over current Protection (OCP) and flag  
Control MOSFET short (HSS) detection and flag  
Auto-replenishment on bootstrap capacitor  
Compatible with 3.3 V tri-state PWM Input  
Auto SLEEP mode after 20 µs of PWM Tri-state (1.6 mA typ)  
DEEP SLEEP mode for power saving via EN= low (32 µA typ)  
Small 5 mm x 6 mm x 0.9 mm PQFN package  
Lead free RoHS compliant package  
Compliant to automotive AEC-Q100 Rev H Grade 1 requirements  
Datasheet  
Please read the Important Notice and Warnings at the end of this document  
1
Rev 2.11  
2021-10-05  
Restricted  
TLF12501 Automotive 60A Smart Power Stage  
Table 1  
Product Identification  
Temp Range  
Part Number  
TLF12501  
Package  
Marking  
PQFN 5 mm x 6 mm  
TLF12501  
-40 to 125C  
Figure 1  
Picture of the Product  
1.1  
Pinout  
`
Figure 2  
Pinout, Numbering and Name of Pins (transparent top view)  
Datasheet  
2
Rev2.11  
2021-10-05  
Restricted  
TLF12501 Automotive 60A Smart Power Stage  
2
Pinout, Numbering and Name of Pins ꢀtransparent top viewꢁ  
Table 2  
I/O Signals  
Pin No. Name  
Pin Type Buffer Type Function  
1
IMONREF  
I/O  
Analog  
This pin provides a common-mode voltage reference for  
the IMON information. This pin may be tied to a fixed  
voltage such as bias rails of a PWM controller or left  
floating.  
11-18,  
23, 38  
SW  
O
Analog  
Switching node of synchronous buck converter.  
30  
31  
PHASE  
BOOT  
I
I
Analog  
Analog  
Switching node. For Bootstrap capacitor connection only.  
Bootstrap capacitor connection. Connect an X7R ceramic  
capacitor with value between 0.22 µF to 0.56 µF from  
BOOT to PHASE pin. Recommended value is 0.47µF. The  
bootstrap capacitor provides the charge to turn on the  
control MOSFET. For VIN > 13.2 V, a 2-bootstrap resistor  
in series with the capacitor is required to help reduce SW  
ringing and EMI.  
32  
33  
PWM  
EN  
I/O  
I
+3.3 V logic ꢀ.ꢀ V 5802c 5eve5 PWM 27put. PWM 27putꢁ ꢂH201ꢃ tur7s  
c87tr85 MOSFET 87ꢄ ꢂTr2-stateꢃ tur7s both MOSFETs off;  
ꢂL8wꢃ tur7s t1e sy7c1r878us MOSFET 87.  
+3.3 V logic Pulling EN high enables the driver; pulling EN low disables  
the driver and enters ultra-low quiescent current mode.  
Floating this pin is not recommended, however a pull-  
down is embedded to keep the driver off if the pin is  
floating. Pin is VCC tolerant.  
34  
36  
TMON /  
FAULT  
O
O
Analog  
The voltage at this pin is defined by the equation  
8mV * (Celsius Temperature) + 0.6 V. This pin will be  
pulled up to 3.3 V under severe over-temperature, over-  
current, HSS or bootstrap under-voltage condition.  
IMON  
Analog  
Sensed current output signal referenced to the IMONREF  
pin through external resistor. V (IMON IMONREF) voltage  
across that resistor represents current information.  
Table 3  
Pin No.  
3
Power Supply  
Name Pin Type Buffer Type Function  
VCC  
POWER  
Bias voltage for control logic. Connect a 1 µF cap between  
VCC and AGND. VCC should be connected to +5 V power  
supply.  
4
VDRV POWER  
The supply of gate driver. Connect a 1 µF cap between  
VDRV and PGND. VDRV should be connected to +5 V power  
supply.  
24-29  
VIN  
POWER  
4.25 V to 16 V high current input voltage connection.  
Datasheet  
3
Rev2.11  
2021-10-05  
Restricted  
TLF12501 Automotive 60A Smart Power Stage  
Table 4  
Pin No.  
2
Ground Pins  
Name Pin Type Buffer Type Function  
AGND GND  
PGND GND  
PGND GND  
PGND GND  
Signal ground. All interface signals are referenced to this  
pin.  
5-10, 37  
19-22  
35  
Power ground. It is also the power ground of the  
synchronous MOSFET.  
Power ground. It is also the power ground of the  
synchronous MOSFET.  
Power ground. It is also the power ground of the  
synchronous MOSFET.  
Datasheet  
4
Rev2.11  
2021-10-05  
Restricted  
TLF12501 Automotive 60A Smart Power Stage  
3
Block Diagram  
Figure 3 Simplied Block Diagram  
Datasheet  
5
Rev2.11  
2021-10-05  
Restricted  
TLF12501 Automotive 60A Smart Power Stage  
4
Electrical Specification  
4.1  
Absolute Maximum Ratings  
Note: TA = 25 °C  
Stresses above those listed in Table 5 ꢂAbs85ute Max26u6 Rat270sꢃ 6ay cause per6a7e7t da6a0e t8 t1e device.  
These are absolute stress ratings only and operation of the device is not implied or recommended at these or any  
other conditions in excess of those given in the operational sections of this specification. Exposure over values of  
the recommended ratings for extended periods may adversely affect the operation and reliability of the device.  
Table 5  
Absolute Maximum Ratings  
Symbol  
Parameter  
Values  
Unit Note / Test  
Condition  
Min.  
0.1  
Typ. Max.  
fSW  
Frequency of the PWM input  
Maximum average load current  
Input Voltage  
2
MHz  
A
IOUT  
VIN  
60  
25  
6.5  
6.5  
-0.30  
-0.3  
-0.3  
V
V
V
Pin VIN  
VCC  
VDRV  
Logic supply voltage  
Pin VCC  
Pin VDRV  
High and low-side driver  
voltage  
Switch node voltage  
VSW (DC)  
-1  
25  
V
V
V
Pin SW  
VSW (AC)  
-8 for 10ns  
32 for 2ns  
25  
PHASE voltage  
VPHASE (DC)  
VPHASE (AC)  
-1  
Pin PHASE  
-8 for 10ns  
-1  
32 for 2ns  
25  
VVIN-PHASE(DC)  
VIN-PHASE Voltage  
VVIN-PHASE(AC)  
Below -5V  
for 5ns  
32 for 1ns  
BOOT voltage  
VBOOT (DC)  
-0.3  
29  
V
Pin BOOT  
VBOOT (AC)  
--  
30 for 10ns  
VBOOT-PHASE  
-0.3  
6.5V (DC),  
7.5V for 3ns  
6.5  
VEN  
EN voltage  
-0.3  
-0.3  
-0.3  
V
V
V
Pin EN  
VPWM  
VTMON  
PWM voltage  
TMON voltage  
3.6  
3.6  
Pin PWM  
Pin TMON /  
FAULT  
VIMON  
VIMONREF  
TJmax  
IMON voltage  
-0.3  
-0.3  
-40  
-55  
3.6  
V
Pin IMON  
IMONREF voltage  
Junction temperature  
Storage temperature  
3.6  
V
Pin IMONREF  
150  
150  
C  
C  
TSTG  
Note: All rated voltages are relative to voltages on the AGND and PGND pins unless otherwise specified.  
Datasheet  
6
Rev2.11  
2021-10-05  
 
