TDM3885 [INFINEON]

IPOL 3 A 采用集成电感的单输出高效率降压稳压器模块;
TDM3885
型号: TDM3885
厂家: Infineon    Infineon
描述:

IPOL 3 A 采用集成电感的单输出高效率降压稳压器模块

稳压器
文件: 总38页 (文件大小:1473K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TDM3885  
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Features  
Optimized Module with inductor included  
Micro Sized 3.1mm x 3.8mm x 2.3mm  
Continuous 4A Load Capability  
Single Input Voltage Range (4.7V to 14V)  
600kHz Switching Frequency  
10uA Supply Current at Shutdown  
Enhanced Stability IPOL Engine Stable with Ceramic Capacitors and no External Compensation  
Enhanced Light Load Efficiency with Reduced Switching Frequency and Diode Emulation  
Forced Continuous Conduction Mode Option  
Thermally Compensated Internal Over-Current Protection  
Internal Soft-Start, Enable Input , PreBias Start Up, Thermal Shut Down, Power Good Output  
Precision Reference Voltage (0.5V+/-1.0%)  
Lead-free, Halogen-free and RoHS6 Compliant  
Potential applications  
Server and Computing  
Storage and Applications  
Communications Infrastructure  
General DC-DC Converters.  
Distributed Point of Load Power Architectures.  
Product validation  
Qualified for Industrial Applications  
Description  
The TDM3885 4A Point of Load Module is an easy-to-use, fully integrated and highly efficient DC/DC module.  
The module’s PWM controller, MOSFETs and inductor make TDMꢀꢁꢁꢂ a space-efficient solution, providing  
accurate power delivery. The TDM3885 employs an Enhanced Stability Engine that makes it stable with ceramic  
capacitors without compensation.  
TDM3885 can operate in Forced Continuous Conduction Mode (FCCM) or can enter Diode Emulation Mode  
(DEM) during light loads to save power. With ultra-light loads, TDM3885 can enter a low quiescent current mode  
making it ideal for Standby power supplies. The switching frequency is 600kHz for an optimum solution.  
It also features important protection functions, such as Pre-Bias startup, internal Soft-start, hiccup over-current  
protection and thermal shutdown to give required system level security in the event of fault conditions.  
Final Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1 of 37  
V 2.3  
2022-07-11  
 
 
 
 
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Table of contents  
Table of contents  
Features ........................................................................................................................................ 1  
Potential applications..................................................................................................................... 1  
Product validation.......................................................................................................................... 1  
Description .................................................................................................................................... 1  
Table of contents............................................................................................................................ 2  
1
Ordering Information ............................................................................................................. 3  
2
2.1  
2.2  
Description............................................................................................................................ 4  
PinOut......................................................................................................................................................4  
Block Diagram .........................................................................................................................................5  
3
Electrical Specifications.......................................................................................................... 6  
Absolute Maximum Ratings ....................................................................................................................6  
Maximum Operating Conditions.............................................................................................................6  
Electrical Characteristics ........................................................................................................................7  
Typical Operating Characteristics ..........................................................................................................8  
Typical Efficiency Curves.......................................................................................................................11  
3.1  
3.2  
3.3  
3.4  
3.5  
4
Theory of Operation ..............................................................................................................12  
Description ............................................................................................................................................12  
Enhanced Stability IPOL Engine ...........................................................................................................12  
Pseudo-Constant Switching Frequency ...............................................................................................12  
Soft-Start ...............................................................................................................................................12  
En/FCCM ................................................................................................................................................13  
Pre-Bias Start-Up...................................................................................................................................15  
Over-Current Protection .......................................................................................................................15  
Minimum On-Time and Off-Time..........................................................................................................16  
Over-Voltage Protection .......................................................................................................................16  
PGood ....................................................................................................................................................17  
Over-Temperature Protection ..............................................................................................................18  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
4.10  
4.11  
5
Application...........................................................................................................................19  
Application Information........................................................................................................................19  
Typical Application Diagrams ...............................................................................................................21  
Recommended configurations .............................................................................................................23  
Typical Operating Waveforms...............................................................................................................24  
5.1  
5.2  
5.3  
5.4  
6
7
8
Marking Information .............................................................................................................28  
Tape and Reel Information .....................................................................................................29  
Mechanical Pad Drawing ........................................................................................................30  
9
9.1  
PCB Metal and Component Placement .....................................................................................31  
Reflow guideline....................................................................................................................................31  
10  
11  
12  
13  
Stencil Design .......................................................................................................................32  
Layout Recommendations......................................................................................................33  
Environmental Qualifications .................................................................................................35  
Evaluation Board and Support Documentation.........................................................................36  
Final Datasheet  
2 of 37  
V 2.3  
2022-07-11  
 
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Ordering Information  
1
Ordering Information  
Table 1  
Ordering Information  
Base Part and Number Package Type  
Standard Pack Form and Qty  
Tape and Reel 2500  
Orderable Part Number  
TDM3885  
PG-LGA-15-2  
TDM3885XUMA1  
3.1 mm x 3.8 mm  
Figure 1  
Picture of the Product  
Figure 2  
TDM3885 Part Number Configuration  
Final Datasheet  
3 of 37  
V 2.3  
2022-07-11  
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Description  
2
Description  
2.1  
PinOut  
Figure 3  
Table 2  
Pinout, Numbering and Name of Pins (transparent top view)  
Pin Descriptions  
Pin #  
1
Pin Name Pin Type Pin Description  
Input supply for the power stage.  
S
PVin  
2
AGND  
S
Signal ground for the internal reference and control circuitry.  
Input bias for the internal control circuitry and driver. Generated by internal LDO via  
3
Vcc  
S
PVin. A 2.2 µF ceramic capacitor is recommended between Vcc and the Power ground  
(PGND).  
Over-Current Protection (OCP) limit set point. Three user selectable OCP limits are  
available by floating this pin, connecting it to Vcc or connecting it to PGND.  
Power Good status pin. Output is an open Drain. Connect a pull up resistor from this pin  
to Vcc or an external bias voltage.  
4
5
OCSET  
PG  
I
O
Power Ground. These pins serve as a separate ground for the MOSFET drivers and  
should be connected to the system’s power ground plane.  
Output voltage. Connect this pin to the load and decoupling capacitors.  
6, 8, 14, 15  
PGND  
S
O
I
7
9
Vout  
FB  
Output voltage feedback pin. Connect this pin to the output of the regulator via a  
resistor divider to set the output voltage.  
10  
11  
Vo  
I
Vo sense pin. Connect this pin directly to the output of the regulator to set the on-time.  
Multifunction pin: (1) Enable pin to turn the IC on and off. (2) Enable Diode Emulation  
(DEM) Mode operation or Forced Continuous Conduction (FCCM) Mode operation.  
Supply voltage for the high side driver. Connect this pin to the SW node of the regulator  
through a bootstrap capacitor.  
En/FCCM  
I
12  
13  
BOOST  
SW  
I
O
Switch Node. This pin is connected to the integrated output inductor.  
Note:  
I = Input, O = Output, S = Signal  
Final Datasheet  
4 of 37  
V 2.3  
2022-07-11  
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Description  
2.2  
Block Diagram  
Vo  
VCC  
AGND  
PVin  
LDO  
VCC  
Enable  
LDrVin  
BOOST  
PVIN  
VREF  
INTERNAL REFERENCE  
OV  
Fault PVin  
SOFT  
START  
SS  
PWM  
COMP  
Fault  
ADAPTIVE  
ON-TIME  
GENERATOR  
PWM  
+
+
-
HDrVin  
HDrv  
SET  
+
INTERNAL RAMP  
+
GATE  
DRIVE  
LOGIC  
Vcc  
HDrVin  
VOUT  
VCC  
OV  
Fault  
OV  
DETECTION  
SW  
OV  
POR  
LDrVin  
LDrv  
OV  
FB  
POR  
Fault  
FB  
EN/  
Zcross  
THERMAL SHUT-  
DOWN  
PGND  
FCCM  
CONTROL  
LOGIC  
FCCM_EN  
Zero Cross  
DETECTION  
PGND  
PG  
FCCM  
LDrVin  
Current Limit  
Control  
POR  
OCSet  
The Integrated inductor is 0.68 uH  
Figure 4  
TDM3885 Block Diagram  
Final Datasheet  
5 of 37  
V 2.3  
2022-07-11  
 
