TLE9140EQW [INFINEON]

As the market strives for cars and trucks with bet;
TLE9140EQW
型号: TLE9140EQW
厂家: Infineon    Infineon
描述:

As the market strives for cars and trucks with bet

文件: 总100页 (文件大小:1294K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE9140EQW  
Preliminary datasheet  
MOTIX48 V/24 V bridge driver  
Features  
• Drive B6-bridge for BLDC motors in 24 V/48 V platforms with protection features  
• Compatible with general microcontroller and MOTIXTM MCU  
• High voltage capability/robustness up to 100 V helps to simplify PCB design  
• 16-bit serial peripheral interface  
• Charge pump concept to support 100% duty cycle  
• Undervoltage shutdown  
• Overvoltage shutdown  
• Overtemperature protection  
• Drain-source monitoring  
• Timeout watchdog  
• Cross-current protection  
Off-state diagnostic  
• Adaptive MOSFET control  
Potential applications  
• Can be used to drive B6-bridge for BLDC motors with battery voltage up to 72 V (load dump) for  
24 V/48 V applications for example engine cooling fan, water pump and oil pump  
• Can be used together with general microcontroller to transfer the applications to 24 V/48 V  
platforms  
• Can be used together with MOTIXTM MCU to transfer the applications to 24V/48V platforms with  
minor sofꢀare development effort  
Product validation  
Qualified for automotive applications.  
Product validation according to AEC-Q100.  
Description  
This device is a 48 V MOSFET gate driver compatible with general microcontrollers and MOTIXTM MCU to drive max. 3 half-bridges  
in 24 V/48 V platform. It provides protection features and the possibility to use the diagnosis features integrated in the MOTIXTM  
MCU.  
TLE9140EQW  
VSM  
UV & OV  
Detection  
Charge Pump  
Temperature  
warning and  
shutdown  
DH  
VDD  
Internal Supply  
B6 - Bridge  
Control Logic  
16-bit SPI  
SPI  
EN  
Watchdog  
Protections  
Diagnostic  
Gate Drivers  
MCU/MOTIXTM  
MCU  
M
MOSFET  
Control  
VDS  
Monitoring  
Safe Switch  
Off Path  
Safe Switch  
Off Path  
ILx/IHx  
CSA  
Datasheet  
www.infineon.com  
Please read the sections "Important notice" and "Warnings" at the end of this document  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
Description  
Table 1  
Product summary  
Parameter  
Symbol  
VS(nor)  
Value  
Specified supply voltage range  
Max. total charge driver capability  
Max. undervoltage threshold  
Min. overvoltage threshold  
Max. total quiescent current  
8.0 V to 72 V  
231 nC * 6 @ 25 kHz  
20.0 V/8.0 V  
72.0 V/48.0 V  
26 µA  
Qtot_max  
VSUV_ON  
VSOV_ON  
IDDQ + ISQ  
Package  
Marking  
PG-TSDSO-32  
TLE9140EQW  
Datasheet  
2
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
Table of contents  
Table of contents  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1
2
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.1  
3.2  
3.3  
4
4.1  
4.1.1  
4.1.2  
4.1.3  
4.2  
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Operation modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Reset behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
4.3  
4.4  
5
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.7.1  
5.7.2  
5.8  
5.8.1  
5.8.2  
5.8.3  
5.8.4  
5.9  
Protections and diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Reverse polarity protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Drain-source voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Overtemperature protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Input error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Off-state diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Timeout watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Cross-current protection and drain-source overvoltage blank time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Cross-current protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Drain-source overvoltage blank time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Overvoltage and undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
VSM undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
VSM overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
VDD undervoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Charge pump undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Electrical characteristics protection and diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6
6.1  
6.2  
Gate driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Gate driver control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Electrical characteristics of gate driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
7
BEMF comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
8
Serial Peripheral Interface - SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
8.1  
SPI description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Datasheet  
3
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
Table of contents  
8.2  
8.3  
8.4  
8.5  
Global error flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Global status byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
SPI error detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Electrical characteristics SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
9
9.1  
9.2  
Register specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Register overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
General control register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
General control register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
General control register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
General control register 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
General control register 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
General control register 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
General control register 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
General control register 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
General control register 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
General control register 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
General control register 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
General control register 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
General control register 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
General status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Global status register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Global status register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Global status register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Global status register 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Effective MOSFET turn-on/-off delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Effective MOSFET rise/fall times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
9.2.1  
9.2.2  
9.2.3  
9.2.4  
9.2.5  
9.2.6  
9.2.7  
9.2.8  
9.2.9  
9.2.10  
9.2.11  
9.2.12  
9.2.13  
9.3  
9.3.1  
9.3.2  
9.3.3  
9.3.4  
9.3.5  
9.3.6  
9.3.7  
10  
11  
12  
Application figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
Datasheet  
4
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
1 Block diagram  
1
Block diagram  
UV & OV  
detection  
Charge pump  
EN  
Temperature  
warning and  
shutdown  
VDD  
SDI  
Internal supply  
Control logic  
16-bit SPI  
DH  
Watchdog  
Protections  
SDO  
VSM  
CP1  
CP2  
SCLK  
CSN  
EN  
Diagnostic  
VDS  
monitoring  
MOSFET  
control  
GHM1  
SHM1  
Safe  
switch-off  
path  
Safe switch-  
off path  
GLM1  
GHM2  
SHM2  
IH1  
IH2  
IH3  
GLM2  
GHM3  
IL1  
IL2  
IL3  
SHM3  
GLM3  
SLM  
GND  
Figure 1  
Block diagram  
Datasheet  
5
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
2 Pin configuration  
2
Pin configuration  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
1
2
3
4
5
6
7
8
GND  
VDD  
SCLK  
SDO  
CSN  
SDI  
IL1  
IL2  
IL3  
IH1  
IH2  
IH3  
SLM  
GLM1  
GLM2  
GLM3  
DH  
VSM  
CP2  
CP2P  
N.C.  
GHM3  
SHM3  
CP2N  
SHM2  
GHM2  
EN  
GHM1  
SHM1  
CP1P  
CP1N  
CP1  
9
10  
11  
12  
13  
14  
15  
16  
exposed pad (bottom)  
Figure 2  
Table 2  
Pin configuration  
Pin definitions and functions  
Pin  
1
Symbol  
GND  
Function  
Ground  
2
VDD  
VDD supply voltage (connect to MCU/MOTIXTM MCU)  
Power supply for digital circuits  
3
SCLK  
SDO  
CSN  
SDI  
IL1  
Serial clock input (connect to MCU/MOTIXTM MCU)  
Serial data output (connect to MCU/MOTIXTM MCU)  
Chip select not (connect to MCU/MOTIXTM MCU)  
Serial data input (connect to MCU/MOTIXTM MCU)  
Low-side 1 gate control (connect to MCU/MOTIXTM MCU)  
Low-side 2 gate control (connect to MCU/MOTIXTM MCU)  
Low-side 3 gate control (connect to MCU/MOTIXTM MCU)  
High-side 1 gate control ((connect to MCU/MOTIXTM MCU)  
High-side 2 gate control (connect to MCU/MOTIXTM MCU)  
High-side 3 gate control (connect to MCU/MOTIXTM MCU)  
4
5
6
7
8
IL2  
9
IL3  
10  
11  
12  
13  
IH1  
IH2  
IH3  
SLM  
Source low-side  
Common connection to the source of the low-side MOSFETs  
14  
15  
GLM1  
GLM2  
Gate low-side 1  
Gate low-side 2  
(table continues...)  
Datasheet  
6
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
2 Pin configuration  
Table 2  
(continued) Pin definitions and functions  
Pin  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Symbol  
GLM3  
CP1  
Function  
Gate low-side 3  
Output of charge pump 1  
Negative connection to charge pump capacitor 1  
Positive connection to charge pump capacitor 1  
Source high-side 1  
CP1N  
CP1P  
SHM1  
GHM1  
EN  
Gate high-side 1  
Enable  
GHM2  
SHM2  
CP2N  
SHM3  
GHM3  
N.C.  
Gate high-side 2  
Source high-side 2  
Negative connection to charge pump capacitor 2  
Source high-side 3  
Gate high-side 3  
Unconnected pin  
CP2P  
CP2  
Positive connection to charge pump capacitor 2  
Output of charge pump 2  
VSM  
Voltage supply  
Connect to supply voltage (battery) with reverse polarity protection circuit  
32  
DH  
Drain high-side  
Connect to the drain of high-side MOSFETs  
Datasheet  
7
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
3 General product characteristics  
3
General product characteristics  
3.1  
Absolute maximum ratings  
Table 3  
Absolute maximum ratings  
Tj = -40°C to 175°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-Number  
Min.  
Max.  
Voltages  
Supply voltage  
VSM  
VDD  
-0.3  
78  
V
V
P_GPC_01_01  
P_GPC_01_02  
Logic supply  
voltage  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
5.5  
Logic input voltages VILX, VIHX  
(IHx, ILx)  
20  
V
P_GPC_01_03  
P_GPC_01_04  
P_GPC_01_05  
P_GPC_01_06  
Logic input voltages VSCLK, VCSN  
(SCLK, CSN)  
VDD + 0.3 V  
VDD + 0.3 V  
VDD + 0.3 V  
VDD + 0.3 V  
Logic input voltages VSDI  
(SDI)  
I < 10mA  
I < 10 mA  
Logic input voltages VEN  
(EN)  
Voltage at SDO  
VSDO  
-0.3  
P_GPC_01_07  
P_GPC_01_08  
P_GPC_01_09  
Voltage range at DH VDH  
-0.3  
90  
V
V
Voltage range at  
GHMx  
VGHMx  
-10.0  
100  
Dynamic voltage  
range at GHMx  
VGHMx  
VSHMx  
VSHMx  
VGLMx  
VSLM  
110  
100  
110  
20  
V
V
V
V
V
V
< 500 ns  
P_GPC_01_10  
P_GPC_01_11  
P_GPC_01_12  
P_GPC_01_13  
P_GPC_01_14  
P_GPC_01_15  
Voltage range at  
SHMx  
-10.0  
Dynamic voltage  
range at SHMx  
< 500 ns  
Voltage range at  
GLMx  
-7.0  
-7.0  
-0.3  
Voltage range at  
SLM  
6.0  
13  
Voltage difference VGSM  
between GHMx-  
SHMx and GLMx-  
SLM  
Voltage range at  
charge pump pin  
CP1  
VCP1  
-0.3  
20  
V
P_GPC_01_16  
(table continues...)  
Datasheet  
8
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
3 General product characteristics  
Table 3  
(continued) Absolute maximum ratings  
Tj = -40°C to 175°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-Number  
Min.  
-0.3  
Max.  
VCP1  
0.3  
Voltage range at  
charge pump pin  
CP1N  
VCP1N  
+
V
V
V
V
V
V
P_GPC_01_17  
Voltage range at  
charge pump pin  
CP1P  
VCP1P  
-0.3  
-0.3  
78  
P_GPC_01_25  
P_GPC_01_26  
P_GPC_01_18  
P_GPC_01_19  
P_GPC_01_20  
Voltage difference VSM - VCP1N  
between VSM and  
CP1N pins  
VSM  
100  
100  
100  
Voltage range at  
charge pump pin  
CP2P  
VCP2P  
VSM - 0.3 –  
VSM - 0.6 –  
Voltage range at  
charge pump pin  
CP2  
VCP2  
Voltage range at  
charge pump pin  
CP2N  
VCP2N  
-0.3  
-40  
Temperatures  
Junction  
temperature  
175  
°C  
P_GPC_01_21  
Tj  
ESD susceptibility  
ESD susceptibility  
all pins 1  
VESDHBM1  
VESDCDM1  
VESDCDM2  
-2  
2
kV  
V
HBM 1)  
CDM 2)  
CDM 2)  
P_GPC_01_22  
P_GPC_01_23  
P_GPC_01_24  
ESD susceptibility  
all pins 2  
-500  
-750  
500  
750  
ESD susceptibility  
pin corner pins  
V
1)  
2)  
ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5 kΩ, 100 pF).  
ESD susceptibility, Charged device model (CDM) according JEDEC JESD22-C101.  
Datasheet  
9
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
3 General product characteristics  
3.2  
Functional range  
Table 4  
Functional range  
Tj = -40°C to 175°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-Number  
Min.  
8.0  
Max.  
60  
Supply voltage  
range for normal  
operation  
VSM(nor)  
V
V
P_GPC_02_01  
Extended supply  
voltage range  
VSM(ext)  
8.0  
75  
Note: All parameters  
are specified with  
the condition  
P_GPC_02_02  
8.0 V < VSM < 60 V. They  
may have deviations  
in extended supply  
voltage range.  
Voltage range at DH VDH  
8.0  
3.0  
85  
V
V
P_GPC_02_03  
P_GPC_02_04  
Logic supply  
voltage  
VDD  
5.5  
Junction  
-40  
-40  
150  
175  
°C  
°C  
P_GPC_02_05  
P_GPC_02_06  
Tj  
temperature  
Extended junction Tj_ext  
temperature  
3.3  
Thermal resistance  
Thermal resistance  
Symbol  
Table 5  
Parameter  
Values  
Typ.  
1.93  
27.12  
Unit Note or condition  
P-Number  
Min.  
Max.  
Junction to case  
RthJC  
RthJA  
k/W Ta = 85°C  
k/W Ta = 85°C;  
P_GPC_03_01  
P_GPC_03_02  
Junction to  
ambient  
Package on JEDEC 2s2p  
with thermal VIAs  
Datasheet  
10  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
4 General description  
4
General description  
Operation modes  
4.1  
EN = High  
Sleep mode  
EN = Low  
Low current  
consumption  
Gate drivers OFF  
Normal mode  
EN = High  
EN = Low  
EN = Low  
Watchdog  
continuously  
retriggered  
Watchdog error  
1. ST = 0  
Stop mode  
2. Send watchdog pattern  
with correct CHECKSUM  
EN = High  
ST = 1  
External MOSFETs  
are turned OFF  
Figure 3  
State diagram  
4.1.1  
Normal mode  
The device enters normal operation mode if EN pin is set to high for a duration longer than SPI setup time tSET_SPI  
.
The device will stay in the normal operation mode if the watchdog is retriggered in the defined watchdog period and  
the EN is kept to high.  
In normal operation mode, the device behaves as follows:  
All functions and all diagnostics are available  
The output drivers can be enabled and configured through the SPI in error free condition  
Note:  
In case of SPI error, the SPI frame which contains an error will be ignored and the SPIE bit will be set. The  
next valid SPI frame will be accepted, but the SPIE bit remains until it is cleared by the SPI command.  
Datasheet  
11  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
4 General description  
4.1.2  
Sleep mode  
Sleep mode is a low power mode with quiescent current of VDD and VSM reduced respectively to IDD_Q and ISMQ  
.
If EN is set to low for a duration longer than EN filter time tEN_FILT, the device will:  
Turn-off the external MOSFETs actively  
Enter sleep mode with a delay defined by tDSLEEP  
In sleep mode, the device behaves as follows:  
Turn-off the external MOSFETs with pull down resistors  
Deactivate the internal circuits and the power supply structure  
Reset the SPI registers  
4.1.3  
Stop mode  
In case of watchdog error, the device will:  
Turn-off external MOSFETs  
Set ST bit (see STAT and Global status byte)  
Enter stop mode  
In stop mode, the device behaves as follows:  
The control registers are reset to default values  
Any write command or clear command (except ST bit in STAT) will be discarded  
A clear command to status registers does not reset any failure flag except ST bit in STAT  
Control and status registers are allowed to be read in this mode  
The device will resume normal mode from stop mode if the microcontroller executes the following sequence:  
1.  
2.  
Clear the ST bit in STAT  
Send watchdog pattern with correct CHECKSUM bit  
Note:  
Only a correct SPI protocol transaction in between can interrupt the exit sequence.  
4.2  
Reset behavior  
The device resumes normal operation mode, and the nPOR bit in STAT and Global status byte is reset to 0 to report  
the reset condition if the following conditions are fulfilled:  
EN is set to high for a duration longer than tSET_SPI  
VDD > VDD_POR  
In case of VDD undervoltage, if VDD is rising above VDD_POR again, the device behaves as follows:  
Reset the digital block  
Set NPOR bit to 0 to report the reset condition  
Resume normal operation mode  
4.3  
Power supply  
The device is supplied by VDD and VSM. The VDD supplies the digital I/O ports, and VSM supplies the buck/boost charge  
pump (charge pump 1) and the single stage charge pump (charge pump 2).  
The output of the buck/boost charge pump (CP1) is regulated at VCP1, and supplies:  
The low side gate drivers  
The single stage charge pump  
The output voltage of the single stage CP2 is used to supply the high side gate drivers.  
Datasheet  
12  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
4 General description  
VSM  
CCP2  
CVCP2  
SHx<3:1>  
GHx<3:1>  
CP2P CP2N  
CP2  
HS gate  
driver  
Charge pump 2  
CCP1  
CP1P CP1N  
GLx<3:1>  
SL  
CP1  
Charge pump 1  
(buck/boost)  
LS gate  
driver  
CVCP1  
Figure 4  
Power supply  
4.4  
Electrical characteristics  
Table 6  
Supply  
VSM = 8.0 V to 60 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-Number  
Min.  
Max.  
Current consumption, EN = low  
Supply quiescent  
current  
ISMQ  
7
15  
µA  
µA  
μA  
μA  
Tj < 85 °C  
P_GEN_01_01  
P_GEN_01_03  
P_GEN_01_04  
P_GEN_01_06  
Supply quiescent  
current extended  
ISMQ_EXT  
IDDQ  
3
40  
150°C < Tj ≤ 175°C  
Tj < 85 °C  
Logic supply  
quiescent current  
10  
Logic supply  
quiescent current  
extended  
IDDQ_EXT  
120  
150° < Tj ≤ 175°C  
Total quiescent  
current  
IDDQ + ISMQ  
8.5  
26  
μA  
Tj < 85 °C  
P_GEN_01_07  
Sleep mode delay  
EN low filter time  
tDSLEEP  
tEN_FILT  
2.5  
1
4.4  
2.4  
10  
μs  
P_GEN_01_08  
P_GEN_01_09  
4.5  
μs  
Current consumption, EN = high  
Supply current  
ISM_NOR1  
125  
62  
150  
85  
mA 13 V < VSM < 19 V,  
BD_EN = 1b,  
P_GEN_01_20  
P_GEN_01_21  
ILoad_CP1 = 19.1mA,  
ILoad_CP2 = 19.1mA  
Supply current  
ISM_NOR2  
mA 19 V < VSM < 60 V,  
BD_EN = 1b, ILoad_CP1  
=
19.1 mA, ILoad_CP2  
19.1 mA  
=
(table continues...)  
Datasheet  
13  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
4 General description  
Table 6  
(continued) Supply  
VSM = 8.0 V to 60 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-Number  
Min.  
Max.  
Logic supply  
current  
IDD1  
3.75  
6
mA Tj ≤ 150 °C;  
CP_EN = 0b;  
P_GEN_01_22  
BD_EN = 0b  
VS  
UV switch  
ON voltage  
VSMUV_ON1  
18  
19  
20  
V
VSM increasing  
P_GEN_01_23  
(VSM_COVUVTH =  
000B, 001B,010B or  
011B)  
UV switch  
VSMUV_ON2  
7.0  
7.5  
8.0  
V
V
VSM increasing  
VSM decreasing  
P_GEN_01_24  
P_GEN_01_25  
ON voltage  
(VSM_COVUVTH =  
100B)  
UV switch  
VSMUV_OFF1  
17.5  
18.5  
19.5  
OFF voltage  
(VSM_COVUVTH =  
000B, 001B,010B or  
011B)  
UV switch  
VSMUV_OFF2  
6.5  
7.0  
7.5  
V
VSM decreasing  
P_GEN_01_26  
OFF voltage  
(VSM_COVUVTH =  
100B)  
UV ON/OFF  
hysteresis  
VSMUV_HY  
0.3  
53  
0.5  
55  
0.7  
57  
V
V
VSMUV_ON - VSMUV_OFF  
VSM decreasing  
P_GEN_01_27  
P_GEN_01_28  
OV switch  
VSMCOV_ON1  
ON voltage  
(VSM_COVUVTH =  
000B)  
OV switch  
VSMCOV_ON2  
VSMCOV_ON3  
VSMCOV_ON4  
55  
57  
59  
57  
59  
61  
59  
61  
63  
V
V
V
VSM decreasing  
VSM decreasing  
VSM decreasing  
P_GEN_01_29  
P_GEN_01_30  
P_GEN_01_31  
ON voltage  
(VSM_COVUVTH =  
001B)  
OV switch  
ON voltage  
(VSM_COVUVTH =  
010B)  
OV switch  
ON voltage  
(VSM_COVUVTH =  
011B)  
(table continues...)  
Datasheet  
14  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
4 General description  
Table 6  
(continued) Supply  
VSM = 8.0 V to 60 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
50  
Unit Note or condition  
P-Number  
Min.  
48  
Max.  
52  
OV switch  
VSMCOV_ON5  
V
VSM decreasing  
P_GEN_01_32  
ON voltage  
(VSM_COVUVTH =  
100B)  
Hard OV switch ON VSMOV_ON  
71  
54  
74  
56  
76  
58  
V
V
VSM decreasing  
VSM increasing  
P_GEN_01_33  
P_GEN_01_34  
voltage  
OV switch  
VSMCOV_OFF1  
VSMCOV_OFF2  
VSMCOV_OFF3  
VSMCOV_OFF4  
VSMCOV_OFF5  
OFF voltage  
(VSM_COVUVTH =  
000B)  
OV switch  
