TLE5501 E0002 [INFINEON]

Trusted Infineon quality;
TLE5501 E0002
型号: TLE5501 E0002
厂家: Infineon    Infineon
描述:

Trusted Infineon quality

文件: 总19页 (文件大小:730K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE5501  
TMR-Based Angle Sensor  
Features  
Tunneling Magneto Resistance (TMR)-based principle  
360° angle measurement  
Large output signals of up to 0.37 V/V for direct micro controller  
connection  
Discrete bridge with differential sine and cosine output  
Ratiometric output signals  
Two different pin-outs:  
- E0001: pin compatible to TLE5009, AEC-Q100 compliant (QM)  
- E0002: de-coupled bridges for redundant external angle calculation and highest diagnostic coverage,  
ISO26262 ASIL-D compliant (requires use of external safety mechanisms)  
Automotive qualified AEC-Q100, Grade 0: TA = -40°C to 150°C (ambient temperature)  
ESD > 4 kV (HBM)  
RoHS compliant and halogen free package  
Functional Safety  
Safety Manual and Safety Analysis Summary Report available on request  
Potential applications  
The TLE5501 TMR-based angle sensor is designed for angular position sensing in automotive applications with  
focus on steering angle sensor and BLDC motor commutation.  
Product validation  
Qualified for automotive applications. Product validation according to AEC-Q100.  
Description  
Table 1  
Derivative Ordering codes  
Product type  
Marking Ordering code Package Functional Safety  
Classification  
Comment  
TLE5501 E0001 5010001 SP001621824 PG-DSO-8 n.a.  
pin compatible to TLE5009  
TLE5501 E0002 5010002 SP001621828 PG-DSO-8 ISO26262 Compliant de-coupled bridges  
Datasheet  
www.infineon.com  
Rev. 1.0  
2018-07-24  
1
TLE5501  
TMR-Based Angle Sensor  
Table of contents  
1
2
3
4
Product overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin configuration / description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
5
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
5.1  
5.2  
5.3  
6
Functional behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Safety functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Failure reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
6.1  
6.2  
6.3  
6.4  
7
7.1  
7.2  
Typical performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Angle error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
8
Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Package info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Package marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Die Position inside package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
8.1  
8.2  
8.3  
8.4  
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Datasheet  
2
Rev. 1.0  
2018-07-24  
TLE5501  
TMR-Based Angle Sensor  
Product overview  
1
Product overview  
The TLE5501 is a 360° TMR-based angle sensor that detects the orientation of a magnetic field. This is achieved  
by measuring sine and cosine angle components with Tunneling Magneto Resistance (TMR) elements. These  
raw signals (sine and cosine) are provided as a differential output signal and can directly be further processed  
within a micro controller. The large output voltage of the bridge renders any further signal amplification  
unnecessary.  
The TLE5501 is available in two different derivatives:  
TLE5501 E0001 has one VDD pin and is pin-compatible with the GMR-based TLE5009. This option offers a  
easy change to the TLE5501. The only difference to TLE5009 is the pin 5, which is not used in TLE5501 and  
provides a temperature and diagnosis function in TLE5009.  
TLE5501 E0002 is a version which has two independent VDD and GND pins, for the P- and N-bridge  
respectively. In this way, two completely independent bridge signals are generated which can be used in  
