TLE5009 E1000 [INFINEON]

The Infineon TLE5009 family are angle sensors with analog outputs. It detects the orientation of a;
TLE5009 E1000
型号: TLE5009 E1000
厂家: Infineon    Infineon
描述:

The Infineon TLE5009 family are angle sensors with analog outputs. It detects the orientation of a

文件: 总32页 (文件大小:2006K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Angle Sensor  
GMR-Based Angular Sensor  
TLE5009  
TLE5009-E2000  
TLE5009-E1000  
TLE5009-E2010  
TLE5009-E1010  
Data Sheet  
Rev. 1.1, 2012-04  
ATV SC  
Edition 2012-04  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2012 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
TLE5009  
Revision History  
Changes  
Subjects (changes since revision 1.0)  
Inserted magnetic field definition  
Chapter 3.3  
Chapter 3.4.3  
Chapter 3.4.4  
Chapter 3.4.5  
Updated parameter X,Y amplitude  
Inserted calibration information for definition of overall angle error  
Updated information of overall angle error, product types included: TLE5009-E2010, TLE5009-  
E1010  
Chapter 3.5.2  
Inserted information on external safety checks, differential vector length check  
Trademarks of Infineon Technologies AG  
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™,  
CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™,  
EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™,  
ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, PRIMARION™, PrimePACK™, PrimeSTACK™,  
PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™,  
SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.  
Other Trademarks  
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,  
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR  
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,  
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.  
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of  
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data  
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of  
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics  
Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™  
of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc.,  
OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc.  
RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc.  
SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden  
Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA.  
UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™  
of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of  
Diodes Zetex Limited.  
Last Trademarks Update 2011-02-24  
Data Sheet  
3
Rev. 1.1, 2012-04  
TLE5009  
Table of Contents  
Table of Contents  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1
Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Target Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
1.1  
1.2  
1.3  
2
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.1  
2.2  
2.3  
2.4  
3
3.1  
3.2  
3.3  
Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Electrostatic discharge protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Output Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Calibration of TLE5009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Extraction of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Min-Max Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Exact Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Final Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Angle Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Angle Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Safety Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Built in error diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
External Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Vector length check differential voltage mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Electro Magnetic Compatibility (EMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.4  
3.4.1  
3.4.2  
3.4.3  
3.4.4  
3.4.4.1  
3.4.4.1.1  
3.4.4.1.2  
3.4.4.2  
3.4.4.3  
3.4.5  
3.5  
3.5.1  
3.5.2  
3.5.2.1  
3.6  
4
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4.1  
4.2  
4.3  
4.4  
4.5  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Data Sheet  
4
Rev. 1.1, 2012-04  
TLE5009  
List of Figures  
List of Figures  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
Sensitive bridges of the GMR sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Ideal output of the GMR sensor bridges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Pin configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