56  
58  
60  
49  
58  
60  
62  
51  
60  
62  
64  
53  
V
V
V
V
VSM increasing  
VSM increasing  
VSM increasing  
VSM increasing  
VSM increasing  
P_GEN_01_35  
P_GEN_01_36  
P_GEN_01_37  
P_GEN_01_38  
P_GEN_01_39  
OFF voltage  
(VSM_COVUVTH =  
001B)  
OV switch  
OFF voltage  
(VSM_COVUVTH =  
010B)  
OV switch  
OFF voltage  
(VSM_COVUVTH =  
011B)  
OV switch  
OFF voltage  
(VSM_COVUVTH =  
100B)  
Hard OV switch OFF VSMOV_OFF  
voltage  
72  
75  
1
77  
2
V
V
OV ON/OFF  
hysteresis  
VSMOV_HY  
0.5  
VSMOV_ON - VSMOV_OFF or P_GEN_01_40  
VSMCOV_ONx - VSMCOV_OFFx  
VDD  
VDD Power-On-  
Reset  
VDD_POR  
2.50  
2.40  
30  
2.70  
2.60  
2.90  
2.80  
V
VDD increasing  
P_GEN_01_41  
P_GEN_01_42  
P_GEN_01_43  
VDD Poꢀer-Off-  
Reset  
VDD_POFFR  
VDD_POR_HY  
V
VDD decreasing  
VDD_POR - VDD_POFFR  
VDD Power-On-  
Reset hysteresis  
mV  
Datasheet  
15  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
4 General description  
Table 7  
EN  
VSM = 8.0 V to 60 V, Tj = -40°C to + 175°C, all voltages with respect to ground, positive current flowing into pin (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-Number  
Min.  
Max.  
VDD  
EN high level  
EN low level  
EN hysteresis  
VENH  
VENL  
0.75VD  
V
V
P_GEN_02_01  
P_GEN_02_02  
D
0.25VD  
D
VENHY  
50  
25  
400  
40  
mV  
P_GEN_02_03  
P_GEN_02_04  
EN pull-down  
resistor  
RPD_EN  
60  
kΩ  
Table 8  
Charge pumps  
VSM = 8.0 V to 60 V, Tj = -40°C to + 175°C, all voltages with respect to ground, positive current flowing into pin (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-Number  
Min.  
Max.  
Charge pump 1  
Charge pump 1  
frequency  
fCP1  
225  
250  
18  
275  
kHz  
V
P_GEN_03_01  
P_GEN_03_02  
Output voltage (13 VCP1  
V < VSM < 60 V): CP1  
vs. GND  
16  
14  
19.5  
19  
13 V < VSM < 60  
V, ICP1 = 19.1 mA,  
ICP2 = 19.1 mA,  
BD_EN = 1b  
-40°C ≤ Tj ≤ 150°C  
Output voltage HT VCP1  
(13 V < VSM < 60 V):  
CP1 vs. GND  
16.5  
V
13 V < VSM < 60  
V, ICP1 = 19.1 mA,  
ICP2 = 19.1 mA,  
BD_EN = 1b  
P_GEN_03_03  
150°C < Tj ≤ 175°C  
Output voltage  
(VSM = 8 V): CP1 vs.  
GND  
VCP1  
11  
12.5  
11.5  
500  
14  
V
VSM = 8 V, ICP1 = 5.6 mA, P_GEN_03_08  
ICP2 = 5.6 mA, CPEN =  
1b, BD_EN = 1b  
-40°C ≤ Tj ≤ 150°C  
Output voltage HT VCP1  
(VSM = 8V): CP1 vs.  
GND  
10.7  
400  
12.5  
600  
V
VSM = 8 V, ICP1  
=
P_GEN_03_09  
P_GEN_03_10  
5.6 mA, ICP2 = 5.6 mA,  
BD_EN = 1b  
150°C < Tj ≤ 175°C  
CP1 blanking time tBLK_VCP1  
µs  
8.0 V < VSM < 60 V,  
CVCP1= 1 μF, CCP1 = 470  
nF, ICP1 = 0 1)  
(table continues...)  
Datasheet  
16  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
4 General description  
Table 8  
(continued) Charge pumps  
VSM = 8.0 V to 60 V, Tj = -40°C to + 175°C, all voltages with respect to ground, positive current flowing into pin (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-Number  
Min.  
Max.  
300  
Rise time of CP1  
tRISE_VCP1  
105  
μs  
V
8.0 V < VSM < 60 V (25% P_GEN_03_11  
to 75%), CCP1 = 470 nF,  
ICP1 = 0 1)  
Charge pump  
1 undervoltage  
threshold  
VCP1UV  
9.0  
51  
10.0  
64  
12.0  
77  
P_GEN_03_12  
Charge pump 1  
undervoltage filter  
time  
tCP1UV  
μs  
P_GEN_03_13  
Charge pump 2  
Charge pump 2  
frequency  
fCP2  
225  
250  
275  
kHz  
V
P_GEN_03_14  
P_GEN_03_15  
Output voltage (13 VCP2  
V < VSM < 60 V): CP2  
vs. VSM  
11.5  
13.5  
15.5  
13 V < VSM < 60  
V, ICP1 = 19.1 mA,  
ICP2 = 19.1 mA,  
BD_EN = 1b  
-40°C ≤ Tj ≤ 150°C  
Output voltage HT VCP2  
(13 V < VSM < 60 V):  
CP2 vs. VSM  
10.5  
12.5  
14  
V
13 V < VSM < 60  
V, ICP1 = 19.1 mA,  
ICP2 = 19,1 mA,  
BD_EN = 1b  
P_GEN_03_16  
150°C < Tj ≤ 175°C  
Output voltage  
(VSM = 8 V): CP2 vs.  
VSM  
VCP2  
8
9.2  
7.5  
450  
10  
VSM = 8 V, ICP1 = 5.6 mA, P_GEN_03_21  
ICP2 = 5.6 mA, CPEN =  
1b, BD_EN = 1b  
-40°C ≤ Tj ≤ 150°C  
Output voltage HT VCP2  
(VSM = 8 V): CP2 vs.  
VSM  
7.0  
9.0  
600  
VSM = 8 V, ICP1 = 5.6 mA, P_GEN_03_22  
ICP2 = 5.6 mA, CPEN =  
1b, BD_EN = 1b  
150°C < Tj ≤ 175°C  
Turn-on time of CP2 tON_VCP2  
μs  
8.0 V < VSM < 60 V (25%), P_GEN_03_23  
CCP2 = 220 nF, ICP2 = 0 1)  
Typ. value at 48V  
Rise time of CP2  
tRISE_VCP2  
150  
900  
350  
μs  
μs  
8.0 V < VSM < 60 V (25% P_GEN_03_24  
to 75%), CCP2 = 220 nF,  
ICP2 = 0 1)  
CP2 blanking time tBLK_VCP2  
720  
1080  
8.0 V < VSM < 60 V,  
CVCP2= 470 nF,  
P_GEN_03_25  
CCP2 = 220 nF, ICP1 = 0 1)  
(table continues...)  
Datasheet  
17  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
4 General description  
Table 8  
(continued) Charge pumps  
VSM = 8.0 V to 60 V, Tj = -40°C to + 175°C, all voltages with respect to ground, positive current flowing into pin (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-Number  
Min.  
Max.  
Charge pump 2  
undervoltage  
VCP2UV  
tCP2UV  
6
7
8
V
P_GEN_03_26  
P_GEN_03_27  
Charge pump 2  
undervoltage filter  
time  
51  
64  
77  
μs  
1)  
Parameter dependent on the capacitance.  
Datasheet  
18  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
5 Protections and diagnostics  
5
Protections and diagnostics  
This device provides protection and monitoring functions. All detected errors will be sent back to the general  
microcontroller or the MOTIXTM MCU via SPI.  
5.1  
Reverse polarity protection  
Although reverse polarity protection is 48 V standard, it could be required by the applications. In case it is required,  
the following structures can be used:  
For 48 V applications, a simple reverse polarity protection including one diode and one resistor can also be used.  
Refer to Figure 5  
The output of the charge pump 2 (CP2) can be used to supply an external n-channel MOSFET, building an active  
reverse polarity protection. Refer to Figure 6  
For 24 V applications the solution in Figure 5 is not recommended due to the voltage drop of the resistance.  
VSM  
CVS  
LPFILT  
RVS  
D3  
VBAT  
CPFILT2  
CPFILT1  
Figure 5  
Reverse polarity for 48 V applications  
VSM  
CVS  
LPFILT  
VBAT  
CPFILT2  
CPFILT1  
CP2  
Figure 6  
Reverse polarity  
5.2  
Drain-source voltage monitoring  
MOSFETs are protected by VDS monitoring from a short circuit respectively to ground and to battery during on-state:  
HSxDSOV is set to high if the voltage difference between DH and SHMx exceeds the threshold voltage configured  
by VDSTH (see Table 9)  
LSxDSOV is set to high if the voltage difference between SHMx and SL exceeds the threshold voltage configured by  
VDSTH (see Table 9)  
If a drain-source overvoltage is detected by a voltage comparator when HSLSOV_DIS = 1, the following actions will be  
performed:  
The gate driver discharge the gate capacitance of the corresponding half-bridge with configured discharge  
current IDISCHG_ST during TCCP  
The gate capacitance is discharged by IHOLD afer TCCP  
The corresponding half bridge will be latched off  
The corresponding bit (LSxDSOV/HSxDSOV) in STAT2 is set  
Datasheet  
19  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
5 Protections and diagnostics  
The DSOV bit in STAT and Global status byte is set  
The error signal (GEF) will be sent back to the general microcontroller or  
the MOTIXTM MCUhttps://www.infineon.com/cms/en/product/microcontroller/embedded-power-ics-system-on-  
chip-/3-phase-bridge-driver-integrated-arm-cortex-m3/via the SPI  
If a drain-source overvoltage is detected by a voltage comparator when HSLSOV_DIS = 0, the following actions will be  
performed:  
The gate driver discharge the gate capacitance of the all half-bridges with configured discharge current  
IDISCHG_ST during TCCP  
The gate capacitance is discharged by IHOLD afer TCCP  
All half bridge will be latched off  
The corresponding bit (LSxDSOV/HSxDSOV) in STAT2 is set  
The DSOV bit in STAT and Global status byte is set  
The error signal (GEF) will be sent back to the general microcontroller or the MOTIXTM MCU via the SPI  
The device reports a drain-source voltage error if both conditions are met:  
Afer expiration of the blank time  
Drain-source voltage exceeds the configured threshold for a duration longer than the configured filter time  
Table 9  
Drain-source overvoltage threshold  
Drain-source overvoltage threshold  
HBxVDSTH[2:0]  
000B  
145 mV  
195 mV (default)  
245 mV  
295 mV  
390 mV  
490 mV  
590 mV  
2 V  
001B  
010B  
011B  
100B  
101B  
110B  
111B  
The gate drive resume normal operation once the corresponding bit in STAT2 is cleared by the microcontroller.  
5.3  
Overtemperature protection  
If the temperature sensor reaches TjW and the TWDIS is set to 0, then TW bit in STAT1, TE bit in STAT and Global status  
byte will be set and latched.  
The outputs stages however remain activated. Refer to Figure 7.  
The TW bit is reset by clearing STAT1 if the thermal warning condition has disappeared.  
If the temperature sensor reaches TjSD, the device behaves as follows:  
Discharge the gate capacitances of the MOSFETs with configured discharge current IDISCHG_ST  
All gate drivers are latched off  
Deactivate the charge pump  
Set TSD bit in STAT1  
Set TE bit in STAT and Global status byte  
All outputs remain deactivated until the temperature shutdown condition has disappeared and STAT1 is cleared. See  
Figure 7.  
To resume normal functionality of the gate drivers, the following conditions need to be met:  
The temperature shutdown condition has disappeared  
Datasheet  
20  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
5 Protections and diagnostics  
The the general microcontroller or the MOTIXTM MCU clears TSD bit in STAT1  
The charge pump blanking time tBLK_VCPX and the gate driver filter time tGD_filt expire  
Tj  
TjSD  
TjW  
t
OUTx  
Output is switched off if  
ON  
TjSD is reached, can be  
reactivated if TSD bit is  
cleared  
High Z  
t
no error  
TW error bit  
High  
TW is latched, can be  
cleared via SPI  
Low  
t
t
no error  
TSD error bit  
High  
Low  
TSD is latched, can be  
cleared via SPI  
no error  
TE error bit  
High  
TE is latched, can be cleared when  
TW and TSD are cleared via SPI  
Low  
t
no error  
Figure 7  
Overtemperature behavior  
5.4  
Input error  
The MOSFETs are protected by input monitoring. When both IHx and ILx of the same bridge are set to high at the same  
time:  
All external MOSFETs are actively discharged for the duration TCCP  
All external MOSFETs are discharged by IHOLD afer TCCP  
INEx bits in STAT3, STAT and Global status byte are set and latched  
The gate drivers resume normal operation once the input error disappears and the INEx bits are reset by clearing  
STAT3.  
The INE bit is reset by clearing STAT3.  
5.5  
Off-state diagnostic  
In order to support the off-state diagnostic, the gate driver of each MOSFET provides pull-up and pull-down currents  
at the SHx pins.  
The pull-up current sources are always active when BD_EN = 1 and CPEN = 1 in normal operation mode.  
The pull-down currents of each gate driver are activated by the control bits HBxIDIAG in GENCTRL3. During the off-  
state diagnostic routine performed by the general microcontroller or the MOTIXTM MCU, the drain-source overvoltage  
threshold of the relevant half-bridges must be set to 2 V nominal. Refer to Table 9. Once the routine is finished, it  
is highly recommended to decrease the drain-source overvoltage threshold to a lower value, to have a proper VDS  
monitoring threshold and avoid additional current consumption from the VSM input.  
Datasheet  
21  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
5 Protections and diagnostics  
The corresponding HBxVOUT bit in STAT3 is set if any of the following failures are detected:  
MOSFET short circuit to GND  
MOSFET short circuit the battery  
Open load (disconnected motor)  
In normal operation mode the status of the output voltage SHx can be read back with status bit HBxVOUT in  
STAT3 when BD_EN = 1, CPEN = 1 and the corresponding half-bridge is in off-state ((IHx, ILx) = (0, 0))  
Note:  
HBxVOUT = 0 if the half-bridge x is not in off-state ((IHx, ILx) = (1, 0) or (0, 1)). INE is reported if ((IHx, ILx) = (1,  
1)).  
5.6  
Timeout watchdog  
An integrated timeout watchdog supervises the integrity of the communication with the general microcontroller or  
the MOTIXTM MCU. The watchdog period is programmable by setting the WDPER bits in GENCTRL2 in the range of 2 ms  
to 512 ms.  
Afer a power-on-reset, if the watchdog is not retriggered by receiving a valid SPI-write command to the watchdog  
configuration register (GENCTRL2) from the general microcontroller or the MOTIXTM MCU in the programmable  
watchdog period in GENCTRL2, the device will:  
Set and latch the ST bit in STAT and Global status byte  
Reset the control registers to their default values  
Actively switch off all external MOSFETs with IDISCHG_ST  
Enter the stop mode  
The device resumes normal operation, if the general microcontroller or the MOTIXTM MCU device:  
1.  
2.  
Clears the ST bit in STAT when the device is in stop mode  
Sends watchdog pattern with correct CHECKSUM bit in normal mode  
A checksum bit is part of the SPI command to trigger the watchdog and to set the watchdog setting. The sum of the 8  
data bits 7:0 in the register GENCTRL2 needs to have even parity. This is realized by either setting the bit CHECKSUM  
to 0 or 1. The checksum is calculated by taking all 8 data bits into account. The written value of the reserved bits of  
the register is also considered (even if read as 0 in the SPI output) for checksum calculation, that is if a 1 is written on  
the reserved bit position, then a 1 is used in the checksum calculation.  
The SPI command is ignored and SPIE bit is set and latched in STAT and Global status byte, if the a watchdog trigger  
with an incorrect CHECKSUM is sent.  
CHECKSUM = Bit7...Bit0  
During normal operation the status bits WDMON[1:0] in STAT2 report the relative position of the watchdog timer to  
the watchdog period. Refer to Table 10 and Figure 8.  
This allows the detection of a potential latent failure associated to the watchdog timer: the general microcontroller or  
the MOTIXTM MCU can indeed verify that the watchdog timer is running.  
Table 10  
Watchdog monitoring  
WDMON[1:0]  
Position of the watchdog timer  
00B  
01B  
10B  
11B  
Watchdog timer is between [0%, 25%] of the watchdog period  
Watchdog timer is between [25%, 50%] of the watchdog period  
Watchdog timer is between [50%, 75%] of the watchdog period  
Watchdog timer is between [75%, 100%] of the watchdog period  
Datasheet  
22  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
5 Protections and diagnostics  
WD Timer / WD Period  
WD trigger  
WD timeout  
WD trigger  
100%  
75%  
50%  
25%  
0%  
t
00B  
01B  
00B  
01B  
10B 11B  
00B  
01B  
10B  
11B  
00B  
WDMON[1:0]  
Figure 8  
Example of watchdog monitoring and watchdog timeout  
The watchdog is enabled by default.  
It can be disabled only if the following SPI sequence is sent:  
1.  
First frame: Set UNLOCK bit in GENCTRL1 to 1  
Note: UNLOCK is automatically reset to 0 at the end of the next frame.  
Following frame: Set WDDIS bit in GENCTRL3 to 1  
2.  
The watchdog is directly re-enabled by setting WDDIS to 0.  
5.7  
Cross-current protection and drain-source overvoltage blank time  
All gate drivers feature a cross-current protection time and a drain-source overvoltage blank time. The cross-current  
protection avoids the simultaneous activation of the high-side and the low-side MOSFETs of the same half-bridge.  
During the blank time, the drain-source overvoltage detection is disabled, to avoid a wrong fault detection during the  
activation phase of a MOSFET.  
5.7.1  
Cross-current protection  
If IHx/ILx is set to high in the duration of the other input's TCCP, to avoid the cross current the device will:  
Switch on the corresponding MOSFET with a delay defined by cross-current protection time in GENCTRL12  
Discharge the other MOSFET in the same half bridge actively for a duration defined by the remaining cross-  
current protection time  
Table 11  
Cross-current protection time  
Cross-current protection time tCCPx (typical)  
TCCP[2:0]  
000B  
0.5 μs  
1.0 μs  
1.5 μs  
001B  
010B  
(table continues...)  
Datasheet  
23  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
5 Protections and diagnostics  
Table 11  
(continued) Cross-current protection time  
TCCP[2:0]  
011B  
Cross-current protection time tCCPx (typical)  
2.0 μs  
2.5 μs  
3.0 μs  
3.5 μs  
4.0 μs  
100B  
101B  
110B  
111B  
5.7.2  
Drain-source overvoltage blank time  
When the MOSFETs are switched on, afer the expiration of the cross-current protection time, a drain-source  
overvoltage error will be masked during the blank time defined in GENCTRL12 for the drain-source monitoring.  
Table 12  
Drain-source overvoltage blank time  
Drain-source overvoltage blank time tBLANKx (nominal)  
TBLK[2:0]  
000B  
0.5 μs  
1.0 μs  
1.5 μs  
2.0 μs  
2.5 μs  
3.0 μs  
3.5 μs  
4.0 μs  
001B  
010B  
011B  
100B  
101B  
110B  
111B  
5.8  
Overvoltage and undervoltage shutdown  
5.8.1  
VSM undervoltage  
If VSM drops below VSMUV_OFFx and VDD > VDD_POR, the device will:  
Switch off the external MOSFETs actively for the duration TCCP with the discharge current corresponding to the  
settings of IDISCHG_ST  
Deactivate the charge pumps  
Activate passive discharge afer TCCP  
Set and latch VSMUV bit in STAT1  
Set and latch SUPE bit in STAT and Global status byte  
Keep logic information  
If VSM rises above VSMUV_ONx as shown in Figure 9, afer clearing the VSMUV bit the device resumes normal operation  
when tBLK_VCPX and tGD_filt expire.  
The SUPE is reset if the following conditions are fulfilled:  
VSM > VSMUV_ONx (see Figure 9)  
The device receives a clear command to STAT1  
Datasheet  
24  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
5 Protections and diagnostics  
VSM  
VSMCOV_CFG = 1B  
VSMOV_OFF  
VSMOV_HY  
VSMOV_ON  
VSMCOV_OFFx  
VSMUV_HY  
VSMUV_OFF  
VSMUV_ON  
t
t
tBLK_VCPX + tGD_filt  
tBLK_VCPX + tGD_filt  
Output  
reactivated  
Output  
reactivated  
OUTx  
OUTx  
ON  
ON  
High Z  
High Z  
t
VSMUV in STAT1 is cleared  
VSMOV_PROT in STAT1 is cleared  
VSMUV  
VSMOV_PROT  
High  
Low  
High  
Low  
t
t
Figure 9  
VSM monitoring  
Datasheet  
25  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
5 Protections and diagnostics  
VSM  
VSMCOV_CFG = 0B  
VSMCOV_OFFx  
VSMOV_HY  
VSMCOV_ONx  
VSMUV_HY  
VSMUV_OFF  
VSMUV_ON  
t
t
tBLK_VCPX + tGD_filt  
tBLK_VCPX + tGD_filt  
LSAFW_CFG = 0B  
Output  
reactivated  
Output  
reactivated  
OUTx  
OUTx  
ON  
ON  
High Z  
High Z  
t
VSMUV in STAT1 is cleared  
LSAFW_CFG = 1B  
VSMUV  
Output  
reactivated  
OUTx  
Output is deactivated.  
Switch on LS according  
to LSAFW bits.  
High  
Low  
ON  
t
High Z  
t
t
VSMOV in STAT1 is cleared  
VSMOV  
High  
Low  
Figure 10  
Configurable VSM monitoring  
5.8.2  
VSM overvoltage  
If VSM rises above VSMOV_OFF, VDD > VDD_POR, the device will:  
Switch off the external MOSFETs actively for the duration TCCP with the discharge current corresponding to the  
settings of IDISCHG_ST  
Deactivate the charge pumps  
Activate passive discharge afer TCCP  
Set and latch VSMOV_PROT bit in STAT1  
Set and latch SUPE bit in STAT and Global status byte  
Keep logic information  
A configurable overvoltage threshold below VSMCOV_OFFx can be selected by set VSM_COVUVTH bit in GENCTRL13.  
When the conditions below are met:  
VSMOV_CFG is set to 0B  
VSM rises above the selected VSMCOV_OFFx  
VDD > VDD_POR  
LSAFW_CFG = 0B  
The device will:  
Switch off the external MOSFETs actively for the duration TCCP with the discharge current corresponding to the  
settings of IDISCHG_ST  
Deactivate the charge pumps  
Activate passive discharge afer TCCP  
Datasheet  
26  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
5 Protections and diagnostics  
Set and latch VSMOV bit in STAT1  
Set and latch SUPE bit in STAT and Global status byte  
Keep logic information  
When the conditions below are met:  
VSMOV_CFG is set to 0B  
VSM rises above the selected VSMCOV_OFFx  
VDD > VDD_POR  
LSAFW_CFG = 1B  
The device will:  
Set and latch VSMOV bit in STAT1  
Set and latch SUPE bit in STAT and Global status byte  
Switch off the external high-side MOSFETs actively for the duration TCCP  
Switch on the corresponding low-side MOSFET based on the LSAFW bits in GENCTRL13  
Switch on all low-side MOSFETs if LSAFW = 00B (the one was in on-state will be kept switched on)  
The low-side MOSFETs will be latched on till the VSMOV bit is cleared  
Keep charge pumps activated with auto-recovery  
Ignore CPREC bit  
Keep logic information  
Note:  
The low-side MOSFETs are switched on based on the same sequence for normal switching on.  
When the conditions below are met:  
VSMOV_CFG is set to 1B  
VSM rises above the selected VSMCOV_OFFx  
VDD > VDD_POR  
The device will:  
