TDA5240 [INFINEON]

看似矛盾的组合正是接收器设计所面临的日益严苛的要求:远距离、低能耗、灵活适应客户要求。您认为这需要投入大量开发精力,在设计中额外增加昂贵的器件?全新高灵敏度、低功率接收器系列 SmartLEWIS RX+ 帮您解决这一难题。SmartLEWIS RX+ 系列产品包括 TDA5240、TDA5235 和 TDA5225,需要极少外部器件即可满足所有要求。;
TDA5240
型号: TDA5240
厂家: Infineon    Infineon
描述:

看似矛盾的组合正是接收器设计所面临的日益严苛的要求:远距离、低能耗、灵活适应客户要求。您认为这需要投入大量开发精力,在设计中额外增加昂贵的器件?全新高灵敏度、低功率接收器系列 SmartLEWIS RX+ 帮您解决这一难题。SmartLEWIS RX+ 系列产品包括 TDA5240、TDA5235 和 TDA5225,需要极少外部器件即可满足所有要求。

文件: 总284页 (文件大小:13341K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, V4.0, February 2010  
SmartLEWISTM RX+  
TDA5240  
Enhanced Sensitivity Multi-Channel  
Quad-Configuration Receiver  
with Digital Baseband Processing  
Wireless Control  
N e v e r s t o p t h i n k i n g .  
Edition February 19, 2010  
Published by Infineon Technologies AG,  
Am Campeon 1 - 12  
85579 Neubiberg, Germany  
© Infineon Technologies AG February 19, 2010.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as a guarantee of  
characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office in Germany or the Infineon Technologies Companies and our Infineon Technologies  
Representatives worldwide (www.infineon.com).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
Data Sheet, V4.0, February 2010  
SmartLEWISTM RX+  
TDA5240  
Enhanced Sensitivity Multi-Channel  
Quad-Configuration Receiver  
with Digital Baseband Processing  
Wireless Control  
N e v e r s t o p t h i n k i n g .  
TDA5240  
Revision Number:  
Revision History:  
010  
2010-02-19  
V4.0  
Previous Version:  
Page  
TDA5240_V3.4  
Subjects (major changes since last revision)  
Update of Figure 9  
Page 27  
Page 29  
Update of Figure 10  
Page 31  
AFC limitation added  
Page 33  
AGC setting proposal added  
Page 34  
New Section 2.4.6.5 ADC added  
Additional information on RSSIPRX register inserted  
Signal and Noise Detector Procedure adapted  
x_CDRRI register recommendation changed  
Data Slicer Modes adapted; limitation added  
Update of Figure 41  
Page 36  
Page 41  
Page 45  
Page 49, 52, 56  
Page 69  
Page 70  
Update of Figure 42  
Page 78  
Additional hint on clock and data recovery algorithm of the user  
software inserted  
Page 84  
PLDLEN limitation added  
Page 86  
Limitation for ISx readout and Burst-read function added  
Limitation for Burst-read function added  
Description of “Parallel Wake-up Search” adapted  
Additional hints added  
Page 88  
Page 107  
Page 125  
Page 127  
Page 130  
Page 138 f  
Page 138  
Page 141 ff  
Page 147  
Adaption of Section 4.1  
New item C7 added  
Comments added for items I6, I7, I8, I9, J11, J12  
Item J1 updated  
General test conditions noted for parameters K, L and M  
BOM components C7, C8, L1, R2 and R3 updated  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
Wirelesscontrol@infineon.com  
TDA5240  
Page  
Table of Contents  
1
Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
1.1  
1.2  
1.3  
2
2.1  
2.2  
2.3  
2.4  
2.4.1  
2.4.2  
2.4.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Pin Definition and Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Functional Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Block Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
RF/IF Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Crystal Oscillator and Clock Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Sigma-Delta Fractional-N PLL Block . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
PLL Dividers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Digital Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
ASK and FSK Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
ASK Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
FSK Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Automatic Frequency Control Unit (AFC) . . . . . . . . . . . . . . . . . . . . . 28  
Digital Automatic Gain Control Unit (AGC) . . . . . . . . . . . . . . . . . . . . 30  
Analog to Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
RSSI Peak Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Digital Baseband (DBB) Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Data Filter and Signal Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Encoding Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Clock and Data Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Data Slicer and Line Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Wake-Up Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Frame Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Message ID Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
RUNIN, Synchronization Search Time and Inter-Frame Time . . . . . . 66  
Power Supply Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Chip Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
System Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Interfacing to the TDA5240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Receive FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Digital Output Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Interrupt Generation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
2.4.4  
2.4.5  
2.4.5.1  
2.4.5.2  
2.4.6  
2.4.6.1  
2.4.6.2  
2.4.6.3  
2.4.6.4  
2.4.6.5  
2.4.7  
2.4.8  
2.4.8.1  
2.4.8.2  
2.4.8.3  
2.4.8.4  
2.4.8.5  
2.4.8.6  
2.4.8.7  
2.4.8.8  
2.4.9  
2.4.9.1  
2.4.9.2  
2.5  
2.5.1  
2.5.1.1  
2.5.1.2  
2.5.2  
2.5.3  
2.5.4  
Data Sheet  
5
V4.0, 2010-02-19  
TDA5240  
Page  
Table of Contents  
2.5.5  
2.5.5.1  
2.5.6  
2.6  
2.6.1  
Digital Control (4-wire SPI Bus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Chip Serial Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
System Management Unit (SMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Master Control Unit (MCU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Run Mode Slave (RMS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
HOLD Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
SLEEP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Self Polling Mode (SPM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Automatic Modulation Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Multi-Channel in Self Polling Mode . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Run Mode Self Polling (RMSP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Polling Timer Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Self Polling Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Constant On-Off Time (COO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Fast Fall Back to SLEEP (FFB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Mixed Mode (MM, Const On-Off & Fast Fall Back to SLEEP) . . . . . 120  
Permanent Wake-Up Search (PWUS) . . . . . . . . . . . . . . . . . . . . . . . 121  
Active Idle Period Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Definition of Bit Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Definition of Manchester Duty Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Definition of Power Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Symbols of SFR Registers and Control Bits . . . . . . . . . . . . . . . . . . . . 126  
Digital Control (SFR Registers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
SFR Address Paging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
SFR Register List and Detailed SFR Description . . . . . . . . . . . . . . . . 127  
2.6.1.1  
2.6.1.2  
2.6.1.3  
2.6.1.4  
2.6.1.5  
2.6.1.6  
2.6.1.7  
2.6.1.8  
2.6.2  
2.6.2.1  
2.6.2.2  
2.6.2.3  
2.6.2.4  
2.6.2.5  
2.6.2.6  
2.7  
2.7.1  
2.7.2  
2.7.3  
2.7.4  
2.8  
2.8.1  
2.8.2  
3
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
3.1  
Configuration Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
4
4.1  
4.1.1  
4.1.2  
4.1.3  
4.2  
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
AC/DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Test Circuit - Evaluation Board v1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Test Board Layout, Evaluation Board v1.0 . . . . . . . . . . . . . . . . . . . . . . . 155  
Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
4.3  
4.4  
5
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Appendix - Registers Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Data Sheet  
6
V4.0, 2010-02-19  
TDA5240  
Product Description  
1
Product Description  
1.1  
Overview  
The IC is a low power ASK/FSK Receiver for the frequency bands 300-320, 425-450,  
863-870 and 902-928 MHz. Bi-phase modulation schemes, like Manchester, bi-phase  
mark, bi-phase space and differential Manchester are supported.  
The chip offers best-in-class sensitivity performance at a very high level of integration  
and needs only a few external components.  
The device is qualified to automotive quality standards and operates between -40 and  
+105°C at supply voltage ranges of 3.0-3.6 Volts or 4.5-5.5 Volts.  
The receiver is realized as a double down conversion super-heterodyne/low-IF  
architecture each with image rejection supplemented by digital signal processing in the  
baseband. A fully integrated Sigma-Delta Fractional-N PLL Synthesizer allows for high-  
resolution frequency generation and uses a crystal oscillator as the reference. The on-  
chip temperature sensor may be utilized for temperature drift compensation via the  
crystal oscillator.  
The digital baseband processing unit together with the high performance down converter  
is the key element for the exceptional sensitivity performance of the device which take it  
close to the theoretical top-performance limits. It comprises signal and noise detectors,  
matched data filter, clock and data recovery, data slicer and a format decoder. It  
demodulates the received ASK or FSK data stream independently and recovers the data  
clock out of the received data stream with very fast synchronization times which can then  
be either accessed via separate pins or used for further processing like frame  
synchronization and intermediate storage in the on-chip FIFO. The RSSI output signal is  
converted to the digital domain with an ADC. All these signals are accessible via the 4-  
wire SPI interface bus. Up to 4 pre-configured telegram formats can be stored into the  
device offering independent pre-processing of the received data to an extent not  
available till now. The down converter can be also configured in single-conversion mode  
at moderately reduced selectivity performance but at the advantage of omitting the IF  
ceramic filter.  
Data Sheet  
7
V4.0, 2010-02-19  
TDA5240  
Product Description  
1.2  
Features  
• Enhanced sensitivity receiver  
• Multi-band/Multi-Channel (300-320, 425-450, 863-870 and 902-928 MHz)  
• One crystal frequency for all supported frequency bands  
• 21-bit Sigma-Delta Fractional-N PLL synthesizer with high resolution of 10.5 Hz  
• Up to 4 parallel parameter sets for autonomous scanning and receiving from different  
sources reduces significantly host processor power consumption and system  
standby power consumption  
• Up to 12 different frequency channels are supported with 10.5 Hz resolution each  
• Autonomous receive mode leads to reduced noise of host processor and improved  
system performance  
• Ultrafast Wake-up on RSSI  
• Fast synchronization on incoming data stream typically within first 4 bits of a telegram  
• Selectable IF filter bandwidth and optional external filters possible  
• Double down conversion image reject mixer  
• ASK and FSK capability  
• Automatic Frequency Control (AFC) for carrier frequency offset compensation  
• Supports bi-phase line codes like Manchester, bi-phase mark/space and differential  
Manchester  
• NRZ data pre-processing capability  
• Digital base band receiver with clock synch, frame synch, format decoding and FIFO  
• Separate outputs for recovered data and clock  
• RSSI peak detectors  
• Wake-up generator and polling timer unit  
• Message ID scanning  
• Unique 32-bit serial number  
• On-chip temperature sensor  
• Integrated timer usable for external watch unit  
• Integrated 4-wire SPI interface bus  
• Supply voltage range 3.0 Volts to 3.6 Volts or 4.5 Volts to 5.5 Volts  
• Operating temperature range -40 to +105°C  
• ESD protection +/- 2 kV on all pins  
• Package PG-TSSOP-28  
1.3  
Applications  
• Remote keyless entry systems  
• Remote start applications  
• Tire pressure monitoring  
• Short range radio data transmission  
• Remote control units  
• Cordless alarm systems  
• Remote metering  
Data Sheet  
8
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2
Functional Description  
2.1  
Pin Configuration  
IFBUF_IN  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
IF_OUT  
VDDA  
RSSI  
PP3  
IFBUF_OUT  
GNDA  
3
IFMIX_INP  
IFMIX_INN  
VDD5V  
VDDD  
4
5
GNDRF  
LNA_INP  
LNA_INN  
T2  
6
7
TDA5240  
VDDD1V5  
GNDD  
8
9
T1  
PP0  
10  
11  
12  
13  
14  
SDO  
PP1  
SDI  
PP2  
SCK  
P_ON  
NCS  
XTAL2  
XTAL1  
Figure 1  
Pin-out  
Data Sheet  
9
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.2  
Pin Definition and Pin Functionality  
Pin Definition and Function  
Table 1  
Pin Pad name  
No.  
Equivalent I/O Schematic  
Function  
1
2
IFBUF_IN  
Analog input  
IF Buffer input  
VDDA  
VDDA  
330Ω  
IFBUF  
IFBUF_IN  
IFMIX_INN  
Note: Input is  
biased at VDDA/2  
VDDA  
330Ω  
MIX2BUF  
IFBUF_OUT  
Analog output  
IF Buffer output  
VDDA  
VDDA  
330Ω  
IFBUF_OUT  
IFBUF  
GNDA  
GNDA  
3
4
GNDA  
Analog ground  
IFMIX_INP  
Analog input  
+ IF mixer input  
VDDA  
VDDA  
Note: Input is  
biased at VDDA/2  
330Ω  
IFMIX_INP  
IFMIX_INN  
MIX2BUF  
5
6
IFMIX_INN  
VDD5V  
see schematic of Pin 1 and 4  
Analog input.  
- IF mixer input  
Analog input  
5 Volt supply input  
Data Sheet  
10  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Function  
Pin Pad name  
No.  
Equivalent I/O Schematic  
7
VDDD  
Analog input  
digital supply input  
VDD5V  
+
VReg  
-
=
VDDD  
VDDD  
GNDD  
8
VDDD1V5  
Analog output  
1.5 Volt voltage  
regulator  
+
VReg  
-
=
VDD1V5  
GNDD  
9
GNDD  
Digital ground  
10 PP0  
Digital output  
CLK_OUT,  
RX_RUN,  
VDD5V  
VDD5V  
NINT, LOW, HIGH,  
DATA,  
PPx  
SDO  
DATA_MATCHFIL,  
CH_DATA,  
CH_STR,  
RXD and RXSTR  
are programmable  
via a SFR (Special  
Function Register),  
default = CLK_OUT  
GNDD  
GNDD  
Data Sheet  
11  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Function  
Pin Pad name  
No.  
Equivalent I/O Schematic  
11 PP1  
12 PP2  
13 P_ON  
see schematic of Pin 10  
Digital output  
CLK_OUT,  
RX_RUN,  
NINT, LOW, HIGH,  
DATA,  
DATA_MATCHFIL,  
CH_DATA,  
CH_STR,  
RXD and RXSTR  
are programmable  
via a SFR,  
default = DATA  
see schematic of Pin 10  
Digital output  
CLK_OUT,  
RX_RUN,  
NINT, LOW, HIGH,  
DATA,  
DATA_MATCHFIL,  
CH_DATA,  
CH_STR,  
RXD and RXSTR  
are programmable  
via a SFR,  
default = NINT  
Digital input  
power-on reset  
VDD5V  
VDDD  
P_ON  
NCS  
SCK  
SDI  
GNDD  
GNDD  
Data Sheet  
12  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Function  
Pin Pad name  
No.  
Equivalent I/O Schematic  
14 XTAL1  
Analog input  
crystal oscillator  
input  
VDDD  
VDDD  
XTAL1  
....  
GNDD  
GNDD  
GNDD  
15 XTAL2  
Analog output  
crystal oscillator  
output  
VDDD  
VDDD  
XTAL2  
....  
GNDD  
GNDD  
GNDD  
16 NCS  
17 SCK  
18 SDI  
19 SDO  
20 T1  
see schematic of Pin 13  
see schematic of Pin 13  
see schematic of Pin 13  
see schematic of Pin 10  
Digital input  
SPI enable  
Digital input  
SPI clock  
Digital input  
SPI data in  
Digital output  
SPI data out  
Digital input,  
connect to Digital  
Ground  
21 T2  
Digital input,  
connect to Digital  
Ground  
Data Sheet  
13  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Function  
Pin Pad name  
No.  
Equivalent I/O Schematic  
22 LNA_INN  
Analog input  
- RF input  
LNA_INN  
LNA  
LNA  
GNDRF  
23 LNA_INP  
Analog input  
+ RF input  
LNA_INP  
GNDRF  
24 GNDRF  
25 PP3  
RF analog ground  
see schematic of Pin 10  
Digital output  
RX_RUN,  
NINT, LOW, HIGH,  
DATA,  
DATA_MATCHFIL,  
CH_DATA,  
CH_STR,  
RXD and RXSTR  
are programmable  
via a SFR,  
default = RX_RUN  
26 RSSI  
Analog output  
analog RSSI output/  
analog test pin  
ANA_TST  
VDDA  
VDDA  
500Ω  
RSSI  
GNDA  
GNDA  
Data Sheet  
14  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Function  
Pin Pad name  
No.  
Equivalent I/O Schematic  
27 VDDA  
Analog input  
Analog supply  
VDD5V  
+
VReg  
-
=
VDDA  
GNDA  
28 IF_OUT  
Analog output  
IF output  
VDDA  
VDDA  
330Ω  
IF_OUT  
PPFBUF  
GNDA  
GNDA  
Data Sheet  
15  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.3  
Functional Block Diagram  
IFMIX_INN (5)  
)
E L S F E R C (  
IFMIX_INP (4)  
IFBUF_OUT (2)  
IFBUF_IN (1)  
IF_OUT (28)  
GNDA (3)  
Figure 2  
TDA5240 Block Diagram1)  
1) The function on each PPx port pin can be programmed via SFR (see also Table 1). Default values are given  
in squared brackets in Figure 2.  
Data Sheet  
16  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.4  
Functional Block Description  
Architecture Overview  
2.4.1  
A fully integrated Sigma-Delta Fractional-N PLL Synthesizer covers the frequency bands  
300-320 MHz, 425-450 MHz, 863-870 MHz, 902-928 MHz with a high frequency  
resolution, using only one VCO running at around 3.6 GHz. This makes the IC most  
suitable for Multi-Band/Multi-Channel applications.  
For Multi-Channel applications a very good channel separation is essential. To achieve  
the necessary high sensitivity and selectivity a double down conversion super-  
heterodyne architecture is used. The first IF frequency is located around 10.7 MHz and  
the second IF frequency around 274 kHz. For both IF frequencies an adjustment-free  
image frequency rejection feature is realized. In the second IF domain the filtering is  
done with an on-chip third order bandpass polyphase filter. A multi-stage bandpass  
limiter completes the RF/IF path of the receiver. For Single-Channel applications with  
relaxed requirements to selectivity, a single down conversion low-IF scheme can be  
selected.  
For Multi-Channel systems where even higher channel separation is required, up to two  
(switchable) external ceramic (CER) filters can be used to improve the selectivity.  
An RSSI generator delivers a DC signal proportional to the applied input power and is  
also used as an ASK demodulator. Via an anti-aliasing filter this signal feeds an ADC  
with 10 bits resolution.  
The harmonic suppressed limiter output signal feeds a digital FSK demodulator. This  
block demodulates the FSK data and delivers an AFC signal which controls the divider  
factor of the PLL synthesizer.  
A digital receiver, which comprises RSSI peak detectors, a matched data filter, a clock  
and data recovery, a data slicer, a frame synchronization and a data FIFO, decodes the  
received ASK or FSK data stream. The recovered data and clock signals are accessible  
via 2 separate pins. The FIFO data buffer is accessible via the SPI bus interface.  
The crystal oscillator serves as the reference frequency for the PLL phase detector, the  
clock signal of the Sigma-Delta modulator and divided by two as the 2nd local oscillator  
signal. To accelerate the start up time of the crystal oscillator two modes are selectable:  
a Low Power Mode (with lower precision) and a High Precision Mode.  
Data Sheet  
17  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.4.2  
Block Overview  
The TDA5240 is separated into the following main blocks:  
RF / IF Receiver  
Crystal Oscillator and Clock Divider  
Sigma-Delta Fractional-N PLL Synthesizer  
ASK / FSK Demodulator incl. AFC, AGC and ADC  
RSSI Peak Detector  
Digital Baseband Receiver  
Power Supply Circuitry  
System Interface  
System Management Unit  
2.4.3  
RF/IF Receiver  
The receiver path uses a double down conversion super-heterodyne/low-IF architecture,  
where the first IF frequency is located around 10.7 MHz and the second IF frequency  
around 274 kHz. For the first IF frequency an adjustment-free image frequency rejection  
is realized by means of two low-side injected I/Q-mixers followed by a second order  
passive polyphase filter centered at 10.7 MHz (PPF). The I/Q-oscillator signals for the  
first down conversion are delivered from the PLL synthesizer. The frequency selection  
in the first IF domain is done by an external CER filter (optionally by two, decoupled by  
a buffer amplifier). For moderate or low cost applications, this ceramic filter can be  
substituted by a simple LC Pi-filter or completely by-passed using the receiver as a  
single down conversion low-IF scheme with 274 kHz IF frequency. The down conversion  
to the second IF frequency is done by means of two high-side injected I/Q-mixers  
together with an on-chip third order bandpass polyphase filter (PPF2 + BPF). The I/Q-  
oscillator signals for the second down conversion are directly derived by division of two  
from the crystal oscillator frequency. The bandwidth of the bandpass filter (BPF) can be  
selected from 50 kHz to 300 kHz in 5 steps. For a frequency offset of -150 kHz to -120  
kHz, the AFC (Automatic Frequency Control) function is mandatory. Activated AFC  
option might require a longer preamble sequence in the receive data stream.  
The receiver enable signal (RX_RUN) can be offered at each of the port pins to control  
external components. Whenever the receiver is active, the RX_RUN output signal is  
active. Active high or active low is configurable via PPCFG2 register.  
Data Sheet  
18  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
The frequency relations are calculated with the following formulas:  
fIF1 = 10.7MHz  
fIF1  
fIF2 = --------  
39  
fcrystal = fIF2 × 80  
fcrystal  
fLO2 = ----------------  
2
fLO1 = fcrystal × NFdivider  
RX  
FSK Data  
I-Mix  
I-  
Mix2  
LP  
harm sup  
digital  
FSK Demod  
CER-  
Filter  
IF1  
CER-  
RX  
Input  
Filter IF1  
10.7 MHz  
optional  
LNA  
RX  
ASK Data  
ASK /  
RSSI  
ADC  
10.7 MHz  
LP  
alias sup  
Q-  
Mix2  
RSSI Generator  
Q-Mix  
Divider  
: N  
IF  
IQ :2  
Attenuation  
adjust  
Channel Filter  
Bandwidth select  
AFC  
Filter  
N
ΣΔ Modulator  
Channel select  
Crystal  
oscil-  
lator  
Band select  
Multi Modulos  
Divider : N_FN  
VCO  
:1/:2/:3  
IQ Divider : 4  
PD  
Channel select  
LF select  
Front end  
control unit  
Channel Filter select  
IF Attenuation adjust  
RSSI Gain/Offset adjust  
Band select  
Loop  
Filter  
LF select  
Figure 3  
Block Diagram RF Section  
The front end of the receiver comprises an LNA, an image reject mixer and a digitally  
gain controlled buffer amplifier. This buffer amplifier allows the production spread of the  
on-chip signal strip, of external matching circuitry and RF SAW and ceramic IF filters to  
be trimmed. The second image reject mixer down converts the first IF to the second IF.  
Data Sheet  
19  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
The bandpass filter follows the subsequent formula:  
fcenter  
=
fcorner, low × fcorner, high  
Therefore asymmetric corner frequencies can be observed. The use of AFC results in  
more symmetry.  
A multi-stage bandpass limiter at a center frequency of 274 kHz completes the receiver  
chain. The -3dB corner frequencies of the bandpass limiter are typically at 75 kHz and  
at 520 kHz.  
An RSSI generator delivers a DC signal proportional to the applied input power and is  
also used as an ASK demodulator. Via a programmable anti-aliasing filter this signal is  
converted to the digital domain by means of a 10-bit ADC.  
The limiter output signal is connected to a digital FSK demodulator.  
The immunity against strong interference frequencies (so called blockers) is determined  
by the available filter bandwidth, the filter order and the 3rd order intercept point of the  
front end stages. For Single-Channel applications with moderate requirements to the  
selectivity the performance of the on-chip 3rd order bandpass polyphase filter might be  
sufficient. In this case no external filters are necessary and a single down conversion  
architecture can be used, which converts the input signal frequency directly to the 2nd IF  
frequency of 274 kHz.  
RX  
I-Mix  
FSK Data  
I-  
LP  
harm sup  
digital  
FSK Demod  
Mix2  
RX  
Input  
LNA  
RX  
ASK Data  
ASK /  
RSSI  
ADC  
LP  
alias sup  
Q-  
Mix2  
RSSI Generator  
Q-Mix  
IF  
Divider  
: N  
Attenuation  
adjust  
Channel Filter  
Bandwidth select  
1st LO  
2
nd LO  
Figure 4  
Single Down Conversion (SDC, no external filters required)  
For Multi-Channel applications or systems which demand higher selectivity the double  
down conversion scheme together with one or two external CER filters can be selected.  
The order of such ceramic filters is in a range of 3, so the selectivity is further improved  
and a better channel separation is guaranteed.  
Data Sheet  
20  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
RX  
I-Mix  
FSK Data  
I-  
LP  
harm sup  
digital  
FSK Demod  
Mix2  
CER-  
Filter  
RX  
Input  
LNA  
IF1  
10.7 MHz  
RX  
ASK Data  
ASK /  
RSSI  
ADC  
LP  
alias sup  
Q-  
Mix2  
RSSI Generator  
Q-Mix  
IF  
Divider  
: N  
Attenuation  
adjust  
Channel Filter  
Bandwidth select  
1st LO  
2nd LO  
Figure 5  
Double Down Conversion (DDC) with one external filter  
For applications which demand very high selectivity and/or channel separation even two  
CER filters may be used. Also in applications where one channel requires a wider  
bandwidth than the other (e.g. TPMS and RKE) the second filter can be by-passed.  
RX  
FSK Data  
I-Mix  
I-  
LP  
harm sup  
digital  
FSK Demod  
Mix2  
CER-  
Filter  
CER-  
RX  
Input  
Filter IF1  
10.7 MHz  
optional  
LNA  
IF1  
10.7 MHz  
RX  
ASK Data  
ASK /  
RSSI  
ADC  
LP  
alias sup  
Q-  
Mix2  
RSSI Generator  
Q-Mix  
Divider  
: N  
IF  
Attenuation  
adjust  
Channel Filter  
Bandwidth select  
1st LO  
2nd LO  
Figure 6  
Double Down Conversion (DDC) with two external filters  
Data Sheet  
21  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.4.4  
Crystal Oscillator and Clock Divider  
The crystal oscillator is a Pierce type oscillator which operates together with the crystal  
in parallel resonance mode. An automatic amplitude regulation circuitry allows the  
oscillator to operate with minimum current consumption. In SLEEP Mode, where the  
current consumption should be as low as possible, the load capacitor must be small and  
the frequency is slightly detuned, therefore all internal trim capacitors are disconnected.  
The internal capacitors are controlled by the crystal oscillator calibration registers  
XTALCALx. With a binary weighted capacitor array the necessary load capacitor can be  
selected.  
Whenever a XTALCALx register value is updated, the selected trim capacitors are  
automatically connected to the crystal so that the frequency is precise at the desired  
value. The SFR control bit XTALHPMS can be used to activate the High Precision Mode  
also during SLEEP Mode.  
fsys  
Setting  
automatically  
controlled  
XTALCAL0  
XTALCAL1  
9
( 1pF steps )  
(DGND)  
XTALHPMS  
Oscillator-Core  
XTAL1  
XTAL2  
Figure 7  
Crystal Oscillator  
Data Sheet  
22  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Recommended Trimming Procedure  
• Set the registers XTALCAL0 and XTALCAL1 to the expected nominal values  
• Set the TDA5240 to Run Mode Slave  
• Wait for 0.5ms minimum  
• Trim the oscillator by increasing and decreasing the values of XTALCAL0/1  
• Register changes larger than 1 pF are automatically handled by the TDA5240 in 1pF  
steps  
• After the Oscillator is trimmed, the TDA5240 can be set to SLEEP mode and keeps  
these values during SLEEP mode  
• Add the settings of XTALCAL0/1 to the configuration. It must be set after every power  
up or brownout!  
Using the High Precision Mode  
As discussed earlier, the TDA5240 allows the crystal oscillator to be trimmed by the use  
of internal trim capacitors. It is also possible to use the trim functionality to compensate  
temperature drift of crystals.  
During Run Mode (always when the receiver is active) the capacitors are automatically  
connected and the oscillator is working in the High Precision Mode.  
On entering SLEEP Mode, the capacitors are automatically disconnected to save  
power.  
If the High Precision Mode is also required for SLEEP Mode, the automatic disconnec-  
tion of trim capacitors can be avoided by setting XTALHPMS to 1 (enable XTAL High  
Precision Mode during SLEEP Mode).  
External Clock Generation Unit  
A built in programmable frequency divider can be used to generate an external clock  
source out of the crystal reference. The 20 bit wide division factor is stored in the  
registers CLKOUT0, CLKOUT1 and CLKOUT2. The minimum value of the  
programmable frequency divider is 2. This programmable divider is followed by an  
additional divider by 2, which generates a 50% duty cycle of the CLK_OUT signal. So  
the maximum frequency at the CLK_OUT signal is the crystal frequency divided by 4.  
The minimum CLK_OUT frequency is the crystal frequency divided by 221.  
To save power, this programmable clock signal can be disabled by the SFR control bit  
CLKOUTEN. In this case the external clock signal is set to low.  
Data Sheet  
23  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
The resulting CLK_OUT frequency can be calculated by:  
fsys  
fCLKOUT = --------------------------------------------  
2 divisionfactor  
Enable  
Enable  
fsys  
2 x fCLK_OUT  
fCLK_OUT  
Divide  
by 2  
20 Bit Counter  
Figure 8  
External Clock Generation Unit  
The maximum CLK_OUT frequency is limited by the driver capability of the PPx pin and  
depends on the external load connected to this pin. Please be aware that large loads  
and/or high clock frequencies at this pin may interfere with the receiver and reduce  
performance.  
After Reset the PPx pin is activated and the division factor is initialized to 11 (equals  
fCLK_OUT = 998 kHz).  
A clock output frequency higher than 1 MHz is not supported.  
For high sensitivity applications, the use of the external clock generation unit is not  
recommended.  
Data Sheet  
24  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.4.5  
Sigma-Delta Fractional-N PLL Block  
The Sigma-Delta Fractional-N PLL is fully integrated on chip. The Voltage Controlled  
Oscillator (VCO) with on-chip LC-tank runs at approximately 3.6 GHz and is first divided  
with a band select divider by 1, 2 or 3 and then with an I/Q-divider by 4 which provides  
an orthogonal local oscillator signal for the first image reject mixer with the necessary  
high accuracy.  
The multi-modulus divider determines the channel selection and is controlled by a  
3rd order Sigma-Delta Modulator (SDM). A type IV phase detector, a charge pump with  
programmable current and an on-chip loop filter closes the phase locked loop.  
To 1st mixer  
3.6 GHz VCO Loop Filter  
CP  
IQ Divider  
÷ 4  
Band Select  
÷1/÷2/÷3  
Multi-  
modulus  
Divider  
PFD  
ΣΔ Modulator  
Channel FN  
QOSC  
22MHz  
AFC filter  
AFC-data  
Figure 9  
Synthesizer Block Diagram  
Data Sheet  
25  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
When defining a Multi-Channel system, the correct selection of channel spacing  
is extremely important. A general rule is not possible, but following must be con-  
sidered:  
• If an additional SAW filter is used, all channels including their tolerances have to be  
inside the SAW filter bandwidth.  
• The distance between channels must be high enough, that no overlapping can occur.  
Strong input signals may still appear as recognizable input signal in the neighboring  
channel because of the limited suppression of IF Filters. Example: a typical 330kHz IF  
filter has at 10.3 MHz ( 10.7 MHz - 0.4 MHz ) only 30 dB suppression. A -70 dBm input  
signal appears like a -100 dBm signal, which is inside the receiver sensitivity. In critical  
cases the use of two IF filters must be considered. See also Chapter 2.4.3 RF/IF  
Receiver.  
2.4.5.1 PLL Dividers  
The divider chain consists of a band select divider 1/2/3, an I/Q-divider by 4 which  
provides an orthogonal 1st local oscillator signal for the first image reject mixer with the  
necessary high accuracy and a multi-modulus divider controlled by the Sigma-Delta  
Modulator. With the band select divider, the wanted frequency band is selected. Divide  
by 1 selects the 915 MHz and 868 MHz band, divide by 2 selects the 434 MHz band and  
divide by 3 selects the 315 MHz band. The ISM band selection is done via bit group  
BANDSEL in x_PLLINTC1 register.  
2.4.5.2 Digital Modulator  
The 3rd order Sigma-Delta Modulator (SDM) has a 22 bit wide input word, however the  
LSB is always high, and is clocked by the XTAL oscillator. This determines the  
achievable frequency resolution.  
The Automatic Frequency Control Unit filters the actual frequency offset from the FSK  
demodulator data and calculates the necessary correction of the divider factor to achieve  
the nominal IF center frequency.  
Data Sheet  
26  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.4.6  
ASK and FSK Demodulator  
AFC track/freeze  
AFC  
RF PLL ctrl  
loop filter  
B = 50..300kHz  
image suppression /  
band limitation (noise)  
FSK/ASK  
Rate adapter  
channel filter FM limiter  
FSK  
Demodulated  
Data  
PPF2  
BP  
Bypass  
Rate doubler  
Decimation  
33 / 46 / 65 / 93 / 132 /  
190 / 239 / 282 kHz  
(2sided PDF BW)  
2nd  
conversion  
RSSI  
8 … 16 samples/chip  
(data rate dependent )  
Temp  
VDDD/2  
delog  
AGC  
RSSI Slope  
RSSI Offset  
Dig. Gain  
Control  
Peak Memory  
Mux  
ADC  
Filter  
ASK  
Div  
Analog Gain Control  
buffer  
RSSI Peak  
Detector  
register  
fSystem  
RSSIPMF  
register  
RSSIPWU  
register  
RSSI  
End of config/  
channel  
RSSIPWU  
(internal  
signal)  
>
WU event  
Begin of config/  
channel ,  
TH, BL, BH  
x*WULOT  
Figure 10  
Functional Block Diagram ASK/FSK Demodulator  
The IC comprises two separate demodulators for ASK and FSK.  
After combining FSK and ASK data path, a sampling rate adaptation follows to meet an  
output oversampling between 8 and 16 samples per chip. Finally, an oversampling of 8  
samples per chip can be achieved using a fractional sample rate converter (SRC) with  
linear interpolation (for further details see Figure 15).  
2.4.6.1 ASK Demodulator  
The RSSI generator delivers a DC signal proportional to the applied input power at a  
logarithmic scale (dBm) and is also used as an ASK demodulator. Via a programmable  
anti-aliasing filter this signal is converted to the digital domain by means of a 10-bit ADC.  
For the AM demodulation a signal proportional to the linear power is required. Therefore  
a conversion from logarithmic scale to linear scale is necessary. This is done in the digital  
domain by a nonlinear filter together with an exponential function. The analog RSSI  
signal after the anti-aliasing filter is available at the RSSI pin via a buffer amplifier. To  
enable this buffer the SFR control bit RSSIMONEN must be set. The anti-aliasing filter  
can be by-passed for visualization on the RSSI pin (see AAFBYP control bit).  
Data Sheet  
27  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.4.6.2 FSK Demodulator  
The limiter output signal, which has a constant amplitude over a wide range of the input  
signal, feeds the FSK demodulator. There is a configurable lowpass filter in front of the  
FSK demodulation to suppress the down conversion image and noise/limiter harmonics  
(FSK Pre-Demodulation Filter, PDF). This is realized as a 3rd order digital filter. The  
sampling rate after FSK demodulation is fixed and independent from the target data rate.  
2.4.6.3 Automatic Frequency Control Unit (AFC)  
In front of the image suppression filter a second FSK demodulator is used to derive the  
control signal for the Automatic Frequency Control Unit, which is actually the DC  
value of the FSK demodulated signal. This makes the AFC loop independent from signal  
path filtering and allow so a wider frequency capture range of the AFC. The derivation of  
the AFC control signal is preferably done during the DC free preamble and is then frozen  
for the rest of the datagram.  
Since the digital FSK demodulator determines the exact frequency offset between the  
received input frequency and the programmed input center frequency of the receiver,  
this offset can be corrected through the sigma delta control of the PLL. As shown in  
Figure 10, for AFC purposes a parallel demodulation path is implemented. This path  
does not contain the digital low pass filter (PDF, Pre-Demodulation Filter). The entire IF  
bandwidth, filtered by the analog bandpass filter only, is processed by the AFC  
demodulator.  
There are two options for the active time of the AFC loop:  
• 1. always on  
• 2. active for a programmable time relative to a signal identification event (several  
options can be programmed in SFR).  
In the latter case the AFC can either be started or frozen relative to the signal  
identification. After the active time the offset for the sigma-delta PLL (SD PLL) is frozen.  
The programming of the active time is especially necessary in case the expected frame  
structure contains a gap (noise) between wake-up and payload in order to avoid the AFC  
from drifting.  
AFC works both for FSK and ASK. In the latter case the AFC loop only regulates during  
ASK data = high.  
The maximum frequency offset generated by the AFC can be limited by means of the  
x_AFCLIMIT register. This limit can be used to avoid the AFC from drifting in the  
presence of interferers or when no RF input signal is available (AFC wander). A  
maximum AFC limit of 42 kHz is recommended. AFC wandering needs to be kept in mind  
especially when using Run Mode Slave.  
Data Sheet  
28  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
K1 = integrator1 gain  
x_AFCLIMIT  
x_AFCK1CFG0/1  
integrator 1  
SDPLL  
scaling &  
limiting  
FreqOffset  
AFC Demod out  
limit  
K1  
x16  
HOLD  
integrator2  
hold  
limit  
hold  
K2  
x4  
Freeze* / Track  
Delay  
x_AFCK2CFG0/1  
x_AFCAGCD  
K2 = integrator 2 gain  
Figure 11  
AFC Loop Filter (I-PI Filtering and Mapping)  
The bandwidth (and thus settling time) of the loop is programmed by means of the  
integrator gain coefficients K1 and K2 (x_AFCK1CFG and x_AFCK2CFG register).  
K1 mainly determines the bandwidth. K2 influences the dynamics/damping (overshoot)  
- smaller K2 means smaller overshoot, but slower dynamics. The bandwidth of the AFC  
loop is approximately 1.3*K1.  
To avoid residual FM, limiting the AFC BW to 1/20 ~ 1/40 of the bit rate is suggested,  
therefore K1 must be set to approximately 1/50 ~ 1/100 of the bit rate. For most  
applications K2 can be set equal to K1 (overshoot is then <25%).  
When very fast settling is necessary K1 and K2 can be increased up to bit rate/10,  
however, in this case approximately 1dB sensitivity loss is to be expected due to the AFC  
counteracting the input FSK signal.  
AFC limitation at Local Oscillator (LO) frequencies at multiples of reference frequency  
(f_xtal). When AFC is activated and AFC drives the wanted LO frequency over the  
integer limit of Sigma Delta (SD) modulator, the SD modulator stucks at frac=1.0 or  
frac=0.0 due to saturation. So when AFC can change the integer value for the LO  
(register x_PLLINTCy) within the frequency range LO-frequency +/- AFC-limit, a change  
of the LO injection side or a smaller AFC-limit is recommended.  
The frequency offset found by AFC (AFC loop filter output) can be readout via register  
AFCOFFSET, when AFC is activated. The value is in signed representation and has a  
frequency resolution of 2.68 kHz/digit. The output can be limited by the x_AFCLIMIT  
register.  
Data Sheet  
29  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.4.6.4 Digital Automatic Gain Control Unit (AGC)  
Automatic Gain Control (AGC) is necessary mainly because of the limited dynamic range  
of the on-chip bandpass filter (BPF). The dynamic range reduces to less than 60dB in  
case of minimum BPF bandwidth.  
AGC is used to cover the following cases:  
1. ASK demodulation at large input signals  
2. RSSI reading at large input signals  
3. Improve IIP3 performance in either FSK or ASK mode  
The 1st IF buffer (PPFBUF, see Figure 3) can be fine tuned "manually" by means of 4  
bits thus optimizing the overall gain to the application (attenuation of 0dB to -12dB by  
means of IFATT0 to IFATT15 in DDC mode; SDC mode has lower IFATT range). This  
buffer allows the production spread of external components to be trimmed.  
The gain of the 2nd IF path is set to three different values by means of an AGC algorithm.  
Depending on whether the receiver is used in single down conversion or in double down  
conversion mode the gain control in the 2nd IF path is either after the 2nd poly-phase  
network or in front of the 2nd mixer.  
The AGC action is illustrated in the RSSI curve below:  
Analog (blue) &  
digital (black )  
RSSI output  
Mixer2  
saturation  
BPF bypassed  
AGC OFF  
Max. B W  
BPF  
saturation  
Min. B W  
AGC ON  
margin  
Analog AGC  
attack point  
hysteresis  
Analog AGC  
decay point  
Max. B W  
Max. FE gain  
(IFATT 0)  
Front-end  
Min. B W  
noise x gain  
Min. FE gain  
(IFATT 15)  
Limiter  
noise floor  
Input power  
Figure 12  
Analog RSSI output curve with AGC action ON (blue) vs. OFF (black)  
Data Sheet  
30  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Digital RSSI, AGC and Delog:  
In order to match the analog RSSI signal to the digital RSSI output a correction is  
necessary. It adds an offset (RSSIOFFS) and modifies the slope (RSSISLOPE) such  
that standardized AGC levels and an appropriate DELOG table can be applied.  
Upon entering the AGC unit the digital RSSI signal is passed through a Peak Memory  
Filter (PMF). This filter has programmable up and down integration time constants  
(PMFUP, PMFDN) to set attack respectively decay time. The integration time for decay  
time must be significantly longer than the attack time in order to avoid the AGC interfering  
with the ASK modulation.  
The integrator is followed by two digital Schmitt triggers with programmable thresholds  
(AGCTLO; AGCTUP) - one Schmitt trigger for each of the two attack thresholds (two  
digital AGC switching points). The hysteresis of the Schmitt triggers is programmable  
(AGCHYS) and sets the decay threshold. The Schmitt triggers control both the analog  
gain as well as the corresponding (programmable) digital gain correction (DGC).  
The difference ("error") signal in the PMF is actually a normalized version of the  
modulation. This signal is then used as input for the DELOG table.  
AGC threshold programming  
The SFR description for the AGC thresholds are in dBs. The first value to set is the AGC  
threshold offset in AGCTHOFFS.  
This value is the offset relative to 0 input (no noise, no signal), which for the default  
setting of gain, and assuming typical insertion loss of matching network and ceramic  
filter, can be extrapolated to be approximately -143dBm.  
In this case the default setting of the AGCTHOFFS of 63.9dB corresponds to an input  
power of approximately -79dBm (= -143dBm + 63.9dB).  
The low (digital) AGC threshold is then -79 + 12.8dB (default AGCTLO) = -66dBm and  
the upper (digital) AGC threshold is -79 + 25.6 (default AGCTUP) = -53dBm.  
Therefore a margin of about 6dB is indicated before a degradation of the linearity of the  
2nd IF can be observed when using the 50kHz BPF or even about 16dB when using the  
300kHz BPF.  
The input power level at which the AGC switches back to maximum gain is -66dBm -  
21.3dB (default AGCHYS) = -87dBm. This provides enough margin against the minimum  
sensitivity.  
Data Sheet  
31  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
When AGC is activated, RSSI is untrimmed, IFATT <= 5.6dB and the same RSSI offset  
should be applied for all bandpass filter settings, then the settings in Table 2 can be  
applied, where a small reduction of the RSSI input range can be observed.  
Table 2  
AGC Settings 1  
AGC Threshold Hysteresis = 21.3 dB  
AGC Digital RSSI Gain Correction = 15.5 dB  
BPF  
RSSI Offset  
AGC  
AGC  
AGC  
RSSI Input  
Range  
Reduction  
Compensation Threshold Threshold Threshold  
(untrimmed) 1)  
Offset  
63.9 dB  
63.9 dB  
63.9 dB  
51.1 dB  
51.1 dB  
Low  
Up  
300 kHz  
200 kHz  
125 kHz  
80 kHz  
32  
32  
32  
32  
32  
8
4
5 dB  
5 dB  
6
2
5
0
5 dB  
11  
9
6
2.8 dB  
0 dB  
50 kHz  
5
1) Note: This value needs to be used for calculating the register value  
For the full RSSI input range, the values in Table 3 can be applied.  
Table 3  
AGC Settings 2  
AGC Threshold Hysteresis = 21.3 dB  
AGC Digital RSSI Gain Correction = 15.5 dB  
BPF  
RSSI Offset  
AGC  
AGC  
AGC  
Compensation Threshold Threshold Threshold  
(untrimmed) 1)  
Offset  
63.9 dB  
51.1 dB  
51.1 dB  
51.1 dB  
51.1 dB  
Low  
Up  
300 kHz  
200 kHz  
125 kHz  
80 kHz  
-18  
-18  
-18  
4
5
1
11  
10  
9
7
5
5
50 kHz  
32  
9
5
1) Note: This value needs to be used for calculating the register value  
Data Sheet  
32  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Attack and Decay coefficients PMF-UP & PMF-DOWN:  
The settling time of the loop is determined by means of the integrator gain coefficients  
PMFUP and PMFDN, which need to be calculated from the wanted attack and decay  
times.  
The ADC is running at a fixed sampling frequency of 274kHz. Therefore the integrator is  
integrating with PMFUP*274k per second, i.e. time constant is 1/(PMFUP*274k). The  
attack times are typically 16 times faster than the decay times.  
Typical calculation of the coefficients by means of an example:  
• PMFUP = 2^-round( ln(AttTime / BitRate * 274kHz) / ln(2) )  
• PMFDN = 2^-round( ln(DecTime / BitRate * 274kHz) / ln(2) ) / PMFUP  
where AttTime, DecTime = attack, decay time in number of bits  
Note: PMFDN = overall_PMFDN / PMFUP  
Example:  
BitRate = 2kbps  
AttTime = 0.1 bits  
=> PMFUP = 2^-round(ln(0.1bit/2kbps*274kHz)/ln(2)) = 2^-round(3.8) = 2^-4  
DecTime = 2 bits  
=> PMFDN = 2^-round(ln(2bit/2kbps*274kHz)/ln(2))/PMFUP = 2^-round(8.1)/2^-4 = 2^-4  
Note: In case of ASK with large modulation index the attack time (PMFUP) can be up to  
a factor 2 slower due to the fact that the ASK signal has a duty cycle of 50% - during the  
ASK low duration the integrator is actually slightly discharged due to the decay set by  
PMFDN.  
The AGC start and freeze times are programmable. The same conditions can be used  
as in the corresponding AFC section above. They will however, be programmed in  
separate SFR registers.  
Data Sheet  
33  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.4.6.5 Analog to Digital Converter (ADC)  
In front of the AD converter there is a multiplexer so that also temperature and VDDD  
can be measured (see Figure 10).  
The default value of the ADC-MUX is RSSI (register ADCINSEL: 000 for RSSI; 001 for  
Temperature; 010 for VDDD/2).  
After switching ADC-MUX to a value other than RSSI in SLEEP Mode, the internal  
references are activated and this ADC start-up lasts 100µs. So after this ADC start-up  
time the readout measurements may begin. The chip stays in this mode until  
reconfiguration of register ADCINSEL to setting RSSI. However, it is recommended to  
measure temperature during SLEEP mode (This is also valid for VDDD).  
Readout of the 10-bit ADC has to be done via ADCRESH register (the lower 2 bits in  
ADCRESL register can be inconsistent and should not be used).  
Typical the ADC refresh rate is 3.7 µs. Time duration between two ADC readouts has to  
be at least 3.7 µs, so this is already achieved due to the maximum SPI rate (16 bit for  
SPI command and address last 8µs at an SPI rate of 2MBit/s). The EOC bit (end of  
conversion) indicates a successful conversion additionally. Repetition of the readout  
measurement for several times is for averaging purpose.  
The input voltage of the ADC is in the range of 1 .. 2 V. Therefore VDDD/2 (= 1.65 V  
typical) is used to monitor VDDD.  
Further details on the measurement and calibration procedure for temperature and  
VDDD can be taken from the corresponding application note.  
Data Sheet  
34  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.4.7  
RSSI Peak Detector  
The IC possesses several digital RSSI peak level detectors. The RSSI level is averaged  
over 4 samples before it is fed to any of the peak detectors. This prevents the evaluated  
peak values to be dominated by single noise peaks.  
fsys  
EOM  
Compare  
Update  
Update  
Peak  
Value  
Peak Value  
Register  
Peak Detector  
Payload  
RSSIPPL  
ADC Sampling  
Clock Generation  
Load  
FSYNC  
Divide  
by 4  
Peak  
Detector  
Track  
fADC  
fADC/4  
Control  
Bit  
position  
Integrate  
Dump  
A
RSSI Slope  
RSSI Offset  
RSSI  
I&D Averaging Filter  
Compare  
Update  
D
from  
RSSI  
Generator  
Peak-  
Value  
RSSIPRX  
Peak Detector  
Load  
to  
ASK path  
RX_RUN  
from  
FSM  
&
from  
SPI Controller  
Read Access to  
Register RSSIPRX  
RSSIRX  
Figure 13  
Peak Detector Unit  
Peak Detector Payload is used to measure the input signal power of a received and  
accepted data telegram. It is read via SFR RSSIPPL.  
Observation of the RSSI signal starts at the detection of a TSI (FSYNC) and ends with  
the detection of EOM. The internal RSSIPPL value is cleared after FSYNC. The  
evaluated RSSI peak level RSSIPPL is transferred to the RSSIPPL register at EOM.  
Starting the observation of the RSSI level can be delayed by a selectable number of data  
bits and is controlled by the register x_PKBITPOS. A latency in the generation of FSYNC  
and EOM of approx. 2..3 bits in relation to the contents of the Peak Detector must be  
considered. Within the boundaries described, the register RSSIPPL always contains the  
peak value of the last completely received data telegram. The register RSSIPPL is reset  
to 0 at power up reset only.  
Peak Detector is used to measure RSSI independent of a data transfer and to digitally  
trim RSSI. It is read via SFR RSSIPRX.  
Observation of the RSSI signal is active whenever the RX_RUN signal is high. The  
RSSIPRX register is refreshed and the Peak Detector is reset after every read access to  
RSSIPRX.  
