TLE6389-3G V50 [INFINEON]

TLE6389 降压直流-直流开关控制器在 1mA 到 2.5A 整个负载范围具有高效率。独特 PWM/PFM 控制方案具有高达 100% 占空比,从而实现极低的压差。此控制方案无最低负载要求,将轻负载电流降低至 120μA,具体数值取决于外部元件尺寸。此外,可调节型号 TLE6389-2GV 可以通过启用输入关断,使输入电流降低至 <2μA。TLE6389 降压控制器驱动外部 P 通道 MOSFET,支持灵活设计输出功率高达 12.5W 的应用。高开关频率和连续导通模式下工作,支持使用小型表面安装电感器。同时降低输出电容要求,最大限度减小 PC 板面积,降低系统成本。输出电压预先设定为 5V(TLE6389-2GV50 和 TLE6389-3GV50),TLE6389-2GV 输出电压可调节。TLE6389-2GV50 型号具有复位功能,阈值介于 4.5V 和 4.8V 之间,包括少量迟滞,迟滞典型值为 50mV。在 TLE6389-3GV50 型号中,器件复位具有典型值为 1V 的迟滞。所有 TLE6389 输入电压均可高达 60V。;
TLE6389-3G V50
型号: TLE6389-3G V50
厂家: Infineon    Infineon
描述:

TLE6389 降压直流-直流开关控制器在 1mA 到 2.5A 整个负载范围具有高效率。独特 PWM/PFM 控制方案具有高达 100% 占空比,从而实现极低的压差。此控制方案无最低负载要求,将轻负载电流降低至 120μA,具体数值取决于外部元件尺寸。此外,可调节型号 TLE6389-2GV 可以通过启用输入关断,使输入电流降低至 <2μA。TLE6389 降压控制器驱动外部 P 通道 MOSFET,支持灵活设计输出功率高达 12.5W 的应用。高开关频率和连续导通模式下工作,支持使用小型表面安装电感器。同时降低输出电容要求,最大限度减小 PC 板面积,降低系统成本。输出电压预先设定为 5V(TLE6389-2GV50 和 TLE6389-3GV50),TLE6389-2GV 输出电压可调节。TLE6389-2GV50 型号具有复位功能,阈值介于 4.5V 和 4.8V 之间,包括少量迟滞,迟滞典型值为 50mV。在 TLE6389-3GV50 型号中,器件复位具有典型值为 1V 的迟滞。所有 TLE6389 输入电压均可高达 60V。