Ignore the configurable overvoltage event  
Not set the VSMOV bit in STAT1  
Not set SUPE bit in STAT and Global status byte  
Keep charge pumps activated  
Keep logic information  
If VSM drops below VSMOV_ON / VSMCOV_ONx as shown in Figure 9 and Figure 10, afer clearing VSMOV _PROT bit and  
VSMOV bit the device will resume normal operation when tBLK_VCPX nd tGD_filt expires.  
The SUPE is reset if the following conditions are fulfilled:  
VSM < VSMOV_ON or VSM < VSMCOV_ONx when VSMOV_CFG is 0B (see Figure 9 and Figure 10)  
The device receives a clear command to STAT1  
5.8.3  
VDD undervoltage protection  
If the VDD logic supply drops below the undervoltage threshold VDD_POFFR (power off reset), the device behaves as  
follows:  
Deactivate the SPI interface  
Reset the digital block  
Switch off the gate driver  
Activate the passive discharge path for the external MOSFETs  
Switch off the charge pump  
Datasheet  
27  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
5 Protections and diagnostics  
5.8.4  
Charge pump undervoltage  
The voltage of the buck/boost charge pump output (CP1) is monitored in order to ensure a correct control of the  
external MOSFETs.  
If CP1 falls below the configured charge pump undervoltage threshold VCP1UV, the device will:  
Discharge the external MOSFETs actively with IDISCHG_ST for the duration TCCP  
Turn-off the gate drivers  
Activate the passive discharge path  
Set and latch CP1UV bit in STAT1  
Set and latch SUPE bit in STAT and Global status byte  
Note:  
The charge pump undervoltage event is ignored during blanking time, and will be reported afeꢀ filter time  
as shown in Figure 11.  
If STAT1 is cleared when VCP1 > VCP1UV, the device resets the SUPE bit and resumes normal operation afer the  
charge pump blanking time and the filter time.  
Note:  
CPREC setting bit is ignored for charge pump undervoltage event. It is only related to the VSM undervoltage  
and VSM overvoltage events.  
The voltage of the charge pump output (CP2) is monitored in order to ensure a correct control of the external  
MOSFETs.  
If CP2 falls below the configured charge pump undervoltage threshold VCP2UV, the device will:  
Discharge the external MOSFETs actively with IDISCHG_ST for the duration TCCP  
Turn-off the gate drivers  
Activate the passive turn-off path  
Set and latch CP2UV bit in STAT1  
Set and latch SUPE bit in STAT and Global status byte  
Note:  
The charge pump undervoltage event is ignored during blanking time, and will be reported afeꢀ filter time  
as shown in Figure 11.  
If STAT1 is cleared when VCP2 > VCP2UV, afer charge pump blanking time and the filter time the device resumes  
normal operation and resets the SUPE bit.  
Note:  
CPREC setting bit is ignored for the charge pump undervoltage event. It is only related to the VSM  
undervoltage and VSM overvoltage events.  
CP UV event is  
CP UV event is  
ignored during  
reported  
VCPx  
blanking time  
VCPxUV  
Time  
tBLK_VCPx  
tCPxUV  
CPEN  
Time  
Time  
CPxUV bit  
Figure 11  
Charge pump undervoltage event  
Datasheet  
28  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
5 Protections and diagnostics  
5.9  
Electrical characteristics protection and diagnosis  
Table 13  
Electrical characteristics  
VSM = 8.0 V to 60 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-Number  
Min.  
Max.  
Watchdog  
Watchdog period  
tWDPER  
2
4
8
16  
64  
128  
256  
512  
ms  
WDPER[2:0] = 000B  
WDPER[2:0] = 001B  
WDPER[2:0] = 010B  
WDPER[2:0] = 011B  
WDPER[2:0] = 100B  
WDPER[2:0] = 101B  
WDPER[2:0] = 110B  
WDPER[2:0] = 111B  
P_PRO_01_01  
Watchdog period  
accuracy  
tWDPER_ACC  
-10  
+10  
%
P_PRO_01_02  
P_PRO_01_03  
Filter time to avoid false VDS error during recovery from the errors  
Gate driver filter  
time  
tGD_filt  
60  
72  
86  
μs  
Off-state open load diagnosis  
Pull-up diagnosis  
current  
IPUDiag  
-0.9  
4.5  
2.7  
-2  
7
-3.0  
10.5  
mA 8 V ≤ HBOUTx ≤ 60 V  
HBOUTx = VBAT  
P_PRO_01_04  
P_PRO_01_05  
P_PRO_01_06  
Pull-down  
diagnosis current  
IPDDiag  
mA 8 V ≤ HBOUTx ≤ 60 V  
HBOUTx = VBAT  
Pull-down pull-up IPDDiag /  
diagnosis current  
ratio  
IPUDiag  
Drain-source monitoring threshold  
Drain-source  
monitoring  
threshold  
VVDSMONTHx  
0.145  
0.195  
0.245  
0.295  
0.39  
0.49  
0.59  
2
V
HBxVDSTH[2:0] = 000B P_PRO_01_07  
HBxVDSTH[2:0] = 001B  
HBxVDSTH[2:0] = 010B  
HBxVDSTH[2:0] = 011B  
HBxVDSTH[2:0] = 100B  
HBxVDSTH[2:0] = 101B  
HBxVDSTH[2:0] = 110B  
HBxVDSTH[2:0] = 111B  
Drain-source  
monitoring  
threshold accuracy  
low  
VVDSMONTH_ACC1 -30  
+30  
%
VDSTH[2:0] = 000B  
P_PRO_01_08  
(table continues...)  
Datasheet  
29  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
5 Protections and diagnostics  
Table 13  
(continued) Electrical characteristics  
VSM = 8.0 V to 60 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-Number  
Min.  
VVDSMONTH_ACC2 -20  
Max.  
+20  
Drain-source  
monitoring  
threshold accuracy  
high  
%
VDSTH[2:0] = 001B  
VDSTH[2:0] = 010B  
VDSTH[2:0] = 011B  
VDSTH[2:0] = 100B  
VDSTH[2:0] = 101B  
VDSTH[2:0] = 110B  
VDSTH[2:0] = 111B  
P_PRO_01_09  
Drain-source monitoring filter time  
VDS monitoring  
filter time  
tDSMON_FILT  
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
1.75  
2.00  
μs  
TFVDS[2:0] = 000B  
TFVDS[2:0] = 001B  
TFVDS[2:0] = 010B  
TFVDS[2:0] = 011B  
TFVDS[2:0] = 100B  
TFVDS[2:0] = 101B  
TFVDS[2:0] = 110B  
TFVDS[2:0] = 111B  
P_PRO_01_10  
VDS monitoring  
tDSMONFILT_ACC  
-10  
+10  
%
P_PRO_01_11  
P_PRO_01_12  
filter time accuracy  
Drain-source monitoring blank time  
Drain-source  
monitoring blank  
time  
tDSMON_BLK  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
μs  
TBLK[2:0] = 000B  
TBLK[2:0] = 001B  
TBLK[2:0] = 010B  
TBLK[2:0] = 011B  
TBLK[2:0] = 100B  
TBLK[2:0] = 101B  
TBLK[2:0] = 110B  
TBLK[2:0] = 111B  
Drain-source  
tDSMONBLK_ACC  
-10  
+10  
%
P_PRO_01_13  
monitoring blank  
time accuracy  
(table continues...)  
Datasheet  
30  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
5 Protections and diagnostics  
Table 13  
(continued) Electrical characteristics  
VSM = 8.0 V to 60 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-Number  
Min.  
Max.  
Cross current protection  
Cross current  
protection time  
tHBxCCPx  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
μs  
TCCP[2:0] = 000B  
TCCP[2:0] = 001B  
TCCP[2:0] = 010B  
TCCP[2:0] = 011B  
TCCP[2:0] = 100B  
TCCP[2:0] = 101B  
TCCP[2:0] = 110B  
TCCP[2:0] = 111B  
P_PRO_01_14  
Cross current  
protection time  
accuracy  
tHBxCCPx_ACC  
-10  
+10  
%
P_PRO_01_15  
Thermal warning and shutdown  
Thermal  
warning junction  
temperature  
TjW  
156  
196  
5
170  
210  
10  
185  
225  
°C  
°C  
°C  
P_PRO_01_16  
P_PRO_01_17  
P_PRO_01_18  
Thermal  
shutdown junction  
temperature  
TjSD  
Thermal shutdown  
hysteresis  
TjHYS  
Datasheet  
31  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
6 Gate driver  
6
Gate driver  
Gate driver control  
6.1  
The device integrates six floating gate drivers capable of controlling a wide range of N-channel MOSFETs. They are  
configured as three high-sides and three low-sides, building for 3-phase BLDC.  
The MOSFETs can be:  
Deactivated with BD_EN = 0  
Activated in PWM mode with BD_EN = 1 and CPEN = 1  
The MOSFETs are controlled as shown in Figure 12, Figure 13, Figure 14 and Figure 15.  
Datasheet  
32  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
6 Gate driver  
External IHx  
Synchronized IHx  
t
t
Charge phase  
Precharge phase  
Charge phase M  
Postcharge phase  
IG_HSx  
IPOSTCHG  
IPRECHG  
ICHGM  
ICHG  
0
t
IPRECHG_T  
HSx internal  
drive signal  
TBLK  
TFVDS  
IPOSTCHG  
IPRECHG  
IHOLD  
ICHGM  
ICHG  
0
IHOLD  
ICHGM  
ICHG  
t
-
IHOLD  
VGS_HSx  
VSHMx  
t
t
TRISEHSx  
VDH  
VSHH  
TDONHSx  
VSHL  
IDS_HSx  
IPHASE  
t
External ILx  
TCCP  
t
t
Synchronized ILx  
IG_LSx  
IHOLD  
Predischarge phase  
Holding phase  
Discharge phase M  
t
-
IHOLD  
-IDISCHGM  
-IPREDISCHG  
LSx internal  
drive signal  
IPREDISCHG_T  
IPREDISCHG_T_XT  
IHOLD  
tOFF_timeout  
t
-
IHOLD  
-
IHOLD  
-IDISCHGM  
-IPREDISCHG  
Hard off  
-
IDISCHG_MAX  
VGS_LSx  
t
t
IDS_LSx  
IPHASE  
Figure 12  
Turn-on of the high-side MOSFET  
Datasheet  
33  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
6 Gate driver  
External IHx  
Synchronized IHx  
t
t
IG_HSx  
Discharge phase  
Discharge phase M  
Predischarge phase  
Holding phase  
0
t
- IDISCHG  
- IDISCHGM  
- IPREDISCHG  
tOFF_timeout  
HSx internal  
drive signal  
IPREDISCHG_T  
IPREDISCHG_T_XT  
IHOLD  
IHOLD  
0
-
IHOLD  
t
- IDISCHG  
- IDISCHGM  
- IPREDISCHG  
Hard off  
-
IDISCHG_MAX  
VGS_HSx  
t
t
TFALLHSx  
VSHMx  
VDH  
VSHH  
TDOFFHSx  
VSHL  
IDS_HSx  
IPHASE  
t
External ILx  
Synchronized ILx  
IG_LSx  
t
t
TCCP  
postcharge phase  
Precharge phase  
IPOSTCHG  
IPRECHG  
ICHGM  
t
t
IPRECHG_T  
LSx internal  
drive signal  
TBLK  
TFVDS  
IPOSTCHG  
IPRECHG  
ICHGM  
IHOLD  
IHOLD  
-
IHOLD  
t
-
IHOLD  
VGS_LSx  
t
t
IDS_LSx  
IPHASE  
Figure 13  
Turn-off of the high-side MOSFET  
Datasheet  
34  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
6 Gate driver  
External ILx  
Synchronized ILx  
t
t
Charge phase  
Postcharge phase  
IG_LSx  
Precharge phase  
Charge phase M  
IPOSTCHG  
IPRECHG  
ICHGM  
ICHG  
0
t
LSx internal  
drive signal  
IPRECHG_T  
TBLK  
TFVDS  
IPOSTCHG  
IPRECHG  
IHOLD  
ICHGM  
ICHG  
0
ICHGM  
ICHG  
IHOLD  
t
-
IHOLD  
- IDISCHGM  
VGS_LSx  
VSHMx  
t
t
t
TRISELSx  
VDH  
VSHH  
TDONLSx  
VSHL  
IDS_LSx  
IPHASE  
External IHx  
Synchronized IHx  
t
t
TCCP  
IG_HSx  
IHOLD  
Predischarge phase  
Holding phase  
Discharge phase M  
t
-
IHOLD  
-IDISCHGM  
-IPREDISCHG  
IPREDISCHG_T  
IPREDISCHG_T_XT  
HSx internal  
drive signal  
tOFF_timeout  
IHOLD  
t
-
IHOLD  
-IDISCHGM  
-
IHOLD  
-IPREDISCHG  
Hard off  
-
IDISCHG_MAX  
VGS_HSx  
t
t
IDS_HSx  
IPHASE  
Figure 14  
Turn-on of the low-side MOSFET  
Datasheet  
35  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
6 Gate driver  
External ILx  
Synchronized ILx  
t
t
IG_LSx  
Discharge phase  
Discharge phase M  
Predischarge phase  
0
t
- IDISCHG  
- IDISCHGM  
- IPREDISCHG  
tOFF_timeout  
LSx internal  
drive signal  
IPREDISCHG_T  
IPREDISCHG_T_XT  
IHOLD  
IHOLD  
0
-
IHOLD  
t
- IDISCHG  
- IDISCHGM  
- IPREDISCHG  
Hard off  
-
IDISCHG_MAX  
VGS_LSx  
t
t
TFALLLSx  
VSHMx  
VDH  
VSHH  
TDOFFLSx  
VSHL  
IDS_LSx  
IPHASE  
t
External IHx  
t
t
Synchronized IHx  
IG_HSx  
TCCP  
postcharge phase  
Precharge phase  
IPOSTCHG  
IPRECHG  
ICHGM  
t
HSx internal  
drive signal  
TBLK  
TFVDS  
IPOSTCHG  
IPRECHG  
ICHGM  
IHOLD  
IHOLD  
-
IHOLD  
t
-
IHOLD  
VGS_HSx  
t
t
IDS_HSx  
IPHASE  
Figure 15  
Turn-off of the low-side MOSFET  
The turn-on of the high-side MOSFET is done in five phases (refer to Figure 12):  
Datasheet  
36  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
6 Gate driver  
1.  
2.  
3.  
Cross-current protection phase: the cross-current protection time TCCP starts at the falling edge of ILx.  
During TCCP, the low-side MOSFET is turned off while the high-side is kept off with IHOLD. Only afer TCCP IHx  
is allowed to set to high. The low-side will be kept off with hard off current until TFVDS has elapsed  
Pre-charge phase: once the TCCP has elapsed and IHx is set to high, the gate of the high-side MOSFET is  
pre-charged with the current IPRECHG for a duration IPRECHG_T. When IPRECHG_T expires it will jump to  
charge phase  
Charge phase: afer the pre-charge phase the charge current is decreased from IPRECHG down to ICHG. The  
gate of the high-side MOSFET will be charged with ICHG until VSHMx reaches GND + 2 V. If VSHMx reaches VDH -  
2 V during the charge phase, it will jump to post-charge phase  
4.  
5.  
Middle-charge phase: afer the charge phase the gate of the high-side MOSFET will be charged with ICHGM  
until VSHMx reaches VDH - 2 V  
Post-charge phase: afer the middle-charge phase the control signal for the charge current is set to IPOSTCHG  
until the end of TFVDS. If the device is still in the ramping phase of the post-charge current when TFVDS has  
expired, the ramp phase will be extended until it reaches IPOSTCHG. Afer TFVDS expires and IPOSTCHG is  
reached, the charge current will be switched to IHOLD  
Cross-current protection time TCCP represents the time afer which the complementary transistor in the same  
half-bridge can be activated. Therefore TCCP is the minimum discharge phase for the MOSFET. tOFF_timeout is the  
maximum time for discharge.  
The turn-off of the high-side MOSFET is done in four phases (refer to Figure 13):  
1.  
2.  
3.  
Pre-discharge phase: once IHx is set to low, the gate of the high-side MOSFET is pre-discharged with the  
current IPREDISCHG for a duration based on IPREDISCHG_T and IPREDISCHG_T_XT. It will jump to middle-  
discharge phase afer pre-discharge time expires  
Middle-discharge phase: afer the pre-discharge phase the gate current is decreased from IPREDISCHG down  
to IDISCHGM. The gate of the high-side MOSFET will be discharged with IDISCHGM until VSHMx reaches GND + 2  
V
Discharge phase: afer the middle-discharge phase the device will enter discharge phase. The gate of the  
high-side MOSFET will be discharged with IDISCHG until tOFF_timeout expires  
4.  
Holding phase: afer the tOFF_timeout expires the high-side MOSFET will be kept off with IHOLD  
Note:  
If a INE failure comes, all MOSFETs will be discharged with IDISCHG_ST for a duration of TCCP.  
The turn-on of the low-side MOSFET is done in five phases (refer to Figure 14):  
1.  
Cross-current protection phase: the cross-current protection time TCCP starts at the falling edge of IHx.  
During TCCP, the high-side MOSFET is turned off while the low-side is kept off with IHOLD. Only afer TCCP ILx is  
allowed to set to high. The high-side will be kept off with hard off current until TFVDS has elapsed  
Pre-charge phase: once the TCCP has elapsed and ILx is set to high, the gate of the low-side MOSFET is  
pre-charged with the current IPRECHG for a duration IPRECHG_T. Afer IPRECHG_T expires, it will jump to  
charge phase  
2.  
3.  
4.  
5.  
Charge phase: afer the pre-charge phase the charge current is decreased from IPRECHG down to ICHG. The  
gate of the low-side MOSFET will be charged with ICHG until VSHMx reaches VDH - 2 V  
Middle-charge phase: afer the charge phase the gate of the low-side MOSFET will be charged with ICHGM  
until VSHx reaches GND + 2V  
Post-charge phase: afer the middle-charge phase the control signal for the charge current is set to IPOSTCHG  
until the end of TFVDS. If the device is still in the ramping phase of the post-charge current when TFVDS has  
expired, the ramp phase will be extended until it reaches IPOSTCHG. Afer TFVDS expires and IPOSTCHG is  
reached, the charge current will be switched to IHOLD  
Cross-current protection time TCCP represents the time afer which the complementary transistor in the same  
half-bridge can be activated. Therefore TCCP is the minimum discharge phase for the MOSFET. tOFF_timeout is the  
maximum time for discharge.  
The turn-off of the low-side MOSFET is done in four phases (refer to Figure 15):  
1.  
Pre-discharge phase: once ILx is set to low, the gate of the low-side MOSFET is pre-discharged with the current  
IPREDISCHG for a duration based on IPREDISCHG_T and IPREDISCHG_T_XT. It will jump to middle-discharge  
phase afer pre-discharge time expires  
Datasheet  
37  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
6 Gate driver  
2.  
3.  
Middle-discharge phase: afer the pre-discharge phase the discharge current is decreased from IPREDISCHG  
down to IDISCHGM. The gate of the low-side MOSFET will be discharged with IDISCHGM until VSHMx reaches  
VDH - 2 V  
Discharge phase: afer the middle-discharge phase the gate of the low-side MOSFET will be discharged with  
IDISCHG until tOFF_timeout expires  
4.  
Holding phase: afer the tOFF_timeout expires the high-side MOSFET will be kept off with IHOLD  
Note:  
If a INE failure comes, all MOSFETs will be discharged with IDISCHG_ST for a duration of TCCP.  
High-side MOSFET:  
TDONHSx is counted from the rising edge of the synchronized IHx until VSHMx reaches GND + 2 V  
TRISEHSx is counted from the VSHMx reaching GND + 2 V until it reaches VDH - 2 V  
If VSHMx does not reach GND + 2 V until TBLK is elapsed, 0xFF and 0x00 will be saved in effective high-side  
MOSFET turn-on delay register and effective high-side MOSFET rise time register respectively  
If VSHMx has reached VDH - 2 V when the rising edge of the synchronized IHx comes, 0x00 will be stored in both  
the effective high-side MOSFET turn-on delay register and the effective high-side MOSFET rise time register  
If VSHMx reaches GND + 2 V but does not reach VDH -2V when TBLK is elapsed, 0xFF will be saved in the effective  
high-side MOSFET rise time register  
TDOFFHSx is counted from the falling edge of the synchronized IHx until VSHMx reaches VDH - 2 V  
TFALLHSx is counted from the VSHMx reaching VDH - 2V until it reaches to GND + 2 V  
If VSHMx does not reach VDH - 2 V until TCCP is elapsed, 0xFF and 0x00 will be saved in effective high-side  
MOSFET turn-off delay register and effective high-side MOSFET fall time register respectively  
If VSHMx has reached GND + 2 V when the falling edge of the synchronized IHx comes, 0x00 will be stored in both  
the effective high-side MOSFET turn-off delay register and the effective high-side MOSFET fall time register  
If VSHMx reaches VDH - 2 V but does not reach GND + 2 V when TCCP is elapsed, 0xFF will be saved in the effective  
high-side MOSFET fall time register  
Note:  
If VDH - 2 V > VSHMx > GND + 2 V when the rising edge of the synchronized IHx comes, 0x00 will be saved in effective  
high-side MOSFET turn-on delay register and the time from the IHx rising edge to VSHMx reaching VDH - 2 V will be  
saved in the effective high-side MOSFET rise time register  
If 0x00 is saved as the turn-on delay time, the rise time TRISEHSx might not reflect the slew rate correctly. It is not  
recommended to use the TRISEHSx to adjust the switching behavior  
If IHx pulse is shorter than TBLK/TCCP, the registers will keep the last value and will not be updated  
Low-side MOSFET:  
TDONLSx is counted from the rising edge of the synchronized ILx until VSHMx reaches VDH - 2 V  
TRISELSx is counted from the VSHMx reaching VDH - 2 V until it reaches GND + 2 V  
If VSHMx does not reach VDH - 2 V until TBLK is elapsed, 0xFF and 0x00 will be saved in effective low-side MOSFET  
turn-on delay register and effective low-side MOSFET rise time register respectively  
If VSHMx has reached GND + 2 V when the rising edge of the synchronized ILx comes, 0x00 will be stored in both  
the effective low-side MOSFET turn-on delay register and the effective low-side MOSFET rise time register  
If VSHMx reaches VDH - 2 V but does not reach GND + 2 V when TBLK is elapsed, 0xFF will be saved in the effective  
low-side MOSFET rise time register  
TDOFFLSx is counted from the falling edge of the synchronized ILx until VSH reaches GND + 2 V  
TFALLLSx is counted from the VSHMx reaching GND + 2 V until it reaches to VDH - 2 V  
If VSHMx does not reach GND + 2 V until TCCP is elapsed, and 0xFF and 0x00 will be saved in effective low-side  
MOSFET turn-off delay register and effective low-side MOSFET fall time register respectively  
If VSHMx has reached VDH - 2 V when the falling edge of the synchronized ILx comes, 0x00 will be stored in both  
the effective low-side MOSFET turn-off delay register and the effective low-side MOSFET fall time register  
If VSHMx reaches GND + 2 V but does not reach VDH - 2 V when TCCP is elapsed, 0xFF will be saved in the effective  
low-side MOSFET fall time register  
Note:  
Datasheet  
38  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
6 Gate driver  
If VDH - 2 V > VSHMx > GND + 2 V when the rising edge of the synchronized ILx comes, 0x00 will be saved in effective  
low-side MOSFET turn-on delay register and the time from the ILx rising edge to VSHMx reaching GND + 2 V will be  
saved in the effective low-side MOSFET rise time register  
If 0x00 is saved as the turn-on delay time, the rise time TRISELSx might not reflect the slew rate correctly. It is not  
recommended to use the TRISELSx to adjust the switching behavior  
The values in the registers are invalid if IHx/ILx pulse is active shorter than TBLK or inactive shorter than TCCP  
6.2  
Electrical characteristics of gate driver  
Table 14  
Electrical characteristics gate driver  
VSM = 8.0 V to 60 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-Number  
Min.  
2.5  
Max.  
High input voltage VIH1_IN  
threshold of ILx, IHx  
(VDD = 5 V)  
V
V
V
V
VDD = 5 V  
VDD = 3.3 V  
VDD = 5 V  
VDD = 3.3 V  