TLE5009 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Application circuit for the TLE5009. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Magnetic input field strength. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Single-ended output signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Differential output of ideal cosine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Calibration routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 10 Min-Max method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 11 Orthogonality error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 12 Correction of orthogonality error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 13 Implementation of angle calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 14 Valid vector length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 15 Package dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 16 Position of sensing element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 17 Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 18 Tape and reel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Data Sheet  
5
Rev. 1.1, 2012-04  
TLE5009  
List of Tables  
List of Tables  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
Table 9  
Table 10  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Single-ended output parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Differential output parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Angle performance in differential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Valid vector length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Package parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Data Sheet  
6
Rev. 1.1, 2012-04  
TLE5009  
Product Description  
1
Product Description  
1.1  
Overview  
The TLE5009 is an angle sensor with analog outputs. It detects the orientation of a magnetic field by measuring  
sine and cosine angle components with Giant Magneto Resistance (GMR) elements. It provides analog sine and  
cosine output voltages that describe the magnet angle in a range of 0 to 360°.  
The differential GMR bridge signals are temperature compensated and independent of the magnetic field strength  
to maintain constant output voltage over a wide temperature and field range. The analog output is designed for  
differential applications.  
The output voltages are designed to use the dynamic range of an A/D-converter using the same supply as the  
sensor as voltage reference. Product type TLE5009-E2000 and TLE5009-E2010 are intended for use in circuits  
with 5 Volts supply. Product types TLE5009-E1000 and TLE5009-E1010 are intended for use in 3.3V applications.  
Product types TLE5009-E2010 and TLE5009-E1010 have improved angular accuracy achieved by production  
trimming at two temperatures.  
1.2  
Features  
3V to 5.5V operating supply voltage  
Low current consumption and very quick start up  
Overvoltage detection  
360° contactless angle measurement  
Output amplitude optimized for circuits with 3.3V or 5V supply voltage (type -E10x0 or -E20x0 respectively)  
Immune to airgap variations due to GMR based sensing principle  
Output amplitude constant over a wide temperature range: -40°C to 150°C (junction temperature)  
High accuracy typically 0.6° overall angle error  
AEC-Q100 automotive qualified  
Green package with lead-free (Pb-free) plating  
1.3  
Target Applications  
The TLE5009 GMR angle sensor is designed for angular position sensing in automotive applications. Its high  
accuracy combined with short propagation delay makes it suitable for systems with high speeds and high accuracy  
demands such as rotor position measurement for electric motor commutation. At the same time its fast start-up  
time and low overall power consumption enables the device to be employed in low-power applications. Extremely  
low power consumption can be achieved with power cycling, where the device excells with fastest power on time.  
Rotor position sensing for electric motor commutation  
Rotary switches  
Steering angle sensing  
Valve or flap position sensing  
Product Type  
Marking  
0092000  
0091000  
0092010  
0091010  
Ordering Code  
SP000912760  
SP000912764  
SP000912770  
SP000912774  
Package  
TLE5009-E2000  
TLE5009-E1000  
TLE5009-E2010  
TLE5009-E1010  
PG-DSO-8  
PG-DSO-8  
PG-DSO-8  
PG-DSO-8  
Data Sheet  
7
Rev. 1.1, 2012-04  
TLE5009  
Functional Description  
2
Functional Description  
2.1  
General  
The GMR sensor is implemented using vertical integration. This means that the GMR sensitive areas are  
integrated above the analog portion of the TLE5009 chip. These GMR elements change their resistance  
depending on the direction of the magnetic field.  
Four individual GMR elements are connected in a Wheatstone bridge arrangement. Each GMR element senses  
one of two components of the applied magnetic field:  
X component, Vx (cosine) or the  
Y component, Vy (sine)  
The advantage of a full-bridge structure is that the amplitude of the GMR signal is doubled and temperature effects  
cancel out.  
GMR Resistors  
VX  
VY  
0°  
S
N
ADCX+  
ADCX-  
GND  
ADCY+  
ADCY-  
VDD  
90°  
Figure 1  
Sensitive bridges of the GMR sensor  
Note: In Figure 1, the arrows in the resistors symbolize the direction of the reference layer. Size of the sensitive  
areas is greatly exagerated for better visualisation.  
