TLE4964-3M [INFINEON]

The TLE4964-3M is an integrated Hall effect switch designed specifically for highly accurate applications with superior supply voltage capability, operating temperature range and temperature stability of the magnetic thresholds.;
TLE4964-3M
型号: TLE4964-3M
厂家: Infineon    Infineon
描述:

The TLE4964-3M is an integrated Hall effect switch designed specifically for highly accurate applications with superior supply voltage capability, operating temperature range and temperature stability of the magnetic thresholds.

输出元件 传感器 换能器
文件: 总27页 (文件大小:927K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Unipolar Hall Switch  
High Precision Automotive Unipolar Hall Effect Switch  
TLE4964-3M  
SP001013860  
TLE4964-3M  
Data Sheet  
Revision 1.2, 2019-12-20  
Sense & Control  
TLE4964-3M  
Table of contents  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1
Product description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Target applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.1  
1.2  
1.3  
1.4  
2
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Default start-up behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
3
Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Electrical and magnetic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Electro magnetic compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.1  
3.2  
3.3  
3.4  
3.5  
4
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Package outline PG-SOT23-3-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Packing information PG-SOT23-3-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Footprint PG-SOT23-3-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
PG-SOT23-3-15 distance between chip and package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Package marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.1  
4.2  
4.3  
4.4  
4.5  
5
6
7
Graphs of the magnetic parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Graphs of the electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Data Sheet  
2
Revision 1.2, 2019-12-20  
TLE4964-3M  
List of tables  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
Table 9  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description PG-SOT23-3-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Absolute maximum rating parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
ESD protection (TA = 25°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Operating conditions parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
General electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Magnetic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Magnetic compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Electro magnetic compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Data Sheet  
3
Revision 1.2, 2019-12-20  
TLE4964-3M  
List of figures  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
TLE4964-3M in the PG-SOT23-3-15 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin configuration and center of sensitive area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Functional block diagram TLE4964-3M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Timing diagram TLE4964-3M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Output signal TLE4964-3M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Start-up behavior of the TLE4964-3M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Basic application circuit #1: only pull-up resistor is necessary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Enhanced application circuit #2: for extended ESD robustness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Definition of magnetic field direction PG-SOT23-3-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 10 EMC test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 11 PG-SOT23-3-15 package outline (all dimensions in mm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 12 Packing of the PG-SOT23-3-15 in a tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 13 Footprint PG-SOT23-3-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 14 Distance between chip and package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 15 Marking of TLE4964-3M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 16 Operating point (BOP) of the TLE4964-3M over temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 17 Release point (BRP) of the TLE4964-3M over temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 18 Hysteresis (BHys) of the TLE4964-3M over temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 19 Power on time tPON of the TLE4964-3M over temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 20 Signal delay time of the TLE4964-3M over temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 21 Supply current of the TLE4964-3M over temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 22 Supply current of the TLE4964-3M over supply voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 23 Output current limit of the TLE4964-3M over temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 24 Output current limit of the TLE4964-3M over applied pull-up voltage . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 25 Output fall time of the TLE4964-3M over temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 26 Output fall time of the TLE4964-3M over applied pull-up voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 27 Output rise time of the TLE4964-3M over temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 28 Output rise time of the TLE4964-3M over applied pull-up voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 29 Output leakage current of the TLE4964-3M over temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 30 Saturation voltage of the TLE4964-3M over temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 31 Saturation voltage of the TLE4964-3M over output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 32 Effective noise of the TLE4964-3M thresholds over temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 33 Output signal jitter of the TLE4964-3M over temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Data Sheet  
4
Revision 1.2, 2019-12-20  
TLE4964-3M  
Product description  
1
Product description  
1.1  
Overview  
Characteristic  
Supply Voltage Supply Current Sensitivity  
Interface  
Temperature  
-40°C to 170°C  
Unipolar Hall  
Effect Switch  
3.0 V ~ 32 V  
1.6 mA  
Medium  
Open Drain  
Output  
BOP: 12.5 mT  
BRP: 9.5 mT  
Figure 1  
TLE4964-3M in the PG-SOT23-3-15 package  
1.2  
Features  
3.0 V to 32 V operating supply voltage  
Operation from unregulated power supply  
Reverse polarity protection (-18 V)  
Overvoltage capability up to 42 V without external resistor  
Output overcurrent and overtemperature protection  
Active error compensation  
High stability of magnetic thresholds  
Low jitter (typ. 0.35 μs)  
High ESD performance  
Small SMD package PG-SOT23-3-15  
Table 1  
Ordering information  
Product name  
Product type  
Ordering code  
Package  
TLE4964-3M  
Unipolar Hall Switch  
SP001013860  
PG-SOT23-3-15  
Data Sheet  
5
Revision 1.2, 2019-12-20  
TLE4964-3M  
Product description  
1.3  
Target applications  
Target applications for the TLE496x Hall Switch family are all applications which require a high precision  
Hall Switch with an operating temperature range from -40°C to 170°C. Its superior supply voltage range from  
3.0 V to 32 V with overvoltage capability (e.g. load-dump) up to 42 V without external resistor makes it ideally  
suited for automotive and industrial applications.  
The TLE4964-3M is a unipolar switch with a typical operating point BOP = 12.5 mT and a hysteresis of  
BHYS = 3.0 mT. It is ideally suited for various position detection applications.  
1.4  
Product validation  
Qualified for automotive applications. Product validation according to AEC-Q100.  
Data Sheet  
6
Revision 1.2, 2019-12-20  
TLE4964-3M  
Functional description  
2
Functional description  
2.1  
General  
The TLE4964-3M is an integrated Hall effect switch designed specifically for highly accurate applications with  
superior supply voltage capability, operating temperature range and temperature stability of the magnetic  
thresholds.  
2.2  
Pin configuration (top view)  
Center of  
Sensitive Area  
3
0.65± 0.1  
1
2
1.45± 0.1  
SOT23  
Figure 2  
Pin configuration and center of sensitive area  
Pin description  
2.3  
Table 2  
Pin description PG-SOT23-3-15  
Pin no.  
Symbol  
VDD  
Q
Function  
Supply voltage  
Output  
1
2
3
GND  
Ground  
Data Sheet  
7
Revision 1.2, 2019-12-20  
TLE4964-3M  
Functional description  
2.4  
Block diagram  
VDD  
To All Subcircuits  
Voltage  
Regulator  
Oscillator and  
Sequencer  
Bias and  
Compensation  
Circuits  
Reference  
Q
Amplifier  
Control  
Spinning Hall  
Probe  
Comparator  
with  
Hysteresis  
Low Pass  
Filter  
Overtemperature  
& overcurrent  
protection  
GND  
Figure 3  
Functional block diagram TLE4964-3M  
Data Sheet  
8
Revision 1.2, 2019-12-20  
TLE4964-3M  
Functional description  
2.5  
Functional block description  