P_BDRV_01_01  
High input voltage VIH2_IN  
threshold of ILx, IHx  
(VDD = 3.3 V)  
1.5  
P_BDRV_01_02  
P_BDRV_01_03  
P_BDRV_01_04  
Low input voltage  
threshold of ILx, IHx  
(VDD = 5 V)  
VIL1_IN  
0.8  
0.6  
Low input voltage  
threshold of ILx, IHx  
(VDD = 3.3 V)  
VIL2_IN  
Hysteresis of ILx,  
IHx (VDD = 5 V)  
VIHY1_IN  
VIHY2_IN  
Qtot_max  
100  
100  
400  
150  
mV  
mV  
nC  
VDD = 5 V  
P_BDRV_01_05  
P_BDRV_01_06  
P_BDRV_01_07  
Hysteresis of ILx,  
IHx (VDD = 3.3 V)  
VDD = 3.3 V  
Maximum total  
charge driver  
capability  
1400  
Due to charge pump  
current capability only  
6 MOSFETs +  
additional external  
capacitors with a  
total charge of max.  
1400 nC can be driven  
simultaneous at a PWM  
frequency of 25 kHz.  
High level output  
voltage low: GHMx  
vs. SHMx  
VGSHMx  
6.5  
10  
12.5  
12.5  
V
V
VSM = 8 V, ICP1 = 5.6 mA, P_BDRV_01_08  
ICP2 = 5.6 mA, CPEN =  
1b, BD_EN = 1b  
High level output  
voltage high: GHMx  
vs. SHMx  
VGSHMx  
11  
VSM > 13 V, ICP1  
19.1 mA, ICP2  
=
P_BDRV_01_09  
=
19.1 mA, CPEN = 1b,  
BD_EN = 1b  
(table continues...)  
Datasheet  
39  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
6 Gate driver  
Table 14  
(continued) Electrical characteristics gate driver  
VSM = 8.0 V to 60 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-Number  
Min.  
Max.  
12.5V  
High level output  
voltage low: GLMx  
vs. SLMx  
VGSLMx  
8
V
V
VSM = 8 V, ICP1 = 5.6  
mA, ICP2 = 5.6 mA, CPEN  
= 1b, BD_EN = 1b  
P_BDRV_01_10  
High level output  
voltage high: GLMx  
vs. SLMx  
VGSLMx  
10  
11  
12.5  
VSM > 13 V, ICP1  
19.1 mA, ICP2  
=
P_BDRV_01_11  
=
19.1 mA, CPEN = 1b,  
BD_EN = 1b  
Gate driver current tGDRV_RISE(ON)  
20  
75  
120  
120  
360  
ns  
ns  
ns  
From 20% of ICHG to  
80% of ICHG, x = 0 to 63,  
CLoad = 20 nF  
P_BDRV_01_12  
P_BDRV_01_13  
P_BDRV_01_14  
turn-on rise time  
Gate driver current tGDRV_RISE(OFF)  
turn-off rise time  
20  
75  
From 20% of IDISCHG  
to 80% of IDISCHG,  
x = 0 to 63, CLoad = 20 nF  
HS delay on time  
low  
tdelay_on(HS)  
tdelay_on(HS)  
tdelay_off(HS)  
tdelay_off(HS)  
tdelay_on(LS)  
220  
280  
HBFREQ = 0B  
From IHx reaching  
high voltage threshold  
to 20% of ICHGx,  
x = 0 to 63  
HS delay on time  
high  
250  
220  
250  
220  
320  
280  
320  
280  
400  
360  
400  
360  
ns  
ns  
ns  
ns  
HBFREQ = 1B  
P_BDRV_01_15  
P_BDRV_01_16  
P_BDRV_01_17  
P_BDRV_01_18  
From IHx reaching  
high voltage threshold  
to 20% of ICHGx,  
x = 0 to 63  
HS delay off time  
low  
HBFREQ = 0B  
From IHx reaching  
low voltage threshold  
to 20% of IDISCHGx,  
x = 0 to 63  
HS delay off time  
high  
HBFREQ = 1B  
From IHx reaching  
low voltage threshold  
to 20% of IDISCHGx,  
x = 0 to 63  
LS delay on time  
low  
HBFREQ = 0B  
From ILx reaching  
high voltage threshold  
to 20% of ICHGx,  
x = 0 to 63  
(table continues...)  
Datasheet  
40  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
6 Gate driver  
Table 14  
(continued) Electrical characteristics gate driver  
VSM = 8.0 V to 60 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-Number  
Min.  
250  
Max.  
400  
LS delay on time  
high  
tdelay_on(LS)  
320  
ns  
ns  
ns  
HBFREQ = 1B  
P_BDRV_01_19  
From ILx reaching  
high voltage threshold  
to 20% of ICHGx,  
x = 0 to 63  
LS delay off time  
low  
tdelay_off(LSx)  
220  
250  
280  
320  
360  
400  
HBFREQ = 0B  
P_BDRV_01_20  
P_BDRV_01_21  
From ILx reaching  
low voltage threshold  
to 20% of IDISCHGx,  
x = 0 to 63  
LS delay off time  
high  
tdelay_off(LSx)  
HBFREQ = 1B  
From ILx reaching  
low voltage threshold  
to 20% of IDISCHGx,  
x = 0 to 63  
Charge/discharge  
current accuracy  
(00 0000B)  
IACC0  
-60  
-40  
-30  
-20  
+75  
+40  
+30  
+20  
%
%
%
%
ICHG / IDISCHG /  
IPRECHG /  
P_BDRV_01_22  
P_BDRV_01_23  
P_BDRV_01_24  
P_BDRV_01_25  
IPREDISCHG /  
IPOSTCHG / ICHGM /  
IDISCHGM = 00 0000B  
Charge/discharge  
current accuracy  
(00 1111B)  
IACC15  
IACC31  
IACC31  
ICHG / IDISCHG /  
IPRECHG /  
IPREDISCHG /  
IPOSTCHG / ICHGM /  
IDISCHGM = 00 1111B  
Charge/discharge  
current accuracy  
(01 1111B)  
ICHG / IDISCHG /  
IPRECHG /  
IPREDISCHG /  
IPOSTCHG / ICHGM /  
IDISCHGM = 01 1111B  
Charge/discharge  
current accuracy  
(10 1111B)  
ICHG / IDISCHG /  
IPRECHG /  
IPREDISCHG /  
IPOSTCHG / ICHGM /  
IDISCHGM = 10 1111B,  
IGx_SEL = 0B  
(table continues...)  
Datasheet  
41  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
6 Gate driver  
Table 14  
(continued) Electrical characteristics gate driver  
VSM = 8.0 V to 60 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-Number  
Min.  
-25  
Max.  
+25  
Charge/discharge  
current accuracy  
(10 1111B)  
%
%
%
ICHG / IDISCHG /  
IPRECHG /  
P_BDRV_01_43  
IACC31_H  
IPREDISCHG /  
IPOSTCHG / ICHGM /  
IDISCHGM = 10 1111B,  
IGx_SEL = 1B  
Charge/discharge  
current accuracy  
(11 1111B)  
IACC63  
-20  
-25  
+20  
+25  
ICHG / IDISCHG /  
IPRECHG /  
IPREDISCHG /  
IPOSTCHG / ICHGM /  
IDISCHGM = 11 1111B,  
IGx_SEL = 0B  
P_BDRV_01_26  
P_BDRV_01_44  
Charge/discharge  
current accuracy  
(11 1111B)  
IACC63_H  
ICHG / IDISCHG /  
IPRECHG /  
IPREDISCHG /  
IPOSTCHG / ICHGM /  
IDISCHGM = 11 1111B,  
IGx_SEL = 1B  
Discharge_ST  
current accuracy (0  
0000B)  
IACC_ST0  
-60  
-40  
-30  
-20  
-25  
-20  
-25  
+75  
+40  
+30  
+20  
+25  
+20  
+25  
%
%
%
%
%
%
%
IDISCHG_ST = 0 0000B P_BDRV_01_27  
IDISCHG_ST = 0 0111B P_BDRV_01_28  
IDISCHG_ST = 0 1111B P_BDRV_01_29  
Discharge_ST  
current accuracy (0  
0111B)  
IACC_ST7  
Discharge_ST  
current accuracy (0  
1111B)  
IACC_ST15  
IACC_ST23  
IACC_ST23_H  
IACC_ST31  
IACC_ST31_H  
Discharge_ST  
current accuracy (1  
0111B)  
IDISCHG_ST = 1 0111B, P_BDRV_01_30  
IGx_SEL = 0B  
Discharge_ST  
current accuracy (1  
0111B)  
IDISCHG_ST = 1 0111B, P_BDRV_01_45  
IGx_SEL = 1B  
Discharge_ST  
current accuracy (1  
1111B)  
IDISCHG_ST = 1 1111B, P_BDRV_01_31  
IGx_SEL = 0B  
Discharge_ST  
current accuracy (1  
1111B)  
IDISCHG_ST = 1 1111B, P_BDRV_01_46  
IGx_SEL = 1B  
(table continues...)  
Datasheet  
42  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
6 Gate driver  
Table 14  
(continued) Electrical characteristics gate driver  
VSM = 8.0 V to 60 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-Number  
Min.  
Max.  
40  
SHMx comparator  
delay  
tSHMx  
5
ns  
P_BDRV_01_35  
Discharge timeout tOFF_timeout  
3.2  
4
4.8  
μs  
P_BDRV_01_32  
P_BDRV_01_33  
SHMx High  
Threshold  
VSHMH  
VDH - 3.0 –  
VDH - 2.0 V  
SHMx Low  
Threshold  
VSHL  
2
3.0  
11  
V
Referred to GND  
P_BDRV_01_34  
P_BDRV_01_36  
P_BDRV_01_37  
P_BDRV_01_38  
On resistance of  
gate current source  
RONGX  
2
Ω
BEMF comparator  
accuracy  
VBEMF_ACC  
VBEMF_HYS  
-100  
+100  
mV  
mV  
VSM = 48V  
BEMF hysteresis  
100  
Datasheet  
43  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
7 BEMF comparator  
7
BEMF comparator  
The device has 3 BEMF comparators integrated. GEF can be configured to show the output of each BEMF comparator  
and sent back via SDO as shown in Figure 16 below.  
Initialization phase  
Detection phase  
Reconfig phase  
Detection phase  
Reconfig phase  
CSN high to low: SDO is enabled. Status information transferred to output shift register  
CSN  
time  
SCLK  
SDI  
set control register 6:  
GEF_CONFIG = 01b  
set control register 6:  
GEF_CONFIG = 10b  
set control register 6:  
GEF_CONFIG = 11b  
time  
time  
1
0
1
0
1
0
15 14  
15 14  
15 14  
Real time output of BEMF comparator 1  
Real time output of BEMF comparator 2  
SDO  
GEF  
GEF  
GEF  
15 14  
1
0
15 14  
1
0
15 14  
1
0
time  
BEMF2  
BEMF1  
Figure 16  
BEMF signal is sent back via SDO  
When BEMF_POCESSING_EN bit is set to 0B, the real time signal of the outputs of the BEMF comparators can be read  
from STAT4:  
If the voltage at SHMx is higher than the average voltage of the other two SHM pins (SHMy + SHMz) / 2, the output of  
the corresponding BEMF comparator will be set to 1, and the corresponding bit in the status register will be set to 1.  
If the voltage at SHMx is lower than the average voltage of the other two SHM pins (SHMy + SHMz) / 2, the output of  
the corresponding BEMF comparator will be set to 0, and the corresponding bit in the status register will be set to 0.  
If the BEMF_POCESSING_EN bit is set to 1B, the BEMF signal read from STAT4 will be the output signal with the  
post-processing algorithm.  
Datasheet  
44  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
8 Serial Peripheral Interface - SPI  
8
Serial Peripheral Interface - SPI  
SPI description  
8.1  
The control input word is read via the data input SDI, which is synchronized with the clock input SCLK provided by the  
general microcontroller or the MOTIXTM MCU. The output word appears synchronously at the data output SDO, see  
Figure 17.  
The transmission cycle begins when the chip is selected by the input CSN (chip select not), low active. Afer the CSN  
input returns from low to high, the word that has been read is interpreted according to the content. The SDO output  
switches to tristate status (high impedance) at this point, thereby releasing the SDO bus for other use. The state of SDI  
is shifed into the input register with every falling edge on SCLK. The state of SDO is shifed out of the output register  
afer every rising edge on SCLK. The SPI of the device is not daisy chain capable.  
CSN high to low: SDO is enabled. Status information transferred to output shift register  
CSN  
time  
CSN low to high: data from shift register is transferred to output functions  
SCLK  
time  
Actual data  
New data  
15 14  
+ +  
SDI  
9 8 7 6 5 4 3 2 1  
0
15 14 13 12 11 10  
time  
SDI: will accept data on the falling edge of SCLK signal  
Actual status  
New status  
GEF 15 14  
SDO  
GEF 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
0
+
+ +  
time  
SDO: will change state on the rising edge of SCLK signal  
Figure 17  
SPI data transfer timing  
A SPI communication consists of 16-bit frames:  
SDI receives one address byte followed by one data byte  
SDO transmits the Global error flag and the Global status byte followed by one response byte  
The address byte specifies (see Figure 18):  
Datasheet  
45  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
8 Serial Peripheral Interface - SPI  
The target register (A[6:0])  
The type of operation:  
-
For control registers:  
-
-
Read only: OP bit = 0  
Read and write: OP bit = 1  
-
For status registers:  
-
-
Read only: OP bit = 0  
Read and clear: OP bit = 1  
Address Byte  
Data Byte  
LSB  
0
MSB  
15  
14  
A5  
13  
A4  
12  
A3  
11  
10  
A1  
9
8
7
6
5
4
3
2
1
SDI  
A6  
A2  
A0  
OP  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Register content of the selected address  
Global Status Byte  
Data Byte (Response)  
LSB  
0
MSB  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
SD0  
0
DSOV SUPE INE  
TE NPOR ST  
SPIE  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Time  
MSB is sent first in SPI message  
Figure 18  
In-frame response  
8.2  
Global error flag  
GEF bit can be configured by GEF_CONFIG in GENTRL6:  
00B global error flag  
01B back EMF1  
10B back EMF2  
11B back EMF3  
The global error flag (GEF) bit is reported on SDO between the CSN falling edge and the first SCLK rising edge.  
When the GEF bit is configured as a global error flag, the device is possible to have a quick diagnostic without any SPI  
clock pulse in following conditions:  
A fault condition is detected as in Table 15  
The device comes from a power-on-reset  
Datasheet  
46  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
8 Serial Peripheral Interface - SPI  
CSN  
time  
0
SCLK  
time  
time  
0
SDI  
High Impedance  
High Impedance  
Global Error Flag  
SDO  
time  
Figure 19  
GEF - diagnostic with 0 - clock cycle  
8.3  
Global status byte  
The SDO shifs out the general status register during the first eight SCLK cycles to provide an overview of the device  
status shown in Table 15 as following (in Figure 18):  
VDS monitoring error (DSOV bit): logical OR combination between HSxDSOV and LSxDSOV  
Supply error (SUPE bit): logical OR combination between VSM undervoltage shutdown (VSMUV), VSM overvoltage  
shutdown (VSMOV and VSMOV_PROT) and charge pump (CP1UV and CP2UV)  
Input error (INE bit): logical OR combination of INEx bits  
Temperature error (TE bit):  
-
-
Logical OR combination between thermal warning (TW) and thermal shutdown (TSD) when TWDIS = 0  
Thermal shutdown (TSD) when TSD = 1  
Negated power-on-reset (nPOR bit)  
Stop mode (ST bit)  
SPI protocol error (SPIE bit)  
Note:  
The Global error flag is a logic OR combination of every bit of the global status byte: GEF = (DSOV) OR (SUPE)  
OR (INE) OR (TE) OR (NOT(nPOR)) OR (ST) OR (SPIE).  
Table 15  
Failure reported in the global status byte and global error flag  
Type of error  
VDS monitoring error  
Supply error  
Failure reported in the global status byte  
Global error flag  
DSOV = 1  
SUPE = 1  
INE = 1  
1
1
1
1
1
1
1
Input error  
Temperature error  
Power-on-reset  
Stop mode  
TE = 1  
NPOR = 0  
ST = 1  
SPI protocol error  
SPIE = 1  
(table continues...)  
Datasheet  
47  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
8 Serial Peripheral Interface - SPI  
Table 15  
(continued) Failure reported in the global status byte and global error flag  
Type of error  
Failure reported in the global status byte  
Global error flag  
No error and no power-on-reset  
DSOV = 0  
SUPE = 0  
INE = 0  
0
TE = 0  
NPOR = 1  
ST = 0  
SPIE = 0  
8.4  
SPI error detection  
The SPI incorporates an error flag SPIE in STAT and Global status byte to supervise and preserve the data integrity.  
The SPIE bit is set in the next SPI communication if following SPI errors are detected during a given frame:  
The number of SCLK clock pulses received for the duration CSN = 0 is (protocol error):  
-
-
-
Not zero  
Or less than 16  
Or more than 16  
A watchdog trigger with an incorrect checksum bit is sent  
The microcontroller sends an SPI command to an unused address (protocol error)  
A clock polarity error is detected, see the Figure 22 below: the incoming clock signal was high during CSN rising or  
falling edges (protocol error)  
Any command to clear status registers in stop mode and not belonging to the exit sequence  
Any command to write control registers in stop mode and not belonging to the exit sequence  
To ensure a correct SPI communication, the following conditions have to be fulfilled:  
SCLK must be low for a minimum tBEF before CSN falling edge and tlead afer CSN falling edge  
SCLK must be low for a minimum tlag before CSN rising edge and tBEH afer CSN rising edge  
tlead  
tlag  
tCSNH  
tpCLK  
0.8VDD  
0.2VDD  
CSN  
SCLK  
SDI  
tSCLKH  
tSCLKL  
0.8VDD  
0.2VDD  
tSDI_hold  
tSDI_setup  
0.8VDD  
0.2VDD  
tENSDO  
tVASDO  
tDISSDO  
0.8VDD  
0.2VDD  
SDO  
Figure 20  
SPI timing parameters  
Datasheet  
48  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
8 Serial Peripheral Interface - SPI  
EN  
EN  
tSET_SPI  
SPI  
SPI  
A) SPI message ignored  
B) SPI message accepted  
Figure 21  
Setup time from EN rising edge to first SPI communication  
The SPI error bit SPIE is reset under the following conditions:  
The SPI error bit SPIE can be reset only In normal mode when the microcontroller must clear the SPIE bit in STAT  
In stop mode the microcontroller must enter normal operation mode and clear the SPIE bit in STAT  
Datasheet  
49  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
8 Serial Peripheral Interface - SPI  
Case 1: Correct SCLK signal  
Correct incoming clock signal  
Correct clock during CSN rising edge  
CSN  
time  
tBEF  
tlead  
tlag tBEH  
SCLK  
time  
Case 2: Erroneous incoming clock signal  
CSN  
time  
time  
SCLK is High with CSN falling edge  
SCLK  
Case 3: Erroneous clock signal during CSN rising edge  
CSN  
time  
time  
Clock is High with CSN rising edge  
SCLK  
Figure 22  
Polarity error  
Datasheet  
50  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
8 Serial Peripheral Interface - SPI  
8.5  
Electrical characteristics SPI  
Table 16  
SPI electrical characteristics  
VSM = 8.0 V to 60 V, VDD = 3 V to 5.5 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing  
into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-Number  
Min.  
Max.  
SPI frequency  
Maximum SPI  
frequency  
fSPI,max  
4
MHz  
P_SPI_01_01  
P_SPI_01_02  
Delay from EN rising edge to first SPI frame  
SPI interface setup tSET_SPI  
time  
500  
μs  
SPI interface (SDI, SCLK, CSN)  
High input voltage VIH1  
threshold (VDD = 5  
V)  
2.5  
1.5  
V
V
V
V
VDD = 5 V  
P_SPI_01_03  
P_SPI_01_04  
P_SPI_01_05  
P_SPI_01_06  
High input voltage VIH2  
threshold (VDD =  
3.3 V)  
VDD = 3.3 V  
VDD = 5 V  
Low input voltage  
threshold (VDD = 5  
V)  
VIL1  
0.8  
0.6  
Low input voltage  
threshold (VDD =  
3.3 V)  
VIL2  
VDD = 3.3 V  
Hysteresis of input VIHY1  
100  
100  
mV  
mV  
VDD = 5 V  
P_SPI_01_07  
P_SPI_01_08  
voltage (VDD = 5 V)  
Hysteresis of input VIHY2  
VDD = 3.3 V  
voltage (VDD = 3.3  
V)  
Pull down resistor Rpd  
at input pin ILx, IHx  
25  
25  
25  
40  
40  
40  
60  
60  
60  
10  
kΩ  
kΩ  
kΩ  
pF  
P_SPI_01_09  
P_SPI_01_10  
P_SPI_01_11  
P_SPI_01_12  
Pull up resistor at  
pin CSN  
RPU_CSN  
Pull down resistor RPD_SDI  
,
at pin SDI, SCLK  
RPD_SCLK  
Input capacitance  
at pin CSN, SDI and  
SCLK  
CI  
0 V < VDD < 5.5 V  
Input interface, logic outputs SDO  
High output voltage VSDOH  
level  
VDD - 0.4 –  
V
|ISDOH| = 1.6 mA  
P_SPI_01_13  
(table continues...)  
Datasheet  
51  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
8 Serial Peripheral Interface - SPI  
Table 16  
(continued) SPI electrical characteristics  
VSM = 8.0 V to 60 V, VDD = 3 V to 5.5 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing  
into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-Number  
Min.  
Max.  
0.4  
Low output voltage VSDOL  
level  
V
|ISDOL| = 1.6 mA  
P_SPI_01_14  
P_SPI_01_15  
P_SPI_01_16  
Tri-state leakage  
current  
ISDOLK  
CSDO  
-10  
10  
15  
μA  
pF  
VCSN = VDD;  
0 V < VSDO < VDD  
Tri-state input  
capacitance  
Data input timing  
SCLK period  
tpCLK  
250  
ns  
ns  
P_SPI_01_17  
P_SPI_01_18  
SCLK high time  
tSCLKH  
0.45 *  
tpCLK  
0.55 *  
tpCLK  
SCLK low time  
tSCLKL  
0.45 *  
tpCLK  
0.55 *  
tpCLK  
ns  
P_SPI_01_19  
CSN setup time  
SCLK setup time  
tlead  
tlag  
250  
250  
125  
ns  
ns  
ns  
P_SPI_01_21  
P_SPI_01_22  
P_SPI_01_23  
SCLK low afer CSN tBEH  
high  
SDI setup time  
SDI hold time  
tSDI_setup  
tSDI_hold  
trIN  
100  
50  
ns  
ns  
ns  
P_SPI_01_24  
P_SPI_01_25  
P_SPI_01_26  
Input signal rise  
time at pin SDI,  
SCLK, CSN  
50  
Input signal fall  
time at pin SDI,  
SCLK, CSN  
tfIN  
3
50  
ns  
P_SPI_01_27  
P_SPI_01_28  
Minimum CSN high tCSNH  
time  
μs  
Data output timing  
SDO rise time  
SDO fall time  
trSDO  
tfSDO  
30  
30  
80  
80  
80  
ns  
ns  
ns  
CLoad = 100 pF  
CLoad = 100 pF  
P_SPI_01_29  
P_SPI_01_30  
P_SPI_01_31  
SDO enable time  
afer CSN falling  
edge  
tENSDO  
SDO disable time  
afer CSN  
tDISSDO  
50  
ns  
P_SPI_01_32  
(table continues...)  
Datasheet  
52  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
8 Serial Peripheral Interface - SPI  
Table 16  
(continued) SPI electrical characteristics  
VSM = 8.0 V to 60 V, VDD = 3 V to 5.5 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing  
into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-Number  
Min.  
Max.  
80  
SDO valid time for tVASDO  
VDD = 5 V  
ns  
VSDO < 0.2 * VDD  
,
P_SPI_01_33  
VSDO > 0.8 * VDD  
Cload = 100 pF  
Datasheet  
53  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
9
Register specification  
9.1  
Register overview  
Table 17  
Register overview  
Register short name  
GENCTRL1  
GENCTRL2  
GENCTRL3  
GENCTRL4  
GENCTRL5  
GENCTRL6  
GENCTRL7  
GENCTRL8  
GENCTRL9  
GENCTRL10  
GENCTRL11  
GENCTRL12  
GENCTRL13  
STAT  
Register long name  
General control register 1  
General control register 2  
General control register 3  
General control register 4  
General control register 5  
General control register 6  
General control register 7  
General control register 8  
General control register 9  
General control register 10  
General control register 11  
General control register 12  
General control register 13  
General status register  
STAT1  
Global status register 1  
STAT2  
Global status register 2  
STAT3  
Global status register 3  
STAT4  
Global status register 4  
STAT5  
Effective high-side MOSFET turn-on delay PWM1  
Effective high-side MOSFET turn-off delay PWM1  
Effective low-side MOSFET turn-on delay PWM1  
Effective low-side MOSFET turn-off delay PWM1  
Effective high-side MOSFET turn-on delay PWM2  
