PEB2265 [INFINEON]

Two Channel Codec Filter with IOM®-2 Interface (IOM®-2 - SICOFI®-2); 双通道编解码器滤波器与IOM® - 2接口( IOM® - 2 - SICOFI® - 2 )
PEB2265
型号: PEB2265
厂家: Infineon    Infineon
描述:

Two Channel Codec Filter with IOM®-2 Interface (IOM®-2 - SICOFI®-2)
双通道编解码器滤波器与IOM® - 2接口( IOM® - 2 - SICOFI® - 2 )

解码器 编解码器 电信集成电路 电信电路 PC
文件: 总77页 (文件大小:877K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICs for Communications  
Two Channel Codec Filter with IOM®-2 Interface  
(IOM®-2 – SICOFI®-2)  
PEB 2265 Version 1.1  
Preliminary Data Sheet 1997-07-01  
T2265-XV11-P1-7600  
PEB 2265  
Revision History:  
Current Version: 1997-07-01  
Previous Version:  
Page  
Page  
Subjects (major changes since last revision)  
(in previous (in current  
Version)  
Version)  
Edition 1997-07-01  
HL TS,  
Balanstraße 73,  
81541 München  
©
Siemens AG 1997.  
All Rights Reserved.  
Attention please!  
As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes  
and circuits implemented within components or assemblies.  
The information describes the type of component and shall not be considered as assured characteristics.  
Terms of delivery and rights to change design reserved.  
For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies  
and Representatives worldwide (see address list).  
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact  
your nearest Siemens Office, Semiconductor Group.  
Siemens AG is an approved CECC manufacturer.  
Packing  
Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will  
take packing material back, if it is sorted. You must bear the costs of transport.  
For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs in-  
curred.  
Components used in life-support devices or systems must be expressly authorized for such purpose!  
Critical components1 of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems2 with the express  
written approval of the Semiconductor Group of Siemens AG.  
1
A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the  
failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.  
2
Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain hu-  
man life. If they fail, it is reasonable to assume that the health of the user may be endangered.  
PEB 2265  
Page  
Table of Contents  
1
1.1  
1.2  
1.3  
1.3.1  
1.3.2  
1.3.3  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Pin Configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Pin Definition and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Common Pins for all Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Specific Pins for Channel 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Specific Pins for Channel 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
®
®
2
2.1  
IOM -2 – SICOFI -2 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
®
®
IOM -2 – SICOFI -2 Signal Flow Graph (for either channel) . . . . . . . . . .12  
Transmit Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Receive Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Test Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
2.1.1  
2.1.2  
2.1.3  
2.1.4  
2.2  
®
®
IOM -2 – SICOFI -2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
®
2.3  
IOM -2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
®
2.3.1  
2.3.2  
2.3.3  
2.3.4  
IOM -2 Interface Timing for 16 voice channels (per 8 kHz frame) . . . . . .15  
®
IOM -2 Interface Timing (DCL = 4096 kHz, MODE = 1, per 8 kHz frame) 15  
®
IOM -2 Interface Timing (DCL = 2048 kHz, MODE = 0) . . . . . . . . . . . . . .16  
®
IOM -2 Time-Slot Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
®
®
3
Programming the IOM -2 – SICOFI -2 . . . . . . . . . . . . . . . . . . . . . . . . . .18  
3.1  
3.2  
Types of Monitor Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
®
®
IOM -2 – SICOFI -2 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
SOP - Write Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
XOP - Write Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
COP - Write Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
SOP - Read Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
XOP - Read Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
COP - Read Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Example for a Mixed Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
SOP Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
CR1 Configuration Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
CR2 Configuration Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
CR3 Configuration Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
CR4 Configuration Register 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
COP Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
XOP Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
XR1 Extended Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
XR2 Extended Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
XR3 Extended Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
XR4 Extended Register 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
SLIC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
3.2.1  