The output signal of each bridge is unambiguous in a range of 180°. Therefore two bridges are oriented  
orthogonally to each other to measure 360°.  
With the trigonometric function ARCTAN, the true 360° angle value that is represented by the relation of X and Y  
signals can be calculated according to Equation (1).  
(1)  
Data Sheet  
8
Rev. 1.1, 2012-04  
TLE5009  
Functional Description  
90°  
Y Component (SIN)  
VY  
X Component (COS)  
0°  
VX  
V
VX (COS_N)  
VX (COS_P)  
90°  
180°  
270°  
360°  
Angle α  
0°  
VY (SIN_N)  
VY (SIN_P)  
Figure 2  
Ideal output of the GMR sensor bridges  
Data Sheet  
9
Rev. 1.1, 2012-04  
TLE5009  
Functional Description  
2.2  
Pin Configuration  
The sensitive area is located at the center of the chip.  
Center of  
sensitive Area  
8
7
6
5
1
Pin configuration (top view)  
Pin Description  
2
3
4
Figure 3  
2.3  
Table 1  
Pin description  
Pin No.  
Symbol  
COS_P  
COS_N  
GND2  
GND1  
VGMR  
In/Out  
Function  
1
2
3
4
5
6
7
8
O
O
Analog positive cosine output  
Analog negative cosine output  
Ground  
Ground  
O
GMR bridge voltage proportional to temperature. Diagnostic function.  
Supply voltage  
VDD  
SIN_N  
SIN_P  
O
O
Analog negative sine output  
Analog positive sine output  
Data Sheet  
10  
Rev. 1.1, 2012-04  
TLE5009  
Functional Description  
2.4  
Block Diagram  
VDD  
COS_P  
COS_N  
DC-Offset &  
Fuses  
X-GMR  
Amplifier  
VGMR  
PMU & Temperature Compensation  
SIN_P  
SIN_N  
Y-GMR  
Amplifier  
GND1  
GND2  
Figure 4  
TLE5009 block diagram  
Data Sheet  
11  
Rev. 1.1, 2012-04  
TLE5009  
Specification  
3
Specification  
3.1  
Application Circuit  
Figure 5 shows a typical 5V application circuit. The sensor is supplied by the same supply as the microcontroller.  
The microcontroller comprises 5 A/D inputs used to read in the sensor output signals. For reasons of EMC and  
output filtering, the following RC low pass arrangement is recommended.  
5V  
VDD  
**)  
SIN_P  
*)  
**)  
**)  
SIN_N  
COS_P  
COS_N  
VGMR  
Microcontroller  
e.g. Infineon  
XC800 Series  
CAN  
Tranceiver  
CAN RX  
CAN TX  
CAN  
100nF  
*)  
TLE5009  
**)  
*)  
*)  
4.7nF  
GND1  
GND2  
GND  
*) 68nF  
**) 10k  
Figure 5  
Application circuit for the TLE5009  
3.2  
Absolute Maximum Ratings  
Table 2  
Absolute maximum ratings  
Symbol  
Parameter  
Values  
Unit Note / Test Condition  
Min.  
-0.5  
-40  
Typ.  
Max.  
6.5  
Supply voltage  
VDD  
TJ  
V
Max 40 h / lifetime  
Junction temperature  
150  
°C  
150  
For 1000 h not additive  
Magnetic field induction  
Storage temperature  
B
200⏐  
150⏐  
150  
mT Max. 5 min @ TA = 25°C  
Max. 5 h @ TA = 25°C  
TST  
-40  
°C  
Without magnetic field  
Attention: Stresses above the max. values listed here may cause permanent damage to the device.  
Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability. Maximum ratings are absolute ratings; exceeding only one of these values may  
cause irreversible damage to the device.  
Data Sheet  
12  
Rev. 1.1, 2012-04  
TLE5009  
Specification  
3.3  
Operating Range  
The following operating conditions must not be exceeded in order to ensure correct operation of the TLE5009.  
All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.  
Table 3 is valid for -40°C < TJ < 150°C.  
Table 3  
Operating range  
Parameter  
Symbol  
VDD  
Values  
Unit Note / Test Condition  
Min.  
4.5  
3.0  
0
Typ. Max.  
Supply voltage1)  
Output current2)  
5.0  
3.3  
5.5  
3.6  
0.5  
0.1  
4.7  
50  
V
V
TLE5009-E2000, TLE5009-E2010  
TLE5009-E1000, TLE5009-E1010  
IQ  
mA COS_N; COS_P; SIN_N; SIN_P  
mA VGMR  
0
Load capacitance2)3)  
Magnetic field2)4)  
Angle range  
CL  
0
nF  
COS_N; COS_P; SIN_N; SIN_P; VGMR  
BXY_25  
24  
0
mT at room temperature, in X/Y direction  
°
α
360  
Rotation speed2)5)  
n
30000 rpm  
1) Supply voltage VDD buffered with 100 nF ceramic capacitor in close proximity to the sensor.  
2) Not subject to production test - verified by design/characterization.  
3) Directly connected to the pin.  
4) Values refer to an homogenous magnetic field (BXY) without vertical magnetic induction (BZ = 0mT).  
5) Typical angle propagation delay is 1.62° at 30000 rpm.  
The magnetic field is defined at room temperature. Depending on the maximum junction temperature the  
maximum field strength is shown in Figure 6. In case of a maximum junction temperature Tj = 100°C a magnet  
with up to 60mT at room temperature is applicable. The window for magnetic field in Table 3 is valid for the max  
junction temperature of the device.  
100  
90  
80  
70  
60  
70  
60  
65  
54  
50  
50  
40  
30  
20  
42  
-40  
25  
85  
100  
150  
Junction Temperature (°C)  
Figure 6  
Magnetic input field strength  
Note:The thermal resistances listed in Table 10 “Package parameters” on Page 28 must be used to calculate  
the corresponding ambient temperature.  
Data Sheet  
13  
Rev. 1.1, 2012-04  
TLE5009  
Specification  
Calculation of the Junction Temperature  