an advanced safety concept to perform a cross-check of the P- and N- signals and achieve a high diagnostic  
coverage for any sensor malfunction.  
Datasheet  
3
Rev. 1.0  
2018-07-24  
TLE5501  
TMR-Based Angle Sensor  
Block diagram  
2
Block diagram  
The TLE5501 consists of 8 TMR resistors, which are arranged in 2 Wheatstone bridges. The resistance of these  
resistors depends on the direction of the external magnetic field. Each bridge provides a differential output  
signal, i.e. X (cosine) and Y (sine) signals which can further be processed for angle calculation.  
VDD  
X-Bridge  
Y-Bridge  
SIN_N  
SIN_P  
COS_P  
0°  
COS_N  
GND1  
GND2  
90°  
Figure 1  
Principle block diagram of discrete TMR bridge, version TLE5501 E0001  
VDD_P  
VDD_N  
N-Bridge  
P-Bridge  
COS_N  
SIN_N  
SIN_P  
0°  
COS_P  
GND_P  
GND_N  
90°  
Figure 2  
Principle block diagram of discrete TMR bridge, de-coupled version TLE5501 E0002  
Datasheet  
4
Rev. 1.0  
2018-07-24  
TLE5501  
TMR-Based Angle Sensor  
Pin configuration / description  
3
Pin configuration / description  
The pin-out of the device is shown in Table 2.  
A magnet which rotates counter-clockwise (CCW) leads to an increasing angle value.  
8
7
6
5
0°  
+ α  
1
2
3
4
Figure 3  
Pin-out of the discrete TMR bridge  
Table 2  
Pin description (compatible version TLE5501 E0001)  
Pin No.  
Symbol  
COS_P  
COS_N  
GND2  
GND1  
n.c  
In/Out  
Function  
1
2
3
4
5
O
O
I
Analog positive cosine output  
Analog negative cosine output  
Ground, internally connected to GND1  
Ground  
I
not used, internally connected to  
GND2  
6
7
8
VDD  
I
Supply voltage  
SIN_N  
SIN_P  
O
O
Analog negative sine output  
Analog positive sine output  
Table 3  
Pin description (de-coupled version TLE5501 E0002)  
Pin No.  
Symbol  
SIN_P  
In/Out  
Function  
1
2
3
4
5
6
7
8
O
I
Analog positive sine output  
Supply voltage P-bridge  
Analog positive cosine output  
Ground P-bridge  
VDD_P  
COS_P  
GND_P  
COS_N  
VDD_N  
SIN_N  
O
I
O
I
Analog negative cosine output  
Supply voltage N-bridge  
Analog negative sine output  
Ground N-bridge  
O
I
GND_N  
Datasheet  
5
Rev. 1.0  
2018-07-24  
TLE5501  
TMR-Based Angle Sensor  
Application circuit  
4
Application circuit  
Figure 4 to Figure 7 show the application circuit which is proposed for TLE5501. The value for the buffer  
capacitor Cb has to be adjusted according to the speed of the magnetic input signal. It represents a low-pass  
filter together with the TMR resistor and limits the bandwidth of the sensor, improves, however, noise  
performance. Even without any buffer capacitor Cb, the bandwidth of the device is determined by the TMR  
resistor and the input capacitor of the used ADC. It has to be considered and the ADC sample and hold time  
has to be adjusted accordingly.  
In case the TLE5501 is used in a single-ended configuration, it is recommended to keep the unused pins open.  
SIN_P  
SIN_N  
VDD  
COS_P  
COS_N  
GND2  
GND1  
COS_P  
COS_N  
SIN_P  
SIN_N  
Cb  
Cb  
Cb  
Cb  
GND2  
GND1  
VDD  
100n  
Figure 4  
Application circuit for TLE5501 E0001, both bridges used  
SIN_P  
VDD  
COS_P  
COS_P  
COS_N  
SIN_P  
SIN_N  
Cb  
Cb  
GND2  
GND1  
VDD  
100n  
GND1  
Figure 5  
Application circuit for TLE5501 E0001, only one bridge used  
Datasheet  
6
Rev. 1.0  
2018-07-24  
TLE5501  
TMR-Based Angle Sensor  
Application circuit  
SIN_P  
GND_N  
SIN_P  
VDD_P  
COS_P  
GND_N  
SIN_N  
Cb  
VDD_P  
COS_P  
GND_P  
SIN_N  
100n  
100n  
VDD_N  
VDD_N  
COS_N  
Cb  
Cb  
Cb  
GND_P  
COS_N  
Figure 6  
Application circuit for TLE5501 E0002, both bridges used  
SIN_P  
SIN_P  
GND_N  
Cb  
VDD_P  
COS_P  
VDD_P  
COS_P  
GND_P  
SIN_N  
VDD_N  
Cb  
100n  
GND_P  
COS_N  
Figure 7  
Application circuit for TLE5501 E0002, only one bridge used  
Datasheet  
7
Rev. 1.0  