Effective high-side MOSFET turn-off delay PWM2  
Effective low-side MOSFET turn-on delay PWM2  
Effective low-side MOSFET turn-off delay PWM2  
Effective high-side MOSFET turn-on delay PWM3  
Effective high-side MOSFET turn-off delay PWM3  
Effective low-side MOSFET turn-on delay PWM3  
Effective low-side MOSFET turn-off delay PWM3  
Effective high-side MOSFET rise time PWM1  
STAT6  
STAT7  
STAT8  
STAT9  
STAT10  
STAT11  
STAT12  
STAT13  
STAT14  
STAT15  
STAT16  
STAT17  
(table continues...)  
Datasheet  
54  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 17  
(continued) Register overview  
Register short name  
STAT18  
Register long name  
Effective high-side MOSFET fall time PWM1  
Effective low-side MOSFET rise time PWM1  
Effective low-side MOSFET fall time PWM1  
Effective high-side MOSFET rise time PWM2  
Effective high-side MOSFET fall time PWM2  
Effective low-side MOSFET rise time PWM2  
Effective low-side MOSFET fall time PWM2  
Effective high-side MOSFET rise time PWM3  
Effective high-side MOSFET fall time PWM3  
Effective low-side MOSFET rise time PWM3  
Effective low-side MOSFET fall time PWM3  
STAT19  
STAT20  
STAT21  
STAT22  
STAT23  
STAT24  
STAT25  
STAT26  
STAT27  
STAT28  
9.2  
Control Registers  
The control registers will be reset to default values afer power up or reset  
There are different bit types:  
-
-
'r' = READ: read only bits (or reserved bits)  
'rw' = READ/WRITE: readable and writable bits  
Reserved bits are marked as "Reserved" and always read as 0. The respective bits shall also be programmed as 0  
Reading a register is done word wise by setting the SPI bit OP to 0 (= read only)  
The SPI control registers are not cleared or changed automatically. It must be done by the microcontroller via SPI  
programming  
9.2.1  
General control register 1  
Table 18  
General control register 1 (000 0001B) Reset value: 0010 0001B  
7
6
5
HSLSOV_DIS  
rw  
4
3
IGx_SEL  
rw  
2
UNLOCK  
rw  
1
FMODE_1  
rw  
0
FMODE_0  
rw  
HBFREQ  
rw  
BD_EN  
rw  
DG  
rw  
Field  
Bits  
Type  
Description  
HBFREQ  
7
rw  
HB frequency  
0B 37.5 MHz (default)  
1B 18.75 MHz  
BD_EN  
6
rw  
Bridge driver enable  
0B the bridge driver is disabled  
1B the bridge driver in enabled  
(table continues...)  
Datasheet  
55  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 18  
(continued) General control register 1 (000 0001B) Reset value: 0010 0001B  
HSLSOV_DIS  
5
rw  
Over-current protection  
0B when VDS_HSx or VDS_LSx ≥ VDSTH, all gate drivers  
will be switched off  
1B when VDS_HSx or VDS_LSx ≥ VDSTH, the gate drivers  
of the same half - bridge will be switch off (default)  
DG  
4
rw  
Deglitch for high speed comparator  
0B the deglitch feature is disabled (default)  
1B the deglitch feature is enabled  
Note: Enable deglitch feature can ignore small glitches at  
the comparator input.  
IGx_SEL  
3
rw  
Charge/discharge current extension bit:  
0B keep the current set by corresponding bits (default)  
1B enlarge all currents to max. 480 mA  
Note: I represents the IPRECHG, ICHG, ICHGM, IHOLD,  
IPREDISCHG, IDISCHG, IDISCHGM, IPOSTCHG and  
IDISCHG_ST.  
UNLOCK  
FMODE  
2
rw  
rw  
Unlock bit to disable the watchdog  
0B WDDIS cannot be reset (default)  
1B WDDIS can be reset in following SPI frame  
[1:0]  
Frequency modulation  
00B no modulation  
01B modulation frequency 15.6 kHz (default)  
10B modulation frequency 31.2 kHz  
11B modulation frequency 62.5 kHz  
9.2.2  
General control register 2  
Table 19  
General control register 2 (000 0010B) Reset value: x000 0100B  
7
CHECKSUM  
rw  
6
RES  
r
5
RES  
r
4
RES  
r
3
RES  
r
2
1
0
WDPER  
rw  
Field  
Bits  
Type  
Description  
CHECKSUM  
7
rw  
Watchdog Setting Check Sum Bit  
The sum of bits 6:0 needs to have even parity  
0B counts as 0 for checksum calculation  
1B counts as 1 for checksum calculation  
RES  
RES  
RES  
6
5
4
r
r
r
Reserved. Always read as 0  
Reserved. Always read as 0  
Reserved. Always read as 0  
(table continues...)  
Datasheet  
56  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 19  
(continued) General control register 2 (000 0010B) Reset value: x000 0100B  
RES  
3
r
Reserved. Always read as 0  
WDPER  
[2:0]  
rw  
Watchdog period  
000B 2 ms  
001B 4 ms  
010B 8 ms  
011B 16 ms  
100B 64 ms (default)  
101B 128 ms  
110B 256 ms  
111B 512 ms  
9.2.3  
General control register 3  
Table 20  
General control register 3 (000 0011B) Reset value: 0000 0001B  
7
6
5
HB3DIAG  
rw  
4
HB2DIAG  
rw  
3
HB1DIAG  
rw  
2
1
VDSTH  
rw  
0
WDDIS  
rw  
TWDIS  
rw  
Field  
Bits  
Type  
Description  
WDDIS  
7
rw  
Watchdog disable bit  
0B the watchdog is enabled (default)  
1B the watchdog is disabled if the previous SPI frame has set  
UNLOCK bit (GENCTRL1)  
Once the watchdog is disabled, it is directly re-enabled by  
resetting WDDIS.  
TWDIS  
6
5
4
3
rw  
rw  
rw  
rw  
Thermal warning disable  
0B TW is reported in GEF and set in global status register (default)  
1B TW is not reported in GEF, but it is set in global status register  
HB3DIAG  
HB2DIAG  
Control of HB3 off-state current source and current sink  
0B pull-down deactivated (default)  
1B pull-down activated  
Control of HB2 off-state current source and current sink  
0B pull-down deactivated (default)  
1B pull-down activated  
HB1DIAG  
Control of HB1 off-state current source and current sink  
0B pull-down deactivated (default)  
1B pull-down activated  
(table continues...)  
Datasheet  
57  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 20  
VDSTH  
(continued) General control register 3 (000 0011B) Reset value: 0000 0001B  
[2:0]  
rw  
Drain - source overvoltage threshold  
000B : 145 mV  
001B : 195 mV(default)  
010B : 245 mV  
011B : 295 mV  
100B : 390 mV  
101B : 490 mV  
110B : 590 mV  
111B : 2 V  
9.2.4  
General control register 4  
Table 21  
General control register 4 (000 0100B) Reset value: 0000 1111B  
7
6
5
4
3
2
1
0
IPRECHG_T  
IPRECHG  
rw  
rw  
Field  
Bits  
Type  
Description  
IPRECHG_T  
[7:6]  
rw  
Pre - charge time of HB1 - HB3  
00B 100 ns (default)  
01B 150 ns  
10B 200 ns  
11B 250 ns  
Pre - charge current of HB1 - HB3  
IGx_SEL = 0B  
11.6 mA  
14.8 mA  
18.1 mA  
21.3 mA  
24.5 mA  
27.7 mA  
31.0 mA  
34.2 mA  
37.4 mA  
40.6 mA  
43.9 mA  
47.1 mA  
IGx_SEL = 1B  
11.6 mA  
15.8 mA  
20.1 mA  
24.3 mA  
28.5 mA  
32.7 mA  
37.0 mA  
41.2 mA  
45.4 mA  
49.7 mA  
53.9 mA  
58.1 mA  
00 0000B  
00 0001B  
00 0010B  
00 0011B  
00 0100B  
00 0101B  
00 0110B  
00 0111B  
00 1000B  
00 1001B  
00 1010B  
00 1011B  
IPRECHG  
[5:0]  
rw  
(table continues...)  
Datasheet  
58  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 21  
(continued) General control register 4 (000 0100B) Reset value: 0000 1111B  
00 1100B  
00 1101B  
00 1110B  
00 1111B (def.)  
01 0000B  
01 0001B  
01 0010B  
01 0011B  
01 0100B  
01 0101B  
01 0110B  
01 0111B  
01 1000B  
01 1001B  
01 1010B  
01 1011B  
01 1100B  
01 1101B  
01 1110B  
01 1111B  
10 0000B  
10 0001B  
10 0010B  
10 0011B  
10 0100B  
10 0101B  
10 0110B  
10 0111B  
10 1000B  
10 1001B  
10 1010B  
10 1011B  
10 1100B  
10 1101B  
10 1110B  
50.3 mA  
62.4 mA  
53.6 mA  
66.6 mA  
56.8 mA  
70.8 mA  
60.0 mA  
75.0 mA  
65.4 mA  
82.1 mA  
70.8 mA  
89.3 mA  
76.1 mA  
96.4 mA  
81.5 mA  
103.5 mA  
111.6 mA  
117.8 mA  
124.9 mA  
132.0 mA  
139.1 mA  
146.3 mA  
153.4 mA  
160.5 mA  
167.6 mA  
174.8 mA  
181.9 mA  
189.0 mA  
197.8 mA  
206.6 mA  
215.4 mA  
224.2 mA  
233.1 mA  
241.9 mA  
250.7 mA  
259.5 mA  
268.3 mA  
277.1 mA  
285.9 mA  
294.7 mA  
303.5 mA  
312.3 mA  
321.2 mA  
86.9 mA  
92.3 mA  
97.6 mA  
103.0 mA  
108.4 mA  
113.8 mA  
119.1 mA  
124.5 mA  
129.9 mA  
135.3 mA  
140.6 mA  
146.0 mA  
152.9 mA  
159.8 mA  
166.6 mA  
173.5 mA  
180.4 mA  
187.2 mA  
194.1 mA  
201.0 mA  
207.9 mA  
214.8 mA  
221.6 mA  
228.5 mA  
235.4 mA  
242.3 mA  
249.1 mA  
(table continues...)  
Datasheet  
59  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 21  
(continued) General control register 4 (000 0100B) Reset value: 0000 1111B  
10 1111B  
11 0000B  
11 0001B  
11 0010B  
11 0011B  
11 0100B  
11 0101B  
11 0110B  
11 0111B  
11 1000B  
11 1001B  
11 1010B  
11 1011B  
11 1100B  
11 1101B  
11 1110B  
11 1111B  
256.0 mA  
263.4 mA  
270.9 mA  
278.3 mA  
285.8 mA  
293.2 mA  
300.6 mA  
308.1 mA  
315.5 mA  
323.0 mA  
330.4 mA  
337.8 mA  
345.3 mA  
352.7 mA  
360.2 mA  
367.6 mA  
375.0 mA  
330.0 mA  
339.4 mA  
348.8 mA  
358.1 mA  
367.5 mA  
376.8 mA  
386.2 mA  
395.6 mA  
405.0 mA  
414.4 mA  
423.8 mA  
433.1 mA  
442.5 mA  
451.9 mA  
461.3 mA  
470.6 mA  
480.0 mA  
9.2.5  
General control register 5  
Table 22  
General control register 5 (000 0101B) Reset value: 0000 1111B  
7
6
5
4
3
2
1
0
ICHG_T  
ICHG  
rw  
rw  
Field  
Bits  
Type  
Description  
ICHG_T  
[7:6]  
rw  
Charge time of HB1 - HB3  
00B 200 ns (default)  
01B 400 ns  
10B 600 ns  
11B 800 ns  
Charge current of HB1 - HB3  
IGx_SEL = 0B  
11.6 mA  
IGx_SEL = 1B  
11.6 mA  
ICHG  
[5:0]  
rw  
00 0000B  
00 0001B  
00 0010B  
14.8 mA  
15.8 mA  
18.1 mA  
20.1 mA  
(table continues...)  
Datasheet  
60  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 22  
(continued) General control register 5 (000 0101B) Reset value: 0000 1111B  
00 0011B  
00 0100B  
00 0101B  
00 0110B  
00 0111B  
00 1000B  
00 1001B  
00 1010B  
00 1011B  
00 1100B  
00 1101B  
00 1110B  
00 1111B (def.)  
01 0000B  
01 0001B  
01 0010B  
01 0011B  
01 0100B  
01 0101B  
01 0110B  
01 0111B  
01 1000B  
01 1001B  
01 1010B  
01 1011B  
01 1100B  
01 1101B  
01 1110B  
01 1111B  
10 0000B  
10 0001B  
10 0010B  
10 0011B  
10 0100B  
10 0101B  
21.3 mA  
24.5 mA  
27.7 mA  
31.0 mA  
34.2 mA  
37.4 mA  
40.6 mA  
43.9 mA  
47.1 mA  
50.3 mA  
53.6 mA  
56.8 mA  
60.0 mA  
65.4 mA  
70.8 mA  
76.1 mA  
81.5 mA  
86.9 mA  
92.3 mA  
97.6 mA  
103.0 mA  
108.4 mA  
113.8 mA  
119.1 mA  
124.5 mA  
129.9 mA  
135.3 mA  
140.6 mA  
146.0 mA  
152.9 mA  
159.8 mA  
166.6 mA  
173.5 mA  
180.4 mA  
187.2 mA  
24.3 mA  
28.5 mA  
32.7 mA  
37.0 mA  
41.2 mA  
45.4 mA  
49.7 mA  
53.9 mA  
58.1 mA  
62.4 mA  
66.6 mA  
70.8 mA  
75.0 mA  
82.1 mA  
89.3 mA  
96.4 mA  
103.5 mA  
111.6 mA  
117.8 mA  
124.9 mA  
132.0 mA  
139.1 mA  
146.3 mA  
153.4 mA  
160.5 mA  
167.6 mA  
174.8 mA  
181.9 mA  
189.0 mA  
197.8 mA  
206.6 mA  
215.4 mA  
224.2 mA  
233.1 mA  
241.9 mA  
(table continues...)  
Datasheet  
61  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 22  
(continued) General control register 5 (000 0101B) Reset value: 0000 1111B  
10 0110B  
10 0111B  
10 1000B  
10 1001B  
10 1010B  
10 1011B  
10 1100B  
10 1101B  
10 1110B  
10 1111B  
11 0000B  
11 0001B  
11 0010B  
11 0011B  
11 0100B  
11 0101B  
11 0110B  
11 0111B  
11 1000B  
11 1001B  
11 1010B  
11 1011B  
11 1100B  
11 1101B  
11 1110B  
11 1111B  
194.1 mA  
201.0 mA  
207.9 mA  
214.8 mA  
221.6 mA  
228.5 mA  
235.4 mA  
242.3 mA  
249.1 mA  
256.0 mA  
263.4 mA  
270.9 mA  
278.3 mA  
285.8 mA  
293.2 mA  
300.6 mA  
308.1 mA  
315.5 mA  
323.0 mA  
330.4 mA  
337.8 mA  
345.3 mA  
352.7 mA  
360.2 mA  
367.6 mA  
375.0 mA  
250.7 mA  
259.5 mA  
268.3 mA  
277.1 mA  
285.9 mA  
294.7 mA  
303.5 mA  
312.3 mA  
321.2 mA  
330.0 mA  
339.4 mA  
348.8 mA  
358.1 mA  
367.5 mA  
376.8 mA  
386.2 mA  
395.6 mA  
405.0 mA  
414.4 mA  
423.8 mA  
433.1 mA  
442.5 mA  
451.9 mA  
461.3 mA  
470.6 mA  
480.0 mA  
9.2.6  
General control register 6  
Table 23  
General control register 6 (000 0110B) Reset value: 0000 1111B  
7
6
5
4
3
2
1
0
GEF_CONFIG  
IPOSTCHG  
rw  
rw  
Field  
Bits  
Type  
Description  
(table continues...)  
Datasheet  
62  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 23  
GEF_CONFIG  
(continued) General control register 6 (000 0110B) Reset value: 0000 1111B  
[7:6]  
rw  
Global Error Flag  
00B GEF (default state)  
01B BEMF1  
10B BEMF2  
11B BEMF3  
Post - charge current of HB1 - HB3  
IGx_SEL = 0B  
IGx_SEL = 1B  
11.6 mA  
15.8 mA  
20.1 mA  
24.3 mA  
28.5 mA  
32.7 mA  
37.0 mA  
41.2 mA  
45.4 mA  
49.7 mA  
53.9 mA  
58.1 mA  
62.4 mA  
66.6 mA  
70.8 mA  
75.0 mA  
82.1 mA  
89.3 mA  
96.4 mA  
103.5 mA  
111.6 mA  
117.8 mA  
124.9 mA  
132.0 mA  
139.1 mA  
146.3 mA  
153.4 mA  
160.5 mA  
00 0000B  
00 0001B  
00 0010B  
00 0011B  
00 0100B  
00 0101B  
00 0110B  
00 0111B  
00 1000B  
00 1001B  
00 1010B  
00 1011B  
00 1100B  
00 1101B  
00 1110B  
00 1111B (def.)  
01 0000B  
01 0001B  
01 0010B  
01 0011B  
01 0100B  
01 0101B  
01 0110B  
01 0111B  
01 1000B  
01 1001B  
01 1010B  
01 1011B  
11.6 mA  
14.8 mA  
18.1 mA  
21.3 mA  
24.5 mA  
27.7 mA  
31.0 mA  
34.2 mA  
37.4 mA  
40.6 mA  
43.9 mA  
47.1 mA  
50.3 mA  
53.6 mA  
56.8 mA  
60.0 mA  
65.4 mA  
70.8 mA  
76.1 mA  
81.5 mA  
86.9 mA  
92.3 mA  
97.6 mA  
103.0 mA  
108.4 mA  
113.8 mA  
119.1 mA  
124.5 mA  
IPOSTCHG  
[5:0]  
rw  
(table continues...)  
Datasheet  
63  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 23  
(continued) General control register 6 (000 0110B) Reset value: 0000 1111B  
01 1100B  
01 1101B  
01 1110B  
01 1111B  
10 0000B  
10 0001B  
10 0010B  
10 0011B  
10 0100B  
10 0101B  
10 0110B  
10 0111B  
10 1000B  
10 1001B  
10 1010B  
10 1011B  
10 1100B  
10 1101B  
10 1110B  
10 1111B  
11 0000B  
11 0001B  
11 0010B  
11 0011B  
11 0100B  
11 0101B  
11 0110B  
11 0111B  
11 1000B  
11 1001B  
11 1010B  
11 1011B  
11 1100B  
11 1101B  
11 1110B  
129.9 mA  
135.3 mA  
140.6 mA  
146.0 mA  
152.9 mA  
159.8 mA  
166.6 mA  
173.5 mA  
180.4 mA  
187.2 mA  
194.1 mA  
201.0 mA  
207.9 mA  
214.8 mA  
221.6 mA  
228.5 mA  
235.4 mA  
242.3 mA  
249.1 mA  
256.0 mA  
263.4 mA  
270.9 mA  
278.3 mA  
285.8 mA  
293.2 mA  
300.6 mA  
308.1 mA  
315.5 mA  
323.0 mA  
330.4 mA  
337.8 mA  
345.3 mA  
352.7 mA  
360.2 mA  
367.6 mA  
167.6 mA  
174.8 mA  
181.9 mA  
189.0 mA  
197.8 mA  
206.6 mA  
215.4 mA  
224.2 mA  
233.1 mA  
241.9 mA  
250.7 mA  
259.5 mA  
268.3 mA  
277.1 mA  
285.9 mA  
294.7 mA  
303.5 mA  
312.3 mA  
321.2 mA  
330.0 mA  
339.4 mA  
348.8 mA  
358.1 mA  
367.5 mA  
376.8 mA  
386.2 mA  
395.6 mA  
405.0 mA  
414.4 mA  
423.8 mA  
433.1 mA  
442.5 mA  
451.9 mA  
461.3 mA  
470.6 mA  
(table continues...)  
Datasheet  
64  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 23  
(continued) General control register 6 (000 0110B) Reset value: 0000 1111B  
11 1111B 375.0 mA 480.0 mA  
9.2.7  
General control register 7  
Table 24  
General control register 7 (000 0111B) Reset value: 0000 1111B  
7
6
5
4
3
2
1
0
IPREDISCHG_T  
IPREDISCHG  
rw  
rw  
Field  
Bits  
Type  
Description  
IPREDISCHG_T  
[7:6]  
rw  
Pre - discharge time of HB1 - HB3  
00B 100 ns (default)  
01B 150 ns  
10B 200 ns  
11B 250 ns  
Pre - discharge current of HB1 - HB3  
IGx_SEL = 0B  
11.6 mA  
IGx_SEL = 1B  
11.6 mA  
15.8 mA  
20.1 mA  
24.3 mA  
28.5 mA  
32.7 mA  
37.0 mA  
41.2 mA  
45.4 mA  
49.7 mA  
53.9 mA  
58.1 mA  
62.4 mA  
66.6 mA  
70.8 mA  
75.0 mA  
82.1 mA  
89.3 mA  
96.4 mA  
00 0000B  
00 0001B  
00 0010B  
00 0011B  
00 0100B  
00 0101B  
00 0110B  
00 0111B  
00 1000B  
00 1001B  
00 1010B  
00 1011B  
00 1100B  
00 1101B  
00 1110B  
00 1111B (def.)  
01 0000B  
01 0001B  
01 0010B  
14.8 mA  
18.1 mA  
21.3 mA  
24.5 mA  
27.7 mA  
31.0 mA  
34.2 mA  
37.4 mA  
40.6 mA  
43.9 mA  
47.1 mA  
50.3 mA  
53.6 mA  
56.8 mA  
60.0 mA  
65.4 mA  
70.8 mA  
76.1 mA  
IPREDISCHG  
[5:0]  
rw  
(table continues...)  
Datasheet  
65  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 24  
(continued) General control register 7 (000 0111B) Reset value: 0000 1111B  
01 0011B  
01 0100B  
01 0101B  
01 0110B  
01 0111B  
01 1000B  
01 1001B  
01 1010B  
01 1011B  
01 1100B  
01 1101B  
01 1110B  
01 1111B  
10 0000B  
10 0001B  
10 0010B  
10 0011B  
10 0100B  
10 0101B  
10 0110B  
10 0111B  
10 1000B  
10 1001B  
10 1010B  
10 1011B  
10 1100B  
10 1101B  
10 1110B  
10 1111B  
11 0000B  
11 0001B  
11 0010B  
11 0011B  
11 0100B  
11 0101B  
81.5 mA  
103.5 mA  
111.6 mA  
117.8 mA  
124.9 mA  
132.0 mA  
139.1 mA  
146.3 mA  
153.4 mA  
160.5 mA  
167.6 mA  
174.8 mA  
181.9 mA  
189.0 mA  
197.8 mA  
206.6 mA  
215.4 mA  
224.2 mA  
233.1 mA  
241.9 mA  
250.7 mA  
259.5 mA  
268.3 mA  
277.1 mA  
285.9 mA  
294.7 mA  
303.5 mA  
312.3 mA  
321.2 mA  
330.0 mA  
339.4 mA  
348.8 mA  
358.1 mA  
367.5 mA  
376.8 mA  
386.2 mA  
86.9 mA  
92.3 mA  
97.6 mA  
103.0 mA  
108.4 mA  
113.8 mA  
119.1 mA  
124.5 mA  
129.9 mA  
135.3 mA  
140.6 mA  
146.0 mA  
152.9 mA  
159.8 mA  
166.6 mA  
173.5 mA  
180.4 mA  
187.2 mA  
194.1 mA  
201.0 mA  
207.9 mA  
214.8 mA  
221.6 mA  
228.5 mA  
235.4 mA  
242.3 mA  
249.1 mA  
256.0 mA  
263.4 mA  
270.9 mA  
278.3 mA  
285.8 mA  
293.2 mA  
300.6 mA  
(table continues...)  
Datasheet  
66  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 24  
(continued) General control register 7 (000 0111B) Reset value: 0000 1111B  
11 0110B  
11 0111B  
11 1000B  
11 1001B  
11 1010B  
11 1011B  
11 1100B  
11 1101B  
11 1110B  
11 1111B  
308.1 mA  
315.5 mA  
323.0 mA  
330.4 mA  
337.8 mA  
345.3 mA  
352.7 mA  
360.2 mA  
367.6 mA  
375.0 mA  
395.6 mA  
405.0 mA  
414.4 mA  
423.8 mA  
433.1 mA  
442.5 mA  
451.9 mA  
461.3 mA  
470.6 mA  
480.0 mA  
9.2.8  
General control register 8  
Table 25  
General control register 8 (000 1000B) Reset value: 0000 1111B  
7
6
5
4
3
2
1
0
IHOLD  
IDISCHG  
rw  
rw  
Field  
Bits  
Type  
Description  
Gate driver hold current IHOLD  
IGx_SEL = 0B  
11.6 mA  
IGx_SEL = 1B  
11.6 mA  
00B (def.)  
IHOLD  
[7:6]  
rw  
01B  
27.7 mA  
32.7 mA  
10B  
40.6 mA  
49.7 mA  
11B  
50.3 mA  
62.4 mA  
Discharge current of HB1 - HB3  
IGx_SEL = 0B  
11.6 mA  
14.8 mA  
18.1 mA  
21.3 mA  
24.5 mA  
27.7 mA  
31.0 mA  
34.2 mA  
37.4 mA  
IGx_SEL = 1B  
11.6 mA  
15.8 mA  
20.1 mA  
24.3 mA  
28.5 mA  
32.7 mA  
37.0 mA  
41.2 mA  
45.4 mA  
00 0000B  
00 0001B  
00 0010B  
00 0011B  
00 0100B  
00 0101B  
00 0110B  
00 0111B  
00 1000B  
IDISCHG  
[5:0]  
rw  
(table continues...)  
Datasheet  
67  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 25  
(continued) General control register 8 (000 1000B) Reset value: 0000 1111B  
00 1001B  
00 1010B  
00 1011B  
00 1100B  
00 1101B  
00 1110B  
00 1111B (def.)  
01 0000B  
01 0001B  
01 0010B  
01 0011B  
01 0100B  
01 0101B  
01 0110B  
01 0111B  
01 1000B  
01 1001B  
01 1010B  
01 1011B  
01 1100B  
01 1101B  
01 1110B  
01 1111B  
10 0000B  
10 0001B  
10 0010B  
10 0011B  
10 0100B  
10 0101B  
10 0110B  
10 0111B  
10 1000B  
10 1001B  
10 1010B  
10 1011B  
40.6 mA  
43.9 mA  
47.1 mA  
50.3 mA  
53.6 mA  
56.8 mA  
60.0 mA  
65.4 mA  
70.8 mA  
76.1 mA  
81.5 mA  
86.9 mA  
92.3 mA  
97.6 mA  
103.0 mA  
108.4 mA  
113.8 mA  
119.1 mA  
124.5 mA  
129.9 mA  
135.3 mA  
140.6 mA  
146.0 mA  
152.9 mA  
159.8 mA  
166.6 mA  
173.5 mA  
180.4 mA  
187.2 mA  
194.1 mA  
201.0 mA  
207.9 mA  
214.8 mA  
221.6 mA  
228.5 mA  
49.7 mA  
53.9 mA  
58.1 mA  
62.4 mA  
66.6 mA  
70.8 mA  
75.0 mA  
82.1 mA  
89.3 mA  
96.4 mA  
103.5 mA  
111.6 mA  
117.8 mA  
124.9 mA  
132.0 mA  
139.1 mA  
146.3 mA  
153.4 mA  
160.5 mA  
167.6 mA  
174.8 mA  
181.9 mA  
189.0 mA  
197.8 mA  
206.6 mA  
215.4 mA  
224.2 mA  
233.1 mA  
241.9 mA  
250.7 mA  
259.5 mA  
268.3 mA  
277.1 mA  
285.9 mA  
294.7 mA  
(table continues...)  
Datasheet  
68  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 25  
(continued) General control register 8 (000 1000B) Reset value: 0000 1111B  
10 1100B  
10 1101B  
10 1110B  
10 1111B  
11 0000B  
11 0001B  
11 0010B  
11 0011B  
11 0100B  
11 0101B  
11 0110B  
11 0111B  
11 1000B  
11 1001B  
11 1010B  
11 1011B  
11 1100B  
11 1101B  
11 1110B  
11 1111B  
235.4 mA  
242.3 mA  
249.1 mA  
256.0 mA  
263.4 mA  
270.9 mA  
278.3 mA  
285.8 mA  
293.2 mA  
300.6 mA  
308.1 mA  
315.5 mA  
323.0 mA  
330.4 mA  
337.8 mA  
345.3 mA  
352.7 mA  
360.2 mA  
367.6 mA  
375.0 mA  
303.5 mA  
312.3 mA  
321.2 mA  
330.0 mA  
339.4 mA  
348.8 mA  
358.1 mA  
367.5 mA  
376.8 mA  
386.2 mA  
395.6 mA  
405.0 mA  
414.4 mA  
423.8 mA  
433.1 mA  
442.5 mA  
451.9 mA  
461.3 mA  
470.6 mA  
480.0 mA  
9.2.9  
General control register 9  
Table 26  
General control register 9 (000 1001B) Reset value: 0000 1111B  
7
6
5
4
3
2
1
0
CPEN  
rw  
CPREC  
rw  
ICHGM  
rw  
Field  
Bits  
Type  
Description  
CPEN  
7
rw  
Charge pump enable  
0B disable CP1 and CP2 modules (default)  
1B enable CP1 and CP2 modules  
CPREC  
6
rw  
Charge pump automatic recovery enable  
0B disable the automatic recovery for CP1 and CP2 when VSM lef OV/UV  
conditions (default)  
1B enable the automatic recovery for CP1 and CP2 when VSM lef OV/UV  
conditions  
(table continues...)  
Datasheet  
69  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 26  
(continued) General control register 9 (000 1001B) Reset value: 0000 1111B  