The chopped Hall IC switch comprises a Hall probe, bias generator, compensation circuits, oscillator and  
output transistor.  
The bias generator provides currents for the Hall probe and the active circuits. Compensation circuits stabilize  
the temperature behavior and reduce influence of technology variations.  
The active error compensation (chopping technique) rejects offsets in the signal path and the influence of  
mechanical stress to the Hall probe caused by molding and soldering processes and other thermal stress in  
the package. The chopped measurement principle together with the threshold generator and the comparator  
ensures highly accurate and temperature stable magnetic thresholds.  
The output transistor has an integrated overcurrent and overtemperature protection.  
Applied  
Magnetic  
Field  
BOP  
BRP  
td  
tf  
td  
tr  
VQ  
90%  
10%  
Figure 4  
Timing diagram TLE4964-3M  
VQ  
B
0 BRP  
BOP  
Figure 5  
Output signal TLE4964-3M  
Data Sheet  
9
Revision 1.2, 2019-12-20  
TLE4964-3M  
Functional description  
2.6  
Default start-up behavior  
The magnetic thresholds exhibit a hysteresis BHYS = BOP - BRP. In case of a power-on with a magnetic field B  
within hysteresis (BOP > B > BRP) the output of the sensor is set to the pull up voltage level (VQ) per default. After  
the first crossing of BOP or BRP of the magnetic field the internal decision logic is set to the corresponding  
magnetic input value.  
VDDA is the internal supply voltage which is following the external supply voltage VDD.  
This means for B > BOP the output is switching, for B < BRP and BOP > B > BRP the output stays at VQ.  
VDDA  
tPon  
3V  
The device always applies  
Power on ramp  
VQ level at start-up  
t
VQ  
independent from the  
applied magnetic field !  
Magnetic field above threshold  
B > BOP  
t
VQ  
Magnetic field below threshold  
B < BRP  
t
t
VQ  
Magnetic field in hysteresis  
BOP > B > BRP  
Figure 6  
Start-up behavior of the TLE4964-3M  
Data Sheet  
10  
Revision 1.2, 2019-12-20  
TLE4964-3M  
Specification  
3
Specification  
3.1  
Application circuit  
The following Figure 7 shows the basic option of an application circuit. Only a pull-up resistor RQ is necessary.  
An external series resistor for VS is not needed. The resistor RQ has to be in a dimension to match the applied  
VS to keep IQ limited to the operating range of maximum 25 mA.  
e.g.: VS = 12 V and RQ = 1200 Ω gives IQ = 12 V/1200 Ω = 10 mA  
Vs  
VDD  
RQ = 1.2kΩ  
Q
GND  
Figure 7  
Basic application circuit #1: only pull-up resistor is necessary  
Vs  
VDD  
RQ = 1.2kΩ  
Q
CDD = 47nF  
TVS diode  
e.g. ESD24VS2U  
GND  
Figure 8  
Enhanced application circuit #2: for extended ESD robustness  
With an additional capacitor CDD and a transient voltage suppression (TVS) diode an extended ESD robustness  
of 15 kV on system level is achieved (Figure 8). If an increased robustness for e.g. testpulse 1 is required,  
a serial resistor in the supply needs to be added (see also Chapter 3.5).  
Data Sheet  
11  
Revision 1.2, 2019-12-20  
TLE4964-3M  
Specification  
3.2  
Absolute maximum ratings  
Table 3  
Absolute maximum rating parameters  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Min.  
Typ.  
Max.  
Supply voltage1)  
VDD  
VQ  
-18  
32  
42  
V
10h, no external resistor required  
Output voltage  
-0.5  
-70  
-40  
32  
V
Reverse output current IQ  
Junction temperature1) TJ  
mA  
°C  
155  
165  
175  
195  
for 2000h (not additive)  
for 1000h (not additive)  
for 168h (not additive)  
for 3 x 1h (additive)  
Storage temperature  
TS  
-40  
150  
300  
°C  
for PG-SOT23-3-15 (2s2p)  
Thermal resistance  
Junction ambient  
RthJA  
K/W  
for PG-SOT23-3-15  
Thermal resistance  
Junction lead  
RthJL  
100  
K/W  
1) This lifetime statement is an anticipation based on an extrapolation of Infineon’s qualification test results. The actual  
lifetime of a component depends on its form of application and type of use etc. and may deviate from such statement.  
The lifetime statement shall in no event extend the agreed warranty period.  
Attention: Stresses above the max. values listed here may cause permanent damage to the device.  
Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability. Maximum ratings are absolute ratings; exceeding only one of these values may  
cause irreversible damage to the integrated circuit.  
Calculation of the dissipated power PDIS and junction temperature TJ of the chip (SOT23 example):  
e.g. for: VDD = 12 V, IS = 2.5 mA, VQSAT = 0.5 V, IQ = 20 mA  