开关 PC 驱动 控制器 电感器
文件: 总32页 (文件大小:900K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE6389  
Step-Down DC/DC Controller  
1
Overview  
Features  
Input voltage range from < 5V up to 60V  
Output voltage: 5V fixed or adjustable (7V to 15V)  
Output voltage accuracy: 3%  
Output current up to 2.3A  
100% maximum duty cycle  
Less than 120µA quiescent current at low loads1)  
2µA max. shutdown current at device off (TLE6389-2GV)  
Fixed 360kHz switching frequency  
Frequency synchronization input for external clocks  
Current Mode control scheme  
Integrated output under voltage Reset circuit  
On chip low battery detector (on chip comparator)  
Automotive temperature range -40°C to 150 °C  
Green Product (RoHS compliant)  
Product validation  
Qualified for automotive applications. Product validation according to AEC-Q100/101.  
RSENSE  
=
M1  
VIN  
L1 = 47 μH  
VOUT  
47mΩ  
IOUT  
CIN1  
=
COUT  
=
CBDS  
=
100 μF  
D1  
100 μF  
220 nF  
M1: Infineon BSO613SPV  
11  
BDS  
14  
CS  
12  
GDRV  
2
Infineon BSP613P  
D1: MotorolaMBRD360  
L1: EPCOS B82479-A1473-M  
Coilcraft DO3340P-473  
3
9
8
FB  
13  
7
VOUT  
VS  
RSI1  
=
C
=
IN2  
SO  
400kΩ  
220nF  
TLE6389-3 GV50  
SI  
C
IN1: Electrolythic  
IN2: Ceramic  
COUT : Low ESR Tantalum  
COMP  
C
RSI2=  
SI_GND SI_ENABLE  
SYNC GND RO  
10  
2.2nF 680Ω  
100kΩ  
6
1
5
4
ON OFF  
Datasheet  
www.infineon.com  
1
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
Description  
The TLE6389 step-down DC-DC switching controllers provide high efficiency over loads ranging from 1mA up  
to 2.5A. A unique PWM/PFM control scheme operates with up to a 100% duty cycle, resulting in very low  
dropout voltage. This control scheme eliminates minimum load requirements and reduces the supply current  
under light loads to 120µA, depending on dimensioning of external components. In addition the adjustable  
version TLE6389-2GV can be shut down via the Enable input reducing the input current to <2µA. The TLE6389  
step-down controllers drive an external P-channel MOSFET, allowing design flexibility for applications up to  
12.5W of output power. A high switching frequency and operation in continuous-conduction mode allow the  
use of tiny surface-mount inductors. Output capacitor requirements are also reduced, minimizing PC board  
area and system costs. The output voltage is preset at 5V (TLE6389-2GV50 and TLE6389-3GV50) and adjustable  
for the TLE6389-2GV. The version TLE6389-2GV50 features a reset function with a threshold between 4.5V and  
4.8V, including a small hysteresis of typ. 50mV. In the version TLE6389-3GV50 the device incorporates a reset  
with a typ. 1V hysteresis. Input voltages of all TLE6389 can be up to 60V.  
Type  
Package  
Marking  
TLE6389-2GV  
TLE6389-2GV50  
TLE6389-3GV50  
PG-DSO-14  
PG-DSO-14  
PG-DSO-14  
6389-2GV  
6389-2GV50  
6389-3GV50  
Datasheet  
2
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
Table of Contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1.1  
1.2  
1.3  
Pin Configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Basic Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2
3
4
5
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6
Detailed circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
PFM/PWM Step-down regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Battery voltage sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Undervoltage Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6.1  
6.2  
6.3  
7
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Typical application circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Output voltage at adjustable version - feedback divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
SI_Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Battery sense comparator - voltage divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Undervoltage reset - delay time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
100% duty-cycle operation and dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
SYNC Input and Frequency Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Shutdown Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Buck converter circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Buck inductance (L1) selection in terms of ripple current: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Determining the current limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
PFM and PWM thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Buck output capacitor (COUT) selection: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Input capacitor (CIN1) selection: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Freewheeling diode / catch diode (D1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Buck driver supply capacitor (CBDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Input pi-filter components for reduced EME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Frequency compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Components recommendation - Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Layout recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
7.8  
7.9  
7.10  
7.10.1  
7.10.2  
7.10.3  
7.10.4  
7.10.5  
7.10.6  
7.10.7  
7.10.8  
7.10.9  
7.11  
7.12  
8
9
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Datasheet  
3
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
1.1  
Pin Configuration (top view)  
ENABLE /  
SI_ENABLE  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
FB  
VOUT  
GND  
PG-DSO-14  
SYNC  
SI_GND  
SI  
8
Figure 1  
Pin Configuration  
1.2  
Basic Block Diagram  
ENA  
BLE  
SI-  
GND  
VS  
SI  
RO  
SO  
VOUT  
Battery Sense and  
Undervoltage Reset  
Internal Power  
Supply and  
Biasing  
BDS  
FB  
CS  
PWM / PFM  
Regulator  
G
DRV  
Driver  
COMP  
Clock generator  
Voltage  
Reference  
Block  
SYNC  
TLE 6389GV  
GND  
Figure 2  
Basic Block Diagram  
Datasheet  
4
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
1.3  
Pin Definitions and Functions  
Pin No  
Symbol  
Function  
1
ENABLE  
Active-High enable input (only at adjustable version, TLE6389-2GV) for the  
device.  
The device is shut down when ENABLE is driven low. In this shut down-mode the  
reference, the output and the external MOSFET are turned off. Connect to logic high  
for normal operation.  
1
2
SI_ENABLE Active-High enable input (only at 5V version, TLE6389-2GV50 and TLE6389-  
3GV50) for SI_GND input.  
SI_GND is switched to high impedance when SI_ENABLE is low. High level at  
SI_ENABLE connects SI_GND to GND with low impedance. SO is undefined when  
SI_ENABLE is low.  
FB  
Feedback input.  
1. For adjustable version (-2GV) connect this pin to an external voltage divider from the  
output to GND (see the determining the output voltage, application section).  
2. At the 5V fixed output voltage version (-3GV50 and -2GV50) the FB is connected  
internally to an on-chip voltage divider. It does not have to be connected externally to  
the output.  
3
VOUT  
Buck output voltage input.  
Input for the internal supply. Connect always to the output of the buck converter (output  
capacitor).  
4
5
GND  
Ground connection. Analog signal ground.  
SYNC  
Input for external frequency synchronization.  
An external clock signal connected to this pin allows switching frequency  
synchronization of the device. The internal oscillator is clocked then by the frequency  
applied at the SYNC input.  
6
7
SI_GND  
SI  
SI-Ground input.  
Ground connection for SI comparator resistor divider. Depending on SI_ENABLE this  
input is switched to high impedance or low ohmic to GND.  
Sense comparator input.  
Input of the low-battery comparator. This input is compared to an internal 1.25V  
reference where SO gives the result of the comparison. Can be used for any  
comparison, not necessarily as battery sense.  
8
9
COMP  
SO  
Compensation input.  
Connect via RC-compensation network to GND.  
Sense comparator output.  