3.2.2  
3.2.3  
3.2.4  
3.2.5  
3.2.6  
3.2.7  
3.3  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
3.4  
3.5  
3.5.1  
3.5.2  
3.5.3  
3.5.4  
3.6  
Semiconductor Group  
3
1997-07-01  
PEB 2265  
Page  
Table of Contents  
®
3.7  
IOM -2 Interface Command/Indication Byte . . . . . . . . . . . . . . . . . . . . . . .38  
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
RESET (Basic setting mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Programmable Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Impedance Matching Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Transhybrid Balancing (TH) Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Filters for Frequency Response Correction . . . . . . . . . . . . . . . . . . . . . . . .43  
Amplification/Attenuation -Filters AX1, AX2, AR1, AR2 . . . . . . . . . . . . . .44  
Amplification/Attenuation Receive (AR1, AR2)-Filter . . . . . . . . . . . . . . . .44  
Amplification/Attenuation Transmit (AX1, AX2)-Filter . . . . . . . . . . . . . . . .44  
3.8  
3.8.1  
3.8.2  
3.8.3  
3.9  
3.9.1  
3.9.2  
3.9.3  
3.9.4  
3.9.5  
3.9.6  
4
QSICOS Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
4.1  
QSICOS Supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
5
5.1  
Transmission Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Receive: reference frequency 1 kHz, input signal level 0 dBm0 . . . . . . . .48  
Transmit: reference frequency 1 kHz, input signal level 0 dBm0 . . . . . . .48  
Group Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Group Delay absolute values: Input signal level 0 dBm0 . . . . . . . . . . . . .49  
Group Delay Distortion transmit: Input signal level 0 dBm0 . . . . . . . . . . .49  
Group Delay Distortion receive: Input signal level 0dBm0 . . . . . . . . . . . .50  
Out-of-Band Signals at Analog Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Out-of-Band Signals at Analog Output . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Out of Band Idle Channel Noise at Analog Output . . . . . . . . . . . . . . . . . .52  
Overload Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
Gain Tracking (receive or transmit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Total Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Total Distortion Measured with Sine Wave . . . . . . . . . . . . . . . . . . . . . . . .53  
Total Distortion Measured with Noise According to CCITT . . . . . . . . . . . .54  
Single Frequency Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Transhybrid Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
5.1.1  
5.1.2  
5.2  
5.2.1  
5.2.2  
5.2.3  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.8.1  
5.8.2  
5.9  
5.10  
6
Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Digital Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Analog Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
RESET Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
IOM -2 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
4 MHz Operation Mode (Mode = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
2 MHz Operation Mode (Mode = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.6.1  
6.6.2  
®
Semiconductor Group  
4
1997-07-01  
PEB 2265  
Page  
Table of Contents  
®
6.7  
IOM -2 Command/Indication Interface Timing . . . . . . . . . . . . . . . . . . . . .61  
4 MHz Operation Mode (Mode = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
2 MHz Operation Mode (Mode = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Detector Select Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
6.7.1  
6.7.2  
6.8  
6.8.1  
7
7.1  
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
IOM -2 Interface Monitor Transfer Protocol . . . . . . . . . . . . . . . . . . . . . . .64  
®
7.1.1  
7.1.2  
7.1.3  
7.1.4  
7.2  
7.2.1  
7.2.2  
7.3  
Monitor Channel Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Monitor Handshake Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
®
®
State Diagram of the IOM -2 – SICOFI -2 Monitor Transmitter . . . . . . . .66  
®
®
State Diagram of the IOM -2 – SICOFI -2 Monitor Receiver . . . . . . . . . .67  
Monitor Channel Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Address Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Identification Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
®
IOM -2 Interface Programming Procedure . . . . . . . . . . . . . . . . . . . . . . . .69  
8
8.1  
8.1.1  
8.1.2  
8.2  
Test Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Boundary Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
The TAP-Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Level Metering Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
®
®
8.3  
Programming the IOM -2 – SICOFI -2 Tone Generators . . . . . . . . . . . .76  
9
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
IOM®, IOM®-1, IOM®-2, SICOFI®, SICOFI®-2, SICOFI®-4, SICOFI®-4µµC, SLICOFI®, ARCOFI®, ARCOFI®-BA,  
ARCOFI®-SP, EPIC®-1, EPIC®-S, ELIC®, IPAT®-2, ITAC®, ISAC®-S, ISAC®-S TE, ISAC®-P, ISAC®-P TE, IDEC®,  
SICAT®, OCTAT®-P, QUAT®-S are registered trademarks of Siemens AG.  