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Electrical Specifications  
3
Electrical Specifications  
3.1  
Absolute Maximum Ratings  
Stresses beyond these listed under ꢃAbsolute Maximum Ratingsꢄ may cause permanent damage to the device.  
These are stress ratings only and functional operation of the device at these or any other conditions beyond  
those indicated in the operational sections of the specifications are not implied.  
Table 3  
TDM3885 Absolute Maximum Ratings  
-0.3 V to 14 V (dc), 16 V (ac, 2 µs)  
-0.3 V to 6 V  
PVin, En/FCCM to PGND (Note 2, Note 3)  
Vcc to PGND (Note 2)  
Boost to PGND (Note 2)  
-0.3 V to 22 V(dc), 24 V (ac, 10 ns)  
-0.3 V to 16 V (dc), -4 V to 18 V (ac, 10 ns)  
-0.3 V to Vcc+0.3 V (Note 1)  
-0.3 V to 6 V(dc), 6.5 V (ac, 10 µs)  
-0.3 V to 6 V  
SW to PGND (Note 2)  
Boost to SW  
Vo, Fb to AGND (Note 2)  
OCSet, PG to AGND (Note 2)  
PGND to AGND  
-0.3 V to +0.3 V  
Thermal Information  
Junction to Ambient Thermal Resistance ƟJA  
Junction-to-top Thermal characterization parameter ꢅJT  
Junction-to-board Thermal characterization parameter ꢅJB  
Storage Temperature Range  
Junction Temperature Range  
40.5 °C/W (Note 12)  
8.0 °C/W (Note 12)  
12.0 °C/W (Note 12)  
-ꢂꢂ °C ≤Ta ≤ ꢆꢇꢂ °C  
-ꢈꢉ °C ≤ Tj ≤ ꢆꢇꢂ °C  
Note:  
1. Must not exceed 6 V.  
2. PGND pin and AGND pin are connected together.  
3. SW node voltage should not exceed the max voltage defined in Table 3  
3.2  
Maximum Operating Conditions  
Table 4  
Maximum Operating Conditions  
Definitions  
Symbol  
Min  
4.7  
4.4  
0.5  
0.5  
0
Max  
14  
Units  
Input Voltage Range (Note 4, Note 5)  
PVin  
Vcc  
Vo  
Vo  
Io  
Supply Voltage Range (Note 5)  
5.5  
3.3  
5.0  
3
V
Output Voltage Range (PVin =4.7 to 8V, Iout=0 to 3A)  
Output Voltage Range (PVin =8 to 14V, Iout =0 to 4A)  
Continuous Output Current Range (PVin =4.7 to 8V)  
Continuous Output Current Range (PVin =8 to 14V)  
Operating Junction Temperature  
A
A
Io  
0
4
Tj  
-40  
125  
°C  
Note:  
4. External Vcc supply voltage is not supported to bypass the internal LDO.  
5. Maximum SW node voltage should not exceed the max voltage defined in Table 3.  
Final Datasheet  
6 of 37  
V 2.3  
2022-07-11  
 
 
 
 
 
 
 
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Electrical Specifications  
3.3  
Electrical Characteristics  
Unless otherwise specified, these specifications apply over, 5.5 V < PVin < 14 V, 0 °C < Tj < 125 °C. Typical values  
are specified at Ta = 25 °C.  
Table 5  
Electrical Characteristics  
Symbol  
Parameter  
Power Stage  
Top Switch  
Conditions  
Min  
Typ  
Max Unit  
Rds (on)_Top  
Rds (on)_Bot  
VBoot Vsw = 5.2 V, Tj = 25 C  
Vcc = 5.2 V, Tj = 25 C  
IBoot=10 mA  
82  
26  
106.4  
mꢊ  
Bottom Switch  
33.9  
Boot Diode Forward Voltage  
Supply Current  
200  
300  
mV  
PVin Supply Current (Standby)  
PVin Supply Current (Static)  
Iin (Standby)  
Iin (Static)  
Enable low  
0.22  
0.7  
10  
2
µA  
En = 2 V, No switching  
0.5  
5
mA  
Enable high, PVin = 12 V,  
Fs = 600 kHz  
PVin Supply Current (Dyn)  
Iin (Dyn)  
11  
20  
mA  
Soft Start  
Soft Start Ramp Rate  
VFB Voltage  
SSrate  
VFB  
0.16  
0.2  
0.5  
0.24  
mV/µs  
Feedback Voltage  
V
0°C < Tj < 85 °C  
-40 °C < Tj < 125 °C (Note 6)  
-0.6  
-1  
+0.6  
+1  
Accuracy  
%
VFB Input Current  
On-Time Timer Control  
On Time  
IVFB  
VFB = 0.5 V, Tj = 25 C  
-0.4  
0
+0.4  
  