Open drain output from SI comparator at the adjustable version (TLE6389-2GV),  
Pull down structure with an internal 20kΩ pull up resistor to VOUT at the 5V version  
(TLE6389-2GV50 and TLE6389-3GV50).  
10  
RO  
Reset output.  
Open drain output from undervoltage reset comparator at the adjustable version  
(TLE6389-2GV),  
Pull down structure with an internal 20kΩ pull up resistor to VOUT at the 5V version  
(TLE6389-2GV50 and TLE6389-3GV50).  
11  
12  
BDS  
Buck driver supply input.  
Connect a ceramic capacitor between BDS and VS to generate clamped gate-source  
voltage to supply the driver of the PMOS power stage.  
GDRV  
Gate drive output.  
Connect to the gate of the external P-Channel MOSFET. The voltage at GDRV swings  
between the levels of VS and BDS.  
Datasheet  
5
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
Pin No  
Symbol  
Function  
13  
VS  
Device supply input.  
Connect a 220nF ceramic cap close to the pin in addition to the low ESR tantalum input  
capacitance.  
14  
CS  
Current-sense input.  
Connect current-sense resistor between VS and CS. The voltage drop over the sense-  
resistor determines the peak current flowing in the buck circuit. The external MOSFET  
is turned off when the peak current is exceeded.  
Datasheet  
6
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
2
Absolute Maximum Ratings  
Table 1  
Item  
Absolute Maximum Ratings  
Parameter  
Symbol  
Limit Values  
Unit  
Remarks  
min.  
max.  
Device supply input VS  
2.1  
2.2  
Voltage  
Current  
VVS  
IVS  
-0.3  
61  
V
Current sense input CS  
2.3  
2.4  
Voltage  
Current  
VCS  
ICS  
-0.3  
61  
V
|VVS - VCS| < 0.3V  
Gate drive output GDRV  
2.5  
Voltage  
VGDRV  
– 0.3  
61  
V
-0.3V < |VVS -VGDRV| <  
6.8V;  
-0.3V < |VBDS - VGDRV| <  
6.8V  
2.6  
Current  
IGDRV  
limited internally  
Buck driver supply input BDS  
2.7  
Voltage  
VBDS  
– 0.3  
61  
V
-0.3V < |VVS - VBDS| <  
6.8V  
2.8  
Current  
IBDS  
Feedback input FB  
2.9  
Voltage  
Current  
VFB  
– 0.3  
6.8  
V
2.10  
IFB  
Enable input SI_ENABLE  
2.11  
Voltage  
VSI_ENABLE  
– 0.3  
61  
V
TLE6389-2GV50,  
TLE6389-3GV50  
2.12  
Current  
ISI_ENABLE  
SI-Ground input SI_GND  
2.13  
2.14  
Voltage  
Current  
VSI_GND  
– 0.3  
61  
V
ISI_GND  
Enable input ENABLE  
2.15  
2.16  
Voltage  
Current  
VENABLE  
– 0.3  
61  
V
TLE6389-2GV  
IENABLE  
Sense comparator input SI  
2.17  
2.18  
Voltage  
Current  
VSI  
– 0.3  
61  
V
ISI  
Sense comparator output SO  
2.19  
2.20  
Voltage  
Current  
VSO  
– 0.3  
6.8  
V
ISO  
limited internally  
TLE6389-2GV  
Buck output voltage input VOUT  
2.21  
2.22  
Voltage  
Voltage  
VVOUT  
VVOUT  
– 0.3  
– 0.3  
15  
V
V
6.8  
TLE6389-2GV50,  
TLE6389-3GV50  
2.23  
Current  
IVOUT  
mA  
Datasheet  
7
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
2
Absolute Maximum Ratings  
Table 1  
Item  
Absolute Maximum Ratings  
Parameter  
Symbol  
Limit Values  
Unit  
Remarks  
min.  
max.  
Compensation input COMP  
2.24  
2.25  
Voltage  
Current  
VCOMP  
– 0.3  
6.8  
V
ICOMP  
mA  
Reset output RO  
2.26  
2.27  
Voltage  
Current  
VRO  
– 0.3  
6.8  
V
IRO  
mA  
limited internally  
Frequency synchronization input SYNC  
2.28  
2.29  
Voltage  
Current  
VSYNC  
– 0.3  
6.8  
V
ISYNC  
mA  
ESD-Protection  
2.30  
Electrostatic discharge voltage  
VESD  
–1.5  
-2  
1.5  
2
kV  
kV  
V
HBM1),  
pin VOUT  
HBM1), all pins except  
VOUT  
2.31  
VESD  
2.32  
VESDCDM  
–500  
500  
CDM2)  
Temperatures  
2.33  
2.34  
Junction temperature  
Storage temperature  
Tj  
-40  
-50  
150  
150  
°C  
°C  
Tstg  
1) ESD susceptibility HBM according to EIA/JESD 22-A 114B.  
2) ESD susceptibility CDM according to JESD 22-C101.  
Note:Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Note:Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
Datasheet  
8
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
3
Operating Range  
Item  
Parameter  
Symbol Limit Values  
Unit Remarks  
min.  
max.  
3.1  
3.2  
Supply voltage range  
VVS  
5
7
60  
15  
V
Output voltage adjust range  
TLE6389-2GV  
VOUT  
V
TLE6389-2GV  
3.3  
3.4  
Sense Resistor  
RSENSE  
10  
47  
mΩ  
Calculation see  
section 7  
PMOS, on+off delay  
ton+off delay  
tmin-300 1) ns  
tmin= VVOUT  
/
(VVS*fSW  
)
3.5  
3.6  
3.7  
3.8  
3.9  
Buck driver supply capacitor  
Buck inductance  
CBDS  
L1  
220  
47  
nF  
µH  
µH  
µF  
°C  
recommended value  
Buck inductance  
L1  
22  
100  
Buck output capacitor  
Junction temperature  
COUT  
Tj  
100  
– 40  
150  
Thermal Resistance  
3.10  
3.11  
Junction ambient  
Junction pin  
Rthj-a  
Rthj-p  
140  
50  
K/W Footprint only  
K/W  
1) A too high PMOS on+off delay might cause an instable output voltage  
Note:Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics table.  
Datasheet  
9
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
4
Electrical Characteristics  
Table 2  
5V < VVS < 48V; -40°C < Tj < 150°C; All voltages with respect to ground; positive current  
defined flowing into the pin; unless otherwise specified  
Item Parameter  
Symbol Limit Values  
min. typ.  
Current Consumption1) TLE6389-2GV50 and TLE6389-3GV50  
Unit Test Condition  
max.  
4.1  
Current consumption of  
VS  
IVS  
80  
150  
85  
µA  
µA  
VVS = 48V;  
PFM mode;  
4.2  
70  
VVS = 13.5V;  
PFM mode;  
Tj = 25 °C  
4.3  
4.4  
Current consumption of  
SI_ENABLE  
ISI_ENABLE  
IVOUT  
9
30  
µA  
µA  
VVS = 48V; VSI_ENABLE = 48V;  
PFM mode;  
Current consumption of  
VOUT  
95  
130  
VSI_ENABLE = L; VVOUT = 5.5V;  
VVS=13.5V;  
PFM mode;  
Tj = 25°C  
4.5  
4.6  
140  
0.2  
220  
0.5  
µA  
µA  
VSI_ENABLE = H; VVOUT = 5.5V;  
VVS = 13.5V;  
VSI > VSI, high  
;
PFM mode;  
Current consumption of  
SI  
ISI  
VVS = 13.5V; VSI_ENABLE = H;  
VSI = 10V;  
PFM mode;  
Current Consumption1) TLE6389-2GV (variable)  
4.7  
Current consumption of  
VS  
IVS  
80  
70  
150  
85  
µA  
µA  
VVS = 48V;  
VENABLE = H;  
PFM mode;  
VOUT > 7V  
4.8  
Current consumption of  
VS  
VVS = 13.5V; VENABLE = H;  
PFM mode;  
Tj = 25 °C;  
VOUT > 7V  
4.9  
Current consumption of  
VS  
9
2
µA  
µA  
VENABLE=0V;  
Tj < 105°C  
4.10  
Current consumption of  
ENABLE  
IEN  
30  
VVS = 48V;  
VENABLE = H;  
PFM mode;  
4.11  
Current consumption of  
VOUT  
IVOUT  
140  
220  
µA  
VOUT = 8V;  
VVS = 13.5V; VENABLE = H;  
VSI > VSI, high  
;
PFM mode;  
4.12  
4.13  
Current consumption of  
SI  
ISI  
0.2  
0.2  
0.5  
0.5  
µA  
µA  
VVS = 13.5V; VENABLE = H;  
VSI = 10V;  
PFM mode; Tj = 25°C  
Current consumption of  
FB  
IFB  
VVS = 13.5V;  
VFB = 1.25V; VENABLE = H;  
PFM mode; Tj = 25°C  
Datasheet  
10  
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
4
Electrical Characteristics  
Table 2  
5V < VVS < 48V; -40°C < Tj < 150°C; All voltages with respect to ground; positive current  
defined flowing into the pin; unless otherwise specified  
Item Parameter  
Symbol Limit Values  
Unit Test Condition  
min.  
typ.  
max.  
Buck Controller  
4.14  
4.15  
4.16  
Output voltage  
VVOUT  
4.85  
5.00  
5.15  
V
V
V
TLE6389-2GV50, TLE6389-  
3GV50;  
VVS=13.5V& 48V; PWM mode  
IOUT = 0.5 to 2A;  
R
R
SENSE = 22mΩ; RM1 = 0.25Ω;  
L1 = 0.1Ω;  
4.75  
3.8  
5.00  
5.25  
TLE6389-2GV50, TLE6389-  
3GV50;  
VVS = 24V;PFM;  
IOUT = 15mA;  
R
R
SENSE = 22mΩ; RM1 = 0.25Ω;  
L1 = 0.1Ω;  
TLE6389-3GV50;  
VVS decreasing from 5.8V to  
4.2V;  
ILOAD = 0mA to 500mA;  
R
R
SENSE = 22mΩ; RM1 = 0.4Ω;  
L1 = 0.1Ω;  
4.17  
4.18  
FB threshold voltage  
Output voltage  
VFB, th  
VVOUT  
1.225 1.25  
9.7 10.0  
1.275  
10.3  
V
V
TLE6389-2GV  
TLE6389-2GV;  
Calibrated divider, see section  
7.3;  
VVS = 13.5V & 48V;  
IOUT = 0.5 to 2A;  
PWM Mode;  
R
R
SENSE = 22mΩ; RM1 = 0.25Ω;  
L1 = 0.1Ω;  
4.19  
Output voltage  
VVOUT  
9.5  
10.0  
10.5  
V
TLE6389-2GV;  
Calibrated divider, see section  
7.3;  
VVS = 24V;  
IOUT = 15mA;  
PFM Mode;  
R
R
SENSE = 22mΩ; RM1 = 0.25Ω;  
L1 = 0.1Ω;  
4.20  
4.21  
Buck output voltage  
adjust range  
VVOUT  
VFB, th  
7
V