Restricted  
TLF12501 Automotive 60A Smart Power Stage  
4.2  
Thermal Characteristics  
Table 6  
Thermal Characteristics  
Symbol  
Parameter  
Values  
Unit  
Note / Test Condition  
Min.  
Typ. Max.  
K/W  
θJC_PCB  
Thermal resistance-Junction to  
PCB  
1.5  
θJC_Top  
Thermal resistance-Junction to  
top of package  
17.8  
28.4  
Note  
Thermal resistance to ambient θJA  
Note: Thermal Resistance (θJA) is measured with the component mounted on a high effective thermal conductivity test board in free air.  
4.3  
Recommended Operating Conditions  
Table 7  
Recommended Operating Conditions  
Parameter  
Symbol  
Values  
Unit  
Note / Test Condition  
Min.  
4.25  
4.25  
4.25  
100  
Typ.  
Max.  
16  
VIN  
Input voltage  
V
VDRV  
VCC  
MOSFET driver voltage  
Logic supply voltage  
Frequency of the PWM  
EN voltage  
5.5  
5.5  
fSW  
2000  
5.5  
kHz  
V
-
VEN  
Pin EN  
Pin PWM  
PWM voltage  
VPWM  
VIMON_CM  
TjOP  
3.6  
V
Current Sense reference voltage  
Junction temperature  
1.1  
-40  
1.9  
V
+125  
°C  
4.4  
Electrical Characteristics  
Note: VDRV = VCC = 5 V, TJ = 25 °C, VIMONREF = 1.2V  
Table 8  
Voltage Supply, Biasing Current  
Parameter  
Symbol  
Values  
Typ. Max.  
Unit  
Note / Test Condition  
Min.  
3.9  
UVLO VDRV rising  
UVLO VDRV falling  
VUVLO_R  
VUVLO_F  
VUVBOOT_R  
4.05  
3.85  
3.85  
4.2  
4.0  
4.0  
V
3.7  
3.7  
Bootstrap Under-voltage  
rising threshold  
Bootstrap Under-voltage  
falling threshold  
VUVBOOT_F 3.65  
3.82  
4.0  
EN = H, fSW = 600 kHz, D=15%  
EN = L  
Driver current  
Supply Current  
VIN Current  
IVDRV  
29  
2.5  
8
-
mA  
1.4  
3.5  
18  
4.2  
9.5  
42  
5
µA  
mA  
µA  
µA  
EN = H, fSW = 600 kHz, D=15%  
EN = L  
IVcc  
30  
No switching  
IVIN  
Datasheet  
7
Rev2.11  
2021-10-05  
Restricted  
TLF12501 Automotive 60A Smart Power Stage  
Table 9  
Current Sense  
Parameter  
Symbol  
Values  
Unit  
Note / Test Condition  
Min.  
Typ. Max.  
IMON IMON Voltage  
range  
VIMON  
0.8  
2.35  
V
V
DC + AC components  
IMON/IMONREF  
reference voltage  
range  
VIMON_CM  
1.1  
1.9  
Reference Voltage connected  
externally for the current sense  
signal  
Current sense  
gain  
Acs  
5
1
µA/A  
IMON Gain  
resistor range  
Resistor to be connected  
between IMON and IMONREF. For  
5mV/A, recommended 1kRIMON  
RIMON  
-
-
kΩ  
Leakage Current  
IOUT = 0A, VIMON=1.2V  
PWM in tri-state  
ILeak  
-2  
-3  
0
0
2
3
µA  
µA  
Zero current  
offset  
Ioffset  
Corresponds to 3 mV at 5 mV/A.  
(RIMON = 1 kΩꢅ, device in  
regulation  
Note 1  
Accuracy at  
TJ = -5 to 125°C  
-3.0  
-0.5  
3.0  
0.5  
%
A
for 25A < IOUT < IOCP_TH  
for -25A < IOUT < 25A Note 1  
VCC = VDRV = 5 V ±  
10 %  
Table 10  
Temperature Sense and Fault Communication  
Parameter  
Symbol  
Values  
Unit  
Note / Test Condition  
Min.  
Typ. Max.  
TMON Temperature  
ATMPGAIN  
7.84  
8.0  
8.16  
mV/°C  
mV  
ꢆꢇ°C ≤ TJ ≤ ꢈꢆꢇ°C, Note 1  
/
Sense Slope  
FAULT  
Temperature  
Sense Offset  
Voltage  
VTMPOFFSE  
T
784  
800  
816  
TJ = 25°C, 0.6 V + 8 mV/°C * TJ  
TMON / FAULT  
Source Current  
ITMONSRC  
ITMONSNK  
400  
26  
500 650  
µA  
µA  
TMON / FAULT pulled low  
TMON / FAULT pulled high  
TMON / FAULT  
Sink Current  
32  
3.3  
40  
ITMON/FAULT = 5 mA and under Over-  
Temperature, Over-Current, bootstrap  
under-voltage or HSS Fault  
Fault mode  
Active High  
VTFLTHIGH  
2.6  
3.6  
0.35  
V
V
TMON / FAULT  
LowNote 1  
VTFLTLOW  
No Fault, VDRV < VUVLO1_R  
TMON / FAULT  
pull down  
resistance  
RPULLDN_T  
MON  
150  
kΩ  
No Fault, VDRV < VUVLO1_R  
Datasheet  
8
Rev2.11  
2021-10-05  
Restricted  
TLF12501 Automotive 60A Smart Power Stage  
Table 11  
Other Logic Functions, Inputs/Outputs And Thresholds  
Parameter  
Symbol  
Values  
Unit  