It may be required to read RSSIPRX twice to obtain the required result. This is because,  
for example, during a trim procedure in which the input signal power is reduced, after  
Data Sheet  
35  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
reading RSSIPRX, the peak detector will still hold the higher RSSI level. After reading  
RSSIPRX the lower RSSI level is loaded into the Peak Detector and can be read by  
reading RSSIPRX again.  
Register RSSIPRX should not be read-out faster than 41µs in case AGC is ON (as  
register value would not represent the actual, but a lower value).  
When the RX_RUN signal is inactive, a read access has no influence to the peak  
detector value. The register RSSIPRX is reset to 0 at power up reset.  
Peak Detector Wake-Up RSSIPWU (see Figure 10) is used to measure the input signal  
power during Wake-Up search. The internal signal RSSIPWU gets initialized to 0 at start  
of the first observation time window at the beginning of each configuration/channel. The  
peak value of this signal is tracked during Wake-Up search.  
In case of a Wake-Up, the actual peak value is written in the RSSIPWU register. Even  
in case no Wake-Up occurred, actual peak value is written in the RSSIPWU register at  
the end of the actual configuration/channel of the Self Polling period. So if no Wake-Up  
occurred, then the RSSIPWU register contains the peak value of the last  
configuration/channel of the Self Polling period, even in a Multi-Configuration/Multi-  
Channel setup. This functionality can be used to track RSSI during unsuccessful Wake-  
Up search due to no input signal or due to blocking RSSI detection.  
For further details please refer to Chapter 2.4.8.5 Wake-Up Generator and  
Chapter 2.6.2 Polling Timer Unit.  
Input  
Data Pattern  
Dn  
-1  
Dn Dn Dn  
+1 +2 +3  
Run-In  
Run-In  
TSI D0 D1  
Noise  
TSI D0 D1  
Dn  
EOM  
Noise  
....  
....  
....  
SPI read out  
RSSIPPL&RSSIPRX  
internal RSSIPPL  
RSSIPPL Register  
internal RSSI  
FSYNC clears the  
internal RSSIPPL  
internal RSSIPRX =  
RSSIPRX Register  
internal RSSI  
*1  
*1  
*1  
*1  
SPI  
Reset  
FSync  
n = PKBITPOS  
EOM  
FSync  
*1 Computation Delay due to filtering and signal calculation.  
Figure 14  
Peak Detector Behavior  
Data Sheet  
36  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Recommended Digital Trimming Procedure  
• Download configuration file (Run Mode Slave; RSSISLOPE, RSSIOFFS set to  
default, i.e. RSSISLOPE=1, RSSIOFFS=0)  
• Turn off AGC (AGCSTART=0) and set gain to AGCGAIN=0  
• Apply PIN1 = -85 dBm RF input signal  
• Read RSSIRX eleven times (minimum 10 ms in-between readings), use average of  
last ten readings (always), store as RSSIM1  
• Apply PIN2 = -65 dBm RF input signal  
• Read RSSIRX eleven times (minimum 10 ms in-between readings), use average of  
last ten readings (always), store as RSSIM2  
• Calculate measured RSSI slope SLOPEM=(RSSIM2-RSSIM1)/(PIN2-PIN1)  
• Adjust RSSISLOPE for required RSSI slope SLOPER as follows:  
RSSISLOPE=SLOPER/SLOPEM  
• Adjust RSSIOFFS for required value RSSIR2 at PIN2 as follows:  
RSSIOFFS=(RSSIR2-RSSIM2)+(SLOPEM-SLOPER)*PIN2  
• The new values for RSSISLOPE and RSSIOFFS have to be added to the  
configuration!  
Notes:  
1. The upper RF input level must stay well below the saturation level of the receiver (see  
Chapter 2.4.6.4 Digital Automatic Gain Control Unit (AGC))  
2. The lower RF input level must stay well above the noise level of the receiver  
3. If IF Attenuation is trimmed, this has to be done before trimming of RSSI  
4. If RSSI needs to be trimmed in a higher input power range the AGCGAIN must be set  
accordingly  
Data Sheet  
37  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.4.8  
Digital Baseband (DBB) Receiver  
Blind Sync  
Initial Phase & Data rate  
CDR PLL  
FSK  
detector  
CR PLL  
Slicer  
sync  
chip_data_clock  
CH_STR  
adjust_length  
SRC  
bypass  
8 to 16  
samples  
per chip  
Matched Filter  
Chip  
Data  
Invert  
chip_data  
Signal  
Detector  
Data  
Slicer  
Chip Data  
Decoder  
CH_DATA  
fractional SRC  
From ASK/  
FSK  
fsout / fsin = 0.5 … 1.0  
Demodulator  
CHIPDINV  
Decoder  
MUX  
RAW Data Slicer  
for external  
processing  
data_clk  
data  
SIGN  
Data  
eom  
FIFO  
Framer  
(TSI Detector)  
fsync  
wakeup  
WU Unit  
Data  
Invert  
DINVEXT  
Invert  
RXSTR RXD  
DATA  
(Sliced RAW Data for  
external processing)  
DATA_MATCHFIL  
(Matched Filtered Data  
for external processing )  
Figure 15  
Functional Block Diagram Digital Baseband Receiver  
The digital baseband receiver comprises a matched data filter, a clock and data  
recovery, a data slicer, a line decoder, a wake-up generator, a frame synchronization  
and a data FIFO. The recovered data and clock signals are accessible via 2 separate  
pins. The FIFO data buffer is accessible via the SPI bus interface.  
2.4.8.1 Data Filter and Signal Detection  
The data filter is a matched filter (MF). The frequency response of a matched filter has  
ideally the same shape as the power spectral density (PSD) of the originally transmitted  
signal, therefore the signal-to-noise ratio (SNR) at the output of the matched filter  
becomes maximum. The input sampling rate of the baseband receiver has to be  
between 8 and 16 samples per chip. The oversampling factor within this range is  
depending on the data rate (see Figure 10). The MF has to be adjusted accordingly to  
this oversampling. After the MF a fractional sample rate converter (SRC) is applied using  
linear interpolation. Depending on the data rate decimation is adjusted within the range  
1...2. Finally, at the output of the fractional SRC the sampling rate is adjusted to 8  
samples per chip for further processing.  
To distinguish whether the incoming signal is really a signal or only noise adequate  
detectors for ASK and FSK are built in.  
Data Sheet  
38  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Signal and Noise Detector  
The Signal Detector decides between acceptable and unacceptable data (e.g. noise).  
This decision is taken by comparing the signal power of the actually received data  
(register SPWR) with a configurable threshold level (registers x_SIGDET0/1), which  
must be evaluated. In case the actual signal power is above the threshold, acceptable  
data has been detected.  
To decide in case of FSK whether there is a data signal or simply noise at the output of  
the rate adapter, there is a Noise Detector implemented. The principle is based on a  
power measurement of the demodulated signal. The current noise power is stored in the  
NPWR register and is updated at every SPI controller access. The Noise Detector is  
useful if data signal is transmitted with small FSK deviations. In case the current noise  
power (register NPWR) is below the configurable threshold (register x_NDTHRES), a  
data signal has been detected.  
The Signal Recognition mode must be configured based on whether ASK or FSK  
modulation is used. Signal Recognition can be a combination of Signal Detector and  
Noise Detector:  
• Signal Detector (=Squelch) only (related registers: x_SIGDET0, x_SIGDET1 and  
SPWR). This mode is generally used for ASK and recommended for FSK.  
• Noise Detector only (related registers: x_NDTHRES and NPWR).  
• Signal and Noise Detector simultaneously.  
• Signal and Noise Detector simultaneously, but the FSK noise detect signal is valid  
only if the x_SIGDETLO threshold is exceeded. This is the recommended FSK mode,  
if minimum FSK deviation is not sufficient to use Signal Detector only.  
Signal Recognition can also be used as Wake-up on Level criterion (see  
Chapter 2.4.8.5).  
Figure 16 shows the system characteristics to consider in choosing the best Signal  
Detector level. On the one hand, a higher SIGDET threshold level must be set for  
achieving good FAR (False Alarm Rate) performance, but then the MER/BER (Message  
Error Rate/Bit Error Rate) performance will decrease. On the other hand, the MER/BER  
performance can be increased by setting smaller SIGDET threshold levels but then the  
FAR performance will worsen.  
Data Sheet  
39  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
input data  
telegram  
signal power  
better FAR  
performance  
SDTHR level area  
better  
MER/BER  
performance  
high SDTHR level  
low SDTHR level  
Figure 16  
Signal Detector Threshold Level  
Quick Procedure to Determine Signal and Noise Detector Thresholds  
Preparation  
A setup is required with original RF hardware as in the final application. The values of  
SPWR and NPWR can be read via the final application.  
A complete configuration file using right modulation, data rate and Run Mode Slave,  
must be prepared and downloaded to the TDA5240.  
Signal Detector Threshold for ASK  
Take 500 readings of SPWR (50 are also possible, but this leads to less accurate results)  
with no RF input signal applied (=noise only). Calculate average and Standard Deviation.  
Signal Detector Threshold is average plus 2 times the Standard Deviation. To load the  
x_SIGDET0/1 register the calculated value must be rounded and converted to  
hexadecimals. For a final application, the Signal Detector Threshold should be varied to  
optimize the false alarm rate and the sensitivity.  
Signal and Noise Detector Thresholds for FSK  
Signal Detector Threshold  
Do 500 (50) readings of SPWR with no RF input signal applied (=noise only). Calculate  
average and Standard Deviation. Signal Detector Threshold is average plus 2 times the  
Standard Deviation. Of course this value has to be rounded and converted to  
Data Sheet  
40  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
hexadecimals. For a final application the Signal Detector Threshold should be varied to  
optimize the false alarm rate and the sensitivity.  
Verification if Squelch only is possible  
Apply a bit pattern (e.g. PRBS9) with correct data rate at about -80 dBm input signal  
power and minimum FSK deviation to the RF input. Do 500 (50) readings of SPWR,  
calculate average minus three times the Standard Deviation. This value should be higher  
than the calculated Signal Detector Threshold calculated above. If this is not the case,  
Signal Detector AND Noise Detector must be used.  
Noise Detector Threshold  
Do 500 (50) readings of NPWR with no RF input signal applied (=noise only). Calculate  
average and Standard Deviation. Noise Detector Threshold is average minus the  
Standard Deviation. Round this value and convert it to hexadecimals. For a final  
application, the Noise Detector Threshold should be varied to optimize false alarm rate  
and sensitivity.  
Signal Detector Low Threshold  
The Signal Detector Low Threshold is always required in combination with the Noise  
Detector.  
Set register bit SDLORE to 1 and set bit group SDLORSEL to 00. Apply a bit pattern (e.g.  
PRBS9) at correct data rate at about -80 dBm input signal power and minimum FSK  
deviation to the RF input. Do 500 (50) readings of SPWR, calculate average. If average  
is larger than 200 dec (=0xC8), SDLORSEL has to be increased to the next larger value  
until average is smaller than 200 dec. x_SIGDETLO = 0.8 * (average - 3 * Standard  
Deviation). Set register SDLORE back to 0. The last setting of bit group SDLORSEL  
must also be used for configuration!  
Verification  
Threshold settings should be verified by testing receiver sensitivity over the input  
frequency range, with a step size of 100Hz, at minimum FSK deviation with all  
combinations of minimum and maximum data rate and duty cycle.  
Further detailed information can be taken from the corresponding Application Note.  
Data Sheet  
41  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.4.8.2 Encoding Modes  
The IC supports the following Bi-phase encodings:  
• Manchester code  
• Differential Manchester code  
• Bi-phase space code  
• Bi-phase mark code  
The encoding mode is set and enabled by bit group CODE in x_DIGRXC configuration  
register.  
Data  
1 0 1 0 0 1 1 0  
Clock  
Manchester  
Differential Manchester  
Biphase Space  
Biphase Mark  
Figure 17  
Coding Schemes  
The encoding modes Inverted Manchester and Inverted Differential Manchester can also  
be decoded internally by usage of CHIPDINV bit in x_DIGRXC register (see Figure 15).  
All the Manchester symbol combinations including Code Violations are shown in  
Figure 18. Digital 0 and 1 are coded with the change of the amplitude in the middle of  
the symbol period. The Code Violations (CV) M (mark) and S (space), are coded as  
low/high signal levels.  
0
1
S
M
1st 2nd  
Chip Chip  
1st 2nd  
Chip Chip  
1st 2nd  
Chip Chip  
1st 2nd  
Chip Chip  
Figure 18  
Manchester Symbols including Code Violations  
Data Sheet  
42  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.4.8.3 Clock and Data Recovery  
An all-digital PLL (ADPLL) recovers the data clock from the incoming data stream. The  
second main function is the generation of a signal indicating symbol synchronization.  
Synchronization on the incoming data stream generally occurs within the first 4 bits of a  
telegram.  
Tnom / 16  
EOM  
from Clock  
Recovery Slicer  
Symbol  
Timing Extrapolation  
Sync found  
Digital  
Controlled  
Oscillator  
Phase  
Detector  
PI  
Recovered  
Clock  
Loop Filter  
Tnom / 2  
T
nom / 2  
Figure 19  
Clock Recovery (ADPLL)  
Clock Recovery is implemented as standard ADPLL PI regulator with Timing  
Extrapolation Unit for fast settling.  
In the unlocked state, the Timing Extrapolation Unit calculates the frequency offset for  
the incoming data stream. If the defined number of Bi-phase encoded bits are detected  
(the RUNIN length can be set in the x_CDRRI register), the I-part and the PLL oscillator  
will be set and the PLL will be locked.  
When x_CDRRI.RUNLEN is set to small values, then the I-part is less accurate (residual  
error) and can lead to a longer needed PLL settling time and worse performance in the  
Data Sheet  
43  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
first following bits. Therefore the selected default value is a good compromise between  
fast symbol synchronization and accuracy/performance.  
Duty cycle and data rate acceptance limits are adjustable via registers. After locking, the  
clock must be stable and must follow the reference input. Therefore, a rapid settling  
procedure (Timing Extrapolation Unit) and a slow PLL are implemented.  
If the PLL is locked, the reference signal from the Clock Recovery Slicer is used in the  
phase detector block to compute the actual error. The error is used in the PI loop filter to  
set the digital controlled oscillator running frequency. For the P, I and Timing  
Extrapolation Unit settings, the default values for the x_CDRP and x_CDRI control  
registers are recommended.  
The PLL will be unlocked, if a code violation of more than the defined length is detected,  
which is set in the x_TVWIN control register. Another criterion for PLL resynchronization  
is an End Of Message (EOM) signalled by the Framer block.  
The PLL oscillator generates the chip clock (2 * fdata).  
The internal PLL lock signal used by the Framer is generated up to 1 bit before RUNIN  
ends. The Timing Extrapolation Unit counts the incoming edges and interprets the delay  
between two edges as a bit or a chip. Due to the fact that the first edge of a “Low” bit,  
coded as ’0’ and ’1’, rises one chip later than a “High” bit, the PLL locks later in this case  
(see Figure 20). The real needed RUNIN time can be shorter than the configured  
RUNIN length in the x_CDRRI register by up to two chips. This should be considered  
when setting the TSI pattern and/or TSI length. See also Chapter 2.4.8.6 Frame  
Synchronization.  
first edge  
RUNIN  
1
1
1
1
0
0
0
0
1
0
1
0
1
0
1
0
1
0
4 bits detected  
first edge  
0
RUNIN  
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
4 bits detected  
Figure 20  
RUNIN Generation Principle  
Data Sheet  
44  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Number of Required RUNIN Bits  
The number of RUNIN bits specified in x_CDRRI register should always be 3.0. This  
setting defines the duration of the internal synchronization. Because of internal  
processing delays, the pattern length that must be reserved for RUNIN is longer.  
The ideal RUNIN pattern is a series of either Manchester 1’s or Manchester 0’s. This  
pattern includes the highest number of edges that can be used for synchronization. In  
this case, the number of physically sent RUNIN bits is 4.  
For any other RUNIN pattern, 5.5 bits should be reserved for RUNIN.  
TVWIN (Timing Violation WINdow length)  
The PLL unlocks if the reference signal is lost for more than the time defined in the  
x_TVWIN register. During the TSI Gap (see TSI Gap Mode in Chapter 2.4.8.6 Frame  
Synchronization), the PLL and the TVWIN are frozen.  
TVWIN time is the time during which the Digital Baseband Receiver should stay locked  
without any incoming signal edges detected. The time resolution is T/16.  
Calculation of TVWIN can be seen at the end of subsection TSI Gap Mode in  
Chapter 2.4.8.6 Frame Synchronization.  
Data Sheet  
45  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Duty Cycle Variation  
Ideally, the input signal to the Clock and Data Recovery (CDR) would have a chip width  
of 8 samples and a bit width of 16 samples and the CDR would not lock onto any input  
that violates this. However, due to variations in the duty cycle this stringent assumption  
for the pulse widths will in general not be true. Therefore it is necessary to loosen this  
requirement by using tolerance windows.  
TOLCHIPH  
TOLBITH  
TOLCHIPL  
TOLBITL  
1
t
lim_chip_low = 8 - TOLCHIPL  
lim_bit_low = 16 - TOLBITL  
lim_chip_high = 8 + TOLCHIPH  
lim_bit_high = 16 + TOLBITH  
Figure 21  
Definition of Tolerance Windows for the CDR  
There exist now two registers - x_CDRTOLC for the chip width tolerance and  
x_CDRTOLB for the bit width tolerance - that can be used to tighten or loosen the  
windows around the ideal pulse widths. As it can easily be seen from Figure 21, tighter  
windows will result in more stringent requirements for the input data to have a 50% duty  
cycle and bigger windows will allow the duty cycle to vary more. Figure 21 also depicts  
the meaning of the bits in the registers x_CDRTOLC and x_CDRTOLB.  
Data Sheet  
46  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Data Rate Acceptance Limitation  
The Clock and Data Recovery is able to accept data rate errors of more than +/-15% with  
a certain loss of performance. There exist Multi-Configuration applications where the  
data rate of both configurations are within this range. So the adjacent data rates of these  
configurations are disturbing each other. The limitation of the data rate acceptance can  
be activated in this case.  
clock recovery  
slicer  
CLOCK RECOVERY  
symbol synchronization  
Data Rate  
&
Acceptance  
Limitation  
preset value correlator  
cdr_lock  
cdr_clock  
Clock Recovery PLL  
Figure 22  
Data Rate Acceptance Limitation  
The clock and data recovery (CDR) regenerates the clock based on the input data  
delivered from the clock recovery (CR) slicer. Symbol synchronization (cdr_lock) is  
achieved when a specified number of chips (can be set via register x_CDRRI.RUNLEN)  
has a valid pulse width. In parallel the preset value correlator estimates a preset value  
for the clock recovery PLL so that a shorter settling time is achieved. This preset value  
is also proportional to the data rate and is therefore used in the data rate acceptance  
limitation block. If the preset value is outside a certain range (positive and negative  
threshold configurable via registers CDRDRTHRP and CDRDRTHRN), the CDR does  
not go into lock and no symbol synchronization is generated.  
For each configuration there exists one bit (register x_CDRRI.DRLIMEN) to switch the  
data rate acceptance limitation functionality on or off. Data rate acceptance limitation is  
disabled by default. All configurations share the same threshold registers, the default  
Data Sheet  
47  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
thresholds are set so that almost all packets with a data rate error of +/-10% and larger  
are rejected.  
The following statements summarize some important aspects that need to be kept in  
mind when using the described functionality:  
• The output of the estimator must be described on statistical terms - this means that  
it can not be guaranteed that all packets with a certain data rate outside the allowed  
range will be rejected  
• The quality of the estimated data rate value is mainly influenced by the setting of the  
signal and noise detectors  
• Reducing the RUNIN length in register x_CDRRI reduces the quality of the data rate  
estimation, resulting in a degradation of the performance of the data rate acceptance  
limitation block  
• The same threshold can be used for FSK and ASK  
• If the thresholds are too small it may happen that also packets with a valid data rate  
are rejected  
2.4.8.4 Data Slicer and Line Decoding  
The output signal of the matched filter within the internal data processing path is in the  
range of +x to -x (x is the maximum value of the internal bit width). If Code Violations  
within a Manchester encoded bitstream have to be detected, the data slicer has to  
recover the underlying chipstream instead of the bitstream. In this case zero values at  
the matched filter output lead to an additional slicing threshold and an implicit sensitivity  
loss. To provide the full reachable sensitivity for applications which do not need the  
symbols S (space) and M (mark), the data slicer has two different operating modes:  
• Chip mode (Code Violations are allowed)  
• Bit mode (without Code Violations)  
The chip mode introduces an implicit sensitivity loss compared to the bit mode, because  
a zero-crossing in the 2-chip matched filter signal must be detectable. This is only  
possible when an additional slicing level is introduced in the data slicer.  
The data slicer internally maps a positive value to a 1 and a negative value to a -1.  
Everything inside the zero thresholds (zero-tube) becomes a 0. After that, the decoding  
to the chip-level representation is done by mapping the -1 to a "0" chip and the 1 to a "1"  
chip. A zero out of the data slicer is decoded to chip-level by referencing to the previous  
chip value.  
Data Sheet  
48  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
In bit mode the data slicer has only one threshold (zero) to distinguish between the two  
levels of the matched filter output. The data slicer internally maps a positive value to a 1  
and a negative value to a -1. After that, the selected line decoding is applied.  
Summary of data slicer modes in the TDA5240:  
Data Slicer Chip mode:  
• Code violations detectable (TSI, or EOM)  
• Performance loss compared to bit mode  
• Activation via setting register x_SLCCFG to a value of  
+ 0x90 (Chip Mode EOM-CV: For patterns with code violations in data packet and  
optimized for activated EOM code violation criterion (and optional EOM data  
length criterion))  
+ 0x94 (Chip Mode EOM-Data length: For patterns with code violations in data  
packet and optimized for activated EOM data length criterion only)  
+ 0x95 (Chip Mode Transparent: When Framer is not used, but CH_DATA /  
CH_STR are used for data processing)  
Data Slicer Bit mode:  
• No code violations detectable  
• Full performance  
• In case of Bi-phase mark and Bi-phase space an additional bit must be sent to ensure  
correct decoding of the last bit  
• Activation via setting register x_SLCCFG to a value of 0x75  
In Data Slicer Bit mode an even number of TSI chips needs to be used.  
When Data Slicer Bit mode is selected, then the the last chip of RUNIN must be different  
from first chip of TSI (e.g. Runin-bit sequence 000000 and TSI bit sequence 0xx...xxx is  
OK). Otherwise the TSI will not be detected correctly.  
On using Data Slicer Bit Mode, the Wake-up criteria Equal Bits Detection and Pattern  
Detection cannot be applied.  
A line decoder decodes the incoming data chips according to the encoding scheme (see  
Chapter 2.4.8.2).  
Data Sheet  
49  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.4.8.5 Wake-Up Generator  
A wake-up generation unit is used only in the Self Polling Mode for the detection of a  
predefined wake-up criterion in the received pattern.  
There are two groups of configurable wake-up criteria:  
• Wake-up on Level criteria  
• Wake-up on Data criteria  
The search for the wake-up data criterion is started if data chip synchronization has  
occurred within the predefined number of symbols, otherwise the wake-up search is  
aborted. Several different wake-up patterns, like random bit, equal bit, bit pattern or bit  
synchronization, are programmable.  
Additional level criterion fulfilment for RSSI or Signal Recognition can lead to a fast  
wake-up and to a change to Run Mode Self Polling. Whenever one of these Wake-up  
Level criteria is enabled and exceeds a programmable threshold, a wake-up has been  
detected.  
The Wake-up Level criterion can be used very effectively in combination with the  
Ultrafast Fall Back to SLEEP Mode (see Chapter 2.6.2.3) for further decreasing the  
needed active time of the autonomous receive mode. A configurable observation time  
for Wake-up on Level can be set in the x_WULOT register. The Wake-up on Level  
criterion can be handled very quickly for FSK modulation, while in case of ASK the nature  
of this modulation type has to be kept in mind.  
Data Sheet  
50  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
RSSI Level  
x_WURSSIBHy  
Exceeding Threshold  
Compare  
x_WURSSIBLy  
x_WURSSITHy  
Data  
WU Level  
Criterion  
x_NDCONFIG  
x_SIGDET1  
Exceeding Threshold(s)  
Wake-up on Signal  
Recognition  
x_NDTHRES  
x_SIGDETLO  
Sync Search Time Elapsed  
Sync  
WU  
x_WUBCNT  
WUW Chip Counter  
Elapsed  
Wake-up Window  
Chip Counter  
Wake-up  
Generation  
FSM  
No WU  
Code Violation Detected  
Bit Change Detected  
Code Violation Detector  
Bit Change Detector  
3
Chip Data Clock  
Chip Data  
16-chips Shift Register  
0
2
15  
16  
x_WUPAT0  
x_WUPAT1  
Pattern Detected  
Pattern Detector  
RSSI  
WU on Level Criteria  
Signal  
Recognition  
Sync  
Random Bits  
Equal Bits  
Pattern  
Selection  
WU on Data Criteria  
x_WUC  
Figure 23  
Wake-Up Generation Unit  
Wake-Up on RSSI  
The threshold x_WURSSITHy is used to decide whether the actual signal is a wanted  
signal or just noise. Any kind of interfering RSSI level can be blocked by using an RSSI  
blocking window. This window is determined by the thresholds x_WURSSIBLy and  
Data Sheet  
51  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
x_WURSSIBHy, where y represents the actual RF channel. These two thresholds can  
be evaluated during normal operation of the application to handle the actual interferer  
environment.  
The blocking window can be disabled by setting x_WURSSIBHy to the minimum value  
and x_WURSSIBLy to the maximum value.  
wanted signal  
x_WURSSIBHy  
interferer  
x_WURSSIBLy  
wanted signal  
x_WURSSITHy  
noise floor  
Figure 24  
RSSI Blocking Thresholds  
Threshold evaluation procedure  
A statistical noise floor evaluation using read register RSSIPMF (RMS operation) leads  
to the threshold x_WURSSITHy. The interferer thresholds x_WURSSIBLy and  
x_WURSSIBHy are disabled when they are set to their default values.  
For evaluation of the interferer thresholds, either use register RSSIPMF for RMS  
operation or during SPM and WU (Wake-Up) on RSSI use register RSSIPWU to  
statistically evaluate the interferer band. Finally the thresholds x_WURSSIBLy and  
x_WURSSIBHy can be set.  
Wake-Up on RSSI can also be applied as additional criterion when already using a  
Wake-Up on Data criterion in Constant On-Off (COO) Mode.  
Further details can be seen in Figure 10, Chapter 2.4.7 RSSI Peak Detector,  
Chapter 2.6.2.2 Constant On-Off Time (COO) and Chapter 2.6.2.3 Fast Fall Back to  
SLEEP (FFB).  
NOTE: If e.g. an interferer ends/starts too close after/to the beginning/end of the  
observation time, then a decision level error can arise. This is due to the filter dynamics  
(settling time). Further, for interferer thresholds evaluation in SPM this changes interferer  
statistics. Several interferer measurements are recommended to suppress this, what  
makes sense anyway for a better distribution.  
Data Sheet  
52  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Wake-Up on Signal Recognition  
Instead of the previously mentioned RSSI criterion, the Signal Recognition criterion (see  
Chapter 2.4.8.1) can be applied for Wake-Up search. So the x_SIGDET1, x_SIGDETLO  
and x_NDTHRES threshold registers can be used.  
The observation time has to be specified in the register x_WULOT. This observation time  
has to contain the delay in the signal path (12.5 µs + 2.25*Tbit) and the duration for the  
comparison of the Signal Recognition criterion.  
The number of consecutive valid Signal Recognition samples/levels is compared vs. a  
threshold defined in x_WURSSIBHy register. Please note that x_WURSSIBHy register  
is used for both Wake-Up on RSSI and Wake-Up on Signal Recognition function. This  
threshold has an influence on the false alarm rate. So x_WURSSIBHy defines the  
minimum needed consecutive T/16 samples of the Signal Recognition output to be at  
high level for a positive Wake-Up event generation.  
Wake-Up on Data Criterion  
All SFRs configuring the Wake-up Generation Unit support the Multi-Configuration  
capability. The search for a wake-up data criterion is started if symbol synchronization is  
given within a certain duration (see Chapter 2.4.8.8 RUNIN, Synchronization Search  
Time and Inter-Frame Time); otherwise the wake-up search is aborted. During the  
observation period, the wake-up data search is aborted immediately if symbol  
synchronization is lost. If this is not the case, the wake-up search will last for the number  
of chips/bits defined in the register x_WUBCNT.  
The Wake-up Window (WUW) Chip/Bit Counter counts the number of received chips/bits  
and compares this number vs. the number of chips/bits defined in the register  
x_WUBCNT.  
The Code Violation Detector checks the incoming chip data stream for being Bi-Phase  
coded. A Code Violation is given if three consecutive chips are ’One’ or ’Zero’.  
The Bit Change Detector checks the incoming Bi-phase coded bit data stream for  
changes from 'Zero' to 'One' or 'One' to 'Zero'.  
The Pattern Detector searches for a pattern with 16 chips/bits length within the Wake-up  
Window. The pattern is configurable via the registers x_WUPAT0 and x_WUPAT1.  
On using Data Slicer Bit Mode, the Wake-up criteria Equal Bits Detection and Pattern  
Detection cannot be applied. Further details can be seen at the end of Chapter 2.4.8.4.  
The selection of 1 out of 4 wake-up data criteria is done via the x_WUC register.  
Data Sheet  
53  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Details on the four wake-up data criteria  
Pattern Detection  
The incoming signal must match a dedicated pattern of up to 8 bits or 16 chips in Wake-  
Up Pattern Chip Mode. When the WUW chip counter elapses, the search is stopped. The  
higher the setting of WUBCNT the longer it is possible to search for the wake-up pattern.  
The minimum for the WUBCNT is 0x11!  
The pattern detection is stopped either when WUW elapses, or when symbol  
synchronization is lost.  
The Wake-Up pattern can be extended from 16 chips to 16 bits on activation of  
WUPMSEL bit (Wake-Up Pattern Bit Mode). In this Bit Mode no Code Violations (CV)  
are allowed and thus Pattern Detection is aborted, when a CV is detected.  
Equal Bits Detection  
Wake-up condition is fulfilled if all received bits inside of WUW are either 0 or 1.  
WUBCNT holds the number of required equal bits. The higher the setting of WUBCNT  
the lower the number of wrong wake-ups.  
Equal bits detection is stopped if a bit change or a CV has been detected, or symbol  
synchronization is lost.  
Random Bits Detection  
Wake-up condition is fulfilled if there is no code violation inside of WUW. WUBCNT holds  
the number of required Bi-phase coded bits. The higher the setting of WUBCNT, the  
lower the number of wrong wake-ups.  
Random bits detection is stopped if a code violation has been detected, or symbol  
synchronization is lost.  
Valid Data Rate Detection  
Wake-up condition is fulfilled if symbol synchronization is possible inside of Sync Search  
Time out (see Chapter 2.4.8.8 RUNIN, Synchronization Search Time and Inter-  
Frame Time). WUBCNT is not used.  
This is the weakest wake-up data criterion, and should be avoided.  
Data Sheet  
54  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
SSync Search Time Elapsed =1  
SSync=0  
Reset  
Init Wakeup Unit  
Idle  
WU=0  
No WU=0  
SSync=1  
Wakeup Criteria=Pattern Detection  
SSync=1  
SSync=1  
SSync=1  
Wakeup Criteria=Valid Data Rate  
Detection  
Wakeup Criteria=Random Bits Detection  
Wakeup Criteria=Equal Bits Detection  
WUW Chip Counter<  
WUBCNT  
WUW Chip Counter<  
WUBCNT  
Equal Bits  
Detection  
SSync=0  
Pattern Detection  
Random Bits Detection  
SSync=0  
CV=1  
WUW Chip  
Counter<WUBCNT  
WU=0  
No WU=0  
WU=0  
No WU=0  
WU=0  
No WU=0  
Bit Change Detected=1  
SSync=0  
CV=1  
WUW Chip Counter elapsed  
(WUW Chip Counter=  
WUBCNT)  
WUW Chip Counter elapsed  
(WUW Chip Counter = WUBCNT)  
WUW Chip Counter elapsed  
(WUW Chip Counter= WUBCNT)  
Pattern Match=1  
Wake-Up  
WU=1  
No WU=0  
No Wake-Up  
WU=0  
No WU=1  
Figure 25  
Wake-Up Data Criteria Search  
2.4.8.6 Frame Synchronization  
The Frame Synchronization Unit (Framer) synchronizes to a specific pattern to identify  
the exact start of a payload data frame within the data stream. This pattern is called  
Telegram Start Identifier (TSI).  
There are different TSI modes selectable via the configuration:  
• 16-Bit TSI Mode, supporting a TSI length of up to 16 bits or 32 chips  
• 8-Bit Parallel TSI Mode, supporting two independent TSI pattern of up to 8 bits length  
each. Different payload length is possible for these two TSI pattern.  
• 8-Bit Extended TSI Mode, identical to 8-Bit Parallel TSI Mode, but identifies which  
pattern matches by adding a single bit at the beginning of the data frame  
• 8-Bit TSI Gap Mode, supporting two independent TSI pattern separated by a  
discontinuity  
All SFRs configuring the Frame Synchronization Unit support the Multi-Configuration  
capability (Config A, B, C and D). The Framer starts working in Run Mode Slave after  
Symbol Sync found and in Self Polling Mode after wake-up found and searches for a  
frame until TSI is found or synchronization is lost. The input of the Framer is a sequence  
Data Sheet  
55  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
of Bi-phase encoded data (chips). Basically the Framer consists of two identical  
correlators of 16 chips in length. It allows a Telegram Start Identifier (TSI) to be  
composed of Bi-phase encoded “Zeros” and “Ones”. The active length of each of the 16  
chips correlators is defined independently in the x_TSILENA and x_TSILENB registers.  
The pattern to match is defined as a sequence of chips in the x_TSIPTA0, x_TSIPTA1,  
x_TSIPTB0 and x_TSIPTB1 registers.  
Note that the RUNIN length shown in the figures below is the maximum needed RUNIN  
with the length of 8 chips. Further details on the needed RUNIN time of the receiver can  
be seen in Chapter 2.4.8.3 Clock and Data Recovery.  
Bi-phase- /  
Data  
Manchester -  
Decoder  
Data  
Data Clock  
CV  
Data Clock  
EOMCV  
EOMSYLO  
EOMDATLEN  
Code-Violation  
Detector  
EOM-Detector  
EOM  
x_EOMDLEN  
x_EOMDLENP  
Sync  
FSync  
TSI wild card  
x_TSIMODE(6:3)  
Delay-Line 16-bit  
Chip-Data Clock  
Chip-Data  
from CR  
from  
Data-  
Slicer  
MRB  
LRB  
x_TSILENA  
Correlator A  
Controller  
Correlator A 16-bit  
MSB LSB  
CorrAMatch  
Frame  
Synchron-  
ization  
TSI Data-Pattern  
TSI Data-Pattern  
LSB  
MSB  
Controller  
x_TSIMODE  
x_TSIGAP  
Delay-Line 16-bit  
Correlator B 16-bit  
MUX  
MRB  
LRB  
Correlator B  
Controller  
x_TSILENB  
TSI Data-Pattern  
TSI Data-Pattern  
LSB  
MSB LSB  
MSB  
Figure 26  
Frame Synchronization Unit  
Data Sheet  
56  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Please note that for Data Slicer Bit Mode a special constellation of RUNIN bits and TSI  
bits has to be ensured. Further details can be seen at the end of Chapter 2.4.8.4.  
The two independent correlators can be configured in the x_TSIMODE register to work  
in one of the following four TSI modes:  
16-Bit Mode: As a single correlator of up to 32 chips  
The length of the x_TSILENA register must be set to 16d whenever x_TSILENB is higher  
than 0.  
x_TSILENA = 16d, x_TSILENB = 6d  
RunIn  
0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0 1 0 0 1 0  
Incoming Pattern  
0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1  
Manchester Coded  
x_TSIPTB x_TSIPTA  
4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 0  
5
TSI Pattern Match  
FSYNC  
0110011001010110101010  
Data into FIFO  
1 0 1 0 0 1 0  
Figure 27  
16-Bit TSI Mode  
8-Bit Parallel Mode: As two correlators of up to 16 chips length each  
working simultaneously in parallel  
In the following example, TSI Pattern B matches first and generates an FSYNC. The  
lengths of both TSI Patterns are now independent from each other. The payload length  
for these two TSI Pattern may be different.  
x_TSILENA = 16d, x_TSILENB = 6d  
RunIn  
Incoming Pattern  
0 0 0 0 0 1 0 1 0 1 0 0 1 0  
Manchester Coded  
TSI Pattern B Match  
0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1  
x_TSIPTB  
5 4 3 2 1 0  
011001  
FSYNC  
Data into FIFO  
1 0 1 0 0 1 0  
Figure 28  
8-Bit Parallel TSI Mode  
Data Sheet  
57  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
8-Bit Extended Mode: As two correlators of up to 16 chips length each  
working simultaneously in parallel, with matching information insertion  
This bit is inserted at the beginning of the payload. “0” is inserted, when correlator A has  
matched and “1” when correlator B has matched. The payload length for these two TSI  
Pattern may be different.  
x_TSILENA = 16d, x_TSILENB = 6d  
RunIn  
0 0 0 0 0 1 0 1 0 1 0 0 1 0  
Incoming Pattern  
Manchester Coded  
0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1  
x_TSIPTB  
5 4 3 2 1 0  
TSI Pattern B Match  
FSYNC  
011001  
1 1 0 1 0 0 1 0  
Data into FIFO  
Matching Information inserted  
Figure 29  
8-Bit Extended TSI Mode  
8-Bit Gap Mode: As two sequentially working correlators of up to 16 chips  
length each  
This mode is only used in combination with the TSI Gap Mode shown below!  
This mode is used to define a gap between the two patterns which is preset in the  
x_TSIGAP register. To identify exactly the beginning of the gap it would be helpful on  
occasion to place the first CV of the gap into the TSI Pattern A. In this case, the gap  
length needed for the x_TSIGAP register must be shortened and the x_TVWIN length  
must be extended.  
x_TSILENA = 8d, x_TSILENB = 12d  
TSIGRSYN = 1  
RunIn  
Gap  
RunIn  
0
0
0
0
0
1
0 S  
0 0 0 0 1 0 0 0 1 1 1 1 1 0 1  
Incoming Pattern  
Manchester Coded  
0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 1 0  
x_TSIPTA  
2
x_TSIPTB  
1110 9 8 7 6 5 4 3 2 1 0  
7
6
5
4
3
1
0
TSI Pattern Match  
FSYNC  
01100100  
100101011010  
1
1 1 0 1  
Data into FIFO  
Figure 30  
8-Bit Gap TSI Mode  
Data Sheet  
58  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Selection of a TSI Pattern  
TSI patterns must be different to the wake-up bit stream and the RUNIN to clearly mark  
the start of the following payload data frame. It should be considered that the  
synchronization has a tolerance of about one bit. In addition, synchronization is related  
to data chips, and may occur in the middle of a data bit. This all must be tolerated by the  
data framer. Further details can be seen in Chapter 2.4.8.3 Clock and Data Recovery.  
Ideal TSI patterns have a unique bit combination at their end, which may also contain a  
number of code violations (CVs), when possible (see Chapter 2.4.8.4 Data Slicer and  
Line Decoding).  
Some examples of TSI patterns:  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0  
When CVs are used:  
0 0 0 0 0 0 0 0 0 0 0 0 0 M 1  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 M 0  
Note: CVs in a TSI are practical for better differentiation to the real data, especially if  
repetition of data frames is used for wake-up.  
End of Message (EOM) Detection  
An End Of Message (EOM) detection feature is provided by the EOM detector. Three  
criteria can be selected to indicate EOM.  
The first is based on the number of received bits since frame synchronization. The  
number of expected bits is preset in the x_EOMDLEN register. Sending fewer bits as  
defined in the register will result in no EOM. The EOM counter will be reset after new  
frame synchronization.  
In 8-Bit Parallel TSI Mode and 8-Bit Extended TSI Mode, the payload length for the two  
independent TSI pattern may be different. Therefore the payload length for TSI B pattern  
can be preset in the x_EOMDLENP register, while payload length for TSI A pattern can  
be preset in the x_EOMDLEN register.  
The second criterion is the detection of a Code Violation. This EOM criterion is not  
applicable for Data Slicer Bit mode.  
Data Sheet  
59  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
The third criterion is the loss of symbol synchronization. Depending on the x_TVWIN  
register, the Sync signal persists for a certain amount of time after the end of the pattern  
has been reached. Therefore, more bits could be written into the FIFO than sent. The  
three EOM criteria can be combined with each other. If one of the selected EOM criteria  
is fulfilled, an EOM signal will be generated.  
TSI Gap Mode  
The TSI Gap Mode is only used if TSI patterns contain a gap that is not synchronous to  
the data rate, e.g. if a gap is 7.7 data bits, or if a gap is longer than 10 data bits. In all  
other cases, gaps should be included in the TSI pattern as code violations.  
Because of its complexity in configuration, TSI Gap Mode should be only used in  
applications as noted above!  
For these special protocols, it is possible to lock the actual data frequency during a long  
Code Violation period inside a TSI (x_TSIGAP must have a minimum of 8 chips).  
TSIGAP is used to lock the PLL after TSI A was found. After the lock period, two different  
resynchronization modes are available (TSI Gap ReSYNchronization, TSIGRSYN):  
• Frequency readjustment (PLL starts from the beginning), TSIGRSYN = 1. In this  
mode the T/2 gap resolution can be set in the 5 MSB x_TSIGAP register bits. The  
value in GAPVAL (3 LSB in x_TSIGAP register) is not used. This is the preferred  
mode in TSI Gap Mode.  
clock recovery reset  
start point  
valid data  
all space or all mark  
valid data  
GAPSync  
RUNIN  
TSI A  
TSI GAP  
PLL sync  
TSI B  
< 1bit  
< 1bit  
internal PLL sync  
Figure 31  
Clock Recovery Gap Resynchronization Mode TSIGRSYN = 1  
• Phase readjustment only, TSIGRSYN = 0. In this mode, the value in GAPVAL is used  
to correct the phase after the gap phase. Overall gap time can be defined in T/16  
Data Sheet  
60  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
steps. The 5 MSB bits (TSIGAP) define the real gap time and the 3 LSB bits  
(GAPVAL) the DCO (digital controlled oscillator) phase correction value.  
clock recovery phase  
readjustment start point  
valid data  
all space or all mark  
valid data  
RUNIN  
TSI A  
TSI GAP  
PLL sync  
GAPSync  
TSI B  
< 1bit  
Figure 32  
Clock Recovery Gap Resynchronization Mode TSIGRSYN = 0  
When the time TSI GAP in the start sequence of the transmitted telegram has elapsed,  
the receiver needs a certain time (GAPSync = 5...6 chips) to readjust the PLL settings.  
Behavior of the system at the starting position of the TSI B:  
The starting position (TSI B start) for the TSI B comparison is independent from the  
RUNIN settings (x_CDRRI register) and the resynchronization mode (x_TSIMODE  
register):  
TSIBstart[chips] = TSIGAP[chips] + 68  
The incoming chips at TSI B start and the following incoming chips are compared with  
the contents of the register TSI B. Please notice that the receiver’s PLL runs at the data  
rate determined before the gap. Therefore, the receiver calculates the gap based on this  
data rate.  
Behavior of the system at the ending position of TSI B:  
The system checks for the TSI B to match within a limited time. If there is no match within  
this time, then the receiver starts again to search for the TSI A pattern at the following  
incoming chips:  
TSIBstop[chips] = TSIGAP[chips] + TSILENB[chips] + 11  
For a successful TSI B pattern match, the defined TSI B pattern must be between “Start  
of TSI B” and “Stop of TSI B”. In the example below, the earliest possible start position  
would be the 18th chip and the latest possible start position would be the 22nd chip.  
Data Sheet  
61  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Please note that after a gap, the internal TSI comparison register is cleared (all chips set  
to ’0’). In this case, a TSI B criteria of “0000” would always match at the beginning. To  
avoid such an unwanted matching, set the highest TSI B match chip to ’1’.  
GapSync  
RunIn  
TSIA  
TSIGAP=10 chips  
TSIB  
Incoming Pattern[bits] ... 0 0 1 0 S _ _ _ _ _ 0 0 0 0 1 0 0 0 1 1 1 1 1  
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6  
TSIBstart  
Start of TSIB  
comparison  
Stop of TSIB  
comparison  
Figure 33  
TSIGap TSIB Timing  
The TVWIN (Timing Violation WINdow) and TSIGAP dependency is shown in Figure 34.  
TVWIN  
TVWIN  
CV  
TVWIN  
GAP  
int.  
delay  
TSIA  
RUNIN/  
TSIGRSYN = 1  
TVWIN without GAP  
TVWIN with GAP  
Figure 34  
TVWIN and TSIGAP dependency example  
TVWIN calculation for pattern without Gap time:  
TVWIN = round((8 + 16 CV + 8) ⋅ 1.25)  
The entire TVWIN time is made up of the CV1) number itself, the half bit before CV and  
the half bit after the CV. To reach all frequency and duty cycle errors, 25% of the overall  
sum must be added.  
TVWIN calculation with Gap time:  
TVWIN = round(max{((8 + 16 CV + 8) ⋅ 1.25), (8 + 16 TSIACV + 16 1 + 8) ⋅ 1.25})  
1) CV...number of bits containing manchester code violations  
Data Sheet  
62  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.4.8.7 Message ID Scanning  
This unit is used to define an ID or special combination of bits in the payload data stream,  
which identifies the pattern. All SFRs configuring the Message ID Scanning Unit feature  
the Multi-Configuration capability. Furthermore, it is available in the Slave and Self  
Polling Mode. The MID Unit can be mainly configured in two modes: 4-Byte and 2-Byte  
organized Message ID. For each configuration there are 20 8-bit registers designed for  
ID storage. SFRs are used to configure the MID Unit: Enabling of the MID scanning,  
setting of the ID storage organization, the starting position of the comparison and  
number of bytes to scan.  
When the Message ID Scanning Unit is activated, the incoming data stream is compared  
bit-wise serially with all stored IDs. If the Scan End Position is reached and all received  
data have matched the observed part of at least one MID the Message ID Scanning Unit  
indicates a successful MID scanning to the Master FSM, which generates an MID  
interrupt.  
Please note that the default register value of the MID registers is set to 0x00. All MID  
registers must be set to a pattern value to avoid matching to default value 0x00.  
If the MID Unit finishes ID matching without success, the data receiving is stopped and  
the FSM waits again for a Frame Start criterion. The received bits are still stored in the  
FIFO.  
Data Sheet  
63  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
4-Byte Organized Message ID:  
In this mode four bytes are merged to define an ID-Pattern. This does not mean that the  
ID must be exact four bytes long. The number of bytes used is defined in register  
x_MIDC1. Up to 5 ID Patterns are available.  
8
x_MID0  
MID0:MID3  
32  
32  
32  
32  
32  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
x_MID1  
x_MID2  
x_MID3  
x_MID4  
x_MID5  
x_MID6  
x_MID7  
x_MID8  
x_MID9  
x_MID10  
x_MID11  
x_MID12  
x_MID13  
x_MID14  
x_MID15  
x_MID16  
x_MID17  
x_MID18  
x_MID19  
MID4:MID7  
MID8:MID11  
MID12:MID15  
MID16:MID19  
Combiner  
Scan Start Position  
Reached  
MID found  
Control-  
FSM  
MID Scanning finished  
Scan End Position  
Reached  
Bit Counter  
Interface to  
Master FSM  
Organization  
Init MID Scanner  
Enable MID Scanning  
from  
Digital-Receiver  
Figure 35  
4-Byte Message ID Scanning  
Data Sheet  
64  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2-Byte Organized Message ID:  
In this mode two bytes are merged to define an ID Pattern. Up to 10 patterns are  
possible.  
8
x_MID0  
MID0:MID1  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
x_MID1  
x_MID2  
x_MID3  
x_MID4  
x_MID5  
x_MID6  
x_MID7  
x_MID8  
x_MID9  
x_MID10  
x_MID11  
x_MID12  
x_MID13  
x_MID14  
x_MID15  
x_MID16  
x_MID17  
x_MID18  
x_MID19  
MID2:MID3  
MID4:MID5  
MID6:MID7  
MID8:MID9  
MID10:MID11  
MID12:MID13  
MID14:MID15  
MID16:MID17  
MID18:MID19  
Combiner  
Scan Start Position  
Reached  
MID found  
Control-  
FSM  
MID Scanning finished  
Scan End Position  
Reached  
Bit Counter  
Interface to  
Master FSM  
Organization  
Init MID Scanner  
Enable MID Scanning  
from  
Digital-Receiver  
Figure 36  
2-Byte Message ID Scanning  
ID Position Configuration:  
It is possible to choose which part of the incoming data stream is compared against the  
stored MIDs. The register x_MIDC0 contains the Scan Start Position. If the Bit Counter  
detects the Scan Start Position, the Control FSM enables the Scanner. The register  
x_MIDC1 contains the number of bytes to scan. During the observation period, the  
Data Sheet  