V
TLE6389-2GV, supplied by  
VS only, complete current to  
supply the IC drawn from VS,  
no reset function 2)  
Buck output voltage  
adjust range  
VVOUT  
7
15  
TLE6389-2GV, current to  
supply the IC drawn from VS  
and VOUT, as specified, 2)  
Datasheet  
11  
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
4
Electrical Characteristics  
Table 2  
5V < VVS < 48V; -40°C < Tj < 150°C; All voltages with respect to ground; positive current  
defined flowing into the pin; unless otherwise specified  
Item Parameter  
Symbol Limit Values  
min. typ.  
Unit Test Condition  
TLE6389-2GV, PWM mode 2)  
max.  
4.22  
Buck output voltage  
VVOUT  
0.97*V –  
1.03*V  
OUT_nom  
accuracy  
OUT_no  
m
4.23  
4.24  
Buck output voltage  
accuracy  
VVOUT  
0.95*V –  
1.05*V  
TLE6389-2GV, PFM mode 2)  
OUT_no  
m
OUT_nom  
Line regulation  
Line regulation  
Line regulation  
Load regulation  
| ΔVVOUT | –  
35  
50  
2.5  
mV  
mV  
%
TLE6389-2GV50, TLE6389-  
3GV50,  
VVS = 9V to 16V;  
IOUT = 1A;  
RSENSE = 22mΩ;  
PWM mode  
4.25  
4.26  
4.27  
| ΔVVOUT | –  
TLE6389-2GV50, TLE6389-  
3GV50,  
VVS = 16V to 32V;  
IOUT = 1A;  
R
SENSE = 22mΩ;  
PWM mode  
ΔVVOUT  
/VVOUT  
TLE6389-2GV,  
VVS = 12V to 36V;  
V
VOUT=10V  
OUT = 1A;  
SENSE = 22mΩ;  
PWM mode  
I
R
ΔVVOUT  
/ΔILOAD  
40  
mV/A TLE6389-2GV50, TLE6389-  
3GV50,  
IOUT = 0.5A to 2A; VVS = 5.8V &  
48V;  
R
SENSE = 22mΩ  
4.28  
4.29  
4.30  
4.31  
8*  
mV/A TLE6389-2GV, IOUT = 0.5 to  
VOUT_nom  
V
/
2A;  
VVS= 13.5V & 48V;  
R
SENSE = 22mΩ  
VENABLE/SI_ENABLE  
= 5 V  
CBDS = 220 nF  
CGDRV = 4.7nF  
Gate driver,  
PMOS off  
VVS  
VGDRV  
0
0.2  
8.2  
4
V
V
V
Gate driver,  
PMOS on  
VVS  
VGDRV  
6
VENABLE/SI_ENABLE  
= 5 V  
CBDS = 220 nF  
CGDRV = 4.7nF3)  
Gate driver,  
UV lockout  
VVS  
VBDS  
2.75  
Decreasing (VVS-VBDS) until  
GDRV is permanently at VS  
level  
Datasheet  
12  
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
4
Electrical Characteristics  
Table 2  
5V < VVS < 48V; -40°C < Tj < 150°C; All voltages with respect to ground; positive current  
defined flowing into the pin; unless otherwise specified  
Item Parameter  
Symbol Limit Values  
Unit Test Condition  
min.  
typ.  
max.  
4.32  
Gate driver,  
peak charging current  
IGDRV  
IGDRV  
tr  
1
A
PMOS dependent; 2)  
PMOS dependent; 2)  
4.33  
4.34  
Gate driver,  
peak discharging current  
1
A
Gate driver,  
gate voltage, rise time  
45  
60  
ns  
VENABLE/SI_ENABLE  
= 5 V  
CBDS = 220 nF  
CGDRV = 4.7nF  
4.35  
Gate driver,  
gate voltage, fall time  
tf  
50  
70  
65  
ns  
VENABLE/SI_ENABLE  
= 5 V  
CBDS = 220 nF  
CGDRV = 4.7nF  
4.36  
Peak current limit  
threshold voltage  
VLIM = VVS 50  
VCS  
90  
mV  
4.37  
4.38  
4.39  
4.40  
Oscillator frequency  
Maximum duty cycle  
Minimum on time  
fOSC  
dMAX  
tMIN  
290  
360  
420  
kHz PWM mode only  
100  
%
PWM mode only  
PWM mode only  
220  
400  
530  
ns  
SYNC capture range  
Δfsync  
250  
kHz PWM mode only  
4.41  
4.42  
SYNC trigger level high  
SYNC trigger level low  
VSYNC,h  
4.0  
V
V
2)  
2)  
0.8  
Reset Generator  
4.43  
4.44  
4.45  
Reset threshold  
VVOUT, RT 3.5  
4.5  
3.65  
4.65  
3.8  
4.8  
V
TLE6389-3GV50; VVOUT  
decreasing  
V
TLE6389-3GV50; VVOUT  
increasing  
Reset headroom  
Reset threshold  
RTV,HEAD 80  
mV  
TLE6389-2GV50;  
V
OUT(VS=6V,  
ILOAD=1A)  
-VVOUT,RT  
4.46  
4.47  
4.48  
4.49  
4.50  
VVOUT, RT 4.5  
4.65  
50  
4.8  
V
TLE6389-2GV50; VVOUT  
increasing/decreasing  
TLE6389-2GV50 2)  
Reset threshold  
hysteresis  
ΔVVOUT  
,
mV  
V
RT  
Reset threshold  
VFB, RT  
1.12  
1.17  
20  
TLE6389-2GV; VVOUT  
decreasing  
V
TLE6389-2GV; VVOUT  
increasing  
Reset output pull up  
resistor  
RRO  
10  
40  
kΩ  
TLE6389-2GV50, TLE6389-  
3GV50; Internally connected  
to VOUT  
4.51  
Reset output High voltage VRO, H  
0.8*  
VVOUT  
V
TLE6389-2GV50, TLE6389-  
3GV50; IRO=0mA  
Datasheet  
13  
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
4
Electrical Characteristics  
Table 2  
5V < VVS < 48V; -40°C < Tj < 150°C; All voltages with respect to ground; positive current  
defined flowing into the pin; unless otherwise specified  
Item Parameter  
Symbol Limit Values  
Unit Test Condition  
min.  
typ.  
max.  
4.52  
Reset output Low voltage VRO,L  
Reset output Low voltage VRO,L  
0.2  
0.4  
V
IRO, L=1mA;  
2.5V < VVOUT < VRT  
4.53  
4.54  
0.2  
21  
0.4  
25  
V
IRO, L=0.2mA;  
1V < VVOUT < 2.5V  
Reset delay time  
trd  
17  
ms  
TLE6389-2GV  
TLE6389-3GV50  
4.55  
4.56  
Reset delay time  
trd  
trr  
70  
82  
100  
10  
ms  
µs  
TLE6389-2GV50  
2)  
Reset reaction time  
Overvoltage Lockout  
4.57  
Overvoltage threshold  
VVOUT, OV  
VOUT_nom/ –  
V +0.1  
V
V
TLE6389-2GV50, TLE6389-  
3GV50;  
V
VOUT increasing  
4.58  
Overvoltage threshold  
VFB, OV  
VFB,th_nom/ –  
V +0.02  
TLE6389-2GV; VVOUT  
increasing  
Datasheet  
14  
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
4
Electrical Characteristics  
Table 2  
5V < VVS < 48V; -40°C < Tj < 150°C; All voltages with respect to ground; positive current  
defined flowing into the pin; unless otherwise specified  
Item Parameter  
Symbol Limit Values  
Unit Test Condition  
min.  
typ.  
max.  
ENABLE Input  
4.59  
4.60  
Enable ON-threshold  
Enable OFF-threshold  
VENABLE,O 4.5  
V
V
N
VENABLE,O  
0.8  
FF  
SI_ENABLE Input  
4.61  
Enable ON-threshold  
VENABLE,O 4.5  
V
V
N
4.62  
Enable OFF-threshold  
VENABLE,O  
0.8  
FF  
SI_GND Input  
4.63  
Switch ON resistance  
RSW  
50  
100  
230  
Ω
VSI_ENABLE = 5V;  
SI_GND = 3mA;  
I
Battery Voltage Sense  
4.64  
4.65  
4.66  
Sense threshold  
Sense threshold  
VSI, low  
VSI, high  
VSI, hys  
1.22  
1.25  
1.33  
80  
1.28  
V
VVS decreasing  
VVS increasing  
V
Sense threshold  
hysteresis  
50  
120  
mV  
4.67  
Sense output pull up  
resistor  
RSO  
10  
20  
40  
kΩ  
TLE6389-2GV50, TLE6389-  
3GV50; Internally connected  
to VVOUT  
4.68  
4.69  
4.70  
Sense out output High  
voltage  
VSO,H  
VSO,L  
0.8*  
VVOUT  
V
V
V
ISO,H =0mA  
Sense out output Low  
voltage  
0.2  
0.4  
0.4  
ISO,L = 1mA;  
2.5V < VVOUT; VSI < 1.13 V  
VVOUT  
/
ISOL=0.2mA;  
V
1V < VVOUT < 2.5V;  
VSI < 1.13 V  
Thermal Shutdown  
4.71  
Thermal shutdown  
junction temperature  
TjSD  
150  
175  
30  
200  
°C  
2)  
2)  
4.72  
Temperature hysteresis  
ΔT  
K
1) The device current measurements for IVS and IFB exclude MOSFET driver currents.  
2) Not subject to production test - specified by design  
3) For 4V < VVS < 6V: VGDRV 0V.  
Datasheet  
15  
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
5
Typical Performance Characteristics  
Current consumption IVS vs. temperature Tj at enabled  
device and VVS=13.5V  
Current consumption IVOUT vs. temperature Tj at  
enabled device and VVOUT=5.5V  
90  
IVS  
180  
IVOUT  
µA  
80  
µA  
170  
70  
60  
50  
40  
30  
20  
160  
150  
140  
130  
120  
110  
-50  
-20  
10  
40  
70  
100 130 160  
-50  
-20  
10  
40  
70  
100 130 160  
Tj  
Tj  
°C  
°C  
Current consumption IVS vs. temperature Tj at enabled  
device and VVS=48V  
Current consumption IVOUT vs. temperature Tj at  
enabled device and VVOUT=10V(-2GV)  
110  
160  
IVS  
IVOUT  
µA  
µA  
100  
150  
90  
80  
70  
60  
50  
40  
140  
130  
120  
110  
100  
90  
-50  
-20  
10  
40  
70  
100 130 160  
Tj  
-50  
-20  
10  
40  
70  
100 130 160  
Tj  
°C  
°C  
Datasheet  
16  
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
Internal oscillator frequency fOSC  
vs. temperature Tj  
Peak current limit threshold voltage VLIM vs.  
temperature Tj  
110  
380  
VLIM  
fOSC  
mV  
100  
kHz  
370  
90  
80  
70  
60  
50  
40  
360  
350  
340  
330  
320  
310  
-50  
-20  
10  
40  
70  
100 130 160  
-50  
-20  
10  
40  
70  
100 130 160  
Tj  
Tj  
°C  
°C  
Minimum on time tMIN (blanking)  
vs. temperature Tj  
Gate driver supply VVS - VBDS  
vs. temperature Tj  
350  
8.6  
VVS-VBDS  
tMIN  
ns  
V
325  
8.4  
300  
275  
250  
225  
200  
175  
8.2  
8.0  
7.8  