The total power dissipation PTOT of the chip increases its temperature above the ambient temperature.  
The power multiplied by the total thermal resistance RthJA (Junction-to-Ambient) leads to a calculation of the final  
junction temperature. RthJA is the sum of the addition of the values of the two components Junction-to-Case and  
Case-to-Ambient.  
RthJA = RthJC + RthCA  
(2)  
TJ = TA + ΔT  
ΔT = RthJA × P = RthJA × (VDD × IDD + (VDD VOUT )× IOUT  
)
TOT  
Example (assuming no load on Vout):  
VDD = 5V  
IDD = 7mA  
(3)  
K
ΔT =150  
[
×(5V  
]
×0.007  
[
A
]
+ 0  
[
VA ) = 5.25K  
]
W
For molded sensors, the calculation with RthJC is more appropriate.  
Data Sheet  
14  
Rev. 1.1, 2012-04  
TLE5009  
Specification  
3.4  
Characteristics  
3.4.1  
Electrical Parameters  
The indicated electrical parameters apply to the full operating range, unless otherwise specified. The typical values  
correspond to a supply voltage VDD = 3.0V - 5.5 V and 25 °C, unless individually specified. All other values  
correspond to -40°C < TJ < 150°C.  
Table 4  
Electrical parameters  
Symbol  
Parameter  
Values  
Typ.  
7
Unit  
Note / Test Condition  
Min.  
Max.  
Supply current  
IDD  
10.5  
mA  
Without resistive or capacitive load  
on output pins  
POR level  
POR hysteresis1)  
VPOR  
VPORhy  
tPON  
2.4  
2.65  
50  
2.97  
V
Power-On Reset  
mV  
µs  
Power-On time  
30  
40  
Measured on VGMR pin without  
external circuit  
Temperature reference  
voltage  
VGMR  
VGMR  
0.6  
0
1.052  
0.4  
1.8  
0.39  
V
Temperature proportional output  
voltage; available on pin VGMR  
Diagnostic function  
V
Diagnostic for internal errors;  
available on pin VGMR  
Temperature coefficient of TCVGMR  
%/K  
1)  
VGMR  
1) Not subject to production test - verified by design/characterization  
3.4.2  
Electrostatic discharge protection  
Table 5  
ESD protection  
Symbol Values  
Parameter  
Unit  
Notes  
min.  
max.  
ESD voltage  
VHBM  
VSDM  
±4.0  
±0.5  
kV  
kV  
Human Body Model1)  
Socketed Device Model2)  
1) Human Body Model (HBM) according to: ANSI/ESDA/JEDEC JS-001  
2) Socketed Device Model (SDM) according to: ESDA/ANSI/ESD SP5.3.2-2008  
Data Sheet  
15  
Rev. 1.1, 2012-04  
TLE5009  
Specification  
3.4.3  
Output Parameters  
All parameters apply over the full operating range, unless otherwise specified. The parameters in Table 6 refer to  
single-ended output and Table 7 to differential output. For variable names please refer to Figure 7 “Single-ended  
output signals” on Page 17 and Figure 8 “Differential output of ideal cosine” on Page 18.  
The following equations describe various types of errors that combine to the overall angle error.  
The maximum and zero-crossing of the SIN and COS signals do not occur at the precise angle of 90°. The  
difference between the X and Y phases is called the orthogonality error. In Equation (4) the angle at zero  
crossing of the X cosine output is subtracted from the angle at the maximum of the Y SIN output, which describes  
the orthogonality of X and Y.  
(4)  
ϕ = α [Ymax ] α [ X 0 ]  
The amplitudes of SIN and COS signals are not equal to each other. The amplitude mismatch is defined as  
syncronism, shown in Equation (5). This value could also be described as amplitude ratio mismatch.  
A
X
k = 100  
*
(5)  
A
Y
Differential signals are centered at the mean output voltage VMVX, VMVY given in Table 6. The differential voltages  
for X or Y are defined in Equation (6).  
V
= V COSP V COSN  
Xdiff  
(6)  
(7)  
V Ydiff = V SINP V SINN  
The maximum amplitudes are defined for X or Y as given in Equation (7):  
(
=
)
X
X  
2
diff _ MAX  
diff _ MIN  
AXdiff  
AYdiff  
(
Ydiff  
)
Ydiff  
2
_ MAX  
_ MIN  
=
Differential offset is of X or Y is defined in Equation (8).  
(
=
X
+ X  
2
+ Ydiff  
)
diff _ MAX  
diff _ MIN  
O Xdiff  
O Ydiff  
(8)  
(
)
Ydiff  
_ MAX  
_ MIN  
=
2
In single-ended mode the offset is defined as the mean output voltage.  
Data Sheet  
16  
Rev. 1.1, 2012-04  
TLE5009  
Specification  
Table 6  
Single-ended output parameters  
Symbol  
Parameter  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
X, Y amplitude1)  
AX, AY  
1.40  
1.85  
V
V
TLE5009-E2000,  
TLE5009-E2010  
0.90  
1.20  
TLE5009-E1000,  
TLE5009-E1010  
X, Y synchronism2)  
X, Y orthogonality error2)  
Mean output voltage3)  
X,Y cut off frequency4)  
X,Y delay time4)  
k
95  
100  
0
105  
10  
%
-10  
°
VMVX, VMVY 0.48*VDD 0.5*VDD 0.52*VDD  
V
VMV=(Vmax-Vmin)/2  
-3dB attenuation  
fc  
30  
9
kHz  
µs  
mV  
tadel  
VNoise  
Output noise4)  
1.5  
RMS  
1) Valid at 0h  
2) Valid at 25°C, 0h  
3) Including X, Y offset  
4) Not subject to production test - verified by design/characterization  
Figure 7  
Single-ended output signals  
Data Sheet  
17  
Rev. 1.1, 2012-04  
TLE5009  
Specification  
Table 7  
Differential output parameters  
Symbol  
Parameter  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
AXdiff, AYdiff 2.8  
Max.  
X, Y amplitude1)  
3.7  
V
V
TLE5009-E2000,  
TLE5009-E2010  