2018-07-24  
TLE5501  
TMR-Based Angle Sensor  
General product characteristics  
5
General product characteristics  
5.1  
Absolute maximum ratings  
Stresses above the maximum values listed here may cause permanent damage to the device. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are  
absolute ratings; exceeding only one of these values may cause irreversible damage to the device.  
Table 4  
Maximum ratings for voltages and output current  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
-6.5  
Max.  
6.5  
Absolute maximum supply VDD  
voltage  
V
limited to 40 h over lifetime  
Grade 0 qualification  
max 5 min @ TA = 25°C  
max 5 h @ TA = 25°C  
Maximum ambient  
temperature  
TA  
-40  
150  
200  
150  
40  
°C  
Maximum allowed magnetic Bmax  
field  
mT  
mT  
°C  
Maximum allowed magnetic Bmax  
field  
Storage & Shipment 1)  
Tstorage  
5
for dry packed devices,  
Relative humidity < 90 %,  
storage time < 3 a  
1) See Infineon Application Note: “Storage of Products Supplied by Infineon Technologies”  
Table 5  
Temperature / lifetime budget  
Symbol  
Parameter  
Values  
Unit Note or Test Condition  
Min.  
Typ.  
Max.  
125  
150  
Temperature / lifetime  
budget1)  
TA,max  
°C  
°C  
for 1000 h, Grade 1 qualification  
for 1000 h, Grade 0 qualification  
1)The angle accuracy depends on the maximum ambient temperature (see Table 12 and Table 13)  
Table 6  
Lifetime & Ignition Cycles  
Symbol  
Parameter  
Values  
Unit Note or Test Condition  
Min.  
15.000  
19  
Typ.  
Max.  
Operating life time  
Total life time  
top_life  
ttot_life  
Nignition  
h
a
see Table 5  
additional 5 a storage time1)  
Ignition cycles  
3.6E6  
during operating life time top_life  
1) This storage time refers to storage in the module (including magnet) after soldering of the part  
Datasheet  
8
Rev. 1.0  
2018-07-24  
TLE5501  
TMR-Based Angle Sensor  
General product characteristics  
Table 7  
ESD voltage  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
-4  
Max.  
4
Electro-Static-Discharge  
voltage (HBM), according to  
ANSI/ESDA/JEDEC JS-001-  
2010)  
VHBM  
kV  
HBM contact discharge  
for all pins  
Electro-Static-Discharge  
voltage (CDM), according to  
JESD22-C101  
VCDM  
-0.5  
0.5  
kV  
kV  
for all pins except corner pins  
for corner pins only  
-0.75  
0.75  
5.2  
Functional range  
The following operating conditions must not be exceeded in order to ensure correct operation of the angle  
sensor. All parameters specified in the following sections refer to these operating conditions. Table 8 & Table 9  
is valid for -40°C < TA < 150°C.  
Table 8  
Operating range  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Min.  
2.7  
Typ.  
Max.  
5.5  
Operating supply voltage  
VDD  
TA  
V
Operating ambient  
temperature  
-40  
150  
°C  
Angle speed  
n
1E6  
°/s  
Table 9  
Magnetic field range  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
mT  
Min.  
20  
Typ.  
Max.  
100  
130  
Magnetic field range  
B
Extended magnetic field  
range  
Bextended  
20  
mT  
additional reversible angle  
error and additional angle error  
life time drift  
5.3  
Thermal resistance  
The Table 10 describes the thermal resistance of the package.  
Table 10  
Thermal resistance of DSO-8  
Symbol  
Parameter  
Values  
Unit  
K/W  
Note or Test Condition  
Junction to air1)  
Min.  
Typ. Max.  
Thermal resistance DSO-8 RthJA  
300  
350  
1) According to Jedec JESD51-7  
Datasheet  
9
Rev. 1.0  
2018-07-24  
TLE5501  
TMR-Based Angle Sensor  
Functional behavior  
6
Functional behavior  
6.1  
Functional description  
The measurement principle of the sensor is based on the TMR (tunneling magneto-resistance) effect.  
The sensor measures the angular orientation of the magnetic field vector parallel to the package surface.  