Middle charge current of HB1 - HB3  
IGx_SEL = 0B  
IGx_SEL = 1B  
11.6 mA  
15.8 mA  
20.1 mA  
24.3 mA  
28.5 mA  
32.7 mA  
37.0 mA  
41.2 mA  
45.4 mA  
49.7 mA  
53.9 mA  
58.1 mA  
62.4 mA  
66.6 mA  
70.8 mA  
75.0 mA  
82.1 mA  
89.3 mA  
96.4 mA  
103.5 mA  
111.6 mA  
117.8 mA  
124.9 mA  
132.0 mA  
139.1 mA  
146.3 mA  
153.4 mA  
160.5 mA  
167.6 mA  
174.8 mA  
181.9 mA  
189.0 mA  
197.8 mA  
00 0000B  
00 0001B  
00 0010B  
00 0011B  
00 0100B  
00 0101B  
00 0110B  
00 0111B  
00 1000B  
00 1001B  
00 1010B  
00 1011B  
00 1100B  
00 1101B  
00 1110B  
00 1111B (def.)  
01 0000B  
01 0001B  
01 0010B  
01 0011B  
01 0100B  
01 0101B  
01 0110B  
01 0111B  
01 1000B  
01 1001B  
01 1010B  
01 1011B  
01 1100B  
01 1101B  
01 1110B  
01 1111B  
10 0000B  
11.6 mA  
14.8 mA  
18.1 mA  
21.3 mA  
24.5 mA  
27.7 mA  
31.0 mA  
34.2 mA  
37.4 mA  
40.6 mA  
43.9 mA  
47.1 mA  
50.3 mA  
53.6 mA  
56.8 mA  
60.0 mA  
65.4 mA  
70.8 mA  
76.1 mA  
81.5 mA  
86.9 mA  
92.3 mA  
97.6 mA  
103.0 mA  
108.4 mA  
113.8 mA  
119.1 mA  
124.5 mA  
129.9 mA  
135.3 mA  
140.6 mA  
146.0 mA  
152.9 mA  
ICHGM  
[5:0]  
rw  
(table continues...)  
Datasheet  
70  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 26  
(continued) General control register 9 (000 1001B) Reset value: 0000 1111B  
10 0001B  
10 0010B  
10 0011B  
10 0100B  
10 0101B  
10 0110B  
10 0111B  
10 1000B  
10 1001B  
10 1010B  
10 1011B  
10 1100B  
10 1101B  
10 1110B  
10 1111B  
11 0000B  
11 0001B  
11 0010B  
11 0011B  
11 0100B  
11 0101B  
11 0110B  
11 0111B  
11 1000B  
11 1001B  
11 1010B  
11 1011B  
11 1100B  
11 1101B  
11 1110B  
11 1111B  
159.8 mA  
166.6 mA  
173.5 mA  
180.4 mA  
187.2 mA  
194.1 mA  
201.0 mA  
207.9 mA  
214.8 mA  
221.6 mA  
228.5 mA  
235.4 mA  
242.3 mA  
249.1 mA  
256.0 mA  
263.4 mA  
270.9 mA  
278.3 mA  
285.8 mA  
293.2 mA  
300.6 mA  
308.1 mA  
315.5 mA  
323.0 mA  
330.4 mA  
337.8 mA  
345.3 mA  
352.7 mA  
360.2 mA  
367.6 mA  
375.0 mA  
206.6 mA  
215.4 mA  
224.2 mA  
233.1 mA  
241.9 mA  
250.7 mA  
259.5 mA  
268.3 mA  
277.1 mA  
285.9 mA  
294.7 mA  
303.5 mA  
312.3 mA  
321.2 mA  
330.0 mA  
339.4 mA  
348.8 mA  
358.1 mA  
367.5 mA  
376.8 mA  
386.2 mA  
395.6 mA  
405.0 mA  
414.4 mA  
423.8 mA  
433.1 mA  
442.5 mA  
451.9 mA  
461.3 mA  
470.6 mA  
480.0 mA  
9.2.10  
General control register 10  
Table 27  
General control register 10 (000 1010B) Reset value: 0000 1111B  
7
6
5
4
3
2
1
0
(table continues...)  
Datasheet  
71  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 27  
TFBEMF  
(continued) General control register 10 (000 1010B) Reset value: 0000 1111B  
IDISCHGM  
rw  
rw  
Field  
Bits  
Type  
Description  
TFBEMF  
[7:6]  
rw  
Back EMF filter time  
00B 0.5 μs (def.)  
01B 1 μs  
10B 2 μs  
11B 3 μs  
Middle discharge current of HB1 - HB3  
IGx_SEL = 0B  
IGx_SEL = 1B  
11.6 mA  
15.8 mA  
20.1 mA  
24.3 mA  
28.5 mA  
32.7 mA  
37.0 mA  
41.2 mA  
45.4 mA  
49.7 mA  
53.9 mA  
58.1 mA  
62.4 mA  
66.6 mA  
70.8 mA  
75.0 mA  
82.1 mA  
89.3 mA  
96.4 mA  
103.5 mA  
111.6 mA  
117.8 mA  
124.9 mA  
132.0 mA  
00 0000B  
00 0001B  
00 0010B  
00 0011B  
00 0100B  
00 0101B  
00 0110B  
00 0111B  
00 1000B  
00 1001B  
00 1010B  
00 1011B  
00 1100B  
00 1101B  
00 1110B  
00 1111B (def.)  
01 0000B  
01 0001B  
01 0010B  
01 0011B  
01 0100B  
01 0101B  
01 0110B  
01 0111B  
11.6 mA  
14.8 mA  
18.1 mA  
21.3 mA  
24.5 mA  
27.7 mA  
31.0 mA  
34.2 mA  
37.4 mA  
40.6 mA  
43.9 mA  
47.1 mA  
50.3 mA  
53.6 mA  
56.8 mA  
60.0 mA  
65.4 mA  
70.8 mA  
76.1 mA  
81.5 mA  
86.9 mA  
92.3 mA  
97.6 mA  
103.0 mA  
IDISCHGM  
[5:0]  
rw  
(table continues...)  
Datasheet  
72  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 27  
(continued) General control register 10 (000 1010B) Reset value: 0000 1111B  
01 1000B  
01 1001B  
01 1010B  
01 1011B  
01 1100B  
01 1101B  
01 1110B  
01 1111B  
10 0000B  
10 0001B  
10 0010B  
10 0011B  
10 0100B  
10 0101B  
10 0110B  
10 0111B  
10 1000B  
10 1001B  
10 1010B  
10 1011B  
10 1100B  
10 1101B  
10 1110B  
10 1111B  
11 0000B  
11 0001B  
11 0010B  
11 0011B  
11 0100B  
11 0101B  
11 0110B  
11 0111B  
11 1000B  
11 1001B  
11 1010B  
108.4 mA  
113.8 mA  
119.1 mA  
124.5 mA  
129.9 mA  
135.3 mA  
140.6 mA  
146.0 mA  
152.9 mA  
159.8 mA  
166.6 mA  
173.5 mA  
180.4 mA  
187.2 mA  
194.1 mA  
201.0 mA  
207.9 mA  
214.8 mA  
221.6 mA  
228.5 mA  
235.4 mA  
242.3 mA  
249.1 mA  
256.0 mA  
263.4 mA  
270.9 mA  
278.3 mA  
285.8 mA  
293.2 mA  
300.6 mA  
308.1 mA  
315.5 mA  
323.0 mA  
330.4 mA  
337.8 mA  
139.1 mA  
146.3 mA  
153.4 mA  
160.5 mA  
167.6 mA  
174.8 mA  
181.9 mA  
189.0 mA  
197.8 mA  
206.6 mA  
215.4 mA  
224.2 mA  
233.1 mA  
241.9 mA  
250.7 mA  
259.5 mA  
268.3 mA  
277.1 mA  
285.9 mA  
294.7 mA  
303.5 mA  
312.3 mA  
321.2 mA  
330.0 mA  
339.4 mA  
348.8 mA  
358.1 mA  
367.5 mA  
376.8 mA  
386.2 mA  
395.6 mA  
405.0 mA  
414.4 mA  
423.8 mA  
433.1 mA  
(table continues...)  
Datasheet  
73  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 27  
(continued) General control register 10 (000 1010B) Reset value: 0000 1111B  
11 1011B  
11 1100B  
11 1101B  
11 1110B  
11 1111B  
345.3 mA  
352.7 mA  
360.2 mA  
367.6 mA  
375.0 mA  
442.5 mA  
451.9 mA  
461.3 mA  
470.6 mA  
480.0 mA  
9.2.11  
General control register 11  
Table 28  
General control register 11 (000 1011B) Reset value: 0000 1111B  
7
6
TFVDS  
rw  
5
4
3
2
1
0
IDISCHG_ST  
rw  
Field  
Bits Type  
Description  
Drain - source overvoltage filter time of HB1 - HB3  
000B 0.25 μs (def.)  
001B 0.50 μs  
010B 0.75 μs  
TFVDS  
[7:5]  
rw 011B 1.00 μs  
100B 1.25 μs  
101B 1.50 μs  
110B 1.75 μs  
111B 2.00 μs  
Static discharge current of HB1 - HB3  
IGx_SEL = 0B  
IGx_SEL = 1B  
15.8 mA  
24.3 mA  
32.7 mA  
41.2 mA  
49.7 mA  
58.1 mA  
66.6 mA  
75.0 mA  
89.3 mA  
103.5 mA  
117.8 mA  
0 0000B  
0 0001B  
14.8 mA  
21.3 mA  
27.7 mA  
34.3 mA  
40.6 mA  
47.1 mA  
53.6 mA  
60.0 mA  
70.8 mA  
81.5 mA  
92.3 mA  
0 0010B  
0 0011B  
IDISCHG_ST  
[4:0]  
rw 0 0100B  
0 0101B  
0 0110B  
0 0111B  
0 1000B  
0 1001B  
0 1010B  
(table continues...)  
Datasheet  
74  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 28  
(continued) General control register 11 (000 1011B) Reset value: 0000 1111B  
0 1011B  
0 1100B  
0 1101B  
0 1110B  
0 1111B (def.)  
1 0000B  
1 0001B  
1 0010B  
1 0011B  
1 0100B  
1 0101B  
1 0110B  
1 0111B  
1 1000B  
1 1001B  
1 1010B  
1 1011B  
1 1100B  
1 1101B  
1 1110B  
1 1111B  
103.0 mA  
113.8 mA  
124.5 mA  
135.3 mA  
146.0 mA  
159.8 mA  
173.5 mA  
187.2 mA  
210.0 mA  
214.8 mA  
228.5 mA  
242.3 mA  
256.0 mA  
270.9 mA  
285.8 mA  
300.6 mA  
315.5 mA  
330.4 mA  
345.3 mA  
360.20 mA  
375.0 mA  
132.0 mA  
146.3 mA  
160.5 mA  
174.8 mA  
189.0 mA  
206.6 mA  
224.2 mA  
241.9 mA  
259.5 mA  
277.1 mA  
294.7 mA  
312.3 mA  
330.0 mA  
348.8 mA  
367.5 mA  
386.2 mA  
405.0 mA  
423.8 mA  
442.5mA  
461.3 mA  
480.0 mA  
9.2.12  
General control register 12  
Table 29  
General control register 12 (000 1100B) Reset value: 0001 1011B  
7
6
5
4
3
2
1
0
RES  
IPREDISCHG  
_T_XT  
TBLK  
TCCP  
r
rw  
rw  
rw  
Field  
RES  
Bits  
Type  
Description  
Reserved. Always read as 0  
7
r
(table continues...)  
Datasheet  
75  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 29  
(continued) General control register 12 (000 1100B) Reset value: 0001 1011B  
IPREDISCHG_T_XT  
6
rw  
Extended pre-discharge time  
0B keep the pre-discharge time defined  
by IPREDISCHG_T (default)  
1B extend the pre-discharge time to 300ns when  
IPREDISCHG_T = 00B 350 ns when IPREDISCHG_T = 01B  
400 ns when IPREDISCHG_T = 10B  
450 ns when IPREDISCHG_T = 11B  
TBLK  
[5:3]  
rw  
Blank time tBLANK for HB1 - HB3  
000B 0.5 μs  
001B 1.0 μs  
010B 1.5 μs  
011B 2.0 μs (def.)  
100B 2.5 μs  
101B 3.0 μs  
110B 3.5 μs  
111B 4.0 μs  
TCCP  
[2:0]  
rw  
Cross current protection tCCP for HB1 - HB3  
000B 0.5 μs  
001B 1.0 μs  
010B 1.5 μs  
011B 2.0 μs (def.)  
100B 2.5 μs  
101B 3.0 μs  
110B 3.5 μs  
111B 4.0 μs  
9.2.13  
General control register 13  
Table 30  
General control register 13 (000 1101B) Reset value: 0000 0011B  
7
RES  
r
6
LSAFW_CFG  
rw  
5
4
3
VSMOV_CFG  
rw  
2
1
VSM_COVUVTH  
rw  
0
LSAFW  
rw  
Field  
RES  
Bits  
7
Type  
r
Description  
Reserved. Always read as 0  
LSAFW_CFG  
6
rw  
Overvoltage low-side freewheeling enable bit  
0B switch off MOSFETs if VSMOV = 1 (default)  
1B activate low-side freewheeling if VSMOV = 1  
(table continues...)  
Datasheet  
76  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 30  
(continued) General control register 13 (000 1101B) Reset value: 0000 0011B  
LSAFW  
[5:4]  
rw  
Low-side freewheeling set up bit:  
00B all low-side MOSFETs are switched on for  
freewheeling if VSMOV = 1 (default)  
01B only LS1 is switched on for freewheeling if VSMOV = 1  
10B only LS2 is switched on for freewheeling if VSMOV = 1  
11B only LS3 is switched on for freewheeling if VSMOV = 1  
VSMOV_CFG  
3
rw  
rw  
Configurable overvoltage/undervoltage enable bit:  
0B when VSM reaches VSM_COVUVTH, the VSMOV is set  
and the overvoltage event is reported in GEF (default)  
1B when VSM reaches VSM_COVUVTH, the overvoltage  
event is ignored  
VSM_COVUVTH  
[2:0]  
Configurable overvoltage/undervoltage thresholds:  
000B OV: 56 V, UV: 18.5 V  
001B OV: 58 V, UV: 18.5 V  
010B OV: 60 V, UV: 18.5 V  
011B OV: 62 V, UV: 18.5 V (default)  
100B OV: 51 V, UV: 7.0 V  
101B keep the latest configuration settings  
110B keep the latest configuration settings  
111B keep the latest configuration settings  
9.3  
Status registers  
One 16-bit SPI command consists of two bytes (see Figure 18):  
-
-
The 7-bit address and one additional bit for the register access mode and  
Following the data byte  
There are two different bit types:  
-
-
'r' = READ: read only bits (or reserved bits)  
'rc' = READ/CLEAR: readable and clearable bits  
Reading a register is done word wise by setting the SPI bit OP to 0 (= read only)  
Clearing a register is done word wise by setting the SPI bit OP to 1. No single bits can be cleared  
The SPI status registers are in general not cleared automatically. It must be done by the microcontroller via SPI  
command  
Table 31  
General control register 14 (010 1011B) Reset value: 0000 0000B  
7
6
5
4
3
2
1
0
RES  
RES  
RES  
RES  
RES  
BEMF_PROC  
ESSING_EN  
BEMF_BT_TFILT_SEL  
r
r
r
r
r
rw  
rw  
Field  
RES  
Bits  
Type  
Description  
Reserved. Always read as 0  
7
r
(table continues...)  
Datasheet  
77  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 31  
(continued) General control register 14 (010 1011B) Reset value: 0000 0000B  
RES  
RES  
RES  
RES  
6
5
4
3
2
r
r
Reserved. Always read as 0  
Reserved. Always read as 0  
Reserved. Always read as 0  
Reserved. Always read as 0  
r
r
BEMF_PROCESSING_EN  
rw  
BEMF processing enable bit:  
0B BEMF processing algorithm is disabled (default)  
1B BEMF processing algorithm is enabled  
BEMF_BT_TFILT_SEL  
[1:0]  
rw  
HB Blanking time for BEMF comparator output signal  
00B 6 µs (default)  
01B 8 µs  
10B 12 µs  
11B 16 µs  
9.3.1  
General status register  
Table 32  
General status register (000 1110B) Reset value: 0000 0000B  
7
RES  
r
6
DSOV  
r
5
SUPE  
r
4
INE  
r
3
TE  
r
2
nPOR  
rc  
1
0
SPIE  
rc  
ST  
rc  
Field  
RES  
Bits  
7
Type  
Description  
r
r
Reserved. Always read as 0  
VDS monitoring bit  
DSOV  
6
0B no VDS error is detected (default)  
1B VDS error is detected  
SUPE  
INE  
5
4
3
2
r
r
Supply error bit  
0B no supply error is detected (default)  
1B supply error is detected  
Input error bit  
0B no input error is detected (default)  
1B input error is detected  
TE  
r
Temperature error bit  
0B no thermal shutdown and no thermal warning is detected (default)  
1B a thermal shutdown or a thermal warning is detected  
nPOR  
rc  
Negative Power-On-Reset bit  
0B a Power-On-Reset is detected (default)  
1B no Power-On-Reset (afer clear)  
(table continues...)  
Datasheet  
78  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 32  
ST  
(continued) General status register (000 1110B) Reset value: 0000 0000B  
1
rc  
Stop mode bit  
0B The device is not in stop mode state (default)  
1B The device is in stop mode state  
SPIE  
0
rc  
SPI protocol error bit  
0B No SPI protocol error is detected (default)  
1B A SPI protocol error is detected  
9.3.2  
Global status register 1  
Table 33  
Global status register 1 (000 1111B) Reset value: 0000 0000B  
7
6
5
4
3
2
1
0
RES  
TW  
TSD  
CP1UV  
CP2UV  
VSMOV_PRO  
T
VSMOV  
VSMUV  
rc  
rc  
rc  
rc  
rc  
rc  
rc  
rc  
Field  
RES  
TW  
Bits  
7
Type  
rc  
Description  
Reserved. Always read as 0  
Thermal warning  
6
rc  
0B no thermal warning is detected (default)  
1B a thermal warning is detected  
TSD  
5
4
3
2
1
0
rc  
rc  
rc  
rc  
rc  
rc  
Thermal shutdown  
0B no thermal shutdown is detected (default)  
1B a thermal shutdown is detected  
CP1UV  
CP2UV  
Charge pump 1 undervoltage  
0B no charge pump 1 undervoltage detected (default)  
1B charge pump 1 undervoltage detected  
Charge pump 2 undervoltage  
0B no charge pump 2 undervoltage detected (default)  
1B charge pump 2 undervoltage detected  
VSMOV_PRO  
T
VSM overvoltage Bit  
0B VSM doesn't reach the hard OV threshold (default)  
1B VSM reaches the hard OV threshold  
VSMOV  
VSMUV  
VSM overvoltage Bit  
0B no VSM Overvoltage is detected (default)  
1B VSM Overvoltage is detected  
VSM undervoltage Bit  
0B no VSM Undervoltage is detected (default)  
1B VSM Undervoltage is detected  
Datasheet  
79  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
9.3.3  
Global status register 2  
Table 34  
Global status register 2 (001 0000B) Reset value: 0000 0000B  
7
6
5
LS3DSOV  
rc  
4
HS3DSOV  
rc  
3
LS2DSOV  
rc  
2
HS2DSOV  
rc  
1
LS1DSOV  
rc  
0
HS1DSOV  
rc  
WDMON  
r
Field  
Bits  
Type  
Description  
WDMON  
[7:6]  
r
Watchdog monitoring  
00B WD timer is between [0%;25%] of the WD period (default)  
01B WD timer is between [25%;50%] of the WD period  
10B WD timer is between [50%;75%] of the WD period  
11B WD timer is between [75%;100%] of the WD period  
LS3DSOV  
HS3DSOV  
LS2DSOV  
HS2DSOV  
LS1DSOV  
HS1DSOV  
5
4
3
2
1
0
rc  
rc  
rc  
rc  
rc  
rc  
Drain-source overvoltage on low side 3  
0B no overvoltage on DS of low side 3 (default)  
1B overvoltage on DS of low side 3 is detected  
Drain-source overvoltage on high side 3  
0B no overvoltage on DS of high side 3 (default)  
1B overvoltage on DS of high side 3 is detected  
Drain-source overvoltage on low side 2  
0B no overvoltage on DS of low side 2 (default)  
1B overvoltage on DS of low side 2 is detected  
Drain-source overvoltage on high side 2  
0B no overvoltage on DS of high side 2 (default)  
1B overvoltage on DS of high side 2 is detected  
Drain-source overvoltage on low side 1  
0B no overvoltage on DS of low side 1 (default)  
1B overvoltage on DS of low side 1 is detected  
Drain-source overvoltage on high side 1  
0B no overvoltage on DS of high side 1 (default)  
1B overvoltage on DS of high side 1 is detected  
9.3.4  
Global status register 3  
Table 35  
Global status register 3 (001 0001B) Reset value: 0000 0000B  
7
RES  
r
6
RES  
r
5
INE1  
rc  
4
INE2  
rc  
3
INE3  
rc  
2
1
0
HS3VOUT  
HS2VOUT  
HS1VOUT  
r
r
r
Filed  
Bits  
Type  
Description  
(table continues...)  
Datasheet  
80  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 35  
(continued) Global status register 3 (001 0001B) Reset value: 0000 0000B  
RES  
[7:6]  
5
r
Reserved. Always read as 0  
INE1  
rc  
Input 1 error  
0B no input 1 error is detected (default)  
1B IH1 and IL1 are high  
INE2  
INE3  
4
3
2
rc  
rc  
r
Input 2 error  
0B no input 2 error is detected (default)  
1B IH2 and IL2 are high  
Input 3 error  
0B no input 1 error is detected (default)  
1B IH3 and IL3 are high  
HS3VOUT  
Voltage level at SH3 when (IH3, IL3) = (0,0)  
0B low: |VSH3 - GND| < VSHL  
1B high: |VSH3 - GND| > VSHL  
Note: HB3VOUT = 0 if (IH3, IL3) = (1,0) or (0,1).  
HS2VOUT  
HS1VOUT  
1
0
r
r
Voltage level at SH2 when (IH2, IL2) = (0,0)  
0B low: |VSH2 - GND| < VSHL  
1B high: |VSH2 - GND| > VSHL  
Note: HB2VOUT = 0 if (IH2, IL2) = (1,0) or (0,1).  
Voltage level at SH1 when (IH1, IL1) = (0,0)  
0B low: |VSH1 - GND| < VSHL  
1B high: |VSH1 - GND| > VSHL  
Note: HB1VOUT = 0 if (IH1, IL1) = (1,0) or (0,1).  
9.3.5  
Global status register 4  
Table 36  
Global status register 4 (001 0010B) Reset value: 0000 0000B  
7
6
5
RES  
r
4
3
2
BEMF3  
r
1
BEMF2  
r
0
BEMF1  
r
Field  
RES  
Bits  
Type  
Description  
[7:3]  
r
Reserved. Always read as 0  
(table continues...)  
Datasheet  
81  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 36  
BEMF3  
(continued) Global status register 4 (001 0010B) Reset value: 0000 0000B  
2
1
0
r
r
r
Signal for BEMF3  
1B VSHM3 > (VSHM1 + VSHM2)/2  
0B VSHM3 < (VSHM1 + VSHM2)/2  
Note:  
If the BEMF_POCESSING_EN bit is set to 0B, the BEMF3 will be real time  
signal.  
If the BEMF_POCESSING_EN bit is set to 1B, the BEMF3 will be the  
output signal with the post-processing algorithm.  
When BD_EN = 0B, the BEMF3 = 0B  
BEMF2  
Signal for BEMF2  
1B VSHM2 > (VSHM1 + VSHM3)/2  
0B VSHM2 < (VSHM1 + VSHM3)/2  
Note:  
If the BEMF_POCESSING_EN bit is set to 0B, the BEMF2 will be real time  
signal.  
If the BEMF_POCESSING_EN bit is set to 1B, the BEMF2 will be the  
output signal with the post-processing algorithm.  
When BD_EN = 0B, the BEMF2 = 0B  
BEMF1  
Signal for BEMF1  
1B VSHM1 > (VSHM2 + VSHM3)/2  
0B VSHM1 < (VSHM2 + VSHM3)/2  
Note:  
If the BEMF_POCESSING_EN bit is set to 0B, the BEMF1 will be real time  
signal.  
If the BEMF_POCESSING_EN bit is set to 1B, the BEMF1 will be the  
output signal with the post-processing algorithm.  
When BD_EN = 0B, the BEMF1 = 0B  
9.3.6  
Effective MOSFET turn-on/-off delay  
Table 37  
Effective high-side MOSFET turn-on delay PWM1 (001 0011B) Reset value: 0000 0000B  
7
6
5
4
3
2
1
0
TDONHS1  
r
Field  
Bits  
Type  
Description  
(table continues...)  
Datasheet  
82  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 37  
(continued) Effective high-side MOSFET turn-on delay PWM1 (001 0011B) Reset value: 0000  
0000B  
TDONHS1  
[7:0]  
r
Effective high-side MOSFET turn-on delay of PWM channel 1 1)  
HBFREQ bit is 1: effective turn-on delay = 53.3 TDONHS1[7:0]D ns  
HBFREQ bit is 0: effective turn-on delay = 26.7 TDONHS1[7:0]D ns  
Default value: 0B  
Table 38  
Effective high-side MOSFET turn-off delay PWM1 (001 0100B) Reset value: 0000 0000B  
7
6
5
4
3
2
1
0
TDOFFHS1  
r
Field  
Bits  
Type  
Description  
TDOFFHS1  
[7:0]  
r
Effective high-side MOSFET turn-off delay of PWM channel 1 3)  
HBFREQ bit is 1: effective turn-off delay = 53.3 TDOFFHS1[7:0]D ns  
HBFREQ bit is 0: effective turn-off delay = 26.7 TDOFFHS1[7:0]D ns  
Default value: 0B  
Table 39  
Effective low-side MOSFET turn-on delay PWM1 (001 0101B) Reset value: 0000 0000B  
7
6
5
4
3
2
1
0
TDONLS1  
r
Field  
Bits  
Type  
Description  
TDONLS1  
[7:0]  
r
Effective low-side MOSFET turn-on delay of PWM channel 1 2)  
HBFREQ bit is 1: effective turn-on delay = 53.3 TDONLS1[7:0]D ns  
HBFREQ bit is 0: effective turn-on delay = 26.7 TDONLS1[7:0]D ns  
Default value: 0B  
Table 40  
Effective low-side MOSFET turn-off delay PWM1 (001 0110B) Reset value: 0000 0000B  
7
6
5
4
3
2
1
0
TDOFFLS1  
r
Field  
Bits  
Type  
Description  
TDOFFLS1  
[7:0]  
r
Effective low-side MOSFET turn-off delay of PWM channel 1 4)  
HBFREQ bit is 1: effective turn-off delay = 53.3 TDOFFLS1[7:0]D ns  
HBFREQ bit is 0: effective turn-off delay = 26.7 TDOFFLS1[7:0]D ns  
Default value: 0B  
Datasheet  
83  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 41  
Effective high-side MOSFET turn-on delay PWM2 (001 0111B) Reset value: 0000 0000B  
7
6
5
4
3
2
1
0
TDONHS2  
r
Field  
Bits  
Type  
Description  
TDONHS2  
[7:0]  
r
Effective high-side MOSFET turn-on delay of PWM channel 2 1)  
HBFREQ bit is 1: effective turn-on delay = 53.3 TDONHS2[7:0]D ns  
HBFREQ bit is 0: effective turn-on delay = 26.7 TDONHS2[7:0]D ns  
Default value: 0B  
Table 42  
Effective high-side MOSFET turn-off delay PWM2 (001 1000B) Reset value: 0000 0000B  
7
6
5
4
3
2
1
0
TDOFFHS2  
r
Field  
Bits  
Type  
Description  
TDOFFHS2  
[7:0]  
r
Effective high-side MOSFET turn-off delay of PWM channel 2 3)  
HBFREQ bit is 1: effective turn-off delay = 53.3 TDOFFHS2[7:0]D ns  
HBFREQ bit is 0: effective turn-off delay = 26.7 TDOFFHS2[7:0]D ns  
Default value: 0B  
Table 43  
Effective low-side MOSFET turn-on delay PWM2 (001 1001B) Reset value: 0000 0000B  
7
6
5
4
3
2
1
0
TDONLS2  
r
Field  
Bits  
Type  
Description  
TDONLS2  
[7:0]  
r
Effective low-side MOSFET turn-on delay of PWM channel 2 2)  
HBFREQ bit is 1: effective turn-on delay = 53.3 TDONLS2[7:0]D ns  