1.8  
95  
2.4  
TLE5009-E1000,  
TLE5009-E1010  
X, Y synchronism2)  
X, Y offset2)  
k
100  
0
105  
50  
%
OXdiff, OYdiff -50  
mV  
°
X, Y orthogonality error2)  
X,Y cut-off frequency3)  
X,Y delay time3)  
φ
-10  
0
10  
fc  
30  
9
kHz  
µs  
mV  
-3dB attenuation  
RMS  
tadel  
VNoise  
Output noise3)  
3
1) Valid at 0h  
2) Valid at 25°C, 0h  
3) Not subject to production test - verified by design/characterization  
Figure 8  
Differential output of ideal cosine  
Data Sheet  
18  
Rev. 1.1, 2012-04  
TLE5009  
Specification  
3.4.4  
Calibration of TLE5009  
This chapter explains how to determine the Giant MagnetoResistance (GMR) parameters such as amplitude,  
offset, and the phase of X- and Y-channels. Extraction of these parameters is essential to achieve the angle  
accuracy given in Table 8 “Angle performance in differential applications” on Page 25.  
The end-of-line calibration is accomplished using the following sequence (Figure 9):  
1.) left turn measurement  
3.) right & left turn w/o measurement  
4.) right turn measurement  
90°  
180°  
0°  
Start  
End  
270°  
Figure 9  
Calibration routine  
1. Turn magnetic field 360° left and measure X and Y values  
2. Calculate amplitude, offset, phase correction values of left turn  
3. Turn further 90° left and 90° back right without measurement  
4. Turn magnetic field 360° right and measure X and Y values  
5. Calculate amplitude, offset, phase correction values of right turn  
6. Calculate mean values of amplitude, offset, phase correction  
The calibration has to be done at room temperature with a magnet in the specified magnetic field range.  
3.4.4.1  
Extraction of Parameters  
There are two possible methods for extracting these parameters. The methods will be discussed in more detail in  
the next two sections.  
3.4.4.1.1  
Min-Max Method  
Xmax, Xmin, Ymax and Ymin have to be extracted out of every full-turn measurement (Figure 10).  
Data Sheet  
19  
Rev. 1.1, 2012-04  
TLE5009  
Specification  
Y
Ymax  
X(Ymax)  
Y(Xmax)  
Xmin  
Y(Xmin)  
Xmax  
X
Sensor-  
Zeropoint  
X(Ymin)  
Ymin  
Figure 10 Min-Max method  
Afterwards, amplitude (Equation (9), Equation (10)) and offset (Equation (11), Equation (12)) can be  
calculated:  
Xmax Xmin  
(9)  
AX =  
2
Ymax Ymin  
A =  
(10)  
Y
2
Xmax + Xmin  
(11)  
(12)  
OX =  
2
Ymax +Ymin  
OY =  
2
The corresponding maximum and zero-crossing points of the SIN and COS signals do not occur at the precise  
distance of 90°. The difference between X and Y phases is called the orthogonality error (Equation (13)):  
(13)  
ϕ = ϕX ϕY  
Data Sheet  
20  
Rev. 1.1, 2012-04  
TLE5009  
Specification  
Figure 11 Orthogonality error  
There is another more accurate way to determine the orthogonality error. The orthogonality can be calculated out  
of the magnitude of two 90° angle shifted components. Possible angle combinations are 45° and 135°, 135° and  
225°, 225° and 315° or 315° and 45°.  
The angle value is given by the angle sensor. No reference is necessary. Therefore the final parameters of  
amplitude and offset (Chapter 3.4.4.2) should be used.  
At an angle output of 45° the corresponding Y(sin) and X(cos) values can be read out. This has been done also  
at 135° (Figure 12).  
Next step is to calculate the length of the magnitudes (Equation (14)):  
2
2
M45 = X45 + Y45  
(14)  
2
2
M135 = X135 + Y  
135  
M45, M135.. Magnitude at 45° and 135°  
X45, X135 .. Cosine values at 45° and 135°  
Y45, Y135 .. Sine values at 45° and 135°  
With these magnitudes the orthogonality can be calculated (Equation (15)):  
M135 M45  
M135 + M45  
ϕ = 2*arctan(  
)
(15)  
Data Sheet  
21  
Rev. 1.1, 2012-04  
TLE5009  
Specification  
Y
(SIN)  
45°  
135°  
M45  
M135  
X
(COS)  
Figure 12 Correction of orthogonality error  
3.4.4.1.2  
Exact Method  
This method uses the Discrete Fourier Transform (DFT) to extract the parameters out of the measurements.  
Therefore an accurate reference system is necessary. This method is done using 2m measurement points at 360°  
(e.g. m = 8; n = 2m = 28 = 64).  
DFT Offset Calculation:  
The offset is calculated by the summation of the X- or Y- measurements divided by the number of measurement  
points (Equation (16)):  
Ox =  
OY =  
[
X
(
1
)
+ X  
(
2
)
+ .. + X  
(
n
)
]
/ n  
(16)  
[
Y
(
1
)
+ Y  
(
2
)
+ .. + Y  
( )  
]
n
/ n  
X(n) .. X value at measurement point n  
Y(n) .. Y value at measurement point n  
n .. Measurement points  
DFT Amplitude and Phase Calculation:  
To determine the amplitude, the real and imaginary parts must be calculated. This has been done with  
Equation (17) for the X values and Equation (18) for the Y values. ß describes the reference angle (e.g. n = 64;  
measurement every 360° / 64 = 5.625° step).  
describes the reference angle (e.g. n = 64; measurement every 360° / 64 = 5.625° step).  
DFT _ X _ r =  
DFT _ X _ i =  
[
X
(
1
)
*COS  
(
β1  
)
+ X  
(
2
)
*COS  
(
β 2  
)
+ ..+ X  
(
n
)
*COS  
(
βn *2 / n  
)
]
(17)  
[
X
(
1
)
 