MUSAC-A, FALC54, IWE, SARE, UTPT, ASM, ASPare trademarks of Siemens AG.  
Purchase of Siemens I2C components conveys a license under the Philips’ I2C patent to use the components in  
the I2C-system provided the system conforms to the I2C specifications defined by Philips. Copyright Philips 1983.  
Semiconductor Group  
5
1997-07-01  
PEB 2265  
Overview  
1
Overview  
The two Channel Codec Filter PEB 2265 IOM-2 – SICOFI-2 is the logic continuation of  
a well-established family of Siemens Codec-Filter-ICs.  
The IOM-2 – SICOFI-2 is a fully integrated PCM codec and filter fabricated in low power  
1 µm CMOS technology for applications in digital communication systems. Based on an  
advanced digital filter concept, the PEB 2265 provides excellent transmission  
performance and high flexibility. The new filter concept (second generation) lends to a  
maximum of independence between the different filter blocks. Each filter block can be  
seen like an one to one representative of the corresponding network element.  
Only very few external components are needed, to complete the functionality of the  
IOM-2 – SICOFI-2. The internal level accuracy is based on a very accurate bandgap  
reference. The frequency behavior is mainly determined by digital filters, which do not  
have any fluctuations. As a result of the new ADC and DAC concepts linearity is only  
limited by second order parasitic effects. Although the device works with only one single  
5-V supply there is a very good dynamic range available.  
Semiconductor Group  
6
1997-07-01  
Two Channel Codec Filter with IOM®-2 Interface  
IOM®-2 – SICOFI®-2  
PEB 2265  
1.1  
Features  
• Single chip CODEC and FILTER to handle two  
CO- or PABX-channels  
• Specification according to relevant CCITT, EIA and  
LSSGR recommendations  
• Digital signal processing technique  
• Programmable interface optimized to current feed  
SLICs and transformer solutions  
P-MQFP-64-1-2  
• Four pin serial IOM-2 Interface  
• Single power supply 5 V  
• Advanced low power 1µm analog CMOS technology  
• Standard 64-pin P-MQFP-64 package  
• High performance Analog to Digital Conversion  
• High performance Digital to Analog Conversion  
• Programmable digital filters to adapt the transmission behavior especially for  
– AC impedance matching  
– transhybrid balancing  
– frequency response  
– gain  
• Advanced test capabilities  
– all digital pins can be tested within a boundary scan scheme (IEEE 1149.1)  
– five digital loops  
– four analog loops  
– two programmable tone generators per channel  
• Comprehensive development platform available  
– software for automatic filter coefficient calculation – QSICOS  
– Hardware development board – STUT 2465  
Type  
Ordering Code  
Package  
PEB 2265 H V1.1  
on request  
P-MQFP-64-1-2  
Semiconductor Group  
7
1997-07-01  
PEB 2265  
Overview  
1.2  
Pin Configuration (top view)  
N.C.  
N.U.I.  
N.U.I.  
N.U.I.  
N.U.IO.  
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
16  
15  
14  
13  
12  
11  
10  
9
N.U.IO.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
IOM2-SICOFI-2  
8
N.C.  
N.C.  
7
6
5
N.C.  
4
N.C.  
3
N.C.  
2
N.C.  
1
N.U.IO.  
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64  
N.U.IO.  
N.U.I.  
N.U.I.  
N.U.I.  