HBFREQ bit is 0: effective turn-on  
delay = 53.3 127 + 26.7 TDONLS2[7:0]D ns  
Default value: 0B  
Table 44  
Effective low-side MOSFET turn-off delay PWM2 (001 1010B) Reset value: 0000 0000B  
7
6
5
4
3
2
1
0
TDOFFLS2  
r
(table continues...)  
Datasheet  
84  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 44  
(continued) Effective low-side MOSFET turn-off delay PWM2 (001 1010B) Reset value: 0000  
0000B  
Field  
Bits  
Type  
Description  
TDOFFLS2  
[7:0]  
r
Effective low-side MOSFET turn-off delay of PWM channel 2 4)  
HBFREQ bit is 1: effective turn-off delay = 53.3 TDOFFLS2[7:0]D ns  
HBFREQ bit is 0: effective turn-off delay = 26.7 TDOFFLS2[7:0]D ns  
Default value: 0B  
Table 45  
Effective high-side MOSFET turn-on delay PWM3 (001 1011B) Reset value: 0000 0000B  
7
6
5
4
3
2
1
0
TDONHS3  
r
Field  
Bits  
Type  
Description  
TDONHS3  
[7:0]  
r
Effective high-side MOSFET turn-on delay of PWM channel 3 1)  
HBFREQ bit is 1: effective turn-on delay = 53.3 TDONHS3[7:0]D ns  
HBFREQ bit is 0: effective turn-on delay = 26.7 TDONHS3[7:0]D ns  
Default value: 0B  
Table 46  
Effective high-side MOSFET turn-off delay PWM3 (001 1100B) Reset value: 0000 0000B  
7
6
5
4
3
2
1
0
TDOFFHS3  
r
Field  
Bits  
Type  
Description  
TDOFFHS3  
[7:0]  
r
Effective high-side MOSFET turn-off delay of PWM channel 3 3)  
HBFREQ bit is 1: effective turn-off delay = 53.3 TDOFFHS3[7:0]D ns  
HBFREQ bit is 0: effective turn-off delay = 26.7 TDOFFHS3[7:0]D ns  
Default value: 0B  
Table 47  
Effective low-side MOSFET turn-on delay PWM3 (001 1101B) Reset value: 0000 0000B  
7
6
5
4
3
2
1
0
TDONLS3  
r
Field  
Bits  
Type  
Description  
(table continues...)  
Datasheet  
85  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 47  
(continued) Effective low-side MOSFET turn-on delay PWM3 (001 1101B) Reset value: 0000  
0000B  
TDONLS3  
[7:0]  
r
Effective low-side MOSFET turn-on delay of PWM channel 3 2)  
HBFREQ bit is 1: effective turn-on delay = 53.3 TDONLS3[7:0]D ns  
HBFREQ bit is 0: effective turn-on delay = 26.7 TDONLS3[7:0]D ns  
Default value: 0B  
Table 48  
Effective low-side MOSFET turn-off delay PWM3 (001 1110B) Reset value: 0000 0000B  
7
6
5
4
3
2
1
0
TDOFFLS3  
r
Field  
Bits  
Type  
Description  
TDOFFLS3  
[7:0]  
r
Effective low-side MOSFET turn-off delay of PWM channel 3 4)  
HBFREQ bit is 1: effective turn-off delay = 53.3 TDOFFLS3[7:0]D ns  
HBFREQ bit is 0: effective turn-off delay = 26.7 TDOFFLS3[7:0]D ns  
Default value: 0B  
1) Effective high-side turn-on delay is reported if VSHMx rises above VSHL in the duration of TBLANK.  
If VSHMx > VSHL when the precharge starts, TDONHSx will be set to 0000 0000B.  
If VSHMx < VSHL when TBLANK elapses, TDONHSx will be set to 1111 1111B.  
2) Effective low-side turn-on delay is reported if VSHMx drops below VSHH in the duration of TBLANK.  
If VSHMx < VSHH when the precharge starts, TDONLSx will be set to 0000 0000B.  
If VSHMx > VSHH when TBLANK elapses, TDONLSx will be set to 1111 1111B.  
3) Effective high-side turn-off delay is reported if VSHMx drops below VSHH in the duration of TCCP.  
If VSHMx >VSHH when TCCP elapses, TDOFFHSx will be set to 1111 1111B.  
If VSHMx < VSHH when the predischarge starts, TDOFFHSx will be set to 0000 0000B.  
4) Effective low-side turn-off delay is reported if VSHMx rises above VSHL in the duration of TCCP.  
If VSHMx < VSHL when TCCP elapses, TDOFFLSx will be set to 1111 1111B.  
If VSHMx > VSHL when the predischarge starts, TDOFFLSx will be set to 0000 0000B.  
9.3.7  
Effective MOSFET rise/fall times  
Table 49  
Effective high-side MOSFET rise time of PWM1 (001 1111B) Reset value: 0000 0000B  
7
6
5
4
3
2
1
0
TRISEHS1  
r
Field  
Bits  
Type  
Description  
(table continues...)  
Datasheet  
86  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 49  
(continued) Effective high-side MOSFET rise time of PWM1 (001 1111B) Reset value: 0000  
0000B  
TRISEHS1  
[7:0]  
r
Effective high-side MOSFET rise time of PWM channel 1 1)  
HBFREQ bit is 1: effective rise time = 53.3 TRISE_HS1[7:0]D ns  
HBFREQ bit is 0: effective rise time = 26.7 TRISE_HS1[7:0]D ns  
Default value: 0B  
Table 50  
Effective high-side MOSFET fall time of PWM1 (010 0000B) Reset value: 0000 0000B  
7
6
5
4
3
2
1
0
0
0
TFALLHS1  
r
Field  
Bits  
Type  
Description  
TFALLHS1  
[7:0]  
r
Effective high-side MOSFET fall time of PWM channel 1 3)  
HBFREQ bit is 1: effective fall time = 53.3 TFALL_HS1[7:0]D ns  
HBFREQ bit is 0: effective fall time = 26.7 TFALL_HS1[7:0]D ns  
Default value: 0B  
Table 51  
Effective low-side MOSFET rise time of PWM1 (010 0001B) Reset value: 0000 0000B  
7
6
5
4
3
2
1
TRISELS1  
r
Field  
Bits  
Type  
Description  
TRISELS1  
[7:0]  
r
Effective low-side MOSFET rise time of PWM channel 1 2)  
HBFREQ bit is 1: effective rise time = 53.3 TRISE_LS1[7:0]D ns  
HBFREQ bit is 0: effective rise time = 26.7 TRISE_LS1[7:0]D ns  
Default value: 0B  
Table 52  
Effective low-side MOSFET fall time of PWM1 (010 0010B) Reset value: 0000 0000B  
7
6
5
4
3
2
1
TFALLLS1  
r
Field  
Bits  
Type  
Description  
TFALLLS1  
[7:0]  
r
Effective low-side MOSFET fall time of PWM channel 1 4)  
HBFREQ bit is 1: effective fall time = 53.3 TFALL_LS1[7:0]D ns  
HBFREQ bit is 0: effective fall time = 26.7 TFALL_LS1[7:0]D ns  
Default value: 0B  
Datasheet  
87  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 53  
Effective high-side MOSFET rise time of PWM2 (010 0011B) Reset value: 0000 0000B  
7
6
5
4
3
2
1
0
0
0
0
TRISEHS2  
r
Field  
Bits  
Type  
Description  
TRISEHS2  
[7:0]  
r
Effective high-side MOSFET rise time of PWM channel 2 1)  
HBFREQ bit is 1: effective rise time = 53.3 TRISE_HS2[7:0]D ns  
HBFREQ bit is 0: effective rise time = 26.7 TRISE_HS2[7:0]D ns  
Default value: 0B  
Table 54  
Effective high-side MOSFET fall time of PWM2 (010 0100B) Reset value: 0000 0000B  
7
6
5
4
3
2
1
TFALLHS2  
r
Field  
Bits  
Type  
Description  
TFALLHS2  
[7:0]  
r
Effective high-side MOSFET fall time of PWM channel 2 3)  
HBFREQ bit is 1: effective fall time = 53.3 TFALL_HS2[7:0]D ns  
HBFREQ bit is 0: effective fall time = 26.7 TFALL_HS2[7:0]D ns  
Default value: 0B  
Table 55  
Effective low-side MOSFET rise time of PWM2 (010 0101B) Reset value: 0000 0000B  
7
6
5
4
3
2
1
TRISELS2  
r
Field  
Bits  
Type  
Description  
TRISELS2  
[7:0]  
r
Effective low-side MOSFET rise time of PWM channel 2 2)  
HBFREQ bit is 1: effective rise time = 53.3 TRISE_LS2[7:0]D ns  
HBFREQ bit is 0: effective rise time = 26.7 TRISE_LS2[7:0]D ns  
Default value: 0B  
Table 56  
Effective low-side MOSFET fall time of PWM2 (010 0110B) Reset value: 0000 0000B  
7
6
5
4
3
2
1
TFALLLS2  
r
Field  
Bits  
Type  
Description  
(table continues...)  
Datasheet  
88  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 56  
(continued) Effective low-side MOSFET fall time of PWM2 (010 0110B) Reset value: 0000  
0000B  
TFALLLS2  
[7:0]  
r
Effective low-side MOSFET fall time of PWM channel 2 4)  
HBFREQ bit is 1: effective fall time = 53.3 TFALL_LS2[7:0]D ns  
HBFREQ bit is 0: effective fall time = 26.7 TFALL_LS2[7:0]D ns  
Default value: 0B  
Table 57  
Effective high-side MOSFET rise time of PWM3 (010 0111B) Reset value: 0000 0000B  
7
6
5
4
3
2
1
0
0
0
TRISEHS3  
r
Field  
Bits  
Type  
Description  
TRISEHS3  
[7:0]  
r
Effective high-side MOSFET rise time of PWM channel 3 1)  
HBFREQ bit is 1: effective rise time = 53.3 TRISE_HS3[7:0]D ns  
HBFREQ bit is 0: effective rise time = 26.7 TRISE_HS3[7:0]D ns  
Default value: 0B  
Table 58  
Effective high-side MOSFET fall time of PWM3 (010 1000B) Reset value: 0000 0000B  
7
6
5
4
3
2
1
TFALLHS3  
r
Field  
Bits  
Type  
Description  
TFALLHS3  
[7:0]  
r
Effective high-side MOSFET fall time of PWM channel 3 3)  
HBFREQ bit is 1: effective fall time = 53.3 TFALL_HS3[7:0]D ns  
HBFREQ bit is 0: effective fall time = 26.7 TFALL_HS3[7:0]D ns  
Default value: 0B  
Table 59  
Effective low-side MOSFET rise time of PWM3 (010 1001B) Reset value: 0000 0000B  
7
6
5
4
3
2
1
TRISELS3  
r
Field  
Bits  
Type  
Description  
TRISELS3  
[7:0]  
r
Effective low-side MOSFET rise time of PWM channel 3 2)  
HBFREQ bit is 1: effective rise time = 53.3 TRISE_LS3[7:0]D ns  
HBFREQ bit is 0: effective rise time = 26.7 TRISE_LS3[7:0]D ns  
Default value: 0B  
Datasheet  
89  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
9 Register specification  
Table 60  
Effective low-side MOSFET fall time of PWM3 (010 1010B) Reset value: 0000 0000B  
7
6
5
4
3
2
1
0
TFALLLS3  
r
Field  
Bits  
Type  
Description  
TFALLLS3  
[7:0]  
r
Effective low-side MOSFET fall time of PWM channel 3 4)  
HBFREQ bit is 1: effective fall time = 53.3 TFALL_LS3[7:0]D ns  
HBFREQ bit is 0: effective fall time = 26.7 TFALL_LS3[7:0]D ns  
Default value: 0B  
1) Effective high-side rise time is reported if VSHMx rises above VSHH in the duration of TBLANK.  
If VSHMx > VSHH when the precharge starts, TRISE_HSx will be set to 0000 0000B.  
If VSHL < VSHMx < VSHH when TBLANK elapses, TRISE_HSx will be set to 1111 1111B.  
2) Effective low-side rise time is reported if VSHMx drops blow VSHL in the duration of TBLANK.  
If VSHMx < VSHL when the precharge starts, TRISE_LSx will be set to 0000 0000B.  
If VSHL < VSHMx < VSHH when TBLANK elapses, TRISE_LSx will be set to 1111 1111B.  
3) Effective high-side fall time is reported if VSHMx drops below VSHL in the duration of TCCP.  
If VSHH > VSHMx > VSHL when TCCP elapses, TFALL_HSx will be set to 1111 1111B.  
If VSHMx < VSHL when the predischarge starts, TFALL_HSx will be set to 0000 0000B.  
4) Effective low-side fall time is reported if VSHMx rises above VSHH in the duration of TCCP.  
If VSHH < VSHMx < VSHL when TCCP elapses, TFALL_LSx will be set to 1111 1111B.  
If VSHMx > VSHH when the predischarge starts, TFALL_LSx will be set to 0000 0000B.  
Datasheet  
90  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
10 Application figure  
10  
Application figure  
DISO  
DISO  
VS_12V  
LPFILT1  
CPFILT1  
VBAT_48V  
CPFILT2  
TLE4267  
(LDO)  
CCP2  
CVCP2  
CP1P  
CP1N  
CP1  
CCP1  
VDD  
EN  
TLE9351SJ  
(CAN transceiver)  
Isolator  
CVCP1  
RVSM  
DH  
VSM  
CVSM  
RVDH  
CVDH  
RGATE  
DH  
RIN  
CELKOx  
GPIO  
D6  
D
S
G
GHM1  
SHM1  
SDI  
SCLK  
SDO  
CSN  
SDO  
CH1  
SCLK  
CEMCP1  
RGATE  
SDI  
D
G
GHM2  
SHM2  
CSN  
CH2  
CEMCP2  
RGATE  
S
IH1 TLE9140EQW  
GPIO  
GPIO  
D
G
GHM3  
IH2  
IH3  
CH3  
SHM3  
GLM1  
MCU  
U
D
CEMCP3  
RGATE  
S
GPIO  
G
V
GPIO  
GPIO  
GPIO  
IL1  
IL2  
IL3  
Rpull  
RGATE  
S
D
G
GLM2  
GLM3  
W
D
Rpull  
S
RGATE  
G
Rpull  
S
SLM  
RShunt  
PGND  
OP2  
OP1  
CSA  
CSA  
GPIO  
GND  
PGND  
Figure 23  
TLE9140EQW is driven by the general microcontroller for 48 V applications supply concept:  
isolated 12 V supply for the general MCU with diodes  
Datasheet  
91  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
10 Application figure  
DISO  
CVCP_E  
DISO  
CCP2_E  
CCP1_E  
VBAT_48V  
LPFILT1  
CPFILT2  
VS_12V  
Reverse polarity  
CPFILT1  
CCP2  
CVCP2  
CP1P  
CP1N  
CP1  
CCP1  
(12V Power supply)  
VS  
VDDP  
VDDC  
VDD  
EN  
CVS1  
CVS2  
CVDDP1  
CVDDP2  
CVCP1  
RVSM  
DH  
VDH  
VSD  
VSM  
RVSD  
CVSD  
CVDDC1  
RIN  
CVDDC2  
CVSM  
RVDH  
DH  
CELKOx  
P1.2  
CVDH  
D6  
D
RGATE  
G
GHM1  
SHM1  
SDI  
SCLK  
SDO  
CSN  
P0.2  
P0.3  
CH1  
CEMCP1  
S
P0.4  
P1.1  
D
RGATE  
G
GHM2  
SHM2  
CH2  
LIN  
CEMCP2  
RGATE  
S
IH1 TLE9140EQW  
GH1  
GH2  
D
GND_LIN  
G
GHM3  
IH2  
IH3  
CH3  
SHM3  
GLM1  
U
D
CEMCP3  
RGATE  
S
GH3  
G
MOTIXTM MCU  
(TLE987x)  
V
GL1  
GL2  
GL3  
IL1  
IL2  
IL3  
Rpull  
RGATE  
VAREF  
S
CVAREF  
D
G
GLM2  
GLM3  
GND_REF  
W
D
VDDEXT  
CVDD_EXT1  
Rpull  
S
VDDEXT  
P1.4  
RGATE  
CVDD_EXT2  
G
SH1  
SH2  
RX  
TX  
RX  
Rpull  
S
LIN  
(TLE8457)  
Isolator  
TX  
SLM  
P0.1  
SH3  
SL  
RShunt  
DH  
GND_LIN  
MON  
RESET  
P1.0  
PGND  
ROPAFILT  
ROPAFILT  
OP2  
OP1  
CSA  
CSA  
P1.3  
P2.0  
P2.2  
TMS  
P0.0  
COPAFILT COP2  
COP1  
D1  
D2  
VDDEXT  
T
Debug  
Connector  
SWD_EN  
P0.2  
P2.1  
RTMS  
GND  
PGND  
Figure 24  
TLE9140EQW is driven by the MOTIXMCU (TLE987x) device supply concept: isolated 12 V  
supply for the MOTIXMCU device with diodes  
Datasheet  
92  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
10 Application figure  
LPFILT1  
CPFILT1  
VBAT_24V  
CPFILT2  
TLE4267  
(LDO)  
CCP2  
CVCP2  
CP1P  
CP1N  
CP1  
CCP1  
VDD  
EN  
TLE9351SJ  
(CAN transceiver)  
CVCP1  
RVSM  
DH  
VSM  
CVSM  
RVDH  
CVDH  
RGATE  
DH  
RIN  
CELKOx  
GPIO  
D6  
D
S
G
GHM1  
SHM1  
SDI  
SCLK  
SDO  
CSN  
SDO  
CH1  
SCLK  
CEMCP1  
RGATE  
SDI  
D
G
GHM2  
SHM2  
CSN  
CH2  
CEMCP2  
RGATE  
S
IH1 TLE9140EQW  
GPIO  
GPIO  
D
G
GHM3  
IH2  
IH3  
CH3  
SHM3  
GLM1  
MCU  
U
D
CEMCP3  
RGATE  
S
GPIO  
G
V
GPIO  
GPIO  
GPIO  
IL1  
IL2  
IL3  
Rpull  
RGATE  
S
D
G
GLM2  
GLM3  
W
D
Rpull  
S
RGATE  
G
Rpull  
S
SLM  
RShunt  
PGND  
OP2  
OP1  
CSA  
CSA  
GPIO  
GND  
PGND  
Figure 25  
TLE9140EQW is driven by the general MCU for 24 V applications  
Datasheet  
93  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
10 Application figure  
LPFILT1  
CPFILT2  
VBAT_24V  
CPFILT1  
TLE4274  
(LDO)  
CVCP_E  
CCP1_E  
CCP2_E  
CCP2  
CVCP2  
CP1P  
CP1N  
CP1  
CCP1  
(12V Power supply)  
VS  
VDDP  
VDDC  
VDD  
EN  
CVS1  
CVS2  
CVDDP1  
CVDDP2  
CVCP1  
RVSM  
DH  
VDH  
VSD  
VSM  
RVSD  
CVSD  
CVDDC1  
RIN  
CVDDC2  
CVSM  
RVDH  
CVDH  
RGATE  
DH  
CELKOx  
P1.2  
D6  
D
S
G
GHM1  
SHM1  
SDI  
SCLK  
SDO  
CSN  
P0.2  
P0.3  
CH1  
CEMCP1  
RGATE  
P0.4  
P1.1  
D
G
GHM2  
SHM2  
IH1TLE9140EQW  
CH2  
LIN  
CEMCP2  
RGATE  
S
CLIN  
GH1  
GH2  
D
GND_LIN  
G
GHM3  
IH2  
IH3  
CH3  
SHM3  
GLM1  
U
D
CEMCP3  
RGATE  
S
GH3  
G
TLE987x  
(MOTIXTM MCU)  
V
GL1  
GL2  
GL3  
IL1  
IL2  
IL3  
Rpull  
VAREF  
S
CVAREF  
D
RGATE  
G
GLM2  
GLM3  
GND_REF  
VDDEXT  
W
D
VDDEXT  
CVDD_EXT1  
Rpull  
S
RGATE  
CVDD_EXT2  
G
SH1  
SH2  
Rpull  
S
SLM  
SH3  
SL  
RShunt  
DH  
MON  
RESET  
P1.0  
PGND  
ROPAFILT  
ROPAFILT  
OP2  
OP1  
CSA  
CSA  
P1.3  
P2.0  
P2.2  
TMS  
P0.0  
COPAFILT  
COP2  
COP1  
D1  
D2  
VDDEXT  
T
Debug  
Connector  
SWD_EN  
P0.2  
P2.1  
RTMS  
GND  
PGND  
Figure 26  
TLE9140EQW is driven by the MOTIXMCU (TLE987x) device for 24 V applications  
Datasheet  
94  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
11 Package outline  
11  
Package outline  
Figure 27  
TSDSO-32  
To meet the world-wide customer requirements for environmental friendly products and to be compliant with  
government regulations the device is available as a green product. Green products are RoHS-Compliant (this  
means lead-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Datasheet  
95  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
12 Revision history  
12  
Revision history  
Revision number  
Date of release  
Description of changes  
Rev. 0.05  
2022-10-04  
Update the logic supply currents IDD1 and IDD2  
Update the SHMx high threshold voltage VSHMH  
Update the SHMx low threshold voltage VSHML  
Update the undervoltage threshold of CP2 VCP2UV  
Update the BEMF hysteresis VBEMF_HYS  
Update the BEMF accuracy VBEMF_ACC  
Update the symbol of the on resistance of gate current source  
Update the description in features and potential applications  
Add application figure of TLE9140EQW controlled by general  
microcontroller  
Replace Embedded power with MOTIXTM MCU  
Update the cover page of the datasheet  
Split current accuracy for the normal and boosted current for high  
current range.  
Rev. 0.04  
2022-04-20  
Update the GHMx vs. SHMx voltage VGSHMx  
Update the GLMx vs. SLMx voltage VGSLMx  
Update the logic supply currents ISM_NOR1, ISM_NOR2 and ISM_NOR3  
Add BEMF accuracy and BEMF hysteresis  
Update the pull-up diagnosis current IPUDiag  
Update the max. rating of VGHMx and VSHMx  
Update the BEMF polarity in Global Status Register 4  
Update Drain-source overvoltage threshold  
Update the typ. values of all charge/discharge currents in registers  
Update the on resistance of the gate current source RONGH  
Datasheet  
96  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
12 Revision history  
Revision number  
Date of release  
2021-12-06  
Description of changes  
Rev. 0.03  
Update the max. rating of the supply voltage VSM  
Update the max. rating of charge pump pins  
Update thermal resistance: RthJC and RthJA  
Update quiescent current in chapter 4.4  
Update the sleep mode delay tDSLEEP  
Update the supply current ISM_NOR2  
Update the hard overvoltage switch on/off  
voltages: VSMOV_ON and VSMOV_OFF  
Update the enable hysteresis VENHY  
Update the values and conditions of charge pump outputs in Table 8  
Update charge pump 1 undervoltage threshold VCP1UV  
Update charge pump 2 undervoltage threshold VCP2UV  
Update Drain-source overvoltage threshold  
Update the pull-up diagnosis current IPUDiag  
Update the pull-down diagnosis current IPDDiag  
Update the values and conditions of the output voltage in chapter  
6.2  
Update the charge/discharge current accuracy  
Update the Discharge_ST current accuracy  
Update the SHMx high/low threshold  
Add an on resistance of gate current source  
Update the description of the BEMF feature in chapter 7  
Update the typ. values of all charge/discharge currents in registers  
Update the HS/LS delay on/off time  
Update the gate driver current turn-on/turn-off rise time  
Update the rise time of CP1  
Update the rise time of CP2  
Update the turn-on time of CP2  
Datasheet  
97  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
12 Revision history  
Revision number  
Date of release  
2021-04-15  
Description of changes  
Rev. 0.02  
Update the values and the conditions of off-state open load  
diagnosis: IPUDiag, IPDDiag, IPDDiag/IPUDiag  
Update the typ. and max. values of ISM_NOR1  
Update the max. values of tVASDO and tENSDO  
Update the min. value of VGSHM  
Update the description and figures of "Resume normal  
operation from VSM overvoltage event": "tGD_filt" is replaced with  
"tBLK_VCPX and tGD_filt  
"
Update the description of gate driver control in chapter 6.1  
Add an additional description "low-side MOSFET latched on" in  
chapter 5.8.2  
Update the condition of VIL2_IN  
Remove the conditions of RPD_SDI, RPD_SCLK, RPD_ILx and RPD_IHx  
Change max. operation voltage to 72V  
Correct a typo in table 43  
.
Correct a typo in chapter 8.3  
Add an additional description in chapter 6.1  
Update the figures of gate driver control in chapter 6.1  
Correct typos in chapter 6  
Update the conditions of ISM_NOR1 and ISM_NOR2  
Replace the PRQ numbers with P numbers  
Remove the footnote "Not subject to production test, specified by  
design."  
Modify global status register 4  
Add general control register 14 for BEMF processing  
Update the BEMF description in chapter 7  
Smaller capitalization and standardization updates through the  
document  
Rev. 0.01.3  
2020-11-06  
Update min. value of GHM, GLM and SHM  
Update voltage range at CP1  
Update ASIL level of EN Low filter time  
Update high input voltage threshold, low input voltage threshold  
and hysteresis of ILx and IHx  
Update general control register 1, 4, 5, 6, 7, 8, 9, 10 and 11  
Footnotes are updated  
Add a simplified application figure for in product description folder  
Add a title to the figure "In - frame response"  
Add a marking for the package  
Delete the redundant "Status" in "Configurable turn-on of the low-  
side MOSFET"  
Datasheet  
98  
Rev. 0.05  
2022-10-04  
TLE9140EQW  
Preliminary datasheet  
12 Revision history  
Revision number  
Date of release  
Description of changes  
Rev. 0.01.2  
2020-05-18  
Update application figures  
Add additional description for LSAFW, delay time, rising/failing time,  
exit stop mode, deglitch feature and cross current protection  
Correct typos  
Update following specs: FHTI, sleep mode delay, EN low filter time  
and pull-up/down diagnosis current.  
Rev. 0.01.1  
2020-03-11  
first release  
Datasheet  
99  
Rev. 0.05  
2022-10-04  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
Edition 2022-10-04  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
Important notice  
Warnings  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer’s compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer’s products and any use of the product of  
Infineon Technologies in customer’s applications.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
Except as otherwise explicitly approved by Infineon  
Technologies in  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or  
any consequences of the use thereof can reasonably  
be expected to result in personal injury.  
a written document signed by  
©
2022 Infineon Technologies AG  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Document reference  
IFX-iid1665489703865  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to such  
application.  