Ton  
PVin = 12 V, Vout = 1.05 V  
Note 7, PVin = 12 V, Vout = 0 V  
Tj = 25 C, VFB = 0 V  
146  
20  
ns  
ns  
ns  
Minimum On-Time  
Minimum Off-Time  
Thermal Shutdown  
Thermal Shutdown  
Hysteresis  
Ton(Min)  
Toff(Min)  
50  
240  
300  
Note 7  
Note 7  
145  
25  
°C  
V
Under Voltage Lockout  
Vcc-Start-Threshold  
VCC-Stop-Threshold  
VCC_UVLO_Start  
VCC_UVLO_Stop  
Enable_High  
Enable_Low  
REN  
Vcc Rising Trip Level  
Vcc Falling Trip Level  
Ramping up  
4
4.2  
3.8  
1.2  
1
4.4  
4.1  
3.6  
1.14  
0.9  
500  
2.6  
1.36  
1.06  
1500  
Enable Threshold  
V
k  
V
Ramping down  
Input Impedance  
FCCM Start Threshold  
FCCM Stop Threshold  
Current Limit  
1000  
VFCCM_start  
VFCCM_stop  
2.3  
0 °C<Tj< 125 °C, OCSet = PGND  
4.4  
6.5  
6.9  
A
A
Current Limit Threshold  
Hiccup Blanking Time  
Ioc  
0 °C <Tj< 125 °C, OCSet = Floating  
0 °C <Tj< 125 °C, OCSet = Vcc  
Note 7  
3.4  
2.4  
5.4  
4.3  
20  
5.7  
4.6  
Tblk_Hiccup  
ms  
Final Datasheet  
7 of 37  
V 2.3  
2022-07-11  
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Electrical Specifications  
OV Protection  
Output OV Protection Threshold  
Vovp  
OVP detect  
115  
120  
5
125  
%
Output OV Protection Delay  
PGood  
TOVPDEL  
S  
Power Good Upper Threshold  
Power Good Lower Threshold  
Power Good Sink Current  
VPG(upper)  
VPG(lower)  
IPG  
Fb Rising  
85  
80  
90  
85  
5
95  
90  
%
mA  
V
Fb Falling  
PG = 0.5 V, En = 2 V  
2.5  
Power Good Voltage Low when  
no supply  
PVin = Vcc = 0 V,  
Rpull-up=ꢂꢉ kΩ to ꢀ.ꢀ V  
VPG(low)  
0.3  
0.5  
Note:  
6. Cold & hot temperature performance is guaranteed via correlation using statistical quality control. Not tested in production.  
7. Guaranteed by design but not tested in production.  
3.4  
Typical Operating Characteristics  
Unless otherwise specified, typical curves are generated at room temperature.  
FSW vs. PVIN, FCCM, Io=0A  
700  
690  
680  
670  
660  
650  
640  
4
6
8
10  
12  
14  
16  
Vout=3.3V  
PVin (V)  
Figure 5  
Switching Frequency vs. Input Voltage in FCCM, Vout = 3.3 V  
Final Datasheet  
8 of 37  
V 2.3  
2022-07-11  
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Electrical Specifications  
FSW vs. IOUT, FCCM, PVin=12V  
800  
760  
720  
680  
640  
600  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
Iout (A)  
Vout=3.3V  
Figure 6  
Switching Frequency vs. Output Current in FCCM, Vout = 3.3 V  
Load Regulation, FCCM  
3.350  
3.325  
3.300  
3.275  
3.250  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Iout (A)  
Vin=12V, Vout=3.3V  
Figure 7  
Load Regulation for Vo = 3.3 V  
Final Datasheet  
9 of 37  
V 2.3  
2022-07-11  
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Electrical Specifications  
THERMAL DERATING, PVIN = 12V  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
55  
65  
75  
Ambient Temperature (°C)  
12V-3.3V 12V-1.8V  
85  
95  
105  
12V-5V  
12V-1.0V  
Figure 8  
TDM3885 Thermal Derating, Tested at 0LFM, Climate chamber, the Case Temperature was  
monitored with a 125C limit.  
Final Datasheet  
10 of 37  
V 2.3  
2022-07-11  
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Electrical Specifications  
3.5  
Typical Efficiency Curves  
PVin = 12 V [Io = 0 A 4 A] and PVin = 5 V [Io = 0 A 3 A], Room Temperature, No Air Flow. Note that the efficiency  
curves include the losses of TDM3885 and the inductor losses.  
TDM3885 EFFICIENCY @PVin=5V  
100  
95  
90  
85  
80  
75  
70  
Vout=1.0V - FCCM  
Vout=1.2V - FCCM  
Vout=1.8V - FCCM  
Vout=3.3V - FCCM  
Vout=1.0V - DEM  
Vout=1.2V - DEM  
Vout=1.8V - DEM  
Vout=3.3V - DEM  
65  
60  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Load Current (A)  
Figure 9  
Efficiency Curves for PVin = 5 V  
TDM3885 EFFICIENCY @PVin=12V  
95  
90  
85  
80  
75  
70  
65  
60  
Vout=1.0V - FCCM  
Vout=1.2V - FCCM  
Vout=1.8V - FCCM  
Vout=3.3V - FCCM  
Vout=5.0V - FCCM  
Vout=1.0V - DEM  
Vout=1.2V - DEM  
Vout=1.8V - DEM  
Vout=3.3V - DEM  
Vout=5.0V - DEM  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
Load Current (A)  
Figure 10  
Efficiency Curves for PVin = 12 V  
Final Datasheet  
11 of 37  
V 2.3  
2022-07-11  
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Theory of Operation  
4
Theory of Operation  
4.1  
Description  
The TDM3885 is an easy-to-use, fully integrated and highly efficient monolithic dc-dc regulator. The on-chip  
PWM controller, MOSFETs and integrated inductor make TDM3885 a space-efficient solution, providing  
accurate power delivery.  
The TDM3885 offers two different operation modes: Forced Continuous Conduction Mode (FCCM) and Diode  
Emulation Mode (DEM). With FCCM, the device always operates as a synchronous buck converter with a  
pseudo- constant switching frequency of 600 kHz and small output voltage ripples. In DEM, the synchronous  
FET is turned off when the inductor current drops to zero, which provides better efficiency at light load.  
4.2  
Enhanced Stability IPOL Engine  
The TDM3885 uses the Enhanced Stability IPOL engine that comprises Constant On-Time (COT) control with  
proprietary internal ramp compensation to offer stability across a wide range of conditions.  
Unlike conventional COT devices, which usually require a certain amount of output ripple voltage to ensure  
stability, the TDM3885 includes proprietary internal ramp compensation, facilitating the use of low ESR ceramic  
output capacitors.  
In addition, the internal ramp implements the input voltage feed-forward feature, which helps to preserve the  
same loop response with a wide input voltage range.  
The operation of TDM3885 is described as follows. The output voltage of the regulator is fed to the FB pin  
through a resistor divider. Combined with the proprietary internal ramp, the FB voltage is then compared to an  
internal reference voltage. If the combined voltage is lower than the reference voltage, the control FET is turned  
on for a fixed duration to charge the output capacitor. When the on-time of the control FET is finished, the  
synchronous FET is turned on. In FCCM, synchronous FET stays on until the combination of FB voltage and the  
internal ramp drops below the reference voltage and a new PWM pulse is initiated. In DEM, synchronous FET  
will be turned off when the inductor current drops to zero.  
4.3  
Pseudo-Constant Switching Frequency  
The TDM3885 operates with a pseudo-constant frequency of 600 kHz within the recommended operation  
range. To achieve constant switching frequency, the on-time of the control FET is automatically adjusted for  
different input and output voltages.  
The on-time is determined by the ratio of the voltages at the V0 pin and the PVin pin, and can be calculated as  
follows:  
V
Tꢀꢁ =  
×
PV  
6ꢅꢅ kHz  
iꢃ  
4.4  
Soft-Start  
The TDM3885 has an internal digital soft-start circuit to control the output voltage rise time, and to limit the  
current surge at start-up. To ensure correct start-up, the soft-start sequence initiates when Enable and Vcc  
voltages rise above their UVLO thresholds and the internal Power On Ready (POR) signal is asserted. The  
internal soft-start signal linearly rises at the rate of 0.2 mV/µs. The normal Vout start-up time is fixed, as shown  
below.  
Final Datasheet  
12 of 37  
V 2.3  
2022-07-11  
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Theory of Operation  
ꢋ.ꢌ ꢍ  
ꢇꢈꢉꢊꢈ  
=
= ꢎ. ꢌ ꢏꢇ  
ꢋ.ꢎ ꢏꢍ/ ꢐꢇ  
The over-current protection (OCP) and over-voltage protection (OVP) are enabled during soft-start to protect  
the device against any short circuit or over-voltage condition. Figure 11 illustrates the theoretical operation  
waveforms during the start-up.  
POR  
PGood  
0.5V  
Internal SS  
0.9* Vref  
FB  
Figure 11  
Theoretical operation waveforms during soft-start  
4.5  
En/FCCM  
En/FCCM is a multi-function pin. It can be used to:  
Turn the TDM3885 on and off  
Select the operation mode: FCCM or DEM  
Implement Under-Voltage Lockout of the Input Voltage  
When En/FCCM voltage is higher than the Enable_high threshold (1.2 V typical), the TDM3885 is turned on with  
DEM. In order to operate in FCCM, the En/FCCM voltage needs to be above 2.6 V. The Enable/FCCM thresholds  
are designed to be compatible with 3.3 V logic.  
The TDM3885 has a precise Enable_high threshold voltage, which is internally monitored by the Under-Voltage  
Lockout (UVLO) circuit. As shown in Figure 12, the input of the Enable pin can be derived from the PVin voltage  
by a resistor divider, REN1 and REN2. By selecting different divider ratios, users can program the UVLO threshold  
voltage. The bus voltage UVLO is a very useful feature. It prevents the TDM3885 from operating when PVin is  
lower than the desired voltage level.  
For some space-constrained designs, the En/FCCM pin can be directly connected to PVin without using an  
external resistor divider.  
The En/FCCM pin should not be left floating. A pull-down resistor in the range of tens of kilohms is  
recommended.  
Final Datasheet  
13 of 37  
V 2.3  
2022-07-11  
 