The sensor provides a differential sine and a differential cosine analog output signal for external angle  
calculation.  
The provided output signal is ratiometric to the supply voltage.  
The sensor has a measurement range of 360°.  
6.2  
Safety functions  
The TLE5501 has no internal safety mechanisms implemented. All diagnostics to verify correct sensor  
functionality must be implemented externally in the micro controller.  
6.3  
Failure reactions  
As the TLE5501 has no implemented safety mechanisms, potential chip errors will not be indicated by the  
sensor. They can be detected, however, by proper external mechanisms.  
The sensor can withstand a short of any pin to ground without any damage of the sensor.  
The sensor can withstand a short of any pin to sensor supply voltage without any damage of the sensor.  
The sensor can also withstand a short of a pin to a neighbor pin without any damage.  
6.4  
Electrical parameters  
The indicated parameters apply to the full operating range, unless otherwise specified. The typical values  
correspond to a supply voltage VDD = 5.0 V and TA = 25°C, unless individually specified.  
Table 11  
Electrical parameters  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
8000  
0
Bridge resistance  
Rbridge  
4000  
6000  
Ohm for TA = 25°C  
Temperature coefficient of TCbridge  
-0.124 -0.1  
%/K reference temperature: 25°C  
bridge resistance  
Differential output voltage Aout,diff  
amplitude  
270  
135  
-10  
90  
320  
160  
0
370  
185  
10  
mV/V peak-value, for TA = 25°C  
Single ended output voltage Aout,se  
amplitude  
mV/V peak-value, for TA = 25°C  
Orthogonality error (single  
and differential ended)  
ɸ
°
Amplitude synchronism  
(single and differential  
ended)  
k
100  
110  
%
for TA = 25°C  
Differential offset voltage  
Voff,diff  
-5  
0
5
mV/V for TA = 25°C  
Datasheet  
10  
Rev. 1.0  
2018-07-24  
TLE5501  
TMR-Based Angle Sensor  
Functional behavior  
Table 11  
Electrical parameters (cont’d)  
Symbol  
Parameter  
Values  
Typ.  
0
Unit Note or Test Condition  
Min.  
-5  
Max.  
5
Single ended offset voltage Voff,se  
mV/V referring to VDD/2,  
for TA = 25°C  
Temperature coefficient of TCAmp  
output amplitude (single  
-0.145 -0.12  
0
%/K reference temperature:  
TA = 25°C  
and differential ended)  
Temperature coefficient of TCVoff  
offset voltage (single and  
differential ended)  
-5  
0
5
µV/V/  
K
Supply current  
IS  
1.67  
2.5  
mA  
@VDD = 5 V /TA = 25°C (supply  
current is calculated from  
supply voltage and bridge  
resistance)  
Power on delay time  
tdelay  
1
4
ms  
µs  
for a load capacity of CL < 30 nF  
for a load capacity of CL <  
100 pF  
Vout  
Aout,se  
Voff,se  
VDD  
2
angle  
Figure 8  
Definition of single ended offset Voff,se and single ended amplitude Aout,se  
The sensor has a remaining angle error as shown in Table 12 for differential usage and in Table 13 for single  
ended. The error value refers to BZ = 0 mT. The overall angle error represents the relative angle error. This error  
describes the deviation from the reference line after zero-angle definition. The reference line is defined in a  
way that the angle error is symmetric to this line. It is valid for a static magnetic field.  
Datasheet  
11  
Rev. 1.0  
2018-07-24  
TLE5501  
TMR-Based Angle Sensor  
Functional behavior  
Table 12 specifies the angle error in the magnetic field range of 25 mT < B < 80 mT with maximum ambient  
temperature TA = 125°C and TA = 150°C, respectively. Differential output signal is used. For magnetic field  
values B in the range of 20 mT < B < 25 mT or 80 mT < B < 100 mT, a corresponding adder has to be applied to  
the specified angle accuracy as given in the footnote.  
Table 12  