* SIN β1  
(
)
+ X  
(
2  
)
* SIN β 2  
(
)
+ ..+ X  
(
n  
)
* SIN βn  
(
)
]
*2 / n  
DFT _Y _ r =  
DFT _Y _ i =  
[
Y
(
1
)
*COS β1  
(
)
+Y  
(
2
)
*COS β 2  
(
)
+..+Y  
(
n
)
*COS βn  
(
)
]  
*2/ n  
(18)  
[
Y
(
1
)
* SIN β1  
(
)
+Y  
(
2
)
*SIN β 2 +..+Y  
(
)
(
n
)
* SIN  
(
βn  
)
]  
*2/ n  
Data Sheet  
22  
Rev. 1.1, 2012-04  
TLE5009  
Specification  
Now the amplitude and phase can be calculated (Equation (19), Equation (20))  
(19)  
(20)  
AX = (DFT _ X _ r)2 + (DFT _ X _ i)2  
AY = (DFT _Y _ r)2 + (DFT _Y _ i)2  
DFT _ X _ i  
ϕX = arctan  
DFT _ X _ r  
π
2
DFT _Y _ i  
DFT _Y _ r  
ϕY = − arctan  
ϕ = ϕX ϕY  
3.4.4.2  
Final Parameters  
No matter what calibration method is used, you still have to calculate the symmetrical values of the parameters.  
This is done using the mean value of the clock-wise (cw) rotation parameters and counterclock-wise (ccw) rotation  
parameters. This calculation has to be done with X and Y parameters. These parameters have to be used for the  
signal correction.  
Acw + Accw  
AM =  
2
(21)  
Ocw + Occw  
OM =  
2
ϕcw +ϕccw  
ϕM =  
2
(A,O,ϕ)M .. Mean parameters  
(A,O,ϕ)CW .. Parameters of clock-wise rotation  
(A,O,ϕ)CCW .. Parameters of counterclock-wise rotation  
Data Sheet  
23  
Rev. 1.1, 2012-04  
TLE5009  
Specification  
3.4.4.3  
Angle Calculation  
To get highly accurate angle values, the following angle calculation must be performed. Figure 13 shows the  
implementation within a microcontroller.  
Calibrations-  
Algorithm  
Offset_  
corr  
Gain_  
corr  
Angle_  
corr  
X_tmp  
+ *  
+ *  
Sensor X  
Sensor Y  
atan  
(Cordic)  
Y_tmp Y-Corr  
Figure 13 Implementation of angle calculation  
Offset Correction (Offset_corr)  
After the X and Y values are read out, the room temperature offset value must be subtracted (Equation (22)):  
X1 = X OX  
(22)  
Y = Y OY  
1
Amplitude Normalization (Gain_corr)  
The next step is to normalize the X and Y values by using the mean values determined in the calibration.  
X1  
X2 =  
AXM  
(23)  
Y
1
Y2 =  
A
YM  
Non-Orthogonality Correction (Angle_corr)  
The influence of the non-orthogonality can be compensated for by using Equation (24), in which only the Y  
channel must be corrected.  
Y2 X2 *sin(ϕ)  
(24)  
Y3 =  
cos(ϕ)  
Resulting Angle  
After correction of all errors, the resulting angle can be calculated using the arctan function1).  
Y3  
(25)  
α = arctan( ) ϕX  
X2  
1) Microcontroller library function “arctan2(Y3,X2)” works better to resolve 360°  
Data Sheet  
24  
Rev. 1.1, 2012-04  
TLE5009  
Specification  
3.4.5  
Angle Performance  
The overall angle error represents the relative angular error. This error describes the deviation from the reference  
line after zero angle definition. The typical value correspond to a supply voltage VDD = 3.0V - 5.5 V and 25 °C,  
unless individually specified. All other values correspond to -40°C < TJ < 150°C.  
Calibration of offset, orthogonality, syncronism and phase error at 25°C are required to achieve the overall angle  
error specified. For the detailed calibration procedure refer to Chapter 3.4.4.  
Infineon offers temperature compensated versions of the device TLE5009-E2010, TLE5009-E1010. These  
devices have an improved angular accuracy as can be seen in Table 8.  
Table 8  
Angle performance in differential applications  
Parameter  
Symbol  
Values  
Unit  
Note / Test Condition  
Min.  
Typ. Max.  
Overall angle error1)2)3)  
αERR  
0.6  
0.6  
3
°
°
TLE5009-E2000, TLE5009-E1000  
TLE5009-E2010, TLE5009-E1010  
2.2  
1) Including hysteresis error  
2) Valid at 0h  
3) Valid for differential applications. The mean output voltage variation in single ended mode is not included in the angle error.  
Please contact Infineon for information about possible optimization for single ended applications.  
Data Sheet  
25  
Rev. 1.1, 2012-04  
TLE5009  
Specification  
3.5  
Safety Features  
3.5.1  
Built in error diagnosis  
The device sensor provides two functions at the VGMR pin. During normal operation the voltage measured at this  