65  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Message ID Scanning is aborted immediately by the Master FSM, if symbol  
synchronization is lost or an EOM (End Of Message) is detected.  
Example:  
Start Selection: 00010001b  
Number to scan: 00b, 01b, 10b, 11b  
FSYNC  
Bit  
0
1
2
17 18  
23 24 25 26  
31 32 33 34  
39 40 41 42  
47 48 49  
Byte0  
Byte0  
Byte0  
Byte0  
Number To Scan =00b  
Number To Scan =01b  
Number To Scan =10b  
Byte1  
Byte1  
Byte1  
Byte2  
Byte2  
Byte3  
Number To Scan =11b  
Start MID Scan  
Figure 37  
MID Scanning  
The starting position in this case is Bit 17. Depending on the number to scan, the  
corresponding number of bytes is compared with the stored MIDs.  
2.4.8.8 RUNIN, Synchronization Search Time and Inter-Frame Time  
The functionality of the Digital Baseband Receiver is divided into four consecutive data  
processing stages; the data filter, clock and data recovery, data slicer and frame  
synchronization unit. The architecture of the Digital Baseband Receiver is optimized for  
processing bi-phase coded data streams.  
The basic structure of a payload frame is shown in Figure 38. The protocol starts with a  
so called RUNIN. The RUNIN with the minimum length of four bi-phase coded symbols  
is used for internal filter settling and frequency adjustment. The TSI (Telegram Start  
Identifier), which is used as framing word, follows the RUNIN sequence. The payload  
contains the effective data. The length of the valid payload data is defined as the length  
itself or additional criteria (e.g. loss of Sync).  
Please note that almost all transmitted protocols send a wake-up sequence before the  
payload frame (see also Figure 72). This wake-up sequence allows a very fast decision,  
whether there is a suitable message available or not. Further details on this topic can be  
gained from Chapter 2.6.1.5 and Chapter 2.4.8.5.  
Data Sheet  
66  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
RUNIN  
TSI  
PAYLOAD  
Figure 38  
Structure of Payload Frame  
Two important system parameters are described in this section: the Synchronization  
Search Time Out (SYSRCTO) and the Inter-Frame Time. The processing sequence of  
a payload frame is shown in Figure 39.  
input data  
RUNIN  
TSI  
RUNIN  
CDR input  
RUNIN  
TSI  
RUNIN  
PLL re-synchronization  
chip data available  
data available  
TSI  
RUNIN  
T4  
T2  
T1  
T2 T2  
T3  
symbol sync found  
Figure 39  
Data Latency  
The overall system latency time is calculated in two steps: T1 is the delay between ADC  
input (ASK) / limiter output (FSK) and the CDR input, and T2 is the time between Symbol  
Sync Found and the Framer output (decoded data available).  
T4 is the time between Symbol Sync Found and Chip Data output (RX mode TMCDS).  
T4 = 1 T. T is the nominal duration of one data bit.  
T1 latency time include: (T1 = 12.5µs + 2 T)  
• digital frontend processing delay  
• matched filter computation time  
• signal detector delay  
T2 latency time include: (T2 = 1.5 T + 0.5 T1) )  
• Data Slicer computation time  
• Framer computation time.  
1) The 0.5 T have to be added in case of activation of Bi-phase mark / space decoding mode and Data Slicer Bit  
mode without Code Violation (see register x_SLCCFG)  
Data Sheet  
67  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
The synchronization search time T3 is the time the receiver requires to search for a  
pattern in an incoming data stream and needs to be considered in the receivers start-up  
phase. The minimum value of the search time out length is the consequence of the  
system latency time T1, the RUNIN length and the time of asynchronism between  
transmitter and receiver.  
This means, that for the minimum length of register value for SYSRCTO, the value 2 bits  
plus 12.5 µs plus the RUNIN length, which is set in the x_CDRRI register, plus 2 bits (to  
consider worst case RUNIN patterns and TX-RX asynchronism) have to be used. To  
reach data rate and duty cycle errors, 10% of the overall sum must be added.  
12.5μs  
Tbit  
⎛⎛⎛  
SYSRCT0 = roundup ---------------- + 2 + RUNLEN + 2 16 1.1  
⎝⎝⎝  
A second important system parameter that must be considered, is the minimal Inter-  
Frame Time (time between two data frames). This time is equal to the time T2 and has a  
length of 1.5 or 2 bits1). The EOM to PLL resynchronization time is negligible in case  
INITDRXES is disabled. Otherwise T1 has to be added.2)  
Note that the described Inter-Frame Time is based on the input pattern with equal signal  
power in the following data frame; in other cases, the Inter-Frame Time can vary from  
the calculated value.  
1)  
2)  
0.5Tbit  
T1  
0
TInter – Frame = 1.5Tbit  
+
+
0
1) see previous footnote  
2) in case INITDRXES is enabled  
Data Sheet  
68  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.4.9  
Power Supply Circuitry  
The chip may be operated within a 5 Volts or a 3.3 Volts environment.  
VDD5V  
IN  
IN  
Voltage Regulator  
Voltage Regulator  
RX_RUN  
5 3.3 V  
5 3.3 V  
OUT  
OUT  
VDDA  
VDDD  
IN  
Analog  
Section  
RF  
Section  
Voltage Regulator  
3.3 1.5 V  
Digital-I/O  
OUT  
GNDA  
VDDD1V5  
GNDRF  
Power-Up  
Reset- Internal  
Circuit Reset  
Digital-Core  
P_ON  
Brownout  
Detector  
GNDD  
Figure 40  
Power Supply  
For operation within a 5 Volts environment (supply voltage range 1), the chip is supplied  
via the VDD5V pin. In this configuration the digital I/O pads are supplied via VDD5V and  
a 5 V to 3.3 V voltage regulator supplies the analog/RF section (only active in Run  
Modes).  
When operating within a 3.3 Volts environment (supply voltage range 2), the VDD5V,  
VDDA and VDDD pins must be supplied. The 5 V to 3.3 V voltage regulators are inactive  
in this configuration.  
The internal digital core is supplied by an additional 3.3 V to 1.5 V regulator.  
The regulators for the digital section are controlled by the signal at P_ON (Power On)  
pin. A low signal at P_ON disables all regulators and set the IC in Power Down Mode. A  
low to high transition at P_ON enables the regulators for the digital section and initiates  
a power on reset. The regulator for the analog section is controlled by the Master Control  
Unit and is active only when the RF section is active.  
To provide data integrity within the digital units, a brownout detector monitors the digital  
supply. In case a voltage drop of VDDD below approximately 2.45 V is detected a  
RESET will be initiated.  
Data Sheet  
69  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
A typical power supply application for a 3.3 Volts and a 5 Volts environment is shown in  
the figure below.  
*) 22Ω  
4.7Ω  
4.7Ω  
10Ω  
TDA5240  
TDA5240  
VDD5V  
VDD5V  
VDDA  
VDDD  
VDDA  
VDDD  
100n  
100n  
5V  
3.3V  
100n  
100n  
*) 1μ  
VDDD1V5  
100n  
VDDD1V5  
100n  
100n  
100n  
GNDA  
GNDA  
GNDRF  
GNDD  
GNDRF  
GNDD  
Supply-Application in 3.3V environment  
Supply-Application in 5V environment  
*) When operating in a 5V environment, the voltage-drop across the voltage  
regulators 5 Æ 3.3V has to be limited, to keep the regulators in a safe  
operating range. Resistive or capacitive loads (in excess to the scheme  
shown above) on pins VDDA and VDDD are not recommended.  
Figure 41  
3.3 Volts and 5 Volts Applications  
Data Sheet  
70  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.4.9.1 Supply Current  
In SLEEP Mode, the Master Control Unit switches the crystal oscillator into Low Power  
Mode (all internal load capacitors are disconnected) to minimize power consumption.  
This is also valid for Self Polling Mode during Off time (SPM_OFF).  
Whenever the chip leaves the SLEEP Mode/SPM_OFF (t1), the crystal oscillator  
resumes operation in High Precision Mode and requires tCOSCsettle to settle at the trimmed  
frequency. At t2 the analog signal path (RF and IF section) and the RF PLL are activated.  
At t3 the chip is ready to receive data. The chip requires tRXstartup when leaving SLEEP  
Mode/SPM_OFF until the receiver is ready to receive data.  
A transient supply current peak may occur at t1, depending on the selected trimming  
capacitance. The average supply current drawn during tRFstartdelay is IRF-FE-startup,BPFcal  
.
Run Mode*)  
SLEEP Mode**)  
SPM OFF Time  
RX_RUN Signal  
Supply  
Current  
IRun  
IRF-FE-startup ,BPFcal  
Isleep_low  
t1  
t2  
t3  
t
tRFstartdelay  
tCOSCsettle  
tRXstartup  
(Toff)  
Ton  
(Toff)  
*) Run Mode covers the global chip state:sRun Mode Slave/ Receiver active in Self Polling Mode/ Run Mode Self Polling  
**) Isleep_low is valid in the chip states: SLEEP / Off time duringSelf Polling Mode  
Figure 42  
Supply Current Ramp Up/Down  
If the IF buffer amplifier or the clock generation feature (PPx pin active) are enabled, the  
respective currents must be added.  
Data Sheet  
71  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.4.9.2 Chip Reset  
Power down and power on are controlled by the P_ON pin. A LOW at this pin keeps the  
IC in Power Down Mode. All voltage regulators and the internal biasing are switched off.  
A high transition at P_ON pin activates the appropriate voltage regulators and the  
internal biasing of the chip. A power up reset is generated at the same time.  
Supply Voltage  
at VDDD Pin  
3V  
Reset- / Brownout-  
Threshold (typ. 2.45V)  
Functional-  
Threshold (typ. 2V)  
t
tReset  
Internal Reset  
Voltage at PP2 Pin  
(NINT Signal)  
3V  
Reset- / Brownout-  
Threshold (typ. 2.45V)  
Functional-  
Threshold (typ. 2V)  
A ‚LOW’ is  
generated at  
PP2 pin  
(NINT signal)  
Level on  
NINT signal  
is undefined  
t
µC reads  
Interrupt-  
A ‚HIGH’ is  
generated at  
PP2 pin  
Supply voltage  
falls below  
Functional-Threshold  
Status-Register  
Supplyvoltage falls below  
Reset- / Brownout-Threshold  
(NINT signal)  
A ‚LOW’ is  
generated at  
PP2 pin  
Supplyvoltage  
rises above  
Functional-Threshold  
A ‚LOW’ is generated  
at NINT signal  
(NINTsignal)  
Figure 43  
Reset Behavior  
A second source that can trigger a reset is a brownout event. Whenever the integrated  
brownout detector measures a voltage drop below the brownout threshold on the digital  
Data Sheet  
72  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
supply, the integrity of the stored data and configuration can no longer be guaranteed;  
thus a reset is generated. While the supply voltage stays between the brownout and the  
functional threshold of the chip, the NINT signal is forced to low. When the supply voltage  
drops below the functional threshold, the levels of all digital output pins are undefined.  
When the supply voltage raises above the brownout threshold, the IC generates a high  
pulse at NINT and remains in the reset state for the duration of the reset time. When the  
IC leaves the reset state, the Interrupt Status registers (IS0 and IS1) are set to 0xFF and  
the NINT signal is forced to low. Now, the IC starts operation in the SLEEP Mode, ready  
to receive commands via the SPI interface. The NINT signal will go high, when one of  
the Interrupt Status registers is read for the first time.  
Data Sheet  
73  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.5  
System Interface  
In most applications, the TDA5240 receiver IC is attached to an external microcontroller.  
This so-called Application Controller executes a firmware which governs the TDA5240  
by reading data from the receiver when data has been received on the RF channel and  
by configuring the receiver device. The TDA5240 features an easy to use System  
Interface, which is described in this chapter.  
Transparent Mode  
The TDA5240 supports two levels of integration. In the most elementary fashion, it  
provides a rather rudimentary interface by which the incoming RF signal is demodulated  
and the corresponding data is made available to the Application Controller. Optionally, a  
chip clock is generated by the TDA5240. Since the data signal is always directly the  
baseband representation of the RF signal, we call this mode the Transparent Mode. The  
usage of the Transparent Mode will be described in Chapter 2.5.1.2.  
Packet Oriented Mode  
Alternatively, the TDA5240 features the so-called Packet Oriented Mode which supports  
the autonomous reception of data telegrams. The Packet Oriented Mode provides a  
high-level System Interface which greatly simplifies the integration of the receiver in  
data-centric applications. In Packet Oriented Mode, the data interface is based on  
chunks of synchronous data which are received in packets. In the easiest way, the  
Application Controller only reacts on the synchronous data it receives. The receiver  
autonomously handles the line decoding and the deframing of these data, and supports  
the timed reception of packets. Data is buffered in a receive FIFO and can be read out  
via the data interface. Further, the receiver provides support for the identification of  
wake-up signals. Details on the usage of the Packet Oriented Mode of the receiver are  
given in Chapter 2.5.1.2.  
2.5.1  
Interfacing to the TDA5240  
The TDA5240 is interfacing with an application by three logical interfaces, see  
Figure 44. The RF/IF interface handles the reception of RF signals and is responsible  
for the demodulation. Its physical implementation has been described in Chapter 2.4.3  
and Chapter 2.4.8, respectively. The other two logical interfaces establish the  
connection to the Application Controller. Note that due to the high level of integration of  
the receiver, these interfaces impose minor requirements on the Application Controller,  
which can be as simple as an 8-bit microcontroller operated at low clock rate. As will be  
shown later, the physical implementation of the data interface depends on whether the  
receiver is operated in Packet Oriented or in Transparent Mode.  
For the sake of clarity, the communication between the TDA5240 and the Application  
Controller is split into control flow and data flow. This separation leads to an  
independent definition of the data interface and the control interface, respectively.  
Data Sheet  
74  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
data interface  
RX data  
Application  
Controller  
(µC)  
TDA5240  
configuration  
RF interface  
status & alerts  
control interface  
Figure 44  
Logical and electrical System Interfaces of the TDA5240  
2.5.1.1 Control Interface  
The control interface is used in order to configure the TDA5240 after start-up or to re-  
configure it during run-time, as well as to properly react on changes in the status of the  
receiver in the Application Controller’s firmware. The control interface offers a bi-  
directional communication link by which  
configuration data is sent from the Application Controller to the TDA5240,  
• the receiver provides status information (e.g. the status of a data reception) as  
response to a request it has received from the Application Controller, and  
• the TDA5240 autonomously alerts the Application Controller that a certain,  
configurable event has occurred (e.g. that a packet has been received successfully).  
Configuration and status information are sent via the 4-wire SPI interface as described  
in Chapter 2.5.5. The configuration data determines the behavior of the receiver, which  
comprises  
• scheduling the inactive power-saving phases as well as the active receive phases,  
• selecting the properties of the RF/IF interface configuration (e.g. carrier frequency  
selection, filter settings),  
• configuring the properties of the frames (e.g. wake-up patterns, Telegram Start  
Identifier (TSI), and optionally specifying the position, format and content of patterns  
within packets that stimulate a certain, configurable alerting behavior (Message ID)).  
Note that the TDA5240 receiver IC supports reception of multiple configuration sets on  
multiple channels in a time-based manner without reconfiguration. Thus, the RF/IF  
interface as well as the frame format properties support alternative settings, which can  
be activated autonomously by the receiver as part of the scheduling process.  
In contrast to the high-level interface used for communicating configuration instructions  
and status information, alerts are emitted by the receiver on a digital output pin that may  
trigger external interrupts in the Application Controller. Note that the alerting conditions  
as well as the polarity of the output pin are configurable, see Chapter 2.5.4.  
Data Sheet  
75  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.5.1.2 Data Interface  
The data interface between the Application Controller and the TDA5240 receiver IC is  
used for the transport of the received data, see Figure 44. The physical implementation  
as well as the features of the data interface depend on the selected mode of operation.  
There are 5 possible receive modes:  
• Packet Oriented FIFO Mode (POF)  
• Packet Oriented Transparent Payload Mode (POTP)  
• Transparent Mode - Chip Data and Strobe (TMCDS)  
• Transparent Mode - Matched Filter (TMMF)  
• Transparent Mode - Raw Data Slicer (TMRDS)  
Access points for these receive modes can be seen in Figure 15.  
The possible combinations of receive modes and polling mode setup is noted in  
Figure 45.  
Figure 45  
Receive Modes  
Packet Oriented FIFO Mode (POF)  
In Packet Oriented FIFO Mode, data is transferred via the 4-wire SPI bus. During receive  
operation, the incoming RF signal is demodulated in the RF/IF interface, the line  
decoding is performed and the data, of which wake-up frames, data frame headers and  
optional footers have been stripped off, is stored in the RX FIFO. Then, the received data  
can be read from the RX FIFO using the “read FIFO” command described in  
Data Sheet  
76  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Chapter 2.5.2 and Chapter 2.5.5. The data which is read from the RX FIFO is  
accompanied by information which contains the status of the respective receive  
operation. Note that the availability of received data packets is communicated via alerts  
in the control interface.  
TDA5240  
data  
interface  
RX FIFO  
RX data  
line decoder  
framer  
bit  
synchronizer  
scheduler  
Figure 46  
Data interface for the Packet Oriented FIFO Mode  
Packet Oriented Transparent Payload Mode (POTP)  
This mode is very similar to POF Mode as data which is going into FIFO is also available  
via RXD and RXSTR signals (see Chapter 2.5.3 Digital Output Pins).  
TDA5240  
RX FIFO  
line decoder  
framer  
data  
interface  
bit  
RX data  
Strobe  
synchronizer  
scheduler  
Figure 47  
Data interface for the Packet Oriented Transparent Payload Mode  
In the TDA5240, there are specific digital output lines (PPx pin) for the Bi-phase decoded  
data and an appropriate Strobe signal. During inactivity of the receiver, the line is in  
default mode switched to low.  
Data Sheet  
77  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
In default mode the Strobe signal is active high and has a delay of TBIT/16 relative to the  
data bit and a duration of TBIT/2. The polarity of the Strobe signal is programmable, this  
can be done via PPCFG2 register.  
RXD  
Dn  
Dn+1  
RXSTR  
TBIT/16  
TBIT/2  
Figure 48  
Timing of the Packet Oriented Transparent Payload Mode  
Transparent Mode - Chip Data and Strobe (TMCDS)  
The receiver’s simple plain data interface in this Transparent Mode is shown in  
Figure 49. In this mode, the demodulated data signal is made directly available on the  
data output pin of the data interface. Concurrently, an estimate of the chip clock is  
optionally provided on the respective clock output line. Note that a sensible chip clock  
can only be generated if the selected line encoding exhibits a constant chip rate. The  
chip clock generation can be significantly improved by using a run-in signal of alternating  
one-zero chips (maximum number of transitions within a data stream).  
data  
interface  
TDA5240  
RX data  
RX chip strobe  
bit  
synchronizer  
scheduler  
Figure 49  
Data interface for the Transparent Mode - Chip Data and Strobe  
In the TDA5240, there is a specific digital output line for the chip clock estimate as well  
as for the data output line, which delivers the encoded chip data. During inactivity of the  
receiver, the line is in default mode switched to low.  
The PPx pin provides the estimated chip clock, if CH_STR is selected. Further details  
are given in Chapter 2.5.3.  
Data Sheet  
78  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
In default mode the CH_STR signal is active high and has a delay of TCHIP/8 relative to  
the data chip and a duration of TCHIP/2. The polarity of the CH_STR signal is  
programmable, this can be done via PPCFG2 register.  
CH_DATA  
CH_STR  
Dn  
Dn+1  
TCHIP/8  
TCHIP/2  
Figure 50  
Timing of the Transparent Mode - Chip Data and Strobe  
Transparent Mode - Matched Filter (TMMF)  
The received data after the Matched Filter (Two-Chip Matched Filter) with an additional  
SIGN function is provided via the DATA_MATCHFIL signal (PPx pin). In this mode  
sensitivity measurements with ideal data clock can be performed very simple. For further  
details see the block diagram in Figure 15.  
Sensitivity in this transparent mode is significantly depending on the implemented clock  
and data recovery algorithm of the user software in the application controller.  
data  
interface  
TDA5240  
RX data  
scheduler  
Figure 51  
Data interface for the Transparent Modes TMMF / TMRDS  
Transparent Mode - Raw Data Slicer (TMRDS)  
This mode supports processing of data even without bi-phase encoding (e.g. NRZ  
coding) by providing the received data via the One-Chip Matched Filter on the DATA  
signal (PPx pin). See more details in the block diagram in Figure 15.  
Data Sheet  
79  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Sensitivity in this transparent mode is significantly depending on the implemented clock  
and data recovery algorithm of the user software in the application controller.  
The data interface can be seen from Figure 51.  
Self Polling capabilities are possible as well, but only Constant On-Off Mode and Wake-  
up on RSSI makes sense. Assume one of the TDA5240 configurations (e.g.  
Configuration B) is set for external data processing mode. See also example in  
Figure 52. The needed On time (latency through TDA5240) is configured in the  
corresponding On time registers of the chip. The interrupt for Wake-Up Config B (WUB)  
is enabled and suitable RSSI thresholds are set.  
If the RSSI signal is in a valid threshold area, the TDA5240 changes to Run Mode Self  
Polling and an interrupt can be signaled to the Application Controller.  
In case the RSSI signal is outside the valid threshold area, the chip stays in Self Polling  
Mode and the external controller gets no interrupt (as the desired RSSI level is not  
reached).  
It should be mentioned that all Timeout Timers (TOTIMs) should be disabled in the  
configuration set of the external processing mode as the microcontroller takes over the  
control (see SFR bit group EXTPROC in the x_CHCFG register).  
It is recommended to put this external configuration at the end of the On time within the  
polling cycle (so right before the Off time). This is helpful when using the "EXTTOTIM"  
command (goto Self Polling Mode, next programmed channel or Configuration A; see  
Figure 77). When the external configuration is the last configuration before the Off time,  
then the next programmed channel within the polling cycle would be the sequence of the  
Off time.  
When data is available and the RSSI is within a valid threshold area, an interrupt is  
generated (NINT). So the Application Controller can process the data and decide about  
valid data.  
In case the controller decides that wrong data was sent, the microcontroller can send the  
register command "EXTTOTIM" (see Figure 77 and EXTPCMD register).  
When the microcontroller detects valid data, then the controller can send the register  
command "EXTEOM found" (see Figure 77 and EXTPCMD register) after completing  
the data reception.  
The functionality described above can also be used for other receive modes (mainly  
TMMF, TMCDS), where the external microcontroller takes on responsibility for further  
data processing.  
Data Sheet  
80  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
SelfPolling Mode  
SelfPolling scenario  
ConfigA  
ConfigB  
OFF-time  
Sleep Mode  
RSSI level too low Î  
Chip stays in Self Polling Mode  
and sends no interrupt  
Interrupt signal  
for RSSI  
RunMode SelfPolling  
SelfPolling / Sleep  
Interrupt signal  
for RSSI  
RunMode SelfPolling  
SelfPolling / Sleep  
µC detects invalid data and sends  
„EXTTOTIMÎ goto SPM  
Interrupt signal  
for RSSI  
µC finished data reception,  
sends „EXTEOM found“  
RunMode SelfPolling  
SelfPolling / Sleep  
Figure 52  
External Data Processing  
The SFR bit group EXTPROC in the x_CHCFG register can be activated for each  
configuration set for an easier handling of external data processing by the Application  
Controller. Depending on the intended transparent receive mode an activation of this  
function means:  
• Data path in front of Framer Unit is no longer closed (so that no data is going into  
Framer Unit accidentally)  
• Interrupts for FSync, MID and EOM are deactivated internally  
• Some/all TOTIM counters are deactivated  
• Some/all Wake-up on Data Criteria are disabled  
• Wake-up on Signal Recognition is/is not disabled  
Data Sheet  
81  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.5.2  
Receive FIFO  
The Receive FIFO is the storage of the received data frames and is only used in the POF  
Mode. It is written during data reception. The host microcontroller is able to start reading  
via SPI right after frame sync (interrupt) or in the most common case right after detection  
of EOM (interrupt). The FIFO can store up to 256 received data bits. If the expected data  
transmission contains more bits (note that in TSI 8-bit Extended Mode one bit is added  
in front of the real payload to indicate which of the two TSI pattern has matched), reading  
from FIFO must start a certain time after frame sync to prevent an overrun.  
Architecture  
The 256-bit receive FIFO is based on a bit-addressable 2-port memory architecture.  
Data  
from  
Digital-  
Receiver  
Write-Port  
Write Address  
Pointer  
(Up-Counter)  
Bit-Address  
In  
1 of 16 Decoder  
Data Clock  
ENABLE  
RESET  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
0
1
2
3
4
5
6
7
8
byte 16  
byte 17  
byte 18  
byte 19  
byte 20  
byte 21  
byte 22  
byte 23  
byte 24  
256-bit  
Memory-Array  
byte  
9
byte 25  
byte 26  
byte 27  
byte 28  
byte 29  
byte 30  
byte 31  
byte 10  
byte 11  
byte 12  
byte 13  
byte 14  
byte 15  
from FSM  
INITFIFO  
Read Address  
Pointer  
(Up-Counter)  
FSINITFIFO  
InitFIFO  
16 to 1 MUX  
Out  
Bit-Address  
Read-Port  
SCLK  
RESET  
ENABLE  
to  
SPI-Bus  
FIFO-Overflow  
# of Valid Bits  
from FSync  
Digital-  
FIFO-  
Controller  
EOM  
SDO  
Receiver  
SDO-Frame  
Generator  
FIFOLK  
fifolk  
to FSM  
Figure 53  
Receive FIFO  
The write port is controlled by the Digital Receiver using the Write Address Pointer.  
Writing data into the FIFO starts with the detection of a TSI. The Write Address Pointer  
is incremented with each data clock signal generated by the Digital Receiver. The read  
port is controlled by the SPI controller using the Read Address Pointer. Each bit read  
from the SPI controller increments the Read Address Pointer. The Read and Write  
Address Pointers jump from their maximum value (255d) to address zero. Writing to the  
FIFO stops at EOM or after Sync loss.  
Data Sheet  
82  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
FIFO Lock Behavior  
The FIFO possesses a lock mechanism that is enabled via the SFR control bit FIFOLK  
in the CMC1 register. If this mechanism is enabled, the FIFO will enter a FIFO Lock state  
at the detection of the EOM criterion. During the time that the FIFO is locked, it is not  
possible to receive additional data in Run Mode Self Polling. This means that it is only  
possible to detect another wake-up in the Self Polling Mode, but no more data in the Run  
Mode Self Polling. This will guarantee that only the first complete data packet is stored  
in the FIFO. Enabling FIFOLK also locks the digital receive chain at EOM until release  
from FIFO lock state.  
The FIFO will remain locked unless one of three conditions occurs:  
1.) The remaining contents of the FIFO are completely read out via the SPI  
2.) The SFR control bit FIFOLK is cleared  
3.) INITFIFO at Cycle Start is set in the CMC1 register and  
a) FSM is switched to Run Mode Slave or  
b) FSM switches from Self Polling Mode to Run Mode Self Polling  
INITFIFO (Init Fifo@ Cycle Start) = 1  
Accept Data  
EOM=0  
Write Data into FIFO  
EOM=1  
EOM=1  
FIFOLK=0  
FIFOLK=1  
FIFO Lock  
FIFO Empty = 0  
FIFOLK=1  
Wait till FIFO is empty  
FIFOLK=0  
FIFO Empty=1  
Figure 54  
FIFO Lock Behavior  
Data Sheet  
83  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
FIFO Status Word  
The FIFO Status Word is attached at the end of a FIFO SPI transmission, and shows if  
there was an overflow, and how many valid data bits were transmitted. The number of  
valid FIFO bits is indicated at bit positions S0 to S5. S6 of the Status Word is always  
undefined.  
SDI  
I7 I6  
I1 I0  
32 FIFO Bits  
Status Word  
high impedance Z  
D0  
D1  
D30 D31 S7  
S6  
S1  
S0  
SDO  
Figure 55  
SPI Data FIFO Read  
If the Write Address Pointer outruns the Read Address Pointer, an overflow is indicated  
in the FIFO Overflow Status bit in the FIFO Read Status Word at position S7. All 32 FIFO  
bits and the bits S5 to S0 of the Status Word are undefined while the Overflow Status bit  
is set.  
If a TSI is detected after an overflow, the FIFO Overflow Status bit is cleared and the  
entire receive FIFO is initialized.  
Initialization  
Additionally, there are two possibilities to initialize the receive FIFO.  
• If the INITFIFO bit is set in the CMC1 register (“Init FIFO at Cycle Start”) the entire  
receive FIFO is always initialized  
a.) after switching to Run Mode Slave or  
b.) switching from Self Polling Mode to Run Mode Self Polling.  
• If the FSINITFIFO bit in CMC1 register is set, the entire receive FIFO is initialized  
when a TSI is detected and the receive FIFO is not locked (“Init FIFO at Frame  
Start”).  
Last received message length  
For application protocols with several payload frames and only a short pause in-  
between, the microcontroller would have to read out the FIFO very fast after detection of  
an EOM. Thus even slow or overloaded Application Controllers have the possibility now  
to determine the end of the last message, when reading out the FIFO, while the next  
payload frame gets already received and payload data is further stored in the FIFO.  
Data Sheet  
84  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Therefore the last received message length (e.g. after an EOM event) is stored in  
register PLDLEN and the upper two bits of register RFPLLACC at TSI detection of the  
next message. The upper two bits of register RFPLLACC hold the MSBs, thus a  
message length of 256 up to 1023 payload bits can be depicted. A saturation of the  
message length at the maximum value of 1023 is realized. Storage at TSI of the next  
message ensures that even wrong payload data (e.g. if MID is not matching, no EOM  
will be generated, but payload is kept in FIFO. Or EOM data length criterion is selected  
only and a sync loss prevents from generating an EOM event) can be identified.  
On initialization of the FIFO, the register PLDLEN and the upper two bits of register  
RFPLLACC are cleared. The corresponding internal counter is cleared with every TSI  
detection and initialization of the FIFO.  
PLDLEN will work correctly in case:  
(INITDRXES = 0) AND ( (Data rate > 22kBit/s) OR (EOM2SPM = 0) )  
If the condition above is not fulfilled, then the chip internal state machine can set  
PLDLEN to 0 and a correct function of PLDLEN cannot be guaranteed.  
2.5.3  
Digital Output Pins  
As long as the P_ON pin is high, all digital output pins operate as described. If the P_ON  
pin is low, all digital output pins are switched to high impedance mode.  
The digital outputs PP0, PP1, PP2 and PP3 are configurable, where each of the signals  
CLK_OUT, RX_RUN, NINT, a LOW level (GND) and a HIGH level, DATA,  
DATA_MATCHFIL, CH_DATA, CH_STR, RXD and RXSTR can be routed to any of the  
four output pins. There is only one exception, CLK_OUT is not available on PP3. The  
default configuration for these four output pins can be seen in Table 1.  
Each port pin can be inverted by usage of PPCFG2 register.  
The RX_RUN signal is active high for all Configurations by default. It can be deactivated  
for every Configuration separately. Every PPx can be configured with an individual  
RX_RUN setup. This can be set in RXRUNCFG0 and RXRUNCFG1 registers.  
Interfacing to 3.3V Logic:  
The TDA5240 is able to interface directly to a 3.3V logic, when chip is operated in 3.3V  
environment.  
Interfacing to 5V Logic:  
The TDA5240 is able to interface directly to a 5V logic, when chip is operated in 5V  
environment.  
Data Sheet  
85  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
EMC Reduction of Digital I/Os:  
Because electromagnetic distortion generated by digital I/Os may interfere with the high  
sensitivity radio receiver, it is recommended that all inputs are filtered by adding an RC  
low pass circuit.  
2.5.4  
Interrupt Generation Unit  
The TDA5240 is able to signal interrupts (NINT signal) to the external Application  
Controller on one of the PPx port pins (for further details see Chapter 2.5.3 Digital  
Output Pins). The Interrupt Generation Unit receives all possible interrupts and sets the  
NINT signal based on the configuration of the Interrupt Mask registers (IM0 and IM1).  
The Interrupt Status registers (IS0 and IS1) are set from the Interrupt Generation Unit,  
depending on which interrupt occurred. The polarity of the interrupt can be changed in  
the PPCFG2 register. Please note that during power up and brownout reset, the polarity  
of NINT signal is always as described in Chapter 2.4.9.2 Chip Reset.  
A Reset event has the highest priority. It sets all bits in the Status registers to “1” and  
sets the interrupt signal to “0”. The first interrupt after the Reset event will clear the Status  
registers and will set the interrupt signal to “1”, even if this interrupt is masked.  
A Wake-up interrupt clears the FsyncA, FsyncB, FsyncC, FsyncD and the  
complementary Wake-up flag. An Fsync interrupt clears the EOMA, EOMB, EOMC,  
EOMD, MIDA, MIDB, MIDC, MIDD and the complementary Fsync flags.  
The Interrupt Status register is always cleared after read out via SPI.  
It is not possible to disable the Power On Reset Indicator Interrupt using the Interrupt  
Mask registers.  
Some interrupts are not usable depending on the selected receive mode, which is  
described in Chapter 2.5.1.2 Data Interface.  
Interrupts for WU can be used in all receive modes.  
Interrupts for FSync, MID and EOM can only be used in the receive modes POTP and  
POF.  
Data Sheet  
86  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
IS1 + IS0  
IM1 + IM0  
Reset  
Interrupt-Mask  
NINT  
Interrupt-Signalling  
NINT signal  
Figure 56  
Interrupt Generation Unit  
RESET  
PP2_select=NINT  
PP2INV  
SPI READ IS0  
IS0  
X
FF  
01  
03  
07  
0F  
1C  
30  
70  
F0  
00  
PP2(NINT)  
WU(A,B)  
FSYNC(A,B)  
MID(A,B)  
EOM(A,B)  
ConfigA  
ConfigB  
Figure 57  
Interrupt Generation Waveform (Example for Configuration A+B)  
Data Sheet  
87  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
The following handling mechanism for read-clear registers was chosen due to  
implementation of the Burst Read command:  
• the current Interrupt Status (ISx) register 8-bit content is latched into the SPI shift  
register after the last address bit is clocked-in (point A in Figure 58)  
• the IS register is then cleared after last IS register bit is clocked out of the SPI  
interface (point B in Figure 58)  
Consequence: any interrupt event occurring in the window-time between points A and B  
is cleared at point B and not stored/shown in an later readout of ISx.  
(However: NINT signal is toggling in any case, if occurring interrupt is not masked in IMx  
register)  
A
B
8-bit @2MHz = 4us  
irq1 (masked?)  
irq2 (masked?)  
nint  
ncs  
read/readb data = IS(t+0)  
SPI IF  
inst  
addr  
read/capture IS*  
content  
SFR IS* read clear  
@end of data frame  
SFR IS* IS(t-1)  
IS(t+0)  
IS(t+1) 0x00  
NOTE:  
SFR IS(j) status flag is cleared  
before it can be read if an IRQ  
occurs during SPI data frame  
Figure 58  
ISx Readout Set Clear Collision  
Please see also the IMPORTANT NOTE in the Burst Read section !  
Data Sheet  
88  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.5.5  
Digital Control (4-wire SPI Bus)  
The control interface used for device control and data transmission is a 4-wire SPI  
interface.  
NCS - select input, active low  
SDI - data input  
SDO - data output  
• SCK - clock input: Data bits on SDI are read in at rising SCK edges and written out  
on SDO at falling SCK edges.  
Level definition:  
logic 0 = low voltage level  
logic 1 = high voltage level  
Note for non-Burst modes: It is possible to send multiple frames while the device is  
selected. It is also possible to change the access mode while the device is selected by  
sending a different instruction.  
Note: In all bus transfers MSB is sent first, except for the received data read from the  
FIFO. There the bit order is given as first bit received is first bit transferred via the bus.  
To read from the device, the SPI master has to select the SPI slave unit first. Therefore,  
the master must set the NCS line to low. After this, the instruction byte and the address  
byte are shifted in on SDI and stored in the internal instruction and address register. The  
data byte at this address is then shifted out on SDO. After completing the read operation,  
the master sets the NCS line to high.  
NCS  
Frame  
Frame  
1
8
1
8
1
8
1
8
1
8
1
8
SCK  
SDI  
Instruction  
Register Address  
Instruction  
Register Address  
I7 I6 I5 I4 I3 I2 I1 I0 A7 A6 A5 A4 A3 A2 A1 A0  
I7 I6 I5 I4 I3 I2 I1 I0 A7 A6 A5 A4 A3 A2 A1 A0  
Data Out  
Data Out  
high impedance Z  
SDO  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
Figure 59  
Read Register  
Data Sheet  
89  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
To read from the device in Burst mode, the SPI master has to select the SPI slave unit  
first. Therefore the master has to drive the NCS line to low. After the instruction byte and  
the start address byte have been transferred to the SPI slave (MSB first), the slave unit  
will respond by transferring the register contents beginning from the given start address  
(MSB first). Driving the NCS line to high will end the Burst frame.  
NCS  
1
8
1
8
1
8
1
8
1
8
SCK  
SDI  
Instruction  
Register Start Address  
I7 I6 I5 I4 I3 I2 I1 I0 A7 A6 A5 A4 A3 A2 A1 A0  
Data Out(i)  
Data Out (i+1)  
Data Out (i+x)  
high impedance Z  
SDO  
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7  
D0 D7 D6 D5 D4 D3 D2 D1 D0  
Figure 60  
Burst Read Registers  
IMPORTANT NOTE - for being upwards compatible with further versions of the  
product, we give following strong recommendation:  
For read-clear registers at address (N), no read-burst access stopping at address  
(N-1) is allowed, because read-clear register will be cleared without being read out.  
Use single read command to read out the register at address (N-1) or extend the  
burst read to include the read-clear register at address (N).  
To write to the device, the SPI master has to select the SPI slave unit first. Therefore,  
the master must set the NCS line to low. After this, the instruction byte and the address  
byte are shifted in on SDI and stored in the internal instruction and address register. The  
following data byte is then stored at this address.  
After completing the writing operation, the master sets the NCS line to high.  
Additionally the received address byte is stored into the register SPIAT and the received  
data byte is stored into the register SPIDT. These two trace registers are readable.  
Therefore, an external controller is able to check the correct address and data  
transmission by reading out these two registers after each write instruction. The trace  
registers are updated at every write instruction, so only the last transmission can be  
checked by a read out of these two registers.  
Data Sheet  
90  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
NCS  
Frame  
Frame  
1
8
1
8
1
8
1
8
1
8
1
8
SCK  
SDI  
Instruction  
Register Address  
Data Byte  
Instruction  
Register Address  
Data Byte  
I7 I6 I5 I4 I3 I2 I1 I0 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
I7 I6 I5 I4 I3 I2 I1 I0 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
high impedance Z  
SDO  
Figure 61  
Write Register  
To write to the device in Burst mode, the SPI master has to select the SPI slave unit  
first. Therefore the master has to drive the NCS line to low. After the instruction byte and  
the start address byte have been transferred to the SPI slave (MSB first) the successive  
data bytes will be stored into the automatically addressed registers.  
To verify the SPI Burst Write transfer, the current address (start address, start address  
+ 1, etc.) is stored in register SPIAT and the current data field of the frame is stored in  
register SPIDT. At the end of the Burst Write frame the latest address as well as the  
latest data field can be read out to verify the transfer. Note that some error in one of the  
intermediate data bytes can not be detected by reading SPIDT.  
Driving the NCS line to high will end the Burst frame.  
A single SPI Burst Write command can be applied very efficiently for data transfer either  
within a register block of configuration dependent registers or within the block of  
configuration independent registers.  
NCS  
1
8
1
8
1
8
1
8
1
8
SCK  
SDI  
Instruction  
Register Start Address  
Data Byte (i)  
Data Byte (i+1)  
Data Byte (i+x)  
I7 I6 I5 I4 I3 I2 I1 I0 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
high impedance Z  
SDO  
Figure 62  
Burst Write Registers  
Data Sheet  
91  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
The SPI also includes a safety feature by which the checksum is calculated with an  
XOR operation from the address and the data when writing SFR registers. The  
checksum is in fact an XOR of the data 8-bitwise after every 8 bits of the SPI write  
command. The calculated checksum value is automatically written in the SPICHKSUM  
register and can be compared with the expected value. After the SPICHKSUM register  
is read, its value is cleared.  
In case of an SPI Burst Write frame, a checksum is calculated from the SPI start address  
and consecutive data fields.  
enable every 8 bit  
read/clear  
SPI shift register  
XOR  
Checksum SFR  
Figure 63  
SPI Checksum Generation  
To read the FIFO, the SPI master has to select the SPI slave unit first. Therefore, the  
master must set the NCS line to low. After this, the instruction byte is shifted in on SDI  
and stored in the internal instruction register. The data bits of the FIFO are then shifted  
out on SDO. The following byte is a status word that contains the number of valid bits in  
the data packet. After completing the read operation, the master sets the NCS line to  
high.  
NCS  
Frame  
Frame  
1
8
1
32  
1
8
1
8
1
32  
1
8
SCK  
SDI  
Instruction  
Instruction  
I7 I6  
I1 I0  
I7 I6  
I1 I0  
32 FIFO Bits  
Status Word  
32 FIFO Bits  
Status Word  
high impedance Z  
D0  
D1  
D30 D31 S7  
S6  
S1  
S0  
D0  
D1  
D30 D31 S7  
S6  
S1  
S0  
SDO  
Figure 64  
Read FIFO  
Table 4  
Instruction  
WR  
Instruction Set  
Description  
Instruction Format  
0000 0010  
Write to chip  
RD  
Read from chip  
Read FIFO from chip  
Write to chip in Burst mode  
0000 0011  
RDF  
0000 0100  
WRB  
0000 0001  
RDB  
Read from chip in Burst mode 0000 0101  
Data Sheet  
92  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.5.5.1 Timing Diagrams  
tDeselect  
NCS  
tnot_hold  
tSetup  
tCL K_H  
thold  
tnot_setup  
SCK  
tSDI_setup  
tSDI_hold  
tCLK_L  
SDI  
high impedance Z  
SDO  
Figure 65  
Serial Input Timing  
NCS  
SCK  
SDO  
tCLK_H  
tSDO_disable  
tCLK_SDO  
tCLK_SDO  
tCLK_L  
tSDO_r  
tSDO_f  
Z
Z
SDI  
ADDR LSB  
Figure 66  
Serial Output Timing  
Data Sheet  
93  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Table 5  
Symbol  
fclock  
SPI Bus Timing Parameter  
Parameter  
Clock frequency  
Clock High time  
Clock Low time  
tCLK_H  
tCLK_L  
tsetup  
Active setup time  
Not active setup time  
Active hold time  
Not active hold time  
Deselect time  
tnot_setup  
thold  
tnot_hold  
tDeselect  
tSDI_setup  
tSDI_hold  
tCLK_SDO  
tSDO_r  
SDI setup time  
SDI hold time  
Clock low to SDO valid  
SDO rise time  
tSDO_f  
SDO fall time  
tSDO_disable  
SDO disable time  
2.5.6  
Chip Serial Number  
Every device contains a unique, preprogrammed 32-bit wide serial number. This number  
can be read out from SN3, SN2, SN1 and SN0 registers via the SPI interface. The  
TDA5240 always has SN0.6 set to 1 and SN0.5 set to 1.  
Fuses  
SN0  
SN1  
SN2  
SN3  
Fuse-  
Readout-  
Interface  
Figure 67  
Chip Serial Number  
Data Sheet  
94  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.6  
System Management Unit (SMU)  
The System Management Unit consists of two main units:  
Master Control Unit, where the various operating modes can be configured.  
Polling Timer Unit, where the receiver’s On and Off times and modes are defined.  
The Polling Timer Unit is only working in the Self Polling Mode.  
2.6.1  
Master Control Unit (MCU)  
2.6.1.1 Overview  
The Master Control Unit controls the operation modes, the global states, and is generally  
responsible for automating data reception, verification, identification, extraction, and  
storage into the FIFO. The payload data without RUNIN, TSI and optional EOM can be  
read from the FIFO via SPI by the external microcontroller.  
Alternatively, a transparent data stream can also be processed externally by the  
Application Controller (see Chapter 2.5.1.2 Data Interface).  
The following operation modes and the behavior of the Master Control Unit are fully  
automatic and only influenced by SFR settings and by incoming RF data streams.  
The TDA5240 has two major operation modes, which are switched by SFR bit MSEL.  
In Slave Mode the device is controlled via SPI by the external microcontroller. This mode  
supports:  
Run Mode Slave (RMS), where the receiver is continuously active  
SLEEP Mode, where the receiver is switched off for power saving. This mode can  
also be used to change register settings  
HOLD Mode, allows register settings to be changed. The change to HOLD Mode and  
back to RMS is faster than changing to SLEEP Mode and back to RMS.  
In Slave Mode, switching between configurations and channels, as well as between Run  
and SLEEP Mode must be initiated by the microcontroller.  
In Self Polling Mode, TDA5240 autonomously polls for incoming RF signals. The  
receiver switches automatically between up to four configurations (Configuration A, B, C  
and D) and up to 3 channels per configuration (Further information can be found in  
Chapter 2.6.2).  
Between the RF signal scans, the receiver is automatically switched to Low Power Mode  
for reducing the average power consumption. If an incoming signal fulfills the selected  
wake-up criterion an interrupt can be generated and Run Mode Self Polling will be  
entered. If the following received data matches to the TSI pattern, and passes the  
optional message ID screening, the payload is loaded into the FIFO, and, if not masked,  
an interrupt is generated. Then the payload data can be read via SPI.  
Data Sheet  
95  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Init  
Reset  
Initialize RX-Part  
Bit:SLRXEN == 1  
Bit:MSEL == 0  
Bit:SLRXEN == 1  
Bit:MSEL == 0  
Bit:SLRXEN == 0  
or  
Run Mode  
Slave  
Bit:MSEL == 1  
Sleep Mode  
Bit:SLRXEN == 1  
Bit:MSEL == 0  
Bit:SLRXEN == 0  
Bit:MSEL == 0  
Chip is permanently  
active  
Chip is idle  
Bit:SLRXEN == 0  
or  
Bit:MSEL == 1  
Bit:SLRXEN == X  
Bit:MSEL == 1  
Bit:SLRXEN == X  
Bit:MSEL == 0  
Init  
Initialize RX-Part  
Bit:SLRXEN == X  
Bit:MSEL == 0  
Bit:SLRXEN == X  
Bit:MSEL == 1  
Bit:SLRXEN == X  
Bit:MSEL == 0  
ToTim Timeout== X  
Self Polling  
Mode  
Bit:SLRXEN == X  
Bit:MSEL == 1  
WUC found == 0  
Chip is periodically active  
and searching for  
WU criteria  
Bit:SLRXEN == X  
Bit:MSEL == 1  
EOM2SPM == 1  
Bit:SLRXEN == X  
Bit:MSEL == 1  
Bit:SLRXEN == X  
Bit:MSEL == 1  
WUC found == 1  
ToTim Timeout == 1  
Run Mode  
Self Polling  
Bit:SLRXEN == X  
Bit:MSEL == 1  
ToTim Timeout == 0  
Chip is permanently  
active  
Figure 68  
Global State Diagram  
2.6.1.2 Run Mode Slave (RMS)  
In Run Mode Slave, the receiver is able to continuously scan for incoming data streams.  
Detection and validation of a wake-up criterion are not performed, but RUNIN and TSI  
are required.  
Recognition of TSI and validation of the optional MID (Message IDentification) are done  
automatically. The data payload is extracted from the data stream, and moved to the  
FIFO.  
The various recognition steps are communicated by interrupts. Interrupts can be  
generated at frame-start (when a valid TSI has been detected), when a valid MID has  
been found and at EOM (End of Message).  
Alternatively, a transparent data stream can also be processed externally by the  
Application Controller (see Chapter 2.5.1.2 Data Interface).  
Run Mode Slave is entered by setting SFR CMC0 bits MSEL to 0 and SLRXEN to 1.  
Data Sheet  
96  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Configurations are switched via SFR bit group MCS in the CMC0 register. The RF  
channel in use can be selected in the x_CHCFG register, the frequency selection is  