7.6  
7.4  
7.2  
-50  
-20  
10  
40  
70  
100 130 160  
-50  
-20  
10  
40  
70  
100 130 160  
Tj  
Tj  
°C  
°C  
Datasheet  
17  
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
Output voltage VVOUT vs. temperature Tj in PFM mode  
(VVS=24V,ILoad=15mA,-3GV50)  
Lower Reset threshold VFB,RT  
vs. temperature Tj (-2GV)  
5.15  
VVOUT  
1.14  
VFB,RT  
V
V
1.13  
5.10  
1.12  
1.11  
1.10  
1.09  
1.08  
1.07  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
-50  
-20  
10  
40  
70  
100 130 160  
-50  
-20  
10  
40  
70  
100 130 160  
Tj  
Tj  
°C  
°C  
Lower Reset threshold VVOUT, RT  
vs. temperature Tj (-3GV50)  
Internal pull up resistors RRO and RSO  
vs. temperature Tj (-3GV50)  
3.72  
VVOUT,RT  
45  
RRO  
V
k
Ω
3.70  
40  
35  
30  
25  
20  
15  
10  
RSO  
k
Ω
3.68  
3.66  
3.64  
3.62  
3.60  
3.58  
-50  
-20  
10  
40  
70  
100 130 160  
-50  
-20  
10  
40  
70  
100 130 160  
Tj  
Tj  
°C  
°C  
Datasheet  
18  
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
Lower Sense threshold VSI, low  
vs. temperature Tj  
Output Voltage vs. Load Current, TLE6389-2GV50  
7
1.28  
TLE 6389-2 GV50  
RSENSE = 50mΩ  
VOUT  
VSI,low  
VVS = 13.5V  
App. Circuit Fig. 3  
V
V
6
5
4
3
2
1
0
1.27  
1.26  
1.25  
1.24  
1.23  
1.22  
1.21  
-50  
-20  
10  
40  
70  
100 130 160  
0
0.25 0.5 0.75 1.0 1.25 1.5 1.75  
ILOAD  
Tj  
°C  
A
On resistance of SI_GND switch RSW  
vs. temperature Tj  
Output Current vs. Load Current, TLE6389-3GV50  
7
280  
TLE 6389-3 GV50  
VOUT  
RSW  
RSENSE = 50mΩ  
VVS = 13.5V  
App. Circuit Fig. 3  
V
Ω
6
5
4
3
2
1
0
240  
200  
160  
120  
80  
40  
0
-50  
-20  
10  
40  
70  
100 130 160  
Tj  
0
0.25 0.5 0.75 1.0 1.25 1.5 1.75  
ILOAD  
°C  
A
Datasheet  
19  
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
Output Voltage vs Load Current  
1.4  
TLE 6389-2 GV  
RSENSE = 50mΩ  
VVS = 13.5V  
VOUT  
VOUT,nom  
1.2  
App. Circuit Fig. 3  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
0.25 0.5 0.75 1.0 1.25 1.5 1.75  
ILOAD  
A
Datasheet  
20  
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
6
Detailed circuit description  
In the following, some internal blocks of the TLE6389 are described in more detail. For the right choice of the  
external components please refer to the section application information.  
6.1  
PFM/PWM Step-down regulator  
To meet the strict requirements in terms of current consumption demanded by all Body-and 42V PowerNet  
applications a special PFM (Pulse Frequency Modulation) - PWM (Pulse Width Modulation) control scheme for  
highest efficiency is implemented in the TLE6389 regulators. Under light load conditions the output voltage is able  
to increase slightly and at a certain threshold the controller jumps into PFM mode. In this PFM operation the PMOS  
is triggered with a certain on time (depending on input voltage, output voltage, inductance- and sense resistor  
value) whenever the buck output voltage decreases to the so called WAKE-threshold. The switching frequency of  
the step down regulator is determined in the PFM mode by the load current. It increases with increasing load  
current and turns finally to the fixed PWM frequency at a certain load current depending on the input voltage,  
current sense resistor and inductance. The diagram below shows the buck regulation circuit of the TLE6389.  
VS  
CS  
VFB, OV  
VREF  
VREF  
VDIODE  
+
-
+
-
+
-
Current-  
sense  
Amplifier  
Over-  
Voltage  
Lockout  
Over-  
Temp.  
Shutdown  
VS  
Blanking  
VREF  
VFB  
+
-
>1  
R
S
+
GDRV  
&
Q
Error  
Amplifier  
PWM  
Comparator  
Level-  
shift  
Wake-  
Comparator  
Slope-  
compensation  
VREF  
BDS  
PFM  
-
VFB, WK  
MUX  
PWM  
SYNC  
MODE  
Oscillator  
Figure 3  
Buck control scheme  
The TLE6389 uses a slope-compensated peak current mode PWM control scheme in which the feedback or  
output voltage of the step down circuit and the peak current of the current through the PMOS are compared to  
form the OFF signal for the external PMOS. The ON-trigger is set periodically by the internal oscillator when acting  
in PWM mode and is given by the output of the WAKE-comparator when operating in PFM mode. The Multiplexer  
(MUX) is switched by the output of the MODE-detector which distinguishes between PFM and PWM by tracking  
the output voltage (goto PFM) and by tracking the gate trigger frequency (goto PWM). In PFM mode the peak  
current limit is reduced to prevent overshoots at the output of the buck regulator. In order to avoid a gate turn off  
signal due to the current peak caused by the parasitic capacitance of the catch diode the blanking filter is  
necessary. The blanking time is set internally to 200ns and determines (together with the PMOS turn on and turn  
off delay) the minimum duty cycle of the device. In addition to the PFM/PWM regulation scheme an overvoltage  
lockout and thermal protection are implemented to guarantee safe operation of the device and of the supplied  
application circuit.  
Datasheet  
21  
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
6.2  
Battery voltage sense  
To detect undervoltage conditions at the battery a sense comparator block is available within the TLE6389. The  
voltage at the SI input is compared to an internal reference of typ. 1.25V. The output of the comparator drives a  
NMOS structure giving a low signal at SO as soon as the voltage at SI decreases below this threshold. In the 5V  
fixed version an internal pull up resistor is connected from the drain of the NMOS to the output of the buck  
converter, in the variable version SO is open drain.  
The sense in voltage divider can be switched to high impedance by a low signal at the SI_ENABLE to avoid high  
current consumption to GND (TLE6389-2GV50 and TLE6389-3GV50 only).  
Of course the sense comparator can be used for any input voltage and does not have to be used for the battery  
voltage sense only.  
6.3  
Undervoltage Reset  
The output voltage is monitored continuously by the internal undervoltage reset comparator. As soon as the output  
voltage decreases below the thresholds given in the characteristics the NPN structure pulls RO low (latched). In  
the 5V fixed version an internal pull up resistor is connected from the collector of the NPN to the output of the buck  
converter, in the variable version RO is open collector.  
At power up RO is kept low until the output voltage has reached its reset threshold and stayed above this threshold  
for the power on reset delay time.  
Datasheet  
22  
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
7
Application information  
Note:The following information is given as a hint for the implementation of the device only and shall not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device.  
7.1  
General  
The TLE6389 step-down DC-DC controllers are designed primarily for use in Automotive applications where high  
input voltage range requirements have to be met. Using an external P-MOSFET and current-sense resistor allows  
design flexibility and the improved efficiencies associated with high-performance P-channel MOSFETs. The  
unique, peak current-limited, PWM/PFM control scheme gives these devices excellent efficiency over wide load  
ranges, while drawing around 100µA current from the battery under no load condition. This wide dynamic range  
optimizes the TLE6389 for automotive applications, where load currents can vary considerably as individual circuit  
blocks are turned on and off to conserve energy. Operation to a 100% duty cycle allows the lowest possible  
dropout voltage, maintaining operation during cold cranking. High switching frequencies and a simple circuit  
topology minimize PC board area and component costs.  
7.2  
Typical application circuits  
Note:These are very simplified examples of an application circuit. The function must be verified in the real  
application  
.
RSENSE  
=
M1  
VIN  
L1 = 47 μH  
VOUT  
47mΩ  
IOUT  
CIN1  
=
COUT  
=
CBDS  
=
100 μF  
D1  
100 μF  