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Theory of Operation  
Figure 13 shows the connections of En/FCCM without using the external resistor divider. Figure 14 and Figure  
15 illustrate the theoretical start-up waveforms.  
PVin  
PVin  
Vcc  
REN1  
En/FCCM  
TDM3885  
REN2  
Figure 12  
Single supply configuration with adjustable PVin UVLO and optional FCCM or DEM  
PVin  
PVin  
Vcc  
En/FCCM  
TDM3885  
Figure 13  
Single supply configuration with FCCM operation  
PVin=Enable=12 V  
Vcc  
En Threshold  
0V  
Vcc_UVLO  
0V  
FB  
90% of Vref  
0V  
PGood  
0V  
PGood stays at logic low  
Figure 14  
Start-up with PVin and Enable tied together. PGood is pulled up to an external supply  
Final Datasheet  
14 of 37  
V 2.3  
2022-07-11  
 
 
 
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Theory of Operation  
PVin=12 V  
Vcc  
Vcc_UVLO  
0V  
0V  
Enable > 1.2 V  
Fb  
0V  
90% of Vref  
PGood  
0V  
0V  
PGood stays at logic low  
Figure 15  
Start-up with Enable up after PVin. PGood is pulled up to an external supply  
4.6  
Pre-Bias Start-Up  
The TDM3885 is able to start up into a pre-charged output without causing oscillation and disturbances of the  
output voltage. When TDM3885 starts up with a pre-biased output voltage, both control FET and Synch FET are  
kept off until the internal soft-start signal exceeds the FB voltage.  
During pre-bias start-up, the PGood signal is held low until the first gate signal for the control FET is generated.  
4.7  
Over-Current Protection  
TDM3885 has three selectable Over-Current Protection (OCP) thresholds determined by the voltage level of the  
OCSet pin. The OCP is performed by sensing the current through the RDS(on) of the Sync MOSFET. This method  
enhances the converter’s efficiency, reduces cost by eliminating a current sense resistor and mitigates layout-  
related noise issues. The current limit is pre-set internally and is thermally compensated to minimize OCP limit  
variation.  
The OCP circuit senses the current of the Sync MOSFET 100 ns after the Control FET is turned off. If the current  
exceeds the OCP limit, PGood and soft start signals will be pulled low. The Sync FET remains on until the  
current is decreased to zero. The TDM3885 then enters hiccup mode. Both Control FET and Sync FET remain off  
during the hiccup blanking time. After the hiccup blanking time expires, the TDM3885 will try to restart. If the  
over-current fault is still detected, the preceding actions will be repeated. The TDM3885 stays in hiccup mode  
until the over-current fault is removed. Figure 16 illustrates the operation of OCP.  
Final Datasheet  
15 of 37  
V 2.3  
2022-07-11  
 
