TDA38827 [INFINEON]

OptiMOS™ IPOL 25A 单输出高效降压稳压器;
TDA38827
型号: TDA38827
厂家: Infineon    Infineon
描述:

OptiMOS™ IPOL 25A 单输出高效降压稳压器

稳压器
文件: 总48页 (文件大小:2628K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TDA38827  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Features  
Single 4.3 V to 17 V application or Wide Input Voltage Range from 2.0 V to 17 V with an External VCC  
Precision Reference Voltage (0.6 V +/- 0.5%)  
Enhanced Fast COT engine stable with Ceramic Output Capacitors and No External Compensation  
Optional Forced Continuous Conduction Mode and Diode Emulation for Enhanced Light Load Efficiency  
Programmable Switching Frequency from 600 kHz to 2 MHz  
Monotonic Start-Up with Four Selectable Soft-Start Time & Enhanced Pre-Bias Start-Up  
Thermally Compensated Internal Over Current Protection with Four Selectable Settings  
Enable input with Voltage Monitoring Capability & Power Good Output  
Thermal Shut Down  
Operating Temp: -40 °C < Tj < 125 °C  
Small Size: 6 mm x 5 mm PQFN  
Halogen-free and RoHS2 Compliant with Exemption 7a  
Potential applications  
Server Applications  
Storage Applications  
Telecom & Datacom Applications  
Distributed Point of Load Power Architectures  
Product validation  
Qualified for industrial applications according to the relevant tests of JEDEC47/20/22  
Description  
The TDA38827 is an easy-to-use, fully integrated dc - dc Buck regulator. The onboard PWM controller and  
OptiMOS™ FETs with integrated bootstrap diode make TDA38827 a small footprint solution, providing high-  
efficient power delivery. Furthermore, it uses a fast Constant On-Time (COT) control scheme, which simplifies the  
design efforts and achieves fast control response.  
The TDA38827 has an internal low dropout voltage regulator, allowing operations with a single supply. It can also  
operate with an external bias supply, extending the operating input voltage (PVin) range.  
The TDA38827 is a versatile regulator, offering programmable switching frequency from 600 kHz to 2 MHz, four  
selectable current limits, four selectable soft-start time, Forced Continuous Conduction Mode (FCCM) and Diode  
Emulation Mode (DEM) operation.  
It also features important protection functions, such as pre-bias start-up, thermally compensated current limits,  
over voltage and under voltage protection, and thermal shutdown to give required system level security in the  
event of fault conditions.  
Final Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1 of 48  
V2.3  
2021-7-19  
 
 
 
 
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Table of contents  
Table of contents  
Features ........................................................................................................................................ 1  
Potential applications..................................................................................................................... 1  
Product validation.......................................................................................................................... 1  
Description .................................................................................................................................... 1  
Table of contents............................................................................................................................ 2  
1
2
3
4
5
Ordering information ............................................................................................................. 4  
Functional block diagram........................................................................................................ 5  
Typical application diagram .................................................................................................... 6  
Pin descriptions ..................................................................................................................... 7  
Absolute maximum ratings ..................................................................................................... 8  
6
Thermal characteristics .......................................................................................................... 9  
6.1  
Thermal characteristics ..........................................................................................................................9  
7
7.1  
7.2  
Electrical specifications .........................................................................................................10  
Recommended operating conditions...................................................................................................10  
Electrical characteristics.......................................................................................................................11  
8
Typical efficiency and power loss curves..................................................................................14  
PVin = Vin = 12 V, Fsw = 600 kHz ................................................................................................................14  
PVin = Vin = 12 V, Fsw = 800 kHz ................................................................................................................15  
PVin = Vin = 12 V, Fsw = 1000 kHz...............................................................................................................16  
PVin = Vin = VCC = 5 V, Fsw = 600 kHz ........................................................................................................17  
8.1  
8.2  
8.3  
8.4  
9
Thermal de-rating curves .......................................................................................................18  
RDS(ON) of MOSFET over temperature .........................................................................................19  
Typical operating characteristics (-40 °C Tj +125 °C)..............................................................20  
10  
11  
12  
Theory of operation...............................................................................................................23  
Fast Constant On-Time control ............................................................................................................23  
Enable ....................................................................................................................................................23  
FCCM and DEM operation .....................................................................................................................24  
Pseudo constant switching frequency .................................................................................................24  
Soft-start................................................................................................................................................25  
Pre-bias start-up....................................................................................................................................26  
Internal Low Dropout (LDO) regulator...............................................................................................26  
Over Current Protection (OCP) .............................................................................................................27  
Under Voltage Protection (UVP) ...........................................................................................................28  
Over Voltage Protection (OVP)..............................................................................................................28  
Over Temperature Protection (OTP) ....................................................................................................29  
Power Good (Pgood) output.................................................................................................................29  
Minimum on time and minimum off time.......................................................................................30  
Selection of feedforward capacitor and feedback resistors................................................................30  
Resistors for configuration pins............................................................................................................31  
12.1  
12.2  
12.3  
12.4  
12.5  
12.6  
12.7  
12.8  
12.9  
12.10  
12.11  
12.12  
12.13  
12.14  
12.15  
13  
Design example.....................................................................................................................32  
Enabling the TDA38827 .........................................................................................................................32  
Programming the switching frequency and operation mode .............................................................32  
Selecting input capacitors ....................................................................................................................32  
Inductor selection .................................................................................................................................33  
13.1  
13.2  
13.3  
13.4  
Final Datasheet  
2 of 48  
V2.3  
2021-7-19  
 
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Table of contents  
13.5  
13.6  
13.7  
13.8  
13.9  
Output capacitor selection ...................................................................................................................33  
Output voltage programming...............................................................................................................34  
Feedforward capacitor..........................................................................................................................34  
Bootstrap capacitor ..............................................................................................................................34  
VIN and VCC/LDO bypass capacitor......................................................................................................34  
14  
14.1  
14.2  
Application information.........................................................................................................35  
Application diagram..............................................................................................................................35  
Typical operating waveforms ...............................................................................................................35  
15  
15.1  
15.2  
Layout recommendations ......................................................................................................38  
Solder mask...........................................................................................................................................42  
Stencil design ........................................................................................................................................43  
16  
Package ...............................................................................................................................44  
Marking information .............................................................................................................................44  
Dimensions............................................................................................................................................44  
Tape and reel information ....................................................................................................................45  
16.1  
16.2  
16.3  
17  
18  
Environmental qualifications .................................................................................................46  
Evaluation boards and support documentation ........................................................................47  
Revision history.............................................................................................................................48  
Final Datasheet  
3 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Ordering information  
1
Ordering information  
1.  
Ordering Information  
Sales Product Name  
TDA38827  
Package Type  
Standard Pack Form and Qty  
Orderable Part Number  
QFN 6 mm x 5 mm  
Tape and Reel  
5000  
TDA38827AUMA1  
TDA38827  
A1  
Designator  
Packing type  
Tape & Reel  
Dry  
Moisture  
protection packing  
UM  
Packing size  
330 mm  
Halogen Free  
RoHS compliant  
Total lead free  
Yes  
Yes  
No  
A
PGND  
11  
PVIN  
13  
12  
SW  
14  
15  
16  
VCC/ LDO  
10  
BOOT  
EN  
AGND  
17  
9
8
VIN  
VSNS  
NC  
1
3
4
5
6
7
2
Figure 1 Package Top View  
Final Datasheet  
4 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Functional block diagram  
2
Functional block diagram  
VCC/LDO  
AGND  
PGood  
Vin  
AGND  
POR  
VREF  
*70%  
UVP OTP  
OVP  
+
-
VCC  
LDO  
EN  
Fault  
AGND  
LDrVin  
BOOT  
PVin  
+
-
VREF  
*120%  
Hysteresis  
=5%  
Turn-on Delay  
VSNS  
Prebias  
Fault  
Q
Q
S
PGood  
HDrVin  
HDrv  
R
+
-
Hysteresis  
=5%  
VREF  
*90%  
POR  
+
-
VCC  
4.0V  
Hiccup  
OVP  
GATE  
DRIVE  
LOGIC  
POR  
SW  
VCC  
OTP  
En  
+
-
Fault  
1.2V  
LDrVin  
LDrv  
PWM  
PWM  
COMP  
SS  
SOFT  
START  
SS/Latch  
+
ADAPTIVE  
ON-TIME  
GENERATOR  
SET  
-
ZC  
-
+
PGND  
Zero Cross  
DETECTION  
PGND  
SW  
FB  
OCP  
VREF  
RAMP  
GENERATOR  
OVP  
Latch Off  
Floor  
GENERATOR  
+
-
+
Hiccup  
S
Q
UVP  
AGND  
R
Rt/MODE  
ILIM  
SW  
20ms  
Delay  
ILIM Ref  
Figure 2 Block diagram  
Final Datasheet  
5 of 48  
V2.3  
2021-7-19  
 