Angle error for TA < 125°C and TA < 150°C (differential)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
0.8  
Difference between output AErr,RT  
angle and real angle1)  
differential signals used  
°
at 0 h/25°C, B = 25 mT to 80 mT2)  
(with compensation of offset,  
orthogonality and amplitude at  
0h/25°C)  
Difference between output AErr,0  
angle and real angle1)  
differential signals used  
1.0  
1.2  
°
at 0 h/over temperature  
TA = -40°C to 150°C,  
B = 25 mT to 80 mT2)  
(with compensation of offset,  
orthogonality and amplitude at  
0h/25°C)  
Difference between output AErr,125  
angle and real angle1)  
differential signals used  
°
°
°
over lifetime & temperature  
TA = -40°C to 125°C,  
B = 25 mT to 80 mT2)  
(with compensation of offset,  
orthogonality and amplitude at  
0h/25°C)  
lifetime stress according to  
Grade 1 qualification  
Difference between output AErr,150  
angle and real angle1)  
differential signals used  
1.5  
over lifetime & temperature  
TA = -40°C to 150°C,  
B = 25 mT to 80 mT2)  
(with compensation of offset,  
orthogonality and amplitude at  
0h/25°C)  
lifetime stress according to  
Grade 0 qualification  
Angle error due to  
hysteresis3)  
AHyst  
0.4  
20 mT < B < 100 mT  
1) Hysteresis and noise are included in the angle accuracy specification  
2) For magnetic fields in the range of 20 mT < B < 25 mT or 80 mT < B < 100 mT an adder of 0.2° to the angle error has to  
be applied  
3) Hysteresis is the largest measurement angle difference between left rotation and right rotation. The raw signals are  
corrected with the mean correction parameters of both rotation directions  
Datasheet  
12  
Rev. 1.0  
2018-07-24  
TLE5501  
TMR-Based Angle Sensor  
Functional behavior  
Table 13 specifies the angle error in the magnetic field range of 25 mT < B < 80 mT with maximum ambient  
temperature TA = 125°C and TA = 150°C, respectively. Single ended output signal is used. For magnetic field  
values B in the range of 20 mT < B < 25 mT or 80 mT < B < 100 mT, a corresponding adder has to be applied to  
the specified angle accuracy as given in the footnote.  
Table 13  
Angle error for TA < 125°C and TA < 150°C (single-ended)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
0.9  
Difference between output AErr,RT  
angle and real angle1)  
single-ended signals used  
°
°
at 0 h/25°C, B = 25 mT to 80 mT2)  
(with compensation of offset,  
orthogonality and amplitude at  
0h/25°C)  
Difference between output AErr,0  
angle and real angle1)  
single-ended signals used  
1.1  
1.3  
at 0 h/over temperature  
TA = -40°C to 150°C,  
B = 25 mT to 80 mT2)  
(with compensation of offset,  
orthogonality and amplitude at  
0h/25°C)  
Difference between output AErr,125  
angle and real angle1)  
single-ended signals used  
°
°
°
over lifetime & temperature  
TA = -40°C to 125°C,  
B = 25 mT to 80 mT2)  
(with compensation of offset,  
orthogonality and amplitude at  
0h/25°C)  
lifetime stress according to  
Grade 1 qualification  
Difference between output AErr,150  
angle and real angle1)  
single-ended signals used  
1.6  
over lifetime & temperature  
TA = -40°C to 150°C,  
B = 25 mT to 80 mT2)  
(with compensation of offset,  
orthogonality and amplitude at  
0h/25°C)  
lifetime stress according to  
Grade 0 qualification  
Angle error due to  
hysteresis3)  
AHyst  
0.4  
20 mT < B < 100 mT  
1) Hysteresis and noise are included in the angle accuracy specification  
2) For magnetic fields in the range of 20 mT < B < 25 mT or 80 mT < B < 100 mT an adder of 0.2° to the angle error has to  
be applied  
3) Hysteresis is the largest measurement angle difference between left rotation and right rotation. The raw signals are  
corrected with the mean correction parameters of both rotation directions  