Figure 1  
Semiconductor Group  
8
1997-07-01  
PEB 2265  
Overview  
1.3  
Pin Definition and Functions  
Common Pins for all Channels  
1.3.1  
Table 1  
Pin No. Symbol Input (I)  
Output (O)  
Function  
23  
58  
VDDD  
GNDD  
I
+ 5 V supply for the digital circuitry1)  
I
Ground Digital, not internally connected to GNDA  
1, 2 or GNDA (pin 6 and pin 11). All digital signals  
are referred to this pin  
40  
9
VDDA12 I  
+ 5 V Analog supply voltage for channel 1 and 21)  
+ 5 V Analog supply voltage1)  
VDDA  
GNDA  
I
I
6,11  
Ground Analog, not internally connected to GNDD  
or GNDA1,2  
27  
26  
FSC  
DCL  
I
I
IOM-2: Frame synchronization clock, 8 kHz  
IOM-2: Data clock, 2048 kHz or 4096 kHz  
depending on MODE  
25  
24  
22  
DU  
O
I
IOM-2: Data upstream, open drain output  
IOM-2: Data downstream, input  
DD  
RESET  
I
Reset input - forces the device to the default mode,  
active high  
57  
60  
59  
56  
55  
54  
53  
28  
MODE  
TSS0  
TSS1  
TCK  
I
IOM-2: Mode Selection  
I
IOM-2: Time slot selection pin 0  
IOM-2: Time slot selection pin 1  
Boundary scan: Test Clock  
I
I
TMS  
I
Boundary scan: Test Mode Select  
Boundary scan: Test Data Input  
Boundary scan: Test Data Output  
TDI  
I
TDO  
O
O
LGKM0  
Loop/Ground Key Multiplexing output 0 for  
channel 1, 2  
41  
VH12  
I/O  
I
Reference voltage for channel 1 and 2, has to be  
connected via a 220 nF cap. to ground  
18,19,20 N.U.I.  
61,62,63  
None Usable Input, tie directly to Digital Ground  
Semiconductor Group  
9
1997-07-01  
PEB 2265  
Overview  
Table 1  
Pin No. Symbol Input (I)  
Output (O)  
I/O  
(cont’d)  
Function  
1,16  
N.U.IO.  
None Usable Input/Output, tie via a  
Pull-Down-Resistor to Digital Ground  
17,64  
2,3,4,5,7 N.C.  
8,10,12  
not connected  
13,14,15  
21  
1)  
A 100 nF cap. should be used for blocking these pin.  
1.3.2  
Specific Pins for Channel 1  
Table 2  
Pin No. Symbol Input (I)  
Output (O)  
Function  
38  
GNDA1  
I
Ground Analog for channel 1, not internally  
connected to GNDD or GNDA2 or GNDA (pin 6 and  
pin 11)  
39  
37  
31  
30  
29  
36  
35  
34  
33  
VIN1  
I
Analog voice (voltage) input for channel 1  
Analog voice (voltage) output for channel 1  
Signaling indication input pin 0 for channel 1  
Signaling indication input pin 1 for channel 1  
Signaling indication input pin 2 for channel 1  
Signaling command output pin 0 for channel 1  
Signaling command output pin 1 for channel 1  
Signaling command output pin 2 for channel 1  
VOUT1  
SI1_0  
SI1_1  
SI1_2  
SO1_0  
SO1_1  
SO1_2  
SB1_0  
O
I
I
I
O
O
O
I/O  
Bi-directional signal. Command indication pin 0 for  
channel 1  
32  
SB1_1  
I/O  
Bi-directional signal. Command indication pin 1 for  
channel 1  
Semiconductor Group  
10  
1997-07-01  
PEB 2265  
Overview  
1.3.3  
Specific Pins for Channel 2  
Table 3  
Pin No. Symbol Input (I)  
Output (O)  
Function  
43  
GNDA2  
I
Ground Analog for channel 2, not internally  
connected to GNDD or GNDA1 or GNDA (pin 6 and  
pin 11)  
42  
44  
50  
51  
52  
45  
46  
47  
48  
VIN2  
I
Analog voice (voltage) input for channel 2  
Analog voice (voltage) output for channel 2  
Signaling indication input pin 0 for channel 2  
Signaling indication input pin 1 for channel 2  
Signaling indication input pin 2 for channel 2  
Signaling command output pin 0 for channel 2  
Signaling command output pin 1 for channel 2  