Note / Test Condition  
Min. Typ. Max.  
EN  
Enable Power-on  
Delay  
PWM=0. Measured from EN rising  
edge to VSW> 1 V.  
tEN_ondelay  
tEN_offdelay  
RPULLDN_EN  
VEN_H  
27  
-
35  
1
μs  
μs  
kΩ  
V
Enable Power-off  
Delay  
PWM=0. Measured from EN falling  
edge to VSW < 0.9* VIN.  
Internal Pull  
down Resistance  
280  
When EN is floating  
Input High  
Voltage  
2.0  
Input Low  
Voltage  
VEN_L  
0.8  
V
PWM  
PWM Input High  
Threshold  
PWM Low or Tri-state to High  
PWM High or Tri-state to Low  
VIH  
2.4  
V
PWM Input Low  
Threshold  
VIL  
0.8  
V
PWM Hysteresis  
Active to Tri-state or Tri-state to  
Active  
IPWM_HYS  
40  
mV  
PWM Input Tri-  
State Floating  
Voltage  
PWM Input Floating  
VPWM_TRI  
1.4  
1.2  
1.6  
1.8  
2.0  
V
V
Tri-state Window VPWM_S  
PWM Input  
Equivalent Pull-  
up Resistance  
VPWM = 0 V  
RPWM_PU  
20  
kΩ  
PWM Input  
VPWM = 3.3 V  
Equivalent Pull-  
RPWM_PD  
50  
kΩ  
down Resistance  
Bootstrap  
Diode  
Forward Voltage VFWD  
-
-
620  
-
-
mV  
mV  
kΩ  
I(BOOT) = 5mA  
SW  
Bleeding  
Resistor  
SW Floating  
Voltage  
VSW_FLOAT  
RSW_PULL_DOWN  
VPWM = 1.6 V or Tri-state, VCC =  
VDRV = 5V  
200  
SW Pull Down  
Resistance  
0.85 1.125 1.5  
Datasheet  
9
Rev2.11  
2021-10-05  
Restricted  
TLF12501 Automotive 60A Smart Power Stage  
Table 12  
Protection  
Parameter  
Values  
Unit Note / Test Condition  
Symbol  
Min. Typ. Max.  
OTP  
Over Temp Rising  
Threshold  
TMON/FAULT pulled up high Note  
TRISE  
TFALL  
155  
143  
560  
150  
90  
°C  
1
Over Temp Falling  
Threshold  
Note 1  
°C TMON/FAULT released  
HSS  
High-side MOSFET VHSS_TH  
FAULT Short Threshold  
VSW VPGND  
mV  
TMON/FAULT Delay THSS_DEL  
After VHSS_TH is detected and  
ns  
TMON/FAULT is pulled high  
OCP  
Over-Current  
Threshold  
IOCP_TH  
80  
10  
100  
A
Cycl PWM High-Low Cycles to  
Over-Current Delay TOCP_DEL  
e
TMON/FAULT is pulled high  
Table 13  
Timing Characteristics  
Symbol  
Parameter  
Values  
Min. Typ. Max.  
Unit Note / Test Condition  
PWM High Propagation Delay  
PWM Low Propagation Delay  
Measured from PWM rising edge  
to VSW starts to rise  
tPWM_HI_DELAY  
tPWM_LO_DELAY  
tTRI_HI_DELAY  
48  
45  
53  
56  
75  
17  
ns  
Measured from PWM falling  
edge to VSW starts to fall  
ns  
Tri-State to High Propagation  
Delay  
PWM Tri-state to High transition  
to VSW > 1 V  
ns  
Tri-State Hold Off Time  
PWM Low to Tri-state transition  
40  
76  
to SW starts to fall Note 1  
ns  
tTriHold  
PWM High to Tri-state transition  
to SW starts to fall Note 1  
Minimum Recognized PWM  
Pulse Width Note 1  
tMinPWM  
ns  
Minimum output pulse width  
Positive load current.PWM  
tOnSWmin  
18  
ns pulses shorter than tOnSWmin will  
Note 1  
be extended to tOnSWmin  
.
Notes  
1. Guaranteed by design but not tested in production  
Datasheet  
10  
Rev2.11  
2021-10-05  
Restricted  
TLF12501 Automotive 60A Smart Power Stage  
5
Typical operating conditions  
Single Phase Circuit of Figure 18, VIN = 12 V, VOUT = ꢉ.ꢊ V, ƒSW = 500KHz, L = 100 nH, VCC = VDRV = 5 V, TAMBIENT = 25  
°C, RIMON =1kΩ ꢉ.ꢈ%, no heat sink, no air flow, 8-5ayer PCB b8ard 8f ꢀ.ꢋꢃ ꢌLꢅ x ꢆ.ꢍꢃ ꢌWꢅ, no PWM controller loss, no  
inductor loss, unless specified otherwise.  
Figure 4  
Power stage Efficiency  
Figure 5  
Power stage Loss  
Figure 6  
VCC / VDRV current vs Frequency  
Figure 7  
Thermal derating  
Figure 8  
Datasheet  
Current sense gain variation vs Frequency  
Figure 9 Current sense output  
11  
Rev2.11  
2021-10-05  
Restricted  
TLF12501 Automotive 60A Smart Power Stage  
Single Phase Circuit of Figure 18, VIN = 12 V, VOUT = 0.ꢊ V, ƒSW = 500KHz, L = 100 nH, VCC = VDRV = 5 V, TAMBIENT = 25  
°C, RIMON = 1kΩ ꢉ.ꢈ%, no heat sink, no air flow, 8-5ayer PCB b8ard 8f ꢀ.ꢋꢃꢌLꢅ x ꢆ.ꢍꢃꢌWꢅ, no PWM controller loss, no  