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Typical application diagram  
3
Typical application diagram  
4.3V<Vin<17V  
Enable  
PVin  
Vin  
En  
Boot  
SW  
VCC/LDO  
Vo  
Cff  
NC  
PGood  
Fb  
NC  
RFB1  
RFB2  
PGood  
TDA38827  
SS/Latch  
Rt/MODE  
ILIM  
RFB1  
RFB2  
VSNS  
AGnd  
PGnd  
Figure 3 TDA38827 basic application circuit  
Final Datasheet  
6 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Pin descriptions  
4
Pin descriptions  
Note:  
I = Input, O = Output  
Pin#  
Pin Name  
I/O  
Type  
Pin Description  
Output voltage feedback pin. Connect this pin to the output  
of the regulator via a resistor divider to set the output voltage.  
Multi-function pin. This pin sets the Soft-Start time to 1 of 4  
options. This pin also selects latched-off Over Voltage  
Protection (OVP) or non-latched OVP. Refer to Table 6.  
Not connected internally. They can be left floating on PCB or  
1
Fb  
I
Analog  
2
SS/Latch  
NC  
I
Analog  
Not  
3, 16  
-
connected connected to other signals as needed.  
Signal ground for the internal circuitry except the internal  
reference voltage. AGND and PGND are not internally  
connected. AGND and PGND must be connected on PCB with a  
single ground connection.  
4, 17  
AGND  
-
Ground  
Multi-function pin. This pin sets the switching frequency to 1  
of 8 settings and sets the mode of operation to FCCM or DEM.  
Refer to Table 5.  
Connecting a resistor to ground sets the Over Current  
Protection (OCP) limit. Four user selectable OCP limits are  
available.  
Power Good status output pin is open drain. Connect a pull up  
resistor from this pin to VCC or to an external bias voltage, e.g.  
3.3 V.  
Sense pin for over voltage protection and Pgood. Tie this pin  
to Vout using a resistor divider. Alternatively, tie this pin to FB  
pin directly.  
5
6
7
8
Rt/MODE  
ILIM  
I
I
Analog  
Analog  
Analog  
Analog  
PGood  
VSNS  
O
I
Input voltage for an Internal LDO. A 4.7 µF capacitor should be  
connected between this pin and PGnd. If an external supply is  
connected to VCC/LDO pin, this pin should be shorted to  
VCC/LDO pin and a 10 µF ceramic capacitor can be shared  
with Vin and VCC/LDO pin.  
Input bias for an external VCC voltage or output of the internal  
LDO. A 2.2 µF 10 µF ceramic capacitor is recommended to  
use between VCC, and the Power ground (PGND).  
Power Ground. Should be connected to the system’s power  
ground plane.  
9
Vin  
I
Power  
Power  
10  
VCC/LDO  
I/O  
11  
12  
13  
14  
15  
PGND  
SW  
-
O
I
Ground  
Power  
Power  
Analog  
Analog  
Switch Node. Connect these pins to an output inductor.  
Input supply for the power stage.  
Pvin  
Boot  
En  
Supply voltage for the high side driver. Connect this pin to the  
SW pin through a bootstrap capacitor.  
I
I
Enable pin to turn the IC on and off.  
Final Datasheet  
7 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Absolute maximum ratings  
5 Absolute maximum ratings  
Absolute maximum ratings  
Description  
Min  
Max  
Unit  
Conditions  
-0.3  
25  
V
Pvin, Vin, En to PGND  
Note 1  
-0.3 V(dc) ,  
below -5 V for 5 ns  
-0.3  
25 V(dc),  
above 32 V for 2 ns  
V
Pvin to SW  
6
V
V
VCC to PGND  
Note 1  
Note 1  
-0.3 V(dc),  
below -0.3 V for 5 ns  
-0.3 (dc),  
29  
Boot to PGND  
25 V(dc),  
above 32 V for 2 ns  
6 V(dc),  
V
SW to PGND  
Boot to SW  
Note 1  
below -5 V for 5 ns  
-0.3  
V
V
7 V for 5 ns  
ILIM, Fb, Pgood, Rt/MODE, VSNS  
and SS/Latch to GND  
PGnd to AGND  
-0.3  
-0.3  
6
Note 1  
0.3  
150  
150  
V
°C  
°C  
Storage Temperature Range  
Junction Temperature Range  
-55  
-40  
Note:  
1. PGND, and AGND pin are connected together  
Attention:  
Stresses beyond these listed under ꢀAbsolute Maximum Ratingsꢁ may cause permanent  
damage to the device. These are stress ratings only and functional operation of the device at  
these or any other conditions beyond those indicated in the operational sections of the  
specifications are not implied.wing2865  
Final Datasheet  
8 of 48  
V2.3  
2021-7-19  
 
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Thermal characteristics  
6
Thermal characteristics  
6.1  
Thermal characteristics  
Description  
Symbol  
Values  
17 °C/W  
3.5 °C/W  
34 °C/W  
Test Conditions  
Note 2  
Junction to Ambient Thermal Resistance  
Junction to PCB Thermal Resistance  
Junction to Case Top Thermal Resistance  
θJA  
θJC-PCB  
θJC  
Note 3  
Note:  
2. Thermal resistance is measured with components mounted on a standard EVAL_38827_1Vout demo board in  
free air.  
3. Thermal resistance is based on the board temperature near the Pvin pin.  
Final Datasheet  
9 of 48  
V2.3  
2021-7-19  
 
 
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Electrical specifications  
7
Electrical specifications  
7.1  
Recommended operating conditions  
Description  
Min  
2
Max  
17  
Unit  
V
Note  
Note 4, Note 5  
Note 5, Note 6 & 10  
Note 4, Note 7  
Note 8, Note 9  
Note 9  
PVin Voltage Range with External VCC  
PVin Voltage Range with Internal LDO  
VCC Supply Voltage Range  
4.5  
4.3  
0.6  
17  
V
5.5  
6
V
Typical Output Voltage Range  
Continuous Output Current Range  
Typical Switching Frequency  
V
25  
A
600  
-40  
2000  
125  
kHz  
°C  
Note 10  
Operating Junction Temperature  
Note:  
4. Vin is shorted to VCC and use an external bias voltage.  
5. A common practice is to have 20% margin on the maximum SW node voltage in the design. For applications  
requiring PVin equal to or above 14 V, a small resistor in series with the Boot pin might be needed to ensure the  
maximum SW node spike voltage does not exceed 20 V. Alternatively, a snubber can be used at the SW node to  
reduce the SW node spike.  
6. Vin is connected to PVin and the internal LDO is used. For single-rail applications with the internal LDO, and PVin  
=Vin = 4.3 V-5.4 V, the internal LDO may enter dropout mode. OCP limits can be reduced due to the lower VCC  
voltage. Please refer to Section 12.7 for more detailed design guidelines.  
7. The TDA38827 is designed to function with VCC down to 4.2 V, however, electrical specifications such as OCP  
limits may be degraded.  
8. The maximum output voltage is also limited by the minimum off-time. Please refer to Section 12.13 for details.  
Also note that OCP limit may be degraded when off-time is close to the minimum off-time.  
9. Refer to Section 9 for maximum output current rating at different ambient temperatures.  
10. The maximum LDO output current must be limited within 50 mA for operations requiring full operating  
temperature range of -40 °C TJ 125 °C. Figure 6 shows the maximum LDO output current capability over  
junction temperature. Thermal de-rating may be needed at an elevated ambient temperature to ensure the  
junction temperature within the recommended operating range.  
Final Datasheet  
10 of 48  
V2.3  
2021-7-19  
 
 
 
 
 
 
 
 
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Electrical specifications  
7.2  
Electrical characteristics  
Note:  
Unless otherwise specified, the specifications apply over, 4.5 V ≤ Vin = Pvin ≤ ꢀ7 V, in ꢁ °C < TJ < 125  
°C. Typical values are specified at Ta = 25 °C.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Power Stage  
Top Switch  
Rds(on)_Top  
Rds(on)_Bot  
VBoot Vsw= 5.0 V, IO = 25 A, Tj =25 °C  
VCC = 5.0 V, Io = 25 A, Tj =25 °C  
I(Boot) = 25 mA  
3.3  
2.1  
370  
mΩ  
mV  
mV  
Bottom Switch  
Bootstrap Forward Voltage  
600  
300  
300  
En = 0 V  
SW float voltage  
VSW  
En = high, No Switching  
SW node falling edge, Io = 25 A,  
Internal LDO, Tj = 25 °C, Note 11  
7
5
ns  
ns  
Dead Band Time  
Tdb  
SW node rising edge, Io = 25 A,  
Internal LDO, Tj = 25 °C, Note 11  
Supply Current  
Vin Supply Current (standby)  
Vin Supply Current (static)  
Iin(Standby)  
Iin(Static)  
En = Low, No Switching  
En=2 V, No Switching  
4
10  
4
µA  
2.3  
mA  
Soft Start  
SS/Latch = 0 kΩ, 4.53 kΩ, 10.5 kΩ,  
18.7 kΩ;  
0.4  
0.2  
0.1  
0.6  
0.3  
0.84  
0.42  
0.21  
SS/Latch = 1.5 kΩ, 5.76 kΩ, 12.1 kΩ,  
21.5 kΩ;  
Soft Start Ramp Rate  
SS rate  
SS/Latch = 2.49 kΩ, 7.32 kΩ, 14 kΩ,  
24.9 kΩ;  
mV/s  
0.15  
SS/Latch = 3.48 kΩ, 8.87 kΩ, ꢀꢁ.ꢂ  
kΩ, 28.7 kΩ;  
0.05 0.075  
0.105  
0.21  
SS/Latch = Floating, or VCC  
0.1  
0.15  
Feedback Voltage  
Feedback Voltage  
VFB  
0.6  
V
%
-0.5  
+0.5  
0°C < Tj < 85 °C  
Accuracy  
-40 °C < Tj < 125 °C, Note 12  
VFB=0.6 V, Tj=25 C  
-1  
1
VFB Input Current  
IVFB  
-0.15  
0
+0.15  
A  
On-Time Timer Control  
Vin=12 V, Vo=1 V, Rt= ꢃ kΩ, 10.5 kΩ,  
Note 13  
Vin=12 V, Vo=1 V, Rt= 1.5 kΩ, 12.1  
kΩ, Note 13  
152  
114  
ns  
On Time  
Ton  
Vin=12 V, Vo=1 V, Rt= 2.49 kΩ, 14 kΩ,  
Note 13;  
Vin=12 V, Vo=1 V, Rt= 3.48 kΩ, 16.2  
kΩ, Note 13  
91.5  
77  
Final Datasheet  
11 of 48  
V2.3  
2021-7-19  
 