Signaling command output pin 2 for channel 2  
VOUT2  
SI2_0  
SI2_1  
SI2_2  
SO2_0  
SO2_1  
SO2_2  
SB2_0  
O
I
I
I
O
O
O
I/O  
Bi-directional signal. command indication pin 0 for  
channel 2  
49  
SB2_1  
I/O  
Bi-directional signal. command indication pin 1 for  
channel 2  
Semiconductor Group  
11  
1997-07-01  
PEB 2265  
IOM®-2 – SICOFI®-2 Principles  
2
IOM®-2 – SICOFI®-2 Principles  
The change from 2 µm to 1 µm CMOS process requires new concepts in the realization  
of the analog functions. High performance (in the terms of gain, speed, stability …) 1 µm  
CMOS devices can not withstand more than 5.5 V of supply voltage. On that account the  
negative supply voltage VSS of the previous SICOFIs will be omitted. This is a benefit for  
the user but it makes a very high demand on the analog circuitry.  
ADC and DAC are changed to Sigma-Delta-concepts to fulfill the stringent requirements  
on the dynamic parameters.  
Using 1 µm CMOS does not only lend to problems – it is the only acceptable solution in  
terms of area and power consumption for the integration of more then two SICOFI  
channels on a single chip.  
It is rather pointless to implement 2 codec-filter-channels on one chip with pure analog  
circuitry. The use of a DSP-concept (the SICOFI and the SICOFI-2-approach) for this  
function seems to be a must for an adequate two channel architecture.  
2.1  
IOM®-2 – SICOFI®-2 Signal Flow Graph (for either channel)  
Figure 2  
Semiconductor Group  
12  
1997-07-01  
PEB 2265  
IOM®-2 – SICOFI®-2 Principles  
2.1.1  
Transmit Path  
The analog input signal has to be DC-free connected by an external capacitor because  
there is an internal virtual reference ground potential. After passing a simple antialiasing  
prefilter (PREFI) the voice signal is converted to a 1-bit digital data stream in the  
Sigma-Delta-converter. The first downsampling steps are done in fast running digital  
hardware filters. The following steps are implemented in the micro-code which has to be  
executed by the central Digital Signal Processor. This DSP-machine is able to handle  
the workload for all two channels. At the end the fully processed signal (flexibly  
programmed in many parameters) is transferred to the IOM-2 interface in a  
PCM-compressed signal representation.  
2.1.2  
Receive Path  
The digital input signal is received via the IOM-2 interface. Expansion,  
PCM-law-pass-filtering, gain correction and frequency response correction are the next  
steps which are done by the DSP-machine. The upsampling interpolation steps are  
again processed by fast hardware structures to reduce the DSP-workload. The  
upsampled 1-bit data stream is then converted to an analog equivalent which is  
smoothed by a POST-Filter (POFI). As the signal VOUT is also referenced to an internal  
virtual ground potential, an external capacitor is required for DC-decoupling.  
2.1.3  
Loops  
There are two loops implemented. The first is to generate the AC-input impedance (IM)  
and the second is to perform a proper hybrid balancing (TH). A simple extra path IM2  
(from the transmit to the receive path) supports the impedance matching function.  
2.1.4  
Test Features  
There are four analog and five digital test loops implemented in the IOM-2 – SICOFI-2.  
For special tests it is possible to “Cut Off” the receive and the transmit path at two  
different points.  