inductor loss, unless specified otherwise.  
Figure 10 Current sense gain vs Reference Voltage  
Figure 11 Current sense gain variation vs VCC/VDRV  
Figure 12 Current sense gain variation vs Vout  
Figure 13 Current sense gain variation vs Temperature  
Datasheet  
12  
Rev2.11  
2021-10-05  
Restricted  
TLF12501 Automotive 60A Smart Power Stage  
6
Theory of Operation  
6.1  
Description  
The TLF12501 contains an improved high speed MOSFET driver optimized to drive a pair of co-packaged high-side  
and low-side Optimos MOSFETs at frequency up to 2 MHz. DC-DC controllers using traditional current sense  
methods like DCR sensing and Rdson sensing typically have limitations. DCR current sensing is sensitive to  
temperature changes of the inductor and needs temperature compensation either implemented externally using  
a thermo-couple or inside the power stage. Rdson current sensing, on the other hand, is not dependent on the  
inductor but there is a temperature co-efficient associated with the MOSFET rdson. Besides, it is difficult to  
implement rdson current sensing for high-side MOSFET which is therefore replaced by emulated current while the  
low-side current is sensed across the MOSFET. With the advanced current-mirror sensing in TLF12501, all these  
limitations are eliminated while achieving superior accuracy. Current on both high-side as well as low-side  
MOSFET is mirrored on a sense MOSFET which is a part of the main MOSFET device, and hence comes with an  
inherent temperature compensation without the need for an additional circuitry. Real current-sensing on both  
MOSFET ensures that the system is always monitoring the real output current and can immediately react to any  
critical events like load step or over-current fault.  
The TLF12501 reports accurate temperature with the gain of 8 mV / °C, which helps the system to actively monitor  
the temperature in real time. Temperature outputs from multiple power stages can be connected together to  
report the highest temperature to Infineon’s d202ta5 PWM c87tr855er.  
The TLF12501 PWM input is compatible with industry standard 3.3V PWM input with tri-state.  
The TLF12501 can enable Body-Braking mode by responding to PWM tri-state signals sent from the controller,  
quickly disabling both MOSFETs in the power stage in order to enhance transient performance or provide a high  
impedance output.  
The TLF12501 supports diode emulation mode through the PWM tri-state s207a5. C87tr855ed by I7f27e87’s d202ta5  
PWM controller, the PWM tri-state signal will force the low-side FET to be off when the inductor current is about to  
go negative. The light-load efficiency then can be increased by preventing conduction loss caused by negative  
inductor current.  
The TLF12501 also supports deep-sleep power saving mode. When in deep-sleep mode, the driver will disable  
most of the function circuitry to greatly reduce power consumption.  
The TLF12501 features a full-range of protection, including VCC/VDRV Under-Voltage-Lockout (UVLO), thermal  
shutdown against an internal over-temperature condition, phase fault detection of a shorted high-side MOSFET,  
and cycle-by-cycle over-current protection due to an overload condition or saturated output inductor.  
Datasheet  
13  
Rev2.11  
2021-10-05  
Restricted  
TLF12501 Automotive 60A Smart Power Stage  
The TLF12501 also features internal protection circuitry to automatically replenish the voltage across the  
bootstrap capacitor. It avoids the gradual depletion of capacitor energy when the power stage sits in tri-state for  
a long period of time.  
6.2  
Sleep Modes  
When EN is pulled low, the power stage enters deep-sleep mode. The gate driver circuitry will be turned off  