220 nF  
M1: Infineon BSO613SPV  
11  
BDS  
14  
CS  
12  
GDRV  
2
Infineon BSP613P  
D1: MotorolaMBRD360  
L1: EPCOS B82479-A1473-M  
Coilcraft DO3340P-473  
3
9
8
FB  
13  
7
VOUT  
VS  
RSI1=  
C
=
IN2  
TLE6389-2 GV50  
TLE6389-3 GV50  
SO  
400kΩ  
220nF  
SI  
C : Electrolythic  
IN1  
COMP  
C : Ceramic  
IN2  
RSI2=  
SI_GND SI_ENABLE  
SYNC GND RO  
10  
2.2nF 680Ω  
C
: Low ESR Tantalum  
OUT  
100kΩ  
6
1
5
4
ON OFF  
Figure 4  
Application circuit TLE6389-2GV50 and TLE6389-3GV50  
Datasheet  
23  
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
RSENSE  
=
M1  
VIN  
L1 = 47 μH  
VOUT  
47mΩ  
to e.g. 5V rail  
RSO  
RRO  
CIN1  
=
COUT  
=
=
CBDS  
=
100 μF  
D1  
100 μF  
=
220 nF  
20kΩ  
RFB1  
=
M1: Infineon BSO613SPV  
330kΩ  
11  
BDS  
VS  
14  
CS  
12  
GDRV  
3
Infineon BSP613P  
D1: Motorola MBRD360  
L1: EPCOS B82479-A1473-M  
Coilcraft DO3340P-473  
VOUT  
13  
7
SO  
9
toµC  
RSI1  
=
C
=
IN2  
FB  
400kΩ  
220nF  
TLE6389-2 GV  
2
8
C : Electrolythic  
2.2nF  
IN1  
COMP  
SI  
C : Ceramic  
SI_GND ENABLE  
SYNC GND  
RO  
10  
COINU2T: Low ESR Tantalum  
RSI2=  
RFB2=  
100kΩ  
680Ω  
6
1
5
4
47kΩ  
ON OFF  
toµC  
Figure 5  
Application circuit TLE6389-2GV  
7.3  
Output voltage at adjustable version - feedback divider  
The output voltage is sensed either by an internal voltage divider connected to the VOUT pin (TLE6389-2GV50  
and TLE6389-3GV50, fixed 5V versions) or an external divider from the Buck output voltage to the FB pin  
(TLE6389-2GV, adjustable version). Pin VOUT has to be connected always to the Buck converter output  
regardless of the selected output voltage for the -2GV version.  
To determine the resistors of the feedback divider for the desired output voltage VOUT at the TLE6389-2GV select  
R
FB2 between 5kΩ and 500kΩ and obtain RFB1 with the following formula:  
VOUT  
RFB1 = RFB2 ---------------- 1  
VFB, th  
V
FB is the threshold of the error amplifier with its value of typical 1.25V which shows that the output voltage can  
be adjusted in a range from 1.25V to 15V. However the integrated Reset function will only be operational if the  
output voltage level is adjusted to >7V.  
Also the current consumption will be increased in PFM mode in the range between  
1.25V and 7V.  
7.4  
SI_Enable  
Connecting SI_ENABLE to 5V causes SI_GND to have low impedance. Thus the SI comparator is in operation  
and can be used to monitor the battery voltage. SO output signal is valid. Connecting SI_ENABLE to GND causes  
SI_GND to have high impedance. Thus the SI comparator is not able to monitor the battery voltage. SO output  
signal is invalid.  
Datasheet  
24  
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
7.5  
Battery sense comparator - voltage divider  
The formula to calculate the resistor divider for the sense comparator is basically the same as for the feedback  
divider in section before. With the selected resistor RSI2, the desired threshold of the input voltage VIN, UV and the  
lower sense threshold VSI, low the resistor RSI1 is given to:  
VIN, UV  
VSI, low  
RSI1 = RSI2 ------------------ 1  
For high accuracy and low ohmic resistor divider values the On-resistance of the SI_GND NMOS (typ. 100Ω) has  
to be added to RSI2  
.
7.6  
Undervoltage reset - delay time  
The diagram below shows the typical behavior of the reset output in dependency on the input voltage VIN, the  
output voltage VVOUT or VFB.  
VIN  
< trr  
t
VVOUT  
VFB  
VVOUT, RT  
VFB,RT  
trr  
t
trd  
trd  
trd  
VRO  
trd  
t
thermal  
shutdown  
under  
voltage  
over  
load  
Figure 6  
Reset timing  
7.7  
100% duty-cycle operation and dropout  
The TLE6389 operates with a duty cycle up to 100%. This feature allows to operate with the lowest possible drop  
voltage at low battery voltage as it occurs at cold cranking. The MOSFET is turned on continuously when the  
supply voltage approaches the output voltage level, conventional switching regulators with less than 100% duty  
cycle would fail in that case.  
Datasheet  
25  
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
The drop- or dropout voltage is defined as the difference between the input and output voltage levels when the  
input is low enough to drop the output out of regulation. Dropout depends on the MOSFET drain-to-source on-  
resistance, the current-sense resistor and the inductor series resistance. It is proportional to the load current:  
Vdrop = ILOAD ⋅ (RDS(ON)PMOS + RSENSE + RINDUCTANCE  
)
7.8  
SYNC Input and Frequency Control  
The TLE6389’s internal oscillator is set for a fixed PWM switching frequency of 360kHz or can be synchronized to  
an external clock at the SYNC pin. When the internal clock is used SYNC has to be connected to GND. SYNC is  
a negative-edge triggered input that allows synchronization to an external frequency ranging between 270kHz and  
530kHz. When SYNC is clocked by an external signal, the converter operates in PWM mode until the load current  
drops below the PWM to PFM threshold. Thereafter the converter continues operation in PFM mode.  
7.9  
Shutdown Mode  
Connecting ENABLE to GND places the TLE6389-2GV in shutdown mode. In shutdown, the reference, control  
circuitry, external switching MOSFET, and the oscillator are turned off and the output falls to 0V. Connect ENABLE  
to voltages higher than 4.5V for normal operation. As this input operates analog the voltage applied at this pin  
should have a slope of 0.5V/3µs to avoid undefined states within the device.  
7.10  
Buck converter circuit  
A typical choice of external components for the buck converter circuit is given in figure 4 and 5. For basic operation  
of the buck converter the input capacitors CIN1, CIN2, the driver supply capacitor CBDS, the sense resistor RSENSE  
,
the PMOS device, the catch diode D1, the inductance L1 and the output capacitor COUT are necessary. In addition  
for low electromagnetic emission a Pi-filter at the input and/or a small resistor in the path between GDRV and the  
gate of the PMOS may be necessary.  
7.10.1  
Buck inductance (L1) selection in terms of ripple current:  
The internal PWM/PFM control loop includes a slope compensation for stable operation in PWM mode. This slope  
compensation is optimized for inductance values of 47µH and Sense resistor values of 47mΩ for the 5V output  
voltage versions. When choosing an inductance different from 47µH the Sense resistor has to be changed also:  
RSENSE  
3-Ω---  
------------------- = ( 0 , 5 . . . 1 , 0 10  
H
L1  
Increasing this ratio above 1000 Ω/H may result in sub harmonic oscillations as well-known for peak current mode  
regulators without integrated slope compensation.  
To achieve the same effect of slope compensation in the adjustable voltage version also the inductance in µH is  
given by  
4  
H
VΩ  
4  
H
VΩ  
--------  
--------  
2,0 × 10  
VOUT RSENSE < L1 < 4,0 × 10  
V  
RSENSE  
OUT  
Datasheet  
26  
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
The inductance value determines together with the input voltage, the output voltage and the switching frequency  
the current ripple which occurs during normal operation of the step down converter. This current ripple is important  
for the all over ripple at the output of the switching converter.  
(VIN VOUT) ⋅ VOUT  
ΔI = ------------------------------------------------------  
fSW VIN L1  
In this equation fsw is the actual switching frequency of the device, given either by the internal oscillator or by an  
external source connected to the SYNC pin. When picking finally the inductance of a certain supplier (Epcos,  
Coilcraft etc.) the saturation current has to be considered. The saturation current value of the desired inductance  
has to be higher than the maximum peak current which can appear in the actual application.  
7.10.2  
Determining the current limit  
The peak current which the buck converter is able to provide is determined by the peak current limit threshold  