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Electrical specifications  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Vin=12 V, Vo=1 V, Rt= ꢄ.ꢅꢆ kΩ, 18.7  
kΩ, Note 13  
66.5  
Vin=12 V, Vo=1 V, Rt= 5.76 kΩ, 21.5  
kΩ, Note 13  
Vin=12 V, Vo=1 V, Rt= 7.32 kΩ, 24.9  
kΩ, Note 13  
58.5  
52  
Vin=12V , Vo=1 V, Rt= 8.87 kΩ, ꢂꢇ.ꢈ  
kΩ, Note 13  
47  
Vin=12V, Vo=1 V, Rt = Floating,  
Note 13  
114  
Minimum On-Time  
Minimum Off-Time  
VCC LDO Output  
Ton (Min)  
Toff (Min)  
Vin=12 V, Vo=0 V  
Tj=25 C, VFB=0 V  
23  
32  
ns  
ns  
270  
360  
5.5 V Vin 17 V, when Icc =50 mA,  
Output Voltage  
VCC  
4.7  
5.0  
90  
5.3  
V
Cload = 2.2 µF  
VCC Dropout  
VCC_drop Vin = 4.3 V, Icc=50 mA, Cload=2.2 µF  
300  
mV  
mA  
Short Circuit Current  
Ishort  
5.5 V Vin 17 V  
Under Voltage Lockout  
VCC-Start Threshold  
VCC-Stop Threshold  
Enable-Start-Threshold  
Enable-Stop-Threshold  
Input Impedance  
Vcc_UVLO_Start  
Vcc_UVLO_Stop  
En_UVLO_Start  
En_UVLO_Stop  
VCC Rising Trip Level  
VCC Falling Trip Level  
ramping up  
3.8  
3.6  
4.0  
3.8  
1.2  
1
4.2  
4.0  
V
1.14  
0.9  
1.36  
1.06  
1500  
V
ramping down  
500  
1000  
REN  
k  
Over Current Limit  
Tj = 25 °C, Int LDO, RILIM=24.9 kΩ  
28.4  
32.8  
35.3  
Or RILIM = VCC, Floating  
Tj = 25 °C, Int LDO, RILIM=21.5 kΩ  
Tj = 25 °C, Int LDO, RILIM=16.2 kΩ  
23.6  
18.9  
13.9  
27.3  
21.8  
16.4  
29.4  
23.5  
17.6  
Current Limit Threshold  
(Valley current)  
Ioc  
A
Tj = 25 °C, Int LDO, RILIM=ꢀꢂ.ꢀ kΩ  
Or RILIM = GND  
Over Voltage Protection  
VSNS Rising  
115  
110  
121  
115  
7
125  
120  
OVP Trip Threshold  
OVP_Vth  
% Vref  
VSNS Falling, OVP hysteresis  
OVP Protection Delay  
Hiccup Blanking Time  
OVP_Tdly  
µs  
Tblk_Hiccup Unlatched OVP  
20  
ms  
Under Voltage Protection  
UVP Trip Threshold  
UVP_Vth  
VSNS Falling  
65  
70  
5
75  
% Vref  
µs  
UVP Protection Delay  
Hiccup Blanking Time  
UVP_Tdly  
Tblk_Hiccup  
20  
ms  
Final Datasheet  
12 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Electrical specifications  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Power Good  
% Vref  
% Vref  
mA  
Pgood Turn on Threshold  
Pgood Turn off Threshold  
Pgood Sink Current  
Pgood Voltage Low  
VPG(upper) VSNS Rising  
85  
80  
91  
84  
5
95  
90  
VPG(lower)  
IPG  
VSNS Falling  
PG = 0.5 V, En = 2 V  
2.5  
VPG(low)  
Vin = VCC =0 V, Rpull-up = 50 kto  
V
0.3  
2.5  
2
0.5  
3.3 V  
ms  
µs  
Pgood Turn on Delay  
VPG(on)_Dly  
VSNS Rising, see VPG(upper)  
Pgood Comparator Delay  
VPG(comp)_Dly  
VSNS < VPG(lower) or  
VSNS > VPG(upper)  
1
3.5  
1
Pgood Open Drain Leakage  
Current  
PG = 3.3 V  
µA  
Thermal Shutdown  
Thermal Shutdown  
Hysteresis  
140  
20  
Note 11  
Note 11  
°C  
Note:  
11. Guaranteed by construction and not tested in production  
12. Cold temperature performance is guaranteed via correlation using statistical quality control. Not tested in  
production.  
13. The Ton is trimmed so that the target switching frequency is achieved at around 10A load current using  
EVAL_38827_1Vout demo board.  
Final Datasheet  
13 of 48  
V2.3  
2021-7-19  
 
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Typical efficiency and power loss curves  
8
Typical efficiency and power loss curves  
8.1  
PVin = Vin = ꢄꢂ V, Fsw = ꢅꢆꢆ kHz  
PVin = Vin = 12 V, VCC = Internal LDO, Io = 0 A-25 A, Fsw = 600 kHz, Room Temperature, No Air Flow. Note that the  
efficiency and power loss curves include the losses of TDA38827, the inductor losses, the losses of the input and  
output capacitors, and PCB trace losses. The table below shows the inductors used for each of the output  
voltages in the efficiency measurement.  
Table 1  
Inductors for PVin=Vin=12 V, Fs = 600 kHz  
Vout (V)  
Lout (nH)  
150  
P/N  
Size (mm)  
12.4 x 8.3 x 8  
10.8 x 8 x 8  
DCR (m)  
0.15  
HCB138380D-151 (Delta)  
FP1008R5-R220-R (Cooper)  
FP1008R5-R220-R (Cooper)  
HCBD101195-351(Delta)  
HCBD101195-351(Delta)  
HCBD101195-451(Delta)  
1.0  
1.2  
1.8  
2.5  
3.3  
5
220  
0.17  
220  
0.17  
10.8 x 8 x 8  
350  
0.35  
10.1 x 11.4 x 9.5  
10.1 x 11.4 x 9.5  
10.1 x 11.4 x 9.5  
350  
0.35  
450  
0.35  
Final Datasheet  
14 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Typical efficiency and power loss curves  
8.2  
PVin = Vin = ꢄꢂ V, Fsw = ꢁꢆꢆ kHz  
PVin = Vin = 12 V, VCC = Internal LDO, Io = 0 A-25 A, Fsw = 800 kHz, Room Temperature, No Air Flow. Note that the  
efficiency and power loss curves include the losses of TDA38827, the inductor losses, the losses of the input and  
output capacitors, and PCB trace losses. The table below shows the inductors used for each of the output  
voltages in the efficiency measurement.  
Table 2  
Inductors for PVin=Vin=12 V, Fsw = 800 kHz  
Vout (V)  
Lout (nH)  
150  
P/N  
Size (mm)  
12.4 x 8.3 x 8  
12.4 x 8.3 x 8  
10.8 x 8 x 8  
DCR (m)  
0.15  
1.0  
1.2  
1.8  
2.5  
3.3  
HCB138380D-151 (Delta)  
HCB138380D-151 (Delta)  
FP1008R5-R220-R (Cooper)  
FP1008R5-R220-R (Cooper)  
HCBD101195-351(Delta)  
150  
0.15  
220  
0.17  
220  
0.17  
10.8 x 8 x 8  
350  
0.35  
10.1 x 11.4 x 9.5  
Final Datasheet  
15 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Typical efficiency and power loss curves  
8.3  
PVin = Vin = ꢄꢂ V, Fsw = ꢄꢆꢆꢆ kHz  
PVin = Vin = 12 V, VCC = Internal LDO, Io = 0 A-25 A, Fsw = 1000 kHz, Room Temperature, No Air Flow. Note that the  
efficiency and power loss curves include the losses of TDA38827, the inductor losses, the losses of the input and  
output capacitors, and PCB trace losses. The table below shows the inductors used for each of the output  
voltages in the efficiency measurement.  
Table 3  
Inductors for PVin=Vin=12 V, Fsw = 1000 kHz  
Vout (V)  
Lout (nH)  
100  
P/N  
Size (mm)  
6.4 x 9.5 x 10  
6.4 x 9.5 x 10  
6.4 x 9.5 x 10  
DCR (m)  
0.145  
1.0  
1.2  
1.8  
AH3740A-100K (ITG)  
AH3740A-100K (ITG)  
AH3740A-150K (ITG)  
100  
0.145  
150  
0.145  
Final Datasheet  
16 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Typical efficiency and power loss curves  
8.4  
PVin = Vin = VCC = ꢇ V, Fsw = ꢅꢆꢆ kHz  
PVin = Vin = VCC = 5.0 V, Io = 0 A 25 A, Fsw = 600 kHz, Room Temperature, No Air Flow. Note that the efficiency and  
power loss curves include the losses of TDA38827, the inductor losses, the losses of the input and output  
capacitors and and PCB trace losses. The table below shows the inductors used for each of the output voltages  
in the efficiency measurement.  
Table 4  
Inductors for PVin=Vin=VCC=5 V, Fsw = 600 kHz  
Vout (V)  
Lout (nH)  
150  
P/N  
Size (mm)  
6.4 x 9.5 x 10  
6.4 x 9.5 x 10  
6.4 x 9.5 x 10  
6.4 x 9.5 x 10  
DCR (m)  
0.145  
AH3740A-150K (ITG)  
AH3740A-150K (ITG)  
AH3740A-150K (ITG)  
AH3740A-150K (ITG)  
1.0  
1.2  
1.8  
3.3  
150  
0.145  
150  
0.145  
150  
0.145  
Final Datasheet  
17 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Thermal de-rating curves  
9
Thermal de-rating curves  
Measurement is done on Evaluation board of EVAL_38827. PCB is a 6-layer board with 1.5 ounce Copper for top  
and bottom layer and 2 ounce Copper for the inner layers, FR4 material, size ꢆ.ꢃ”xꢆ.75”.  
Figure 4 Thermal de-rating curves, PVin = 12 V, Vout=1.2 V/3.3 V/5 V, fsw = 600 kHz, VCC = Internal LDO  
Final Datasheet  
18 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
RDS(ON) of MOSFET over temperature  
10  
RDSꢈONꢉ of MOSFET over temperature  
Figure 5 RDS(on) of MOSFETs over Junction Temperature  
Final Datasheet  
19 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Typical operating characteristics (-ꢊꢆ C ≤ Tj ≤ +ꢄꢂꢇ Cꢉ  
11  
Typical operating characteristics ꢈ-ꢊꢆ °C ≤ Tj ≤ +ꢄꢂꢇ °Cꢉ  
Figure 6 Typical operating characteristics (set 1 of 3)  
Final Datasheet  
20 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Typical operating characteristics (-ꢊꢆ C ≤ Tj ≤ +ꢄꢂꢇ Cꢉ  
Figure 7 Typical operating characteristics (set 2 of 3)  
Final Datasheet  
21 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Typical operating characteristics (-ꢊꢆ C ≤ Tj ≤ +ꢄꢂꢇ Cꢉ  
Figure 8 Typical operating characteristics (set 3 of 3)  
Final Datasheet  
22 of 48  
V2.3  
2021-7-19  
 