Power dissipation: PDIS = 12 V x 2.5 mA + 0.5 V x 20 mA = 30 mW + 10 mW = 40 mW  
Temperature T = RthJA x PDIS = 300 K/W x 40 mW = 12 K  
For TA = 150°C: TJ = TA + T = 150°C + 12 K = 162°C  
Data Sheet  
12  
Revision 1.2, 2019-12-20  
TLE4964-3M  
Specification  
Table 4  
ESD protection1) (TA = 25°C)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Min.  
-7  
Typ.  
Max.  
7
ESD voltage (HBM)2)  
ESD voltage (CDM)3)  
ESD voltage (system level)4) VESD  
VESD  
VESD  
kV  
kV  
kV  
R = 1.5 kΩ, C = 100 pF  
-1  
1
-15  
15  
with circuit shown in and Figure 8  
1) Characterization of ESD is carried out on a sample basis, not subject to production test.  
2) Human Body Model (HBM) tests according to ANSI/ESDA/JEDEC JS-001.  
3) Charge device model (CDM) tests according to JESD22-C101.  
4) Gun test (2 kΩ / 330 pF or 330 Ω / 150 pF) according to ISO 10605-2008.  
3.3  
Operating range  
The following operating conditions must not be exceeded in order to ensure correct operation of  
the TLE4964-3M.  
All parameters specified in the following sections refer to these operating conditions unless otherwise  
mentioned.  
The maximum tested magnetic field is 600 mT.  
Table 5  
Operating conditions parameters  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or  
Test Condition  
Min.  
3.0  
-0.3  
-40  
0
Max.  
321)  
32  
Supply voltage  
VDD  
VQ  
TJ  
V
Output voltage  
V
Junction temperature  
170  
25  
°C  
mA  
kHz  
Output current  
IQ  
Magnetic signal input frequency2) fSW  
0
10  
1) Latch-up test with factor 1.5 is not covered. Please see max ratings also.  
2) For operation at the maximum switching frequency the magnetic input signal must be 1.4 times higher than for static  
fields.This is due to the -3 dB corner frequency of the internal low-pass filter in the signal path.  
Data Sheet  
13  
Revision 1.2, 2019-12-20  
TLE4964-3M  
Specification  
3.4  
Electrical and magnetic characteristics  
Product characteristics involve the spread of values guaranteed within the specified voltage and ambient  
temperature range. Typical characteristics are the median of the production and correspond to VDD = 12 V and  
TA = 25°C. The below listed specification is valid in combination with the application circuit shown in Figure 7  
and Figure 8.  
Table 6  
General electrical characteristics  
Parameter  
Symbol  
Min.  
Values  
Typ.  
1.6  
Unit Note or Test Condition  
Max.  
2.5  
1
Supply current  
Reverse current  
IS  
1.1  
mA  
mA  
V
ISR  
0.05  
0.2  
for VDD = -18 V  
IQ = 20 mA  
IQ = 25 mA  
Output saturation voltage VQSAT  
0.5  
0.6  
10  
0.24  
V
Output leakage current  
IQLEAK  
μA  
mA  
Output current limitation IQLIMIT  
30  
56  
70  
internally limited and thermal  
shutdown  
Output fall time1)  
Output rise time1)  
Output jitter1)2)  
Delay time1)3)  
tf  
0.17  
0.4  
0.4  
0.5  
0.35  
15  
1
μs  
μs  
μs  
μs  
μs  
1.2 kΩ / 50 pF, see Figure 4  
1.2 kΩ / 50 pF, see Figure 4  
for square wave signal with 1 kHz  
see Figure 4  
tr  
1
tQJ  
td  
1
12  
30  
150  
Power-on time1)4)  
tPON  
80  
VDD = 3 V, B BRP - 0.5 mT or  
B BOP + 0.5 mT  
Chopper frequency1)  
fOSC  
350  
kHz  
1) Not subject to production test, verified by design/characterization.  
2) Output jitter is the 1 σ value of the output switching distribution.  
3) Systematic delay between magnetic threshold reached and output switching.  
4) Time from applying VDD = 3.0 V to the sensor until the output is valid.  
Data Sheet  
14  
Revision 1.2, 2019-12-20  
TLE4964-3M  
Specification  
Table 7  
Magnetic characteristics  
Symbol T (°C)  
Parameter  
Values  
Unit  
Note / Test  
Condition  
Min.  
9.1  
8.4  
6.7  
6.7  
6.1  
4.9  
2.1  
2.0  
1.6  
Typ. Max.  
Operating point  
Release point  
Hysteresis  
BOP  
-40  
25  
13.5  
12.5  
10.3  
10.2  
9.5  
17.8  
16.6  
13.9  
13.8  
12.9  
10.8  
4.6  
mT  
170  
-40  
25  
BRP  
mT  
mT  
μT  
170  
-40  
25  
7.8  
BHYS  
3.2  
3.0  
4.3  
170  
25  
2.5  
3.6  
Effective noise value of the  
magnetic switching points1)  
BNeff  
62  
Temperaturecompensationof TC  
-1200  
ppm/K –  
magnetic thresholds2)  
1) The magnetic noise is normal distributed and can be assumed as nearly independent to frequency without sampling  
noise or digital noise effects. The typical value represents the rms-value and corresponds therefore to a 1 σ  
probability of normal distribution. Consequently a 3 σ value corresponds to 0.3% probability of appearance.  
2) Not subject to production test, verified by design/characterization.  
Field direction definition  