immediately and most of the logic circuitry will be shut down to reduce the bias current to less than 32 µA. The  
IMON output will be shorted to IMONREF in deep sleep mode.  
When EN toggles from low to high, the power stage will be active and able to accept PWM signals after a delay of  
17 µs.  
6.3  
Current Sensing and Reporting  
The TLF12501 features a very accurate current mirror architecture on both high-side as well as low-side MOSFET,  
thus reporting the real time current information. The current information is reported using the IMON pin. The  
reported current is in the form of current output with the gain of 5µA /A from the IMON pin. In order to convert this  
into voltage, a 1kΩ, 0.1% resistor is recommended at the IMON pin and placed close to the PWM controller. A  
differential voltage signal from this resistor is connected to the controller as the reported current information.  
Note that for accurate current reporting, it is important that the other end of the resistor cannot be left floating.  
The converted voltage signal at the controller side has an effective gain of 5mV/A i.e. for every 1 A load, the  
controller will read 5mV from the power stage. The current-output differential signal from the power stage  
provides excellent noise immunity to the reported current information.  
6.4  
Advanced Fault reporting  
TLF12501 uses TMON / FAULT pin for reporting all types of faults detected. Since typical multiphase applications  
connect the TMON / FAULT signal from all the phases in a particular loop into a wired OR connection, the system  
cannot distinguish the faulty phase and the type of fault occurred. This is resolved by using advanced fault  
reporting in TLF12501 which uses a combination of TMON / FAULT and IMON signals to identify the fault. Since the  
IMON is separately connected from each phase to the controller, it provides phase-specific information in the  
event of a fault. Appropriate IMON response to each fault is explained in the corresponding fault sub-sections  
further. A summary of fault reporting is given in the Table 14 at the end of Section 6.  
6.5  
VDRV Under-voltage Lock-out ꢀUVLOꢁ  
TLF12501 features a VDRV under-voltage lock-out fault circuitry that monitors the VDRV voltage actively. As shown  
in Table 15, this is a non-catastrophic fault and the TMON/FAULT pin is pulled low with a weak pull down as long  
Datasheet  
14  
Rev2.11  
2021-10-05  
Restricted  
TLF12501 Automotive 60A Smart Power Stage  
as the VDRV voltage is below the UVLO threshold. If the power stage has not started up, the power stage PWM pin  
is also pulled down to 0V with a weak pull down. This can be monitored by the PWM controller as a signal from  
the power stage indicating that it is not ready yet for power up. As soon as VDRV voltage is above the UVLO  
threshold, the PWM pin is at tri state instead of 0V, this indicating the controller that it is OK to send the PWM  
signals.  
Once the powerstage is in normal operation, if then it encounters a VDRV UVLO condition, the power stage stops  
switching, and both TMON and IMON pins are pulled down to 0V. If there are multiple phases connected in the  
same loop, the TMON pin voltage, being connected to other power stage TMON pins, will continue reporting the  
highest power stage temperature. But the controller can still detect IMON pin voltage to be 0V (IMON IMONREF =  
-IMONREF, as seen by the controller), and thus identify this faulty phase. Since TMON pin is not pulled high, but  
continues reporting the temperature, this can be distinguished from a BOOT UVLO condition as shown in Table  
14.  
6.6  
Temperature Reporting and Over-temperature protection  