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Theory of operation  
12  
Theory of operation  
12.1  
Fast Constant On-Time control  
The TDA38827 features a proprietary Fast Constant On-Time (COT) Control, which can provide fast load transient  
response, good output regulation and minimize the design effort. Fast COT control compares the output voltage,  
Vo, to a floor voltage combined with an internal ramp signal. When Vout drops below that signal, a PWM signal is  
initiated to turn on the high-side FET for a fixed on-time. The floor voltage is generated from an internal  
compensated error amplifier, which compares the Vout with a reference voltage. Compared to the traditional  
COT control, Fast COT control significantly improves the Vout regulation.  
12.2  
Enable  
En pin controls the on/off of the TDA38827. An internal Under Voltage Lock-Out (UVLO) circuit monitors the En  
voltage. When the En voltage is above an internal threshold, the internal LDO starts to ramp up. When the  
VCC/LDO voltage rises above the VCC_UVLO_Start threshold, the soft-start sequence starts. The En pin can be  
configured in three ways, as shown in Figure 9. With configuration 2, the Enable signal is derived from the Pvin  
voltage by a set of resistive divider, REN1 and REN2. By selecting different divider ratios, users can program a  
UVLO threshold voltage for the bus voltage. This is a very desirable feature because it prevents the TDA38827  
from operating until Pvin is higher than a desired voltage level. For some space constrained designs, En pin can  
be directly connected to Pvin without using the external resistor dividers, as shown in Configuration 3. En pin  
should not be left floating. A pull down resistor in the range of tens of kilohms is recommended. Figure 10  
illustrates the corresponding start-up sequences with three En configurations.  
PVin  
PVin  
PVin  
Vin  
PVin  
REN1  
Vcc  
PVin  
PVin  
Vin  
Vin  
En  
Vcc  
Vcc  
TDA38827  
En  
En  
TDA38827  
TDA38827  
REN2  
ꢂꢃꢄ  
En = an external logic signal  
Configuration 1  
En = ꢁ  
× ꢇꢈꢉ  
ꢂꢃꢄ  
Pvin = Vin = En  
Configuration 3  
+ꢁ  
ꢂꢃꢅ  
Configuration 2  
Figure 9 Enable Configurations  
Final Datasheet  
23 of 48  
V2.3  
2021-7-19  
 
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Theory of operation  
Pvin= Vin=12V  
PVin=Vin=En=12V  
Pvin = Vin = 12V  
Vcc_ UVLO  
Vcc  
Vcc  
Vcc  
Vcc_UVLO  
En Threshold  
0V  
Vcc_ UVLO  
0V  
0V  
0V  
0V  
En = REN2/(REN1+REN2)*PVin  
Fb  
0V  
En>1.2V  
En Threshold  
Fb  
0V  
Fb  
0V  
Pgood Turn-on  
threshold  
Pgood Turn-on  
threshold  
Pgood Turn-on  
threshold  
2.5ms  
2.5ms  
2.5ms  
0V  
0V  
0V  
0V  
0V  
0V  
PGood  
PGood  
PGood  
Pgood stays at logic low  
Pgood stays at logic low  
Pgood stays at logic low  
ꢂꢃꢄ  
En = an external logic signal  
Configuration 1  
En = ꢁ  
× ꢇꢈꢉ  
ꢂꢃꢄ  
Pvin = Vin = En  
Configuration 3  
+ꢁ  
ꢂꢃꢅ  
Configuration 2  
Figure 10 Start-up sequence  
12.3  
FCCM and DEM operation  
The TDA38827 offers two operation modes: Forced Continuous Conduction (FCCM) and Diode Emulation Mode  
(DEM). With FCCM, the TDA38827 always operates as a synchronous buck converter with a pseudo constant  
switching frequency and therefore achieves small output voltage ripples. In DEM, the synchronous FET is turned  
off when the inductor current is close to zero, which reduces the switching frequency and improves the efficiency  
at light load. At heavy load, both FCCM and DEM operate in the same way. The operation mode can be selected  
with TON/MODE pin, as shown in Table 5. It should be noted that the selection of the operation mode cannot be  
changed on the fly. To load a new TON/MODE configuration, En or VCC voltage needs to be cycled.  
12.4  
Pseudo constant switching frequency  
The TDA38827 offers eight programmable switching frequencies, fsw, from 600 kHz to 2 MHz, by connecting an  
external resistor from TON/MODE pin to the ground. Based on the selected fsw, the TDA38827 generates the  
corresponding on-time of the Control FET for a given PVin and Vo, as shown by the formula below.  
ꢍ  
ꢋꢉ  
=
×
ꢆꢌ  
ꢐꢑ  
ꢈꢉ  
Where fsw is the desired switching frequency. During the operation, the TDA38827 monitors PVin and Vo, and can  
automatically adjust the on-time to maintain the pre-selected fsw. With the increase of the load, the switching  
frequency can increase to compensate for the power losses. Therefore, the TDA38827 has a pseudo constant  
switching frequency.  
Table 5 lists the resistors for TON/MODE pin. In this table, E96 resistors with ±1% tolerance are used. If E12  
resistor values are preferred, please refer to the Section 12.15. To load a new TON/MODE configuration, En or  
VCC voltage needs to be cycled.  
Final Datasheet  
24 of 48  
V2.3  
2021-7-19  
 
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Theory of operation  
Table 5 Configuration Resistors for Rt/MODE Pin  
Rt/MODE Resistor (kΩꢉ  
Freq (kHz)  
Mode  
±1% Tolerance  
0
600  
800  
1.5  
2.49  
1000  
1200  
1400  
1600  
1800  
2000  
600  
3.48  
FCCM  
4.53  
5.76  
7.32  
8.87  
10.5  
12.1  
800  
14  
1000  
1200  
1400  
1600  
1800  
2000  
800  
16.2  
DEM  
18.7  
21.5  
24.9  
28.7  
Rt/MODE = Floating  
FCCM  
12.5  
Soft-start  
The TDA38827 has an internal digital soft-start to control the output voltage rise and to limit the current surge at  
the start-up. To ensure a correct start-up, the soft-start sequence initiates when the EN and VCC voltages rise  
above their respective thresholds. The internal soft-start signal linearly rises from 0 V to 0.8 V in a defined time  
duration. The soft-start time does not change with the output voltage. During the soft-start, the TDA38827  
operates in DEM until 1ms after the output voltage ramps above the Pgood turn-on threshold. The TDA38827 has  
four soft-start time options selected by placing a resistor from SS/Latch pin to the ground. Table 6 lists the  
resistor values and its corresponding soft-start time. In this table, E96 resistors with ±1% tolerance are used. If  
E12 resistor values are preferred, please refer to the Section 12.15. For each soft-start time, there are two resistor  
options available. Please note that SS/Latch pin is a multi-function pin, which is also used to select different  
responses for Over Voltage Protection (OVP). To load a new SS/Latch selection, En or VCC voltage needs to be  
cycled.  
Final Datasheet  
25 of 48  
V2.3  
2021-7-19  
 
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Theory of operation  
Table 6 Configuration Resistor for SS/Latch Pin  
SS/Latch Resistor ꢈkΩꢉ  
Soft-start Time  
(ms)  
OVP  
±1% Tolerance  
0
1
2
4
8
1
2
4
4.53  
1.5  
5.76  
Latch  
2.49  
7.32  
3.48  
8.87  
10.5  
18.7  
12.1  
21.5  
No Latch  
Latch  
14  
24.9  
16.2  
28.7  
8
4
SS/Latch = Floating, VCC  
12.6  
Pre-bias start-up  
The TDA38827 is able to start up into a pre-charged output without causing oscillations and disturbances of the  
output voltage. When TDA38827 starts up with a pre-biased output voltage, both control FET and Synch FET are  
kept off till the internal soft-start signal exceeds the FB voltage.  
12.7  
Internal Low – Dropout ꢈLDOꢉ regulator  
The TDA38827 has an integrated low-dropout LDO regulator, providing the bias voltage for the internal circuitry.  
To minimize the standby current, the internal LDO is disabled when the En voltage is pulled low. VIN pin is the  
input of the LDO. When using the internal LDO for a single rail operation, VIN pin should be connected to PVIN  
pin. To save the power losses on the LDO, an external bias voltage can be used by connecting VIN pin to the  
VCC/LDO pin. Figure 11 illustrates the configuration of VCC/LDO, and VIN pin.  
PVin  
Ext Vcc  
PVin  
4.7uF  
Vin  
PVin  
VCC/LDO  
Vin  
PVin  
VCC/LDO  
TDA38827  
PGND  
TDA38827  
PGND  
2.2uF ~10uF  
10uF  
Single rail operation with the internal LDO Use an external VCC  
Figure 11 Configuration of Using the internal LDO or an external VCC.  
Final Datasheet  
26 of 48  
V2.3  
2021-7-19  
 
 
 