Semiconductor Group  
13  
1997-07-01  
PEB 2265  
IOM®-2 – SICOFI®-2 Principles  
2.2  
IOM®-2 – SICOFI®-2 Block Diagram  
Analog out  
DAC  
DAC  
Analog out  
DSP  
ADC  
ADC  
Analog in  
Analog in  
Command  
Indication  
Command  
Signaling  
Signaling  
IOM2-Interface  
Indication  
IOM2-Bus  
iom3.wmf  
Figure 3  
The IOM-2 – SICOFI-2 bridges the gap between analog and digital voice signal  
transmission in modern telecommunication systems. High performance oversampling  
Analog-to-Digital Converters (ADC) and Digital-to-Analog Converters (DAC) provide the  
required conversion accuracy. Analog antialiasing prefilters (PREFI) and smoothing  
postfilters (POFI) are included. The connection between the ADC and the DAC (with  
high sampling rate) and the DSP, is done by specific Hardware Filters, for filtering like  
interpolation and decimation. The dedicated Digital Signal Processor (DSP) handles all  
the algorithms necessary e.g. for PCM bandpass filtering, sample rate conversion and  
PCM companding. The IOM-2 Interface handles digital voice transmission,  
IOM-2 – SICOFI-2 feature control and transparent access to the IOM-2 – SICOFI-2  
command and indication pins. To program the filters, precalculated sets of coefficients  
are downloaded from the system to the on chip coefficient ram (CRAM).  
2.3  
IOM®-2 Interface  
The IOM-2 Interface consists of two data lines and two clock lines. DU (data upstream)  
carries data from the IOM-2 – SICOFI-2 to a master device. This master device performs  
the interface between the PCM-backplane, the µController and up to  
24 IOM-2 – SICOFI-2's. DD (data downstream) carries data from the master device to  
the IOM-2-SICOF-2. A frame synchronization clock signal (8 kHz, FSC) as well as a data  
clock signal (2048 kHz or 4096 kHz DCL) has to be supplied to the IOM-2 – SICOFI-2.  
The IOM-2 – SICOFI-2 handles data as described in the IOM-2 specification for analog  
devices.  
Semiconductor Group  
14  
1997-07-01  
PEB 2265  
IOM®-2 – SICOFI®-2 Principles  
2.3.1  
IOM®-2 Interface Timing for 16 voice channels (per 8 kHz frame)  
Figure 4  
2.3.2  
IOM®-2 Interface Timing (DCL = 4096 kHz, MODE = 1, per 8 kHz frame)  
Figure 5  
Semiconductor Group  
15  
1997-07-01  
PEB 2265  
IOM®-2 – SICOFI®-2 Principles  
2.3.3  
IOM®-2 Interface Timing (DCL = 2048 kHz, MODE = 0)  
Figure 6  
2.3.4  
IOM®-2 Time Slot Selection  
The two channels (1 and 2) of the IOM-2 – SICOFI-2 can be assigned to 4 time slots by  
pin-strapping the pins TSS0 and TSS1 (TS0, TS2, TS4, TS6). The IOM-2 operating  
mode is selected by the MODE pin.  
Table 4  
TSS1  
TSS0  
MODE  
IOM®-2 Operating Mode  
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
1
1
1
0
0
0
0
Time slot 0; DCL= 4096 kHz  
Time slot 2; DCL= 4096 kHz  
Time slot 4; DCL= 4096 kHz  
Time slot 6; DCL= 4096 kHz  
Time slot 0; DCL= 2048 kHz  
Time slot 2; DCL= 2048 kHz  
Time slot 4; DCL= 2048 kHz  
Time slot 6; DCL= 2048 kHz  
Semiconductor Group  
16  
1997-07-01  
PEB 2265  
IOM®-2 – SICOFI®-2 Principles  
Each IOM time slot contains 2 voice channels (A and B). Those two voice channels  
share a common IOM-Monitor-byte as well as a common C/I-byte. The AD-bit in the  
Monitor command defines which of the two voice channels should be affected  
(programmed). (For more information on IOM-2 specific Monitor Channel Data Structure  
see appendix, page 64).  