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Theory of Operation  
100ns  
Current Limit  
Inductor  
Current  
Hiccup  
Blanking time  
HDrv  
LDrv  
PGood  
Figure 16  
Illustration of OCP with hiccup Mode  
4.8  
Minimum On-Time and Off-Time  
The minimum on-time refers to the shortest time for control FET to be reliably turned on. Typically, it is 20 ns.  
In both DEM and FCCM, the Sync FET stays on for at least 240 ns, which is referred to as the minimum off-time.  
The minimum off-time is needed to charge the bootstrap capacitor and to monitor the current of the Sync FET  
for OCP.  
4.9  
Over-Voltage Protection  
The TDM3885 senses voltage at the FB pin for Over-Voltage Protection (OVP). When FB voltage exceeds the OVP  
threshold for longer than the output OV protection delay ꢋtypical value is ꢂ μsꢌ, the OVP circuitry is tripped. The  
Control FET is turned off immediately and PGood is pulled low. The Sync FET is turned on to discharge the  
output capacitor until the FB voltage drops below the OVP threshold.  
Once OVP is tripped, the Control FET remains latched off until a reset is performed by cycling either PVin voltage  
or the Enable signal. Figure 17 illustrates the operation of over-voltage protection.  
Final Datasheet  
16 of 37  
V 2.3  
2022-07-11  
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Theory of Operation  
HDrv  
LDrv  
120%Vref  
115%Vref  
Vref  
90%Vref  
FB  
PGood  
OVP delay =5us  
Figure 17  
Operation of Over-Voltage Protection  
4.10  
PGood  
The PGood pin is the open drain of an internal NFET and needs to be externally pulled high through a pull-up  
resistor, e.g., ꢈꢍ.ꢍ kΩ.  
The PGood signal is high when three criteria are satisfied:  
1. Enable and VCC UVLO voltage are above their respective thresholds;  
2. No fault occurs including over-current, over-voltage and over-temperature;  
3. Output voltage (Vout) is in regulation.  
In order to detect if Vout is in regulation, the PGood comparator continuously monitors the FB pin voltage. When  
FB voltage ramps up above the upper threshold (90% of Vref), the PGood signal is pulled high. When FB voltage  
ramps down below the lower threshold (85% of Vref), the PGood signal is pulled low. Figure 18 illustrates the  
PGood upper and lower thresholds.  
For pre-biased start-up, PGood is not active until the first gate signal of the control FET is initiated.  
TDM3885 also integrates a PFET in parallel with the PGood NFET, as shown in Figure 4. This PFET allows the  
PGood signal to stay at logic low when the bias voltage of TDM3885 is low, and/or if the En is low. Please refer  
to Figure 14 and Figure 15.  
Final Datasheet  
17 of 37  
V 2.3  
2022-07-11  
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Theory of Operation  
90%Vref  
90%Vref  
Vref  
85%Vref  
FB  
PGood  
Figure 18  
Power Good Thresholds  
4.11  
Over-Temperature Protection  
Temperature sensing is provided by the TDM3885. The Over-Temperature Protection (OTP) threshold is  
typically set to 145 °C. When the OTP threshold is exceeded, both MOSFETs are turned off and the internal soft  
start is reset. The internal LDO is still in operation when OTP is tripped.  
Automatic restart is initiated when the sensed temperature drops below the OTP threshold. The hysteresis of  
the OTP threshold is 25 °C.  
Final Datasheet  
18 of 37  
V 2.3  
2022-07-11  
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Application  
5
Application  
5.1  
Application Information  
The following example is a typical application for TDM3885. The application circuit is shown in Figure 19.  
PVin =12 V  
V0 = 3.3 V  
I0 = 4 A  
V0 Ripple voltage = ± 1% of V0  
Transient response = ± 3% of V0 for 30% Load transient  
ENABLE TDM3885  
To enable TDM3885 in Diode Emulation Mode (DEM), the voltage at the EN/FCCM pin should be higher than the  
Enable threshold, but lower than FCCM stop threshold. If a resistor divider is used to generate the Enable  
voltage from PVin as shown in Figure 12, the resistor divider can be selected as follows.  
REN 2  
PVin(min)  
1.36  
REN1 + REN 2  
REN 2  
PVin(max)  
2.3  
REN1 + REN 2  
Where PVin (min) and PVin (max) are the minimum and maximum input voltages respectively.  
To enable TDM3885 in FCCM, the voltage at EN/FCCM pin should be no less than the FCCM start threshold. The  
EN/FCCM pin can be connected directly to PVin as shown in Figure 13, or a resistor divider can be used, Figure  
12. The following criterion should be satisfied when selecting the resistor divider for FCCM.  
REN 2  
PVin(min)  
2.6  
REN1 + REN 2  
INPUT CAPACITOR SELECTION  
Without input capacitors, the pulse current of the control FET is provided directly from the input power supply.  
Due to the impedance on the input power supply cabling, the pulse current can disturb the input voltage and  
potential EMI issues can result. The input capacitors filter the pulse current of the control FET, reducing these  
risks and resulting in almost constant current from the input supply.  
The input capacitors should be selected to tolerate the input pulse current, and to reduce input voltage ripple.  
The RMS value of the input ripple current can be expressed as:  
IRMS = I0 D(1D)  
V0  
D =  
Vin  