voltage VLIM and the sense resistor RSENSE. With a maximum peak current given by the application (IPEAK,  
PWM=ILOAD+0.5ΔI) the sense resistor is calculated to  
VLIM  
RSENSE = ------------------------------------  
2 IPEAK, PWM  
The equation above takes account for the foldback characteristic of the current limit as shown in the Fig. ’Output  
Voltage vs. Load Current’ on page 24/25 by introducing a factor of 2. It must be assured by correct dimensioning  
of RSENSE that the load current doesn’t reach the foldback part of the characteristic curve.  
7.10.3  
PFM and PWM thresholds  
The crossover thresholds PFM to PWM and vice versa strongly depend on the input voltage VIN, the Buck  
converter inductance L1, the sense resistor value RSENSE and the turn on and turn off delays of the external PMOS.  
7.10.4  
Buck output capacitor (COUT) selection:  
The choice of the output capacitor effects straight to the minimum achievable ripple which is seen at the output of  
the buck converter. In continuous conduction mode the ripple of the output voltage can be estimated by the  
following equation:  
1
VRipple = ΔI RESRCOUT + -----------------------------------  
8 fSW COUT  
From the formula it is recognized that the ESR has a big influence in the total ripple at the output, so low ESR  
tantalum capacitors are recommended for the application.  
One other important thing to note are the requirements for the resonant frequency of the output LC-combination.  
The choice of the components L and C have to meet also the specified range given in section 3 otherwise  
instabilities of the regulation loop might occur.  
Datasheet  
27  
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
7.10.5  
Input capacitor (CIN1) selection:  
At high load currents, where the current through the inductance flows continuously, the input capacitor is exposed  
to a square wave current with its duty cycle VOUT/VI. To prevent a high ripple to the battery line a capacitor with  
low ESR should be used. The maximum RMS current which the capacitor has to withstand is calculated to:  
2
VOUT  
1
3
ΔI  
2 ILOAD  
-- -----------------------  
IRMS = ILOAD  
-------------- 1 +  
VIN  
For low ESR an e.g. Al-electrolytic capacitance in parallel to an ceramic capacitance could be used.  
7.10.6  
Freewheeling diode / catch diode (D1)  
For lowest power loss in the freewheeling path Schottky diodes are recommended. With those types the reverse  
recovery charge is negligible and a fast hand over from freewheeling to forward conduction mode is possible.  
Depending on the application (12V battery systems) 40V types could be also used instead of the 60V diodes. Also  
for high temperature operation select a Schottky-diode with low reverse leakage.  
A fast recovery diode with recovery times in the range of 30ns can be also used if smaller junction capacitance  
values (smaller spikes) are desired.  
7.10.7  
Buck driver supply capacitor (CBDS)  
The voltage at the ceramic capacitor is clamped internally to 7V, a ceramic type with a minimum of 220nF and  
voltage class 16V would be sufficient.  
7.10.8  
Input pi-filter components for reduced EME  
At the input of Buck converters a square wave current is observed causing electromagnetical interference on the  
battery line. The emission to the battery line consists on one hand of components of the switching frequency  
(fundamental wave) and its harmonics and on the other hand of the high frequency components derived from the  
current slope. For proper attenuation of those interferers a π-type input filter structure is recommended which is  
built up with inductive and capacitive components in addition to the Input caps CIN1 and CIN2. The inductance can  
be chosen up to the value of the Buck converter inductance, higher values might not be necessary, the additional  
capacitance should be a ceramic type in the range up to 100nF.  
Inexpensive input filters show due to their parasitrics a notch filter characteristic, which means basically that the  
low pass filter acts from a certain frequency as a high pass filter and means further that the high frequency  
components are not attenuated properly. To slower down the slopes at the gate of the PMOS switch and get down  
the emission in the high frequency range a small gate resistor can be put between GDRV and the PMOS gate.  
7.10.9  
Frequency compensation  
The external frequency compensation pin should be connected via a 2.2nF (>10V) ceramic capacitor and a 680 Ω  
(1/8W) resistor to GND. This node should be kept free from switching noise.  
Datasheet  
28  
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
7.11  
Components recommendation - Overview  
Device  
CIN1  
Type  
Supplier  
various  
various  
EPCOS  
EPCOS  
Coilcraft  
Coilcraft  
Coilcraft  
Infineon  
Infineon  
Infineon  
various  
Motorola  
Motorola  
various  
EPCOS  
various  
Remark  
Electrolytic /Foil type  
Ceramic  
100μF, 60V  
CIN2  
220nF, 60V  
L1  
B82464-A4473  
B82479-A1473-M  
DO3340P-473  
DO5022P-683  
DS5022P-473  
BSO 613SPV  
BSP 613P  
47μH, 1.6A, 145mΩ  
47μH, 3.5A, 47mΩ  
47μH, 3.8A, 110mΩ  
68μH, 3.5A, 130mΩ  
47μH, 4.0A, 97mΩ  
60V, 3.44A, 130mΩ, NL  
60V, 2.9A, 130mΩ, NL  
60V, 9A, 250mΩ, LL  
220nF, 16V  
M1  
SPD09P06PL  
Ceramic  
CBDS  
D1  
MBRD360  
Schottky, 60V, 3A  
Schottky, 40V, 3A  
Schottky, 40V, 3A  
Low ESR Tantalum, 100μF, 10V  
see 7.10.9.  
MBRD340  
SS34  
COUT  
B45197-A2107  
Ceramic  
CCOMP  
7.12  
Layout recommendation  
The most sensitive points for Buck converters - when considering the layout - are the nodes at the input, output  
and the gate of the PMOS transistor and the feedback path.  
For proper operation and to avoid stray inductance paths the external catch diode, the Buck inductance and the  
input capacitor CIN1 have to be connected as close as possible to the PMOS device. Also the GDRV path from the  
controller to the MOSFET has to be as short as possible. Best suitable for the connection of the cathode of the  
catch diode and one terminal of the inductance would be a small plain located next to the drain of the PMOS.  
The GND connection of the catch diode must be also as short as possible. In general the GND level should be  
implemented as surface area over the whole PCB as second layer, if necessary as third layer. The feedback path  
has to be well grounded also, a ceramic capacitance might help in addition to the output cap to avoid spikes.  
To obtain the optimum filter capability of the input pi-filter it has to be located also as close as possible to the input.  
To filter the supply input of the device (VS) the ceramic cap should be connected directly to the pin.  
As a guideline an EMC optimized application board / layout is available.  
Datasheet  
29  
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
8
Package Outlines  
Figure 7  
Outline PG-DSO-14 (Plastic Green Dual Small Outline)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with  
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-  
free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
Dimensions in mm  
http://www.infineon.com/packages.  
Datasheet  
30  
Rev. 2.2  
2018-06-25  
TLE6389  
Step-Down DC/DC Controller  
9
Revision History  
Version Date  
Rev.2.2 2018-06-20  
Changes  
Update package outline, page 4 changed pinconfig drawing to PG-DSO-14  
Page 1: Marking corrected, chapter 7.10.3: deleted paragraph “For more details...”  
Update Layout style  
Rev. 2.1 2007-08-13  
Rev. 2.0 2006-08-24  
Initial version of RoHS-compliant derivate of TLE6389-2/-3  
Page 1: AEC certified statement added  
Page 1 and Page 30: RoHS compliance statement and green product feature added  
Page 1 and Page 30: Package changed to RoHS compliant version  
Legal Disclaimer updated  
Final Datasheet TLE6389-2/-3  
Datasheet  
31  
Rev. 2.2  
2018-06-25  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2018-06-25  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2018 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  