Figure 7  
Table 5  
TSS1 = 0,  
TSS0 = 0  
TSS1 = 0,  
TSS0 = 1  
TSS1 = 1,  
TSS0 = 0  
TSS1 = 1,  
TSS0 = 1  
IOM®-2 – SICOFI®-2 TS Voice  
TS  
Voice  
TS Voice  
TS Voice  
Channels  
Channel  
Channel  
Channel  
Channel  
1
2
TS0 A  
TS0 B  
TS2 A  
TS4 A  
TS4 B  
TS6 A  
TS6 B  
TS2 B  
Semiconductor Group  
17  
1997-07-01  
PEB 2265  
Programming the IOM®-2 – SICOFI®-2  
3
Programming the IOM®-2 – SICOFI®-2  
With the appropriate commands, the IOM-2 – SICOFI-2 can be programmed and  
verified very flexibly via the IOM-2 Interface monitor channel.  
Data transfer to the IOM-2 – SICOFI-2 starts with a SICOFI-specific address byte (81H).  
With the second byte one of 3 different types of commands (SOP, XOP and COP) is  
selected. Each of those can be used as a write or read command. Due to the extended  
IOM-2 – SICOFI-2 feature control facilities, SOP, COP and XOP commands contain  
additional information (e.g. number of subsequent bytes) for programming (write) and  
verifying (read) the IOM-2 – SICOFI-2 status.  
A write command is followed by up to 8 bytes of data. The IOM-2 – SICOFI-2 responds  
to a read command with its IOM-2 specific address and the requested information, that  
is up to 8 bytes of data (see programming Procedure, page 18).  
Attention: Each byte on the monitor channel, has to be sent twice at least, according to  
the IOM-2 Monitor handshake procedure (For more information on IOM-2 specific  
Monitor Channel Data Structure see appendix, page 64).  
3.1  
Types of Monitor Bytes  
The 8-bit Monitor Bytes have to be interpreted as either commands or status information  
stored in Configuration Registers or the Coefficient RAM. There are three different types  
of IOM-2 – SICOFI-2 commands which are selected by bit 3 and 4 as shown below.  
SOP  
STATUS OPERATION:  
IOM-2 – SICOFI-2 status  
setting/monitoring  
Bit  
7
6
5
4
1
3
0
2
1
0
0
0
XOP  
EXTENDED OPERATIO:  
C/I channel configuration/evaluation  
Bit  
7
6
5
4
1
3
1
2
1
X
COP  
COEFFICIENT OPERATION:  
filter coefficient setting/monitoring  
Bit  
7
6
5
4
0
3
2
1
Semiconductor Group  
18  
1997-07-01  
 
PEB 2265  
Programming the IOM®-2 – SICOFI®-2  
Storage of Programming Information:  
4 configuration registers per channel: CR1, CR2, CR3, CR4 accessed by SOP  
commands  
4 common configuration registers:  
XR1, XR2, XR3 and XR4 accessed by XOP  
commands (the contents are valid for two voice  
channels i.e. 1 IOM-2 time slot)  
1 coefficient RAM per channel:  
CRAM accessed by COP commands  