相关型号:

INFINEON
INFINEON

TLE9185QX

The BLDC Driver IC provides main functions such as a 5 V low-dropout voltage regulator, three half-bridges for BDLC motor control, one current sense amplifier and one 32 bit SPI interface. The device includes diagnostic and supervision features and is intended to operate with 5.0 V microcontrollers.
INFINEON

TLE9185QX V33

The BLDC Driver IC provides main functions such as a 3.3 V low-dropout voltage regulator, three half-bridges for BDLC motor control, one current sense amplifier and one 32 bit SPI interface. The device includes diagnostic and supervision features and is intended to operate with 3.3 V microcontrollers.
INFINEON

TLE9201SG

TLE9201SG 是一款通用 6A H 桥,适用于工业和汽车应用,专为小型直流电机和感应负载控制设计。该器件满足严苛的汽车环境条件要求,质量符合 AEC-Q100 标准。
INFINEON

TLE92104-232QX

MOTIX™ | Multi MOSFET Driver
INFINEON

TLE92108-231QX

Infineon’s MOTIX™ multiple MOSFET driver can drive up to 16 external n-channel MOSFETs and provides a unique Adaptive MOSFET Control concept to eliminate end-of-line calibration to MOSFET characteristic spreads and guarantees an optimized balancing between power dissipation and EMC behavior. Outstanding low sleep current, advanced protection and diagnostic makes the device to an optimal solution for automotive applications like seat and power lift gate control and various use cases in body control module (BCM) as centralized door lock or washer pumps. Last but not least, it can control half-bridges with dual supply.
INFINEON

TLE92108-232QX

Infineon’s MOTIX™ multiple MOSFET driver can drive up to 16 external n-channel MOSFETs and provides a unique Adaptive MOSFET Control concept to eliminate end-of-line calibration to MOSFET characteristic spreads and guarantees an optimized balancing between power dissipation and EMC behavior. Outstanding low sleep current, advanced protection and diagnostic makes the device to an optimal solution for automotive applications like seat and power lift gate control and various use cases in body control module (BCM) as centralized door lock or washer pumps. An integrated motor brake function is furthermore increasing the reliability and protection for the system. Last but not least, it can control half-bridges with dual supply.
INFINEON

TLE9221SX

FlexRay Transceiver
INFINEON

TLE9221SXXUMA2

Interface Circuit, PDSO16, SSOP-16
INFINEON

TLE9221SX_15

FlexRay Transceiver
INFINEON

TLE9222

FlexRay Transceiver
INFINEON