defined by SFRs x_PLLINTCy, x_PLLFRAC0Cy, x_PLLFRAC1Cy, x_PLLFRAC2Cy,  
where x = A, B, C or D and y = 1, 2 or 3.  
The configuration may be changed only in SLEEP or in HOLD Mode before returning to  
the previously selected operation mode. This is necessary to restart the state machine  
with defined settings at a defined state. Otherwise the state machine may hang up.  
Reconfigurations in HOLD Mode are faster, because there is no Start-Up sequence.  
The following flowchart and explanation show and help to understand the internal  
behavior of the Finite State Machine (FSM) in Run Mode Slave.  
Data Sheet  
97  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
0
1
Wait  
Startup Finished == 0  
Wait Till Startup  
Has Finished  
Startup Finished == 1  
4
INIT  
FIFO locked  
fifolk == 1  
Init FIFO=Init FIFO@Cyc.  
EXTPROC==00  
Wait Till FIFO Read Out  
Symbol Sync ==0  
INITDRXES==1  
fifolk == 0  
2
fifolk == 1  
INIT  
fifolk == 0  
INITDRXES==1  
Init Digital Receiver  
Symbol Sync ==0  
INITDRXES==0  
3
fifolk == 0  
Wait  
Symbol Sync == 0  
INITDRXES==0  
Wait Till Symbol  
Synchronization  
Is Found  
Generating A Frame Start  
Interrupt If Not Masked  
Symbol Sync == 1  
EXTPROC<>10  
Hold == 0  
12  
5
Wait  
Hold  
Frame Sync == 0  
Hold == 1  
Wait Till Frame Start  
Is Found  
Ready for  
reconfiguration  
Frame Sync == 1  
EXTPROC==00  
6
7
INIT FIFO  
Init FIFO=  
Init FIFO@FSYNC  
Check  
MID Screening enable == 0  
MID Setup  
Check The MID Setup  
Register  
MID Screening enable == 1  
8
9
Init MID  
Scanning Unit  
Initialize The MID  
Scanning Unit  
MID Scanning Finished == 0  
Wait  
Store RX Data Into FIFO  
Wait For Scan Finish  
Generating A MID Found  
Interrupt If Not Masked  
MID Scanning Finished == 1  
10  
Checking ID  
Scanning Result  
Store RX Data Into FIFO  
Analyze The Scanning  
Result  
MID Found== 0  
Generating A EOM Interrupt If  
Not Masked  
MID Found=1  
11  
EOM Check  
EOM Found == 1  
Store RX Data Into FIFO  
Check For EOM  
EOM Found == 0  
Figure 69  
Run Mode Slave  
Data Sheet  
98  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.6.1.3 HOLD Mode  
This state (item 12 in Figure 69) is used for fast reconfiguration of the chip in Run Mode  
Slave. This state can be reached after the Start-Up Sequencer and Initialization of the  
chip have been completed from any state from 3 to 11. To reconfigure the chip the SFR  
control bit HOLD must be set. After reconfiguration in this state the SFR control bit HOLD  
must be cleared again. After leaving the HOLD state, the INIT state is entered and the  
receiver can work with the new settings. Be aware that the time between changing the  
configuration and reinitialization of the chip has to be at least 40us. Take note that one  
SPI command for clearing the SFR control bit HOLD needs 24 bits or 12μs at an SPI  
data rate of 2.0Mbit/s. The remaining 28μs must be guaranteed by the application.  
Wait till  
SSync  
EOM-Check  
HOLD  
INIT  
FSM State  
Instruction Address  
Data  
HOLD=1  
Instruction Address  
Write  
0x02  
Data  
x_CHCFG/ (sel. other  
x_PLL.. channel)  
Instruction Address  
Data  
HOLD=0  
Write  
0x02  
CMC0  
Write  
0x02  
CMC0  
SPI Command  
12us @ 2.0MHz  
40us  
Figure 70  
HOLD State Behavior (INITPLLHOLD disabled)  
In case of large frequency steps, an additional VAC routine (VCO Automatic Calibration)  
has to be activated when recovering from HOLD Mode (INITPLLHOLD bit). The  
maximum allowed frequency step in HOLD Mode without activation of VAC routine is  
depending on the selected frequency band. The limits are +/- 1 MHz for the 315 MHz  
band, +/- 1.5 MHz for the 434 MHz band and +/- 3 MHz for the 868/915 MHz band.  
When this additional VAC routine is enabled, the TDA5240 starts initialization of the  
Digital Receiver block after release from HOLD and an additional Channel Hop time.  
Wait till  
SSync  
EOM-Check  
HOLD  
VAC  
VAC  
INIT  
FSM State  
Instruction Address  
Data  
HOLD=1  
Instruction Address  
Write  
0x02  
Data  
x_CHCFG/ (sel. other  
x_PLL.. channel)  
Instruction Address  
Data  
HOLD=0  
Write  
0x02  
CMC0  
Write  
0x02  
CMC0  
SPI Command  
tC_Hop  
12us @ 2.0MHz  
40us  
Figure 71  
HOLD State Behavior (INITPLLHOLD enabled)  
HOLD Mode is only available in Run Mode Slave. Configuration changes in Self Polling  
Mode have to be done by switching to SLEEP Mode and returning to Self Polling Mode  
after reconfiguration.  
Data Sheet  
99  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.6.1.4 SLEEP Mode  
The SLEEP Mode is a power save mode. The complete RF part is switched off and the  
oscillator is in Low Power Mode. As in HOLD Mode, the chip can be reconfigured. When  
switching from SLEEP to Run Mode Slave, the state machine starts with the internal  
Start-Up Sequence.  
2.6.1.5 Self Polling Mode (SPM)  
In Self Polling Mode TDA5240 autonomously polls for incoming RF wake-up data  
streams. There is no processing load on the host microcontroller. When a wake-up  
criterion has been found, an interrupt can be generated and the TDA5240 mode is  
changed to Run Mode Self Polling for automatic verification of TSI, optional MIDs and  
for transfer of payload data into the FIFO.  
A general overview on a typically transmitted protocol and the behaviour of the TDA5240  
is given in Figure 72.  
TX - RX interaction in RX - Self Polling Mode  
TX Telegram:  
1)  
Wake-up Frame  
Wake-up Frame continued or Gap  
Data Frame  
PAYLOAD  
RUNIN + Wake-up sequence  
(RUNIN)  
TSI  
EOM  
RX Mode:  
On time 2)  
Self Polling Mode  
On time 2)  
Self Polling Mode  
a
b
Run Mode Self Polling  
Legend:  
1) There can either be a Wake -up Frame directly followed by a Data Frame or the Wake -up Frame is separated from the Data Frame by a Gap in -between.  
2) The position of the On time can vary (a, b, ...) as there is no synchronization between transmitted telegram and start of the receiver’s On time.  
Figure 72  
SPM - TX-RX Interaction  
Alternatively, a transparent data stream can also be processed externally by the  
Application Controller (see Chapter 2.5.1.2 Data Interface).  
Self Polling Mode is entered by setting the MSEL register bit to 1.  
Configuration changes are allowed only by switching to SLEEP Mode, and returning to  
Self Polling Mode after reconfiguration.  
Data Sheet  
100  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
The Polling Timer Unit controls the timing for scanning (On time) and sleeping (Off  
time, SPM_OFF). Up to four independent configuration sets (A, B, C and D) can  
automatically be processed, thus enabling scanning from different transmit sources.  
Additionally, up to 3 different frequency channels within each configuration may be  
scanned to support Multi-Channel applications. See also Chapter 2.6.2 Polling Timer  
Unit. So a total number of up to 12 different frequency channels is supported.  
The Wake-Up Generation Unit identifies, whether an incoming data stream matches  
the configurable wake-up criterion.  
After fulfillment of the wake-up criterion, modulation can be switched automatically.  
See also Chapter 2.6.1.6 Automatic Modulation Switching, Chapter 2.4.8.5 Wake-  
Up Generator and Chapter 2.5.1.2 Data Interface (in Subsection TMRDS).  
The following state diagrams and explanations help to illustrate the behavior during Self  
Polling Mode. First there is a search for a wake-up criterion according to Configuration  
A on up to three different channels. Then, there is an optional search for a wake-up  
criterion according to Configuration B, C and D, again including up to 3 channels.  
In applications using only Single-Configuration, settings are always taken from  
Configuration A.  
Data Sheet  
101  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
RX_RUN=0  
RX_RUN == 0  
1
IDLE  
Permanent WU Search Mode Enable== 0  
Chip is idle  
RX_RUN == 1  
2
Wait  
Startup Finished == 0  
Wait Till Startup  
Has Finished  
From Run Mode Self Polling  
Startup Finished == 1  
Init  
3
4
5
Loop Counter  
CfgLoopCounter,  
Loop Counter  
is Initialized  
Permanent WU Search Mode Enable== 1  
Modulation  
Switching CFG A  
Modulation Selection  
Depending On Register  
Setting  
WU Search With  
Configuration A  
Init With  
CFG A  
Initialize RX-Part  
Configuration A  
Loop Counter== 10  
Loop Counter == 11  
Load  
Channel 1  
Load  
Channel 2  
Load  
Channel 3  
6
11  
11  
Initialize RX-Part  
Multi Channel A  
Initialize RX-Part  
Multi Channel A  
Initialize RX-Part  
Multi Channel A  
Permanent WU Search Mode Enable== 0  
Permanent WU Search Mode Enable== 1  
Const On Time  
Fast Fall Back To Sleep  
7
7
WU Search  
CFG A FFTS  
Search For A Configurated  
Wake Up Criteria  
WU Search  
CFG A COOT  
Search For A Configurated  
Wake Up Criteria  
WU Search Finished == 0  
ON Time elapsed == 0  
WU Found== 0  
Fast Fall Back  
Const On Off  
ON Time elapsed == 1  
WU Found == 0  
WU Search Finished == 1  
WU Found == 1  
WU Search Finished == 1  
WU Found== 0  
ON Time elapsed == X  
WU Found == 1  
9
10  
Increment  
Loop Counter  
Compare  
Loop Counter <> ANOC  
Compare Loop Counter  
Against Number Of  
Channels  
Incrementation Of  
The Loop Counter  
Loop Counter Equal ANOC == 1  
CfgLoopCounter <> CfgNr  
Loop Counter == ANOC  
CfgLoopCounter== CfgNr  
8
Store  
Channel  
Store The Current Channel  
Configuration Into Actual  
Channel Register  
Generating WU CFG A  
Interrupt If Not Masked  
12  
Run Mode  
Self Polling  
Chip is permanently  
active  
To Init Loop Counter  
of Config B  
From Compare of  
Config B, C, D  
Figure 73  
Wake-up Search with Configuration A  
Data Sheet  
102  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
To Init Loop  
Counter / Idle of  
Config A  
From Compare of  
Config A, B, C  
WU Search With  
Configuration B, C, D  
3
4
Init  
Loop Counter  
Loop Counter Is  
Initialized  
Modulation  
Switching CFG B,C,D  
Modulation Selection  
Depending On Register  
Setting  
5
Init With  
CFG B,C,D  
Initialize RX-Part  
Configuration B,C,D  
Loop Counter== 10  
Loop Counter== 11  
6
11  
11  
Load  
Load  
Load  
Channel 1  
Channel 2  
Channel 3  
Initialize RX-Part  
Initialize RX-Part  
Initialize RX-Part  
Multi Channel B,C,D  
Multi Channel B,C,D  
Multi Channel B,C,D  
Permanent WU Search Mode Enable == 0  
Permanent WU Search Mode Enable== 1  
Const On Time  
Fast Fall Back To Sleep  
7
7
WU Search  
WU Search  
ON Time elapsed == 0  
WU Found == 0  
CFG B,C,D COOT  
Search For A Configurated  
Wake Up Criteria  
CFG B,C,D FFTS  
Search For A Configurated  
Wake Up Criteria  
WU Search Finished == 0  
Const On Off  
Fast Fall Back  
ON Time elapsed == X  
WU Found== 1  
ON Time elapsed == 1  
WU Found == 0  
WU Search Finished == 1 WU Search Finished == 1  
WU Found == 1  
WU Found == 0  
9
10  
Increment  
Loop Counter  
Compare  
Loop Counter <> (B,C,D)NOC  
Compare Loop Counter  
Against Number Of  
Channels  
Incrementation Of  
The Loop Counter  
Loop Counter Equal(B,C,D)NOC == 1  
CfgLoopCounter<> CfgNr  
Loop Counter== (B,C,D)NOC  
CfgLoopCounter == CfgNr  
8
Store  
Channel  
Store The Current Channel  
Configuration Into Actual  
Channel Register  
Generating WU CFG B ,C,D  
Interrupt If Not Masked  
12  
Run Mode  
Self Polling  
Chip is permanently  
active  
To Init Loop Counter  
of Config C,D  
Figure 74  
Wake-up Search with Configuration B, C, D  
Data Sheet  
103  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.6.1.6 Automatic Modulation Switching  
In Self Polling Mode, the chip is able to automatically change the type of modulation  
after a wake-up criterion was fulfilled in a received data stream. The type of modulation  
used in the different operational modes is selected by the SFR control bit MT.  
2.6.1.7 Multi-Channel in Self Polling Mode  
As previously mentioned, in Self Polling Mode the TDA5240 allows RF scans on up to  
three RF channels per configuration, this can be defined in the x_CHCFG register.  
Channel frequencies are defined in registers x_PLLINTCy, x_PLLFRAC0Cy,  
x_PLLFRAC1Cy, x_PLLFRAC2Cy, where x = A, B, C or D and y = 1, 2 or 3.  
The channel number at which a wake-up criterion has been found is available in register  
RFPLLACC. See also Chapter 2.4.5 Sigma-Delta Fractional-N PLL Block.  
2.6.1.8 Run Mode Self Polling (RMSP)  
The chip enters Run Mode Self Polling after a successful fulfillment of a wake-up  
criterion in Self Polling Mode.  
When Wake-Up criterion for RSSI or Signal Recognition (see Chapter 2.4.8.1) is  
selected and fulfilled, this leads to a change to Run Mode Self Polling. This will be  
interesting especially in case of a transparent data stream being processed externally by  
the Application Controller (see Chapter 2.5.1.2 Data Interface).  
The following steps are performed automatically, depending on register settings:  
• Modulation switching (see Chapter 2.6.1.6 Automatic Modulation Switching)  
• Wait for valid TSI (see Chapter 2.4.8.6 Frame Synchronization)  
• Initialize FIFO (see Chapter 2.5.2 Receive FIFO) and write data to FIFO  
• Scan for MIDs (see Chapter 2.4.8.7 Message ID Scanning)  
Depending on interrupt masking, the host microcontroller is alerted when  
• a data frame has started,  
• an MID has been found, (if enabled) or  
• EOM (End of Message) has been detected.  
See also Chapter 2.5.4 Interrupt Generation Unit  
Run Mode Self Polling is left, when synchronization is lost and the timeout timer for loss  
of synchronization (TOTIM_SYNC) has elapsed, or when one of the other timeout timers  
(TOTIM_TSI, TOTIM_EOM) for each configuration (A, B, C, D) has elapsed, or when an  
EOM occurred and the SFR bit EOM2SPM is activated, or when the operating mode is  
switched to SLEEP or Run Mode Slave by the host microcontroller.  
Data Sheet  
104  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Timeout timers for getting no TSI or getting no EOM within a certain time period can be  
used to avoid a deadlock situation, e.g. TOTIM_TSI can be used in case an interfering  
transmit signal fulfilled the wake-up criterion and keeps on transmitting, but no TSI can  
be found in this data stream within a certain programmable time period. TOTIM_EOM  
might be used in case EOM criterion “EOM by payload data length” cannot be applied.  
The timeout timer functionality in the absence/presence of an interfering signal is shown  
in Figure 75 and Figure 76.  
Without interfering signal:  
WU frame and Payload frame have the same modulation type  
e.g. TOTIM_TSI is set to 15ms  
TX signal  
RX_RUN  
RI TSI Payload1  
RI TSI Payload2  
Wake-up  
WU-data Interrupt  
RunMode SelfPolling  
SelfPolling / Sleep  
Init TOTIMs  
TOTIM_SYNC  
counter activity  
TOTIM_TSI  
counter activity  
9.5ms  
5ms  
5ms  
TOTIM_EOM  
counter activity  
Figure 75  
TOTIM Behavior without Presence of Interferer  
Data Sheet  
105  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
With interfering signal (interferer signal has same data rate as wanted wake-up signal):  
WU frame and Payload frame have the same modulation type  
e.g. TOTIM_TSI is set to 15ms  
TX interferer  
TX signal  
RI TSI Payload2  
RI TSI Payload1  
Wake-up  
RX_RUN  
WU-data Interrupt  
RunMode SelfPolling  
SelfPolling / Sleep  
*)  
Init TOTIMs  
TOTIM_SYNC  
counter activity  
TOTIM_TSI  
counter activity  
TOTIM_EOM  
counter activity  
*) Chip proceeds with Self Polling Mode  
Figure 76  
TOTIM Behavior in Presence of Interferer  
On expiring of one of the timeout timers, the receiver proceeds with Self Polling Mode  
and with searching for a suitable wake-up criterion on the next programmed channel  
(either next RF channel or next configuration, depending on the selected mode - Multi-  
Configuration or Multi-Channel or a mix of both) or a search for a wake-up criterion in  
Configuration A is initiated.  
As long as the chip is in Run Mode Self Polling, incoming data frames (including a  
RUNIN sequence and TSI, but without necessity of additional wake-up patterns) can be  
received and stored.  
The data FIFO can be initialized and cleared either at  
• Cycle Start, that means whenever Run Mode Self Polling is entered or  
• Frame Start, when a TSI has been successfully identified (and Receive FIFO is not  
locked).  
Further information about the Receive FIFO can be found in the Chapter 2.5.2 Receive  
FIFO.  
Data Sheet  
106  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
After an EOM was found, the information about the RF channel and the configuration of  
the actual payload data is saved in the RFPLLACC register.  
After detection of EOM the TDA5240 can either proceed with a search for a wake-up  
criterion in the next configuration or a search for wake-up in Configuration A can follow  
or the TOTIMs of the current configuration are reloaded for being prepared to receive  
another (redundant) payload data frame within the same configuration.  
Alternatively, a transparent data stream can also be processed externally by the  
Application Controller. Therefore the external controller needs the possibility to send  
following commands, which would normally be generated by the TDA5240 itself (see  
Figure 77 and EXTPCMD register as well):  
• EXTTOTIM: So the TDA5240 can proceed with Self Polling Mode (either with the  
next programmed channel or with Configuration A).  
• EXTEOM found: In this case the TDA5240 can either proceed with Self Polling Mode  
(either with the next configuration or with Configuration A) or stay in Run Mode Self  
Polling.  
EXTTOTIM and EXTEOM are only available, when the external processing mode is  
deactivating functional blocks (see bit group x_CHCFG.EXTPROC).  
When the actual processed configuration is right before the Off time and the Application  
Controller sends one of the above mentioned commands, then the TDA5240 can  
proceed with the Off time (in case next configuration is selected).  
If the autonomous Wake-up Search with Configuration A follows a TOTIM or EOM event,  
then also the Polling Timer is initialized, this means a new On period is started. In case  
the Wake-up Search is started with Next Programmed Channel (after a TOTIM event) or  
Wake-up Search gets started with Next Configuration (after an EOM event), then the  
Polling Timer is not initialized. This means that the On time counter proceeds with the  
old value from leaving the previous Wake-up search period successfully. This is the case  
for Fast Fall Back to SLEEP Mode.  
In Constant On-Off Time Mode the Polling Timer is always initialized after a TOTIM or  
EOM event.  
Data Sheet  
107  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
0
1
Modulation  
Switching  
All Operations Are Done With  
The Wake Up Configuration  
Modulation Selection  
Depending On Register  
Setting  
INIT  
If PWUF == 0 then  
{ Init FIFO=  
Init FIFO@Cycle Start }  
PWUF = 0  
To Self Polling Mode  
(WU Search With Next  
Programmed Channel)  
To Self Polling Mode  
(WU Search With  
Configuration A )  
TOTIM2nCh == 1  
15  
1.1  
INIT  
17  
TOTIM2nCh == 0  
Goto SP Next  
Programmed  
Channel  
INIT  
If INITFRCS== 1 then  
Init Framer  
Generating WU  
CFG X Interrupt  
If Not Masked  
Init Digital Receiver  
EXTTOTIM  
(from external controller)  
INITDRXES==1  
INITDRXES==0  
3
2
Init TOTIMs  
ToTim Timeout == 1  
EXTPROC==00  
fifolk == 1  
FIFO locked  
Symbol Sync==0 Initialize TOTIM timers  
ToTim Timeout SYNC== 1  
Symbol Sync == X  
Wait Till FIFO Read Out  
INITDRXES==0  
16  
3.1  
fifolk == 0  
INIT  
Symbol Sync ==0  
fifolk == 0  
Init  
INITDRXES==1  
Parallel Wake-Up  
Found  
Digital Receiver  
4
Wait  
ToTim Timeout SYNC== 1  
Symbol Sync == X  
EXTPROC <> 10  
WU Found == 1  
PWUF == 1  
Start ToTim Timer SYNC  
(If Enabled)  
WU Found == 1  
ToTim Timeout SYNC== 0  
Symbol Sync == 0  
It Is Possible To Disable  
The Timeout Feature  
To Self Polling Mode PWUF == 1  
(WU Search With  
Configuration A)  
ToTim Timeout SYNC== 0  
Symbol Sync == 1  
EXTPROC <> 10  
ToTim Timeout TSI == 0  
Frame Sync == 0  
To Self Polling Mode  
(WU Search With  
Next Configuration)  
5
Wait  
ToTim Timeout TSI== 1  
Frame Sync== X  
EXTPROC == 00  
EOM2nCfg == 0  
Start ToTim TSI(If Enabl.)  
Wait Till Frame Start  
Is Found  
EOM2nCfg == 1  
ToTim Timeout TSI== 0  
Generating A Frame Start  
Interrupt If Not Masked  
Frame Sync== 1  
EXTPROC==00  
14  
Goto Next  
Config After EOM  
INIT FIFO  
6
Start ToTimEOM(If Enab.)  
Init FIFO=  
InitFIFO@FSYNC  
EOM2SPM == 1  
Check  
MID Setup  
7
EOM2SPM == 0  
MID Screening  
enable == 0  
Check The MID Setup  
Register  
13  
MID Screening  
Goto SelfPolling  
After EOM  
enable == 1  
Init MID  
Scanning Unit  
8
ToTim Timeout  
EOM == 1  
Initialize The MID  
Scanning Unit  
9
Wait  
Store RX Data Into FIFO  
Wait For Scan Finish  
Generating A MID Found  
Interrupt If Not Masked  
MID Scanning  
Finished == 1  
MID Scanning  
Finished == 0  
12  
10  
Save  
Checking ID  
Channel and  
Configuration  
Information  
Scanning Result  
Store RX Data Into FIFO  
Analyze The Scanning  
Result  
MID Found == 0  
MID Found == 1  
Generating A EOM  
Interrupt If Not Masked  
11  
EOM Check  
Store RX Data Into FIFO  
Check For EOM  
ToTim Timeout EOM == 1  
EOM Found == X  
EOM Found == 1  
PWUF = PWUEN bit  
EXTEOM found  
ToTim Timeout EOM == 0  
EOM Found == 0  
(from external controller)  
Figure 77  
Run Mode Self Polling  
Data Sheet  
108  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
While the TDA5240 is in Run Mode Self Polling, further Wake-ups would normally not be  
detected by the receiver. If the functionality of a parallel Wake-up search during the  
search for a TSI is desired, this can be activated by the PWUEN bit. In this case the  
Wake-up search is not active during a recognized payload and is only active after the  
first received payload frame, as can be seen from Figure 77. This feature can only be  
used, when modulation type is the same for SPM and RMSP.  
So after a reception of the EOM from the current payload, the parallel WU search can  
take place in this mode. The WU search will be active after Symbol Sync has been  
detected. The WU search will be active until the Synchronization gets lost or wake-up is  
generated. After the Synchronization gets lost the WU search will be finished and wake-  
up can not be detected any more (the TSI search continues as usual).  
Following procedure can be applied with help of 3 SPI Write command sequences.  
The idea is to generate external EOM every time the Symbol Sync goes to inactive state  
and no interrupt (TSI or WU) has been detected. This will bring the MCU to the cycle start  
and reinitialize the WU search.  
Configuration:  
Write x_WUC.PWUEN = 1  
// Enable Parallel Wake-up search  
Write x_WURSSITHx 0xFF  
// Set RSSI threshold to max value (avoid WU during the reinitialization procedure)  
Write x_WULOT 0xFF  
// Set WULOT to max value (avoid WU during the reinitialization procedure)  
Data Sheet  
109  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Wait for Wake-up interrupt  
WU IRQ  
TIMEOUT -> SLEEP -> SPM  
or (dependent on application )  
EXT_TOTIM:  
* Select external processing (for ext. TOTIM)  
(Write x_CHCFG.EXTROC = 0x2)  
* Generate external TOTIM  
(Write EXTPCMD 0x02)  
* Disable external processing  
(Write x_CHCFG.EXTROC = 0x0)  
WU IRQ  
TSI IRQ  
Wait for TSI interrupt  
TSI IRQ  
Wait for EOM interrupt  
EOM IRQ  
Only necessary if other PPx signals needed during self -polling  
otherwise configure PPx once at the beginning  
Activate Symbol Sync on PPx  
Deactivate Symbol Sync on PPx  
(example for PP0 = RX_RUN)  
Write PPCFG0.PP0CFG = 0x1  
(example for PP 0;  
for other PPx see notes below )  
Write 0xF4 0x07  
Write PPCFG0.PP0CFG = 0xE  
1. Force Symbol Sync for MCU to 0  
Write 0xED 0x40  
2. Select external processing (for ext. EOM)  
Write x_CHCFG.EXTPROC = 0x2  
3. Generate external EOM  
Wait for Symbol Sync  
(on PPx)  
(if no ISR impl.)  
Write EXTPCMD 0x01  
Symbol Sync = 1  
4. Disable external processing  
Write x_CHCFG.EXTPROC = 0x0  
5. Unforce Symbol Sync  
Write 0xED 0x00  
Interrupt  
Wait for interrupt  
Wait for SW Timeout  
EOM generation  
- must be faster than  
RUNIN duration  
Symbol Sync = 0  
SW Timeout  
Figure 78  
Parallel Wake-up Search  
Notes:  
- Symbol Sync can be activated on any PPx port  
PP0: Write 0xF4 0x07 & Write PPCFG0 0x0E  
PP1: Write 0xF4 0x70 & Write PPCFG0 0xE0  
PP2: Write 0xF5 0x01 & Write PPCFG1 0x0E  
PP3: Write 0xF5 0x10 & Write PPCFG1 0xE0  
- Symbol Sync monitoring necessary only in run mode between frames and WU pattern  
or till software timeout generated  
Data Sheet  
110  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
- generation of external EOM will reinitialize also the TOTIM timers  
- external EOM generation period should be smaller than the RUNIN length  
(7 chips RUNIN = ~62 us @ 112 kchip/s , 5 SPI write commands = ~ 60 us @ 2 Mbit)  
- minimal Symbol Sync active period = TVWIN, minimal Symbol Sync inactive period =  
RUNIN  
For protocols where no ASK/FSK switching is required between the Wake-up and  
payload frame, the Wake-up and TSI pattern can share the same bits (e.g. Wake-up  
pattern = ..00000, TSI = 000001, all bits Manchester encoded). This function can be  
activated by the INITFRCS bit, so then there is no reset of the framer compare shift  
register after a Wake-up event, which can shorten the required processing time.  
Data Sheet  
111  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.6.2  
Polling Timer Unit  
SPM  
Reference-Timer  
(8 Bit)  
SPM  
On-Off-Timer  
(14 Bit)  
SPM  
fsys / 64  
fRT  
fOnOff  
Active-Idle Period Timer  
(5 / 8 Bit)  
Self-Polling-Mode (SPM)  
FSM  
No WU  
Polling Mode  
to  
Master-Control-Unit  
Figure 79  
Polling Timer Unit  
The Polling Timer Unit consists of a Counter Stage and a Control FSM (Finite State  
Machine).  
The Counter Stage is divided into three sub-modules.  
The Reference Timer is used to divide the state machine clock (fsys/64) into the slower  
clock required for the SPM timers.  
The On-Off Timer and the Active Idle Period Timer are used to generate the polling  
signal. The entire unit is controlled by the SPM FSM.  
The TDA5240 is able to handle up to four different sets of configurations automatically.  
However, the examples and figures in this subsection only show up to two configuration  
sets for the sake of clarity.  
Data Sheet  
112  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.6.2.1 Self Polling Modes  
Four polling modes are available to fit the polling behavior to the expected wake-up  
patterns and to optimize power consumption in Self Polling Mode.  
The following 4 Polling Modes are available and can be configured via 2 bits in the  
configuration register SPMC:  
• Constant On-Off (COO)  
• Fast Fall Back to SLEEP (FFB)  
• Mixed Mode (MM)  
• Permanent Wake-Up Search (PWUS)  
A detected wake-up data sequence or an actual value for RSSI or Signal Recognition (a  
combination of Signal Detector and Noise Detector, see Chapter 2.4.8.1) exceeding a  
certain adjustable threshold forces the TDA5240 into Run Mode Self Polling.  
In all modes the timing resolution is defined by the Reference Timer, which scales the  
incoming frequency (fsys/64) corresponding to the value, which is defined in the Self  
Polling Mode Reference Timer (SPMRT) register. Changing values of SPMRT helps to  
fit the final On-Off timing to the calculated ideal timing.  
2.6.2.2 Constant On-Off Time (COO)  
In this mode there is a constant On and a constant Off time. Therefore also the resulting  
master period time is constant. The On and Off time are set in the SPMONTA0,  
SPMONTA1, SPMONTB0, SPMONTB1, SPMONTC0, SPMONTC1, SPMONTD0,  
SPMONTD1, SPMOFFT0 and SPMOFFT1 registers. The On time configuration is done  
separately for Configuration A, B, C and D.  
When Single-Configuration is selected then only Configuration A is used. The number  
of RF channels is defined in the A_CHCFG register (Single-Channel or Multi-Channel  
Mode).  
Multi-Configuration Mode allows reception of up to 4 different transmit sources. The  
corresponding RF channels can be defined in the A_CHCFG, B_CHCFG, C_CHCFG  
and D_CHCFG registers. In the case of Multi-Channel or combination of Multi-Channel  
and Multi-Configuration Mode, the configured On time is used for each RF channel in a  
configuration. The diagram below shows possible scenarios.  
All receive modes described in Chapter 2.5.1.2 Data Interface can be used.  
Data Sheet  
113  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Single Channel, Single Config  
run mode  
A
1
RX polling  
Channels = 1  
sleep mode  
TAON  
TOFF  
T
MasterPeriod = TAON + TOFF  
TMasterPeriod  
Multi Channel, Single Config  
run mode  
RX polling  
sleep mode  
A
1
A
2
A
3
Channels = m  
T
T
AON  
T
AON  
T
AON  
T
OFF  
T
MasterPeriod = m*TAON + TOFF  
T
MasterPeriod  
Multi Channel, Multi Config  
run mode  
A
1
A
2
A
3
B
1
B
2
RX polling  
Channels Config A = m  
Channels Config B = n  
sleep mode  
AON  
T
AON  
T
AON  
TBON  
T
BON  
T
OFF  
T
MasterPeriod = m*TAON + n*TBON+ TOFF  
TMasterPeriod  
Figure 80  
Constant On-Off Time  
Calculation of the On time:  
The On time for each channel must be long enough to ensure proper detection of a  
specified wake-up criterion. Therefore the On time depends on the wake-up pattern, and  
the wake-up criterion. It has to include transmitter data rate tolerances.  
A widely used wake-up pattern is a sequence of equal Bi-phase encoded bits or a certain  
Bi-phase encoded bit pattern.  
TON also must include the relevant start-up times. In case of the first channel after TOFF  
,
this is the Receiver Start-Up Time. In case of following channels (RF Receiver is already  
on, there is only a change of the channel or the configuration), e.g. if Configuration B is  
used, this is the Channel Hop Latency Time. In addition, it has to be considered that  
some data bits are required for synchronization and internal latency, see  
Chapter 2.4.8.8 RUNIN, Synchronization Search Time and Inter-Frame Time.  
There are other wake-up patterns in use as well, which have several (up to 10 and more)  
short wake-up sequences (a few byte each) that are separated by a certain pause (again  
a few byte each). In this case the On time has to be set, so that a possible wake-up can  
be found within two wake-up sequences including the pause in-between.  
Calculation of the Off time:  
The longer the Off time, the lower the average power consumption in Self Polling Mode.  
On the other hand, the Off time has to be short enough that no transmitted wake-up  
Data Sheet  
114  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
pattern is missed. Therefore the Off time depends mainly on the duration of the expected  
wake-up pattern.  
If there are further channels scanned, TOFF has to be reduced by the related additional  
On times.  
For basic timing of WU on RSSI in COO mode, please see Figure 81.  
RF signal  
e.g . ASK  
t
RX ON  
SLEEP  
t
tWULOT  
last observation time  
window is forced to end by  
end of tON  
tWULOT  
2
tWULOT  
t WULOT_part  
tStartup  
n-1 npartially  
1
latest decision here !  
tON  
Figure 81  
COO Polling in WU on RSSI Mode  
Always check at the end of the current observation time window, if there is a WU (Wake-  
Up) event or NOT. This means, in algorithmic description (see also Figure 10,  
Chapter 2.4.7 RSSI Peak Detector and Chapter 2.4.8.5 Wake-Up Generator):  
if (RSSIPWU_value > x_WURSSITHy) and (RSSIPWU_value > x_WURSSIBHy)  
then WU  
else NOT  
Here, ‘NOT‘ means to keep on evaluating and move on to the next observation time  
window, also keep on peak value tracking of RSSIPWU signal. Keep on walking through  
the observation time windows until there is a WU event from the algorithm above or  
finally decide at the end of the On time with the following algorithm:  
if (RSSIPWU_value > x_WURSSITHy) and (RSSIPWU_value < x_WURSSIBLy or  
RSSIPWU_value > x_WURSSIBHy)  
then WU  
else NOT  
If there is a WU event at the end of an observation time window while walking through  
the observation time windows, freeze/hold this decision/peak value in register RSSIPWU  
for optional read out and switch to run mode self polling.  
Instead of the single RSSI criterion also the Signal Recognition criterion can be  
activated.  
Data Sheet  
115  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Combined Level and Data criterion in COO mode  
On using the Wake-Up on Data criterion in COO mode, the RSSI criterion (including the  
RSSI blocking window) can be applied additionally by setting the bit  
x_WUC.UFFBLCOO. This means that a Wake-Up interrupt will not be generated, when  
a blocking RSSI level (e.g. an interfering signal) is detected even when the Data criterion  
is fulfilled.  
The behavior of the additional RSSI criterion is similar to the behavior in Ultrafast Fall  
Back Mode.  
After the level observation time the receiver checks, if the RSSI level is within a valid  
range. If RSSI is within a valid range, the state machine will go on to check the Data  
criterion. If the RSSI is within a forbidden range, a new level observation time is started  
(Note that no parts of the Wake-Up pattern are lost in this case, when the RSSI criterion  
succeeds within the following observation time).  
This will be done as long as the RSSI value is within a forbidden range and the On time  
is not elapsed.  
If the receiver loses synchronization within the search for the Data criterion (e.g. pattern  
detection), the WU unit will be initialized and checks again for the RSSI criterion.  
Instead of the additional RSSI criterion also Signal Recognition criterion can be applied.  
When the Signal Recognition threshold (x_WURSSIBHy) is not exceeded at  
Observation Time, the Wake-Up on Level FSM (finite state machine) and Wake-Up on  
Data FSM are initialized.  
If the threshold is exceeded, then the Wake-Up on Level FSM enters the READY state  
and has no further impact on Wake-up search until the Wake-up unit is initialized again.  
When afterwards a Data Criterion is found to be OK (e.g. pattern matches, number of  
equal bits or random bits is reached), the Wake-up search is completed positively.  
When a Data Criterion is found to be not OK, the Wake-up search is terminated  
independent of the state of the Wake-Up on Level FSM. Therefore both FSMs are  
initialized.  
Data Sheet  
116  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.6.2.3 Fast Fall Back to SLEEP (FFB)  
This mode is used to switch off the receiver, if there is no RF signal, as quickly as  
possible to reduce power consumption.  
During the search for wake-up data, there is a check for a bit stream, to which the system  
can be synchronized. If there is no synchronization to a bit stream within the so-called  
Sync Search Time Out (SYSRCTO), the wake-up search for this channel is stopped. If  
synchronization to a bit stream is possible (and not lost again), the TDA5240 waits if the  
wake-up criterion is fulfilled. If the wake-up criterion is not fulfilled (in worst case, if the  
last bit of an expected wake-up data pattern is wrong), the wake-up procedure for this  
channel is stopped, and the TDA5240 tries to synchronize on the next channel, or falls  
back to sleep. That means that the effective search time and, consequently, the receiver  
active time is significantly shorter, and power consumption is reduced, when no input  
signal is present. Calculation of Sync Search Time Out can be found in Chapter 2.4.8.8  
RUNIN, Synchronization Search Time and Inter-Frame Time.  
The needed time for detecting that no relevant transmission took place can be further  
reduced by using Ultrafast Fall Back to SLEEP (UFFB). When there was no Wake-up on  
Level criterion fulfilled in UFFB Mode during the Observation Time (TWULOT, see  
Chapter 2.4.8.5), then the system goes back to SLEEP (or to next config/channel). This  
can further reduce the receiver active time, when no data is available. When Wake-up  
on Level criterion was fulfilled, then the system proceeds with normal FFB functionality  
(SYSRCTO, optional Wake-up data criterion).  
Note: UFFB and FFB start working at the same time!  
Ultrafast Fall Back to SLEEP is working, when a Wake-up on Data criterion is selected,  
the UFFBLCOO bit is enabled and FFB or PWUS mode is selected. The UFFB level  
criterion can be selected in the x_WUC register.  
RF signal  
e.g. ASK  
t
RX ON  
SLEEP  
UFFB  
FFB  
FFB  
t
tWULOT  
tStartup  
tSYSRCTO  
tWU-data-pattern  
tON  
Figure 82  
Ultrafast Fall Back to SLEEP  
Data Sheet  
117  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
At the end of the observation time the RSSI peak tracking value of RSSIPWU signal is  
compared to the 3 thresholds. Then the decision is made. The algorithmic description is  
as follows (see also Figure 10, Chapter 2.4.7 RSSI Peak Detector and  
Chapter 2.4.8.5 Wake-Up Generator):  
if (RSSIPWU_value > x_WURSSITHy) and (RSSIPWU_value < x_WURSSIBLy or  
RSSIPWU_value > x_WURSSIBHy)  
then WU  
else NOT  
Instead of the RSSI criterion also Signal Recognition criterion can be applied. When the  
Signal Recognition threshold (x_WURSSIBHy) is not exceeded at Observation Time,  
then the system goes back to SLEEP or the Wake-Up on Level FSM (finite state  
machine) is initialized and a Wake-up search is performed on the next specified  
channel/configuration.  
WULCUFFB  
0
UFFB criterion  
&
1
RSSI  
4
WU on Level Criterion  
Signal  
5
3
1
2
0
Recognition  
Sync  
WU criterion  
Random Bits  
Equal Bits  
Pattern  
WU on Data Criterion  
Wake-up  
Generation  
FSM  
WUCRT  
WUCRT (2)  
WUCRT (1)  
WUCRT (0)  
&
&
UFFBLCOO  
FFB is selected  
Figure 83  
UFFB activation  
The On and Off time setting is different from the Constant On-Off Time Mode. The entire  
On time is defined in the SPMONTA0 and SPMONTA1 registers. Regardless of the  
Data Sheet  
118  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
numbers of RF channels and whether or not Multi- or Single-Configuration is used, the  
On time is defined with the Configuration A On-Timer. The deactivation of the receiver  
can happen at different times, but this event does not influence the timer stage, because  
the On time is still the same. So the master period is constant. The following scenarios  
are the same as before, but with Fast Fall Back to SLEEP.  
Only the following receive modes (see Chapter 2.5.1.2 Data Interface) can be used:  
• Packet Oriented FIFO Mode (POF)  
• Packet Oriented Transparent Payload Mode (POTP)  
• Transparent Mode - Chip Data and Strobe (TMCDS)  
Single Channel, Single Config  
run mode  
A
RX polling  
1
Channels = 1  
TMasterPeriod = TAON + TOFF  
sleep mode  
TAON  
T
OFF  
TMasterPeriod  
Multi Channel, Single Config  
run mode  
Channels = m  
TMasterPeriod = TAON + TOFF  
A
2
A
3
A
1
RX polling  
sleep mode  
TAON  
TOFF  
TMasterPeriod  
Multi Channel, Multi Config  
run mode  
Channels Config A = m  
Channels Config B = n  
TMasterPeriod = TAON+ TOFF  
B
1
B
2
A
1
A
2
A
3
RX polling  
sleep mode  
T
AON  
TOFF  
TMasterPeriod  
Figure 84  
Fast Fall Back to SLEEP  
Calculation of the On time:  
The On time, which is now a sum for all of the channels and configurations used, must  
include enough time to ensure proper detection of the specified wake-up pattern on all  
channels. To cover the worst case scenario, the maximum time is required on all  
channels as in Constant On-Off.  
TON must also include the relevant start-up times. In case of the first channel after TOFF  
,
this is the Receiver Start-Up Time. In case of following channels (RF Receiver is already  
on, there is only a change of the channel or the configuration), e.g. if Configuration B is  
used, this is the Channel Hop Latency Time.  
In addition, it has to be considered that some data bits are required for synchronization  
and internal latency (see Chapter 2.4.8.8 RUNIN, Synchronization Search Time and  
Inter-Frame Time).  
Data Sheet  
119  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Calculation of the Off time:  
The same general rules apply as for Constant On-Off Time. The Off time has to be short  
enough that no wake-up pattern reception is missed.  
2.6.2.4 Mixed Mode (MM, Const On-Off & Fast Fall Back to SLEEP)  
This mode combines Constant-On Time and Fast Fall Back to SLEEP within different  
configuration sets: Cfg.A: COO; Cfg.B: FFB; Cfg.C: FFB; Cfg.D: FFB  
T
ON for Configuration A is always calculated according to Const On-Off rules.  
TON for Configuration B, C and D is always calculated according to Fast Fall Back to  
SLEEP rules.  
In Mixed Mode the On time of the first configuration within the FFB group is used. Below  
there are shown the same scenarios as before, but now for Mixed Mode. Note that  
Single-Configuration can be set, but is not recommended in Mixed Mode.  
Only the following receive modes (see Chapter 2.5.1.2 Data Interface) can be used:  
• Packet Oriented FIFO Mode (POF)  
• Packet Oriented Transparent Payload Mode (POTP)  
• Transparent Mode - Chip Data and Strobe (TMCDS)  
Single Channel, Single Config  
run mode  
A
1
RX polling  
Channels = 1  
TMasterPeriod = TAON + TBON + TOFF  
sleep mode  
TAON  
TOFF  
T
BON  
TMasterPeriod  
Multi Channel, Single Config  
run mode  
RX polling  
sleep mode  
A
1
A
2
A
3
Channels = m  
MasterPeriod = m*TAON + TBON + TOFF  
T
T
AON  
T
AON  
T
AON  
T
BON  
TOFF  
T
T
MasterPeriod  
Multi Channel, Multi Config  
run mode  
RX polling  
sleep mode  
A
1
A
2
A
3
B
1
B
2
Channels Config A = m  
Channels Config B = n  
TMasterPeriod = m*TAON + TBON+ TOFF  
AON  
T
AON  
T
AON  
T
BON  
MasterPeriod  
T
OFF  
T
Figure 85  
Mixed Mode  
Data Sheet  
120  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.6.2.5 Permanent Wake-Up Search (PWUS)  
In this mode the receiver will work in Fast Fall Back Mode, but it will not go back to the  
SLEEP state after the last channel has been searched. Instead, it will start again from  
the beginning (Configuration A, RF Channel 1) until the On time has elapsed. The timing  
calculation can be seen in Figure 86. Ultrafast Fall Back to SLEEP functionality can be  
used as well.  
Only the following receive modes (see Chapter 2.5.1.2 Data Interface) can be used:  
• Packet Oriented FIFO Mode (POF)  
• Packet Oriented Transparent Payload Mode (POTP)  
• Transparent Mode - Chip Data and Strobe (TMCDS)  
Single Channel , Single Config  
run mode  
A
1
A
1
A A AA  
1 1  
RX polling  
1
1
Channels = 1  
sleep mode  
T
AON  
T
OFF  
T
MasterPeriod = TAON + TOFF  
T
MasterPeriod  
Multi Channel , Single Config  
run mode  
A A A AA A A  
1 2 3 1 2 3 1  
Channels = m  
RX polling  
sleep mode  
TMasterPeriod = TAON + TOFF  
T
AON  
T
OFF  
T
MasterPeriod  
Multi Channel , Multi Config  
run mode  
AA A B B A A  
1 2 3 1 2 1 2  
Channels Config A = m  
Channels Config B = n  
RX polling  
sleep mode  
T
AON  
T
OFF  
TMasterPeriod = TAON+ TOFF  
T
MasterPeriod  
Figure 86  
Permanent Wake-Up Search  
Data Sheet  
121  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.6.2.6 Active Idle Period Selection  
This mode is used to deactivate some polling periods and can additionally be applied to  
each of the above mentioned Polling Modes.  
Normally, polling starts again after the TMasterPeriod. With this Active Idle Period selection  
some of the polling periods can be deactivated, independent from the Polling Mode. The  
active and the idle sequence is set with the SPMAP and the SPMIP registers. The values  
of these registers determine the factor M and N.  
run mode  
RX polling  
sleep mode  
TOn  
TOff  
TMasterPeriod  
M*TMasterPeriod  
N*TMasterPeriod  
Active  
Idle  
Figure 87  
Active Idle Period  
Data Sheet  
122  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.7  
Definitions  
2.7.1  
Definition of Bit Rate  
The definition for the bit rate in the following description is:  
symbols  
bitrate = ---------------------  
s
If a symbol contains n chips (for Manchester n=2; for NRZ n=1) the chip rate is n times  
the bit rate:  
chiprate = n × bitrate  
2.7.2  
Definition of Manchester Duty Cycle  
Several different definitions for the Manchester duty cycle (MDC) are in place. To avoid  
wrong interpretation some of the definitions are given below.  
Level-based Definition  
MDC = Duration of H-level / Symbol period  
bit = 1  
1
0
0
1
1. chip  
2. chip  
Tbit  
T
chip  
MDC < 50%  
0
1
1
0
1
ΔT  
TH  
TH  
T
Tbit  
Tbit  
chip  
MDC > 50%  
ΔT  
TH  
TH  
T
Tbit  
Tbit  
chip  
Figure 88  
Definition A: Level-based definition  
This definition determinates the duty cycle to be the ratio of the high pulse width and the  
ideal symbol period. The DC content is constant and directly proportional to the specified  
duty cycle.  
For ΔT > 0 the high period is longer than the chip-period and for ΔT < 0 the high period  
is shorter than the chip-period.  
Data Sheet  
123  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Depending on the bit content, the same type of edge (e.g. rising edge) is sometimes  
shifted and sometimes not.  
With this definition the Manchester duty cycle is calculated to  
TH Tchip + ΔT  
MDCA = -------- = --------------------------  
Tbit Tbit  
Chip-based Definition  
MDC = Duration of the first chip / Symbol period  
bit = 1  
1
0
0
1
1. chip  
2. chip  
Tbit  
T
c hip  
MDC < 50%  
0
1
1
0
1
ΔT  
T1.chip  
T1.chip  
T
Tbit  
Tbit  
c hip  
MDC > 50%  
ΔT  
T1.chip  
Tbit  
T
1.chip  
T
Tbit  
c hip  
Figure 89  
Definition B: Chip-based definition  
This definition determinates the duty cycle to be the ratio of the first symbol chip and the  
ideal symbol period independently of the information bit content. The DC content  
depends on the information bit and it is balanced only if the message itself is balanced.  
For ΔT > 0 the first chip-period is longer than the ideal chip-period and for ΔT < 0 the first  
chip-period is shorter than the ideal chip-period.  
Depending on the bit content, the same type of edge (e.g. rising edge) is sometimes  
shifted and sometimes not.  
Data Sheet  
124  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
With this definition the Manchester duty cycle is calculated to  
T1.chip chip + ΔT  
T
MDCB = ---------------- = --------------------------  
Tbit  
Tbit  
Edge delay Definition  
MDC = Duration delayed edge / Symbol period  
bit = 1  
1
0
0
1
1. chip  
2. chip  
Tbit  
T
chip  
MDC < 50% T = 0  
f
1
1
0
0
1
Tr  
TH  
Tr  
TH  
ΔT  
T
Tbit  
Tbit  
Tbit  
chip  
MDC > 50% T = 0  
r
1
1
0
0
1
Tf  
Tf  
ΔT  
TH  
TH  
T
Tbit  
Tbit  
Tbit  
chip  
Figure 90  
Definition C: Edge delay definition  
This definition determinates the duty cycle to be the ratio of the duration of the delayed  
high-chip and the ideal symbol period independently of the information bit content. The  
position of the high-chip is determined by the delayed rising edge and/or the delayed  
falling edge. For ΔT = Tfall -Trise the Manchester duty cycle is calculated to  
TdelayedHighchip  
MDCC = ---------------------------------------- = -------------------------- = -----------------------------------------------  
Tbit Tbit Tbit  
T
chip + ΔT  
Tchip + Tfall – Trise  
Independent on the bit content, the same type of edge (rising edge and/or falling edge)  
is shifted.  
Data Sheet  
125  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.7.3  
Definition of Power Level  
The reference plane for the power level is the input of the receiver board. This means,  
the power level at this point (Pr) is corrected for all offsets in the signal path (e.g.  
attenuation of cables, power combiners etc.).  
The specification value of power levels in terms of sensitivity is related to the peak power  
of Pr in case of On-Off Keying (OOK). This is noted by the unit dBm peak.  
Specification value of power levels is related to a Manchester encoded signal with a  
Manchester duty cycle of 50% in case of ASK modulation.  
An RF signal generator usually displays the level of the unmodulated carrier (Pcarrier).  
This has following consequences for the different modulation types:  
Table 6  
Power Level  
Realization with RF signal  
Modulation  
scheme  
Power level specification  
value  
generator  
ASK  
ASK  
AM 100%  
Pr = Pcarrier + 6dB  
Pr = Pcarrier  
Pulse modulation (=OOK)  
FM with deviation Δf:  
f1 = fcarrier - Δf  
FSK  
Pr = Pcarrier  
f2 = fcarrier + Δf  
For power levels in sensitivity parameters given as average power, this is noted by the  
unit dBm. Peak power can be calculated by adding 3 dB to the average power level in  
case of ASK modulation and a Manchester duty cycle of 50%.  
2.7.4  
Symbols of SFR Registers and Control Bits  
Symbolizes unique SFR registers or SFR control bit(s),  
which are common for all configuration sets .  
CONTROL  
CONTROL  
Symbolizes SFR registers or SFR control bit(s) with  
Multi-Configuration capability (protocol specific).  
In case of SFR register, the name starts with A _, B_, C_  
or D_, depending on the selected configuration. This is  
generally noted by the prefix „x_“.  
Figure 91  
SFR Symbols  
Data Sheet  
126  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
2.8  
Digital Control (SFR Registers)  
SFR Address Paging  
2.8.1  
An SPI instruction allows a maximum address space of 8 bit. The address space for  
supporting more than one configuration set is exceeding this 8 bit address room.  
Therefore a page switch is introduced, which can be applied via register SFRPAGE (see  
Figure 92).  
logical address space  
physical address space  
0x000  
0
d
Configuration A1) - Page 0  
Configuration A 1) - Page 0  
Reserved 2)  
Reserved 2)  
0x080  
128d  
Common Registers3)  
Common Registers3)  
Reserved 4)  
Reserved 4)  
0x0FF  
0x100  
255d  
256d  
Configuration B1) - Page 1  
Configuration B 1) - Page 1  
Reserved 2)  
Reserved 2)  
0x180  
384d  
Common Registers3)  
Reserved 4)  
0x1FF  
0x200  
511d  
512d  
Configuration C 1) - Page 2  
Configuration C 1) - Page 2  
Reserved 2)  
Reserved 2)  
0x280  
640d  
Common Registers3)  
Reserved 4)  
0x2FF  
0x300  
767d  
768d  
Configuration D 1) - Page 3  
Configuration D 1) - Page 3  
Reserved 2)  
Reserved 2)  
0x380  
896d  
Common Registers3)  