Positive magnetic fields are defined with the south pole of the magnet to the branded side of package.  
N
S
Branded Side  
Figure 9  
Definition of magnetic field direction PG-SOT23-3-15  
Data Sheet  
15  
Revision 1.2, 2019-12-20  
TLE4964-3M  
Specification  
3.5  
Electro magnetic compatibility  
Characterization of electro magnetic compatibility is carried out on a sample basis from one qualification lot.  
Not all specification parameters have been monitored during EMC exposure.  
+5V  
Vs  
Rs  
RQ = 1.2kΩ  
VDD  
Q
CDD = 10nF  
CQ = 10nF  
GND  
Figure 10 EMC test circuit  
Ref: ISO 7637-2 (Version 2004), test circuit Figure 10 (with external resistor, RS = 100 Ω)  
Table 8  
Magnetic compatibility  
Parameter  
Testpulse 1  
Symbol  
Level / Type  
Status  
VEMC  
-100 V  
C
Testpulse 2a1)  
Testpulse 2b  
Testpulse 3a  
Testpulse 3b  
Testpulse 42)  
Testpulse 5b3)  
60 V/110 V  
10 V  
-150 V  
100 V  
-7 V / -5.5 V  
US = 86.5 V / US* = 28.5 V  
A/C  
C
A
A
A
A
1) ISO 7637-2 (2004) describes internal resistance = 2 Ω (former 10 Ω).  
2) According to 7637-2 for test pulse 4 the test voltage shall be 12 V ±0.2 V.  
3) A central load dump protection of 42 V is used. Us* = 42 V - 13.5 V.  
Data Sheet  
16  
Revision 1.2, 2019-12-20  
TLE4964-3M  
Specification  
Ref: ISO 7637-2 (Version 2004), test circuit Figure 10 (without external resistor, RS = 0 Ω)  
Table 9  
Electro magnetic compatibility  
Parameter  
Testpulse 1  
Symbol  
Level / Type  
Status  
VEMC  
-50 V  
50 V  
10 V  
-150 V  
100 V  
-7 V / 5.5 V  
US = 86.5 V / US* = 28.5 V  
C
A
C
A
A
A
A
Testpulse 2a1)  
Testpulse 2b  
Testpulse 3a  
Testpulse 3b  
Testpulse 42)  
Testpulse 5b3)  
1) ISO 7637-2 (2004) describes internal resistance = 2 Ω (former 10 Ω).  
2) According to 7637-2 for test pulse 4 the test voltage shall be 12 V ±0.2 V.  
3) A central load dump protection of 42 V is used. Us* = 42 V - 13.5 V.  
Data Sheet  
17  
Revision 1.2, 2019-12-20  
TLE4964-3M  
Package information  
4
Package information  
The TLE4964-3M is available in the small halogen-free SMD package PG-SOT23-3-15.  
4.1  
Package outline PG-SOT23-3-15  
±0.1  
1
0.1 MAX.  
±0.1  
2.9  
B
3
1
2
1)  
+0.1  
-0.05  
0.4  
A
0
.
0
8
.
.
.
0
C
.
1
5
0.95  
0.  
.
.
8
°
1.9  
0.25 B C  
M
M
0.2  
A
1) Lead width can be 0.6 max. in dambar area  
Figure 11 PG-SOT23-3-15 package outline (all dimensions in mm)  
4.2  
Packing information PG-SOT23-3-15  
4
0.2  
0.9  
3.15  
1.15  
Pin 1  
SOT23-TP V02  
Figure 12 Packing of the PG-SOT23-3-15 in a tape  
Data Sheet  
18  
Revision 1.2, 2019-12-20  
TLE4964-3M  
Package information  
4.3  
Footprint PG-SOT23-3-15  
0.8  
0.8  
1.2  
0.8  
1.2  
0.8  
Reflow Soldering  
Wave Soldering  
Figure 13 Footprint PG-SOT23-3-15  
4.4  
PG-SOT23-3-15 distance between chip and package  
Figure 14 Distance between chip and package  
4.5  
Package marking  
Year (y) = 0...9  
Month (m) = 1...9,  
o - October  
n - November  
d - December  
M43  
Figure 15 Marking of TLE4964-3M  
Data Sheet  
19  
Revision 1.2, 2019-12-20  
TLE4964-3M  
Graphs of the magnetic parameters  
5
Graphs of the magnetic parameters  
20  
18  
16  
14  
12  
10  
8
Typ  
Min  
Max  
6
4
2
0
ꢀ50,00  
0,00  
50,00  
TA[°C]  
100,00  
150,00  
Figure 16 Operating point (BOP) of the TLE4964-3M over temperature  
16  
14  
12  
10  
8
Typ  
Min  
Max  
6
4
2
0
ꢀ50,00  
0,00  
50,00  
TA[°C]  
100,00  
150,00  
Figure 17 Release point (BRP) of the TLE4964-3M over temperature  
5
4,5  
4
3,5  
3
Typ  
Min  
Max  
2,5  
2
1,5  
1
0,5  
0
ꢀ50,00  
0,00  
50,00  
TA[°C]  
100,00  
150,00  
Figure 18 Hysteresis (BHys) of the TLE4964-3M over temperature  
Data Sheet 20  
Revision 1.2, 2019-12-20  
TLE4964-3M  
Graphs of the electrical parameters  
6
Graphs of the electrical parameters  
80  
75  
70  
65  
60  
55  
50  
3V  
ꢀ50  
ꢀ30  
ꢀ10  
10  
30  
50  
70  
90  
110  
130  
150  
Tꢀ[°C]  
Figure 19 Power on time tPON of the TLE4964-3M over temperature  
15,5  
15  
14,5  
14  
3V  
12V  
13,5  
13  
12,5  
-50  
-30  
-10  
10  
30  
50  
T [°C]  
70  
90  
110  
130  
150  
Figure 20 Signal delay time of the TLE4964-3M over temperature  
2
1,9  
1,8  
1,7  
1,6  
1,5  
1,4  
1,3  
1,2  
1,1  
1
Vs=3V  
Vs=12V  
Vs=32V  
Vs=42V  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
130  
150  
T [°C]  
Figure 21 Supply current of the TLE4964-3M over temperature  
Data Sheet 21  
Revision 1.2, 2019-12-20  
TLE4964-3M  
Graphs of the electrical parameters  
2
1,9  
1,8  
1,7  
1,6  
1,5  
1,4  
1,3  
1,2  
1,1  
1
-40°C  
25°C  
150°C  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