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Theory of operation  
Section 7.1 specified the recommended operating voltage range of Vin and VCC under different configurations.  
Following design guidelines are recommended when configuring the VCC/LDO.  
Place a bypass capacitor to minimize the disturbance on the VCC pin. For a single rail operation using the  
internal LDO, a 4.7 µF low ESR ceramic capacitor must be used between VIN pin and PGND and a 2.2 µF~10 µF  
low ESR ceramic capacitor is required to be placed close to the VCC/LDO with reference to PGND. 10 µF MLCC  
is recommended for VCC bypass capacitor when VIN is below 5.5 V. When using an external VCC bias voltage,  
a 10 µF ceramic capacitor can be shared with VIN, and VCC/LDO pin.  
For applications using the internal LDO with 4.3 V Vin ꢉ ꢅ.ꢄ V, the LDO can be in the dropout mode. It is  
important to ensure that the LDO voltage does not fall below the VCC UVLO threshold voltage. At Vin = 4.3 V,  
ICC must not exceed 50 mA under all operating conditions such as during a step-up load transient, in which the  
control loop may require the increase of fsw. OCP limits can be reduced due to the lower VCC voltage.  
12.8  
Over Current Protection ꢈOCPꢉ  
The TDA38827 offers cycle-by-cycle OCP response with four selectable current limits, which is set by the  
resistance between ILIM pin and GND. The selected OCP limit bank is loaded to the IC during the power up and  
cannot be changed on the fly. To change the OCP limit, users must cycle EN signal or VCC voltage. Cycle-by-cycle  
OCP response allows the TDA38827 to fulfill a brief high current demand, such as a high inrush current during the  
start-up. The detailed operation is explained as follows.  
The OCP is activated when EN voltage is above its threshold. The OCP circuitry monitors the current of the  
Synchronous MOSFET through its Rds(on). When a new PWM pulse is requested by the control loop, if the current  
of Synchronous MOSFET exceeds the selected OCP limit, the TDA38827 skips the PWM pulse and extends the on-  
time of Synchronous MOSFET till the current drops below the OCP limit. The OCP operation is also illustrated in  
Figure 12. During OCP events, the valley of the inductor current is regulated around the OCP limit. But during  
the first switching cycle when the OCP is tripped, the valley of the inductor current can drop slightly below the  
OCP limit. It should be noted that OCP events do not pull the Pgood signal low unless the Vo drops below the  
Pgood turn-off threshold. If the OCP event persists, the output voltage can eventually drop below the Under  
Voltage Protection (UVP) threshold and trigger UVP. Then the TDA38827 enters a hiccup mode.  
The OCP limits are thermally compensated. Please refer to the typical performance of OCP limits in Figure 8. The  
OCP limits specified in the Section 7.2 refer to the valley of the inductor current when OCP is tripped. Therefore,  
the corresponding output DC current can be calculated as follows:  
∆ꢜꢘ  
ꢋꢓꢔ_ꢕꢖꢗ = ꢒꢘꢙꢚ  
Where: Iout_OCP = Output DC current when OCP is tripped. ILIM = OCP limit specified in the Section 7.2, which is the  
valley of inductor current. ΔiL = Peak-peak inductor ripple current.  
To avoid the inductor saturation during OCP events, the following criterion is recommended for the inductor  
saturation current rating.  
ꢐꢞꢔ ꢟ ꢒꢘꢙꢚ_ꢠꢞꢡ ꢛ ∆ꢜꢘ  
Where: Isat is the inductor saturation current and ILIM_max is the maximum spec of the OCP limit.  
Final Datasheet  
27 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Theory of operation  
OCP Tripped  
Current  
Limit  
UVP Hiccup  
Blanking  
time  
Inductor  
Pulse  
Current  
skipped  
HDrv  
LDrv  
PGood  
UVP  
Threshold  
Vo  
PGood Turn-off  
Threshold  
Figure 12 Cycle-by-cycle OCP response  
12.9  
Under Voltage Protection ꢈUVPꢉ  
Under Voltage Protection (UVP) provides additional protection during OCP fault or other faults. UVP is activated  
when the soft-start voltage rises above 100 mV. UVP circuitry monitors the FB voltage. When it is below the UVP  
threshold for 5 µs (typical), an under voltage trip signal asserts and both Control MOSFET and Synchronous  
MOSFET are turned off. The TDA38827 enters a hiccup mode with a blanking time of 20 ms, during which Control  
MOSFET and Synchronous MOSFET remain off. After the completion of blanking time, the TDA38827 attempts to  
recover to the nominal output voltage with a soft-start, as shown in Figure 12. The TDA38827 will repeat hiccup  
mode and attempt to recover until UVP condition is removed.  
12.10  
Over Voltage Protection ꢈOVPꢉ  
Over Voltage Protection (OVP) is achieved by comparing the VSNS voltage to an OVP threshold voltage. When the  
VSNS voltage exceeds the OVP threshold, an over voltage trip signal asserts after 7 µs (typical) delay. Control  
MOSFET is latched off immediately and Pgood flags low. Synchronous MOSFET remains on to discharge the  
output capacitor. When FB voltage drops below around 115% of the reference voltage, Synchronous MOSFET  
turns off to prevent the complete depletion of the output capacitors. Figure 13 illustrates the OVP operation.  
The OVP comparator becomes active when the EN signal is above the start threshold.  
With SS/Latch pin, two OVP responses can be selected: Latch or No Latch, as shown in Table 6. With a latched  
OVP response, Control FET remains latched off until either VCC voltage or EN signal is cycled. With an unlatched  
OVP response, the TDA38827 enters a hiccup mode. Control FET remains off for a blanking time of 20ms. After  
hiccup blanking time expires, the TDA38827 will try to restart with a soft-start. The TDA38827 can stay in the  
hiccup mode infinitely if over voltage fault persists.  
Final Datasheet  
28 of 48  
V2.3  
2021-7-19  
 
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Theory of operation  
HDrv  
LDrv  
120%Vref  
115%Vref  
Vref  
OVP  
91%Vref  
91%Vref  
84%Vref  
VSNS  
PGood  
Pgood turn-on  
delay =2.5ms  
Pgood turn-on  
delay =2.5ms  
OVP delay =7us  
Figure 13 Over voltage protection response and Pgood behavior.  
12.11  
Over Temperature Protection ꢈOTPꢉ  
Temperature of the controller is monitored internally. When the temperature exceeds the over temperature  
threshold, OTP circuitry turns off both Control and Synchronous MOSFETs, and resets the internal soft start.  
Automatic restart is initiated when the sensed temperature drops back into the operating range. The thermal  
shutdown threshold has a hysteresis of 20 °C.  
12.12  
Power Good ꢈPgoodꢉ output  
The Pgood pin is the open drain of an internal NFET, and needs to be externally pulled high through a pull-up  
resistor. Pgood signal is high when three criteria are satisfied.  
1. En signal and VCC voltage are above their respective thresholds.  
2. No over voltage and over temperature faults occur.  
3. Vo is within the regulation.  
In order to detect if Vo is in regulation, Pgood comparator continuously monitors the VSNS voltage. When VSNS  
voltage ramps up above the upper threshold, Pgood signal is pulled high after 2.5 ms. When VSNS voltage drops  
below the lower threshold, Pgood signal is pulled low immediately. Figure 13 illustrates the Pgood response.  
During the start-up with a pre-biased voltage, Pgood signal is held low before the first PWM is generated and is  
then pulled high with 2.5 ms delay after VSNS voltage rises above the Pgood threshold. TDA38827 also integrates  
an additional PFET in parallel to the Pgood NFET, as shown in Figure 2. This PFET allows Pgood signal to stay at  
logic low when the VCC voltage is not present, and Pgood pin is pulled up by an external bias voltage. Please refer  
to Figure 10. Since Pgood PFET has relatively higher on resistance, a 50 kΩ pull-up resistor is needed for a Pgood  
bias voltage of 3.3 V to maintain the Pgood signal at logic low when Pgood PFET is on.  
Final Datasheet  
29 of 48  
V2.3  
2021-7-19  
 
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Theory of operation  
12.13  
Minimum on – time and minimum off – time  
The minimum on-time refers to the shortest time for Control MOSFET to be reliably turned on. The minimum off-  
time refers to the minimum time duration in which Synchronous FET stays on before a new PWM pulse is  
generated. The minimum off-time is needed for TDA38827 to charge the bootstrap capacitor, and to sense the  
current of the Synchronous MOSFET for OCP.  
For applications requiring a small duty cycle, it is important that the selected switching frequency results in an  
on-time larger than the maximum spec of the minimum on-time in the Section 7.2. Otherwise the resulting  
switching frequency may be lower than the desired target. Following formula could be used to check for the  
minimum on-time requirement.  
ꢍ  
> max ꢣꢤꢥꢦ ꢧꢏ ꢋꢉ ꢩiꢪ  
ꢢꢏ × ꢆꢌ  
ꢐꢑ  
ꢈꢉ  
Where fsw is the desired switching frequency. k is the variation of the switching frequency. As a rule of thumb,  
select k = 1.25 to ensure the design margin.  
For applications requiring a high duty cycle, it is important to make sure a proper switching frequency is selected  
so that the resulting off-time is longer than the maximum spec of the minimum off-time in the Section 7.2, which  
can be calculated as shown below.  
ꢆꢌ − ꢍ  
ꢈꢉ  
> max ꢣꢤꢥꢦ ꢧꢏ ꢋꢬꢬ ꢩiꢪ  
ꢢꢏ × ꢆꢌ  
ꢐꢑ  
ꢈꢉ  
Where fsw is the desired switching frequency. k is the variation of the switching frequency. As a rule of thumb,  
select k = 1.25 to ensure the design margin.  
Please note that with the increase of load current, fsw will increase to maintain the regulation. Especially  
during a load transient, a fast large load increase could increase fsw significantly for a short-period of time.  
Therefore extra design margin needs to be considered to cover the worst case scenario. Also note that OCP  
limit may be degraded when off-time is close to ꢋꢬꢬ ꢩiꢪ  
.
The maximum duty cycle can be determined by the selected on-time and minimum off-time, as shown below.  
ꢋꢉ  
ꢠꢞꢡ  
=
ꢋꢉ  
ꢋꢬꢬꢨꢩiꢪꢫ  
12.14  
Selection of feedforward capacitor and feedback resistors  
A small MLCC capacitor, Cff, is preferred in parallel with the top feedback resistor, RFB1, to provide extra phase  
boost and to improve the transient load response, as shown in Figure 14. Following formula can be used to  
help select Cff and RFB1. The value of Cff is recommended to be 100 pF or higher to minimize the impact of  
circuit parasitic capacitance. Cff and RFB1 may be further optimized based on the transient load tests. Where  
Lo and Co are the output LC filter of the buck regulator.  
ꢳ ꢲ  
ꢯꢰꢱꢬꢬ  
=
ꢴ × 4.ꢵ  
Table 7 Selection of m  
Vo  
m
0.3  
0.5  
0.7  
ꢆ V ꢉ Vo ꢉ 6 V  
1.2 V < Vo < 3 V  
Vo ꢉ ꢀ.ꢂ V  
Final Datasheet  
30 of 48  
V2.3  
2021-7-19  
 