pin is temperature dependent. The typical voltage at room temperature and the temperature coefficient are given  
in Table 4 “Electrical parameters” on Page 15.  
The second purpose of pin VGMR is the diagnosis functionality. In case the device detects an internal error, the pin  
is driven to a low level as described in Table 4 “Electrical parameters” on Page 15.  
The errors that can be detected by monitoring the status of the VGMR pin are:  
Start-up failure  
Overvoltage at VDD (threshold level min. 6V, max. 7V)  
Undervoltage at internal nodes  
3.5.2  
External Diagnosis  
Adressing the demands for functional safety, run time checks can be done to increase the diagnostic coverage.  
Depending on the application specifics such as the available time and processing capabilities, the sensor  
behaviour is monitored and compared with the specified behaviour of the device.  
3.5.2.1  
Vector length check differential voltage mode  
A comprehensive safety check is to monitor the vector length of Vx and Vy signals. Output signals representing  
sine and cosine have a fixed 90° phase relationship to each other. To determine if the output signals are valid, the  
length of the output vector length must be nearly constant independent of the magnet position.  
The vector length corresponds to the amplitude of the output signals and utilizes the fact that there is a 90° phase  
shift between sine and cosine output. It is calculated according to Equation (26).  
As illustrated in Figure 14 “Valid vector length”, the vector describes a circle along one revolution of the magnet.  
The length of the vector is almost constant, slightly influenced by GMR synchronicity, orthogonality, offset and  
temperature.  
2
2
(26)  
VVEC = VX _ DIFF +VY _ DIFF  
VY (SIN)  
VVEC  
VY  
VX (COS)  
VX  
Figure 14 Valid vector length  
Data Sheet  
26  
Rev. 1.1, 2012-04  
TLE5009  
Specification  
Table 9  
Valid vector length  
Parameter  
Symbol  
Values  
Typ. Max.  
3.8  
Unit Note / Test Condition  
Min.  
2.6  
Vector length differential voltage VVEC  
V
V
TLE5009-E2000, TLE5009-E2010  
TLE5009-E1000, TLE5009-E1010  
1.6  
2.7  
The resulting vector length must always be within the range given in Table 9, depending on the supply voltage  
type of the TLE5009 used. If the vector length is outside this range, then this might indicate malfunction of the  
TLE5009 or of the reading A/D converter.  
3.6  
Electro Magnetic Compatibility (EMC)  
The TLE5009 is characterized according to the EMC requirements described in the “Generic IC EMC Test  
Specification” Version 1.2 from November 15, 2007. The classification of the TLE5009 is done for local pins.  
Data Sheet  
27  
Rev. 1.1, 2012-04  
TLE5009  
Package Information  
4
Package Information  
The TLE5009 comes in a green SMD package with lead-free plating, the PG-DSO-8. For alternative packaging,  
such as bare die please contact Infineon.  
4.1  
Package Parameters  
Table 10  
Package parameters  
Parameter  
Symbol Limit Values  
min. typ. max.  
Unit  
Notes  
Thermal Resistance  
RthJA  
RthJC  
RthJL  
150 200  
K/W  
K/W  
K/W  
Junction-to-Air1)  
Junction-to-Case  
Junction-to-Lead  
260°C  
75  
85  
Soldering Moisture Level  
Lead Frame  
MSL 3  
Cu  
Sn 100%  
Plating  
> 7 µm  
1) According to Jedec JESD51-7  
4.2  
Package Outline  
Figure 15 Package dimensions  
Data Sheet  
28  
Rev. 1.1, 2012-04  
TLE5009  
Package Information  
Figure 16 Position of sensing element  
4.3  
Footprint  
0.65  
1.27  
Figure 17 Footprint  
4.4  
Packing  
0.3  
8
1.75  
2.1  
6.4  
Figure 18 Tape and reel  
Data Sheet  
29  
Rev. 1.1, 2012-04  
TLE5009  
Package Information  
4.5  
Marking  
Position  
1st Line  
2nd Line  
3rd Line  
Marking  
5009xxx  
xxx  
Description  
See ordering table on Page 7  
Lot code  
GSxxxx  
G..green, 4-digit..date code  
Data Sheet  
30  
Rev. 1.1, 2012-04  
TLE5009  
References  
References  
Data Sheet  
31  
Rev. 1.1, 2012-04  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