VS [V]  
Figure 22 Supply current of the TLE4964-3M over supply voltage  
63,0  
62,0  
61,0  
60,0  
59,0  
58,0  
57,0  
56,0  
55,0  
54,0  
5V  
12V  
32V  
ꢀ50  
ꢀ30  
ꢀ10  
10  
30  
50  
70  
90  
110  
130  
150  
T[°C]  
Figure 23 Output current limit of the TLE4964-3M over temperature  
63,0  
62,0  
61,0  
60,0  
59,0  
58,0  
57,0  
56,0  
55,0  
54,0  
ꢀ40°C  
25°C  
150°C  
0
5
10  
15  
20  
25  
30  
35  
VQ [V]  
Figure 24 Output current limit of the TLE4964-3M over applied pull-up voltage  
Data Sheet  
22  
Revision 1.2, 2019-12-20  
TLE4964-3M  
Graphs of the electrical parameters  
700  
600  
500  
400  
300  
200  
3V  
12V  
32V  
100  
-50 -30 -10  
10  
30  
50  
70  
90  
110 130 150  
T [°C]  
Figure 25 Output fall time of the TLE4964-3M over temperature  
700  
600  
500  
400  
300  
200  
100  
-40°C  
25°C  
150°C  
0
5
10  
15  
20  
25  
30  
35  
VQ [V]  
Figure 26 Output fall time of the TLE4964-3M over applied pull-up voltage  
700  
600  
500  
400  
300  
3V  
12V  
32V  
-50 -30 -10  
10  
30  
50  
70  
90  
110 130 150  
T [°C]  
Figure 27 Output rise time of the TLE4964-3M over temperature  
Data Sheet  
23  
Revision 1.2, 2019-12-20  
TLE4964-3M  
Graphs of the electrical parameters  
700  
600  
500  
400  
300  
200  
100  
-40°C  
25°C  
150°C  
0
5
10  
15  
20  
25  
30  
35  
VQ [V]  
Figure 28 Output rise time of the TLE4964-3M over applied pull-up voltage  
10  
1
0,1  
32V  
0,01  
0,001  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
T [°C]  
Figure 29 Output leakage current of the TLE4964-3M over temperature  
400  
350  
300  
250  
200  
150  
100  
50  
10mA  
15mA  
20mA  
25mA  
0
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
130  
150  
T [°C]  
Figure 30 Saturation voltage of the TLE4964-3M over temperature  
Data Sheet  
24  
Revision 1.2, 2019-12-20  
TLE4964-3M  
Graphs of the electrical parameters  
400  
350  
300  
250  
200  
150  
100  
50  
-40°C  
25°C  
150°C  
0
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
IQ [mA]  
Figure 31 Saturation voltage of the TLE4964-3M over output current  
120  
110  
100  
90  
80  
70  
12V  
60  
50  
40  
30  
20  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
130  
150  
T [°C]  
Figure 32 Effective noise of the TLE4964-3M thresholds over temperature  
0,8  
0,7  
0,6  
0,5  
0,4  
0,3  
0,2  
0,1  
0
12V  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
130  
150  
T [°C]  
Figure 33 Output signal jitter of the TLE4964-3M over temperature  
Data Sheet  
25  
Revision 1.2, 2019-12-20  
TLE4964-3M  
Revision history  
7
Revision history  
Revision  
Date  
Changes  
Revision 1.2 2019-12-20 Updated text and figure in Chapter 2.6  
Updated standards in Table 4  
Added maximum tested magnetic field in Chapter 3.3  
Editorial changes  
Revision 1.0 2012-12-18 Initial release  
Data Sheet  
26  
Revision 1.2 2019-12-20  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
www.infineon.com  
Edition 2019-12-20  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
Legal Disclaimer  
The information given in this document shall in  
no event be regarded as  
Warnings  
Due to technical requirements, components  
may contain dangerous substances. For  
information on the types in question, please  
contact the nearest Infineon Technologies  
Office. Infineon Technologies components may  
be used in life-support devices or systems only  
with the express written approval of Infineon  
Technologies, if a failure of such components  
can reasonably be expected to cause the failure  
of that life-support device or system or to affect  
the safety or effectiveness of that device or  
system. Life support devices or systems are  
intended to be implanted in the human body or  
to support and/or maintain and sustain and/or  
protect human life. If they fail, it is reasonable to  
assume that the health of the user or other  
persons may be endangered.  
a guarantee of  
conditions or characteristics. With respect to any  
examples or hints given herein, any typical  
values stated herein and/or any information  
regarding the application of the device, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation, warranties of non-  
infringement of intellectual property rights of  
any third party.  
© 2019 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Information  
For further information on technology, delivery  
terms and conditions and prices, please contact  
the nearest Infineon Technologies Office  
(www.infineon.com).  
Document reference  