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Theory of operation  
Vo  
RFB1 Cff  
RFB2  
FB  
Figure 14 Configuration of feedforward capacitor, Cff.  
12.15  
Resistors for configuration pins  
To properly configure SS/LATCH pin, TON/ MODE pin and ILIM pin, E96 resistors with ±1% tolerance must be  
used per Table 5, Table 6 and Section 7.2. If E12 resistor values are preferred, the E96 resistors can be replaced  
with two or three E12 resistors in series, as shown in Table 8. Note that the tolerance of E12 resistors must be  
±0.1%.  
Table 8 Replacement of E96 configuration resistors with E12 resistors in series  
E96 ±1%  
R ꢊkΩꢋ  
4.53  
1.50  
5.76  
2.49  
7.32  
3.45  
8.87  
10.5  
12.1  
21.5  
14  
E12 ±0.1% (R = RS1 + RS2 or RS1 + RS2 + RS3)  
RS1 ꢊkΩꢋ  
RS2 ꢊkΩꢋ  
1.8  
RS3 ꢊkΩꢋ  
2.7  
1.5  
5.6  
1.8  
6.8  
3.3  
8.2  
10  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0.18  
0.18  
0
0.15  
0.68  
0.56  
0.15  
0.68  
0.47  
0.1  
12  
18  
3.3  
10  
3.9  
24.9  
16.2  
28.7  
21.5  
24.9  
22  
2.7  
15  
1.2  
27  
1.8  
18  
3.3  
22  
2.7  
Final Datasheet  
31 of 48  
V2.3  
2021-7-19  
 