Reserved 4)  
0x3FF  
1)  
1023d  
Configuration dependent register block (4 protocol specific sets)  
page switch via SFRPAGE register  
Reserved – Forbidden area  
2), 4)  
3)  
Configuration independent registers (common for all configurations )  
map (“mirror) to the same physical address space  
Figure 92  
2.8.2  
SFR Address Paging  
SFR Register List and Detailed SFR Description  
The register list is attached in the Appendix at the end of the document.  
Registers for Configurations B, C and D are equivalent and not shown in detail.  
All registers with prefix “A_” are related to Configuration A. All these registers are also  
available for Configuration B, C and D having the prefix “B_”, “C_” and “D_”.  
Data Sheet  
127  
V4.0, 2010-02-19  
TDA5240  
Functional Description  
Data Sheet  
128  
V4.0, 2010-02-19  
TDA5240  
Applications  
3
Applications  
RF in  
SAW  
filter  
to µC  
SPI Bus  
VS  
TDA5240  
IF CER  
filter  
to/from µC  
(opt.)  
Figure 93  
Typical Application Schematic  
Note: As a good practice in any RF design, shielding around sensitive nodes can  
improve the EMC performance of the application.  
For achieving the best sensitivity results the following has to be kept in mind. Every  
digital system generates certain frequencies (fSRC, e.g. the crystal frequency or a  
microcontroller clock) and harmonics (N * fSRC) of it, which can act as interferer (EMI  
source) and therefore sensitivity can be reduced.  
Data Sheet  
129  
V4.0, 2010-02-19  
TDA5240  
Applications  
There are two different cases, which need to be checked for the desired receive  
channel(s):  
Elimination of in-band EMI mixing with (2*M + 1) * fLO, where M > 0:  
A square wave is used as LO (Local Oscillator) for the switching-type mixer, which also  
has odd harmonics. When the harmonics of the EMI source are exactly the IF frequency  
away from the harmonics of the LO, these spurs will be down-converted to the IF  
frequency and act as a co-channel interferer within the receiver’s channel bandwidth  
mainly in the 315 MHz band.  
In this case a change of the LO injection side (high side or low side injection) can be  
applied.  
Example (Low Side LO-injection):  
Wanted channel fRF = 314.233MHz ==> fLO = 303.533MHz ==> 3*fLO = 910.599MHz  
fXOSC = 21.948717 MHz ==> 41 * fXOSC = 899.8974 MHz  
Resulting IF = 910.599 - 899.8974 MHz = 10.702 MHz ==> co-channel interferer  
within the receiver’s channel bandwidth ==> change LO injection side  
Example (High Side LO-injection):  
Wanted channel fRF = 314.233 MHz ==> fLO = 324.933 MHz ==> 3*fLO = 974.799 MHz  
fXOSC = 21.948717 MHz ==> 44 * fXOSC = 965.744 MHz; 45 * fXOSC = 987.692 MHz  
==> both XOSC harmonics are not generating a co-channel interferer at 10.7 MHz  
A final sensitivity measurement on the application hardware is recommended.  
Elimination of in-band EMI mixing with 1 * fLO:  
Assuming a harmonic (N * fSRC) is falling within the BW of the wanted channel and has  
an impact on the sensitivity there. In this case another XTAL frequency shall be selected,  
e.g. 10 kHz away  
| N * fSRC - fLocalOscillator | < BWChannel  
Example (e.g. EMI source TDA5240 XOSC):  
fXOSC = 21.948717 MHz ==> 42 * fXOSC = 921.846114 MHz  
For further details please refer to the corresponding application note or to the latest  
configuration software.  
3.1  
Configuration Example  
Please see configuration files supplied with the Explorer tool.  
Data Sheet  
130  
V4.0, 2010-02-19  
TDA5240  
Reference  
4
Reference  
4.1  
Electrical Data  
4.1.1  
Absolute Maximum Ratings  
Attention: The maximum ratings must not be exceeded under any circumstances,  
not even momentarily and individually, as permanent damage to the IC  
may result.  
Table 7  
Absolute Maximum Ratings  
#
Parameter  
Symbol  
Limit Values  
Unit Remarks  
min.  
max.  
+6  
A1  
A2  
Supply Voltage at VDD5V pin Vsmax  
-0.3  
-0.3  
V
V
Supply Voltage at VDDD,  
VDDA pin  
Vsmax  
+4  
A3  
Voltage between VDD5V vs  
VDDD and VDD5V vs VDDA  
Vsmax  
-0.3  
+4  
V
A4  
A5  
A6  
Junction Temperature  
Storage Temperature  
Tj  
-40  
-40  
+125  
+150  
140  
°C  
Ts  
°C  
Thermal resistance junction to Rth(ja)  
air  
K/W  
A7  
A8  
Total power dissipation at  
amb = 105°C  
Ptot  
100  
2
mW  
T
ESD HBM integrity  
VHBMRF  
-2  
KV  
According to ESD  
Standard JEDEC EIA /  
JESD22-A114-B  
A9  
ESD SDM integrity (All pins  
except corner pins)  
VSDM  
-500  
-750  
100  
500  
750  
V
A10 ESD SDM integrity (All corner VSDM  
pins)  
V
A11 Latch up  
ILU  
mA  
V
AEC-Q100 (transient  
current)  
A12 Maximum input voltage at  
digital input pins  
Vinmax  
IIOmax  
-0.3  
VDD5V+0.5  
or 6.0  
whichever is lower  
A13 Maximum current into digital  
input and output pins  
4
mA  
Data Sheet  
131  
V4.0, 2010-02-19  
TDA5240  
Reference  
4.1.2  
Operating Range  
Table 8  
Supply Operating Range and Ambient Temperature  
#
Parameter  
Symbol  
Limit Values  
Unit Remarks  
min.  
max.  
5.5  
B1  
B2  
Supply voltage at pin VDD5V VDD5V  
4.5  
3.0  
V
V
Supply voltage range 1  
Supply voltage range 2  
Supply voltage at pin  
VDD5V=VDDD=VDDA  
VDD3V3  
3.6  
B3  
Ambient temperature  
Tamb  
-40  
105  
°C  
Data Sheet  
132  
V4.0, 2010-02-19  
TDA5240  
Reference  
4.1.3  
AC/DC Characteristics  
Supply voltage VDD5V = 4.5 to 5.5 Volt or VDD5V = VDDA = VDDD = 3.0 to 3.6 Volt  
Ambient temperature Tamb = -40...105oC; Tamb = +25oC and VDD5V = 5.0V or VDD5V =  
VDDA = VDDD = 3.3V for typical parameters, unless otherwise specified.  
not subject to production test - verified by characterization/design  
Table 9  
AC/DC Characteristics  
#
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
Remarks  
min. typ. max.  
General DC Characteristics  
C1.1  
C1.2  
C2  
Supply Current  
in Run Mode and  
Double Down  
IRun, Double  
IRun, Single  
Isleep_low  
12  
15  
14  
mA  
mA  
ASK or FSK mode  
Pin < -50dBm  
Conversion Mode  
Supply Current  
in Run Mode and  
Single Down  
10.5  
ASK or FSK mode  
Pin < -50dBm  
Conversion Mode  
Supply current  
in Sleep Mode  
crystal oscillator in Low  
Power Mode;  
clock generator off;  
valid for SLEEP Mode  
and during SPM Off time  
T
amb = 25 °C  
40  
50  
µA  
µA  
µA  
µA  
Tamb = 85 °C  
Tamb = 105 °C  
60  
110  
160  
350  
90  
C3  
C4  
Supply current  
in Sleep Mode  
Isleep_high  
115  
crystal oscillator in High  
Precision Mode  
C
load = 25 pF;  
clock generator off;  
valid for SLEEP Mode  
and during SPM Off time  
Supply current  
IPDN  
in Power Down Mode  
Tamb = 25 °C  
Tamb = 85 °C  
Tamb = 105 °C  
0.8  
3.7  
9.0  
23  
1.5  
13  
27  
27  
µA  
µA  
µA  
µA  
C5  
C6  
Supply current  
clock generator  
Iclock  
fclockout = 1 kHz  
C
load = 10 pF  
Supply current  
IF-Buffer  
IBuffer  
0.5  
0.7  
mA  
fIF_1 = 10.7 MHz  
R
load = 330 Ω  
no AC signal  
Data Sheet  
133  
V4.0, 2010-02-19  
TDA5240  
Reference  
#
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
Remarks  
min. typ. max.  
C7  
Supply current  
IRF-FE-  
2.2  
2.9  
mA  
during RF-FE startup  
/ BPF calibration  
startup,BPFcal  
C8  
C9  
Brownout detector  
threshold  
VBOR  
tReset  
2.3  
1.0  
2.45  
2.6  
3.0  
V
Receiver reset time  
ms  
Note: No SPI  
communication is allowed  
before XOSC start-up is  
finished and chip reset is  
already finished  
C10  
C11  
Receiver startup  
time  
tRXstartup  
455  
111  
455  
111  
455  
111  
350  
µs  
µs  
Time to startup RF  
frontend (comprises time  
required to switch crystal  
oscillator from Low Power  
Mode to High Precision  
Mode  
RF Channel Hop  
Latency Time and  
Configuration (Hop)  
Change Latency  
Time (e.g. Cfg A to  
Cfg B)  
tC_Hop  
Time to switch RF PLL  
between different RF  
Channels (does not  
include settling of Data  
Clock Recovery) and time  
to change Configuration  
C12  
C13  
RF Frontend startup tRFstartdelay  
delay  
350  
15  
350  
12  
µs  
µs  
µs  
Delay of startup of RF  
frontend  
P_ON pulse width  
tP_ON  
Minimal pulse width to  
reset the chip  
C14  
C15  
NINT pulse length  
tNINT_Pulse  
Pulse width of interrupt  
Accuracy of Temperature Sensor  
Valid for temperature  
range -40°C .. +105°C;  
using upper 8 ADC bits  
(ADCRESH)  
C15.1 uncalibrated  
C15.2 calibrated  
TError, uncal  
TError, cal  
+/- 23  
°C  
uncalibrated (3 sigma)  
value  
+/- 4.5 °C  
after 1-point calibration at  
room temperature (3  
sigma)  
C16  
Accuracy of VDDD readout  
Valid for temperature  
range -40°C .. +105°C;  
using upper 8 ADC bits  
(ADCRESH)  
C16.1 uncalibrated  
C16.2 calibrated  
VDDD, Error,  
+/- 200 mV  
+/- 25 mV  
uncalibrated (3 sigma)  
value  
uncal  
VDDD, Error,  
after 1-point calibration at  
room temperature (3  
sigma)  
cal  
Data Sheet  
134  
V4.0, 2010-02-19  
TDA5240  
Reference  
#
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
Remarks  
min. typ. max.  
General RF Characteristics (overall)  
D1  
Frequency  
Range 1  
Range 2  
Range 3  
Range 4  
fband_1  
fband_2  
fband_3  
fband_4  
fstep  
300  
425  
863  
902  
10.5  
320  
450  
870  
928  
MHz  
MHz  
MHz  
MHz  
Hz  
1st Local Oscillator  
Low Side LO-injection  
and High Side LO-  
injection allowed;  
See also Chapter 3  
D2  
D3  
Frequency step of  
Sigma-Delta PLL  
fstep = fXTAL / 221  
ASK Demodulation  
Data Rate  
Rdata  
0.5  
-10  
50  
40  
kchip/s  
Data rate tol.  
Rdata_tol  
mASK  
+10  
100  
100  
%
%
%
Modulation index  
ASK  
mOOK  
99  
ON-OFF keying  
D4  
FSK Demodulation  
Data Rate  
Rdata  
0.5  
-10  
1
112  
+10  
64  
kchip/s including tolerance  
%
Data rate tol.  
Rdata_tol  
Frequency deviation Δf  
kHz  
frequency deviation  
zero-peak  
Modulation index  
mFSK  
1.0  
m = frequency_  
deviationzero-peak  
/
maximum_occuring_data  
_frequency;  
m >= 1.25 is  
recommended at small  
frequency deviation  
D5  
Decoding schemes  
Manchester, differential Manchester,  
Bi-phase Mark / Bi-phase Space  
Duty cycle ASK  
Duty cycle FSK  
Tchip  
Tdata  
/
35  
55  
%
see Chapter 2.7.2  
Definition C  
Tchip  
/
45  
55  
%
see Chapter 2.7.2  
Tdata  
Definition B  
D6  
Overall noise figure  
Noise figure  
RF input matched to 50 Ω  
@ Tamb = 25 °C  
NF  
6
8
dB  
Data Sheet  
135  
V4.0, 2010-02-19  
TDA5240  
Reference  
#
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
Remarks  
min. typ. max.  
D7  
BER Sensitivity (FSK)  
BER = 2*10-3  
RF input matched to 50 Ω  
Manchester coding;  
for additional test conditions see right after this  
table  
@ Tamb = 25 °C;  
Single-Ended Matching  
without SAW;  
Insertion loss of input  
matching network = 1dB;  
Receive Mode = TMMF  
(sampled with ideal data  
clock);  
Double Down Conversion  
D7.1  
D7.2  
D7.3  
D7.4  
D7.5  
Data Rate 2 kBit/s;  
Δf = 10 kHz  
SFSK1BER  
-119  
-114  
-112  
-105  
-110  
-116  
-111  
-109  
-102  
-107  
dBm  
dBm  
dBm  
dBm  
dBm  
2nd IF BW = 50 kHz  
PDF = 33 kHz, AFC off,  
IFATT=0  
Data Rate 10 kBit/s; SFSK2BER  
Δf = 14 kHz  
2nd IF BW = 50 kHz  
PDF = 65 kHz, AFC off,  
IFATT=0  
Data Rate 10 kBit/s; SFSK3BER  
Δf = 50 kHz  
2nd IF BW = 125 kHz  
PDF = 132 kHz, AFC off,  
IFATT=0  
Data Rate 50 kBit/s; SFSK4BER  
Δf = 50 kHz  
2nd IF BW = 300 kHz  
PDF = 239 kHz, AFC off,  
IFATT=0  
Data Rate 2 kBit/s;  
SFSK5BER  
2nd IF BW = 300 kHz  
Δf = 10 kHz  
PDF = 282 kHz, IFATT=7  
Note: 3dB sensitivity loss  
@ foffset=+/-90kHz @ AFC on  
D7.6  
D7.7  
Data Rate 10 kBit/s; SFSK6BER  
Δf = 14 kHz  
-106  
-110  
-103  
-107  
dBm  
dBm  
2nd IF BW = 300 kHz  
PDF = 282 kHz, IFATT=7  
Note: 3dB sensitivity loss  
@ foffset=+/-90kHz @ AFC on  
Data Rate 10 kBit/s; SFSK7BER  
2nd IF BW = 300 kHz  
Δf = 50 kHz  
PDF = 282 kHz, IFATT=7  
Note: 3dB sensitivity loss  
@ foffset=+/-90kHz @ AFC on  
Data Sheet  
136  
V4.0, 2010-02-19  
TDA5240  
Reference  
#
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
Remarks  
min. typ. max.  
D8  
BER Sensitivity (OOK)  
BER = 2*10-3  
RF input matched to 50 Ω  
Manchester coding;  
for additional test conditions see right after this  
table  
@ Tamb = 25 °C,  
peak power level (see  
Chapter 2.7.3);  
Single-Ended Matching  
without SAW;  
Insertion loss of input  
matching network = 1dB;  
Receive Mode = TMMF  
(sampled with ideal data  
clock);  
Double Down Conversion  
D8.1  
D8.2  
D8.3  
D8.4  
D8.5  
Data Rate 0.5 kBit/s SASK1BER  
-120  
-116  
-111  
-109  
-115  
-117  
-113  
-108  
-106  
-112  
dBm  
peak  
m = 100%, IFATT=0  
2nd IF BW = 50 kHz  
Data Rate 2 kBit/s  
Data Rate 10 kBit/s  
Data Rate 16 kBit/s  
SASK2BER  
SASK3BER  
SASK4BER  
dBm  
peak  
m = 100%, IFATT=0  
2nd IF BW = 50 kHz  
dBm  
peak  
m = 100%, IFATT=0  
2nd IF BW = 50 kHz  
dBm  
peak  
m = 100%, IFATT=0  
2nd IF BW = 80 kHz  
Data Rate 0.5 kBit/s SASK5BER  
dBm  
peak  
m = 100%, IFATT=7  
2nd IF BW = 300 kHz;  
Note: 3dB sensitivity loss  
@ foffset = +/-100 kHz  
D8.6  
D8.7  
D8.8  
Data Rate 2 kBit/s  
Data Rate 10 kBit/s  
Data Rate 16 kBit/s  
SASK6BER  
SASK7BER  
SASK8BER  
ΔSSDC  
-112  
-106  
-104  
-109  
-103  
-101  
dBm  
peak  
m = 100%, IFATT=7  
2nd IF BW = 300 kHz;  
Note: 3dB sensitivity loss  
@ foffset = +/-100 kHz  
dBm  
peak  
m = 100%, IFATT=7  
2nd IF BW = 300 kHz;  
Note: 3dB sensitivity loss  
@ foffset = +/-100 kHz  
dBm  
peak  
m = 100%, IFATT=7  
2nd IF BW = 300 kHz;  
Note: 3dB sensitivity loss  
@ foffset = +/-100 kHz  
D9.1  
D9.2  
Sensitivity increase  
for Single Down  
Conversion mode  
0
0.5  
1
1
2
dB  
dB  
Double Down  
ΔSDDC,  
IFATT7  
Conversion sensitivity  
decrease for higher  
blocking performance  
(IFATT=0 => IFATT=7)  
Data Sheet  
137  
V4.0, 2010-02-19  
TDA5240  
Reference  
#
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
Remarks  
min. typ. max.  
SingleDownConversion  
sensitivity decrease for  
higher blocking  
D9.3  
ΔSSDC,  
IFATT7  
0.5  
1
dB  
performance  
(IFATT=4 => IFATT=7)  
D10.1 Sensitivity variation  
due to temperature  
(-40...+105°C)  
ΔPin  
ΔPin  
ΔPin  
2
3
3
dB  
dB  
dB  
relative to Tamb = 25 °C;  
temperature drift of crystal  
not considered  
D10.2 Sensitivity variation  
due to frequency  
offset 1)  
AFC inactive;  
For Sensitivity Bandwidth  
see Table 11  
D10.3 Sensitivity variation  
due to frequency  
offset  
AFC active, slow AFC;  
For Sensitivity Bandwidth  
see Table 11 and applied  
AFCLIMIT  
D10.4 Sensitivity loss when ΔPin  
AFC active at center  
frequency  
1
dB  
AFC active;  
center frequency - no  
AFC wander (see  
Chapter 2.4.6.3)  
D11  
D12  
3rd order intercept  
IIP3  
PIIP3  
-16  
-27  
-14  
-25  
dBm  
input matched to 50 Ω;  
Insertion loss of input  
matching network = 1dB;  
IFATT = 7;  
valid for Single and  
Double Down Conversion  
Mode  
1 dB compression  
point CP1dB  
PCP1dB  
dBm  
input matched to 50 Ω;  
Insertion loss of input  
matching network = 1dB;  
IFATT = 7;  
valid for Single and  
Double Down Conversion  
Mode  
D13  
D14  
1st IF image rejection dimage1  
30  
30  
40  
34  
dB  
dB  
1st IF = 10.7 MHz  
without front end SAW  
filter;  
valid for Double Down  
Conversion Mode  
2nd IF image  
rejection  
dimage2  
2nd IF = 274 kHz  
without 1st IF CER filter;  
valid for Single and  
Double Down Conversion  
Mode  
Data Sheet  
138  
V4.0, 2010-02-19  
TDA5240  
Reference  
#
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
Remarks  
min. typ. max.  
RF Front End Characteristics  
(Unless otherwise noted, all values apply for the specified frequency ranges)  
E1  
LNA input impedance  
fRF = 315 MHz  
E1.1  
Rin_p,diff  
Cin_p,diff  
Rin_p,diff  
Cin_p,diff  
Rin_p,diff  
Cin_p,diff  
Rin_p,diff  
Cin_p,diff  
Rin_p, SE  
Cin_p, SE  
Rin_p, SE  
Cin_p, SE  
Rin_p, SE  
Cin_p, SE  
Rin_p, SE  
Cin_p, SE  
Rout_IF  
680  
1.05  
570  
0.87  
550  
0.63  
540  
0.63  
500  
1.87  
400  
1.63  
322  
1.59  
312  
1.56  
330  
Ω
differential parallel  
equivalent input between  
LNA_INP and LNA_INN  
pF  
Ω
E1.2  
E1.3  
E1.4  
E1.5  
E1.6  
E1.7  
E1.8  
fRF = 434MHz  
fRF = 868MHz  
fRF = 915MHz  
fRF = 315 MHz  
fRF = 434MHz  
fRF = 868MHz  
fRF = 915MHz  
pF  
Ω
pF  
Ω
pF  
Ω
single-ended parallel  
equivalent input between  
LNA_INP and GNDRF /  
LNA_INN and GNDRF  
pF  
Ω
pF  
Ω
pF  
Ω
pF  
Ω
E2  
E3  
FE output  
impedance  
290  
34  
380  
38  
fIF = 10.7 MHz  
FE voltage  
conversion gain  
AVFE, max  
36  
dB  
min. IF attenuation  
(IFATT = 0);  
input matched to 50 Ω;  
Insertion loss of input  
matching network = 1dB  
R
load_IF = 330 Ω;  
tested at 434 MHz  
E4  
FE voltage  
AVFE_7  
29  
31  
33  
dB  
IF attenuation  
conversion gain  
(IFATT = 7);  
input matched to 50 Ω;  
Insertion loss of input  
matching network = 1dB  
R
load_IF = 330 Ω;  
tested at 434 MHz  
Data Sheet  
139  
V4.0, 2010-02-19  
TDA5240  
Reference  
#
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
Remarks  
min. typ. max.  
E5  
FE voltage  
conversion gain  
AVFE, min  
22  
24  
26  
dB  
max. IF attenuation  
(IFATT = 15);  
input matched to 50 Ω;  
Insertion loss of input  
matching network = 1dB  
R
load_IF = 330 Ω;  
tested at 434 MHz  
E6  
FE voltage  
0.8  
dB  
12dB / 15 = 0.8dB/step  
conversion gain step  
Double Down  
Conversion: 16 gain  
settings (4 bit)  
Single Down Conversion:  
7 gain settings  
E7  
1st Local Oscillator SSB Noise  
PLL loop Bandwidth BW  
closed loop  
E7.1  
E7.2  
100  
150  
-81  
200  
-76  
kHz  
BW and its tolerances  
fin_R1 = 315MHz  
fin_R2 = 434MHz  
fin_R3 = 868MHz  
fin_R4 = 915MHz  
dSSB_LO  
dSSB_LO  
dSSB_LO  
dSSB_LO  
dBc/Hz @ foffset = 1 kHz  
@ foffset = 10 kHz  
@ foffset = 100 kHz  
@ foffset = 1 MHz  
@ foffset => 10 MHz  
dBc/Hz @ foffset = 1 kHz  
@ foffset = 10 kHz  
@ foffset = 100 kHz  
@ foffset = 1 MHz  
@ foffset => 10 MHz  
dBc/Hz @ foffset = 1 kHz  
@ foffset = 10 kHz  
@ foffset = 100 kHz  
@ foffset = 1 MHz  
@ foffset => 10 MHz  
dBc/Hz @ foffset = 1 kHz  
@ foffset = 10 kHz  
@ foffset = 100 kHz  
@ foffset = 1 MHz  
@ foffset => 10 MHz  
dBm  
-85  
-80  
-82  
-77  
-120  
-130  
-78  
-115  
-125  
-73  
E7.3  
E7.4  
E7.5  
-83  
-78  
-82  
-77  
-117  
-130  
-75  
-112  
-125  
-70  
-79  
-74  
-77  
-72  
-114  
-130  
-71  
-109  
-125  
-66  
-79  
-74  
-77  
-72  
-116  
-130  
-111  
-125  
-57  
E8.1  
E8.2  
Spurious emission < 1 GHz  
Spurious emission > 1 GHz  
-47  
dBm  
Data Sheet  
140  
V4.0, 2010-02-19  
TDA5240  
Reference  
#
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
Remarks  
min. typ. max.  
E9  
E10  
Inband fractional spur  
-40  
dBc  
kHz  
3dB Overall Analog  
Frontend Bandwidth  
BWANA  
230  
LNA input to Limiter  
output, excluding external  
CER filter  
1st IF Buffer Characteristics  
F1  
F2  
F3  
Input impedance  
Output impedance  
Voltage gain  
Rin_IF  
290  
290  
3
330  
330  
4
370  
370  
5
Ω
fIF = 10...12 MHz  
fIF = 10...12 MHz  
fIF = 10...12 MHz  
Rout_IF  
AVBuffer  
Ω
dB  
Z
Z
source = 330 Ω  
load = 330 Ω  
F4  
Buffer switch  
isolation (CERFSEL)  
disolation  
60  
dB  
fIF = 10...12 MHz  
see Figure 6  
2nd IF Mixer, RSSI and Filter Characteristics  
G1  
Mixer input  
impedance  
Rin_IF  
290  
330  
390  
Ω
fIF = 10...12 MHz  
G2  
RSSI  
Related to RF input  
matched to 50 Ω  
G2.1 Dynamic range  
(Linearity +/- 2 dB)  
DRRSSI  
-110  
-115  
-110  
-1  
-30  
-60  
-50  
+1  
dBm  
dBm  
dBm  
dB  
applies for digital RSSI;  
AGC on  
applies for analog RSSI  
@ 50kHz BPF, AGC off  
applies for analog RSSI  
@ 300kHz BPF, AGC off  
G2.2 Linearity  
DRLIN  
-95 dBm...-35 dBm;  
applies for digital RSSI  
G2.3 Temperature drift  
within linear dynamic  
range  
DRTEMP  
-2.5  
+1.5  
dB  
-95 dBm...-35 dBm;  
applies for digital RSSI  
G2.4 Output dynamic  
range  
VRSSI+  
0.8  
2.0  
+2  
12  
V
G2.5 analog RSSI error,  
untrimmed  
DRSSIana -4  
dB  
at RSSI pin  
G2.6 analog RSSI slope,  
untrimmed  
dVRSSI  
dVmix_in  
/
8
10  
mV/dB at RSSI pin;  
typical 600 mV/60 dB =  
10 mV/dB  
G2.7 digital RSSI error,  
untrimmed  
DRSSIdig_u -4  
+2  
dB  
RSSI register readout  
Data Sheet  
141  
V4.0, 2010-02-19  
TDA5240  
Reference  
#
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
Remarks  
min. typ. max.  
G2.8 digital RSSI error,  
user trimmed via  
DRSSIdig_t -1  
+1  
dB  
RSSI register readout  
SFRs RSSISLOPE  
and RSSIOFFS  
G2.9 digital RSSI slope,  
untrimmed  
dVRSSI  
dVmix_in  
/
2
2.5  
2.5  
3
LSB  
/dB  
RSSI register readout;  
typical 600 mV/60 dB =  
10 mV/dB,  
1mV = 1 LSB (10-bit ADC)  
8-bit readout: 4mV=1LSB  
G2.10 digital RSSI slope,  
user trimmed via  
dVRSSI  
dVmix_in  
/
2.35  
2.65  
LSB  
/dB  
RSSI register readout;  
typical 600 mV/60 dB =  
10 mV/dB,  
1mV = 1 LSB (10-bit ADC)  
8-bit readout: 4mV=1LSB  
SFRs RSSISLOPE  
and RSSIOFFS  
G2.11 Resistive load at  
RSSI pin  
RL,RSSImax 100  
CL,RSSI  
kΩ  
G2.12 Capacitive load at  
RSSI pin  
20  
pF  
G3  
2nd IF Filter (3rd order Bandpass Filter)  
G3.1 Center frequency  
fcenter  
262  
274  
288  
kHz  
kHz  
Asymmetric BPF corners:  
f_center=sqrt(flow * fhigh);  
Use AFC for more  
symmetry  
G3.2 -3 dB BW  
BW-3dB  
50  
80  
125  
200  
300  
G3.3 -3 dB BW tolerance tol_BW-3dB -5  
G3.4 -3 dB BW tolerance tol_BW-3dB -6  
+5  
+6  
%
%
For BW = 125, 200, 300  
kHz  
For BW = 50, 80 kHz  
Data Sheet  
142  
V4.0, 2010-02-19  
TDA5240  
Reference  
#
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
Remarks  
min. typ. max.  
Crystal Oscillator Characteristics  
21.948  
717  
H1  
Frequency range  
fXTAL  
MHz  
fF  
H2  
Crystal parameters  
H2.1  
Motional  
C1  
3
6
10  
capacitance  
H2.2  
H2.3  
H2.4  
H2.5  
Motional resistance  
Shunt capacitance  
Load capacitance  
R1  
18  
2
80  
4
Ω
C0  
pF  
pF  
ppm  
CLoad  
fXTAL_Tol  
12  
nominal value  
Initial frequency  
tolerance  
-30  
-50  
+30  
oscillator untrimmed (trim  
capacitor default settings,  
usage of recommended  
crystal);  
not including crystal  
tolerances  
H2.6  
H2.7  
H3  
Frequency trimming ΔfXTAL  
range  
+50  
4
ppm  
ppm  
Hz  
larger trimming range  
possible via SD PLL  
Trimming step  
ΔfX_step  
1
see also step size of  
SD PLL  
Clock output  
frequency at PPx pin  
fclock_out  
11  
5.5M  
292  
10pF load  
H4  
Crystal oscillator  
settling time  
tCOSCsettle  
292  
292  
µs  
(switching from Low  
Power to High  
Precision Mode)  
H5  
Start up time  
tstart_up  
0.45  
1
ms  
crystal type:  
NDK NX5032SD;  
See also BOM for ext.  
load caps;  
Note: No SPI  
communication is allowed  
before XOSC start-up is  
finished and chip reset is  
already finished  
Data Sheet  
143  
V4.0, 2010-02-19  
TDA5240  
Reference  
#
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
Remarks  
min. typ. max.  
Digital Inputs/Outputs Characteristics  
I1  
I2  
I3  
High level input  
voltage  
VIn_High  
IIn_High  
VIn_Low  
0.7*  
VDDD  
VDD5V V  
+0.1  
High level input  
leakage current  
5
µA  
Low level input  
voltage (except  
P_ON pin)  
0
0.8  
V
I4  
Low level input  
voltage (at P_ON  
pin)  
VIn_Low_PON  
0
0.5  
V
I5  
I6  
Low level input  
leakage current  
IIn_Low  
-5  
µA  
VDD5V  
-0.4  
High level output  
voltage 1  
VOut_High1  
VDD5V V  
IOH=-500 µA, static driver  
capability;  
Normal Pad Mode  
(see register PPCFG2  
and CMC0)  
I7  
I8  
I9  
Low level output  
voltage 1  
VOut_Low1  
VOut_High2  
VOut_Low2  
0
0.4  
V
IOL=500 µA, static driver  
capability;  
Normal Pad Mode  
(see register PPCFG2  
and CMC0)  
VDD5V  
-0.8  
High level output  
voltage 2  
VDD5V V  
IOH=-4 mA, static driver  
capability;  
High Power Pad Mode  
(see register PPCFG2  
and CMC0)  
Low level output  
voltage 2  
0
0.8  
V
IOL=4 mA, static driver  
capability;  
High Power Pad Mode  
(see register PPCFG2  
and CMC0)  
Data Sheet  
144  
V4.0, 2010-02-19  
TDA5240  
Reference  
#
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
Remarks  
min. typ. max.  
Timing SPI-Bus Characteristics  
J1  
Clock frequency  
fclock  
2.2  
MHz  
Note: A high SPI clock  
rate during data reception  
can reduce sensitivity  
J2  
Clock High time  
Clock Low time  
Active setup time  
tCLK_H  
tCLK_L  
tsetup  
200  
200  
200  
200  
200  
200  
200  
100  
100  
145  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
J3  
J4  
J5  
Not active setup time tnot_setup  
Active hold time thold  
Not active hold time tnot_hold  
J6  
J7  
J8  
Deselect time  
SDI setup time  
SDI hold time  
tDeselect  
tSDI_setup  
tSDI_hold  
tCLK_SDO  
J9  
J10  
J11  
Clock low to SDO  
valid  
@ Cload = 80 pF  
High Power Pad not  
enabled (Normal Mode)  
(see register PPCFG2  
and CMC0)  
J12  
Clock low to SDO  
valid  
tCLK_SDO  
40  
ns  
@ Cload = 10 pF  
High Power Pad not  
enabled (Normal Mode)  
(see register PPCFG2  
and CMC0)  
J13  
J14  
J15  
J16  
J17  
SDO rise time  
SDO fall time  
SDO rise time  
SDO fall time  
SDO disable time  
tSDO_r  
90  
90  
15  
15  
25  
ns  
ns  
ns  
ns  
ns  
@ Cload = 80 pF  
@ Cload = 80 pF  
@ Cload = 10 pF  
@ Cload = 10 pF  
tSDO_f  
tSDO_r  
tSDO_f  
tSDO_disable  
1) Please note that the system bandwidth is smaller than the smallest bandwidth in the signal path.  
Data Sheet  
145  
V4.0, 2010-02-19  
TDA5240  
Reference  
Unless explicitly otherwise noted, the following test conditions apply to the given  
specification values in Table 10 and items D7 and D8:  
* Hardware: TDA5240 Platform Testboard V1.0  
* Single-Ended Matching for 315.0 MHz / 433.92 MHz / 868.3 MHz / 915.0 MHz  
* RF input matched to 50 Ω; Insertion loss of input matching network = 1dB  
* Receive Frequency 315.0 MHz / 433.92 MHz / 868.3 MHz / 915.0 MHz; Lo-Side LO-Injection  
* Reference Clock: XTAL=21.948717 MHz  
* IF-Gain: Attenuation set to default value (IFATT = 7)  
* Double Down Conversion  
* 1 IF-Filter: Center=10.7MHz; BW=330kHz; Connected between IF_OUT and IFBUF_IN  
* 2nd IF Filter BW: Depending on Data Rate and FSK Deviation  
* Received Signal at zero Offset to IF Center Frequency  
* RSSI trimmed  
* FSK Pre-Demodulation Filter (PDF) BW: Depending on Data Rate and FSK Deviation  
* No SPI-traffic during telegram reception, CLK_OUT disabled  
* AFC and AGC are OFF, unless otherwise noted  
* Specification values are in respect to Manchester-coded Infineon-Reference Pattern 1  
(7 Bits '0', 1 Bit ’1', 1 Bits '0', 1 Bit ’1', 1 Bits '0', 1 Bit ’1', PRBS5 (31 Bit), 1 Bit 'M') according to Figure 18  
However a Code Violation is not used as EOM criterion  
BER sensitivity measurements use Receive Mode TMMF (sampled with ideal data clock)  
MER sensitivity measurements use Receive Mode POF  
* DRE ... Data Date Error of received telegram vs. adjusted Data Rate  
* DC ... Duty Cycle  
* MER ... Message Error Rate  
[MER = 1 - (number_of_correctly_received_messages / number_of_transmitted messages)]  
* FAR ... False Alarm Rate  
[FAR = number_of_mistakenly_wake_ups / number_of_periods_searching_for_data_on_channel]  
* MMR ... Missed Message Rate  
[MMR = number_of_mistakenly_missed_wake_up_patterns /  
number_of_periods_with_wake_up_pattern_transmitted_and_searching_for_wake_up_pattern]  
* BER ... Bit Error Rate (using a PRBS9 Pseudo-Random Binary Sequence)  
[BER = 1 - (number_of_correctly_received_bits / number_of_transmitted bits)]  
Data Sheet  
146  
V4.0, 2010-02-19  
TDA5240  
Reference  
Table 10  
MER Characteristics (Receive Mode = POF)  
#
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
Remarks  
min. typ. max.  
Characteristics of Digital Data Filter and Data Clock Recovery  
Acceptance Criterion is: MER <= 10%. For additional test conditions see right before this table.  
Double Down Conversion Mode  
K1  
Data Rate Error of  
received Telegram  
Sensitivity loss < 1dB  
Db  
-10  
10  
%
at DC = 50%  
K2  
Duty Cycle Error of Manchester coding of received Telegram  
K2.1  
Sensitivity loss < 1dB  
45  
35  
45  
35  
55  
55  
55  
55  
%
According to Definition B  
in Chapter 2.7.2;  
including  
DRE of -10% to +10%;  
Data Rate < 50 kBit/s  
tolManch_DefB  
tolManch_DefC  
tolManch_DefB  
tolManch_DefC  
K2.2  
K2.3  
K2.4  
Sensitivity loss <  
3.5dB  
%
%
%
According to Definition C  
in Chapter 2.7.2  
including  
DRE of -10% to +10%;  
Data Rate < 10 kBit/s  
Sensitivity loss <  
1.5dB  
According to Definition B  
in Chapter 2.7.2;  
including  
DRE of -10% to +10%;  
Data Rate >= 50 kBit/s  
Sensitivity loss < 4dB  
According to Definition C  
in Chapter 2.7.2  
including  
DRE of -10% to +10%;  
Data Rate >= 10 kBit/s;  
Note:  
If BPF_BW / Bitrate < 12,  
the selected data rate in  
the configuration tool  
needs to be set 5%  
higher.  
Data Sheet  
147  
V4.0, 2010-02-19  
TDA5240  
Reference  
#
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
Remarks  
min. typ. max.  
Sensitivity of Receiver  
Acceptance Criterion is: MER <= 10%. For additional test conditions see right before this table.  
Double Down Conversion Mode  
L1  
Sensitivity Limit in ASK (OOK) Mode;  
Manchester coding  
At DC = 50% and  
DRE = 0%.  
T
amb = 25 °C,  
peak power level (see  
Chapter 2.7.3)  
L1.1  
Data Rate 0.5 kBit/s SASK1  
-120  
-117  
dBm  
peak  
m = 100%  
2nd IF BW = 50 kHz;  
IFATT = 0, CDR = normal;  
Data Slicer Bit Mode;  
868/915MHz: <=1dB loss  
L1.2  
L1.3  
L1.4  
Data Rate 2 kBit/s  
Data Rate 10 kBit/s  
Data Rate 16 kBit/s  
SASK2  
SASK3  
SASK4  
-116  
-111  
-109  
-113  
-108  
-106  
dBm  
peak  
m = 100%  
2nd IF BW = 50 kHz;  
IFATT = 0, CDR = normal;  
Data Slicer Bit Mode  
dBm  
peak  
m = 100%  
2nd IF BW = 50 kHz;  
IFATT = 0, CDR = normal;  
Data Slicer Bit Mode  
dBm  
peak  
m = 100%  
2nd IF BW = 80 kHz;  
IFATT = 0, CDR = normal;  
Data Slicer Bit Mode;  
868/915MHz: <=1dB loss  
L1.5  
L1.6  
Data Rate 0.5 kBit/s SASK5  
-115  
-112  
-112  
-109  
dBm  
peak  
m = 100%  
2nd IF BW = 300 kHz;  
IFATT = 7, CDR = fast;  
Data Slicer Bit Mode;  
Note: 3dB sensitivity loss  
@ foffset = +/-100 kHz  
Data Rate 2 kBit/s  
SASK6  
SASK7  
dBm  
peak  
m = 100%  
2nd IF BW = 300 kHz;  
IFATT = 7, CDR = fast;  
Data Slicer Bit Mode;  
868/915MHz:<=1dBloss;  
Note: 3dB sensitivity loss  
@ foffset = +/-100 kHz  
L1.7  
Data Rate 10 kBit/s  
-106  
-103  
dBm  
peak  
m = 100%  
2nd IF BW = 300 kHz;  
IFATT = 7, CDR = fast;  
Data Slicer Bit Mode;  
Note: 3dB sensitivity loss  
@ foffset = +/-100 kHz  
Data Sheet  
148  
V4.0, 2010-02-19  
TDA5240  
Reference  
#
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
Remarks  
min. typ. max.  
L1.8  
Data Rate 16 kBit/s  
SASK8  
-104  
-101  
dBm  
peak  
m = 100%  
2nd IF BW = 300 kHz;  
IFATT = 7, CDR = fast;  
Data Slicer Bit Mode;  
Note: 3dB sensitivity loss  
@ foffset = +/-100 kHz  
L2  
Sensitivity Limit in FSK Mode;  
Manchester coding  
At DC = 50% and  
DRE = 0%.  
T
amb = 25 °C  
L2.1  
Data Rate 2 kBit/s;  
Δf = 10 kHz  
SFSK1  
-118  
-113  
-112  
-115  
-110  
-109  
dBm  
dBm  
dBm  
2
nd IF BW = 50 kHz;  
PDF = 33 kHz, AFC off;  
IFATT = 0, CDR = normal;  
Data Slicer Bit Mode  
L2.2  
L2.3  
Data Rate 10 kBit/s; SFSK2  
Δf = 14 kHz  
2nd IF BW = 50 kHz;  
PDF = 65 kHz, AFC off;  
IFATT = 0, CDR = normal;  
Data Slicer Bit Mode  
Data Rate 10 kBit/s; SFSK3  
2nd IF BW = 125 kHz;  
Δf = 50 kHz  
PDF = 132 kHz, AFC off;  
IFATT = 0, CDR = normal;  
Data Slicer Bit Mode;  
868/915MHz: <=1dB loss  
L2.4  
L2.5  
Data Rate 50 kBit/s; SFSK4  
Δf = 50 kHz  
-106  
-108  
-103  
-105  
dBm  
dBm  
2nd IF BW = 300 kHz;  
PDF = 239 kHz, AFC off;  
IFATT = 0, CDR = normal;  
Data Slicer Bit Mode  
Data Rate 2 kBit/s;  
SFSK5  
2nd IF BW = 300 kHz;  
PDF = 282 kHz;  
Δf = 10 kHz  
IFATT = 7, CDR = fast;  
Data Slicer Bit Mode;  
868/915MHz:<=1dBloss;  
Note: 3dB sensitivity loss  
@ foffset=+/-90kHz @ AFC on  
L2.6  
L2.7  
Data Rate 10 kBit/s; SFSK6  
Δf = 14 kHz  
-107  
-109  
-104  
-106  
dBm  
dBm  
2
nd IF BW = 300 kHz;  
PDF = 282 kHz;  
IFATT = 7, CDR = fast;  
Data Slicer Bit Mode;  
Note: 3dB sensitivity loss  
@ foffset=+/-90kHz @ AFC on  
Data Rate 10 kBit/s; SFSK7  
Δf = 50 kHz  
2nd IF BW = 300 kHz;  
PDF = 282 kHz;  
IFATT = 7, CDR = fast;  
Data Slicer Bit Mode;  
Note: 3dB sensitivity loss  
@ foffset=+/-90kHz @ AFC on  
Data Sheet  
149  
V4.0, 2010-02-19  
TDA5240  
Reference  
#
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
Remarks  
min. typ. max.  
Dynamic Range of Receiver  
Acceptance Criteria are: MER <= 1E-3, FAR < 1E-5, MMR < 1E-4 (Criterion: 8 Equal Bits), Manchester coding.  
For additional test conditions see right before this table.  
Double Down Conversion Mode  
M1  
Dynamic Range in ASK (OOK) Mode, AGC on  
At DC = 50% and  
DRE = 0%.  
T
amb = 25 °C,  
peak power level (see  
Chapter 2.7.3)  
DR2,OOK  
M1.1 Data Rate 2 kBit/s  
M1.2 Data Rate 10 kBit/s  
M1.3 Data Rate 2 kBit/s  
M1.4 Data Rate 10 kBit/s  
-10  
-10  
-45  
-60  
-109  
-105  
-103  
-99  
dBm  
peak  
m = 100%  
2nd IF BW = 50 kHz;  
IFATT = 0, CDR = normal;  
Data Slicer Bit Mode  
DR10,OOK  
DR2,ASK50  
DR10,ASK50  
dBm  
peak  
m = 100%  
2nd IF BW = 50 kHz;  
IFATT = 0, CDR = normal;  
Data Slicer Bit Mode  
dBm  
peak  
m = 50%  
2nd IF BW = 50 kHz;  
IFATT = 0, CDR = normal;  
Data Slicer Bit Mode  
dBm  
peak  
m = 50%  
2nd IF BW = 50 kHz;  
IFATT = 0, CDR = normal;  
Data Slicer Bit Mode  
M2  
Dynamic Range in FSK Mode, AGC on  
Data Rate 10 kBit/s & Δf = 50 kHz  
At DC = 50% and  
DRE = 0%.  
T
amb = 25 °C  
DR10,AM0  
M2.1 0% AM Modulation  
-10  
-10  
-106  
-90  
dBm  
dBm  
2nd IF BW = 125 kHz  
PDF = 132 kHz;  
IFATT = 0, CDR = normal;  
Data Slicer Bit Mode  
DR10,AM90  
M2.2 90% AM Modulation,  
100 Hz  
2nd IF BW = 125 kHz  
PDF = 132 kHz;  
IFATT = 0, CDR = normal;  
Data Slicer Bit Mode  
Data Sheet  
150  
V4.0, 2010-02-19  
TDA5240  
Reference  
Table 11  
Typical Achievable Sensitivity Bandwidth [kHz]  
Ceramic Filter BW = 330 kHz  
Table is valid for DDC (Double Down Conversion) and SDC (Single Down Conversion)  
Valid for AFC=off; For FSK & AFC=on the BW can be increased by 2*AFCLIMIT, where AFCLIMIT < 43 kHz  
BPF/PDF  
Filter [Hz]  
Modulation FSKDeviation Sensitivity  
Data Rate [bit/s], Manchester  
[+/- Hz]  
Loss  
0.5 k  
230  
280  
160  
230  
140  
220  
120  
200  
120  
180  
-
1 k  
230  
280  
150  
220  
160  
230  
130  
210  
120  
190  
-
5
230  
280  
-
10 k  
230  
280  
-
20 k  
230  
280  
-
50 k  
BPF = 300 k  
PDF = 282 k  
ASK  
FSK  
-
3 dB  
6 dB  
3 dB  
6 dB  
3 dB  
6 dB  
3 dB  
6 dB  
3 dB  
6 dB  
3 dB  
6 dB  
3 dB  
6 dB  
3 dB  
6 dB  
3 dB  
6 dB  
-
-
0.5 k  
1 k  
-
-
-
-
-
-
-
-
-
-
-
-
-
5 k  
150  
220  
140  
210  
130  
200  
130  
190  
-
140  
220  
140  
210  
140  
200  
130  
190  
120  
160  
110  
140  
-
-
-
-
10 k  
15 k  
20 k  
40 k  
50 k  
150  
210  
150  
210  
140  
190  
-
-
-
-
-
-
-
110  
160  
-
-
-
-
-
-
-
-
-
-
-
-
110  
140  
110  
140  
110  
140  
100  
140  
100  
140  
Data Sheet  
151  
V4.0, 2010-02-19  
TDA5240  
Reference  
Table 11  
Typical Achievable Sensitivity Bandwidth [kHz]  
Ceramic Filter BW = 330 kHz  
Table is valid for DDC (Double Down Conversion) and SDC (Single Down Conversion)  
Valid for AFC=off; For FSK & AFC=on the BW can be increased by 2*AFCLIMIT, where AFCLIMIT < 43 kHz  
BPF/PDF  
Filter [Hz]  
Modulation FSKDeviation Sensitivity  
Data Rate [bit/s], Manchester  
[+/- Hz]  
Loss  
0.5 k  
180  
220  
140  
190  
130  
180  
100  
160  
100  
140  
-
1 k  
180  
220  
140  
190  
130  
190  
120  
170  
100  
150  
-
5
180  
220  
-
10 k  
180  
220  
-
20 k  
50 k  
BPF = 200 k  
PDF = 239 k  
ASK  
FSK  
-
3 dB  
6 dB  
3 dB  
6 dB  
3 dB  
6 dB  
3 dB  
6 dB  
3 dB  
6 dB  
3 dB  
6 dB  
3 dB  
6 dB  
3 dB  
6 dB  
3 dB  
6 dB  
180  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
220  
0.5 k  
1 k  
-
-
-
-
-
-
-
-
-
-
-
5 k  
130  
180  
120  
170  
110  
150  
100  
140  
-
130  
180  
120  
170  
110  
150  
100  
150  
90  
-
10 k  
15 k  
20 k  
40 k  
50 k  
140  
170  
120  
160  
110  
150  
-
-
-
90  
-
130  
-
-
-
-
-
-
120  
-
-
-
-
-
-
-
-
-
-
-
Data Sheet  
152  
V4.0, 2010-02-19  
TDA5240  
Reference  
Table 11  
Typical Achievable Sensitivity Bandwidth [kHz]  
Ceramic Filter BW = 330 kHz  
Table is valid for DDC (Double Down Conversion) and SDC (Single Down Conversion)  
Valid for AFC=off; For FSK & AFC=on the BW can be increased by 2*AFCLIMIT, where AFCLIMIT < 43 kHz  
BPF/PDF  
Filter [Hz]  
Modulation FSKDeviation Sensitivity  
Data Rate [bit/s], Manchester  
[+/- Hz]  
Loss  
0.5 k  
120  
150  
100  
120  
90  
120  
70  
100  
70  
90  
-
1 k  
120  
150  
100  
120  
100  
120  
80  
110  
70  
100  
-
5
120  
150  
-
10 k  
120  
150  
-
20 k  
50 k  
BPF = 125 k  
PDF = 132 k  
ASK  
FSK  
-
3 dB  
6 dB  
3 dB  
6 dB  
3 dB  
6 dB  
3 dB  
6 dB  
3 dB  
6 dB  
3 dB  
6 dB  
3 dB  
6 dB  
3 dB  
6 dB  
3 dB  
6 dB  
120  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
150  
0.5 k  
1 k  
-
-
-
-
-
-
-
-
-
-
5 k  
80  
110  
80  
100  
70  
90  
70  
90  
-
90  
110  
80  
100  
80  
90  
70  
90  
-
-
-
10 k  
15 k  
20 k  
40 k  
50 k  
80  
100  
80  
100  
70  
90  
-
-
-
60  
80  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Data Sheet  
153  
V4.0, 2010-02-19  
TDA5240  
Reference  
4.2  
Test Circuit - Evaluation Board v1.0  
Figure 94  
Test Circuit Schematic  
Data Sheet  
154  
V4.0, 2010-02-19  
TDA5240  
Reference  
4.3  
Test Board Layout, Evaluation Board v1.0  
Figure 95  
Test Board Layout, Top View  
Figure 96  
Test Board Layout, Bottom View  
Data Sheet  
155  
V4.0, 2010-02-19  
TDA5240  
Reference  
Figure 97  
Test Board Layout, Component View  
Data Sheet  
156  
V4.0, 2010-02-19  
TDA5240  
Reference  
4.4  
Bill of Materials  
Pos Part Value  
Package  
Device /  
Type  
Tolerance  
Manufacturer  
Remark/Options  
(RF+supply variant)  
1
2
3
4
5
6
IC1  
C1  
C2  
C3  
C4  
C5  
TDA5240 PG-TSSOP-28  
Infineon  
3.9 pF  
3.9 pF  
100 nF  
100 nF  
0603  
0603  
0603  
0603  
0603  
C0G  
C0G  
X7R  
X7R  
+/- 0.1 pF  
+/- 0.1 pF  
+/- 10 %  
+/- 10 %  
+/- 10 %  
crystal oscillator load  
crystal oscillator load  
100 nF /  
( 1 µF )  
X7R /  
X5R  
3.3V /  
( 5 V environment)  
7
8
C6  
C7  
100 nF  
1 pF  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
SMC-A  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
X7R  
C0G  
C0G  
C0G  
C0G  
C0G  
C0G  
C0G  
C0G  
Tantal  
X7R  
X7R  
+/- 10 %  
+/- 0.1 pF  
+/- 0.1 pF  
matching for 315MHz  
matching for 434MHz  
matching for 868MHz  
matching for 915MHz  
matching for 315MHz  
matching for 434MHz  
matching for 868MHz  
matching for 915MHz  
polarized capacitor  
0.5 pF  
open  
1 pF  
+/- 0.1 pF  
9
C8  
open  
open  
2.7 pF  
5.1 pF  
1 µF  
+/- 0.1 pF  
+/- 0.1 pF  
+/- 10%  
+/- 10%  
+/- 10%  
+/- 2%  
10  
11  
12  
13  
C9  
C10  
C11  
L1  
100 nF  
10 nF  
68 nH  
39 nH  
22 nH  
15 nH  
matching for 315MHz  
matching for 434MHz  
matching for 868MHz  
matching for 915MHz  
+/- 2%  
+/- 2%  
+/- 2%  
14  
15  
16  
R1  
R2  
R3  
10 Ohm /  
(open)  
+/- 5%  
3.3 V /  
( 5 V environment)  
4.7 Ohm / 0603  
(open)  
+/- 5%  
+/- 5%  
3.3 V /  
( 5 V environment)  
4.7 Ohm / 0603  
(22 Ohm)  
3.3 V /  
( 5 V environment)  
17  
18  
R4  
0 Ohm  
0603  
IF1  
SFECF10  
M7EA00  
Murata  
BW = 330 kHz  
SMD crystal  
19  
Q1  
21.948717 NX5032SD  
MHz  
C0=1.7 pF  
C1=7 fF  
CL=12 pF  
NDK (Frischer  
Electronic),  
EXS00A-  
CS01580  
Data Sheet  
157  
V4.0, 2010-02-19  
TDA5240  
Reference  
Pos Part Value  
Interface / optional  
Package  
Device /  
Type  
Tolerance  
Manufacturer  
Remark/Options  
(RF+supply variant)  
20  
IC2  
AT24C32 SOIC8  
C-SH-B or  
AT24C512  
EEPROM for board  
detection  
21  
C12  
open  
0603  
X7R  
+/- 10%  
RSSI measurement  
low pass  
22  
23  
24  
C13  
C14  
C15  
100 nF  
1 µF  
0603  
X7R  
+/- 10%  
+/- 10%  
+/- 10%  
SMC-A  
0603  
Tantal  
X7R  
polarized capacitor  
10 nF  
filter network on  
supply line  
25  
26  
27  
C16  
L2  
10 nF  
0 Ohm  
open  
0603  
0603  
0603  
X7R  
+/- 10%  
filter network on  
supply line  
no filter network on  
supply line  
R5  
RSSI measurement  
low pass  
28  
29  
R6  
R7  
1 kOhm  
0 Ohm  
0603  
0603  
write protection for  
EEPROM  
30  
31  
32  
D1  
IF2  
X1  
LED  
LS M676-  
P251-1  
status indication LED  
open  
Murata  
2nd IF filter is  
optional  
SMA  
RF input  
socket  
33  
34  
X2  
X3  
3 pins  
2 pins  
Board supply  
Chip supply current  
(jumper closed)  
35  
36  
37  
X4  
X5  
X6  
50 pins  
2 pins  
SIB-QTS-025-  
01-X-D-RA  
Samtec  
Connector to  
PC/µC/Interface  
RSSI measuring  
point  
12 pins  
Interface line  
measuring point  
38  
39  
40  
X7  
X8  
4 pins  
4 pins  
GND  
GND  
Jum- 2 pins  
per 1  
Jumper for X3  
41  
Jum- 2 pins  
per 2  
Jumper for X2 -  
Supply by interface  
Board material 1.5mm FR4 with 35µm copper on both sides  
Data Sheet  
158  
V4.0, 2010-02-19  
TDA5240  
Package Outlines  
5
Package Outlines  
1)  
±0.1  
4.4  
B
+0.075  
-0.035  
0.125  
0.65  
C
+0.08 2)  
-0.03  
0.1  
0.22  
+0.15  
-0.1  
0.6  
M
0.1 A C 28x  
6.4  
28  
15  
28x  
0.2 B  
1
14  
1)  
±0.1  
9.7  
A
Index Marking  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Does not include dambar protrusion  
Figure 98  
Table 12  
PG-TSSOP-28 Package Outline (green package)  
Order Information  
Type  
Ordering Code  
Package  
PG-TSSOP-28  
TDA5240  
SP000550860  
You can find all of our packages, sorts of packing and others in our  
Infineon Internet Page “Products”:http://www.infineon.com/products  
Dimensions in mm  
V4.0, 2010-02-19  
SMD = Surface Mounted Device  
Data Sheet  
159  
TDA5240  
Page  
List of Tables  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
Table 9  
Table 10  
Table 11  
Table 12  
Pin Definition and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
AGC Settings 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
AGC Settings 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
SPI Bus Timing Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Power Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Supply Operating Range and Ambient Temperature. . . . . . . . . . . . . 132  
AC/DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
MER Characteristics (Receive Mode = POF) . . . . . . . . . . . . . . . . . . 147  
Typical Achievable Sensitivity Bandwidth [kHz]. . . . . . . . . . . . . . . . . 151  
Order Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Data Sheet  
160  
V4.0, 2010-02-19  
TDA5240  
Page  
List of Figures  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Pin-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
TDA5240 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Block Diagram RF Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Single Down Conversion (SDC, no external filters required) . . . . . . . . 20  
Double Down Conversion (DDC) with one external filter . . . . . . . . . . . 21  
Double Down Conversion (DDC) with two external filters . . . . . . . . . . 21  
Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
External Clock Generation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Synthesizer Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Functional Block Diagram ASK/FSK Demodulator . . . . . . . . . . . . . . . 27  
AFC Loop Filter (I-PI Filtering and Mapping) . . . . . . . . . . . . . . . . . . . . 29  
Analog RSSI output curve with AGC action ON (blue) vs. OFF (black) 30  
Peak Detector Unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Peak Detector Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Functional Block Diagram Digital Baseband Receiver. . . . . . . . . . . . . 38  
Signal Detector Threshold Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Coding Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Manchester Symbols including Code Violations . . . . . . . . . . . . . . . . . 42  
Clock Recovery (ADPLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
RUNIN Generation Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Definition of Tolerance Windows for the CDR . . . . . . . . . . . . . . . . . . . 46  
Data Rate Acceptance Limitation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Wake-Up Generation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
RSSI Blocking Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Wake-Up Data Criteria Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Frame Synchronization Unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
16-Bit TSI Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
8-Bit Parallel TSI Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
8-Bit Extended TSI Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
8-Bit Gap TSI Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Clock Recovery Gap Resynchronization Mode TSIGRSYN = 1 . . . . . 60  
Clock Recovery Gap Resynchronization Mode TSIGRSYN = 0 . . . . . 61  
TSIGap TSIB Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
TVWIN and TSIGAP dependency example . . . . . . . . . . . . . . . . . . . . . 62  
4-Byte Message ID Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
2-Byte Message ID Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
MID Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Structure of Payload Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Data Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Power Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
3.3 Volts and 5 Volts Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Supply Current Ramp Up/Down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 9  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Figure 19  
Figure 20  
Figure 21  
Figure 22  
Figure 23  
Figure 24  
Figure 25  
Figure 26  
Figure 27  
Figure 28  
Figure 29  
Figure 30  
Figure 31  
Figure 32  
Figure 33  
Figure 34  
Figure 35  
Figure 36  
Figure 37  
Figure 38  
Figure 39  
Figure 40  
Figure 41  
Figure 42  
Data Sheet  
161  
V4.0, 2010-02-19  
TDA5240  
Figure 43  
Figure 44  
Figure 45  
Figure 46  
Figure 47  
Figure 48  
Figure 49  
Figure 50  
Figure 51  
Figure 52  
Figure 53  
Figure 54  
Figure 55  
Figure 56  
Figure 57  
Figure 58  
Figure 59  
Figure 60  
Figure 61  
Figure 62  
Figure 63  
Figure 64  
Figure 65  
Figure 66  
Figure 67  
Figure 68  
Figure 69  
Figure 70  
Figure 71  
Figure 72  
Figure 73  
Figure 74  
Figure 75  
Figure 76  
Figure 77  
Figure 78  
Figure 79  
Figure 80  
Figure 81  
Figure 82  
Figure 83  
Figure 84  
Figure 85  
Reset Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Logical and electrical System Interfaces of the TDA5240 . . . . . . . . . . 75  
Receive Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Data interface for the Packet Oriented FIFO Mode . . . . . . . . . . . . . . . 77  
Data interface for the Packet Oriented Transparent Payload Mode . . 77  
Timing of the Packet Oriented Transparent Payload Mode . . . . . . . . . 78  
Data interface for the Transparent Mode - Chip Data and Strobe . . . . 78  
Timing of the Transparent Mode - Chip Data and Strobe . . . . . . . . . . 79  
Data interface for the Transparent Modes TMMF / TMRDS . . . . . . . . 79  
External Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Receive FIFO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
FIFO Lock Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
SPI Data FIFO Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Interrupt Generation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Interrupt Generation Waveform (Example for Configuration A+B). . . . 87  
ISx Readout Set Clear Collision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Burst Read Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Write Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Burst Write Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
SPI Checksum Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Read FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Serial Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Serial Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Chip Serial Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Global State Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Run Mode Slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
HOLD State Behavior (INITPLLHOLD disabled) . . . . . . . . . . . . . . . . . 99  
HOLD State Behavior (INITPLLHOLD enabled) . . . . . . . . . . . . . . . . . 99  
SPM - TX-RX Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Wake-up Search with Configuration A . . . . . . . . . . . . . . . . . . . . . . . . 102  
Wake-up Search with Configuration B, C, D . . . . . . . . . . . . . . . . . . . 103  
TOTIM Behavior without Presence of Interferer . . . . . . . . . . . . . . . . 105  
TOTIM Behavior in Presence of Interferer. . . . . . . . . . . . . . . . . . . . . 106  
Run Mode Self Polling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Parallel Wake-up Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Polling Timer Unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Constant On-Off Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
COO Polling in WU on RSSI Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Ultrafast Fall Back to SLEEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
UFFB activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Fast Fall Back to SLEEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Mixed Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Data Sheet  
162  
V4.0, 2010-02-19  
TDA5240  
Figure 86  
Figure 87  
Figure 88  
Figure 89  
Figure 90  
Figure 91  
Figure 92  
Figure 93  
Figure 94  
Figure 95  
Figure 96  
Figure 97  
Figure 98  
Permanent Wake-Up Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Active Idle Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Definition A: Level-based definition . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Definition B: Chip-based definition. . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Definition C: Edge delay definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
SFR Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
SFR Address Paging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Test Circuit Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Test Board Layout, Top View. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Test Board Layout, Bottom View . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Test Board Layout, Component View . . . . . . . . . . . . . . . . . . . . . . . . 156  
PG-TSSOP-28 Package Outline (green package). . . . . . . . . . . . . . . 159  