Datasheet  
13  
Rev. 1.0  
2018-07-24  
TLE5501  
TMR-Based Angle Sensor  
Typical performance  
7
Typical performance  
7.1  
Angle error  
Figure 9 shows the typical angle error of the TLE5501 for different ambient temperatures TA and magnetic  
fields B for a one-time compensation of offset, amplitude and non-orthogonality at 25°C and B = 40 mT.  
Figure 10 shows the typical angle error in case offset, amplitude and non-orthogonality is compensated for  
each temperature T and magnetic field B.  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
-40°  
0.2  
25°C  
0.1  
150°C  
0.0  
0
20  
40  
60  
80  
100  
120  
B (mT)  
Figure 9  
Typical angle error at 0h, differential signals, one-time compensation of offset, amplitude  
and orthogonality error at 25°C and 40 mT  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
-40°C  
0.2  
25°C  
0.1  
150°C  
0.0  
0
20  
40  
60  
80  
100  
120  
B (mT)  
Figure 10 Typical angle error at 0h, differential signals, ideal compensation of offset, amplitude and  
orthogonality error at each temperature T and magnetic field B  
Datasheet  
14  
Rev. 1.0  
2018-07-24  
TLE5501  
TMR-Based Angle Sensor  
Typical performance  
7.2  
Hysteresis  
Figure 11 shows the typical hysteresis of the TLE5501.  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
-40°C  
25°C  
150°C  
0
20  
40  
60  
80  
100  
120  
B (mT)  
Figure 11 Typical hysteresis  
Datasheet  
15  
Rev. 1.0  
2018-07-24  
TLE5501  
TMR-Based Angle Sensor  
Package  
8
Package  
8.1  
Package info  
The package is qualified with a MSL level of 3. It is halogen free, lead free and RoHS compliant.  
Figure 12 Package outline  
0.65  
1.27  
Figure 13 Footprint  
Datasheet  
16  
Rev. 1.0  
2018-07-24  
TLE5501  
TMR-Based Angle Sensor  
Package  
8.2  
Package marking  
The marking on the front side of the package identifies the type of the sensor, the manufacturing lot  
information and the manufacturing date code.  
Table 14  
Position  
1st Line  
2nd Line  
3rd Line  
Marking  
Marking  
Description  
5010001 / 5010002  
See ordering code in Table 1  
Lot code  
xxx  
Gxxxx  
G: green, 4-digit: date code  
8.3  
Packing  
The packing of the device is in tape & reel.  
0.3  
8
1.75  
2.1  
6.4  
Figure 14 Packing  
8.4  
Die Position inside package  
The position of the sensitive element inside the package is specified in Figure 15.  
The size of the sensitive TMR area is 315 µm x 315 µm with the center being in the center of the package.  
Figure 15 Die in package  
Datasheet  
17  
Rev. 1.0  
2018-07-24  
TLE5501  
TMR-Based Angle Sensor  
Revision history  
9
Revision history  
Revision Date  
Changes  
1.0  
2018-07-24 Initial creation  
Datasheet  
18  
Rev. 1.0  
2018-07-24  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2018-07-24  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2018 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
a written document signed by  
Document reference  

相关型号:

TLE6208-3-G

Triple-Half-Bridge
INFINEON

TLE6208-3G

Triple-Half-Bridge
INFINEON

TLE6208-3G_07

Triple Half Bridges Optimized for DC motor management applications
INFINEON

TLE6208-6

Hex-Half-Bridge / Double Six-Driver
INFINEON

TLE6208-6G

Hex-Half-Bridge / Double Six-Driver
INFINEON

TLE6208-6G_07

Hex-Half-Bridge / Double Six-Driver
INFINEON

TLE62086GNUMA1

Brush DC Motor Controller, 2A, BCDMOS, PDSO28, POWER, PLASTIC, DSO-28
INFINEON

TLE62086GXUMA2

Brush DC Motor Controller, 2A, BCDMOS, PDSO28, POWER, PLASTIC, DSO-28
INFINEON

TLE6209R

7 A H-Bridge for DC-Motor Applications
INFINEON

TLE6209RAUMA2

Brush DC Motor Controller, 7A, NMOS, PDSO20, GREEN, PLASTIC, SOP-20
INFINEON

TLE6209R_07

7 A H-Bridge for DC-Motor Applications
INFINEON

TLE6209R_10

7 A H-Bridge for DC-Motor Applications
INFINEON