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Design example  
13  
Design example  
In this section, an example is used to explain how to design a buck regulator with the TDA38827. The  
application circuit is shown in Figure 15. The design specifications are given below.  
PVin = 12 V (±10%)  
Vo = 1.0 V  
Io = 25 A  
Vo ripple voltage = ±1% of Vo  
Load transient response = ± 3% of Vo with a step load current = 9 A and slew rate = 30 A/µs  
13.1  
Enabling the TDAꢀꢁꢁꢂꢃ  
The TDA38827 has a precise Enable threshold voltage, which can be used to implement a UVLO of the input bus  
voltage by connecting the EN pin to PVin with a resistor divider, as shown in Configuration 2 of Figure 9. The  
Enable feedback resistor, REN1 and REN2, can be calculated as follows.  
ꢶꢷꢸ  
ꢆꢌ  
×
ꢶꢷꢨꢩꢹꢺꢫ  
ꢈꢉꢨꢩiꢪꢫ  
ꢶꢷꢱ ꢛ ꢮꢶꢷꢸ  
ꢶꢷꢨꢩꢹꢺꢫ  
ꢈꢉꢨꢩiꢪꢫ ꢶꢷꢨꢩꢹꢺꢫ  
ꢶꢷꢸ ꢟ ꢮꢶꢷꢱ  
×
Where VEN(max) is the maximum spec of the En-start-threshold as defined in Section 7.2. For PVin (min) =10.8 V, select  
REN1=49.9 kand REN2=7.5 k.  
13.2  
Programming the switching frequency and operation mode  
The TDA38827 has very good efficiency performance and is suitable for high switching frequency operation. In  
this case, 800 kHz is selected to achieve a good compromise between the efficiency, passive component size and  
dynamic response. In addition, FCCM operation is selected to ensure a small output ripple voltage over the entire  
load range. To select ꢇꢃꢃ kHz and FCCM operation, the TON/MODE pin can be left floating or connect a ꢀ.ꢅ kΩ  
resistor to GND per Table 5.  
13.3  
Selecting input capacitors  
Without input capacitors, the pulse current of Control MOSFET is directly from the input supply power. Due to  
the impedance on the cable, the pulse current can cause disturbance on the input voltage and potential EMI  
issues. The input capacitors filter the pulse current, resulting in almost constant current from the input supply.  
The input capacitors should be selected to tolerate the input pulse current, and to reduce the input voltage  
ripple. The RMS value of the input ripple current can be expressed by:  
ꢁꢚꢻ = ꢒ × ꢭ × ꢨꢎ − ꢭꢫ  
ꢭ =  
ꢆꢌ  
ꢈꢉ  
Where IRMS is the RMS value of the input capacitor current. Io is the output current and D is the Duty Cycle. For Io  
= 25A and D(max) = 0.09, the resulting RMS current flowing into the input capacitor is Irms = 7.2 A.  
Final Datasheet  
32 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Design example  
To meet the requirement of the input ripple voltage, the minimum input capacitance can be calculated as  
follows.  
× ꢨꢎ − ꢭꢫ × ꢭ  
ꢈꢉꢨꢩiꢪꢫ  
>
ꢏ × ꢨ∆ꢆꢌ − ꢼꢽꢮ × ꢒ× ꢎ − ꢭ ꢫ  
ꢐꢑ  
ꢈꢉ  
Where ∆PVin is the maximum allowable peak-to-peak input ripple voltage, and ESR is the equivalent series  
resistor of the input capacitors. Ceramic capacitors are recommended due to low ESR, ESL and high RMS current  
capability. For Io = 25 A, fsw = ꢇꢃꢃ kHz, ESR = ꢆ mΩ, and ∆PVin = 240 mV, Cin(min) > 15 µF. To account for the de-rating  
of ceramic capacitors under a bias voltage, 10 x 22 µF/0805/25V MLCC are used for the input capacitors. In  
addition, a bulk capacitor is recommended if the input supply is not located close to the voltage regulator.  
13.4  
Inductor selection  
The inductor is selected based on output power, operating frequency and efficiency requirements. A low inductor  
value results in a large ripple current, lower efficiency and high output noise, but helps with size reduction and  
transient load response. Generally, the desired peak-to-peak ripple current in the inductor ꢊ∆iꢋ is found between  
20% and 50% of the output current.  
The inductor saturation current must be higher than the maximum spec of the OCP limit plus the peak-to-peak  
inductor ripple current. For some core material, inductor saturation current may decrease as the increase of  
temperature. So it is important to check the inductor saturation current at the maximum operating temperature.  
The inductor value for the desired operating ripple current can be determined using the following relation:  
ꢠꢈꢉ  
ꢳ = ꢨꢆꢈꢉꢨꢩꢹꢺꢫ − ꢌ ꢫ ×  
∆ꢜꢘꢨꢩꢹꢺꢫ × ꢾ  
ꢐꢑ  
ꢠꢈꢉ  
=
ꢆꢌ  
ꢈꢉꢨꢩꢹꢺꢫ  
ꢐꢞꢔ ꢟ ꢿꢲꢠꢞꢡ ꢛ ∆ꢜꢘꢨꢩꢹꢺꢫ  
Where: PVin(max) = Maximum input voltage; ∆iLmax = Maximum peak-to-peak inductor ripple current; OCPmax  
=
maximum spec of the OCP limit as defined in Section 7.2; and Isat = inductor saturation current. In this case,  
select inductor L =150 nH to achieve ∆iLmax = 30% of Iomax. The Isat should be no less than 42 A.  
13.5  
Output capacitor selection  
The output capacitor selection is mainly determined by the output voltage ripple and transient requirements.  
To satisfy the Vo ripple requirement, Co should satisfy the following criterion.  
∆ꢜꢘꢠꢞꢡ  
>  
ꣀ × ∆ꢌ × ꢏ  
ꢋꣁ  
ꢐꢑ  
Where ∆Vor is the desired peak-to-peak output ripple voltage. For ∆iLmax= 7.6 A, ∆Vor =20 mV, fsw = 800 kHz, Co  
must be larger than 59 µF. The ESR and ESL of the output capacitors, as well as the parasitic resistance or  
inductance due to PCB layout, can also contribute to the output voltage ripple. It is suggested to use Multi-  
Layer Ceramic Capacitor (MLCC) for their low ESR, ESL and small size.  
To meet the transient response requirements, the output capacitors should also meet the following criterion.  
ꢳ × ∆ꢒꢨꢩꢹꢺꢫ  
>  
ꢝ × ∆ꢌ × ꢌ  
ꢋꢘ  
Final Datasheet  
33 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Design example  
Where ∆VOL is the allowable Vo deviation during the load transient. ∆Io(max) is the maximum step load current.  
Please note that the impact of ESL, ESR, control loop response, transient load slew rate, and PWM latency is not  
considered in the calculation shown above. Extra capacitance is usually needed to meet the transient  
requirements. As a rule of thumb, we can triple the Co that is calculated above as a starting point, and then  
optimize the design based on the bench measurement. In this case, to meet the transient load requirement (i.e.  
∆VOL= 30 mV, ∆Io(max) = 9 A), select Co = ~800 µF. For more accurate estimation of Co, simulation tool should be used  
to aid the design.  
13.6  
Output voltage programming  
Output voltage can be programmed with an external voltage divider. The FB voltage is compared to an internal  
reference voltage of 0.6 V. The divider ratio is set to provide 0.6 V at the FB pin when the output is at its desired  
value. The calculation of the feedback resistor divider is shown below.  
ꢯꢰꢱ  
ꢌ = ꢌ × ꢨꢎ ꢛ  
ꣁꣂꢬ  
ꢯꢰꢸ  
Where RFB1 and RFB2 are the top and bottom feedback resistors. Select RFB1 = 7.5 kΩ and RFB2 = 11.3 kΩ, to achieve  
Vo = 1 V. Same set of the resistor divider can be used at VSNS pin to achieve the same voltage scaling factor.  
13.7  
Feedforward capacitor  
A small MLCC capacitor, Cff, can be placed in parallel with the top feedback resistor, RFB1, to improve the transient  
response. Based on Section 12.14, Cff can be selected using the following formula.  
ꢳ ꢲ  
ꢯꢰꢱꢬꢬ  
=
ꣃ.꣄ × 4.ꢵ  
With Lo = 150 nH, Co = 800 µF and RFB1 = 7.5 kΩ, Cff = 470 pF. Cff can be further optimized on the bench test based  
on transient load response.  
13.8  
Bootstrap capacitor  
For most applications, a 0.1 µF ceramic capacitor is recommended for bootstrap capacitor placed between SW  
and BOOT Pin.  
13.9  
VIN and VCC/LDO bypass capacitor  
Please see the recommendation in Section 12.7. A 10 µF MLCC is selected for VCC/LDO bypass capacitor and a  
4.7 µF MLCC is selected for VIN bypass capacitor.  
Final Datasheet  
34 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Application information  
14  
Application information  
14.1  
Application diagram  
Cin  
10 x 22uF  
CinHF  
4.7uF  
Vin = 12V 10%  
+
Optional  
REN1  
49.9k ꢀ  
REN2  
7.5k ꢀ  
Cvin  
4.7uF  
RBoot  
0 ꢀ  
PVin  
Vin  
EN  
Boot  
CBoot  
0.1uF  
VCC/LDO  
Vo=1V  
RPG  
49.9k ꢀ  
Cvcc  
10uF  
SW  
L
150nH  
PGood  
+
CoHF  
0.1uF  
Co1 Co2  
1x470uF 10x47uF  
PGood  
TDA38827  
VSNS  
SS/Latch  
R1  
7.5k ꢀ  
R2  
11.3k ꢀ  
RSS  
1.5k ꢀ  
Fb  
Rt/Mode  
ILIM  
NC  
Cff  
470pF  
RTon  
1.5k ꢀ  
AGnd  
PGnd NC  
RLIM  
24.9k ꢀ  
RFB1  
7.5k ꢀ  
RFB2  
11.3k ꢀ  
Figure 15 Application diagram of TDA38827. Pvin = 12 V, Vo = 1V, Io = 25 A, fsw = 800 kHz.  
14.2  
Typical operating waveforms  
PVin = Vin = 12.0 V, Vo = 1 V, Io = 0 25 A, fsw = 800 kHz, Room Temperature, no airflow  
Figure 16  
Start up at 25 A Load, (Ch1: PVin, Ch2: Enable, Ch3:Pgood,Ch4: Vout)  
Final Datasheet  
35 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Application information  
Figure 17  
Pre-bias Start up at 0 A Load, (Ch1: PVin, Ch2: Enable, Ch3:Pgood, Ch4: Vout)  
Figure 18  
Vout ripple at 25 A Load, fsw = 800 kHz, (Ch3: Vo)  
Figure 19  
SW node, 25 A load, fsw = 800 kHz  
Final Datasheet  
36 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Application information  
Figure 20  
Short circuit and UVP (Hiccup), (Ch1 : Vo , Ch3:Pgood)  
Figure 21  
Transient response at 9 A step load current @ 30 A/µs slew rate: Io= 16 A 25 A, (Ch1: Vo ,  
Ch4: Io), pk-pk: 52 mV, fsw = 800 kHz  
Figure 22  
Thermal image of the board at 25 A load TDA38827 = 92°C, L = 65.7°C, fsw = 800 kHz, room  
temperature, natural convection  
Final Datasheet  
37 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Layout recommendations  
15  
Layout recommendations  
PCB layout is very important when designing high frequency switching converters. Layout will affect noise pickup  
and can cause a good design to perform with less than expected results. Following design guidelines are  
recommended to achieve the best performance.  
Bypass capacitors, including input/output capacitors, Vin and VCC bypass capacitors, should be placed near  
the corresponding pins as close as possible.  
Place bypass capacitors from TDA38827 power input (Drain of Control MOSFET) to PGND (Source of  
Synchronous MOSFET) to reduce noise and ringing in the system. The output capacitors should be terminated  
to a ground plane that is away from the input PGND to mitigate the switching spikes on the Vout. The Vin and  
VCC bypass capacitor should be terminated to PGND.  
Place a boot strap capacitor near the TDA38827 BOOT and SW pin as close as possible to minimize the loop  
inductance.  
SW node copper should only be routed on the top layer to minimize the impact of switching noises  
Connect AGND pin to the PGND pad through a single point connection. On the TDA38827 demo board, AGND  
pin is connected to the exposed AGND pad (Pin 23) and then connected to the internal PGND layer through the  
thermal via holes.  
Via holes can be placed on PVIN and PGND pads to aid thermal dissipation.  
Wide copper polygons are desired for Pvin and PGND connections in favor of power losses reduction and  
thermal dissipation. Sufficient via holes should be used to connect power traces between different layers.  
To implement the Vo sensing, following design guidelines should be followed, as illustrated in Figure 23.  
o
o
o
The output voltage can be sensed from a high-frequency bypass capacitor of 0.1 µF or higher,  
preferably through a 15 mil PCB trace.  
Keep the Vout sense line away from any noise sources and shield the sense line with ground  
planes.  
The sense trace is connected to a feedback resistor divider with the lower resistor terminated at  
AGND pin.  
The En pin and configuration pins including SS/Latch, Rt/MODE, and ILIM should be terminated to a quiet  
ground. On the TDA38827 standard demo board, they are terminated to the PGND copper plane away from  
the power current flow. Alternatively, they can be terminated to a dedicated AGND PCB trace.  
Final Datasheet  
38 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Layout recommendations  
4.3V<Vin<17V  
Enable  
PVin  
Vin  
EN  
Boot  
VCC/LDO  
Vo  
SW  
PGood  
0.1uF  
PGood  
TDA38827  
VSNS  
SS/Latch  
Fb  
Rt/Mode  
ILIM  
Cff  
NC  
AGnd  
PGnd NC  
RFB2  
RFB1  
Figure 23  
Single-ended Vo sense configuration  
Following figures illustrate the PCB layout design of the TDA38827 standard demo board.  
Figure 24  
TDA38827 Demo Board Top Layer  
Final Datasheet  
39 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Layout recommendations  
Figure 25  
TDA38827 Demo Board Bottom Layer  
Figure 26  
TDA38827 Demo Board 2nd Layer (Ground)  
Figure 27  
TDA38827 Demo Board 3rd Layer (Ground & Signal)  
Final Datasheet  
40 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Layout recommendations  
Figure 28  
TDA38827 Demo Board 4th Layer (Ground & Signal)  
Figure 29  
TDA38827 Demo Board 5th Layer (Ground)  
Final Datasheet  
41 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Layout recommendations  
15.1  
Solder mask  
Evaluation has shown that the best overall performance is achieved using the substrate/PCB layout as shown in  
the following figures. PQFN devices should be placed to an accuracy of 0.050 mm on both X and Y axes. Self-  
centering behavior is highly dependent on solders and processes, and experiments should be run to confirm the  
limits of self-centering on specific processes.  
Infineon recommends that larger Power or Land Area pads are Solder Mask Defined (SMD). This allows the  
underlying copper traces to be as large as possible, which helps in terms of current carrying capability and device  
cooling capability. When using SMD pads, the underlying copper traces should be at least 0.05 mm larger (on  
each edge) than the openings in the solder mask. This allows for layers to be misaligned by up to 0.1 mm on both  
axes. Ensure that the solder resist in-between the smaller signal lead areas is at least 0.15 mm wide, due to the  
high x/y aspect ratio of the solder mask strip.  
Figure 30  
Solder mask (all dimensions in mm)  
Final Datasheet  
42 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Layout recommendations  
15.2  
Stencil design  
Stencils for PQFN packages can be used with thicknesses of 0.100-0.250 mm (0.004-ꢃ.ꢃꢀꢃ”ꢋ. Stencils thinner  
than 0.100 mm are unsuitable because they deposit insufficient solder paste to make good solder joints with  
the ground pad; high reductions sometimes create similar problems. Stencils in the range of 0.125 mm-0.200  
mm (0.005-ꢃ.ꢃꢃꢇ”ꢋ, with suitable reductions, give the best results. A recommended stencil design is shown  
below. This design is for a stencil thickness of ꢃ.ꢀꢂꢈ mm ꢊꢃ.ꢃꢃꢅ”ꢋ. The reduction should be adjusted for stencils  
of other thicknesses.  
Figure 31  
Stencil pad size and spacing (all dimensions in mm)  
Final Datasheet  
43 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Package  
16  
Package  
This section includes marking, mechanical and packaging information for the TDA38827.  
16.1  
Marking information  
PART NUMBER  
38827  
DATE CODE  
ASSEMBLY  
SITE CODE  
4YWWP  
XXX  
PIN 1, IDENTIFIER  
LOT CODE  
Figure 32  
Package marking  
16.2  
Dimensions  
Figure 33  
Package Dimensions (all dimensions in mm)  
Final Datasheet  
44 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Package  
16.3  
Tape and reel information  
Figure 34  
Pin 1 orientation in the tape  
Final Datasheet  
45 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Environmental qualifications  
17  
Environmental qualifications  
Qualification Level  
Industrial  
Moisture Sensitivity  
QFN Package  
JEDEC Level 2 @ 260 °C  
Human Body Model  
Charged Device Model  
ANSI/ESDA/JEDEC JS-001, 2 (2000 V to < 4000 V)  
ESD  
ANSI/ESDA/JEDEC JS-002, C3 (1000 V)  
RoHS2 Compliant  
This product is in compliance with EU Directive 2015/863/EU  
amending Annex II to EU Directive 2011/65/EU (RoHS) and  
contains Pb according RoHS exemption 7a, Lead in high  
melting temperature type solders.  
Final Datasheet  
46 of 48  
V2.3  
2021-7-19  
TDAꢀꢁꢁꢂꢃ OptiMOS™ IPOL  
25 A single-voltage synchronous Buck regulator  
Evaluation boards and support documentation  
18  
Evaluation boards and support documentation  
Table 9 TDA38827 Evaluation Boards and User Guides  
Evaluation board  
Specifications  
Website Address  
EVAL_38827_1Vout  
12 V±10%, 1 V, 25 A  
www.infineon.com/EVAL_38827_1Vout  
Table 10 TDA38827 Package Information  
Device  
Package Type  
PG-IQFN-22-2  
Website Address  
TDA38827  
https://www.infineon.com/cms/en/product/packages/PG-IQFN  
Final Datasheet  
47 of 48  
V2.3  
2021-7-19  
TDA38827ꢀOptiMOSªꢀIPOL  
TDA38827  
RevisionꢀHistory  
TDA38827  
Revision:ꢀ2021-07-27,ꢀRev.ꢀ2.3  
Previous Revision  
Revision Date  
2.0  
Subjects (major changes since last revision)  
Release of final version, Change Pin numbering from 23 pins to 17 pins, to match with  
IR3894/5, IR3824/5/6/6A  
2020-09-24  
2.1  
2.2  
2.3  
(1) Update ordering info; (2) Correct UVP activation threshold in section 12.9; (3) Correct  
test conditions of dead time in EC table  
2021-03-02  
2021-04-17  
1) Add max Vout of 6V to the recommended operating conditions; (2) Update note 8; (3)  
Correct typo in Table 7; (4) Add Fig 22.  
(1). Change typ value of top switch Rds(on) from 3.8mohm to 3.3mohm (2). Change test  
condition of OCP limit in EC table from VCC = 5.0V to int LDO (3). Update Fig 30, 31,  
33, and 34 (4). Correct typo in Table 7  
2021-07-27  
Trademarks  
Allꢀreferencedꢀproductꢀorꢀserviceꢀnamesꢀandꢀtrademarksꢀareꢀtheꢀpropertyꢀofꢀtheirꢀrespectiveꢀowners.  
WeꢀListenꢀtoꢀYourꢀComments  
Anyꢀinformationꢀwithinꢀthisꢀdocumentꢀthatꢀyouꢀfeelꢀisꢀwrong,ꢀunclearꢀorꢀmissingꢀatꢀall?ꢀYourꢀfeedbackꢀwillꢀhelpꢀusꢀtoꢀcontinuously  
improveꢀtheꢀqualityꢀofꢀthisꢀdocument.ꢀPleaseꢀsendꢀyourꢀproposalꢀ(includingꢀaꢀreferenceꢀtoꢀthisꢀdocument)ꢀto:  
erratum@infineon.com  
Publishedꢀby  
InfineonꢀTechnologiesꢀAG  
81726ꢀMünchen,ꢀGermany  
©ꢀ2020ꢀInfineonꢀTechnologiesꢀAG  
AllꢀRightsꢀReserved.  
LegalꢀDisclaimer  
Theꢀinformationꢀgivenꢀinꢀthisꢀdocumentꢀshallꢀinꢀnoꢀeventꢀbeꢀregardedꢀasꢀaꢀguaranteeꢀofꢀconditionsꢀorꢀcharacteristicsꢀ  
(“Beschaffenheitsgarantie”)ꢀ.  
Withꢀrespectꢀtoꢀanyꢀexamples,ꢀhintsꢀorꢀanyꢀtypicalꢀvaluesꢀstatedꢀhereinꢀand/orꢀanyꢀinformationꢀregardingꢀtheꢀapplicationꢀofꢀthe  
product,ꢀInfineonꢀTechnologiesꢀherebyꢀdisclaimsꢀanyꢀandꢀallꢀwarrantiesꢀandꢀliabilitiesꢀofꢀanyꢀkind,ꢀincludingꢀwithoutꢀlimitation  
warrantiesꢀofꢀnon-infringementꢀofꢀintellectualꢀpropertyꢀrightsꢀofꢀanyꢀthirdꢀparty.  
Inꢀaddition,ꢀanyꢀinformationꢀgivenꢀinꢀthisꢀdocumentꢀisꢀsubjectꢀtoꢀcustomer’sꢀcomplianceꢀwithꢀitsꢀobligationsꢀstatedꢀinꢀthis  
documentꢀandꢀanyꢀapplicableꢀlegalꢀrequirements,ꢀnormsꢀandꢀstandardsꢀconcerningꢀcustomer’sꢀproductsꢀandꢀanyꢀuseꢀofꢀthe  
productꢀofꢀInfineonꢀTechnologiesꢀinꢀcustomer’sꢀapplications.  
Theꢀdataꢀcontainedꢀinꢀthisꢀdocumentꢀisꢀexclusivelyꢀintendedꢀforꢀtechnicallyꢀtrainedꢀstaff.ꢀItꢀisꢀtheꢀresponsibilityꢀofꢀcustomer’s  
technicalꢀdepartmentsꢀtoꢀevaluateꢀtheꢀsuitabilityꢀofꢀtheꢀproductꢀforꢀtheꢀintendedꢀapplicationꢀandꢀtheꢀcompletenessꢀofꢀtheꢀproduct  
informationꢀgivenꢀinꢀthisꢀdocumentꢀwithꢀrespectꢀtoꢀsuchꢀapplication.  
Information  
Forꢀfurtherꢀinformationꢀonꢀtechnology,ꢀdeliveryꢀtermsꢀandꢀconditionsꢀandꢀpricesꢀpleaseꢀcontactꢀyourꢀnearestꢀInfineon  
TechnologiesꢀOfficeꢀ(www.infineon.com).  
Warnings  
Dueꢀtoꢀtechnicalꢀrequirements,ꢀcomponentsꢀmayꢀcontainꢀdangerousꢀsubstances.ꢀForꢀinformationꢀonꢀtheꢀtypesꢀinꢀquestion,  
pleaseꢀcontactꢀtheꢀnearestꢀInfineonꢀTechnologiesꢀOffice.  
TheꢀInfineonꢀTechnologiesꢀcomponentꢀdescribedꢀinꢀthisꢀDataꢀSheetꢀmayꢀbeꢀusedꢀinꢀlife-supportꢀdevicesꢀorꢀsystemsꢀand/or  
automotive,ꢀaviationꢀandꢀaerospaceꢀapplicationsꢀorꢀsystemsꢀonlyꢀwithꢀtheꢀexpressꢀwrittenꢀapprovalꢀofꢀInfineonꢀTechnologies,ꢀifꢀa  
failureꢀofꢀsuchꢀcomponentsꢀcanꢀreasonablyꢀbeꢀexpectedꢀtoꢀcauseꢀtheꢀfailureꢀofꢀthatꢀlife-support,ꢀautomotive,ꢀaviationꢀand  
aerospaceꢀdeviceꢀorꢀsystemꢀorꢀtoꢀaffectꢀtheꢀsafetyꢀorꢀeffectivenessꢀofꢀthatꢀdeviceꢀorꢀsystem.ꢀLifeꢀsupportꢀdevicesꢀorꢀsystemsꢀare  
intendedꢀtoꢀbeꢀimplantedꢀinꢀtheꢀhumanꢀbodyꢀorꢀtoꢀsupportꢀand/orꢀmaintainꢀandꢀsustainꢀand/orꢀprotectꢀhumanꢀlife.ꢀIfꢀtheyꢀfail,ꢀitꢀis  
reasonableꢀtoꢀassumeꢀthatꢀtheꢀhealthꢀofꢀtheꢀuserꢀorꢀotherꢀpersonsꢀmayꢀbeꢀendangered.  
48  
Rev.ꢀ2.3,ꢀꢀ2021-07-27  