An internal temperature-sense circuit monitors the temperature of the TLF12501. The sensed temperature is  
reported at the TMON/FAULT pin with a linear voltage slope of 8mV/°C and a 0.6V offset at 0°C, as shown in  
equation (1).  
VTMON/FAULT (V)=0.6V +0.008V / C x T (C)  
………………………………………….……… ꢌꢈꢅ  
j
The TMON/FAULT pin also serves as a FAULT pin that is pulled to 3.3V in case of any catastrophic faults and is  
pulled down to 0V in case of any non-catastrophic faults. When there is no fault, it continues reporting temperature  
as long as the VCC supply is connected to a voltage in the recommended operating range. For a junction  
temperature below -25C, the TMON voltage is clamped to 0.4V to avoid false triggering of VDRV under-voltage.  
Once the temperature rises above the OTP rising threshold (155 °C), the TMON/FAULT output will be pulled high  
immediately, the driver will stop switching and stop responding to the PWM signal input from the controller. Both  
high-side and low-side MOSFET are turned off. The TMON/FAULT will remain high until temperature falls below  
the falling threshold (143 °C). As soon as TMON is pulled high during OTP, the IMON is internally shorted to  
IMONREF, thus identifying the faulty phase and occurrence of OTP to the system.  
6.7  
Over-current Protection and Flag  
This feature protects the power stage from self-destruction from repetitive high current events such as saturated  
inductors due to poor component selection or by incorrectly optimized control loops. These high current events  
could eventually lead to a shorted high-side MOSFET failure.  
Datasheet  
15  
Rev2.11  
2021-10-05  
Restricted  
TLF12501 Automotive 60A Smart Power Stage  
With cycle-by-cycle self-preservation, the current is monitored every cycle. If the over-current threshold (default  
90 A) has been exceeded, the PWM high pulse will be truncated so that the inductor current is allowed to relax.  
When TLF12501 detects 10 consecutive PWM cycle over-current events, the TMON/FAULT pin is flagged high to  
27d2cate t1e c87tr855er 8f t1e fau5t. T1e TMON/FAULT f5a00ed ꢂ1201ꢃ a5870 w2t1 IMON 27f8r6at287 cr8ss270 t1e  
over-current threshold helps the controller identify the faulty phase that caused OC. Note the PWM pu5se ꢂ87-  
t26eꢃ s18u5d be at 5east ꢇꢉ7s f8r accurate fu7ct287270 8ver-current protection.  
6.8  
Bootstrap Capacitor Under-Voltage  
TLF12501 features a bootstrap capacitor under-voltage circuitry that detects a missing bootstrap capacitor before  
powering up or a damaged bootstrap capacitor during normal operation. Once bootstrap capacitor under-voltage  
is determined, the TMON/FAULT pin will be pulled high to report a catastrophic fault to the PWM controller. At the  
same time, IMON pin is pulled to 0V or GND voltage, thus effectively indicating a negative IMONREF voltage  
differential between IMON and IMONREF pins at the controller.  
Table 14  
Advanced Fault Reporting  
Datasheet  
16  
Rev2.11  
2021-10-05  
Restricted  
TLF12501 Automotive 60A Smart Power Stage  
Fault  
Severity  
Level  
Type of Fault  
Power stage PWM  
Response  
Power  
stage IMON  
Response  
Powerstage TMON Recommended  
Response  
Controller  
Identification  
Criteria  
VDRV UVLO  
(power-up)  
Weak pull down to 0V = IMONREF Weak pull down to  
TMON < 2V,  
PWM < 0.8V  
0V  
(PWM pin voltage can  
be driven by  
controller, no  
switching on  
powerstage)  
(or VTMON from other  
power stages in  
same loop)  
VDRV UVLO  
Weak pull down to 0V  
= 0V  
Weak pull down to  
0V  
TMON < 2V,  
IMON < 0.4V  
(normal operation) (PWM pin voltage can  
be driven by  
controller, no  
switching on  
powerstage)  
(or VTMON from other  
power stages in  
same loop)  
OTP  
OCP  
Power stage stops  
switching until OTP  
clears  