Where IRMS is the RMS value of the input capacitor current. I0 is the output current. D is the duty ratio.  
Final Datasheet  
19 of 37  
V 2.3  
2022-07-11  
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Application  
To meet the requirement of the input ripple voltage, the minimum input capacitance can be calculated as  
follows.  
I0 D(1D)  
Cin(min)  
fsw  V  
in(max)  
Where ΔVin(max) is the maximum allowable peak-to-peak input ripple voltage.  
Ceramic capacitors are recommended as input capacitors due to low ESR, ESL and high RMS current capability.  
In addition, a bulk capacitor is recommended if the input supply is not located close to the voltage regulator.  
OUTPUT CAPACITOR SELECTION  
To ensure loop stability, a minimum of one 22 µF output capacitor is suggested. The voltage ripple and  
transient requirements determine the output capacitor selection.  
The following formula calculates the peak-to-peak output voltage ripple due to the inductor ripple current  
charging the output capacitor.  
iL max  
V0 =  
8C0 fsw  
Therefore,  
iL max  
C0   
8 V0min fsw  
Where ΔV0min is the minimum allowable peak-peak output ripple voltage. ΔiLmax is the maximum inductor ripple  
current.  
The ESR and ESL of the output capacitors, as well as the parasitic resistance or inductance due to PCB layout,  
can also contribute to the output voltage ripple. For most applications, it is suggested to use Multi-Layer  
Ceramic Capacitors (MLCC) for their low ESR, ESL and small size.  
To meet the transient response requirements, the output capacitors should also meet the following criterion.  
L I02max  
C0   
2 V0L _ max V0  
Where ΔV0L_max is the max allowable Vo deviation during the load transient. ΔI0max is the maximum step load  
current. Please note that the impact of ESL, ESR, control loop response, transient load slew rate, and PWM  
latency is not considered in the calculation shown above. Extra capacitance is usually needed to meet transient  
response requirements.  
OUTPUT VOLTAGE PROGRAMMING  
Output voltage can be programmed with an external voltage divider. The FB voltage is compared to an internal  
reference voltage of 0.5 V. The divider ratio is set to provide 0.5 V at the FB pin when the output is at its desired  
value. The calculation of the feedback resistor divider is shown below.  
R1  
V0 = Vref (1+  
)
R2  
Final Datasheet  
20 of 37  
V 2.3  
2022-07-11  
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Application  
The bottom feedback resistor is recommended not to exceed 20 kꢊ, in order to avoid interference with the  
internal circuitry.  
FEEDFORWARD CAPACITOR  
A small MLCC capacitor Cff, can be placed in parallel with the top feedback resistor to improve transient  
response. As a general rule of thumb, for a fixed top feedback resistor of 39.2 k, 100 pF can be used for Cff.  
BOOTSTRAP CAPACITOR  
For most applications, a 0.1 µF ceramic capacitor is recommended for the bootstrap capacitor placed between  
the SW node and the Boot pin.  
VCC BYPASS CAPACITOR  
A 2.2 µF ceramic capacitor should be placed between VCC and PGND.  
5.2  
Typical Application Diagrams  
BOOST  
SW  
0.1µF  
PVin  
12V  
PVin  
49.9k  
EN/FCCM  
2x 22µF  
VO  
16.7k  
VOUT  
TDM3885  
100pF  
47µF 47µF 47µF  
VCC  
PG  
2.2µF  
39.2k  
49.9k  
FB  
OCSET1  
6.98k  
OCSET  
OCSET2  
OCSET3  
Vout = 3.3V  
Iout = 4A  
Fsw = 600kHz  
Op. Mode = FCCM  
PGND  
AGND  
Figure 19  
Application Diagram PVin = 12 V, Vout = 3.3 V, Iout = 4 A, FCCM  
Final Datasheet  
21 of 37  
V 2.3  
2022-07-11  
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Application  
BOOST  
0.1µF  
PVin  
12V  
PVin  
SW  
49.9k  
EN/FCCM  
2x 22µF  
VO  
10k  
VOUT  
TDM3885  
100pF  
47µF 47µF 47µF  
VCC  
PG  
2.2µF  
39.2k  
6.98k  
49.9k  
FB  
OCSET1  
OCSET  
OCSET2  
OCSET3  
Vout = 3.3V  
Iout = 0A  
Fsw = 600kHz  
Op. Mode = DEM  
PGND  
AGND  
Figure 20  
Application Diagram PVin = 12 V, Vout = 3.3 V, Iout = 0 A, DEM  
Final Datasheet  
22 of 37  
V 2.3  
2022-07-11  
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Application  
5.3  
Recommended configurations  
Table 6 lists recommended configurations for a few commonly used output voltages.  
Table 6  
PVin (V)  
Recommended configurations  
Vout (V)  
Upper FB  
Lower FB  
Cff (pF)  
Minimum Co Maximum Co  
Resistor kΩ  
Resistor kΩ  
ꢀμFꢁ  
ꢀμFꢁ  
Note 9  
Note 9  
5.0  
3.3  
2.5  
1.8  
1.2  
1.0  
3.3  
2.5  
1.8  
1.2  
1.0  
39.2  
39.2  
39.2  
39.2  
16.5  
16.5  
39.2  
39.2  
39.2  
16.5  
16.5  
4.32  
6.98  
9.76  
15.0  
11.8  
16.5  
6.98  
9.76  
15.0  
11.8  
16.5  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
3 x 47µF  
3 x 47µF  
3 x 47µF  
3 x 47µF  
3 x 47µF  
3 x 47µF  
3 x 47µF  
3 x 47µF  
3 x 47µF  
3 x 47µF  
3 x 47µF  
14 x 47µF  
14 x 47µF  
12 x 47µF  
10 x 47µF  
10 x 47µF  
10 x 47µF  
14 x 47µF  
12 x 47µF  
10 x 47µF  
10 x 47µF  
10 x 47µF  
12  
5
Note:  
8. All resistors are 0402, E96 series, 1% standard  
9. The output capacitors are selected to meet ±1% output ripple voltage and ±3% undershoot/overshoot at 30% of max load transient  
with 2.5A/µs slew rate. Please note that 47µF is rated capacitance at 0V DC bias voltage.  
10. Application should not exceed the max operating conditions defined in Table 4.  
Final Datasheet  
23 of 37  
V 2.3  
2022-07-11  
 