相关型号:

TLE6389-3GV50

Switching Controller, Current-mode, 2.3A, 420kHz Switching Freq-Max, PDSO14, PLASTIC, SOP-14
INFINEON

TLE63892GV50NTMA1

Switching Controller, Current-mode, 2.3A, 420kHz Switching Freq-Max, PDSO14, PLASTIC, SOP-14
INFINEON

TLE63892GV50XUMA1

Switching Controller, Current-mode, 2.3A, 420kHz Switching Freq-Max, PDSO14, PLASTIC, SOP-14
INFINEON

TLE63892GV50XUMA2

Switching Controller, Current-mode, 2.3A, 420kHz Switching Freq-Max, PDSO14, PLASTIC, SOP-14
INFINEON

TLE63892GVNTMA1

Switching Controller, Current-mode, 2.3A, 420kHz Switching Freq-Max, PDSO14, PLASTIC, SOP-14
INFINEON

TLE63893GV50XUMA2

Switching Controller,
INFINEON

TLE6389G33

Step - Down DC/DC Controller
INFINEON

TLE6389G33-1

Step - Down DC/DC Controller
INFINEON

TLE6389G50

Step - Down DC/DC Controller
INFINEON

TLE6389G50-1

Step - Down DC/DC Controller
INFINEON

TLE6389G50NTMA1

Switching Controller, Current-mode, 420kHz Switching Freq-Max, PDSO14, PLASTIC, DSO-14
INFINEON

TLE6389GV

Step - Down DC/DC Controller
INFINEON