=IMONREF  
= 3.3V  
= 3.3V  
TMON > 2.6V,  
IMON=IMONREF,  
1V < IMON < 2V  
Power stage continues Continues  
TMON > 2.6V,  
IMON-IMONREF  
> CTRL_OCP,  
IMON < 2.6V  
responding to PWM  
signal from controller.  
Truncates high side  
pulse until powerstage  
is in OCP.  
reporting  
current  
(10 events without 3  
consecutive good  
cycles)  
HSS (1st event)  
Power stage continues  
responding to PWM  
signal from controller.  
= 3.3V  
= 3.3V  
= 3.3V  
TMON > 2.6V,  
IMON > 2.6V  
(latched)  
BOOT UVLO (10  
events without 3  
consecutive good  
cycles)  
Power stage continues  
responding to PWM  
signal from controller.  
= 0V  
TMON > 2.6V,  
IMON < 0.4V  
(latched)  
Datasheet  
17  
Rev2.11  
2021-10-05  
Restricted  
TLF12501 Automotive 60A Smart Power Stage  
7
Application Diagram  
12V  
CVIN1  
L1  
Cboot1  
PHASE  
TMON/FLT  
PWM  
V_CPU_L1  
SW  
PWM1  
ISEN1  
L
VSEN1  
VRTN2  
TLF12501  
O
A
D
IMON  
IMONREF  
EN  
1K  
PGND  
3.3V  
VCC  
1uF  
CVCC1  
CVDRV1  
Multiphase  
PWM  
Controller  
+5V  
VRDY1  
12V  
VRDY2  
CVIN2  
L2  
Cboot2  
PHASE  
RVIN1_1  
VIN_1  
VINSEN1  
TMON/FLT  
PWM  
13K  
SW  
PWM2  
ISEN2  
1K  
10nF  
RVIN1_2  
TLF12501  
IMON  
1K  
1K  
1K  
IMONREF  
EN  
PGND  
CVCC2  
CVDRV2  
SM_DAT  
I2C Bus  
SM_CLK  
.
.
.
.
.
.
+5V  
SM_ALERT#  
12V  
CVIN6  
Cboot6  
PHASE  
SV_ALERT#  
SV_DAT  
VCCIO  
CPU Serial  
Bus  
TMON/FLT  
PWM  
TSEN1  
PWM6  
ISEN6  
L6  
SV_CLK  
SW  
1K  
TLF12501  
IMON  
VRHOT_ICRIT#  
IMONREF  
EN  
PGND  
VR_EN1  
VR_EN2  
From  
System  
CVCC6  
CVDRV6  
+5V  
PWR_IN_ALERT#  
12V  
CVIN1_L2  
L_L2  
Cboot1_L2  
PHASE  
TMON/FLT  
PWM  
TSEN2  
SW  
V_CPU_L2  
PWM1_L2  
L
TLF12501  
PROG  
O
A
D
IMON  
ISEN1_L2  
IMONREF  
EN  
PGND  
CVCC1_L2 CVDRV1_L2  
CFILT  
VSEN2  
VRTN2  
1uF  
+5V  
GND  
Figure 14 6+1 - Phase Voltage Regulator - Typical Application (simplified schematic)  
Datasheet  
18  
Rev2.11  
2021-10-05  
Restricted  
TLF12501 Automotive 60A Smart Power Stage  
8
Mechanical Dimensions ꢀTop View and Side Viewꢁ PQFN  
Figure 15 Mechanical Dimensions of Package (Top View and Side View) in mm  
Datasheet  
19  
Rev2.11  
2021-10-05  
Restricted  
TLF12501 Automotive 60A Smart Power Stage  
9
Mechanical Dimensions of Package in mm  
Figure 16 Mechanical Dimensions of Package (Bottom View) in mm  
Datasheet  
20  
Rev2.11  
2021-10-05  
owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on the product, technology,  
Edition <yyyy-mm-dd>  
Published by  
event be regarded as a guarantee of conditions or delivery terms and conditions and prices please  
character2st2cs ꢌꢂBesc1affe71e2ts0ara7t2eꢃꢅ .  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
Infineon Technologies AG  
81726 München, Germany  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement of  
intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2021 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about this  
document?  
In addition, any information given in this document  
2s sub3ect t8 cust86er’s c86p52a7ce w2t1 2ts  
obligations stated in this document and any  
applicable legal requirements, norms and standards  
c87cer7270 cust86er’s pr8ducts a7d a7y use 8f t1e  
pr8duct 8f I7f27e87 Tec1785802es 27 cust86er’s  
applications.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized  
representatives  
of  
Infineon  
Email: erratum@infineon.com  
Tec1785802es, I7f27e87 Tec1785802es’ pr8ducts 6ay  
not be used in any applications where a failure of the  
product or any consequences of the use thereof can  
reasonably be expected to result in personal injury.  
Document reference  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
resp87s2b252ty 8f cust86er’s tec172ca5 depart6e7ts  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  