 
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Application  
5.4  
Typical Operating Waveforms  
PVin = 12.0V, Vo=3.3V, Io=0A - 4A, No airflow, room temperature  
Figure 21 Start-up, PVin =12V, Vout = 3.3V, Iout = 0A, FCCM. CH1 = Vout, CH2 = PVin, CH3 = PGOOD, CH4 = VCC, CH5 =  
Enable, CH6 = VFEEDBACK  
Figure 22 Start-up, PVin =12V, Vout = 3.3V, Iout = 4A, FCCM. CH1 = Vout, CH2 = PVin, CH3 = PGOOD, CH4 = VCC, CH5 =  
Enable, CH6 = VFEEDBACK  
Final Datasheet  
24 of 37  
V 2.3  
2022-07-11  
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Application  
Figure 23 Start-up Prebias [1V], PVin =12V, Vout = 3.3V, Iout = 0A, FCCM. CH1 = Vout, CH2 = PVin, CH3 = PGOOD, CH4 =  
VCC, CH5 = Enable, CH6 = VFEEDBACK  
Figure 24  
OVP, PVin =12V, Vout = 3.3V, Iout = 0A, FCCM. CH1 = Vout, CH2 = PVin, CH3 = PGOOD, CH4 = VCC, CH5 =  
Enable, CH6 = VFEEDBACK  
Final Datasheet  
25 of 37  
V 2.3  
2022-07-11  
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Application  
Figure 25 Short Circuit, PVin =12V, Vout = 3.3V, Iout = 4A, FCCM. CH1 = Vout, CH2 = PVin, CH3 = PGOOD, CH4 = VCC, CH5  
= Enable, CH6 = VFEEDBACK  
Figure 26 Vout ripple, PVin =12V, Vout = 3.3V, Iout = 4A, FCCM. CH1 = Vout  
Final Datasheet  
26 of 37  
V 2.3  
2022-07-11  
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Application  
Figure 27 SW node, PVin =12V, Vout = 3.3V, Iout = 0A, FCCM. CH1 = SW  
Figure 28 Transient Response, PVin =12V, Vout = 3.3V, Iout = 0A to 4A, FCCM. CH1 = Vout, CH2 = Iout. Slew rate =  
5A/µS.  
Final Datasheet  
27 of 37  
V 2.3  
2022-07-11  
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Marking Information  
6
Marking Information  
Figure 29  
Package Marking, Left (Front side), Right (Rear side)  
Final Datasheet  
28 of 37  
V 2.3  
2022-07-11  
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Tape and Reel Information  
7
Tape and Reel Information  
Figure 30  
Pin 1 orientation in the tape  
Final Datasheet  
29 of 37  
V 2.3  
2022-07-11  
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Mechanical Pad Drawing  
8
Mechanical Pad Drawing  
Figure 31  
Mechanical Pad Drawing (all dimensions in mm), Tolerances are as per ISO 2768-mK.  
Final Datasheet  
30 of 37  
V 2.3  
2022-07-11  
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
PCB Metal and Component Placement  
9
PCB Metal and Component Placement  
Figure 32  
PCB Metal Pad Sizing and Spacing (all dimensions in mm)  
9.1  
Reflow guideline  
Infineon does not recommend specific reflow profiles for our products. Multiple factors influence the reflow  
profile: PCB size, thermal mass of the board, layers, copper thickness, etc. The optimum reflow profile should  
be generated initially by referring to the solder paste manufacturer’s technical datasheet, and then should be  
further optimized for the assembly.  
For Maximum reflow temperature and time according to J-STD-020 standard, please refer to the reflow  
soldering section in the following application note.  
For further information, please refer to ꢃRecommendations for Board Assembly of Infineon Packages with Land  
Grid Array Configurationꢄ application note.  
Final Datasheet  
31 of 37  
V 2.3  
2022-07-11  
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Stencil Design  
10  
Stencil Design  
Figure 33  
Stencil Pad Spacing (all dimensions in mm)  
Note:  
11. Contact Infineon Technologies to receive an electronic PCB Library file in your preferred format.  
12. This evaluation board is not according to the JEDEC standard. Evaluation Board Description: DB310 REV5B - The PCB is a six-layer  
board (40 x 40 mm) using FR4 material. Top and bottom layers use 0.5 oz. base copper plus 1.5 oz. plating. Inner layers use 2 oz. copper.  
The PCB thickness is 1.57 mm. Layer stack-up is top GND1 GND2 signal GND3 bottom.  
Final Datasheet  
32 of 37  
V 2.3  
2022-07-11  
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Layout Recommendations  
11  
Layout Recommendations  
The pinout of TDM3885 makes it easy to route the PCB layout. General PCB design guidelines should be  
followed to achieve the best performance.  
Bypass capacitors, including input/output capacitors and Vcc bypass capacitor, should be placed as close as  
possible to the corresponding pins.  
SW node area should be minimized and be limited to the top layer only.  
Output voltage should be sensed with a separate trace directly from the output capacitor. The sensing trace  
should be away from the inductor and SW node to avoid interference from switching noise.  
The exposed pad can be connected to the power ground plane through via holes to aid thermal dissipation.  
Wide copper polygons are best practice for input and output power connections. This provides power loss  
reduction and improved thermal performance. Sufficient via holes should be used to connect the power  
traces between different layers.  
Figure 34  
Demo Board Layout Top layer  
Figure 35  
Demo Board Layout PGND pads  
Final Datasheet  
33 of 37  
V 2.3  
2022-07-11  
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Layout Recommendations  
Figure 36  
Demo Board Layout Signal layer  
Figure 37  
Demo Board Layout Bottom layer  
Final Datasheet  
34 of 37  
V 2.3  
2022-07-11  
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Environmental Qualifications  
12  
Environmental Qualifications  
Table 7  
Environmental Qualifications  
Qualification Level  
Industrial  
Moisture Sensitivity Level  
3.1 mm x 3.8 mm  
PG-LGA-15-2  
JEDEC Level 3 @ 260 °C  
ESD  
[HBM] Human Body Model  
[CDM] Charge Device Model  
RoHS6 Compliant  
ANSI/ESDA/JEDEC JS-001, Class 2, (2000V to <4000V)  
ANSI/ESDA/JEDEC JS-002, Class C2A (500 to <750)  
Yes  
† Qualification standards can be found at Infineon Technologies web site: www.infineon.com  
Final Datasheet  
35 of 37  
V 2.3  
2022-07-11  
TDM3885 IPOL  