Data Sheet  
163  
V4.0, 2010-02-19  
TDA5240  
Data Sheet  
164  
V4.0, 2010-02-19  
TDA5240  
Appendix - Registers Chapter  
Data Sheet  
165  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Overview  
Appendix - Registers Chapter  
Register Overview  
Table 1  
Register Short Name  
Appendix - Registers Chapter, Register Description  
Register Overview  
Register Long Name  
Offset Address Page Number  
A_MID0  
Message ID Register 0  
Message ID Register 1  
Message ID Register 2  
Message ID Register 3  
Message ID Register 4  
Message ID Register 5  
Message ID Register 6  
Message ID Register 7  
Message ID Register 8  
Message ID Register 9  
Message ID Register 10  
Message ID Register 11  
Message ID Register 12  
Message ID Register 13  
Message ID Register 14  
Message ID Register 15  
Message ID Register 16  
Message ID Register 17  
Message ID Register 18  
Message ID Register 19  
Message ID Control Register 0  
Message ID Control Register 1  
IF1 Register  
000H  
001H  
002H  
003H  
004H  
005H  
006H  
007H  
008H  
009H  
00AH  
00BH  
00CH  
00DH  
00EH  
00FH  
010H  
011H  
012H  
013H  
014H  
015H  
016H  
017H  
018H  
019H  
01AH  
193  
193  
193  
194  
194  
194  
195  
195  
196  
196  
196  
197  
197  
197  
198  
198  
198  
199  
199  
200  
200  
200  
201  
202  
203  
204  
204  
205  
205  
A_MID1  
A_MID2  
A_MID3  
A_MID4  
A_MID5  
A_MID6  
A_MID7  
A_MID8  
A_MID9  
A_MID10  
A_MID11  
A_MID12  
A_MID13  
A_MID14  
A_MID15  
A_MID16  
A_MID17  
A_MID18  
A_MID19  
A_MIDC0  
A_MIDC1  
A_IF1  
A_WUC  
Wake-Up Control Register  
Wake-Up Pattern Register 0  
Wake-Up Pattern Register 1  
Wake-Up Bit or Chip Count Register  
A_WUPAT0  
A_WUPAT1  
A_WUBCNT  
A_WURSSITH1  
A_WURSSIBL1  
RSSI Wake-Up Threshold for Channel 1 Register 01BH  
RSSI Wake-Up Blocking Level Low Channel 1  
Register  
01CH  
A_WURSSIBH1  
A_WURSSITH2  
RSSI Wake-Up Blocking Level High Channel 1  
Register  
01DH  
206  
206  
RSSI Wake-Up Threshold for Channel 2 Register 01EH  
Data Sheet  
166  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Overview  
Table 1  
Register Overview (cont’d)  
Register Short Name  
A_WURSSIBL2  
Register Long Name  
Offset Address Page Number  
RSSI Wake-Up Blocking Level Low Channel 2  
Register  
01FH  
207  
A_WURSSIBH2  
RSSI Wake-Up Blocking Level High Channel 2  
Register  
020H  
207  
A_WURSSITH3  
A_WURSSIBL3  
RSSI Wake-Up Threshold for Channel 3 Register 021H  
208  
208  
RSSI Wake-Up Blocking Level Low Channel 3  
Register  
022H  
A_WURSSIBH3  
RSSI Wake-Up Blocking Level High Channel 3  
Register  
023H  
208  
A_SIGDETSAT  
A_WULOT  
Signal Detector Saturation Threshold Register  
Wake-up on Level Observation Time Register  
Synchronization Search Time-Out Register  
SYNC Timeout Timer Register  
024H  
025H  
026H  
027H  
028H  
029H  
02AH  
02BH  
02CH  
02DH  
02EH  
02FH  
030H  
031H  
032H  
033H  
034H  
035H  
036H  
037H  
038H  
039H  
03AH  
03BH  
03CH  
03DH  
03EH  
03FH  
209  
209  
210  
210  
211  
211  
212  
212  
213  
214  
214  
215  
215  
215  
216  
217  
218  
219  
219  
220  
221  
221  
222  
222  
223  
223  
223  
224  
A_SYSRCTO  
A_TOTIM_SYNC  
A_TOTIM_TSI  
A_TOTIM_EOM  
A_AFCLIMIT  
A_AFCAGCD  
A_AFCSFCFG  
A_AFCK1CFG0  
A_AFCK1CFG1  
A_AFCK2CFG0  
A_AFCK2CFG1  
A_PMFUDSF  
A_AGCSFCFG  
A_AGCCFG0  
A_AGCCFG1  
A_AGCTHR  
TSI Timeout Timer Register  
EOM Timeout Timer Register  
AFC Limit Configuration Register  
AFC/AGC Freeze Delay Register  
AFC Start/Freeze Configuration Register  
AFC Integrator 1 Gain Register 0  
AFC Integrator 1 Gain Register 1  
AFC Integrator 2 Gain Register 0  
AFC Integrator 2 Gain Register 1  
Peak Memory Filter Up-Down Factor Register  
AGC Start/Freeze Configuration Register  
AGC Configuration Register 0  
AGC Configuration Register 1  
AGC Threshold Register  
A_DIGRXC  
Digital Receiver Configuration Register  
RSSI Peak Detector Bit Position Register  
Image Supression Fc Selection Register  
Pre Decimation Factor Register  
A_PKBITPOS  
A_ISUPFCSEL  
A_PDECF  
A_PDECSCFSK  
A_PDECSCASK  
A_MFC  
Pre Decimation Scaling Register FSK Mode  
Pre Decimation Scaling Register ASK Mode  
Matched Filter Control Register  
A_SRC  
Sampe Rate Converter NCO Tune  
Externel Data Slicer Configuration  
A_EXTSLC  
A_SIGDET0  
Signal Detector Threshold Level Register - Run  
Mode  
A_SIGDET1  
Signal Detector Threshold Level Register -  
Wakeup  
040H  
224  
Data Sheet  
167  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Overview  
Table 1  
Register Overview (cont’d)  
Register Short Name  
A_SIGDETLO  
A_SIGDETSEL  
A_SIGDETCFG  
A_NDTHRES  
Register Long Name  
Offset Address Page Number  
Signal Detector Threshold Low Level Register  
Signal Detector Range Selection Register  
Signal Detector Configuration Register  
FSK Noise Detector Threshold Register  
FSK Noise Detector Configuration Register  
041H  
042H  
043H  
044H  
045H  
046H  
225  
225  
226  
227  
227  
228  
A_NDCONFIG  
A_CDRP  
Clock and Data Recovery P Configuration  
Register  
A_CDRI  
Clock and Data Recovery Configuration Register 047H  
229  
230  
A_CDRRI  
Clock and Data Recovery RUNIN Configuration  
Register  
048H  
A_CDRTOLC  
A_CDRTOLB  
A_TVWIN  
CDR DC Chip Tolerance Register  
CDR DC Bit Tolerance Register  
Timing Violation Window Register  
Slicer Configuration Register  
049H  
04AH  
04BH  
04CH  
04DH  
04EH  
04FH  
050H  
051H  
052H  
053H  
054H  
055H  
056H  
057H  
058H  
059H  
231  
232  
232  
233  
233  
234  
235  
235  
236  
236  
237  
237  
237  
238  
238  
239  
240  
241  
241  
242  
242  
243  
243  
244  
244  
244  
245  
245  
246  
A_SLCCFG  
A_TSIMODE  
A_TSILENA  
TSI Detection Mode Register  
TSI Length Register A  
A_TSILENB  
TSI Length Register B  
A_TSIGAP  
TSI Gap Length Register  
A_TSIPTA0  
TSI Pattern Data Reference A Register 0  
TSI Pattern Data Reference A Register 1  
TSI Pattern Data Reference B Register 0  
TSI Pattern Data Reference B Register 1  
End Of Message Control Register  
EOM Data Length Limit Register  
EOM Data Length Limit Parallel Mode Register  
Channel Configuration Register  
PLL MMD Integer Value Register Channel 1  
A_TSIPTA1  
A_TSIPTB0  
A_TSIPTB1  
A_EOMC  
A_EOMDLEN  
A_EOMDLENP  
A_CHCFG  
A_PLLINTC1  
A_PLLFRAC0C1  
A_PLLFRAC1C1  
A_PLLFRAC2C1  
A_PLLINTC2  
A_PLLFRAC0C2  
A_PLLFRAC1C2  
A_PLLFRAC2C2  
A_PLLINTC3  
A_PLLFRAC0C3  
A_PLLFRAC1C3  
A_PLLFRAC2C3  
SFRPAGE  
PLL Fractional Division Ratio Register 0 Channel 1 05AH  
PLL Fractional Division Ratio Register 1 Channel 1 05BH  
PLL Fractional Division Ratio Register 2 Channel 1 05CH  
PLL MMD Integer Value Register Channel 2  
05DH  
PLL Fractional Division Ratio Register 0 Channel 2 05EH  
PLL Fractional Division Ratio Register 1 Channel 2 05FH  
PLL Fractional Division Ratio Register 2 Channel 2 060H  
PLL MMD Integer Value Register Channel 3  
061H  
PLL Fractional Division Ratio Register 0 Channel 3 062H  
PLL Fractional Division Ratio Register 1 Channel 3 063H  
PLL Fractional Division Ratio Register 2 Channel 3 064H  
Special Function Register Page Register  
080H  
Data Sheet  
168  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Overview  
Table 1  
Register Overview (cont’d)  
Register Short Name  
PPCFG0  
Register Long Name  
Offset Address Page Number  
PP0 and PP1 Configuration Register  
PP2 and PP3 Configuration Register  
PPx Port Configuration Register  
RX RUN Configuration Register 0  
RX RUN Configuration Register 1  
Clock Divider Register 0  
081H  
082H  
083H  
084H  
085H  
086H  
087H  
088H  
089H  
08AH  
08BH  
08CH  
08DH  
08EH  
08FH  
090H  
091H  
092H  
246  
247  
249  
250  
251  
252  
252  
252  
253  
254  
254  
255  
255  
256  
257  
257  
257  
258  
PPCFG1  
PPCFG2  
RXRUNCFG0  
RXRUNCFG1  
CLKOUT0  
CLKOUT1  
Clock Divider Register 1  
CLKOUT2  
Clock Divider Register 2  
RFC  
RF Control Register  
BPFCALCFG0  
BPFCALCFG1  
XTALCAL0  
XTALCAL1  
RSSIMONC  
ADCINSEL  
RSSIOFFS  
RSSISLOPE  
CDRDRTHRP  
BPF Calibration Configuration Register 0  
BPF Calibration Configuration Register 1  
XTAL Coarse Calibration Register  
XTAL Fine Calibration Register  
RSSI Monitor Configuration Register  
ADC Input Selection Register  
RSSI Offset Register  
RSSI Slope Register  
CDR Data Rate Acceptance Positive Threshold  
Register  
CDRDRTHRN  
CDR Data Rate Acceptance Negative Threshold 093H  
Register  
258  
IM0  
Interrupt Mask Register 0  
094H  
095H  
096H  
097H  
098H  
099H  
09AH  
09BH  
09CH  
09DH  
09EH  
09FH  
0A0H  
0A1H  
0A2H  
0A3H  
0A4H  
0A5H  
259  
260  
261  
261  
262  
262  
263  
263  
264  
264  
265  
265  
266  
266  
267  
267  
268  
269  
IM1  
Interrupt Mask Register 1  
SPMAP  
Self Polling Mode Active Periods Register  
Self Polling Mode Idle Periods Register  
Self Polling Mode Control Register  
SPMIP  
SPMC  
SPMRT  
Self Polling Mode Reference Timer Register  
Self Polling Mode Off Time Register 0  
Self Polling Mode Off Time Register 1  
Self Polling Mode On Time Config A Register 0  
Self Polling Mode On Time Config A Register 1  
Self Polling Mode On Time Config B Register 0  
Self Polling Mode On Time Config B Register 1  
Self Polling Mode On Time Config C Register 0  
Self Polling Mode On Time Config C Register 1  
Self Polling Mode On Time Config D Register 0  
Self Polling Mode On Time Config D Register 1  
External Processing Command Register  
Chip Mode Control Register 1  
SPMOFFT0  
SPMOFFT1  
SPMONTA0  
SPMONTA1  
SPMONTB0  
SPMONTB1  
SPMONTC0  
SPMONTC1  
SPMONTD0  
SPMONTD1  
EXTPCMD  
CMC1  
Data Sheet  
169  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Overview  
Table 1  
Register Overview (cont’d)  
Register Short Name  
Register Long Name  
Offset Address Page Number  
CMC0  
Chip Mode Control Register 0  
Wakeup Peak Detector Readout Register  
Interrupt Status Register 0  
0A6H  
0A7H  
0A8H  
0A9H  
0AAH  
270  
271  
271  
272  
274  
RSSIPWU  
IS0  
IS1  
Interrupt Status Register 1  
RFPLLACC  
RF PLL Actual Channel and Configuration  
Register  
RSSIPRX  
RSSIPPL  
PLDLEN  
ADCRESH  
ADCRESL  
VACRES  
AFCOFFSET  
AGCGAINR  
SPIAT  
RSSI Peak Detector Readout Register  
RSSI Payload Peak Detector Readout Register  
Payload Data Length Register  
ADC Result High Byte Register  
ADC Result Low Byte Register  
VCO Autocalibration Result Readout Register  
AFC Offset Read Register  
AGC Gain Readout Register  
SPI Address Tracer Register  
SPI Data Tracer Register  
SPI Checksum Register  
0ABH  
0ACH  
0ADH  
0AEH  
0AFH  
0B0H  
0B1H  
0B2H  
0B3H  
0B4H  
0B5H  
0B6H  
0B7H  
0B8H  
0B9H  
0BAH  
0BBH  
0BCH  
0BDH  
100H  
101H  
102H  
103H  
104H  
105H  
106H  
107H  
108H  
109H  
10AH  
10BH  
10CH  
10DH  
275  
275  
275  
276  
276  
277  
277  
278  
278  
279  
279  
280  
280  
280  
281  
281  
281  
282  
282  
SPIDT  
SPICHKSUM  
SN0  
Serial Number Register 0  
Serial Number Register 1  
Serial Number Register 2  
Serial Number Register 3  
RSSI Readout Register  
SN1  
SN2  
SN3  
RSSIRX  
RSSIPMF  
SPWR  
RSSI Peak Memory Filter Readout Register  
Signal Power Readout Register  
Noise Power Readout Register  
Message ID Register 0  
NPWR  
B_MID0  
B_MID1  
B_MID2  
B_MID3  
B_MID4  
B_MID5  
B_MID6  
B_MID7  
B_MID8  
B_MID9  
B_MID10  
B_MID11  
B_MID12  
B_MID13  
Message ID Register 1  
Message ID Register 2  
Message ID Register 3  
Message ID Register 4  
Message ID Register 5  
Message ID Register 6  
Message ID Register 7  
Message ID Register 8  
Message ID Register 9  
Message ID Register 10  
Message ID Register 11  
Message ID Register 12  
Message ID Register 13  
Data Sheet  
170  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Overview  
Table 1  
Register Overview (cont’d)  
Register Short Name  
B_MID14  
Register Long Name  
Offset Address Page Number  
Message ID Register 14  
Message ID Register 15  
Message ID Register 16  
Message ID Register 17  
Message ID Register 18  
Message ID Register 19  
Message ID Control Register 0  
Message ID Control Register 1  
IF1 Register  
10EH  
10FH  
110H  
111H  
112H  
113H  
114H  
115H  
116H  
117H  
118H  
119H  
11AH  
B_MID15  
B_MID16  
B_MID17  
B_MID18  
B_MID19  
B_MIDC0  
B_MIDC1  
B_IF1  
B_WUC  
Wake-Up Control Register  
Wake-Up Pattern Register 0  
Wake-Up Pattern Register 1  
Wake-Up Bit or Chip Count Register  
B_WUPAT0  
B_WUPAT1  
B_WUBCNT  
B_WURSSITH1  
B_WURSSIBL1  
RSSI Wake-Up Threshold for Channel 1 Register 11BH  
RSSI Wake-Up Blocking Level Low Channel 1  
Register  
11CH  
B_WURSSIBH1  
RSSI Wake-Up Blocking Level High Channel 1  
Register  
11DH  
B_WURSSITH2  
B_WURSSIBL2  
RSSI Wake-Up Threshold for Channel 2 Register 11EH  
RSSI Wake-Up Blocking Level Low Channel 2  
Register  
11FH  
B_WURSSIBH2  
RSSI Wake-Up Blocking Level High Channel 2  
Register  
120H  
B_WURSSITH3  
B_WURSSIBL3  
RSSI Wake-Up Threshold for Channel 3 Register 121H  
RSSI Wake-Up Blocking Level Low Channel 3  
Register  
122H  
B_WURSSIBH3  
RSSI Wake-Up Blocking Level High Channel 3  
Register  
123H  
B_SIGDETSAT  
B_WULOT  
Signal Detector Saturation Threshold Register  
Wake-Up on Level Observation Time Register  
Synchronization Search Time-Out Register  
SYNC Timeout Timer Register  
124H  
125H  
126H  
127H  
128H  
129H  
12AH  
12BH  
12CH  
12DH  
12EH  
12FH  
B_SYSRCTO  
B_TOTIM_SYNC  
B_TOTIM_TSI  
B_TOTIM_EOM  
B_AFCLIMIT  
TSI Timeout Timer Register  
EOM Timeout Timer Register  
AFC Limit Configuration Register  
AFC/AGC Freeze Delay Register  
AFC Start/Freeze Configuration Register  
AFC Integrator 1 Gain Register 0  
AFC Integrator 1 Gain Register 1  
AFC Integrator 2 Gain Register 0  
B_AFCAGCD  
B_AFCSFCFG  
B_AFCK1CFG0  
B_AFCK1CFG1  
B_AFCK2CFG0  
Data Sheet  
171  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Overview  
Table 1  
Register Overview (cont’d)  
Register Short Name  
B_AFCK2CFG1  
B_PMFUDSF  
B_AGCSFCFG  
B_AGCCFG0  
B_AGCCFG1  
B_AGCTHR  
B_DIGRXC  
Register Long Name  
Offset Address Page Number  
AFC Integrator 2 Gain Register 1  
Peak Memory Filter Up-Down Factor Register  
AGC Start/Freeze Configuration Register  
AGC Configuration Register 0  
130H  
131H  
132H  
133H  
134H  
135H  
136H  
137H  
138H  
139H  
13AH  
13BH  
13CH  
13DH  
13EH  
13FH  
AGC Configuration Register 1  
AGC Threshold Register  
Digital Receiver Configuration Register  
RSSI Peak Detector Bit Position Register  
Image Supression Fc Selection Register  
Pre Decimation Factor Register  
B_PKBITPOS  
B_ISUPFCSEL  
B_PDECF  
B_PDECSCFSK  
B_PDECSCASK  
B_MFC  
Pre Decimation Scaling Register FSK Mode  
Pre Decimation Scaling Register ASK Mode  
Matched Filter Control Register  
B_SRC  
Sampe Rate Converter NCO Tune  
Externel Data Slicer Configuration  
B_EXTSLC  
B_SIGDET0  
Signal Detector Threshold Level Register - Run  
Mode  
B_SIGDET1  
Signal Detector Threshold Level Register -  
Wakeup  
140H  
B_SIGDETLO  
B_SIGDETSEL  
B_SIGDETCFG  
B_NDTHRES  
B_NDCONFIG  
B_CDRP  
Signal Detector Threshold Low Level Register  
Signal Detector Range Selection Register  
Signal Detector Configuration Register  
FSK Noise Detector Threshold Register  
FSK Noise Detector Configuration Register  
141H  
142H  
143H  
144H  
145H  
146H  
Clock and Data Recovery P Configuration  
Register  
B_CDRI  
Clock and Data Recovery Configuration Register 147H  
B_CDRRI  
Clock and Data Recovery RUNIN Configuration  
Register  
148H  
B_CDRTOLC  
B_CDRTOLB  
B_TVWIN  
CDR DC Chip Tolerance Register  
CDR DC Bit Tolerance Register  
Timing Violation Window Register  
Slicer Configuration Register  
TSI Detection Mode Register  
TSI Length Register A  
149H  
14AH  
14BH  
14CH  
14DH  
14EH  
14FH  
150H  
151H  
152H  
B_SLCCFG  
B_TSIMODE  
B_TSILENA  
B_TSILENB  
B_TSIGAP  
B_TSIPTA0  
B_TSIPTA1  
TSI Length Register B  
TSI Gap Length Register  
TSI Pattern Data Reference A Register 0  
TSI Pattern Data Reference A Register 1  
Data Sheet  
172  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Overview  
Table 1  
Register Overview (cont’d)  
Register Short Name  
B_TSIPTB0  
B_TSIPTB1  
B_EOMC  
Register Long Name  
Offset Address Page Number  
TSI Pattern Data Reference B Register 0  
TSI Pattern Data Reference B Register 1  
End Of Message Control Register  
EOM Data Length Limit Register  
153H  
154H  
155H  
156H  
157H  
158H  
159H  
B_EOMDLEN  
B_EOMDLENP  
B_CHCFG  
EOM Data Length Limit Parallel Mode Register  
Channel Configuration Register  
B_PLLINTC1  
B_PLLFRAC0C1  
B_PLLFRAC1C1  
B_PLLFRAC2C1  
B_PLLINTC2  
B_PLLFRAC0C2  
B_PLLFRAC1C2  
B_PLLFRAC2C2  
B_PLLINTC3  
B_PLLFRAC0C3  
B_PLLFRAC1C3  
B_PLLFRAC2C3  
C_MID0  
PLL MMD Integer Value Register Channel 1  
PLL Fractional Division Ratio Register 0 Channel 1 15AH  
PLL Fractional Division Ratio Register 1 Channel 1 15BH  
PLL Fractional Division Ratio Register 2 Channel 1 15CH  
PLL MMD Integer Value Register Channel 2  
15DH  
PLL Fractional Division Ratio Register 0 Channel 2 15EH  
PLL Fractional Division Ratio Register 1 Channel 2 15FH  
PLL Fractional Division Ratio Register 2 Channel 2 160H  
PLL MMD Integer Value Register Channel 3  
161H  
PLL Fractional Division Ratio Register 0 Channel 3 162H  
PLL Fractional Division Ratio Register 1 Channel 3 163H  
PLL Fractional Division Ratio Register 2 Channel 3 164H  
Message ID Register 0  
Message ID Register 1  
Message ID Register 2  
Message ID Register 3  
Message ID Register 4  
Message ID Register 5  
Message ID Register 6  
Message ID Register 7  
Message ID Register 8  
Message ID Register 9  
Message ID Register 10  
Message ID Register 11  
Message ID Register 12  
Message ID Register 13  
Message ID Register 14  
Message ID Register 15  
Message ID Register 16  
Message ID Register 17  
Message ID Register 18  
Message ID Register 19  
200H  
201H  
202H  
203H  
204H  
205H  
206H  
207H  
208H  
209H  
20AH  
20BH  
20CH  
20DH  
20EH  
20FH  
210H  
211H  
212H  
213H  
C_MID1  
C_MID2  
C_MID3  
C_MID4  
C_MID5  
C_MID6  
C_MID7  
C_MID8  
C_MID9  
C_MID10  
C_MID11  
C_MID12  
C_MID13  
C_MID14  
C_MID15  
C_MID16  
C_MID17  
C_MID18  
C_MID19  
Data Sheet  
173  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Overview  
Table 1  
Register Overview (cont’d)  
Register Short Name  
C_MIDC0  
Register Long Name  
Offset Address Page Number  
Message ID Control Register 0  
Message ID Control Register 1  
IF1 Register  
214H  
215H  
216H  
217H  
218H  
219H  
21AH  
C_MIDC1  
C_IF1  
C_WUC  
Wake-Up Control Register  
Wake-Up Pattern Register 0  
Wake-Up Pattern Register 1  
Wake-Up Bit or Chip Count Register  
C_WUPAT0  
C_WUPAT1  
C_WUBCNT  
C_WURSSITH1  
C_WURSSIBL1  
RSSI Wake-Up Threshold for Channel 1 Register 21BH  
RSSI Wake-Up Blocking Level Low Channel 1  
Register  
21CH  
C_WURSSIBH1  
RSSI Wake-Up Blocking Level High Channel 1  
Register  
21DH  
C_WURSSITH2  
C_WURSSIBL2  
RSSI Wake-Up Threshold for Channel 2 Register 21EH  
RSSI Wake-Up Blocking Level Low Channel 2  
Register  
21FH  
C_WURSSIBH2  
RSSI Wake-Up Blocking Level High Channel 2  
Register  
220H  
C_WURSSITH3  
C_WURSSIBL3  
RSSI Wake-Up Threshold for Channel 3 Register 221H  
RSSI Wake-Up Blocking Level Low Channel 3  
Register  
222H  
C_WURSSIBH3  
RSSI Wake-Up Blocking Level High Channel 3  
Register  
223H  
C_SIGDETSAT  
C_WULOT  
Signal Detector Saturation Threshold Register  
Wake-Up on Level Observation Time Register  
Synchronization Search Time-Out Register  
SYNC Timeout Timer Register  
224H  
225H  
226H  
227H  
228H  
229H  
22AH  
22BH  
22CH  
22DH  
22EH  
22FH  
230H  
231H  
232H  
233H  
234H  
235H  
C_SYSRCTO  
C_TOTIM_SYNC  
C_TOTIM_TSI  
C_TOTIM_EOM  
C_AFCLIMIT  
TSI Timeout Timer Register  
EOM Timeout Timer Register  
AFC Limit Configuration Register  
AFC/AGC Freeze Delay Register  
AFC Start/Freeze Configuration Register  
AFC Integrator 1 Gain Register 0  
AFC Integrator 1 Gain Register 1  
AFC Integrator 2 Gain Register 0  
AFC Integrator 2 Gain Register 1  
Peak Memory Filter Up-Down Factor Register  
AGC Start/Freeze Configuration Register  
AGC Configuration Register 0  
C_AFCAGCD  
C_AFCSFCFG  
C_AFCK1CFG0  
C_AFCK1CFG1  
C_AFCK2CFG0  
C_AFCK2CFG1  
C_PMFUDSF  
C_AGCSFCFG  
C_AGCCFG0  
C_AGCCFG1  
C_AGCTHR  
AGC Configuration Register 1  
AGC Threshold Register  
Data Sheet  
174  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Overview  
Table 1  
Register Overview (cont’d)  
Register Short Name  
C_DIGRXC  
Register Long Name  
Offset Address Page Number  
Digital Receiver Configuration Register  
RSSI Peak Detector Bit Position Register  
Image Supression Fc Selection Register  
Pre Decimation Factor Register  
236H  
237H  
238H  
239H  
23AH  
23BH  
23CH  
23DH  
23EH  
23FH  
C_PKBITPOS  
C_ISUPFCSEL  
C_PDECF  
C_PDECSCFSK  
C_PDECSCASK  
C_MFC  
Pre Decimation Scaling Register FSK Mode  
Pre Decimation Scaling Register ASK Mode  
Matched Filter Control Register  
C_SRC  
Sampe Rate Converter NCO Tune  
Externel Data Slicer Configuration  
C_EXTSLC  
C_SIGDET0  
Signal Detector Threshold Level Register - Run  
Mode  
C_SIGDET1  
Signal Detector Threshold Level Register -  
Wakeup  
240H  
C_SIGDETLO  
C_SIGDETSEL  
C_SIGDETCFG  
C_NDTHRES  
C_NDCONFIG  
C_CDRP  
Signal Detector Threshold Low Level Register  
Signal Detector Range Selection Register  
Signal Detector Configuration Register  
FSK Noise Detector Threshold Register  
FSK Noise Detector Configuration Register  
241H  
242H  
243H  
244H  
245H  
246H  
Clock and Data Recovery P Configuration  
Register  
C_CDRI  
Clock and Data Recovery Configuration Register 247H  
C_CDRRI  
Clock and Data Recovery RUNIN Configuration  
Register  
248H  
C_CDRTOLC  
C_CDRTOLB  
C_TVWIN  
CDR DC Chip Tolerance Register  
CDR DC Bit Tolerance Register  
Timing Violation Window Register  
Slicer Configuration Register  
249H  
24AH  
24BH  
24CH  
24DH  
24EH  
24FH  
250H  
251H  
252H  
253H  
254H  
255H  
256H  
257H  
258H  
C_SLCCFG  
C_TSIMODE  
C_TSILENA  
C_TSILENB  
C_TSIGAP  
TSI Detection Mode Register  
TSI Length Register A  
TSI Length Register B  
TSI Gap Length Register  
C_TSIPTA0  
C_TSIPTA1  
C_TSIPTB0  
C_TSIPTB1  
C_EOMC  
TSI Pattern Data Reference A Register 0  
TSI Pattern Data Reference A Register 1  
TSI Pattern Data Reference B Register 0  
TSI Pattern Data Reference B Register 1  
End Of Message Control Register  
EOM Data Length Limit Register  
EOM Data Length Limit Parallel Mode Register  
Channel Configuration Register  
C_EOMDLEN  
C_EOMDLENP  
C_CHCFG  
Data Sheet  
175  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Overview  
Table 1  
Register Overview (cont’d)  
Register Short Name  
C_PLLINTC1  
C_PLLFRAC0C1  
C_PLLFRAC1C1  
C_PLLFRAC2C1  
C_PLLINTC2  
C_PLLFRAC0C2  
C_PLLFRAC1C2  
C_PLLFRAC2C2  
C_PLLINTC3  
C_PLLFRAC0C3  
C_PLLFRAC1C3  
C_PLLFRAC2C3  
D_MID0  
Register Long Name  
Offset Address Page Number  
PLL MMD Integer Value Register Channel 1  
259H  
PLL Fractional Division Ratio Register 0 Channel 1 25AH  
PLL Fractional Division Ratio Register 1 Channel 1 25BH  
PLL Fractional Division Ratio Register 2 Channel 1 25CH  
PLL MMD Integer Value Register Channel 2  
25DH  
PLL Fractional Division Ratio Register 0 Channel 2 25EH  
PLL Fractional Division Ratio Register 1 Channel 2 25FH  
PLL Fractional Division Ratio Register 2 Channel 2 260H  
PLL MMD Integer Value Register Channel 3  
261H  
PLL Fractional Division Ratio Register 0 Channel 3 262H  
PLL Fractional Division Ratio Register 1 Channel 3 263H  
PLL Fractional Division Ratio Register 2 Channel 3 264H  
Message ID Register 0  
Message ID Register 1  
Message ID Register 2  
Message ID Register 3  
Message ID Register 4  
Message ID Register 5  
Message ID Register 6  
Message ID Register 7  
Message ID Register 8  
Message ID Register 9  
Message ID Register 10  
Message ID Register 11  
Message ID Register 12  
Message ID Register 13  
Message ID Register 14  
Message ID Register 15  
Message ID Register 16  
Message ID Register 17  
Message ID Register 18  
Message ID Register 19  
Message ID Control Register 0  
Message ID Control Register 1  
IF1 Register  
300H  
301H  
302H  
303H  
304H  
305H  
306H  
307H  
308H  
309H  
30AH  
30BH  
30CH  
30DH  
30EH  
30FH  
310H  
311H  
312H  
313H  
314H  
315H  
316H  
317H  
318H  
319H  
D_MID1  
D_MID2  
D_MID3  
D_MID4  
D_MID5  
D_MID6  
D_MID7  
D_MID8  
D_MID9  
D_MID10  
D_MID11  
D_MID12  
D_MID13  
D_MID14  
D_MID15  
D_MID16  
D_MID17  
D_MID18  
D_MID19  
D_MIDC0  
D_MIDC1  
D_IF1  
D_WUC  
Wake-Up Control Register  
Wake-Up Pattern Register 0  
Wake-Up Pattern Register 1  
D_WUPAT0  
D_WUPAT1  
Data Sheet  
176  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Overview  
Table 1  
Register Overview (cont’d)  
Register Short Name  
D_WUBCNT  
Register Long Name  
Offset Address Page Number  
Wake-Up Bit or Chip Count Register  
31AH  
D_WURSSITH1  
D_WURSSIBL1  
RSSI Wake-Up Threshold for Channel 1 Register 31BH  
RSSI Wake-Up Blocking Level Low Channel 1  
Register  
31CH  
D_WURSSIBH1  
RSSI Wake-Up Blocking Level High Channel 1  
Register  
31DH  
D_WURSSITH2  
D_WURSSIBL2  
RSSI Wake-Up Threshold for Channel 2 Register 31EH  
RSSI Wake-Up Blocking Level Low Channel 2  
Register  
31FH  
D_WURSSIBH2  
RSSI Wake-Up Blocking Level High Channel 2  
Register  
320H  
D_WURSSITH3  
D_WURSSIBL3  
RSSI Wake-Up Threshold for Channel 3 Register 321H  
RSSI Wake-Up Blocking Level Low Channel 3  
Register  
322H  
D_WURSSIBH3  
RSSI Wake-Up Blocking Level High Channel 3  
Register  
323H  
D_SIGDETSAT  
D_WULOT  
Signal Detector Saturation Threshold Register  
Wake-Up on Level Observation Time Register  
Synchronization Search Time-Out Register  
SYNC Timeout Timer Register  
324H  
325H  
326H  
327H  
328H  
329H  
32AH  
32BH  
32CH  
32DH  
32EH  
32FH  
330H  
331H  
332H  
333H  
334H  
335H  
336H  
337H  
338H  
339H  
33AH  
33BH  
D_SYSRCTO  
D_TOTIM_SYNC  
D_TOTIM_TSI  
D_TOTIM_EOM  
D_AFCLIMIT  
D_AFCAGCD  
D_AFCSFCFG  
D_AFCK1CFG0  
D_AFCK1CFG1  
D_AFCK2CFG0  
D_AFCK2CFG1  
D_PMFUDSF  
D_AGCSFCFG  
D_AGCCFG0  
D_AGCCFG1  
D_AGCTHR  
TSI Timeout Timer Register  
EOM Timeout Timer Register  
AFC Limit Configuration Register  
AFC/AGC Freeze Delay Register  
AFC Start/Freeze Configuration Register  
AFC Integrator 1 Gain Register 0  
AFC Integrator 1 Gain Register 1  
AFC Integrator 2 Gain Register 0  
AFC Integrator 2 Gain Register 1  
Peak Memory Filter Up-Down Factor Register  
AGC Start/Freeze Configuration Register  
AGC Configuration Register 0  
AGC Configuration Register 1  
AGC Threshold Register  
D_DIGRXC  
Digital Receiver Configuration Register  
RSSI Peak Detector Bit Position Register  
Image Supression Fc Selection Register  
Pre Decimation Factor Register  
D_PKBITPOS  
D_ISUPFCSEL  
D_PDECF  
D_PDECSCFSK  
D_PDECSCASK  
Pre Decimation Scaling Register FSK Mode  
Pre Decimation Scaling Register ASK Mode  
Data Sheet  
177  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Overview  
Table 1  
Register Overview (cont’d)  
Register Short Name  
D_MFC  
Register Long Name  
Offset Address Page Number  
Matched Filter Control Register  
Sampe Rate Converter NCO Tune  
Externel Data Slicer Configuration  
33CH  
33DH  
33EH  
33FH  
D_SRC  
D_EXTSLC  
D_SIGDET0  
Signal Detector Threshold Level Register - Run  
Mode  
D_SIGDET1  
Signal Detector Threshold Level Register -  
Wakeup  
340H  
D_SIGDETLO  
D_SIGDETSEL  
D_SIGDETCFG  
D_NDTHRES  
D_NDCONFIG  
D_CDRP  
Signal Detector Threshold Low Level Register  
Signal Detector Range Selection Register  
Signal Detector Configuration Register  
FSK Noise Detector Threshold Register  
FSK Noise Detector Configuration Register  
341H  
342H  
343H  
344H  
345H  
346H  
Clock and Data Recovery P Configuration  
Register  
D_CDRI  
Clock and Data Recovery Configuration Register 347H  
D_CDRRI  
Clock and Data Recovery RUNIN Configuration  
Register  
348H  
D_CDRTOLC  
D_CDRTOLB  
D_TVWIN  
CDR DC Chip Tolerance Register  
CDR DC Bit Tolerance Register  
Timing Violation Window Register  
Slicer Configuration Register  
349H  
34AH  
34BH  
34CH  
34DH  
34EH  
34FH  
350H  
351H  
352H  
353H  
354H  
355H  
356H  
357H  
358H  
359H  
D_SLCCFG  
D_TSIMODE  
D_TSILENA  
D_TSILENB  
D_TSIGAP  
TSI Detection Mode Register  
TSI Length Register A  
TSI Length Register B  
TSI Gap Length Register  
D_TSIPTA0  
TSI Pattern Data Reference A Register 0  
TSI Pattern Data Reference A Register 1  
TSI Pattern Data Reference B Register 0  
TSI Pattern Data Reference B Register 1  
End Of Message Control Register  
EOM Data Length Limit Register  
EOM Data Length Limit Parallel Mode Register  
Channel Configuration Register  
PLL MMD Integer Value Register Channel 1  
D_TSIPTA1  
D_TSIPTB0  
D_TSIPTB1  
D_EOMC  
D_EOMDLEN  
D_EOMDLENP  
D_CHCFG  
D_PLLINTC1  
D_PLLFRAC0C1  
D_PLLFRAC1C1  
D_PLLFRAC2C1  
D_PLLINTC2  
D_PLLFRAC0C2  
PLL Fractional Division Ratio Register 0 Channel 1 35AH  
PLL Fractional Division Ratio Register 1 Channel 1 35BH  
PLL Fractional Division Ratio Register 2 Channel 1 35CH  
PLL MMD Integer Value Register Channel 2  
35DH  
PLL Fractional Division Ratio Register 0 Channel 2 35EH  
Data Sheet  
178  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Overview  
Table 1  
Register Overview (cont’d)  
Register Short Name  
D_PLLFRAC1C2  
D_PLLFRAC2C2  
D_PLLINTC3  
Register Long Name  
Offset Address Page Number  
PLL Fractional Division Ratio Register 1 Channel 2 35FH  
PLL Fractional Division Ratio Register 2 Channel 2 360H  
PLL MMD Integer Value Register Channel 3  
361H  
D_PLLFRAC0C3  
D_PLLFRAC1C3  
D_PLLFRAC2C3  
PLL Fractional Division Ratio Register 0 Channel 3 362H  
PLL Fractional Division Ratio Register 1 Channel 3 363H  
PLL Fractional Division Ratio Register 2 Channel 3 364H  
Table 2  
Register Overview and Reset Value  
Register Short Name  
Register Long Name  
Offset Address Reset Value  
Appendix - Registers Chapter, Register Description  
A_MID0  
Message ID Register 0  
Message ID Register 1  
Message ID Register 2  
Message ID Register 3  
Message ID Register 4  
Message ID Register 5  
Message ID Register 6  
Message ID Register 7  
Message ID Register 8  
Message ID Register 9  
Message ID Register 10  
Message ID Register 11  
Message ID Register 12  
Message ID Register 13  
Message ID Register 14  
Message ID Register 15  
Message ID Register 16  
Message ID Register 17  
Message ID Register 18  
Message ID Register 19  
Message ID Control Register 0  
Message ID Control Register 1  
IF1 Register  
000H  
001H  
002H  
003H  
004H  
005H  
006H  
007H  
008H  
009H  
00AH  
00BH  
00CH  
00DH  
00EH  
00FH  
010H  
011H  
012H  
013H  
014H  
015H  
016H  
017H  
018H  
019H  
01AH  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
20H  
04H  
00H  
00H  
00H  
00H  
A_MID1  
A_MID2  
A_MID3  
A_MID4  
A_MID5  
A_MID6  
A_MID7  
A_MID8  
A_MID9  
A_MID10  
A_MID11  
A_MID12  
A_MID13  
A_MID14  
A_MID15  
A_MID16  
A_MID17  
A_MID18  
A_MID19  
A_MIDC0  
A_MIDC1  
A_IF1  
A_WUC  
Wake-Up Control Register  
Wake-Up Pattern Register 0  
Wake-Up Pattern Register 1  
Wake-Up Bit or Chip Count Register  
A_WUPAT0  
A_WUPAT1  
A_WUBCNT  
A_WURSSITH1  
RSSI Wake-Up Threshold for Channel 1 Register 01BH  
Data Sheet  
179  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Overview  
Table 2  
Register Overview and Reset Value (cont’d)  
Register Short Name  
A_WURSSIBL1  
Register Long Name  
Offset Address Reset Value  
RSSI Wake-Up Blocking Level Low Channel 1  
Register  
01CH  
FFH  
A_WURSSIBH1  
RSSI Wake-Up Blocking Level High Channel 1  
Register  
01DH  
00H  
A_WURSSITH2  
A_WURSSIBL2  
RSSI Wake-Up Threshold for Channel 2 Register 01EH  
00H  
FFH  
RSSI Wake-Up Blocking Level Low Channel 2  
Register  
01FH  
A_WURSSIBH2  
RSSI Wake-Up Blocking Level High Channel 2  
Register  
020H  
00H  
A_WURSSITH3  
A_WURSSIBL3  
RSSI Wake-Up Threshold for Channel 3 Register 021H  
00H  
FFH  
RSSI Wake-Up Blocking Level Low Channel 3  
Register  
022H  
A_WURSSIBH3  
RSSI Wake-Up Blocking Level High Channel 3  
Register  
023H  
00H  
A_SIGDETSAT  
A_WULOT  
Signal Detector Saturation Threshold Register  
Wake-up on Level Observation Time Register  
Synchronization Search Time-Out Register  
SYNC Timeout Timer Register  
024H  
025H  
026H  
027H  
028H  
029H  
02AH  
02BH  
02CH  
02DH  
02EH  
02FH  
030H  
031H  
032H  
033H  
034H  
035H  
036H  
037H  
038H  
039H  
03AH  
03BH  
03CH  
03DH  
10H  
00H  
87H  
FFH  
00H  
00H  
02H  
00H  
00H  
00H  
00H  
00H  
00H  
42H  
00H  
2BH  
03H  
08H  
40H  
00H  
07H  
00H  
00H  
20H  
07H  
00H  
A_SYSRCTO  
A_TOTIM_SYNC  
A_TOTIM_TSI  
A_TOTIM_EOM  
A_AFCLIMIT  
A_AFCAGCD  
A_AFCSFCFG  
A_AFCK1CFG0  
A_AFCK1CFG1  
A_AFCK2CFG0  
A_AFCK2CFG1  
A_PMFUDSF  
A_AGCSFCFG  
A_AGCCFG0  
A_AGCCFG1  
A_AGCTHR  
TSI Timeout Timer Register  
EOM Timeout Timer Register  
AFC Limit Configuration Register  
AFC/AGC Freeze Delay Register  
AFC Start/Freeze Configuration Register  
AFC Integrator 1 Gain Register 0  
AFC Integrator 1 Gain Register 1  
AFC Integrator 2 Gain Register 0  
AFC Integrator 2 Gain Register 1  
Peak Memory Filter Up-Down Factor Register  
AGC Start/Freeze Configuration Register  
AGC Configuration Register 0  
AGC Configuration Register 1  
AGC Threshold Register  
A_DIGRXC  
Digital Receiver Configuration Register  
RSSI Peak Detector Bit Position Register  
Image Supression Fc Selection Register  
Pre Decimation Factor Register  
A_PKBITPOS  
A_ISUPFCSEL  
A_PDECF  
A_PDECSCFSK  
A_PDECSCASK  
A_MFC  
Pre Decimation Scaling Register FSK Mode  
Pre Decimation Scaling Register ASK Mode  
Matched Filter Control Register  
A_SRC  
Sampe Rate Converter NCO Tune  
Data Sheet  
180  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Overview  
Table 2  
Register Overview and Reset Value (cont’d)  
Register Short Name  
A_EXTSLC  
Register Long Name  
Offset Address Reset Value  
Externel Data Slicer Configuration  
03EH  
03FH  
02H  
00H  
A_SIGDET0  
Signal Detector Threshold Level Register - Run  
Mode  
A_SIGDET1  
Signal Detector Threshold Level Register -  
Wakeup  
040H  
00H  
A_SIGDETLO  
A_SIGDETSEL  
A_SIGDETCFG  
A_NDTHRES  
A_NDCONFIG  
A_CDRP  
Signal Detector Threshold Low Level Register  
Signal Detector Range Selection Register  
Signal Detector Configuration Register  
FSK Noise Detector Threshold Register  
FSK Noise Detector Configuration Register  
041H  
042H  
043H  
044H  
045H  
046H  
00H  
7FH  
00H  
00H  
07H  
E6H  
Clock and Data Recovery P Configuration  
Register  
A_CDRI  
Clock and Data Recovery Configuration Register 047H  
65H  
01H  
A_CDRRI  
Clock and Data Recovery RUNIN Configuration  
Register  
048H  
A_CDRTOLC  
A_CDRTOLB  
A_TVWIN  
CDR DC Chip Tolerance Register  
CDR DC Bit Tolerance Register  
Timing Violation Window Register  
Slicer Configuration Register  
049H  
04AH  
04BH  
04CH  
04DH  
04EH  
04FH  
050H  
051H  
052H  
053H  
054H  
055H  
056H  
057H  
058H  
059H  
0CH  
1EH  
28H  
90H  
80H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
05H  
00H  
00H  
04H  
93H  
F3H  
07H  
09H  
13H  
F3H  
07H  
09H  
A_SLCCFG  
A_TSIMODE  
A_TSILENA  
TSI Detection Mode Register  
TSI Length Register A  
A_TSILENB  
TSI Length Register B  
A_TSIGAP  
TSI Gap Length Register  
A_TSIPTA0  
TSI Pattern Data Reference A Register 0  
TSI Pattern Data Reference A Register 1  
TSI Pattern Data Reference B Register 0  
TSI Pattern Data Reference B Register 1  
End Of Message Control Register  
EOM Data Length Limit Register  
EOM Data Length Limit Parallel Mode Register  
Channel Configuration Register  
PLL MMD Integer Value Register Channel 1  
A_TSIPTA1  
A_TSIPTB0  
A_TSIPTB1  
A_EOMC  
A_EOMDLEN  
A_EOMDLENP  
A_CHCFG  
A_PLLINTC1  
A_PLLFRAC0C1  
A_PLLFRAC1C1  
A_PLLFRAC2C1  
A_PLLINTC2  
A_PLLFRAC0C2  
A_PLLFRAC1C2  
A_PLLFRAC2C2  
PLL Fractional Division Ratio Register 0 Channel 1 05AH  
PLL Fractional Division Ratio Register 1 Channel 1 05BH  
PLL Fractional Division Ratio Register 2 Channel 1 05CH  
PLL MMD Integer Value Register Channel 2  
05DH  
PLL Fractional Division Ratio Register 0 Channel 2 05EH  
PLL Fractional Division Ratio Register 1 Channel 2 05FH  
PLL Fractional Division Ratio Register 2 Channel 2 060H  
Data Sheet  
181  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Overview  
Table 2  
Register Overview and Reset Value (cont’d)  
Register Short Name  
A_PLLINTC3  
A_PLLFRAC0C3  
A_PLLFRAC1C3  
A_PLLFRAC2C3  
SFRPAGE  
Register Long Name  
Offset Address Reset Value  
PLL MMD Integer Value Register Channel 3  
061H  
13H  
F3H  
07H  
09H  
00H  
50H  
12H  
00H  
FFH  
FFH  
0BH  
00H  
00H  
07H  
07H  
04H  
10H  
00H  
01H  
00H  
80H  
80H  
1EH  
PLL Fractional Division Ratio Register 0 Channel 3 062H  
PLL Fractional Division Ratio Register 1 Channel 3 063H  
PLL Fractional Division Ratio Register 2 Channel 3 064H  
Special Function Register Page Register  
PP0 and PP1 Configuration Register  
PP2 and PP3 Configuration Register  
PPx Port Configuration Register  
RX RUN Configuration Register 0  
RX RUN Configuration Register 1  
Clock Divider Register 0  
080H  
081H  
082H  
083H  
084H  
085H  
086H  
087H  
088H  
089H  
08AH  
08BH  
08CH  
08DH  
08EH  
08FH  
090H  
091H  
092H  
PPCFG0  
PPCFG1  
PPCFG2  
RXRUNCFG0  
RXRUNCFG1  
CLKOUT0  
CLKOUT1  
Clock Divider Register 1  
CLKOUT2  
Clock Divider Register 2  
RFC  
RF Control Register  
BPFCALCFG0  
BPFCALCFG1  
XTALCAL0  
XTALCAL1  
RSSIMONC  
ADCINSEL  
BPF Calibration Configuration Register 0  
BPF Calibration Configuration Register 1  
XTAL Coarse Calibration Register  
XTAL Fine Calibration Register  
RSSI Monitor Configuration Register  
ADC Input Selection Register  
RSSI Offset Register  
RSSIOFFS  
RSSISLOPE  
CDRDRTHRP  
RSSI Slope Register  
CDR Data Rate Acceptance Positive Threshold  
Register  
CDRDRTHRN  
CDR Data Rate Acceptance Negative Threshold 093H  
Register  
23H  
IM0  
Interrupt Mask Register 0  
094H  
095H  
096H  
097H  
098H  
099H  
09AH  
09BH  
09CH  
09DH  
09EH  
09FH  
0A0H  
00H  
00H  
01H  
01H  
00H  
01H  
01H  
00H  
01H  
00H  
01H  
00H  
01H  
IM1  
Interrupt Mask Register 1  
SPMAP  
Self Polling Mode Active Periods Register  
Self Polling Mode Idle Periods Register  
Self Polling Mode Control Register  
SPMIP  
SPMC  
SPMRT  
Self Polling Mode Reference Timer Register  
Self Polling Mode Off Time Register 0  
Self Polling Mode Off Time Register 1  
Self Polling Mode On Time Config A Register 0  
Self Polling Mode On Time Config A Register 1  
Self Polling Mode On Time Config B Register 0  
Self Polling Mode On Time Config B Register 1  
Self Polling Mode On Time Config C Register 0  
SPMOFFT0  
SPMOFFT1  
SPMONTA0  
SPMONTA1  
SPMONTB0  
SPMONTB1  
SPMONTC0  
Data Sheet  
182  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Overview  
Table 2  
Register Overview and Reset Value (cont’d)  
Register Short Name  
SPMONTC1  
SPMONTD0  
SPMONTD1  
EXTPCMD  
CMC1  
Register Long Name  
Offset Address Reset Value  
Self Polling Mode On Time Config C Register 1  
Self Polling Mode On Time Config D Register 0  
Self Polling Mode On Time Config D Register 1  
External Processing Command Register  
Chip Mode Control Register 1  
0A1H  
0A2H  
0A3H  
0A4H  
0A5H  
0A6H  
0A7H  
0A8H  
0A9H  
0AAH  
00H  
01H  
00H  
00H  
04H  
10H  
00H  
FFH  
FFH  
00H  
CMC0  
Chip Mode Control Register 0  
RSSIPWU  
IS0  
Wakeup Peak Detector Readout Register  
Interrupt Status Register 0  
IS1  
Interrupt Status Register 1  
RFPLLACC  
RF PLL Actual Channel and Configuration  
Register  
RSSIPRX  
RSSIPPL  
PLDLEN  
ADCRESH  
ADCRESL  
VACRES  
AFCOFFSET  
AGCGAINR  
SPIAT  
RSSI Peak Detector Readout Register  
RSSI Payload Peak Detector Readout Register  
Payload Data Length Register  
ADC Result High Byte Register  
ADC Result Low Byte Register  
VCO Autocalibration Result Readout Register  
AFC Offset Read Register  
AGC Gain Readout Register  
SPI Address Tracer Register  
SPI Data Tracer Register  
0ABH  
0ACH  
0ADH  
0AEH  
0AFH  
0B0H  
0B1H  
0B2H  
0B3H  
0B4H  
0B5H  
0B6H  
0B7H  
0B8H  
0B9H  
0BAH  
0BBH  
0BCH  
0BDH  
100H  
101H  
102H  
103H  
104H  
105H  
106H  
107H  
108H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
SPIDT  
SPICHKSUM  
SN0  
SPI Checksum Register  
Serial Number Register 0  
SN1  
Serial Number Register 1  
SN2  
Serial Number Register 2  
SN3  
Serial Number Register 3  
RSSIRX  
RSSIPMF  
SPWR  
RSSI Readout Register  
RSSI Peak Memory Filter Readout Register  
Signal Power Readout Register  
Noise Power Readout Register  
Message ID Register 0  
NPWR  
B_MID0  
B_MID1  
B_MID2  
B_MID3  
B_MID4  
B_MID5  
B_MID6  
B_MID7  
B_MID8  
Message ID Register 1  
Message ID Register 2  
Message ID Register 3  
Message ID Register 4  
Message ID Register 5  
Message ID Register 6  
Message ID Register 7  
Message ID Register 8  
Data Sheet  
183  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Overview  
Table 2  
Register Overview and Reset Value (cont’d)  
Register Short Name  
B_MID9  
Register Long Name  
Offset Address Reset Value  
Message ID Register 9  
109H  
10AH  
10BH  
10CH  
10DH  
10EH  
10FH  
110H  
111H  
112H  
113H  
114H  
115H  
116H  
117H  
118H  
119H  
11AH  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
20H  
04H  
00H  
00H  
00H  
00H  
FFH  
B_MID10  
Message ID Register 10  
Message ID Register 11  
Message ID Register 12  
Message ID Register 13  
Message ID Register 14  
Message ID Register 15  
Message ID Register 16  
Message ID Register 17  
Message ID Register 18  
Message ID Register 19  
Message ID Control Register 0  
Message ID Control Register 1  
IF1 Register  
B_MID11  
B_MID12  
B_MID13  
B_MID14  
B_MID15  
B_MID16  
B_MID17  
B_MID18  
B_MID19  
B_MIDC0  
B_MIDC1  
B_IF1  
B_WUC  
Wake-Up Control Register  
Wake-Up Pattern Register 0  
Wake-Up Pattern Register 1  
Wake-Up Bit or Chip Count Register  
B_WUPAT0  
B_WUPAT1  
B_WUBCNT  
B_WURSSITH1  
B_WURSSIBL1  
RSSI Wake-Up Threshold for Channel 1 Register 11BH  
RSSI Wake-Up Blocking Level Low Channel 1  
Register  
11CH  
B_WURSSIBH1  
RSSI Wake-Up Blocking Level High Channel 1  
Register  
11DH  
00H  
B_WURSSITH2  
B_WURSSIBL2  
RSSI Wake-Up Threshold for Channel 2 Register 11EH  
00H  
FFH  
RSSI Wake-Up Blocking Level Low Channel 2  
Register  
11FH  
B_WURSSIBH2  
RSSI Wake-Up Blocking Level High Channel 2  
Register  
120H  
00H  
B_WURSSITH3  
B_WURSSIBL3  
RSSI Wake-Up Threshold for Channel 3 Register 121H  
00H  
FFH  
RSSI Wake-Up Blocking Level Low Channel 3  
Register  
122H  
B_WURSSIBH3  
RSSI Wake-Up Blocking Level High Channel 3  
Register  
123H  
00H  
B_SIGDETSAT  
B_WULOT  
Signal Detector Saturation Threshold Register  
Wake-Up on Level Observation Time Register  
Synchronization Search Time-Out Register  
SYNC Timeout Timer Register  
124H  
125H  
126H  
127H  
128H  
129H  
12AH  
10H  
00H  
87H  
FFH  
00H  
00H  
02H  
B_SYSRCTO  
B_TOTIM_SYNC  
B_TOTIM_TSI  
B_TOTIM_EOM  
B_AFCLIMIT  
TSI Timeout Timer Register  
EOM Timeout Timer Register  
AFC Limit Configuration Register  
Data Sheet  
184  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Overview  
Table 2  
Register Overview and Reset Value (cont’d)  
Register Short Name  
B_AFCAGCD  
B_AFCSFCFG  
B_AFCK1CFG0  
B_AFCK1CFG1  
B_AFCK2CFG0  
B_AFCK2CFG1  
B_PMFUDSF  
B_AGCSFCFG  
B_AGCCFG0  
B_AGCCFG1  
B_AGCTHR  
Register Long Name  
Offset Address Reset Value  
AFC/AGC Freeze Delay Register  
AFC Start/Freeze Configuration Register  
AFC Integrator 1 Gain Register 0  
AFC Integrator 1 Gain Register 1  
AFC Integrator 2 Gain Register 0  
AFC Integrator 2 Gain Register 1  
Peak Memory Filter Up-Down Factor Register  
AGC Start/Freeze Configuration Register  
AGC Configuration Register 0  
12BH  
12CH  
12DH  
12EH  
12FH  
130H  
131H  
132H  
133H  
134H  
135H  
136H  
137H  
138H  
139H  
13AH  
13BH  
13CH  
13DH  
13EH  
13FH  
00H  
00H  
00H  
00H  
00H  
00H  
42H  
00H  
2BH  
03H  
08H  
40H  
00H  
07H  
00H  
00H  
20H  
07H  
00H  
02H  
00H  
AGC Configuration Register 1  
AGC Threshold Register  
B_DIGRXC  
Digital Receiver Configuration Register  
RSSI Peak Detector Bit Position Register  
Image Supression Fc Selection Register  
Pre Decimation Factor Register  
B_PKBITPOS  
B_ISUPFCSEL  
B_PDECF  
B_PDECSCFSK  
B_PDECSCASK  
B_MFC  
Pre Decimation Scaling Register FSK Mode  
Pre Decimation Scaling Register ASK Mode  
Matched Filter Control Register  
B_SRC  
Sampe Rate Converter NCO Tune  
Externel Data Slicer Configuration  
B_EXTSLC  
B_SIGDET0  
Signal Detector Threshold Level Register - Run  
Mode  
B_SIGDET1  
Signal Detector Threshold Level Register -  
Wakeup  
140H  
00H  
B_SIGDETLO  
B_SIGDETSEL  
B_SIGDETCFG  
B_NDTHRES  
B_NDCONFIG  
B_CDRP  
Signal Detector Threshold Low Level Register  
Signal Detector Range Selection Register  
Signal Detector Configuration Register  
FSK Noise Detector Threshold Register  
FSK Noise Detector Configuration Register  
141H  
142H  
143H  
144H  
145H  
146H  
00H  
7FH  
00H  
00H  
07H  
E6H  
Clock and Data Recovery P Configuration  
Register  
B_CDRI  
Clock and Data Recovery Configuration Register 147H  
65H  
01H  
B_CDRRI  
Clock and Data Recovery RUNIN Configuration  
Register  
148H  
B_CDRTOLC  
B_CDRTOLB  
B_TVWIN  
CDR DC Chip Tolerance Register  
CDR DC Bit Tolerance Register  
Timing Violation Window Register  
Slicer Configuration Register  
TSI Detection Mode Register  
149H  
14AH  
14BH  
14CH  
14DH  
0CH  
1EH  
28H  
90H  
80H  
B_SLCCFG  
B_TSIMODE  
Data Sheet  
185  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Overview  
Table 2  
Register Overview and Reset Value (cont’d)  
Register Short Name  
B_TSILENA  
B_TSILENB  
B_TSIGAP  
Register Long Name  
Offset Address Reset Value  
TSI Length Register A  
14EH  
14FH  
150H  
151H  
152H  
153H  
154H  
155H  
156H  
157H  
158H  
159H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
05H  
00H  
00H  
04H  
93H  
F3H  
07H  
09H  
13H  
F3H  
07H  
09H  
13H  
F3H  
07H  
09H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
TSI Length Register B  
TSI Gap Length Register  
B_TSIPTA0  
B_TSIPTA1  
B_TSIPTB0  
B_TSIPTB1  
B_EOMC  
TSI Pattern Data Reference A Register 0  
TSI Pattern Data Reference A Register 1  
TSI Pattern Data Reference B Register 0  
TSI Pattern Data Reference B Register 1  
End Of Message Control Register  
EOM Data Length Limit Register  
EOM Data Length Limit Parallel Mode Register  
Channel Configuration Register  
PLL MMD Integer Value Register Channel 1  
B_EOMDLEN  
B_EOMDLENP  
B_CHCFG  
B_PLLINTC1  
B_PLLFRAC0C1  
B_PLLFRAC1C1  
B_PLLFRAC2C1  
B_PLLINTC2  
B_PLLFRAC0C2  
B_PLLFRAC1C2  
B_PLLFRAC2C2  
B_PLLINTC3  
B_PLLFRAC0C3  
B_PLLFRAC1C3  
B_PLLFRAC2C3  
C_MID0  
PLL Fractional Division Ratio Register 0 Channel 1 15AH  
PLL Fractional Division Ratio Register 1 Channel 1 15BH  
PLL Fractional Division Ratio Register 2 Channel 1 15CH  
PLL MMD Integer Value Register Channel 2  
15DH  
PLL Fractional Division Ratio Register 0 Channel 2 15EH  
PLL Fractional Division Ratio Register 1 Channel 2 15FH  
PLL Fractional Division Ratio Register 2 Channel 2 160H  
PLL MMD Integer Value Register Channel 3  
161H  
PLL Fractional Division Ratio Register 0 Channel 3 162H  
PLL Fractional Division Ratio Register 1 Channel 3 163H  
PLL Fractional Division Ratio Register 2 Channel 3 164H  
Message ID Register 0  
Message ID Register 1  
Message ID Register 2  
Message ID Register 3  
Message ID Register 4  
Message ID Register 5  
Message ID Register 6  
Message ID Register 7  
Message ID Register 8  
Message ID Register 9  
Message ID Register 10  
Message ID Register 11  
Message ID Register 12  
Message ID Register 13  
Message ID Register 14  
200H  
201H  
202H  
203H  
204H  
205H  
206H  
207H  
208H  
209H  
20AH  
20BH  
20CH  
20DH  
20EH  
C_MID1  
C_MID2  
C_MID3  
C_MID4  
C_MID5  
C_MID6  
C_MID7  
C_MID8  
C_MID9  
C_MID10  
C_MID11  
C_MID12  
C_MID13  
C_MID14  
Data Sheet  
186  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Overview  
Table 2  
Register Overview and Reset Value (cont’d)  
Register Short Name  
C_MID15  
Register Long Name  
Offset Address Reset Value  
Message ID Register 15  
Message ID Register 16  
Message ID Register 17  
Message ID Register 18  
Message ID Register 19  
Message ID Control Register 0  
Message ID Control Register 1  
IF1 Register  
20FH  
210H  
211H  
212H  
213H  
214H  
215H  
216H  
217H  
218H  
219H  
21AH  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
20H  
04H  
00H  
00H  
00H  
00H  
FFH  
C_MID16  
C_MID17  
C_MID18  
C_MID19  
C_MIDC0  
C_MIDC1  
C_IF1  
C_WUC  
Wake-Up Control Register  
Wake-Up Pattern Register 0  
Wake-Up Pattern Register 1  
Wake-Up Bit or Chip Count Register  
C_WUPAT0  
C_WUPAT1  
C_WUBCNT  
C_WURSSITH1  
C_WURSSIBL1  
RSSI Wake-Up Threshold for Channel 1 Register 21BH  
RSSI Wake-Up Blocking Level Low Channel 1  
Register  
21CH  
C_WURSSIBH1  
RSSI Wake-Up Blocking Level High Channel 1  
Register  
21DH  
00H  
C_WURSSITH2  
C_WURSSIBL2  
RSSI Wake-Up Threshold for Channel 2 Register 21EH  
00H  
FFH  
RSSI Wake-Up Blocking Level Low Channel 2  
Register  
21FH  
C_WURSSIBH2  
RSSI Wake-Up Blocking Level High Channel 2  
Register  
220H  
00H  
C_WURSSITH3  
C_WURSSIBL3  
RSSI Wake-Up Threshold for Channel 3 Register 221H  
00H  
FFH  
RSSI Wake-Up Blocking Level Low Channel 3  
Register  
222H  
C_WURSSIBH3  
RSSI Wake-Up Blocking Level High Channel 3  
Register  
223H  
00H  
C_SIGDETSAT  
C_WULOT  
Signal Detector Saturation Threshold Register  
Wake-Up on Level Observation Time Register  
Synchronization Search Time-Out Register  
SYNC Timeout Timer Register  
224H  
225H  
226H  
227H  
228H  
229H  
22AH  
22BH  
22CH  
22DH  
22EH  
22FH  
230H  
10H  
00H  
87H  
FFH  
00H  
00H  
02H  
00H  
00H  
00H  
00H  
00H  
00H  
C_SYSRCTO  
C_TOTIM_SYNC  
C_TOTIM_TSI  
C_TOTIM_EOM  
C_AFCLIMIT  
TSI Timeout Timer Register  
EOM Timeout Timer Register  
AFC Limit Configuration Register  
AFC/AGC Freeze Delay Register  
AFC Start/Freeze Configuration Register  
AFC Integrator 1 Gain Register 0  
AFC Integrator 1 Gain Register 1  
AFC Integrator 2 Gain Register 0  
AFC Integrator 2 Gain Register 1  
C_AFCAGCD  
C_AFCSFCFG  
C_AFCK1CFG0  
C_AFCK1CFG1  