相关型号:

TDA39

Barrier Strip Terminal Block, 10A, 1 Deck(s)
ADAM-TECH

TDA3950A

CHROMA PROCESSOR FOR USE IN PAL COLOR TV RECEIVERS
ETC

TDA3LA

适用于 ADAS 应用且具有视觉加速功能的低功耗 SoC
TI

TDA3LABBABFQ1

适用于 ADAS 应用且具有视觉加速功能的低功耗 SoC | ABF | 367 | -40 to 125
TI

TDA3LABBABFRQ1

适用于 ADAS 应用且具有视觉加速功能的低功耗 SoC | ABF | 367 | -40 to 125
TI

TDA3LADBABFQ1

适用于 ADAS 应用且具有视觉加速功能的低功耗 SoC | ABF | 367 | -40 to 125
TI

TDA3LADBABFRQ1

适用于 ADAS 应用且具有视觉加速功能的低功耗 SoC | ABF | 367 | -40 to 125
TI

TDA3LADBJFABFQ1

适用于 ADAS 应用且具有视觉加速功能的低功耗 SoC | ABF | 367 | -40 to 125
TI

TDA3LADBJFABFRQ1

适用于 ADAS 应用且具有视觉加速功能的低功耗 SoC | ABF | 367 | -40 to 125
TI

TDA3LAXABFQ1

TDA3x SoC for Advanced Driver Assistance Systems (ADAS) 15mm Package (ABF) Silicon Revision 2.0
TI

TDA3LX

适用于 ADAS 应用且具有处理、成像和视觉加速功能的低功耗 SoC
TI

TDA3LXBBABFQ1

适用于 ADAS 应用且具有处理、成像和视觉加速功能的低功耗 SoC | ABF | 367 | -40 to 125
TI