OptimosꢀPowerstage  
TLF12501  
RevisionꢀHistory  
TLF12501  
Revision:ꢀ2021-11-16,ꢀRev.ꢀ2.11  
Previous Revision  
Revision Date  
Subjects (major changes since last revision)  
2.0  
Release of final version  
2021-10-06  
2021-11-16  
2.11  
Updated Absolute maximum ratings table and description section  
Trademarks  
Allꢀreferencedꢀproductꢀorꢀserviceꢀnamesꢀandꢀtrademarksꢀareꢀtheꢀpropertyꢀofꢀtheirꢀrespectiveꢀowners.  
WeꢀListenꢀtoꢀYourꢀComments  
Anyꢀinformationꢀwithinꢀthisꢀdocumentꢀthatꢀyouꢀfeelꢀisꢀwrong,ꢀunclearꢀorꢀmissingꢀatꢀall?ꢀYourꢀfeedbackꢀwillꢀhelpꢀusꢀtoꢀcontinuously  
improveꢀtheꢀqualityꢀofꢀthisꢀdocument.ꢀPleaseꢀsendꢀyourꢀproposalꢀ(includingꢀaꢀreferenceꢀtoꢀthisꢀdocument)ꢀto:  
erratum@infineon.com  
Publishedꢀby  
InfineonꢀTechnologiesꢀAG  
81726ꢀMünchen,ꢀGermany  
©ꢀ2021ꢀInfineonꢀTechnologiesꢀAG  
AllꢀRightsꢀReserved.  
LegalꢀDisclaimer  
Theꢀinformationꢀgivenꢀinꢀthisꢀdocumentꢀshallꢀinꢀnoꢀeventꢀbeꢀregardedꢀasꢀaꢀguaranteeꢀofꢀconditionsꢀorꢀcharacteristicsꢀ  
(“Beschaffenheitsgarantie”)ꢀ.  
Withꢀrespectꢀtoꢀanyꢀexamples,ꢀhintsꢀorꢀanyꢀtypicalꢀvaluesꢀstatedꢀhereinꢀand/orꢀanyꢀinformationꢀregardingꢀtheꢀapplicationꢀofꢀthe  
product,ꢀInfineonꢀTechnologiesꢀherebyꢀdisclaimsꢀanyꢀandꢀallꢀwarrantiesꢀandꢀliabilitiesꢀofꢀanyꢀkind,ꢀincludingꢀwithoutꢀlimitation  
warrantiesꢀofꢀnon-infringementꢀofꢀintellectualꢀpropertyꢀrightsꢀofꢀanyꢀthirdꢀparty.  
Inꢀaddition,ꢀanyꢀinformationꢀgivenꢀinꢀthisꢀdocumentꢀisꢀsubjectꢀtoꢀcustomer’sꢀcomplianceꢀwithꢀitsꢀobligationsꢀstatedꢀinꢀthis  
documentꢀandꢀanyꢀapplicableꢀlegalꢀrequirements,ꢀnormsꢀandꢀstandardsꢀconcerningꢀcustomer’sꢀproductsꢀandꢀanyꢀuseꢀofꢀthe  
productꢀofꢀInfineonꢀTechnologiesꢀinꢀcustomer’sꢀapplications.  
Theꢀdataꢀcontainedꢀinꢀthisꢀdocumentꢀisꢀexclusivelyꢀintendedꢀforꢀtechnicallyꢀtrainedꢀstaff.ꢀItꢀisꢀtheꢀresponsibilityꢀofꢀcustomer’s  
technicalꢀdepartmentsꢀtoꢀevaluateꢀtheꢀsuitabilityꢀofꢀtheꢀproductꢀforꢀtheꢀintendedꢀapplicationꢀandꢀtheꢀcompletenessꢀofꢀtheꢀproduct  
informationꢀgivenꢀinꢀthisꢀdocumentꢀwithꢀrespectꢀtoꢀsuchꢀapplication.  
Information  
Forꢀfurtherꢀinformationꢀonꢀtechnology,ꢀdeliveryꢀtermsꢀandꢀconditionsꢀandꢀpricesꢀpleaseꢀcontactꢀyourꢀnearestꢀInfineon  
TechnologiesꢀOfficeꢀ(www.infineon.com).  
Warnings  
Dueꢀtoꢀtechnicalꢀrequirements,ꢀcomponentsꢀmayꢀcontainꢀdangerousꢀsubstances.ꢀForꢀinformationꢀonꢀtheꢀtypesꢀinꢀquestion,  
pleaseꢀcontactꢀtheꢀnearestꢀInfineonꢀTechnologiesꢀOffice.  
TheꢀInfineonꢀTechnologiesꢀcomponentꢀdescribedꢀinꢀthisꢀDataꢀSheetꢀmayꢀbeꢀusedꢀinꢀlife-supportꢀdevicesꢀorꢀsystemsꢀand/or  
automotive,ꢀaviationꢀandꢀaerospaceꢀapplicationsꢀorꢀsystemsꢀonlyꢀwithꢀtheꢀexpressꢀwrittenꢀapprovalꢀofꢀInfineonꢀTechnologies,ꢀifꢀa  
failureꢀofꢀsuchꢀcomponentsꢀcanꢀreasonablyꢀbeꢀexpectedꢀtoꢀcauseꢀtheꢀfailureꢀofꢀthatꢀlife-support,ꢀautomotive,ꢀaviationꢀand  
aerospaceꢀdeviceꢀorꢀsystemꢀorꢀtoꢀaffectꢀtheꢀsafetyꢀorꢀeffectivenessꢀofꢀthatꢀdeviceꢀorꢀsystem.ꢀLifeꢀsupportꢀdevicesꢀorꢀsystemsꢀare  
intendedꢀtoꢀbeꢀimplantedꢀinꢀtheꢀhumanꢀbodyꢀorꢀtoꢀsupportꢀand/orꢀmaintainꢀandꢀsustainꢀand/orꢀprotectꢀhumanꢀlife.ꢀIfꢀtheyꢀfail,ꢀitꢀis  
reasonableꢀtoꢀassumeꢀthatꢀtheꢀhealthꢀofꢀtheꢀuserꢀorꢀotherꢀpersonsꢀmayꢀbeꢀendangered.  
22  
Rev.ꢀ2.11,ꢀꢀ2021-11-16  

相关型号:

TLF12UA102W2R0

Single Phase EMI Filter
TAIYO YUDEN

TLF12UA102WR04

Single Phase EMI Filter
TAIYO YUDEN

TLF12UA103W0R7

Single Phase EMI Filter
TAIYO YUDEN

TLF12UA1503R0N

Single Phase EMI Filter
TAIYO YUDEN

TLF12UA202W1R6

Single Phase EMI Filter
TAIYO YUDEN

TLF12UA203W0R5

Single Phase EMI Filter
TAIYO YUDEN

TLF12UA3001R7N

Single Phase EMI Filter
TAIYO YUDEN

TLF12UA303W0R4

Single Phase EMI Filter
TAIYO YUDEN

TLF12UA303W2R0

Single Phase EMI Filter
TAIYO YUDEN

TLF12UA802W0R8

Single Phase EMI Filter
TAIYO YUDEN

TLF12UB102W1R5

Single Phase EMI Filter
TAIYO YUDEN

TLF12UB103W0R5

暂无描述
TAIYO YUDEN