C_AFCK2CFG0  
C_AFCK2CFG1  
Data Sheet  
187  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Overview  
Table 2  
Register Overview and Reset Value (cont’d)  
Register Short Name  
C_PMFUDSF  
C_AGCSFCFG  
C_AGCCFG0  
C_AGCCFG1  
C_AGCTHR  
C_DIGRXC  
Register Long Name  
Offset Address Reset Value  
Peak Memory Filter Up-Down Factor Register  
AGC Start/Freeze Configuration Register  
AGC Configuration Register 0  
231H  
232H  
233H  
234H  
235H  
236H  
237H  
238H  
239H  
23AH  
23BH  
23CH  
23DH  
23EH  
23FH  
42H  
00H  
2BH  
03H  
08H  
40H  
00H  
07H  
00H  
00H  
20H  
07H  
00H  
02H  
00H  
AGC Configuration Register 1  
AGC Threshold Register  
Digital Receiver Configuration Register  
RSSI Peak Detector Bit Position Register  
Image Supression Fc Selection Register  
Pre Decimation Factor Register  
C_PKBITPOS  
C_ISUPFCSEL  
C_PDECF  
C_PDECSCFSK  
C_PDECSCASK  
C_MFC  
Pre Decimation Scaling Register FSK Mode  
Pre Decimation Scaling Register ASK Mode  
Matched Filter Control Register  
C_SRC  
Sampe Rate Converter NCO Tune  
Externel Data Slicer Configuration  
C_EXTSLC  
C_SIGDET0  
Signal Detector Threshold Level Register - Run  
Mode  
C_SIGDET1  
Signal Detector Threshold Level Register -  
Wakeup  
240H  
00H  
C_SIGDETLO  
C_SIGDETSEL  
C_SIGDETCFG  
C_NDTHRES  
C_NDCONFIG  
C_CDRP  
Signal Detector Threshold Low Level Register  
Signal Detector Range Selection Register  
Signal Detector Configuration Register  
FSK Noise Detector Threshold Register  
FSK Noise Detector Configuration Register  
241H  
242H  
243H  
244H  
245H  
246H  
00H  
7FH  
00H  
00H  
07H  
E6H  
Clock and Data Recovery P Configuration  
Register  
C_CDRI  
Clock and Data Recovery Configuration Register 247H  
65H  
01H  
C_CDRRI  
Clock and Data Recovery RUNIN Configuration  
Register  
248H  
C_CDRTOLC  
C_CDRTOLB  
C_TVWIN  
CDR DC Chip Tolerance Register  
CDR DC Bit Tolerance Register  
Timing Violation Window Register  
Slicer Configuration Register  
249H  
24AH  
24BH  
24CH  
24DH  
24EH  
24FH  
250H  
251H  
252H  
253H  
0CH  
1EH  
28H  
90H  
80H  
00H  
00H  
00H  
00H  
00H  
00H  
C_SLCCFG  
C_TSIMODE  
C_TSILENA  
C_TSILENB  
C_TSIGAP  
C_TSIPTA0  
C_TSIPTA1  
C_TSIPTB0  
TSI Detection Mode Register  
TSI Length Register A  
TSI Length Register B  
TSI Gap Length Register  
TSI Pattern Data Reference A Register 0  
TSI Pattern Data Reference A Register 1  
TSI Pattern Data Reference B Register 0  
Data Sheet  
188  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Overview  
Table 2  
Register Overview and Reset Value (cont’d)  
Register Short Name  
C_TSIPTB1  
C_EOMC  
Register Long Name  
Offset Address Reset Value  
TSI Pattern Data Reference B Register 1  
End Of Message Control Register  
EOM Data Length Limit Register  
254H  
255H  
256H  
257H  
258H  
259H  
00H  
05H  
00H  
00H  
04H  
93H  
F3H  
07H  
09H  
13H  
F3H  
07H  
09H  
13H  
F3H  
07H  
09H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
C_EOMDLEN  
C_EOMDLENP  
C_CHCFG  
EOM Data Length Limit Parallel Mode Register  
Channel Configuration Register  
C_PLLINTC1  
C_PLLFRAC0C1  
C_PLLFRAC1C1  
C_PLLFRAC2C1  
C_PLLINTC2  
C_PLLFRAC0C2  
C_PLLFRAC1C2  
C_PLLFRAC2C2  
C_PLLINTC3  
C_PLLFRAC0C3  
C_PLLFRAC1C3  
C_PLLFRAC2C3  
D_MID0  
PLL MMD Integer Value Register Channel 1  
PLL Fractional Division Ratio Register 0 Channel 1 25AH  
PLL Fractional Division Ratio Register 1 Channel 1 25BH  
PLL Fractional Division Ratio Register 2 Channel 1 25CH  
PLL MMD Integer Value Register Channel 2  
25DH  
PLL Fractional Division Ratio Register 0 Channel 2 25EH  
PLL Fractional Division Ratio Register 1 Channel 2 25FH  
PLL Fractional Division Ratio Register 2 Channel 2 260H  
PLL MMD Integer Value Register Channel 3  
261H  
PLL Fractional Division Ratio Register 0 Channel 3 262H  
PLL Fractional Division Ratio Register 1 Channel 3 263H  
PLL Fractional Division Ratio Register 2 Channel 3 264H  
Message ID Register 0  
Message ID Register 1  
Message ID Register 2  
Message ID Register 3  
Message ID Register 4  
Message ID Register 5  
Message ID Register 6  
Message ID Register 7  
Message ID Register 8  
Message ID Register 9  
Message ID Register 10  
Message ID Register 11  
Message ID Register 12  
Message ID Register 13  
Message ID Register 14  
Message ID Register 15  
Message ID Register 16  
Message ID Register 17  
Message ID Register 18  
Message ID Register 19  
Message ID Control Register 0  
300H  
301H  
302H  
303H  
304H  
305H  
306H  
307H  
308H  
309H  
30AH  
30BH  
30CH  
30DH  
30EH  
30FH  
310H  
311H  
312H  
313H  
314H  
D_MID1  
D_MID2  
D_MID3  
D_MID4  
D_MID5  
D_MID6  
D_MID7  
D_MID8  
D_MID9  
D_MID10  
D_MID11  
D_MID12  
D_MID13  
D_MID14  
D_MID15  
D_MID16  
D_MID17  
D_MID18  
D_MID19  
D_MIDC0  
Data Sheet  
189  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Overview  
Table 2  
Register Overview and Reset Value (cont’d)  
Register Short Name  
D_MIDC1  
Register Long Name  
Offset Address Reset Value  
Message ID Control Register 1  
IF1 Register  
315H  
316H  
317H  
318H  
319H  
31AH  
00H  
20H  
04H  
00H  
00H  
00H  
00H  
FFH  
D_IF1  
D_WUC  
Wake-Up Control Register  
Wake-Up Pattern Register 0  
Wake-Up Pattern Register 1  
Wake-Up Bit or Chip Count Register  
D_WUPAT0  
D_WUPAT1  
D_WUBCNT  
D_WURSSITH1  
D_WURSSIBL1  
RSSI Wake-Up Threshold for Channel 1 Register 31BH  
RSSI Wake-Up Blocking Level Low Channel 1  
Register  
31CH  
D_WURSSIBH1  
RSSI Wake-Up Blocking Level High Channel 1  
Register  
31DH  
00H  
D_WURSSITH2  
D_WURSSIBL2  
RSSI Wake-Up Threshold for Channel 2 Register 31EH  
00H  
FFH  
RSSI Wake-Up Blocking Level Low Channel 2  
Register  
31FH  
D_WURSSIBH2  
RSSI Wake-Up Blocking Level High Channel 2  
Register  
320H  
00H  
D_WURSSITH3  
D_WURSSIBL3  
RSSI Wake-Up Threshold for Channel 3 Register 321H  
00H  
FFH  
RSSI Wake-Up Blocking Level Low Channel 3  
Register  
322H  
D_WURSSIBH3  
RSSI Wake-Up Blocking Level High Channel 3  
Register  
323H  
00H  
D_SIGDETSAT  
D_WULOT  
Signal Detector Saturation Threshold Register  
Wake-Up on Level Observation Time Register  
Synchronization Search Time-Out Register  
SYNC Timeout Timer Register  
324H  
325H  
326H  
327H  
328H  
329H  
32AH  
32BH  
32CH  
32DH  
32EH  
32FH  
330H  
331H  
332H  
333H  
334H  
335H  
336H  
10H  
00H  
87H  
FFH  
00H  
00H  
02H  
00H  
00H  
00H  
00H  
00H  
00H  
42H  
00H  
2BH  
03H  
08H  
40H  
D_SYSRCTO  
D_TOTIM_SYNC  
D_TOTIM_TSI  
D_TOTIM_EOM  
D_AFCLIMIT  
D_AFCAGCD  
D_AFCSFCFG  
D_AFCK1CFG0  
D_AFCK1CFG1  
D_AFCK2CFG0  
D_AFCK2CFG1  
D_PMFUDSF  
D_AGCSFCFG  
D_AGCCFG0  
D_AGCCFG1  
D_AGCTHR  
TSI Timeout Timer Register  
EOM Timeout Timer Register  
AFC Limit Configuration Register  
AFC/AGC Freeze Delay Register  
AFC Start/Freeze Configuration Register  
AFC Integrator 1 Gain Register 0  
AFC Integrator 1 Gain Register 1  
AFC Integrator 2 Gain Register 0  
AFC Integrator 2 Gain Register 1  
Peak Memory Filter Up-Down Factor Register  
AGC Start/Freeze Configuration Register  
AGC Configuration Register 0  
AGC Configuration Register 1  
AGC Threshold Register  
D_DIGRXC  
Digital Receiver Configuration Register  
Data Sheet  
190  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Overview  
Table 2  
Register Overview and Reset Value (cont’d)  
Register Short Name  
D_PKBITPOS  
D_ISUPFCSEL  
D_PDECF  
Register Long Name  
Offset Address Reset Value  
RSSI Peak Detector Bit Position Register  
Image Supression Fc Selection Register  
Pre Decimation Factor Register  
337H  
338H  
339H  
33AH  
33BH  
33CH  
33DH  
33EH  
33FH  
00H  
07H  
00H  
00H  
20H  
07H  
00H  
02H  
00H  
D_PDECSCFSK  
D_PDECSCASK  
D_MFC  
Pre Decimation Scaling Register FSK Mode  
Pre Decimation Scaling Register ASK Mode  
Matched Filter Control Register  
D_SRC  
Sampe Rate Converter NCO Tune  
Externel Data Slicer Configuration  
D_EXTSLC  
D_SIGDET0  
Signal Detector Threshold Level Register - Run  
Mode  
D_SIGDET1  
Signal Detector Threshold Level Register -  
Wakeup  
340H  
00H  
D_SIGDETLO  
D_SIGDETSEL  
D_SIGDETCFG  
D_NDTHRES  
D_NDCONFIG  
D_CDRP  
Signal Detector Threshold Low Level Register  
Signal Detector Range Selection Register  
Signal Detector Configuration Register  
FSK Noise Detector Threshold Register  
FSK Noise Detector Configuration Register  
341H  
342H  
343H  
344H  
345H  
346H  
00H  
7FH  
00H  
00H  
07H  
E6H  
Clock and Data Recovery P Configuration  
Register  
D_CDRI  
Clock and Data Recovery Configuration Register 347H  
65H  
01H  
D_CDRRI  
Clock and Data Recovery RUNIN Configuration  
Register  
348H  
D_CDRTOLC  
D_CDRTOLB  
D_TVWIN  
CDR DC Chip Tolerance Register  
CDR DC Bit Tolerance Register  
Timing Violation Window Register  
Slicer Configuration Register  
349H  
34AH  
34BH  
34CH  
34DH  
34EH  
34FH  
350H  
351H  
352H  
353H  
354H  
355H  
356H  
357H  
358H  
359H  
0CH  
1EH  
28H  
90H  
80H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
05H  
00H  
00H  
04H  
93H  
D_SLCCFG  
D_TSIMODE  
D_TSILENA  
D_TSILENB  
D_TSIGAP  
TSI Detection Mode Register  
TSI Length Register A  
TSI Length Register B  
TSI Gap Length Register  
D_TSIPTA0  
D_TSIPTA1  
D_TSIPTB0  
D_TSIPTB1  
D_EOMC  
TSI Pattern Data Reference A Register 0  
TSI Pattern Data Reference A Register 1  
TSI Pattern Data Reference B Register 0  
TSI Pattern Data Reference B Register 1  
End Of Message Control Register  
EOM Data Length Limit Register  
EOM Data Length Limit Parallel Mode Register  
Channel Configuration Register  
PLL MMD Integer Value Register Channel 1  
D_EOMDLEN  
D_EOMDLENP  
D_CHCFG  
D_PLLINTC1  
Data Sheet  
191  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Overview  
Table 2  
Register Overview and Reset Value (cont’d)  
Register Short Name  
D_PLLFRAC0C1  
D_PLLFRAC1C1  
D_PLLFRAC2C1  
D_PLLINTC2  
Register Long Name  
Offset Address Reset Value  
PLL Fractional Division Ratio Register 0 Channel 1 35AH  
PLL Fractional Division Ratio Register 1 Channel 1 35BH  
PLL Fractional Division Ratio Register 2 Channel 1 35CH  
F3H  
07H  
09H  
13H  
F3H  
07H  
09H  
13H  
F3H  
07H  
09H  
PLL MMD Integer Value Register Channel 2  
35DH  
D_PLLFRAC0C2  
D_PLLFRAC1C2  
D_PLLFRAC2C2  
D_PLLINTC3  
PLL Fractional Division Ratio Register 0 Channel 2 35EH  
PLL Fractional Division Ratio Register 1 Channel 2 35FH  
PLL Fractional Division Ratio Register 2 Channel 2 360H  
PLL MMD Integer Value Register Channel 3  
361H  
D_PLLFRAC0C3  
D_PLLFRAC1C3  
D_PLLFRAC2C3  
PLL Fractional Division Ratio Register 0 Channel 3 362H  
PLL Fractional Division Ratio Register 1 Channel 3 363H  
PLL Fractional Division Ratio Register 2 Channel 3 364H  
Data Sheet  
192  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Register Description  
Message ID Register 0  
A_MID0  
Offset  
000H  
Reset Value  
00H  
Message ID Register 0  
0,'ꢀ  
Z
Field  
Bits  
Type  
Description  
MID0  
7:0  
w
Message ID Register 0  
Reset: 00H  
Message ID Register 1  
A_MID1  
Offset  
001H  
Reset Value  
00H  
Message ID Register 1  
0,'ꢁ  
Z
Field  
Bits  
Type  
Description  
MID1  
7:0  
w
Message ID Register 1  
Reset: 00H  
Message ID Register 2  
A_MID2  
Offset  
002H  
Reset Value  
00H  
Message ID Register 2  
Data Sheet  
193  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
0,'ꢂ  
Z
Field  
Bits  
Type  
Description  
MID2  
7:0  
w
Message ID Register 2  
Reset: 00H  
Message ID Register 3  
A_MID3  
Offset  
003H  
Reset Value  
00H  
Message ID Register 3  
0,'ꢃ  
Z
Field  
Bits  
Type  
Description  
MID3  
7:0  
w
Message ID Register 3  
Reset: 00H  
Message ID Register 4  
A_MID4  
Offset  
004H  
Reset Value  
00H  
Message ID Register 4  
0,'ꢄ  
Z
Field  
Bits  
Type  
Description  
MID4  
7:0  
w
Message ID Register 4  
Reset: 00H  
Message ID Register 5  
Data Sheet  
194  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
A_MID5  
Offset  
005H  
Reset Value  
00H  
Message ID Register 5  
0,'ꢅ  
Z
Field  
Bits  
Type  
Description  
MID5  
7:0  
w
Message ID Register 5  
Reset: 00H  
Message ID Register 6  
A_MID6  
Offset  
006H  
Reset Value  
00H  
Message ID Register 6  
0,'ꢆ  
Z
Field  
Bits  
Type  
Description  
MID6  
7:0  
w
Message ID Register 6  
Reset: 00H  
Message ID Register 7  
A_MID7  
Offset  
007H  
Reset Value  
00H  
Message ID Register 7  
0,'ꢇ  
Z
Field  
Bits  
Type  
Description  
MID7  
7:0  
w
Message ID Register 7  
Reset: 00H  
Data Sheet  
195  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Message ID Register 8  
A_MID8  
Offset  
008H  
Reset Value  
00H  
Message ID Register 8  
0,'ꢈ  
Z
Field  
Bits  
Type  
Description  
MID8  
7:0  
w
Message ID Register 8  
Reset: 00H  
Message ID Register 9  
A_MID9  
Offset  
009H  
Reset Value  
00H  
Message ID Register 9  
0,'ꢉ  
Z
Field  
Bits  
Type  
Description  
MID9  
7:0  
w
Message ID Register 9  
Reset: 00H  
Message ID Register 10  
A_MID10  
Offset  
00AH  
Reset Value  
00H  
Message ID Register 10  
0,'ꢁꢀ  
Z
Data Sheet  
196  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
MID10  
7:0  
w
Message ID Register 10  
Reset: 00H  
Message ID Register 11  
A_MID11  
Offset  
00BH  
Reset Value  
00H  
Message ID Register 11  
0,'ꢁꢁ  
Z
Field  
Bits  
Type  
Description  
MID11  
7:0  
w
Message ID Register 11  
Reset: 00H  
Message ID Register 12  
A_MID12  
Offset  
00CH  
Reset Value  
00H  
Message ID Register 12  
0,'ꢁꢂ  
Z
Field  
Bits  
Type  
Description  
MID12  
7:0  
w
Message ID Register 12  
Reset: 00H  
Message ID Register 13  
A_MID13  
Offset  
00DH  
Reset Value  
00H  
Message ID Register 13  
Data Sheet  
197  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
0,'ꢁꢃ  
Z
Field  
MID13  
Bits  
Type  
Description  
7:0  
w
Message ID Register 13  
Reset: 00H  
Message ID Register 14  
A_MID14  
Offset  
00EH  
Reset Value  
00H  
Message ID Register 14  
0,'ꢁꢄ  
Z
Field  
Bits  
Type  
Description  
MID14  
7:0  
w
Message ID Register 14  
Reset: 00H  
Message ID Register 15  
A_MID15  
Offset  
00FH  
Reset Value  
00H  
Message ID Register 15  
0,'ꢁꢅ  
Z
Field  
Bits  
Type  
Description  
MID15  
7:0  
w
Message ID Register 15  
Reset: 00H  
Message ID Register 16  
Data Sheet  
198  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
A_MID16  
Offset  
010H  
Reset Value  
00H  
Message ID Register 16  
0,'ꢁꢆ  
Z
Field  
Bits  
Type  
Description  
MID16  
7:0  
w
Message ID Register 16  
Reset: 00H  
Message ID Register 17  
A_MID17  
Offset  
011H  
Reset Value  
00H  
Message ID Register 17  
0,'ꢁꢇ  
Z
Field  
Bits  
Type  
Description  
MID17  
7:0  
w
Message ID Register 17  
Reset: 00H  
Message ID Register 18  
A_MID18  
Offset  
012H  
Reset Value  
00H  
Message ID Register 18  
0,'ꢁꢈ  
Z
Field  
Bits  
Type  
Description  
MID18  
7:0  
w
Message ID Register 18  
Reset: 00H  
Data Sheet  
199  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Message ID Register 19  
A_MID19  
Offset  
013H  
Reset Value  
00H  
Message ID Register 19  
0,'ꢁꢉ  
Z
Field  
Bits  
Type  
Description  
MID19  
7:0  
w
Message ID Register 19  
Reset: 00H  
Message ID Control Register 0  
A_MIDC0  
Offset  
014H  
Reset Value  
00H  
Message ID Control Register 0  
8186('  
66326  
Z
Field  
Bits  
Type  
Description  
UNUSED  
7
-
UNUSED  
Reset: 0H  
SSPOS  
6:0  
w
Message ID Scan Start Position  
Min: 00h = Comparision starts one Bit after FSYNC  
Max: 7F = Comparision starts 128 Bits after FSYNC  
Reset: 00H  
Message ID Control Register 1  
A_MIDC1  
Offset  
015H  
Reset Value  
00H  
Message ID Control Register 1  
Data Sheet  
200  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
0,'6(1  
Z
0,'%2  
Z
8186('  
0,'176  
Z
Field  
Bits  
Type  
Description  
UNUSED  
7:4  
-
UNUSED  
Reset: 0H  
MIDSEN  
3
w
Enable Message ID Screening  
0B  
1B  
Disabled  
Enabled  
Reset: 0H  
MIDBO  
2
w
w
Message ID Byte Organisation  
0B  
1B  
2 Byte Mode  
4 Byte Mode  
Reset: 0H  
MIDNTS  
1:0  
Message ID Number of Bytes To Scan (4 Byte Mode / 2 Byte Mode)  
00B 1 Byte to scan / 1 Byte to scan  
01B 2 Bytes to scan / 2 Bytes to scan  
10B 3 Bytes to scan / 2 Bytes to scan  
11B 4 Bytes to scan / 2 Bytes to scan  
Reset: 0H  
IF1 Register  
A_IF1  
Offset  
016H  
Reset Value  
20H  
IF1 Register  
6'&6(/  
Z
,)%8)(1  
Z
&(5)6(/  
Z
8186('  
66%6(/  
%3)%:6(/  
Z
Z
Field  
Bits  
Type  
Description  
UNUSED  
7
-
UNUSED  
Reset: 0H  
SSBSEL  
6
w
RXRF Receive Side Band Select  
0B  
1B  
RF = LO + IF1 (Lo-side LO-injection)  
RF = LO - IF1 (Hi-side LO-injection)  
Reset: 0H  
Data Sheet  
201  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
BPFBWSEL  
5:3  
w
Band Pass Filter Bandwidth Selection  
000B 50 kHz  
001B 80 kHz  
010B 125 kHz  
011B 200 kHz  
100B 300 kHz  
101B not used  
110B not used  
111B not used  
Reset: 4H  
SDCSEL  
IFBUFEN  
CERFSEL  
2
1
0
w
w
w
Single / Double Conversion Selection  
0B  
1B  
Double Conversion (10.7 MHz/274 kHz)  
Single Conversion (274 kHz)  
Reset: 0H  
IF Buffer Enable  
0B  
1B  
Disabled  
Enabled  
Reset: 0H  
Number of external Ceramic Filters  
0B  
1B  
1 Ceramic Filter  
2 Ceramic Filters  
Reset: 0H  
Wake-Up Control Register  
A_WUC  
Offset  
017H  
Reset Value  
04H  
Wake-Up Control Register  
3:8(1  
Z
:8/&8)) 8))%/&2  
8186('  
:8306(/  
:8&57  
%
2
Z
Z
Z
Z
Field  
Bits  
Type  
Description  
UNUSED  
7
-
UNUSED  
Reset: 0H  
PWUEN  
6
w
Parallel Wake Up Mode Enable  
This feature can only be used, when modulation type is the same for SPM  
and RMSP  
0B  
1B  
Disabled  
Enabled  
Reset: 0H  
Data Sheet  
202  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
WUPMSEL  
5
w
Wake Up Pattern Mode Selection  
0B  
1B  
Chip mode  
Bit mode  
Reset: 0H  
WULCUFFB  
UFFBLCOO  
4
3
w
w
Select a "Wake Up on Level Criterion", when UFFBLCOO is enabled.  
0B  
1B  
RSSI  
automatically selected, when A_CHCFG.EXTPROC = "10"  
Signal Recognition  
Reset: 0H  
Ultrafast Fall Back to SLEEP or additional Level criterion in  
Constant On Off.  
Enables additional parallel processing of "Level Criterion", when a "Data  
Criterion" is selected in WUCRT.  
In case of Fast Fall Back to SLEEP or Permanent Wake-Up Search, this  
mode is called UFFB (Ultrafast Fall Back). Same Mode can be used in  
Constant On-Off.  
0B  
1B  
Disabled  
Enabled  
Reset: 0H  
WUCRT  
2:0  
w
Select a "Wake Up Criterion"  
000B Pattern Detection (Data Criterion)  
When A_CHCFG.EXTROC = "01" this setting is mapped to 0x3  
001B Random Bits (Data Criterion)  
When A_CHCFG.EXTROC = "01" this setting is mapped to 0x3  
010B Equal Bits (Data Criterion)  
When A_CHCFG.EXTROC = "01" this setting is mapped to 0x3  
011B Wake Up on Symbol Sync, Valid Data Rate (Data Criterion); The  
A_WUBCNT Register is  
not used in this mode  
100B RSSI (Level Criterion)  
automatically selected, when A_CHCFG.EXTPROC = "10"  
101B Signal Recognition (Level Criterion)  
110B n.u.  
111B n.u.  
Reset: 4H  
Wake-Up Pattern Register 0  
A_WUPAT0  
Offset  
018H  
Reset Value  
00H  
Wake-Up Pattern Register 0  
:83$7ꢀ  
Z
Data Sheet  
203  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
WUPAT0  
7:0  
w
Wake Up Detection Pattern: Bit 7...Bit 0(LSB) (in Bits/Chips)  
Reset: 00H  
Wake-Up Pattern Register 1  
A_WUPAT1  
Offset  
019H  
Reset Value  
00H  
Wake-Up Pattern Register 1  
:83$7ꢁ  
Z
Field  
Bits  
Type  
Description  
WUPAT1  
7:0  
w
Wake Up Detection Pattern: (MSB) Bit 15...Bit 8 (in Bits/Chips)  
Reset: 00H  
Wake-Up Bit or Chip Count Register  
A_WUBCNT  
Offset  
01AH  
Reset Value  
00H  
Wake-Up Bit or Chip Count Register  
8186('  
:8%&17  
Z
Field  
Bits  
Type  
Description  
UNUSED  
7
-
UNUSED  
Reset: 0H  
Data Sheet  
204  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
WUBCNT  
6:0  
w
Wake Up Bit/Chip Count Register (unit is bits; only exception is WU  
Pattern Chip Mode, where unit is chips, see A_WUC.WUPMSEL)  
Counter Register to define the maximum counts of bits/chips for Wake Up  
detection.  
Min: 00h = 0 Bits/Chips to count  
In Random Bits or Equal Bits Mode this will cause a Wake Up  
on Data Criterion immediately after Symbol Synchronization is found.  
In Pattern Detection Mode this will cause no Wake Up on Data Criterion.  
In this  
Mode there is needed minimum 11h = 17 Bits/Chips to shift  
one Pattern through the whole Pattern Detector. Because  
comparision can only be started when at least the comparision  
register is completely filled.  
Max: 7Fh: 127 Bits/Chips to count after Symbol Sync found  
Reset: 00H  
RSSI Wake-Up Threshold for Channel 1 Register  
A_WURSSITH1  
Offset  
01BH  
Reset Value  
00H  
RSSI Wake-Up Threshold for Channel 1  
Register  
:8566,7+ꢁ  
Z
Field  
Bits  
Type  
Description  
Wake Up on RSSI Threshold level for Channel 1  
WURSSITH1 7:0  
w
Wake Up Request generated when actual RSSI level is above this  
threshold  
Reset: 00H  
RSSI Wake-Up Blocking Level Low Channel 1 Register  
A_WURSSIBL1  
Offset  
01CH  
Reset Value  
FFH  
RSSI Wake-Up Blocking Level Low Channel 1  
Register  
Data Sheet  
205  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
:8566,%/ꢁ  
Z
Field  
WURSSIBL1  
Bits  
Type  
Description  
7:0  
w
Wake Up on RSSI Blocking Level LOW for Channel 1  
Reset: FFH  
RSSI Wake-Up Blocking Level High Channel 1 Register  
A_WURSSIBH1  
Offset  
01DH  
Reset Value  
00H  
RSSI Wake-Up Blocking Level High Channel  
1 Register  
:8566,%+ꢁ  
Z
Field  
Bits  
Type  
Description  
WURSSIBH1 7:0  
w
Wake Up on RSSI Blocking Level HIGH for Channel 1, when RSSI is  
selected as WU criterion or FFB criterion.  
In case of Signal Recognition as WU criterion or FFB criterion, the  
register defines the minimum consecutive T/16 samples of the Signal  
Recognition output to be at high level for a positive wake up event  
generation or FFB generation  
Reset: 00H  
RSSI Wake-Up Threshold for Channel 2 Register  
A_WURSSITH2  
Offset  
01EH  
Reset Value  
00H  
RSSI Wake-Up Threshold for Channel 2  
Register  
:8566,7+ꢂ  
Z
Data Sheet  
206  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
WURSSITH2 7:0  
w
Wake Up on RSSI Threshold level for Channel 2  
Wake Up Request generated when actual RSSI level is above this  
threshold  
Reset: 00H  
RSSI Wake-Up Blocking Level Low Channel 2 Register  
A_WURSSIBL2  
Offset  
01FH  
Reset Value  
FFH  
RSSI Wake-Up Blocking Level Low Channel 2  
Register  
:8566,%/ꢂ  
Z
Field  
Bits  
Type  
Description  
WURSSIBL2  
7:0  
w
Wake Up on RSSI Blocking Level LOW for Channel 2  
Reset: FFH  
RSSI Wake-Up Blocking Level High Channel 2 Register  
A_WURSSIBH2  
Offset  
020H  
Reset Value  
00H  
RSSI Wake-Up Blocking Level High Channel  
2 Register  
:8566,%+ꢂ  
Z
Field  
Bits  
Type  
Description  
WURSSIBH2 7:0  
w
Wake Up on RSSI Blocking Level HIGH for Channel 2, when RSSI is  
selected as WU criterion or FFB criterion.  
In case of Signal Recognition as WU criterion or FFB criterion, the  
register defines the minimum consecutive T/16 samples of the Signal  
Recognition output to be at high level for a positive wake up event  
generation or FFB generation  
Reset: 00H  
Data Sheet  
207  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
RSSI Wake-Up Threshold for Channel 3 Register  
A_WURSSITH3  
Offset  
021H  
Reset Value  
00H  
RSSI Wake-Up Threshold for Channel 3  
Register  
:8566,7+ꢃ  
Z
Field  
Bits  
Type  
Description  
Wake Up on RSSI Threshold level for Channel 3  
WURSSITH3 7:0  
w
Wake Up Request generated when actual RSSI level is above this  
threshold  
Reset: 00H  
RSSI Wake-Up Blocking Level Low Channel 3 Register  
A_WURSSIBL3  
Offset  
022H  
Reset Value  
FFH  
RSSI Wake-Up Blocking Level Low Channel 3  
Register  
:8566,%/ꢃ  
Z
Field  
Bits  
Type  
Description  
WURSSIBL3  
7:0  
w
Wake Up on RSSI Blocking Level LOW for Channel 3  
Reset: FFH  
RSSI Wake-Up Blocking Level High Channel 3 Register  
A_WURSSIBH3  
Offset  
023H  
Reset Value  
00H  
RSSI Wake-Up Blocking Level High Channel  
3 Register  
Data Sheet  
208  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
:8566,%+ꢃ  
Z
Field  
Bits  
Type  
Description  
WURSSIBH3 7:0  
w
Wake Up on RSSI Blocking Level HIGH for Channel 3, when RSSI is  
selected as WU criterion or FFB criterion.  
In case of Signal Recognition as WU criterion or FFB criterion, the  
register defines the minimum consecutive T/16 samples of the Signal  
Recognition output to be at high level for a positive wake up event  
generation or FFB generation  
Reset: 00H  
Signal Detector Saturation Threshold Register  
A_SIGDETSAT  
Offset  
024H  
Reset Value  
10H  
Signal Detector Saturation Threshold  
Register  
6,*'(76$7  
Z
Field  
Bits  
Type  
Description  
SIGDETSAT  
7:0  
w
Saturation threshold of the Sigdet peak detector used for zero-tube  
threshold calculation.  
Reset: 10H  
Wake-up on Level Observation Time Register  
A_WULOT  
Offset  
025H  
Reset Value  
00H  
Wake-up on Level Observation Time Register  
:8/2736  
:8/27  
Z
Z
Data Sheet  
209  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
WULOTPS  
7:5  
w
Wake-Up Level Observation Time PreScaler  
000B  
001B  
4
8
010B 16  
011B 32  
100B 64  
101B 128  
110B 256  
111B 512  
Reset: 0H  
WULOT  
4:0  
w
Wake-Up Level Observation Time  
Min. 01h : Twulot = 1 * WULOTPS * 64 / Fsys  
Max 1Fh : Twulot = 31 * WULOTPS * 64 / Fsys  
Value 00h : Twulot = 32 * WULOTPS * 64 / Fsys  
Reset: 00H  
Synchronization Search Time-Out Register  
A_SYSRCTO  
Offset  
026H  
Reset Value  
87H  
Synchronization Search Time-Out Register  
6<65&72  
Z
Field  
Bits  
Type  
Description  
SYSRCTO  
7:0  
w
Synchronization search time out  
FFh: 15 15/16 bit  
00h: 0 bit  
Reset: 87H  
SYNC Timeout Timer Register  
A_TOTIM_SYNC  
Offset  
027H  
Reset Value  
FFH  
SYNC Timeout Timer Register  
727,06<1&  
Z
Data Sheet  
210  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
TOTIMSYNC 7:0  
w
Set value of Time-Out Timer (Symbol Synchronization)  
Timer is used to get back from Run Mode Self Polling to the Self Polling  
Mode whenever there is no Symbol Synchronization.  
Timer is set back at new cycle start of Run Mode Self Polling.  
TimeOut= (TOTIMSYNC * 64 * 512) / fsys  
Min: 01h = (1 * 64 * 512)/ fsys  
Max: FFh= (255 * 64 * 512) / fsys  
00h: disabled  
Reset: FFH  
TSI Timeout Timer Register  
A_TOTIM_TSI  
Offset  
028H  
Reset Value  
00H  
TSI Timeout Timer Register  
727,076,  
Z
Field  
Bits  
Type  
Description  
Set value of Time-Out Timer (Telegram Start Identifier)  
TOTIMTSI  
7:0  
w
Timer is used to get back from Run Mode Self Polling to the Self Polling  
Mode whenever a Symbol Synchronisation is available but there is no TSI  
detected.  
Timer is set back at new cycle start of Run Mode Self Polling.  
TimeOut= (TOTIMTSI * 64 * 512) / fsys  
Min: 01h = (1 * 64 * 512)/ fsys  
Max: FFh= (255 * 64 * 512) / fsys  
00h: disabled  
Reset: 00H  
EOM Timeout Timer Register  
A_TOTIM_EOM  
Offset  
029H  
Reset Value  
00H  
EOM Timeout Timer Register  
727,0(20  
Z
Data Sheet  
211  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
TOTIMEOM  
7:0  
w
Set value of Time-Out Timer (End of Message)  
Timer is used to get back from Run Mode Self Polling to the Self Polling  
Mode whenever a TSI has been detected but there is no EOM detected.  
Timer is set back at new cycle start of Run Mode Self Polling.  
TimeOut= (TOTIMEOM * 64 * 512 * 2) / fsys  
Min: 01h = (1 * 64 * 512 * 2)/ fsys  
Max: FFh= (255 * 64 * 512 * 2) / fsys  
00h: disabled  
Reset: 00H  
AFC Limit Configuration Register  
A_AFCLIMIT  
Offset  
02AH  
Reset Value  
02H  
AFC Limit Configuration Register  
8186('  
$)&/,0,7  
Z
Field  
Bits  
Type  
Description  
UNUSED  
7:4  
-
UNUSED  
Reset: 0H  
AFCLIMIT  
3:0  
w
AFC Frequency Offset Saturation Limit ==> 1...15 x 21.4 kHz  
Min: 1h = +/- Fsys / 2^(22-12) Hz  
Max: Fh = +/- 15 * Fsys / 2^(22-12) Hz  
Reg. value 0h = 0 Hz - no AFC correction  
Reset: 2H  
AFC/AGC Freeze Delay Register  
A_AFCAGCD  
Offset  
02BH  
Reset Value  
00H  
AFC/AGC Freeze Delay Register  
$)&$*&'  
Z
Data Sheet  
212  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
AFCAGCD  
7:0  
w
AFC/AGC Freeze Delay Counter Division Ratio  
The base period for the delay counter is the 8-16 samples/chip  
(predecimation strobe) divided by 4  
Reset: 00H  
AFC Start/Freeze Configuration Register  
A_AFCSFCFG  
Offset  
02CH  
Reset Value  
00H  
AFC Start/Freeze Configuration Register  
$)&%/$6 $)&5(6$  
8186('  
$)&)5((=(  
$)&67$57  
.
7&&  
Z
Z
Z
Z
Field  
Bits  
Type  
Description  
UNUSED  
7
-
UNUSED  
Reset: 0H  
AFCBLASK  
6
w
AFC blocking during a low phase in the ASK signal  
0B  
1B  
Disabled  
Enabled  
Reset: 0H  
AFCRESATC  
C
5
w
w
Enable AFC Restart at Channel Change and at the beginning of the  
current configuration in Self Polling Mode  
and at leaving the HOLD state (when bit CMC0.INITPLLHOLD is set) in  
Run Mode Slave  
0B  
1B  
Disabled  
Enabled  
Reset: 0H  
AFCFREEZE 4:2  
AFC Freeze Configuration  
When selecting a Level criterion here,  
please note to use the same Level criterion as for Wake-Up  
000B Stay ON  
001B Freeze on RSSI Event + Delay (AFCAGCDEL)  
010B Freeze on Signal Recognition Event + Delay (AFCAGCDEL)  
011B Freeze on Symbol Synchronization + Delay (AFCAGCDEL)  
100B SPI Command - write to EXTPCMD.AFCMANF bit  
101B n.u.  
110B n.u.  
111B n.u.  
Reset: 0H  
Data Sheet  
213  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
AFCSTART  
1:0  
w
AFC Start Configuration  
When selecting a Level criterion here,  
please note to use the same Level criterion as for Wake-Up  
00B OFF  
01B Direct ON  
10B Start on RSSI event  
11B Start on Signal Recognition event  
Reset: 0H  
AFC Integrator 1 Gain Register 0  
A_AFCK1CFG0  
Offset  
02DH  
Reset Value  
00H  
AFC Integrator 1 Gain Register 0  
$)&.ꢁBꢀ  
Z
Field  
Bits  
Type  
Description  
AFCK1_0  
7:0  
w
AFC Filter coefficient K1, AFCK1(11:0) = AFCK1_1(MSB) &  
AFCK1_0(LSB)  
Reset: 00H  
AFC Integrator 1 Gain Register 1  
A_AFCK1CFG1  
Offset  
02EH  
Reset Value  
00H  
AFC Integrator 1 Gain Register 1  
8186('  
$)&.ꢁBꢁ  
Z
Field  
Bits  
Type  
Description  
UNUSED  
7:4  
-
UNUSED  
Reset: 0H  
AFCK1_1  
3:0  
w
AFC Filter coefficient K1, AFCK1(11:0) = AFCK1_1(MSB) &  
AFCK1_0(LSB)  
Reset: 0H  
Data Sheet  
214  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
AFC Integrator 2 Gain Register 0  
A_AFCK2CFG0  
Offset  
02FH  
Reset Value  
00H  
AFC Integrator 2 Gain Register 0  
$)&.ꢂBꢀ  
Z
Field  
Bits  
Type  
Description  
AFCK2_0  
7:0  
w
AFC Filter coefficient K2, AFCK2(11:0) = AFCK2_1(MSB) &  
AFCK2_0(LSB)  
Reset: 00H  
AFC Integrator 2 Gain Register 1  
A_AFCK2CFG1  
Offset  
030H  
Reset Value  
00H  
AFC Integrator 2 Gain Register 1  
8186('  
$)&.ꢂBꢁ  
Z
Field  
Bits  
Type  
Description  
UNUSED  
7:4  
-
UNUSED  
Reset: 0H  
AFCK2_1  
3:0  
w
AFC Filter coefficient K2, AFCK2(11:0) = AFCK2_1(MSB) &  
AFCK2_0(LSB)  
Reset: 0H  
Peak Memory Filter Up-Down Factor Register  
A_PMFUDSF  
Offset  
031H  
Reset Value  
42H  
Peak Memory Filter Up-Down Factor Register  
Data Sheet  
215  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
8186('  
30)83  
8186('  
30)'1  
Z
Z
Field  
Bits  
Type  
Description  
UNUSED  
7
-
UNUSED  
Reset: 0H  
PMFUP  
6:4  
w
Peak Memory Filter Attack (Up) Factor  
000B 2^-1  
001B 2^-2  
010B 2^-3  
011B 2^-4  
100B 2^-5  
101B 2^-6  
110B 2^-7  
111B 2^-8  
Reset: 4H  
UNUSED  
PMFDN  
3
-
UNUSED  
Reset: 0H  
2:0  
w
Peak Memory Filter Decay (Down) Factor (additional to Attack  
Factor)  
000B 2^-2  
001B 2^-3  
010B 2^-4  
011B 2^-5  
100B 2^-6  
101B 2^-7  
110B 2^-8  
111B 2^-9  
Reset: 2H  
AGC Start/Freeze Configuration Register  
A_AGCSFCFG  
Offset  
032H  
Reset Value  
00H  
AGC Start/Freeze Configuration Register  
$*&5(6$  
7&&  
8186('  
$*&)5((=(  
$*&67$57  
Z
Z
Z
Data Sheet  
216  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
UNUSED  
7:6  
-
UNUSED  
Reset: 0H  
AGCRESATC  
C
5
w
Enable AGC Restart at Channel Change and at the beginning of the  
current configuration in Self Polling Mode  
and at leaving the HOLD state (when bit CMC0.INITPLLHOLD is set) in  
Run Mode Slave  
0B  
1B  
Disabled  
Enabled  
Reset: 0H  
AGCFREEZE 4:2  
w
AGC Freeze Configuration  
When selecting a Level criterion here,  
please note to use the same Level criterion as for Wake-Up  
000B Stay ON  
001B Freeze on RSSI Event + Delay (AFCAGCDEL)  
010B Freeze on Signal Recognition Event + Delay (AFCAGCDEL)  
011B Freeze on Symbol Synchronization + Delay (AFCAGCDEL)  
100B SPI Command - write to EXTPCMD.AGCMANF bit  
101B n.u.  
110B n.u.  
111B n.u.  
Reset: 0H  
AGCSTART  
1:0  
w
AGC Start Configuration  
When selecting a Level criterion here,  
please note to use the same Level criterion as for Wake-Up  
00B OFF  
01B Direct ON  
10B Start on RSSI event  
11B Start on Signal Recognition event  
Reset: 0H  
AGC Configuration Register 0  
A_AGCCFG0  
Offset  
033H  
Reset Value  
2BH  
AGC Configuration Register 0  
8186('  
$*&'*&  
$*&+<6  
$*&*$,1  
Z
Z
Z
Field  
Bits  
Type  
Description  
UNUSED  
7
-
UNUSED  
Reset: 0H  
Data Sheet  
217  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
AGCDGC  
6:4  
w
AGC Digital RSSI Gain Correction Tuning  
000B 14.5 dB  
001B 15.0 dB  
010B 15.5 dB  
011B 16.0 dB  
100B 16.5 dB  
101B 17.0 dB  
110B 17.5 dB  
111B 18.0 dB  
Reset: 2H  
AGCHYS  
AGCGAIN  
3:2  
1:0  
w
w
AGC Threshold Hysteresis  
00B 12.8 dB  
01B 17.1 dB  
10B 21.3 dB  
11B 25.6 dB  
Reset: 2H  
AGC Gain Control  
00B 0 dB  
01B -15 dB  
10B -30 dB  
11B Automatic  
Reset: 3H  
AGC Configuration Register 1  
A_AGCCFG1  
Offset  
034H  
Reset Value  
03H  
AGC Configuration Register 1  
8186('  
$*&7+2))6  
Z
Field  
Bits  
Type  
Description  
UNUSED  
7:2  
-
UNUSED  
Reset: 00H  
AGCTHOFFS 1:0  
w
AGC Threshold Offset  
00B 25.5 dB  
01B 38.3 dB  
10B 51.1 dB  
11B 63.9 dB  
Reset: 3H  
Data Sheet  
218  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
AGC Threshold Register  
A_AGCTHR  
Offset  
035H  
Reset Value  
08H  
AGC Threshold Register  
$*&783  
$*&7/2  
Z
Z
Field  
Bits  
Type  
Description  
AGCTUP  
7:4  
w
AGC Upper Attack Threshold [dB]  
AGC Upper Threshold = A_AGCCFG1.AGCTHOFFS + 25.6 +  
AGCTUP*1.6  
Reset: 0H  
AGCTLO  
3:0  
w
AGC Lower Attack Threshold [dB]  
AGC Lower Threshold = A_AGCCFG1.AGCTHOFFS + AGCTLO*1.6  
Reset: 8H  
Digital Receiver Configuration Register  
A_DIGRXC  
Offset  
036H  
Reset Value  
40H  
Digital Receiver Configuration Register  
',19(;7  
Z
$$)%<3  
Z
,1,7'5;  
(6  
,1,7)5&  
6
&+,3',1  
9
$$))&6(  
/
&2'(  
Z
Z
Z
Z
Z
Field  
Bits  
Type  
Description  
INITDRXES  
7
w
Init the Digital Receiver at EOM or Loss of Symbol Sync (e.g. for  
initialization of the Peak Memory Filter)  
0B  
1B  
Disabled  
Enabled  
Reset: 0H  
INITFRCS  
6
w
Init the Framer at Cycle Start in RMSP.  
If disabled, the WUP Data can be used as part of TSI as well in case the  
modulation type is the same for SPM and RMSP  
0B  
1B  
Disabled  
Enabled  
Reset: 1H  
Data Sheet  
219  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
CODE  
5:4  
w
Encoding Mode Selection  
00B Manchester Code  
01B Differential Manchester Code  
10B Biphase Space  
11B Biphase Mark  
Reset: 0H  
CHIPDINV  
DINVEXT  
3
2
w
w
Baseband Chip Data Inversion for CH_DATA and Decoder/Framer  
input. Therefore Inverted Manchester and Inverted Differential  
Manchester can be decoded internally.  
0B  
1B  
Not inverted  
Inverted  
Reset: 0H  
Data Inversion of signal DATA and DATA_MATCHFIL for External  
Processing  
0B  
1B  
Not inverted  
Inverted  
Reset: 0H  
AAFBYP  
1
0
w
w
Anti-Alliasing Filter Bypass for RSSI pin  
0B  
1B  
Not bypassed  
Bypassed  
Reset: 0H  
AAFFCSEL  
Anti-Alliasing Filter Corner Frequency Select  
0B  
1B  
40 kHz  
80 kHz  
Reset: 0H  
RSSI Peak Detector Bit Position Register  
A_PKBITPOS  
Offset  
037H  
Reset Value  
00H  
RSSI Peak Detector Bit Position Register  
566,'/<  
Z
Field  
Bits  
Type  
Description  
RSSIDLY  
7:0  
w
RSSI Detector Start-up Delay for RSSIPPL register  
Min: 00h: 0 bit delay (Start with first bit after FSYNC)  
Max: FFh: 255 bit delay  
Note: Due to filtering and signal computation, the latency T1 and T2 have  
to be added  
Reset: 00H  
Data Sheet  
220  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Image Supression Fc Selection Register  
A_ISUPFCSEL  
Offset  
038H  
Reset Value  
07H  
Image Supression Fc Selection Register  
8186('  
5HV  
)&6(/  
Z
Field  
Bits  
Type  
Description  
UNUSED  
7:4  
-
UNUSED  
Reset: 0H  
FCSEL  
2:0  
w
Image Supression Filter Corner Frequency Selection for FSK signal  
path  
000B 33 kHz  
001B 46 kHz  
010B 65 kHz  
011B 93 kHz  
100B 132 kHz  
101B 190 kHz  
110B 239 kHz  
111B 282 kHz  
Reset: 7H  
Pre Decimation Factor Register  
A_PDECF  
Offset  
039H  
Reset Value  
00H  
Pre Decimation Factor Register  
8186('  
35('(&)  
Z
Field  
Bits  
Type  
Description  
UNUSED  
7
-
UNUSED  
Reset: 0H  
PREDECF  
6:0  
w
Predecimation Filter Decimation Factor  
Predecimation Factor = PREDECF + 1  
Reset: 00H  
Data Sheet  
221  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Pre Decimation Scaling Register FSK Mode  
A_PDECSCFSK  
Offset  
03AH  
Reset Value  
00H  
Pre Decimation Scaling Register FSK Mode  
,1732/(  
1)  
5HV  
3'6&$/()  
Z
Z
Field  
Bits  
Type  
Description  
FSK Data Interpolation Enable  
INTPOLENF  
5
w
0B  
1B  
Disabled  
Enabled  
Reset: 0H  
PDSCALEF  
4:0  
w
Predecimation Block Scaling Factor for FSK  
Min 00h : 2^-10  
Max 17h : 2^13  
Reset: 00H  
Pre Decimation Scaling Register ASK Mode  
A_PDECSCASK  
Offset  
03BH  
Reset Value  
20H  
Pre Decimation Scaling Register ASK Mode  
,1732/(  
1$  
8186('  
5HV  
3'6&$/($  
Z
Z
Field  
Bits  
Type  
Description  
UNUSED  
7
-
UNUSED  
Reset: 0H  
INTPOLENA  
5
w
w
ASK Data Interpolation Enable  
0B  
1B  
Disabled  
Enabled  
Reset: 1H  
PDSCALEA  
Data Sheet  
4:0  
Predecimation Block Scaling Factor for ASK  
Min 00h : 2^-10  
Max 17h : 2^13  
Reset: 00H  
222  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Matched Filter Control Register  
A_MFC  
Offset  
03CH  
Reset Value  
07H  
Matched Filter Control Register  
8186('  
0)/  
Z
Field  
Bits  
Type  
Description  
UNUSED  
7:4  
-
UNUSED  
Reset: 0H  
MFL  
3:0  
w
Matched Filter Length  
MF Length = MFL + 1  
Reset: 7H  
Sampe Rate Converter NCO Tune  
A_SRC  
Offset  
03DH  
Reset Value  
00H  
Sampe Rate Converter NCO Tune  
65&1&2  
Z
Field  
Bits  
Type  
Description  
SRCNCO  
7:0  
w
Sample Rate Converter NCO Tune  
Min 00h : Fout = Fin  
Max FFh : Fout = Fin / 2  
Reset: 00H  
Externel Data Slicer Configuration  
A_EXTSLC  
Offset  
03EH  
Reset Value  
02H  
Externel Data Slicer Configuration  
Data Sheet  
223  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
8186('  
5HV  
(6/&6&$  
(6/&%:  
Z
Z
Field  
Bits  
Type  
Description  
UNUSED  
7
-
UNUSED  
Reset: 0H  
ESLCSCA  
4:3  
w
External Slicer BW Selection Scaling  
00B 1/2  
01B 1/4  
10B 1/8  
11B 1/16  
Reset: 0H  
ESLCBW  
2:0  
w
External Slicer Manual BW Selection  
000B 1/8  
001B 1/16  
010B 1/24  
011B 1/32  
100B 1/40  
101B 1/48  
110B n.u.  
111B n.u.  
Reset: 2H  
Signal Detector Threshold Level Register - Run Mode  
A_SIGDET0  
Offset  
Reset Value  
00H  
Signal Detector Threshold Level Register -  
Run Mode  
03FH  
6'7+5  
Z
Field  
Bits  
Type  
Description  
SDTHR  
7:0  
w
Signal Detector Threshold Level for Run Mode  
Reset: 00H  
Signal Detector Threshold Level Register - Wakeup  
Data Sheet  
224  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
A_SIGDET1  
Offset  
040H  
Reset Value  
00H  
Signal Detector Threshold Level Register -  
Wakeup  
6'7+5  
Z
Field  
Bits  
Type  
Description  
SDTHR  
7:0  
w
Signal Detector Threshold Level for Wakeup  
Reset: 00H  
Signal Detector Threshold Low Level Register  
A_SIGDETLO  
Offset  
041H  
Reset Value  
00H  
Signal Detector Threshold Low Level  
Register  
6'/27+5  
Z
Field  
Bits  
Type  
Description  
SDLOTHR  
7:0  
w
Signal Detector Threshold Low Level. This threshold level is  
only valid, if the FSK Noise detector selection in the A_NDCONFIG  
register is  
set to 11b  
Reset: 00H  
Signal Detector Range Selection Register  
A_SIGDETSEL  
Offset  
042H  
Reset Value  
7FH  
Signal Detector Range Selection Register  
5HV  
6'56(/$6.  
6'56(/)6.  
6'/256(/  
Z
Z
Z
Data Sheet  
225  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
SDRSELASK 5:4  
w
A_SIGDET0/1 range selection factor for ASK. The selected signal  
detector value is multiplied by the 2^range selection factor. Use the  
right setting to fit the measured SPWR value.  
00B  
01B  
6
7
10B 7+6  
11B  
8
Reset: 3H  
SDRSELFSK 3:2  
w
A_SIGDET0/1 range selection factor for FSK. The selected signal  
detector value is multiplied by the 2^range selection factor. Use the  
right setting to fit the measured SPWR value.  
00B  
01B  
10B  
11B  
2
4
6
8
Reset: 3H  
SDLORSEL  
1:0  
w
SIGDETLO range selection factor. The selected signal detector  
value is multiplied by the 2^range selection factor. Use the right  
setting to fit the measured SPWR value.  
00B  
01B  
10B  
11B  
2
4
6
8
Reset: 3H  
Signal Detector Configuration Register  
A_SIGDETCFG  
Offset  
043H  
Reset Value  
00H  
Signal Detector Configuration Register  
6'/25(  
Z
6'&17ꢁ  
Z
6'&17ꢀ  
Z
8186('  
5HV  
Field  
Bits  
Type  
Description  
UNUSED  
7:4  
-
UNUSED  
Reset: 0H  
SDLORE  
2
w
Source selection of Signal Power Readout Register  
0B  
1B  
Signal Power for A_SIGDET0/1  
Signal for minimal usable FSK deviation, the sigdet low level can  
be read out with SPWR register  
Reset: 0H  
Data Sheet  
226  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
SDCNT1  
1
w
Signal Detector Threshold Counter for Wakeup  
0B  
1B  
Disabled  
1/2 bit  
Reset: 0H  
SDCNT0  
0
w
Signal Detector Threshold Counter for Run Mode  
0B  
1B  
Disabled  
1/2 bit  
Reset: 0H  
FSK Noise Detector Threshold Register  
A_NDTHRES  
Offset  
044H  
Reset Value  
00H  
FSK Noise Detector Threshold Register  
1'7+5(6  
Z
Field  
Bits  
Type  
Description  
NDTHRES  
7:0  
w
FSK Noise Detector Threshold  
Reset: 00H  
FSK Noise Detector Configuration Register  
A_NDCONFIG  
Offset  
045H  
Reset Value  
07H  
FSK Noise Detector Configuration Register  
1'56(/  
1'6(/  
1'7/  
1'3'65  
Z
Z
Z
Z
Field  
Bits  
7:6  
Type  
Description  
NDRSEL  
w
FSK Noise Detector Range Selection  
00B 2^7  
01B 2^6  
10B 2^5  
11B 2^4  
Reset: 0H  
Data Sheet  
227  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
NDSEL  
5:4  
w
Signal and Noise Detector Selection  
00B Signal detection (=Squelch) only. This mode is recommended for  
ASK.  
01B Noise detection only  
10B Signal and noise detection simultaneously  
11B Signal and noise detection simultaneously, but the FSK noise  
detect signal is valid only if the SIGDETLO threshold is exceeded.  
This is the recommended mode for FSK.  
Reset: 0H  
NDTL  
3:2  
1:0  
w
w
FSK Noise Detector Threshold Level  
00B 1/2  
01B 3/8  
10B 1/4  
11B 1/8  
Reset: 1H  
NDPDSR  
FSK Noise Detector - Peak Detector Slew Rate  
00B 1/256  
01B 1/128  
10B 1/64  
11B 1/32  
Reset: 3H  
Clock and Data Recovery P Configuration Register  
A_CDRP  
Offset  
046H  
Reset Value  
E6H  
Clock and Data Recovery P Configuration  
Register  
3+'(1ꢁ  
Z
3+'(1ꢀ  
Z
3'65  
39$/  
36$7  
Z
Z
Z
Field  
Bits  
7:6  
Type  
Description  
PDSR  
w
Peak-Detector slew rate. The slew rate of the Peak-Detector in the  
clock-recovery path will be set with  
PDSR. Actually, Peak-Detector part of Signal Detector Block  
00B up/down = 1/64  
01B up = 1/64; down = 1/128  
10B up = 1/32; down = 1/128  
11B up = 1/32; down = 1/256  
Reset: 3H  
Data Sheet  
228  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
Phase detector error (PDE) outer tolerance range  
PHDEN1  
5
w
0B  
1B  
Disabled: PDEout = PDEin.  
Enabled: If PDEin > abs(7/16) bit then PDEout = 0 else PDEout =  
PDEin.  
Reset: 1H  
PHDEN0  
PVAL  
4
w
w
Phase detector error (PDE) inner tolerance range  
0B  
1B  
Disabled: PDEout = PDEin.  
Enabled: If PDEin < abs(1/16) bit then PDEout = 0 else PDEout =  
PDEin.  
Reset: 0H  
3:2  
P Value. The PVAL is the P value of the Clock-Recovery PI Loop-  
Filter. The Phase-  
Detector output error will be multiplied with the set value.  
00B 1/1 phase detector error  
01B 1/2 phase detector error  
10B 1/4 phase detector error  
11B 1/8 phase detector error  
Reset: 1H  
PSAT  
1:0  
w
P Value Saturation. The saturation of the P-Loop-Filter path will be  
set according to the PSAT  
value. Remark that the internal phase resolution of the phase detector is  
1/16 bit.  
00B saturation to 1/16 bit  
01B saturation to 2/16 bit  
10B saturation to 4/16 bit  
11B saturation to 8/16 bit  
Reset: 2H  
Clock and Data Recovery Configuration Register  
A_CDRI  
Offset  
047H  
Reset Value  
65H  
Clock and Data Recovery Configuration  
Register  
&256$7  
/)6$7  
,9$/  
,6$7  
Z
Z
Z
Z
Data Sheet  
229  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
CORSAT  
7:6  
w
Correlator output value (Timing extrapolation unit). The timing  
extrapolation unit output value will be multiplied with the LFSAT  
value. The timing extrapolation unit measures the data rate error during  
the  
RUNIN sequence and sets the I-Loop-Filter path when the RUNIN length  
is  
reached.  
00B 1/4 calculated value  
01B 1/8 calculated value  
10B 1/16 calculated value  
11B 1/32 calculated value  
Reset: 1H  
LFSAT  
5:4  
w
Loop Filter Saturation. The saturation of the I-Loop-Filter path will  
be set according to the LFSAT  
value.Remark that the internal phase resolution of the phase detector is  
1/16 bit.  
00B saturation to 1/32 bit  
01B saturation to 1/16 bit  
10B saturation to 2/16 bit  
11B saturation to 4/16 bit  
Reset: 2H  
IVAL  
3:2  
w
I Value. The IVAL is the I value of the Clock-Recovery PI Loop-Filter.  
The Phase-  
Detector output error will be multiplied with this set value.  
00B 1/32 phase detector error  
01B 1/64 phase detector error  
10B 1/128 phase detector error  
11B 1/256 phase detector error  
Reset: 1H  
ISAT  
1:0  
w
I Value Saturation. The saturation of the I-Loop-Filter accumulator  
will be set according to the  
ISAT value. Remark that the internal phase resolution of the phase  
detector is 1/16 bit.  
00B saturation to 1/16 bit  
01B saturation to 2/16 bit  
10B saturation to 4/16 bit  
11B saturation to 8/16 bit  
Reset: 1H  
Clock and Data Recovery RUNIN Configuration Register  
A_CDRRI  
Offset  
048H  
Reset Value  
01H  
Clock and Data Recovery RUNIN  
Configuration Register  
Data Sheet  
230  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
'5/,0(1  
Z
8186('  
581/(1  
Z
Field  
Bits  
Type  
Description  
UNUSED  
7:3  
-
UNUSED  
Reset: 00H  
DRLIMEN  
2
w
Enable data rate error acceptance limitation.  
The limits are defined in CDRDRTHRP and CDRDRTHRN registers.  
0B  
1B  
Disabled  
Enabled  
Reset: 0H  
RUNLEN  
1:0  
w
RUNIN Length. The RUNIN length is equal to PLL-start-value  
calculation time. This means  
that the shorter RUNIN length decreases the data rate offset calculation  
accuracy and symbol synchronization found signal generation stability.  
Note that the RUNLEN have to be changed together with the TSI  
configuration registers.  
00B 8 chips  
01B 7 chips  
10B 6 chips  
11B 5 chips  
Reset: 1H  
CDR DC Chip Tolerance Register  
A_CDRTOLC  
Offset  
049H  
Reset Value  
0CH  
CDR DC Chip Tolerance Register  
8186('  
72/&+,3+  
72/&+,3/  
Z
Z
Field  
Bits  
Type  
Description  
UNUSED  
7:6  
-
UNUSED  
Reset: 0H  
TOLCHIPH  
5:3  
w
Duty Cycle Tolerance for Chip Border High Level. Represents the  
number of 1/16 bit sample deviation from the ideal chip border  
where an edge can occur in direction to the following chip border.  
Reset: 1H  
Data Sheet  
231  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
TOLCHIPL  
2:0  
w
Duty Cycle Tolerance for Chip Border Low Level. Represents the  
number of 1/16 bit sample deviation from the ideal chip border  
where an edge can occur in direction to the previous chip border.  
Reset: 4H  
CDR DC Bit Tolerance Register  
A_CDRTOLB  
Offset  
04AH  
Reset Value  
1EH  
CDR DC Bit Tolerance Register  
8186('  
72/%,7+  
72/%,7/  
Z
Z
Field  
Bits  
Type  
Description  
UNUSED  
7:6  
-
UNUSED  
Reset: 0H  
TOLBITH  
5:3  
w
Duty Cycle Tolerance for Bit Border High Level. Represents the  
number of 1/16 bit sample deviation from the ideal bit border where  
an edge can occur in direction to the following bit border.  
Reset: 3H  
TOLBITL  
2:0  
w
Duty Cycle Tolerance for Bit Border Low Level. Represents the  
number of 1/16 bit sample deviation from the ideal bit border where  
an edge can occur in direction to the previous bit border.  
Reset: 6H  
Timing Violation Window Register  
A_TVWIN  
Offset  
04BH  
Reset Value  
28H  
Timing Violation Window Register  
79:,1  
Z
Data Sheet  
232  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
TVWIN  
7:0  
w
Timing Violation Window Length.  
Defines the maximal number of 1/16 data samples without detected edge  
which will be tolerated by CDR with no Loss of Symbol Synchronization  
28h: 40/16 bit ((8 + 16 *CV + 8)*1.25)  
FFh: 255/16 bit  
Note: in TSIGAP mode the value must be higher.  
Reset: 28H  
Slicer Configuration Register  
A_SLCCFG  
Offset  
04CH  
Reset Value  
90H  
Slicer Configuration Register  
6/&&)*  
Z
Field  
Bits  
Type  
Description  
Data Slicer Configuration  
SLCCFG  
7:0  
w
Value 90H : Chip Mode EOM-CV: For patterns with code violations in data  
packet and optimized for activated EOM code violation criterion (and  
optional EOM data length criterion)  
Value 94H : Chip Mode EOM-Datalength: For patterns with code  
violations in data packet and optimized for activated EOM data length  
criterion only (EOMDATLEN)  
Value 95H : Chip Mode Transparent: When Framer is not used, but  
CH_DATA / CH_STR are used for data processing  
Value 75H : Bit Mode: Only for patterns without Code Violations  
Reset: 90H  
TSI Detection Mode Register  
A_TSIMODE  
Offset  
04DH  
Reset Value  
80H  
TSI Detection Mode Register  
&3+5$  
Z
76,*56<  
1
76,:&$  
76,'(702'  
Z
Z
Z
Data Sheet  
233  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
TSI Gap Resync Mode (only for TSIDETMODE=2H)  
TSIGRSYN  
7
w
0B  