相关型号:

TLE4964-6M

Hall Effect Sensor, 0.9mT Min, 5.4mT Max, 0-25mA, Rectangular, Surface Mount, GREEN, PLASTIC, SOT-23, SMD-3
INFINEON

TLE49641KXTSA1

Hall Effect Sensor, 8.4mT Min, 23.5mT Max, 0-25mA, Plastic/Epoxy, Rectangular, 3 Pin, Surface Mount, HALOGEN FREE AND ROHS COMPLIANT, SOT-23, SMD-3
INFINEON

TLE49642MXTMA1

Hall Effect Sensor, 15.9mT Min, 36mT Max, 0-25mA, Rectangular, Surface Mount, SOT-23, 3 PIN
INFINEON

TLE49642MXTMA1/SAMPLE

Hall Effect Sensor,
INFINEON

TLE49642MXTSA1

Hall Effect Sensor, 15.9mT Min, 36mT Max, 0-25mA, Plastic/epoxy, Rectangular, 3 Pin, Surface Mount, SOT-23, 3 PIN
INFINEON

TLE49642MXTSA1/SAMPLE

Hall Effect Sensor,
INFINEON

TLE49643KXTSA1

Hall Effect Sensor, 6.1mT Min, 16.6mT Max, 0-25mA, Plastic/Epoxy, Rectangular, 3 Pin, Surface Mount, HALOGEN FREE AND ROHS COMPLIANT, SOT-23, SMD-3
INFINEON

TLE49643MXTSA1

Hall Effect Sensor, 6.1mT Min, 16.6mT Max, 0-25mA, Rectangular, Surface Mount, SOT-23, 3 PIN
INFINEON

TLE49646MXTMA1

Hall Effect Sensor, 0.9mT Min, 5.4mT Max, 0-25mA, Rectangular, Surface Mount, SOT-23, 3 PIN
INFINEON

TLE49646MXTSA1

Hall Effect Sensor, 0.9mT Min, 5.4mT Max, 0-25mA, Rectangular, Surface Mount, SOT-23, 3 PIN
INFINEON

TLE4965-5M

Material Content Data Sheet
INFINEON

TLE4965-5M_15

Material Content Data Sheet
INFINEON