4 A IPOL Synchronous Buck Voltage Regulator with Integrated Inductor  
Evaluation Board and Support Documentation  
13  
Evaluation Board and Support Documentation  
Table 8  
TDM3883 Evaluation Boards and User Guides  
Evaluation board  
Specifications  
Website Address  
www.infineon.com/eval-tdm3885-3.3vout  
12 V±10%, 3.3 V, 4 A  
EVAL_TDM3883_3.3Vout  
Final Datasheet  
36 of 37  
V 2.3  
2022-07-11  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on the product, technology,  
Edition 2022-07-11  
event be regarded as a guarantee of conditions or delivery terms and conditions and prices please  
Published by  
characteristics ꢋꢃBeschaffenheitsgarantieꢄꢌ .  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
Infineon Technologies AG  
81726 München, Germany  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement  
of intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may  
contain dangerous substances. For information on  
the types in question please contact your nearest  
Infineon Technologies office.  
© 2022 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about this  
document?  
In addition, any information given in this document  
is subject to customer’s compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and  
standards concerning customer’s products and any  
use of the product of Infineon Technologies in  
customer’s applications.  
Except as otherwise explicitly approved by Infineon  
Technologies in  
a written document signed by  
authorized  
representatives  
of  
Infineon  
Email: erratum@infineon.com  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of  
the product or any consequences of the use thereof  
can reasonably be expected to result in personal  
injury.  
Document reference  
ifx1  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  
4ꢀAꢀIPOLꢀSynchronousꢀBuckꢀVoltageꢀRegulatorꢀwithꢀIntegratedꢀInductor  
TDM3885  
RevisionꢀHistory  
TDM3885  
Revision:ꢀ2022-07-20,ꢀRev.ꢀ2.3  
Previous Revision  
Revision Date  
Subjects (major changes since last revision)  
Initial release  
2.0  
2.1  
2022-03-09  
(1) Table 3, update Rth_JA = 40.5 °C/W, Psi_JT = 8.0°C/W, Psi_JB = 12.0°C/W. (2)  
Update section 5.3 title, and table 6: Cff, Cout_min and Cout_max. (3) Add section 9.1,  
Reflow guideline.  
2022-04-29  
2.2  
2.3  
Ordering information update. Tape & reel qty = 2500 units.  
Fix page footer typo.  
2022-07-06  
2022-07-20  
Trademarks  
Allꢀreferencedꢀproductꢀorꢀserviceꢀnamesꢀandꢀtrademarksꢀareꢀtheꢀpropertyꢀofꢀtheirꢀrespectiveꢀowners.  
WeꢀListenꢀtoꢀYourꢀComments  
Anyꢀinformationꢀwithinꢀthisꢀdocumentꢀthatꢀyouꢀfeelꢀisꢀwrong,ꢀunclearꢀorꢀmissingꢀatꢀall?ꢀYourꢀfeedbackꢀwillꢀhelpꢀusꢀtoꢀcontinuously  
improveꢀtheꢀqualityꢀofꢀthisꢀdocument.ꢀPleaseꢀsendꢀyourꢀproposalꢀ(includingꢀaꢀreferenceꢀtoꢀthisꢀdocument)ꢀto:  
erratum@infineon.com  
Publishedꢀby  
InfineonꢀTechnologiesꢀAG  
81726ꢀMünchen,ꢀGermany  
©ꢀ2022ꢀInfineonꢀTechnologiesꢀAG  
AllꢀRightsꢀReserved.  
LegalꢀDisclaimer  
Theꢀinformationꢀgivenꢀinꢀthisꢀdocumentꢀshallꢀinꢀnoꢀeventꢀbeꢀregardedꢀasꢀaꢀguaranteeꢀofꢀconditionsꢀorꢀcharacteristicsꢀ  
(“Beschaffenheitsgarantie”)ꢀ.  
Withꢀrespectꢀtoꢀanyꢀexamples,ꢀhintsꢀorꢀanyꢀtypicalꢀvaluesꢀstatedꢀhereinꢀand/orꢀanyꢀinformationꢀregardingꢀtheꢀapplicationꢀofꢀthe  
product,ꢀInfineonꢀTechnologiesꢀherebyꢀdisclaimsꢀanyꢀandꢀallꢀwarrantiesꢀandꢀliabilitiesꢀofꢀanyꢀkind,ꢀincludingꢀwithoutꢀlimitation  
warrantiesꢀofꢀnon-infringementꢀofꢀintellectualꢀpropertyꢀrightsꢀofꢀanyꢀthirdꢀparty.  
Inꢀaddition,ꢀanyꢀinformationꢀgivenꢀinꢀthisꢀdocumentꢀisꢀsubjectꢀtoꢀcustomer’sꢀcomplianceꢀwithꢀitsꢀobligationsꢀstatedꢀinꢀthis  
documentꢀandꢀanyꢀapplicableꢀlegalꢀrequirements,ꢀnormsꢀandꢀstandardsꢀconcerningꢀcustomer’sꢀproductsꢀandꢀanyꢀuseꢀofꢀthe  
productꢀofꢀInfineonꢀTechnologiesꢀinꢀcustomer’sꢀapplications.  
Theꢀdataꢀcontainedꢀinꢀthisꢀdocumentꢀisꢀexclusivelyꢀintendedꢀforꢀtechnicallyꢀtrainedꢀstaff.ꢀItꢀisꢀtheꢀresponsibilityꢀofꢀcustomer’s  
technicalꢀdepartmentsꢀtoꢀevaluateꢀtheꢀsuitabilityꢀofꢀtheꢀproductꢀforꢀtheꢀintendedꢀapplicationꢀandꢀtheꢀcompletenessꢀofꢀtheꢀproduct  
informationꢀgivenꢀinꢀthisꢀdocumentꢀwithꢀrespectꢀtoꢀsuchꢀapplication.  
Information  
Forꢀfurtherꢀinformationꢀonꢀtechnology,ꢀdeliveryꢀtermsꢀandꢀconditionsꢀandꢀpricesꢀpleaseꢀcontactꢀyourꢀnearestꢀInfineon  
TechnologiesꢀOfficeꢀ(www.infineon.com).  
Warnings  
Dueꢀtoꢀtechnicalꢀrequirements,ꢀcomponentsꢀmayꢀcontainꢀdangerousꢀsubstances.ꢀForꢀinformationꢀonꢀtheꢀtypesꢀinꢀquestion,  
pleaseꢀcontactꢀtheꢀnearestꢀInfineonꢀTechnologiesꢀOffice.  
TheꢀInfineonꢀTechnologiesꢀcomponentꢀdescribedꢀinꢀthisꢀDataꢀSheetꢀmayꢀbeꢀusedꢀinꢀlife-supportꢀdevicesꢀorꢀsystemsꢀand/or  
automotive,ꢀaviationꢀandꢀaerospaceꢀapplicationsꢀorꢀsystemsꢀonlyꢀwithꢀtheꢀexpressꢀwrittenꢀapprovalꢀofꢀInfineonꢀTechnologies,ꢀifꢀa  
failureꢀofꢀsuchꢀcomponentsꢀcanꢀreasonablyꢀbeꢀexpectedꢀtoꢀcauseꢀtheꢀfailureꢀofꢀthatꢀlife-support,ꢀautomotive,ꢀaviationꢀand  
aerospaceꢀdeviceꢀorꢀsystemꢀorꢀtoꢀaffectꢀtheꢀsafetyꢀorꢀeffectivenessꢀofꢀthatꢀdeviceꢀorꢀsystem.ꢀLifeꢀsupportꢀdevicesꢀorꢀsystemsꢀare  
intendedꢀtoꢀbeꢀimplantedꢀinꢀtheꢀhumanꢀbodyꢀorꢀtoꢀsupportꢀand/orꢀmaintainꢀandꢀsustainꢀand/orꢀprotectꢀhumanꢀlife.ꢀIfꢀtheyꢀfail,ꢀitꢀis  
reasonableꢀtoꢀassumeꢀthatꢀtheꢀhealthꢀofꢀtheꢀuserꢀorꢀotherꢀpersonsꢀmayꢀbeꢀendangered.  
38  
Rev.ꢀ2.3,ꢀꢀ2022-07-20  

相关型号:

TDM476K25CB

Tantalum Capacitors
SHARMA

TDMA

DIN Timers TD 22.5mm DIN rail mounting Electronic Timers
ETC

TDMB

DIN Timers TD 22.5mm DIN rail mounting Electronic Timers
ETC

TDMC

DIN Timers TD 22.5mm DIN rail mounting Electronic Timers
ETC

TDML110DL

Time Delay Relays DELAY-ON-MAKE
LITTELFUSE

TDML120AL

Time Delay Relays DELAY-ON-MAKE
LITTELFUSE

TDML12DL

Time Delay Relays DELAY-ON-MAKE
LITTELFUSE

TDN1-1210WI

DC/DC Converter
TRACOPOWER

TDN1-1210WISM

DC/DC Converter
TRACOPOWER

TDN1-1211WI

DC/DC Converter
TRACOPOWER

TDN1-1211WISM

DC/DC Converter
TRACOPOWER

TDN1-1212WI

DC/DC Converter
TRACOPOWER