Disabled - In this mode the GAPVAL and TSIGAP values are used,  
so the overall GAP time can be  
defined in T/16 steps.  
1B  
Enabled - PLL resync after TSI Gap  
In this mode the T/2 GAP resolution can be set in the 5 MSB  
TSIGAP register bits.  
GAPVAL value is not used. Prefered in TSI Gap Mode.  
Reset: 1H  
TSIWCA  
CPHRA  
6:3  
2
w
w
w
Wild Cards for 4 LSB chips of Correlator A  
If all 4 chips are 0, the whole TSI pattern for Correlator A is valid  
if a chip is 1, the corresponding chip from the TSI pattern is ignored  
Reset: 0H  
Code Phase Readjustment in Payload  
0B  
1B  
disabled - code polarity is defined by the TSI pattern  
enabled - code phase readjustment in payload  
Reset: 0H  
TSIDETMOD 1:0  
TSI Detection Mode  
00B 16 Bit TSI Mode - TSI configuration B AND A valid (sequentially),  
B is valid if A_TSILENA=16 (=10H) and the A_TSILENB > 0  
01B 8 Bit Parallel TSI Mode - TSI configurations A OR B (parallel)  
10B 8 Bit TSI Gap Mode - TSI configurations A AND B with Gap  
(sequentially with Gap between TSIA & TSIB)  
11B 8 Bit Extended TSI Mode - TSI configurations A OR B (parallel with  
matching information), dependent on found TSI A or B, 0 resp. 1 will  
be sent as 1st received bit.  
Reset: 0H  
TSI Length Register A  
A_TSILENA  
Offset  
04EH  
Reset Value  
00H  
TSI Length Register A  
8186('  
76,/(1$  
Z
Field  
Bits  
Type  
Description  
UNUSED  
7:5  
-
UNUSED  
Reset: 0H  
Data Sheet  
234  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
TSILENA  
4:0  
w
TSI A Length (in chips):  
(11H up to 1FH not used)  
Min: 01 = 1 Chip; Be aware that such small values makes it  
impossible to find the right phase of the pattern in the data stream and  
therefore wrong data and code violations can be generated.  
Max: 10h = 16 Chips = 8 Bit  
Reset: 00H  
TSI Length Register B  
A_TSILENB  
Offset  
04FH  
Reset Value  
00H  
TSI Length Register B  
8186('  
76,/(1%  
Z
Field  
Bits  
Type  
Description  
UNUSED  
7:5  
-
UNUSED  
Reset: 0H  
TSILENB  
4:0  
w
TSI B Length (in chips):  
(11H up to 1FH not used)  
Min:  
For 16 Bit TSI Mode:  
Min: 00h = 0 Chip (see also A_TSILENA)  
For all other TSI Modes:  
Min: 01h = 1 Chip (see also A_TSILENA)  
Max: 10h = 16 Chips = 8 Bit  
Reset: 00H  
TSI Gap Length Register  
A_TSIGAP  
Offset  
050H  
Reset Value  
00H  
TSI Gap Length Register  
76,*$3  
*$39$/  
Z
Z
Data Sheet  
235  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
TSIGAP  
7:3  
w
TSI Gap (T/2 bit resolution)  
1Fh: 15 1/2 bit gap  
00h: 0 bit gap  
TSIGAP is used to lock the PLL after TSI A is found, if the TSI detection  
mode 10b is selected.  
Reset: 00H  
GAPVAL  
2:0  
w
TSI Gap (T/16 bit resolution)  
111b: 7/16 bit gap  
000b: 0 bit gap  
GAPVAL is used to correct the DCO phase after TSIGAP time, if  
A_TSIMODE.TSIGRSYN is disabled  
Reset: 0H  
TSI Pattern Data Reference A Register 0  
A_TSIPTA0  
Offset  
051H  
Reset Value  
00H  
TSI Pattern Data Reference A Register 0  
76,37$ꢀ  
Z
Field  
Bits  
Type  
Description  
TSIPTA0  
7:0  
w
Data Pattern for TSI comparison: Bit 7...Bit 0(LSB) (in Chips)  
Reset: 00H  
TSI Pattern Data Reference A Register 1  
A_TSIPTA1  
Offset  
052H  
Reset Value  
00H  
TSI Pattern Data Reference A Register 1  
76,37$ꢁ  
Z
Field  
Bits  
Type  
Description  
TSIPTA1  
7:0  
w
Data Pattern for TSI comparison: Bit 15(MSB)...Bit 8 (in Chips)  
Reset: 00H  
Data Sheet  
236  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
TSI Pattern Data Reference B Register 0  
A_TSIPTB0  
Offset  
053H  
Reset Value  
00H  
TSI Pattern Data Reference B Register 0  
76,37%ꢀ  
Z
Field  
Bits  
Type  
Description  
TSIPTB0  
7:0  
w
Data Pattern for TSI comparison: Bit 7...Bit 0(LSB) (in Chips)  
Reset: 00H  
TSI Pattern Data Reference B Register 1  
A_TSIPTB1  
Offset  
054H  
Reset Value  
00H  
TSI Pattern Data Reference B Register 1  
76,37%ꢁ  
Z
Field  
Bits  
Type  
Description  
TSIPTB1  
7:0  
w
Data Pattern for TSI comparison: Bit 15(MSB)...Bit 8 (in Chips)  
Reset: 00H  
End Of Message Control Register  
A_EOMC  
Offset  
055H  
Reset Value  
05H  
End Of Message Control Register  
(206</2  
Z
(20&9  
Z
(20'$7/  
(1  
8186('  
5HV  
Z
Data Sheet  
237  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
UNUSED  
7:4  
-
UNUSED  
Reset: 0H  
EOMSYLO  
EOMCV  
2
1
0
w
w
w
EOM by Sync Loss  
0B  
1B  
Disabled  
Enabled  
Reset: 1H  
EOM by Code Violation  
0B  
1B  
Disabled  
Enabled  
Reset: 0H  
EOMDATLEN  
EOM by Data Length  
0B  
1B  
Disabled  
Enabled  
Reset: 1H  
EOM Data Length Limit Register  
A_EOMDLEN  
Offset  
056H  
Reset Value  
00H  
EOM Data Length Limit Register  
'$7/(1  
Z
Field  
Bits  
Type  
Description  
DATLEN  
7:0  
w
Length of Data Field in Telegram, only valid when EOM criterion is  
EOMDATLEN  
Counting of number of payload bits starts after the last TSI Bit. EOM will  
be generated after the last payload bit.  
In 8-bit extended TSI mode, the value must be the payload length + 1,  
because of the additional bit inserted (matching information).  
Min: 00h = 256 payload bits  
Reg. value 01h = 1 payload bit  
Max: FFh = 255 payload bits  
Reset: 00H  
EOM Data Length Limit Parallel Mode Register  
Data Sheet  
238  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
A_EOMDLENP  
Offset  
057H  
Reset Value  
00H  
EOM Data Length Limit Parallel Mode  
Register  
'$7/(13  
Z
Field  
Bits  
Type  
Description  
DATLENP  
7:0  
w
Length of Data Field in Telegram in Parallel Mode for TSI Pattern B,  
only valid when EOM criterion is EOMDATLEN  
Counting of number of payload bits starts after the last TSI Bit. EOM will  
be generated after the last payload bit.  
In 8-bit extended TSI mode, the value must be the payload length + 1,  
because of the additional bit inserted (matching information).  
Min: 00h = 256 payload bits  
Reg. value 01h = 1 payload bit  
Max: FFh = 255 payload bits  
Reset: 00H  
Channel Configuration Register  
A_CHCFG  
Offset  
058H  
Reset Value  
04H  
Channel Configuration Register  
8186('  
(;7352&  
(20ꢂ630  
12&  
07  
Z
Z
Z
Z
Field  
Bits  
Type  
Description  
UNUSED  
7
-
UNUSED  
Reset: 0H  
Data Sheet  
239  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
EXTPROC  
6:5  
w
External Data Processing  
00B No deactivation of functional blocks  
01B Chip Data (RX Mode: TMCDS)  
- no framing  
- FSYNC, MID and EOM interrupts disabled  
- only TOTIM_SYNC is active  
- random, equal and pattern WU are disabled (mapped to sync)  
10B Data + Data MF (RX Mode: TMMF, TMRDS)  
- no framing  
- FSYNC, MID and EOM interrupts disabled  
- all TOTIMs are inactive  
- only WU on RSSI (Level Criterion) possible  
11B not used  
Reset: 0H  
EOM2SPM  
4
w
w
Continue with Self Polling Mode after EOM detected in Run Mode  
Self Polling  
0B  
Disabled - stay in Run Mode Self Polling (next Payload Frame is  
expected)  
1B  
Enabled - leave Run Mode Self Polling after EOM  
Reset: 0H  
NOC  
3:2  
Number of Channels (Run Mode Slave / Self Polling Mode - Run  
Mode Self Polling)  
00B Channel 1 / Channel 1  
01B Channel 1 / Channel 1  
10B Channel 2 / Channel 1 + 2  
11B Channel 3 / Channel 1 + 2 + 3  
Reset: 1H  
MT  
1:0  
w
Modulation Type (Run Mode Slave / Self Polling Mode - Run Mode  
Self Polling)  
00B ASK / ASK - ASK  
01B FSK / FSK - FSK  
10B ASK / FSK - ASK  
11B FSK / ASK - FSK  
Reset: 0H  
PLL MMD Integer Value Register Channel 1  
A_PLLINTC1  
Offset  
059H  
Reset Value  
93H  
PLL MMD Integer Value Register Channel 1  
%$1'6(/  
3//,17&ꢁ  
Z
Z
Data Sheet  
240  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
BANDSEL  
7:6  
w
Frequency Band Selection  
00B not used  
01B 915MHz/868MHz  
10B 434MHz  
11B 315MHz  
Reset: 2H  
PLLINTC1  
5:0  
w
SDPLL Multi Modulus Divider Integer Offset value for Channel 1  
PLLINT(5:0) = dec2hex(INT(f_LO / f_XTAL))  
Reset: 13H  
PLL Fractional Division Ratio Register 0 Channel 1  
A_PLLFRAC0C1  
Offset  
Reset Value  
F3H  
PLL Fractional Division Ratio Register 0  
Channel 1  
05AH  
3//)5$&ꢀ&ꢁ  
Z
Field  
Bits  
Type  
Description  
PLLFRAC0C1 7:0  
w
Synthesizer channel frequency value (21 bits, bits 7:0), fractional  
division ratio for Channel 1  
PLLFRAC(20:0) = dec2hex(((f_LO / f_XTAL) - PLLINT) * 2^21)  
Reset: F3H  
PLL Fractional Division Ratio Register 1 Channel 1  
A_PLLFRAC1C1  
Offset  
Reset Value  
07H  
PLL Fractional Division Ratio Register 1  
Channel 1  
05BH  
3//)5$&ꢁ&ꢁ  
Z
Data Sheet  
241  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
PLLFRAC1C1 7:0  
w
Synthesizer channel frequency value (21 bits, bits 15:8), fractional  
division ratio for Channel 1  
PLLFRAC(20:0) = dec2hex(((f_LO / f_XTAL) - PLLINT) * 2^21)  
Reset: 07H  
PLL Fractional Division Ratio Register 2 Channel 1  
A_PLLFRAC2C1  
Offset  
05CH  
Reset Value  
09H  
PLL Fractional Division Ratio Register 2  
Channel 1  
3//)&20  
3&ꢁ  
8186('  
3//)5$&ꢂ&ꢁ  
Z
Z
Field  
UNUSED  
Bits  
7:6  
Type  
Description  
-
UNUSED  
Reset: 0H  
PLLFCOMPC1 5  
w
w
Fractional Spurii Compensation enable for Channel 1  
0B  
1B  
Disabled  
Enabled  
Reset: 0H  
PLLFRAC2C1 4:0  
Synthesizer channel frequency value (21 bits, bits 20:16), fractional  
division ratio for Channel 1  
PLLFRAC(20:0) = dec2hex(((f_LO / f_XTAL) - PLLINT) * 2^21)  
Reset: 09H  
PLL MMD Integer Value Register Channel 2  
A_PLLINTC2  
Offset  
05DH  
Reset Value  
13H  
PLL MMD Integer Value Register Channel 2  
8186('  
3//,17&ꢂ  
Z
Data Sheet  
242  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
UNUSED  
7:6  
-
UNUSED  
Reset: 0H  
PLLINTC2  
5:0  
w
SDPLL Multi Modulus Divider Integer Offset value for Channel 2  
PLLINT(5:0) = dec2hex(INT(f_LO / f_XTAL))  
Reset: 13H  
PLL Fractional Division Ratio Register 0 Channel 2  
A_PLLFRAC0C2  
Offset  
Reset Value  
F3H  
PLL Fractional Division Ratio Register 0  
Channel 2  
05EH  
3//)5$&ꢀ&ꢂ  
Z
Field  
Bits  
Type  
Description  
PLLFRAC0C2 7:0  
w
Synthesizer channel frequency value (21 bits, bits 7:0), fractional  
division ratio for Channel 2  
PLLFRAC(20:0) = dec2hex(((f_LO / f_XTAL) - PLLINT) * 2^21)  
Reset: F3H  
PLL Fractional Division Ratio Register 1 Channel 2  
A_PLLFRAC1C2  
Offset  
Reset Value  
07H  
PLL Fractional Division Ratio Register 1  
Channel 2  
05FH  
3//)5$&ꢁ&ꢂ  
Z
Field  
Bits  
Type  
Description  
PLLFRAC1C2 7:0  
w
Synthesizer channel frequency value (21 bits, bits 15:8), fractional  
division ratio for Channel 2  
PLLFRAC(20:0) = dec2hex(((f_LO / f_XTAL) - PLLINT) * 2^21)  
Reset: 07H  
Data Sheet  
243  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
PLL Fractional Division Ratio Register 2 Channel 2  
A_PLLFRAC2C2  
Offset  
060H  
Reset Value  
09H  
PLL Fractional Division Ratio Register 2  
Channel 2  
3//)&20  
3&ꢂ  
8186('  
3//)5$&ꢂ&ꢂ  
Z
Z
Field  
UNUSED  
Bits  
7:6  
Type  
Description  
-
UNUSED  
Reset: 0H  
PLLFCOMPC2 5  
w
w
Fractional Spurii Compensation enable for Channel 2  
0B  
1B  
Disabled  
Enabled  
Reset: 0H  
PLLFRAC2C2 4:0  
Synthesizer channel frequency value (21 bits, bits 20:16), fractional  
division ratio for Channel 2  
PLLFRAC(20:0) = dec2hex(((f_LO / f_XTAL) - PLLINT) * 2^21)  
Reset: 09H  
PLL MMD Integer Value Register Channel 3  
A_PLLINTC3  
Offset  
061H  
Reset Value  
13H  
PLL MMD Integer Value Register Channel 3  
8186('  
3//,17&ꢃ  
Z
Field  
Bits  
Type  
Description  
UNUSED  
7:6  
-
UNUSED  
Reset: 0H  
PLLINTC3  
5:0  
w
SDPLL Multi Modulus Divider Integer Offset value for Channel 3  
PLLINT(5:0) = dec2hex(INT(f_LO / f_XTAL))  
Reset: 13H  
PLL Fractional Division Ratio Register 0 Channel 3  
Data Sheet  
244  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
A_PLLFRAC0C3  
Offset  
062H  
Reset Value  
F3H  
PLL Fractional Division Ratio Register 0  
Channel 3  
3//)5$&ꢀ&ꢃ  
Z
Field  
Bits  
Type  
Description  
PLLFRAC0C3 7:0  
w
Synthesizer channel frequency value (21 bits, bits 7:0), fractional  
division ratio for Channel 3  
PLLFRAC(20:0) = dec2hex(((f_LO / f_XTAL) - PLLINT) * 2^21)  
Reset: F3H  
PLL Fractional Division Ratio Register 1 Channel 3  
A_PLLFRAC1C3  
Offset  
Reset Value  
07H  
PLL Fractional Division Ratio Register 1  
Channel 3  
063H  
3//)5$&ꢁ&ꢃ  
Z
Field  
Bits  
Type  
Description  
PLLFRAC1C3 7:0  
w
Synthesizer channel frequency value (21 bits, bits 15:8), fractional  
division ratio for Channel 3  
PLLFRAC(20:0) = dec2hex(((f_LO / f_XTAL) - PLLINT) * 2^21)  
Reset: 07H  
PLL Fractional Division Ratio Register 2 Channel 3  
A_PLLFRAC2C3  
Offset  
Reset Value  
09H  
PLL Fractional Division Ratio Register 2  
Channel 3  
064H  
Data Sheet  
245  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
3//)&20  
3&ꢃ  
8186('  
3//)5$&ꢂ&ꢃ  
Z
Z
Field  
UNUSED  
Bits  
7:6  
Type  
Description  
-
UNUSED  
Reset: 0H  
PLLFCOMPC3 5  
w
w
Fractional Spurii Compensation enable for Channel 3  
0B  
1B  
Disabled  
Enabled  
Reset: 0H  
PLLFRAC2C3 4:0  
Synthesizer channel frequency value (21 bits, bits 20:16), fractional  
division ratio for Channel 3  
PLLFRAC(20:0) = dec2hex(((f_LO / f_XTAL) - PLLINT) * 2^21)  
Reset: 09H  
Special Function Register Page Register  
SFRPAGE  
Offset  
080H  
Reset Value  
00H  
Special Function Register Page Register  
8186('  
6)53$*(  
Z
Field  
Bits  
Type  
Description  
UNUSED  
7:2  
-
UNUSED  
Reset: 00H  
SFRPAGE  
1:0  
w
Selection of Register Page File (Configuration A..D) for SPI  
communication  
00B Page 0 (Config. A, start address: 000H)  
01B Page 1 (Config. B, start address: 100H)  
10B Page 2 (Config. C, start address: 200H)  
11B Page 3 (Config. D, start address: 300H)  
Reset: 0H  
PP0 and PP1 Configuration Register  
PPCFG0  
Offset  
081H  
Reset Value  
PP0 and PP1 Configuration Register  
50H  
Data Sheet  
246  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
33ꢁ&)*  
33ꢀ&)*  
Z
Z
Field  
PP1CFG  
Bits  
Type  
w
Description  
7:4  
Port Pin 1 Output Signal Selection  
0000B CLK_OUT  
0001B RX_RUN  
0010B NINT  
0011B LOW  
0100B HIGH  
0101B DATA  
0110B DATA_MATCHFIL  
0111B n.u.  
1000B CH_DATA  
1001B CH_STR  
1010B RXD  
1011B RXSTR  
1100B n.u.  
1101B n.u.  
1110B n.u.  
1111B n.u.  
Reset: 5H  
PP0CFG  
3:0  
w
Port Pin 0 Output Signal Selection  
0000B CLK_OUT  
0001B RX_RUN  
0010B NINT  
0011B LOW  
0100B HIGH  
0101B DATA  
0110B DATA_MATCHFIL  
0111B n.u.  
1000B CH_DATA  
1001B CH_STR  
1010B RXD  
1011B RXSTR  
1100B n.u.  
1101B n.u.  
1110B n.u.  
1111B n.u.  
Reset: 0H  
PP2 and PP3 Configuration Register  
Data Sheet  
247  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
PPCFG1  
Offset  
082H  
Reset Value  
12H  
PP2 and PP3 Configuration Register  
33ꢃ&)*  
33ꢂ&)*  
Z
Z
Field  
Bits  
Type  
Description  
PP3CFG  
7:4  
w
Port Pin 3 Output Signal Selection  
0000B n.u.  
0001B RX_RUN  
0010B NINT  
0011B LOW  
0100B HIGH  
0101B DATA  
0110B DATA_MATCHFIL  
0111B n.u.  
1000B CH_DATA  
1001B CH_STR  
1010B RXD  
1011B RXSTR  
1100B n.u.  
1101B n.u.  
1110B n.u.  
1111B n.u.  
Reset: 1H  
PP2CFG  
3:0  
w
Port Pin 2 Output Signal Selection  
0000B CLK_OUT  
0001B RX_RUN  
0010B NINT  
0011B LOW  
0100B HIGH  
0101B DATA  
0110B DATA_MATCHFIL  
0111B n.u.  
1000B CH_DATA  
1001B CH_STR  
1010B RXD  
1011B RXSTR  
1100B n.u.  
1101B n.u.  
1110B n.u.  
1111B n.u.  
Reset: 2H  
Data Sheet  
248  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
PPx Port Configuration Register  
PPCFG2  
Offset  
083H  
Reset Value  
00H  
PPx Port Configuration Register  
33ꢃ,19  
Z
33ꢂ,19  
Z
33ꢁ,19  
Z
33ꢀ,19  
Z
33ꢃ+33(  
1
33ꢂ+33(  
1
33ꢁ+33(  
1
33ꢀ+33(  
1
Z
Z
Z
Z
Field  
Bits  
Type  
Description  
PP3 High Power Pad Enable  
PP3HPPEN  
PP2HPPEN  
PP1HPPEN  
PP0HPPEN  
PP3INV  
7
w
0B  
1B  
Normal  
High Power  
Reset: 0H  
6
5
4
3
2
1
0
w
w
w
w
w
w
w
PP2 High Power Pad Enable  
0B  
1B  
Normal  
High Power  
Reset: 0H  
PP1 High Power Pad Enable  
0B  
1B  
Normal  
High Power  
Reset: 0H  
PP0 High Power Pad Enable  
0B  
1B  
Normal  
High Power  
Reset: 0H  
PP3 Inversion Enable  
0B  
1B  
Not Inverted  
Inverted  
Reset: 0H  
PP2INV  
PP2 Inversion Enable  
0B  
1B  
Not Inverted  
Inverted  
Reset: 0H  
PP1INV  
PP1 Inversion Enable  
0B  
1B  
Not Inverted  
Inverted  
Reset: 0H  
PP0INV  
PP0 Inversion Enable  
0B  
1B  
Not Inverted  
Inverted  
Reset: 0H  
Data Sheet  
249  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
RX RUN Configuration Register 0  
RXRUNCFG0  
Offset  
084H  
Reset Value  
FFH  
RX RUN Configuration Register 0  
5;58133 5;58133 5;58133 5;58133 5;58133 5;58133 5;58133 5;58133  
ꢁ'  
ꢁ&  
ꢁ%  
ꢁ$  
ꢀ'  
ꢀ&  
ꢀ%  
ꢀ$  
Z
Z
Z
Z
Z
Z
Z
Z
Field  
Bits  
Type  
Description  
RXRUNPP1D  
RXRUNPP1C  
RXRUNPP1B  
RXRUNPP1A  
RXRUNPP0D  
RXRUNPP0C  
RXRUNPP0B  
RXRUNPP0A  
7
6
5
4
3
2
1
0
w
w
w
w
w
w
w
w
RXRUN Active Level on PP1 for Configuration D  
0B  
1B  
Active Low  
Active High  
Reset: 1H  
RXRUN Active Level on PP1 for Configuration C  
0B  
1B  
Active Low  
Active High  
Reset: 1H  
RXRUN Active Level on PP1 for Configuration B  
0B  
1B  
Active Low  
Active High  
Reset: 1H  
RXRUN Active Level on PP1 for Configuration A  
0B  
1B  
Active Low  
Active High  
Reset: 1H  
RXRUN Active Level on PP0 for Configuration D  
0B  
1B  
Active Low  
Active High  
Reset: 1H  
RXRUN Active Level on PP0 for Configuration C  
0B  
1B  
Active Low  
Active High  
Reset: 1H  
RXRUN Active Level on PP0 for Configuration B  
0B  
1B  
Active Low  
Active High  
Reset: 1H  
RXRUN Active Level on PP0 for Configuration A  
0B  
1B  
Active Low  
Active High  
Reset: 1H  
Data Sheet  
250  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
RX RUN Configuration Register 1  
RXRUNCFG1  
Offset  
085H  
Reset Value  
FFH  
RX RUN Configuration Register 1  
5;58133 5;58133 5;58133 5;58133 5;58133 5;58133 5;58133 5;58133  
ꢃ'  
ꢃ&  
ꢃ%  
ꢃ$  
ꢂ'  
ꢂ&  
ꢂ%  
ꢂ$  
Z
Z
Z
Z
Z
Z
Z
Z
Field  
Bits  
Type  
Description  
RXRUNPP3D  
RXRUNPP3C  
RXRUNPP3B  
RXRUNPP3A  
RXRUNPP2D  
RXRUNPP2C  
RXRUNPP2B  
RXRUNPP2A  
7
6
5
4
3
2
1
0
w
w
w
w
w
w
w
w
RXRUN Active Level on PP3 for Configuration D  
0B  
1B  
Active Low  
Active High  
Reset: 1H  
RXRUN Active Level on PP3 for Configuration C  
0B  
1B  
Active Low  
Active High  
Reset: 1H  
RXRUN Active Level on PP3 for Configuration B  
0B  
1B  
Active Low  
Active High  
Reset: 1H  
RXRUN Active Level on PP3 for Configuration A  
0B  
1B  
Active Low  
Active High  
Reset: 1H  
RXRUN Active Level on PP2 for Configuration D  
0B  
1B  
Active Low  
Active High  
Reset: 1H  
RXRUN Active Level on PP2 for Configuration C  
0B  
1B  
Active Low  
Active High  
Reset: 1H  
RXRUN Active Level on PP2 for Configuration B  
0B  
1B  
Active Low  
Active High  
Reset: 1H  
RXRUN Active Level on PP2 for Configuration A  
0B  
1B  
Active Low  
Active High  
Reset: 1H  
Data Sheet  
251  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Clock Divider Register 0  
CLKOUT0  
Offset  
086H  
Reset Value  
0BH  
Clock Divider Register 0  
&/.287ꢀ  
Z
Field  
Bits  
Type  
Description  
CLKOUT0  
7:0  
w
Clock Out Divider: CLKOUT(19:0) = CLKOUT2(MSB) & CLKOUT1 &  
CLKOUT0(LSB)  
Min: 00002h = Clock divided by 2*2  
Max: FFFFFh = Clock divided by ((2^20)-1)*2  
Reg. value 00000h = Clock divided by (2^20)*2  
Reset: 0BH  
Clock Divider Register 1  
CLKOUT1  
Offset  
087H  
Reset Value  
00H  
Clock Divider Register 1  
&/.287ꢁ  
Z
Field  
Bits  
Type  
Description  
CLKOUT1  
7:0  
w
Clock Out Divider: CLKOUT(19:0) = CLKOUT2(MSB) & CLKOUT1 &  
CLKOUT0(LSB)  
Min: 00002h = Clock divided by 2*2  
Max: FFFFFh = Clock divided by ((2^20)-1)*2  
Reg. value 00000h = Clock divided by (2^20)*2  
Reset: 00H  
Clock Divider Register 2  
CLKOUT2  
Offset  
088H  
Reset Value  
00H  
Clock Divider Register 2  
Data Sheet  
252  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
8186('  
&/.287ꢂ  
Z
Field  
Bits  
Type  
Description  
UNUSED  
7:4  
-
UNUSED  
Reset: 0H  
CLKOUT2  
3:0  
w
Clock Out Divider: CLKOUT(19:0) = CLKOUT2(MSB) & CLKOUT1 &  
CLKOUT0(LSB)  
Min: 00002h = Clock divided by 2*2  
Max: FFFFFh = Clock divided by ((2^20)-1)*2  
Reg. value 00000h = Clock divided by (2^20)*2  
Reset: 0H  
RF Control Register  
RFC  
Offset  
089H  
Reset Value  
07H  
RF Control Register  
5)2))  
Z
8186('  
,)$77  
Z
Field  
Bits  
Type  
Description  
UNUSED  
7:5  
-
UNUSED  
Reset: 0H  
RFOFF  
4
w
Switch off RF-path (for RSSI trimming)  
0B  
1B  
RF path enabled  
RF path disabled  
Reset: 0H  
Data Sheet  
253  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
IFATT  
3:0  
w
Adjust IF attenuation from LNA_IN to IF_OUT (Double-Down  
Conversion / Single-Down Conversion)  
Used to trim out external component tolerances.  
0000B 0 dB / n.u.  
0001B 0.8 dB / n.u.  
0010B 1.6 dB / n.u.  
0011B 2.4 dB / n.u.  
0100B 3.2 dB / 0 dB  
0101B 4.0 dB / 0.8 dB  
0110B 4.8 dB / 1.6 dB  
0111B 5.6 dB / 2.4 dB  
1000B 6.4 dB / 3.2 dB  
1001B 7.2 dB / 4.0 dB  
1010B 8.0 dB / 4.8 dB  
1011B 8.8 dB / n.u.  
1100B 9.6 dB / n.u.  
1101B 10.4 dB / n.u.  
1110B 11.2 dB / n.u.  
1111B 12.0 dB / n.u.  
Reset: 7H  
BPF Calibration Configuration Register 0  
BPFCALCFG0  
Offset  
08AH  
Reset Value  
07H  
BPF Calibration Configuration Register 0  
8186('  
5HV  
%3)&$/67  
Z
Field  
Bits  
Type  
Description  
UNUSED  
7:5  
-
UNUSED  
Reset: 0H  
BPFCALST  
3:0  
w
BPF Calibration Time (use default = 07H)  
Min: 0h= Txtal * 80 * 7 * (0 + 4)  
Max: Fh= Txtal * 80 * 7 * (15 + 4)  
Reset: 7H  
BPF Calibration Configuration Register 1  
BPFCALCFG1  
Offset  
08BH  
Reset Value  
04H  
BPF Calibration Configuration Register 1  
Data Sheet  
254  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
8186('  
%3)&$/%:  
Z
Field  
Bits  
Type  
Description  
UNUSED  
7:6  
-
UNUSED  
Reset: 0H  
BPFCALBW  
5:0  
w
Band Pass Filter Bandwidth Selection during Calibration  
04H - 50 kHz (=default)  
0DH - 80 kHz  
16H - 125 kHz  
1FH - 200 kHz  
27H - 300 kHz  
Reset: 04H  
XTAL Coarse Calibration Register  
XTALCAL0  
Offset  
08CH  
Reset Value  
10H  
XTAL Coarse Calibration Register  
8186('  
;7$/6:&  
Z
Field  
Bits  
Type  
Description  
UNUSED  
7:5  
-
UNUSED  
Reset: 0H  
XTALSWC  
4:0  
w
Xtal Trim Capacitor Value  
Min 00h: 0pF  
Value 01h: 1pF  
Max 18h: 24pF  
higher values than 18h are automatically mapped to 24pF  
Reset: 10H  
XTAL Fine Calibration Register  
XTALCAL1  
Offset  
08DH  
Reset Value  
00H  
XTAL Fine Calibration Register  
Data Sheet  
255  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
;7$/6:) ;7$/6:) ;7$/6:) ;7$/6:)  
8186('  
Z
Z
Z
Z
Field  
Bits  
Type  
Description  
UNUSED  
7:4  
-
UNUSED  
Reset: 0H  
XTALSWF3  
3
2
1
0
w
Connect 500 fF XTAL Trim capacitor  
0B  
1B  
not connected  
connected  
Reset: 0H  
XTALSWF2  
XTALSWF1  
XTALSWF0  
w
w
w
Connect 250 fF XTAL Trim capacitor  
0B  
1B  
not connected  
connected  
Reset: 0H  
Connect 125 fF XTAL Trim capacitor  
0B  
1B  
not connected  
connected  
Reset: 0H  
Connect 62.5 fF XTAL Trim capacitor  
0B  
1B  
not connected  
connected  
Reset: 0H  
RSSI Monitor Configuration Register  
RSSIMONC  
Offset  
08EH  
Reset Value  
01H  
RSSI Monitor Configuration Register  
566,021  
(1  
8186('  
5HV  
Z
Field  
Bits  
Type  
Description  
UNUSED  
7:3  
-
UNUSED  
Reset: 00H  
RSSIMONEN  
0
w
Enable Buffer for RSSI pin  
0B  
1B  
Disabled  
Enabled  
Reset: 1H  
Data Sheet  
256  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
ADC Input Selection Register  
ADCINSEL  
Offset  
08FH  
Reset Value  
00H  
ADC Input Selection Register  
8186('  
$'&,16(/  
Z
Field  
Bits  
Type  
Description  
UNUSED  
7:3  
-
UNUSED  
Reset: 00H  
ADCINSEL  
2:0  
w
ADC Input Selection  
000B RSSI  
001B Temperature  
010B VDDD / 2  
011B n.u.  
100B n.u.  
101B n.u.  
110B n.u.  
111B n.u.  
Reset: 0H  
RSSI Offset Register  
RSSIOFFS  
Offset  
090H  
Reset Value  
80H  
RSSI Offset Register  
566,2))6  
Z
Field  
Bits  
Type  
Description  
RSSIOFFS  
7:0  
w
RSSI Offset Compensation Value  
Min: 00h= -256  
Max: FFh= 254  
Reset: 80H  
RSSI Slope Register  
Data Sheet  
257  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
RSSISLOPE  
Offset  
091H  
Reset Value  
80H  
RSSI Slope Register  
566,6/23(  
Z
Field  
Bits  
Type  
Description  
RSSISLOPE  
7:0  
w
RSSI Slope Compensation Value (Multiplication Value)  
Multiplication Factor = RSSISLOPE * 2^-7  
Min: 00h= 0.0  
Max: FFh= 1.992  
Reset: 80H  
CDR Data Rate Acceptance Positive Threshold Register  
CDRDRTHRP  
Offset  
092H  
Reset Value  
1EH  
CDR Data Rate Acceptance Positive  
Threshold Register  
&'5'57+53  
Z
Field  
Bits  
Type  
Description  
CDRDRTHRP 7:0  
w
Data Rate Acceptance Positive Threshold Value  
This feature can be turned on with *_CDRRI.DRLIMEN.  
Higher the value, more percent of the datarate is tolerated.  
Default => 10%  
Reset: 1EH  
CDR Data Rate Acceptance Negative Threshold Register  
CDRDRTHRN  
Offset  
093H  
Reset Value  
23H  
CDR Data Rate Acceptance Negative  
Threshold Register  
Data Sheet  
258  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
&'5'57+51  
Z
Field  
Bits  
Type  
Description  
CDRDRTHRN 7:0  
w
Data Rate Acceptance Negative Threshold Value  
This feature can be turned on with *_CDRRI.DRLIMEN.  
Higher the value, more percent of the datarate is tolerated.  
Default => 10%  
Reset: 23H  
Interrupt Mask Register 0  
IM0  
Offset  
094H  
Reset Value  
00H  
Interrupt Mask Register 0  
,0(20%  
Z
,00,')%  
Z
,0:8%  
Z
,0(20$  
Z
,00,')$  
Z
,0:8$  
Z
,0)6<1&  
%
,0)6<1&  
$
Z
Z
Field  
Bits  
Type  
Description  
Mask Interrupt on "End of Message" for Configuration B  
IMEOMB  
IMMIDFB  
IMFSYNCB  
IMWUB  
7
w
0B  
1B  
Interrupt enabled  
Interrupt disabled  
Reset: 0H  
6
5
4
3
w
w
w
w
Mask Interrupt on "Message ID Found" for Configuration B  
0B  
1B  
Interrupt enabled  
Interrupt disabled  
Reset: 0H  
Mask Interrupt on "Frame Sync" for Configuration B  
0B  
1B  
Interrupt enabled  
Interrupt disabled  
Reset: 0H  
Mask Interrupt on "Wake-up" for Configuration B  
0B  
1B  
Interrupt enabled  
Interrupt disabled  
Reset: 0H  
IMEOMA  
Mask Interrupt on "End of Message" for Configuration A  
0B  
1B  
Interrupt enabled  
Interrupt disabled  
Reset: 0H  
Data Sheet  
259  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
Mask Interrupt on "Message ID Found" for Configuration A  
IMMIDFA  
2
w
0B  
1B  
Interrupt enabled  
Interrupt disabled  
Reset: 0H  
IMFSYNCA  
IMWUA  
1
0
w
w
Mask Interrupt on "Frame Sync" for Configuration A  
0B  
1B  
Interrupt enabled  
Interrupt disabled  
Reset: 0H  
Mask Interrupt on "Wake-up" for Configuration A  
0B  
1B  
Interrupt enabled  
Interrupt disabled  
Reset: 0H  
Interrupt Mask Register 1  
IM1  
Offset  
095H  
Reset Value  
00H  
Interrupt Mask Register 1  
,0(20'  
Z
,00,')'  
Z
,0:8'  
Z
,00,')&  
Z
,0:8&  
Z
,0)6<1&  
'
,0)6<1&  
&
,0(20&  
Z
Z
Z
Field  
Bits  
Type  
Description  
Mask Interrupt on "End of Message" for Configuration D  
IMEOMD  
IMMIDFD  
IMFSYNCD  
IMWUD  
7
w
0B  
1B  
Interrupt enabled  
Interrupt disabled  
Reset: 0H  
6
5
4
3
w
w
w
w
Mask Interrupt on "Message ID Found" for Configuration D  
0B  
1B  
Interrupt enabled  
Interrupt disabled  
Reset: 0H  
Mask Interrupt on "Frame Sync" for Configuration D  
0B  
1B  
Interrupt enabled  
Interrupt disabled  
Reset: 0H  
Mask Interrupt on "Wake-up" for Configuration D  
0B  
1B  
Interrupt enabled  
Interrupt disabled  
Reset: 0H  
IMEOMC  
Mask Interrupt on "End of Message" for Configuration C  
0B  
1B  
Interrupt enabled  
Interrupt disabled  
Reset: 0H  
Data Sheet  
260  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
Mask Interrupt on "Message ID Found" for Configuration C  
IMMIDFC  
2
w
0B  
1B  
Interrupt enabled  
Interrupt disabled  
Reset: 0H  
IMFSYNCC  
IMWUC  
1
0
w
w
Mask Interrupt on "Frame Sync" for Configuration C  
0B  
1B  
Interrupt enabled  
Interrupt disabled  
Reset: 0H  
Mask Interrupt on "Wake-up" for Configuration C  
0B  
1B  
Interrupt enabled  
Interrupt disabled  
Reset: 0H  
Self Polling Mode Active Periods Register  
SPMAP  
Offset  
096H  
Reset Value  
01H  
Self Polling Mode Active Periods Register  
8186('  
630$3  
Z
Field  
Bits  
Type  
Description  
UNUSED  
7:5  
-
UNUSED  
Reset: 0H  
SPMAP  
4:0  
w
Self Polling Mode Active Periods value  
Min: 01h = 1 (Master) Period  
Max: 1Fh = 31(Master) Periods  
Reg. value 00h = 32 (Master) Periods  
Reset: 01H  
Self Polling Mode Idle Periods Register  
SPMIP  
Offset  
097H  
Reset Value  
01H  
Self Polling Mode Idle Periods Register  
630,3  
Z
Data Sheet  
261  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
SPMIP  
7:0  
w
Self Polling Mode Idle Periods value  
Min: 01h = 1 (Master) Period  
Max: FFh = 255 (Master) Periods  
Reg. value 00h = 256 (Master) Periods  
Reset: 01H  
Self Polling Mode Control Register  
SPMC  
Offset  
098H  
Reset Value  
00H  
Self Polling Mode Control Register  
630$,(1  
Z
8186('  
6306(/  
Z
Field  
Bits  
Type  
Description  
UNUSED  
7:3  
-
UNUSED  
Reset: 00H  
SPMAIEN  
SPMSEL  
2
w
Self Polling Mode Active Idle Enable  
0B  
1B  
Disabled  
Enabled  
Reset: 0H  
1:0  
w
Self Polling Mode Selection  
00B Constant On/Off (COO)  
01B Fast Fall Back to Sleep (FFB)  
10B Mixed Mode (MM, Combination of Const On/Off and Fast Fall Back  
to Sleep for different Configurations: COO, FFB, FFB, FFB)  
11B Permanent Wake Up Search (PWUS)  
Reset: 0H  
Self Polling Mode Reference Timer Register  
SPMRT  
Offset  
099H  
Reset Value  
01H  
Self Polling Mode Reference Timer Register  
63057  
Z
Data Sheet  
262  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
SPMRT  
7:0  
w
Self Polling Mode Reference Timer value  
The output of this timer is used as input for the On/Off Timer  
Incoming Periodic Time = 64 / fsys  
Output Periodic Time = TRT = (64 * SPMRT) / fsys  
Min: 01h = (64*1) / fsys  
Max: 00h = (64 * 256) / fsys  
Reset: 01H  
Self Polling Mode Off Time Register 0  
SPMOFFT0  
Offset  
09AH  
Reset Value  
01H  
Self Polling Mode Off Time Register 0  
6302))7ꢀ  
Z
Field  
Bits  
Type  
Description  
SPMOFFT0  
7:0  
w
Self Polling Mode Off Time value: SPMOFFT(13:0) =  
SPMOFFT1(MSB) & SPMOFFT0(LSB)  
Off -Time = TRT * SPMOFFT  
Min: 0001h = 1 * TRT  
Reg.Value 3FFFh = 16383 * TRT  
Max: 0000h = 16384 * TRT  
Reset: 01H  
Self Polling Mode Off Time Register 1  
SPMOFFT1  
Offset  
09BH  
Reset Value  
00H  
Self Polling Mode Off Time Register 1  
8186('  
6302))7ꢁ  
Z
Field  
Bits  
7:6  
Type  
Description  
UNUSED  
-
UNUSED  
Reset: 0H  
Data Sheet  
263  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
SPMOFFT1  
5:0  
w
Self Polling Mode Off Time value: SPMOFFT(13:0) =  
SPMOFFT1(MSB) & SPMOFFT0(LSB)  
Off -Time = TRT * SPMOFFT  
Min: 0001h = 1 * TRT  
Reg.Value 3FFFh = 16383 * TRT  
Max: 0000h = 16384 * TRT  
Reset: 00H  
Self Polling Mode On Time Config A Register 0  
SPMONTA0  
Offset  
09CH  
Reset Value  
01H  
Self Polling Mode On Time Config A Register  
0
630217$ꢀ  
Z
Field  
Bits  
Type  
Description  
SPMONTA0  
7:0  
w
Set Value Self Polling Mode On Time: SPMONTA(13:0) =  
SPMONTA1(MSB) & SPMONTA0(LSB)  
On-Time = TRT *SPMONTA  
Min: 0001h = 1*TRT  
Reg.Value: 3FFFh = 16383*TRT  
Max: 0000h = 16384*TRT  
Reset: 01H  
Self Polling Mode On Time Config A Register 1  
SPMONTA1  
Offset  
09DH  
Reset Value  
00H  
Self Polling Mode On Time Config A Register  
1
8186('  
630217$ꢁ  
Z
Data Sheet  
264  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
UNUSED  
7:6  
-
UNUSED  
Reset: 0H  
SPMONTA1  
5:0  
w
Set Value Self Polling Mode On Time: SPMONTA(13:0) =  
SPMONTA1(MSB) & SPMONTA0(LSB)  
On-Time = TRT *SPMONTA  
Min: 0001h = 1*TRT  
Reg.Value: 3FFFh = 16383*TRT  
Max: 0000h = 16384*TRT  
Reset: 00H  
Self Polling Mode On Time Config B Register 0  
SPMONTB0  
Offset  
09EH  
Reset Value  
01H  
Self Polling Mode On Time Config B Register  
0
630217%ꢀ  
Z
Field  
Bits  
Type  
Description  
SPMONTB0  
7:0  
w
Set Value Self Polling Mode On Time: SPMONTB(13:0) =  
SPMONTB1(MSB) & SPMONTB0(LSB)  
On-Time = TRT *SPMONTB  
Min: 0001h = 1*TRT  
Reg.Value: 3FFFh = 16383*TRT  
Max: 0000h = 16384*TRT  
Reset: 01H  
Self Polling Mode On Time Config B Register 1  
SPMONTB1  
Offset  
09FH  
Reset Value  
00H  
Self Polling Mode On Time Config B Register  
1
8186('  
630217%ꢁ  
Z
Data Sheet  
265  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
UNUSED  
7:6  
-
UNUSED  
Reset: 0H  
SPMONTB1  
5:0  
w
Set Value Self Polling Mode On Time: SPMONTB(13:0) =  
SPMONTB1(MSB) & SPMONTB0(LSB)  
On-Time = TRT *SPMONTB  
Min: 0001h = 1*TRT  
Reg.Value: 3FFFh = 16383*TRT  
Max: 0000h = 16384*TRT  
Reset: 00H  
Self Polling Mode On Time Config C Register 0  
SPMONTC0  
Offset  
0A0H  
Reset Value  
01H  
Self Polling Mode On Time Config C Register  
0
630217&ꢀ  
Z
Field  
Bits  
Type  
Description  
SPMONTC0  
7:0  
w
Set Value Self Polling Mode On Time: SPMONTC(13:0) =  
SPMONTC1(MSB) & SPMONTC0(LSB)  
On-Time = TRT *SPMONTC  
Min: 0001h = 1*TRT  
Reg.Value: 3FFFh = 16383*TRT  
Max: 0000h = 16384*TRT  
Reset: 01H  
Self Polling Mode On Time Config C Register 1  
SPMONTC1  
Offset  
0A1H  
Reset Value  
00H  
Self Polling Mode On Time Config C Register  
1
8186('  
630217&ꢁ  
Z
Data Sheet  
266  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
UNUSED  
7:6  
-
UNUSED  
Reset: 0H  
SPMONTC1  
5:0  
w
Set Value Self Polling Mode On Time: SPMONTC(13:0) =  
SPMONTC1(MSB) & SPMONTC0(LSB)  
On-Time = TRT *SPMONTC  
Min: 0001h = 1*TRT  
Reg.Value: 3FFFh = 16383*TRT  
Max: 0000h = 16384*TRT  
Reset: 00H  
Self Polling Mode On Time Config D Register 0  
SPMONTD0  
Offset  
0A2H  
Reset Value  
01H  
Self Polling Mode On Time Config D Register  
0
630217'ꢀ  
Z
Field  
Bits  
Type  
Description  
SPMONTD0  
7:0  
w
Set Value Self Polling Mode On Time: SPMONTD(13:0) =  
SPMONTD1(MSB) & SPMONTD0(LSB)  
On-Time = TRT *SPMONTD  
Min: 0001h = 1*TRT  
Reg.Value: 3FFFh = 16383*TRT  
Max: 0000h = 16384*TRT  
Reset: 01H  
Self Polling Mode On Time Config D Register 1  
SPMONTD1  
Offset  
0A3H  
Reset Value  
00H  
Self Polling Mode On Time Config D Register  
1
8186('  
630217'ꢁ  
Z
Data Sheet  
267  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
UNUSED  
7:6  
-
UNUSED  
Reset: 0H  
SPMONTD1  
5:0  
w
Set Value Self Polling Mode On Time: SPMONTD(13:0) =  
SPMONTD1(MSB) & SPMONTD0(LSB)  
On-Time = TRT *SPMONTD  
Min: 0001h = 1*TRT  
Reg.Value: 3FFFh = 16383*TRT  
Max: 0000h = 16384*TRT  
Reset: 00H  
External Processing Command Register  
EXTPCMD  
Offset  
0A4H  
Reset Value  
00H  
External Processing Command Register  
(;7(20  
ZF  
(;7727,  
0
5HV  
8186('  
$*&0$1) $)&0$1)  
ZF ZF  
ZF  
Field  
Bits  
Type  
Description  
UNUSED  
6:4  
-
UNUSED  
Reset: 0H  
AGCMANF  
3
wc  
AGC Manual Freeze  
When *_AGCSFCFG.AGCFREEZE set to SPI Command, this bit sets the  
AGC to freeze mode  
0B  
1B  
Inactive  
Active  
Reset: 0H  
AFCMANF  
EXTTOTIM  
2
1
wc  
wc  
AFC Manual Freeze  
When *_AFCSFCFG.AFCFREEZE set to SPI Command, this bit sets the  
AFC to freeze mode  
0B  
1B  
Inactive  
Active  
Reset: 0H  
Force TOTIM signal in external data processing mode  
(*_CHCFG.EXTROC = 1H or 2H)  
0B  
1B  
no external TOTIM signal forced  
external TOTIM signal forced  
Reset: 0H  
Data Sheet  
268  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
EXTEOM  
0
wc  
Force EOM signal in external data processing mode  
(*_CHCFG.EXTROC = 1H or 2H)  
0B  
1B  
no external EOM signal forced  
external EOM signal forced  
Reset: 0H  
Chip Mode Control Register 1  
CMC1  
Offset  
0A5H  
Reset Value  
04H  
Chip Mode Control Register 1  
),)2/.  
Z
(20ꢂ1&)  
*
727,0ꢂ1  
&+  
,1,7),)  
2
)6,1,7)  
,)2  
;7$/+30  
6
8186('  
Z
Z
Z
Z
Z
Field  
Bits  
Type  
Description  
UNUSED  
7:6  
-
UNUSED  
Reset: 0H  
EOM2NCFG  
5
w
Continue with next Configuration in Self Polling Mode after EOM  
detected in Run Mode Self Polling  
0B  
1B  
Continue with Configuration A in Self Polling Mode  
Continue with next Configuration in Self Polling Mode  
Reset: 0H  
TOTIM2NCH  
4
3
w
Continue with next RF channel in Self Polling Mode after TOTIM  
detected in Run Mode Self Polling. In case of single RF channel  
application this means "continue with next Configuration" instead  
of "continue with next RF channel".  
0B  
1B  
Continue with Configuration A in Self Polling Mode  
Continue with next RF channel in Self Polling Mode  
Reset: 0H  
INITFIFO  
w
Initialization of FIFO at Cycle Start  
This Initialization of the FIFO can be configured in both Run Mode Slave  
and Self Polling Mode. In Run Mode Slave this happens at the beginning.  
In Self Polling Mode the initialization is done after Wake up found  
(switching from Self Polling Mode to Run Mode Self Polling).  
0B  
1B  
Initialization disabled  
Initialization enabled  
Reset: 0H  
FSINITFIFO  
Data Sheet  
2
w
Initialization of FIFO at Frame Start  
0B  
1B  
Initialization disabled  
Initialization enabled  
Reset: 1H  
269  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
FIFOLK  
1
w
Lock Data FIFO at EOM  
0B  
1B  
FIFO lock is disabled  
FIFO lock is enabled at EOM. This also locks the digital receive  
chain at EOM until release from FIFO lock state.  
Reset: 0H  
XTALHPMS  
0
w
XTAL High Precision Mode in Sleep Mode  
0B  
1B  
Disabled  
Enabled  
Reset: 0H  
Chip Mode Control Register 0  
CMC0  
Offset  
0A6H  
Reset Value  
10H  
Chip Mode Control Register 0  
+2/'  
Z
6/5;(1  
Z
06(/  
Z
6'2+33(  
1
,1,73//  
+2/'  
&/.287(  
1
0&6  
Z
Z
Z
Z
Field  
SDOHPPEN  
Bits  
Type  
Description  
7
w
SDO High Power Pad Enable  
0B  
1B  
Normal  
High Power  
Reset: 0H  
INITPLLHOLD 6  
w
Init PLL after coming from HOLD (when new channel programmed).  
This requires an additional Channel Hop Time before initialization of the  
Digital Receiver.  
0B  
1B  
No init of PLL  
Init of PLL  
Reset: 0H  
HOLD  
5
4
w
w
Holds the chip in the Register Configuration state (only in Run Mode  
Slave)  
0B  
1B  
Normal Operation  
Jump into the Register Config state Hold  
Reset: 0H  
CLKOUTEN  
CLK_OUT Enable  
0B  
1B  
Disabled  
Enable programmable clock output  
Reset: 1H  
Data Sheet  
270  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
MCS  
3:2  
w
Multi Configuration Selection (Run Mode Slave / Self Polling Mode)  
00B Config A / Config A  
01B Config B / Config A + B  
10B Config C / Config A + B + C  
11B Config D / Config A + B + C + D  
Reset: 0H  
SLRXEN  
MSEL  
1
0
w
w
Slave Receiver Enable  
This Bit is only used in Operating Mode Run Mode Slave / Sleep Mode  
0B  
1B  
Receiver is in Sleep Mode  
Receiver is in Run Mode Slave  
Reset: 0H  
Operating Mode Selection  
0B  
1B  
Run Mode Slave / Sleep Mode  
Self Polling Mode  
Reset: 0H  
Wakeup Peak Detector Readout Register  
RSSIPWU  
Offset  
0A7H  
Reset Value  
00H  
Wakeup Peak Detector Readout Register  
566,3:8  
U
Field  
Bits  
Type  
Description  
RSSIPWU  
7:0  
r
Peak Detector Level at Wakeup  
Set at every WU event and also set at the end of every  
configuration/channel cycle within a Self Polling period.  
Cleared at Reset only.  
Reset: 00H  
Interrupt Status Register 0  
IS0  
Offset  
0A8H  
Reset Value  
FFH  
Interrupt Status Register 0  
(20%  
UF  
0,')%  
UF  
:8%  
UF  
(20$  
UF  
0,')$  
UF  
)6<1&$  
UF  
:8$  
UF  
)6<1&%  
UF  
Data Sheet  
271  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
EOMB  
7
rc  
Interrupt Request by "End of Message" from Configuration B (Reset  
event sets all Bits to 1)  
0B  
1B  
Not detected  
Detected  
Reset: 1H  
MIDFB  
FSYNCB  
WUB  
6
5
4
3
2
1
0
rc  
rc  
rc  
rc  
rc  
rc  
rc  
Interrupt Request by "Message ID Found" from Configuration B  
(Reset event sets all Bits to 1)  
0B  
1B  
Not detected  
Detected  
Reset: 1H  
Interrupt Request by "Frame Sync" from Configuration B (Reset  
event sets all Bits to 1)  
0B  
1B  
Not detected  
Detected  
Reset: 1H  
Interrupt Request by "Wake Up" from Configuration B (Reset event  
sets all Bits to 1)  
0B  
1B  
Not detected  
Detected  
Reset: 1H  
EOMA  
MIDFA  
FSYNCA  
WUA  
Interrupt Request by "End of Message" from Configuration A (Reset  
event sets all Bits to 1)  
0B  
1B  
Not detected  
Detected  
Reset: 1H  
Interrupt Request by "Message ID Found" from Configuration A  
(Reset event sets all Bits to 1)  
0B  
1B  
Not detected  
Detected  
Reset: 1H  
Interrupt Request by "Frame Sync" from Configuration A (Reset  
event sets all Bits to 1)  
0B  
1B  
Not detected  
Detected  
Reset: 1H  
Interrupt Request by "Wake Up" from Configuration A (Reset event  
sets all Bits to 1)  
0B  
1B  
Not detected  
Detected  
Reset: 1H  
Interrupt Status Register 1  
Data Sheet  
272  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
IS1  
Offset  
0A9H  
Reset Value  
FFH  
Interrupt Status Register 1  
(20'  
UF  
0,')'  
UF  
)6<1&'  
UF  
:8'  
UF  
(20&  
UF  
0,')&  
UF  
)6<1&&  
UF  
:8&  
UF  
Field  
Bits  
Type  
Description  
EOMD  
MIDFD  
FSYNCD  
WUD  
7
rc  
Interrupt Request by "End of Message" from Configuration D (Reset  
event sets all Bits to 1)  
0B  
1B  
Not detected  
Detected  
Reset: 1H  
6
5
4
3
2
1
rc  
rc  
rc  
rc  
rc  
rc  
Interrupt Request by "Message ID Found" from Configuration D  
(Reset event sets all Bits to 1)  
0B  
1B  
Not detected  
Detected  
Reset: 1H  
Interrupt Request by "Frame Sync" from Configuration D (Reset  
event sets all Bits to 1)  
0B  
1B  
Not detected  
Detected  
Reset: 1H  
Interrupt Request by "Wake Up" from Configuration D (Reset event  
sets all Bits to 1)  
0B  
1B  
Not detected  
Detected  
Reset: 1H  
EOMC  
MIDFC  
FSYNCC  
Interrupt Request by "End of Message" from Configuration C (Reset  
event sets all Bits to 1)  
0B  
1B  
Not detected  
Detected  
Reset: 1H  
Interrupt Request by "Message ID Found" from Configuration C  
(Reset event sets all Bits to 1)  
0B  
1B  
Not detected  
Detected  
Reset: 1H  
Interrupt Request by "Frame Sync" from Configuration C (Reset  
event sets all Bits to 1)  
0B  
1B  
Not detected  
Detected  
Reset: 1H  
Data Sheet  
273  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
WUC  
0
rc  
Interrupt Request by "Wake Up" from Configuration C (Reset event  
sets all Bits to 1)  
0B  
1B  
Not detected  
Detected  
Reset: 1H  
RF PLL Actual Channel and Configuration Register  
RFPLLACC  
Offset  
0AAH  
Reset Value  
00H  
RF PLL Actual Channel and Configuration  
Register  
3/'/(1  
5063$&)*  
5063$&  
630$&  
U
U
U
U
Field  
Bits  
Type  
Description  
PLDLEN  
7:6  
5:4  
3:2  
1:0  
r
r
r
r
Payload Data Length stored at TSI detection of the next message,  
PLDLEN(9:0) = RFPLLACC.PLDLEN(MSB) & PLDLEN(LSB).  
Cleared with INIT FIFO  
Min. 000h = 0 bits received  
Max. 3FFh = 1023 bits received  
Reset: 0H  
RMSPACFG  
RMSPAC  
SPMAC  
RF PLL Run Mode Self Polling Actual Configuration  
00B Configuration A  
01B Configuration B  
10B Configuration C  
11B Configuration D  
Reset: 0H  
RF PLL Run Mode Self Polling Actual Channel  
00B No valid data in FIFO from any channel and configuration  
01B Data in FIFO belong to Channel 1  
10B Data in FIFO belong to Channel 2  
11B Data in FIFO belong to Channel 3  
Reset: 0H  
RF PLL Self Polling Mode Actual Channel  
00B No Wake Up from any Channel was actually found  
01B Wake Up was found from Channel 1  
10B Wake Up was found from Channel 2  
11B Wake Up was found from Channel 3  
Reset: 0H  
Data Sheet  
274  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
RSSI Peak Detector Readout Register  
RSSIPRX  
Offset  
0ABH  
Reset Value  
00H  
RSSI Peak Detector Readout Register  
566,35;  
UF  
Field  
Bits  
Type  
Description  
RSSIPRX  
7:0  
rc  
RSSI Peak Level during Receiving  
Tracking is active when Digital Receiver is enabled  
Set at higher peak levels than stored  
Cleared at Reset and SPI read out  
Reset: 00H  
RSSI Payload Peak Detector Readout Register  
RSSIPPL  
Offset  
0ACH  
Reset Value  
00H  
RSSI Payload Peak Detector Readout  
Register  
566,33/  
U
Field  
Bits  
Type  
Description  
RSSIPPL  
7:0  
r
RSSI Peak Level during Payload  
Tracking starts after FSYNC + PKBITPOS  
Set at every EOM  
Cleared at the Reset only  
Reset: 00H  
Payload Data Length Register  
PLDLEN  
Offset  
0ADH  
Reset Value  
00H  
Payload Data Length Register  
Data Sheet  
275  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
3/'/(1  
U
Field  
PLDLEN  
Bits  
Type  
Description  
7:0  
r
Payload Data Length stored at TSI detection of the next message,  
PLDLEN(9:0) = RFPLLACC.PLDLEN(MSB) & PLDLEN(LSB).  
Cleared with INIT FIFO  
Min. 000h = 0 bits received  
Max. 3FFh = 1023 bits received  
Reset: 00H  
ADC Result High Byte Register  
ADCRESH  
Offset  
0AEH  
Reset Value  
00H  
ADC Result High Byte Register  
$'&5(6+  
UF  
Field  
Bits  
Type  
Description  
ADCRESH  
7:0  
rc  
ADC Result Value ADCRES(9:0) = ADCRESH(7:0) & ADCRESL(1:0)  
Note: RC for control signal generation only, no clear  
Reset: 00H  
ADC Result Low Byte Register  
ADCRESL  
Offset  
0AFH  
Reset Value  
00H  
ADC Result Low Byte Register  
8186('  
$'&(2&  
$'&5(6/  
U
U
Data Sheet  
276  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
UNUSED  
7:3  
-
UNUSED  
Reset: 00H  
ADCEOC  
2
r
r
ADC End of Conversion detected  
0B  
1B  
not detected  
detected  
Reset: 0H  
ADCRESL  
1:0  
ADC Result Value ADCRES(9:0) = ADCRESH(7:0) & ADCRESL(1:0)  
The 2 LSBs of the ADC result are captured when the SFR register  
ADCRESH is readout.  
Reset: 0H  
VCO Autocalibration Result Readout Register  
VACRES  
Offset  
0B0H  
Reset Value  
00H  
VCO Autocalibration Result Readout  
Register  
8186('  
5HV  
9$&5(6  
U
Field  
Bits  
Type  
Description  
UNUSED  
7:5  
-
UNUSED  
Reset: 0H  
VACRES  
3:0  
r
VCO Autocalibration Result  
Returns the VCO range selected by VCO Autocalibration  
Reset: 0H  
AFC Offset Read Register  
AFCOFFSET  
Offset  
0B1H  
Reset Value  
00H  
AFC Offset Read Register  
$)&2))6  
U
Data Sheet  
277  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
AFCOFFS  
7:0  
r
Readout of the Frequency Offset found by AFC (AFC loop filter  
output).  
Value is in signed representation.  
Frequency resolution is 2.68 kHz/digit  
Output can be limited by x_AFCLIMIT register  
Update rate is 548 kHz  
Reset: 00H  
AGC Gain Readout Register  
AGCGAINR  
Offset  
0B2H  
Reset Value  
00H  
AGC Gain Readout Register  
0,;ꢂ*$,  
1
8186('  
,)ꢂ*$,1  
U
U
Field  
Bits  
Type  
Description  
UNUSED  
7:3  
-
UNUSED  
Reset: 00H  
IF2GAIN  
2:1  
r
AGC IF2 Gain Readout  
00B 0 dB  
01B -15 dB  
10B -30 dB  
11B n.u.  
Reset: 0H  
MIX2GAIN  
0
r
AGC MIX2 Gain Readout  
0B  
1B  
0 dB  
-15 dB  
Reset: 0H  
SPI Address Tracer Register  
SPIAT  
Offset  
0B3H  
Reset Value  
00H  
SPI Address Tracer Register  
Data Sheet  
278  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
63,$7  
U
Field  
SPIAT  
Bits  
Type  
Description  
7:0  
r
SPI Address Tracer, Readout of the last address of a SFR Register  
written by SPI  
Reset: 00H  
SPI Data Tracer Register  
SPIDT  
Offset  
0B4H  
Reset Value  
00H  
SPI Data Tracer Register  
63,'7  
U
Field  
Bits  
Type  
Description  
SPIDT  
7:0  
r
SPI Data Tracer, Readout of the last written data to a SFR Register  
by SPI  
Reset: 00H  
SPI Checksum Register  
SPICHKSUM  
Offset  
0B5H  
Reset Value  
00H  
SPI Checksum Register  
63,&+.680  
UF  
Field  
Bits  
Type  
Description  
SPICHKSUM 7:0  
rc  
SPI Checksum Readout  
Reset: 00H  
Data Sheet  
279  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Serial Number Register 0  
SN0  
Offset  
0B6H  
Reset Value  
00H  
Serial Number Register 0  
61ꢀ  
U
Field  
Bits  
Type  
Description  
SN0  
7:0  
r
Serial Number: SN(31:0) = SN3(MSB) & SN2 & SN1 & SN0(LSB)  
Reset: 00H  
Serial Number Register 1  
SN1  
Offset  
0B7H  
Reset Value  
00H  
Serial Number Register 1  
61ꢁ  
U
Field  
Bits  
Type  
Description  
SN1  
7:0  
r
Serial Number: SN(31:0) = SN3(MSB) & SN2 & SN1 & SN0(LSB)  
Reset: 00H  
Serial Number Register 2  
SN2  
Offset  
0B8H  
Reset Value  
00H  
Serial Number Register 2  
61ꢂ  
U
Data Sheet  
280  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
SN2  
7:0  
r
Serial Number: SN(31:0) = SN3(MSB) & SN2 & SN1 & SN0(LSB)  
Reset: 00H  
Serial Number Register 3  
SN3  
Offset  
0B9H  
Reset Value  
00H  
Serial Number Register 3  
61ꢃ  
U
Field  
Bits  
Type  
Description  
SN3  
7:0  
r
Serial Number: SN(31:0) = SN3(MSB) & SN2 & SN1 & SN0(LSB)  
Reset: 00H  
RSSI Readout Register  
RSSIRX  
Offset  
0BAH  
Reset Value  
00H  
RSSI Readout Register  
566,5;  
U
Field  
Bits  
Type  
Description  
RSSIRX  
7:0  
r
RSSI value after averaging over 4 samples  
Reset: 00H  
RSSI Peak Memory Filter Readout Register  
RSSIPMF  
Offset  
0BBH  
Reset Value  
00H  
RSSI Peak Memory Filter Readout Register  
Data Sheet  
281  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
566,30)  
U
Field  
RSSIPMF  
Bits  
Type  
Description  
7:0  
r
RSSI Peak Memory Filter Level  
Reset: 00H  
Signal Power Readout Register  
SPWR  
Offset  
0BCH  
Reset Value  
00H  
Signal Power Readout Register  
63:5  
U
Field  
Bits  
Type  
Description  
SPWR  
7:0  
r
Signal Power  
The register contains the actual signal power which should be used to  
calculate the value of x_SIGDET0, x_SIGDET1 and x_SIGDETLO  
registers  
Reset: 00H  
Noise Power Readout Register  
NPWR  
Offset  
0BDH  
Reset Value  
00H  
Noise Power Readout Register  
13:5  
U
Data Sheet  
282  
V4.0, 2010-02-19  
TDA5240  
Appendix  
Register Description  
Field  
Bits  
Type  
Description  
NPWR  
7:0  
r
FSK Noise Power  
The register contains the actual noise power which should be used to  
calculate the value for the x_NDTHRES register  
Reset: 00H  
Data Sheet  
283  
V4.0, 2010-02-19  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

TDA5240T

Brushless DC motor drive circuit
NXP

TDA5241

Brushless DC motor drive circuit
NXP

TDA5250

ASK/FSK 868MHz Wireless Transceiver
INFINEON

TDA5250D2

ASK/FSK 868MHz Wireless Transceiver
INFINEON

TDA5250D2_07

ASK/FSK 868MHz Wireless Transceiver
INFINEON

TDA5250XT

Telecom Circuit, 1-Func, PDSO38, PLASTIC, TSSOP-38
INFINEON

TDA5251F1

ASK/FSK 315MHz Wireless Transceiver
INFINEON

TDA5251F1_07

ASK/FSK 315MHz Wireless Transceiver
INFINEON

TDA5252

Telecom Circuit, 1-Func, PDSO38, GREEN, PLASTIC, TSSOP-38
INFINEON

TDA5252G2

ASK/FSK 915MHz Wireless Transceiver
INFINEON

TDA5252XUMA1

Telecom Circuit, 1-Func, PDSO38, GREEN, PLASTIC, TSSOP-38
INFINEON

TDA5255

Telecom Circuit, 1-Func, PDSO38, GREEN, PLASTIC, TSSOP-38
INFINEON