TLE5009 E1010

The TLE5009 is an angle sensor with analog outputs. It detects the orientation of a magnetic field
INFINEON

TLE5009 E2000

The TLE5009 is an angle sensor with analog outputs. It detects the orientation of a magnetic field
INFINEON

TLE5009 E2010

The TLE5009 is an angle sensor with analog outputs. It detects the orientation of a magnetic field
INFINEON

TLE5009-E1000

GMR-Based Angular Sensor
INFINEON

TLE5009-E1010

GMR-Based Angular Sensor
INFINEON

TLE5009-E2000

GMR-Based Angular Sensor
INFINEON

TLE5009-E2010

GMR-Based Angular Sensor
INFINEON

TLE5009A16 E1200

Infineon´s XENSIVTM angle sensor is available as single die version (TLE5x09A16) and dual die version (TLE5x09A16D) for safety applications that require redundancy. The two versions are pin-compatible for easy scalability. In the dual die TLE5x09A16D, both sensor dies are supplied independently by separate supply and ground pins.
INFINEON

TLE5009A16 E1210

Infineon´s magnetic angle sensor is available as single die version (TLE5x09A16) and dual die version (TLE5x09A16D) for safety applications that require redundancy. The two versions are pin-compatible for easy scalability. In the dual die TLE5x09A16D, both sensor dies are supplied independently by separate supply and ground pins. It comes in a PG-TSOD-16 package.
INFINEON

TLE5009A16 E2200

Infineon´s XENSIVTM magnetic angle position sensor is available as single die version (TLE5x09A16) and dual die version (TLE5x09A16D) for safety applications that require redundancy. The two versions are pin-compatible for easy scalability. In the dual die TLE5x09A16D, both sensor dies are supplied independently by separate supply and ground pins.
INFINEON

TLE5009A16 E2210

The TLE5x0916(D) angle sensors are designed for angular position sensing in safety critical automotive and non- automotive applications. Their high accuracy combined with short propagation delay make especially the GMR sensor variants suitable for systems with high speeds and high accuracy demands such as brushless DC (BLDC) motors for actuators and electric power steering systems (EPS). The AMR sensor variants with their typically accuracy of 0.1° fit for systems with high speeds and high accuracy demands such as pedals, levers or brushless DC (BLDC) motors with an even number of pole pairs.
INFINEON

TLE5009A16D E1200

Infineon´s TLE5009A16D is a XENSIVTM angle sensor with analog outputs. It detects the orientation of a magnetic field by measuring sine and cosine components with Giant Magneto Resistive (GMR) elements. It provides analog sine and cosine output voltages that describe the magnet angle in a range of 0° to 360°.
INFINEON