3.2  
IOM®-2 – SICOFI®-2 Commands  
SOP - Write Commands  
3.2.1  
DD  
7 6 5 4 3 2 1 0 Bit  
1 0 0 0 0 0 0 1  
7 6 5 4 3 2 1 0  
DU  
DU  
Address  
Idle  
Idle  
Idle  
SOP-Write 1 Byte  
CR1  
0
1 0 0 0 1  
Data  
DD  
7 6 5 4 3 2 1 0 Bit  
1 0 0 0 0 0 0 1  
7 6 5 4 3 2 1 0  
Address  
Idle  
Idle  
Idle  
Idle  
SOP-Write 2 Bytes  
0
1 0 0 1 0  
Data  
CR2  
CR1  
Data  
0
DD  
7 6 5 4 3 2 1 0 Bit  
1 0 0 0 0 0 0 1  
7 6 5 4 3 2 1 0  
DU  
Address  
Idle  
Idle  
Idle  
Idle  
Idle  
SOP-Write 3 Bytes  
0
1 0 0 1 1  
Data  
CR3  
CR2  
CR1  
Data  
Data  
Semiconductor Group  
19  
1997-07-01  
PEB 2265  
Programming the IOM®-2 – SICOFI®-2  
DD  
7 6 5 4 3 2 1 0 Bit  
1 0 0 0 0 0 0 1  
7 6 5 4 3 2 1 0 DU  
Address  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
SOP-Write 4 Bytes  
0
1 0 1 0 0  
Data  
CR4  
CR3  
CR2  
CR1  
Data  
Data  
Data  
3.2.2  
XOP - Write Commands  
DD  
7 6 5 4 3 2 1 0 Bit  
1 0 0 0 0 0 0 1  
7 6 5 4 3 2 1 0  
DU  
Address  
Idle  
Idle  
Idle  
Idle  
XOP-Write 2 Bytes  
0
1 1 0 1 0  
Data  
XR2  
XR1  
Data  
DD  
7 6 5 4 3 2 1 0 Bit  
1 0 0 0 0 0 0 1  
7 6 5 4 3 2 1 0  
DU  
Address  
Idle  
Idle  
Idle  
Idle  
Idle  
XOP-Write 3 Bytes  
0
1 1 0 1 0  
Data  
XR3  
XR2  
XR1  
Data  
Data  
Semiconductor Group  
20  
1997-07-01  
PEB 2265  
Programming the IOM®-2 – SICOFI®-2  
3.2.3  
COP - Write Commands  
DD  
7 6 5 4 3 2 1 0 Bit  
1 0 0 0 0 0 0 1  
7 6 5 4 3 2 1 0  
DU  
Address  
COP-Write 4 Bytes  
Coeff. 4  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
0
0 1  
Data  
Data  
Data  
Data  
Coeff. 3  
Coeff. 2  
Coeff. 1  
DD  
7 6 5 4 3 2 1 0 Bit  
1 0 0 0 0 0 0 1  
7 6 5 4 3 2 1 0  
DU  
Address  
COP-Write 8 Bytes  
Coeff. 8  
Coeff. 7  
Coeff. 6  
Coeff. 5  
Coeff. 4  
Coeff. 3  
Coeff. 2  
Coeff. 1  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
0
0 0  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Semiconductor Group  
21  
1997-07-01  
PEB 2265  
Programming the IOM®-2 – SICOFI®-2  
3.2.4  
SOP - Read Commands  
DD  
7 6 5 4 3 2 1 0 Bit  
1 0 0 0 0 0 0 1  
7 6 5 4 3 2 1 0  
DU  
Address  
Idle  
Idle  
SOP-Read 1 Byte  
1
1 0 0 0 1  
Idle  
1 0 0 0 0 0 0 1 Address  
Idle  
Data  
CR1  
DD  
7 6 5 4 3 2 1 0 Bit  
1 0 0 0 0 0 0 1  
7 6 5 4 3 2 1 0  
DU  
Address  
Idle  
Idle  
SOP-Read 2 Bytes  
1
1 0 0 1 0  
Idle  
1 0 0 0 0 0 0 1 Address  
Idle  
Data  
Data  
CR2  
CR1  
Idle  
DD  
7 6 5 4 3 2 1 0 Bit  
1 0 0 0 0 0 0 1  
7 6 5 4 3 2 1 0  
DU  
Address  
Idle  
Idle  
SOP-Read 3 Bytes  
1
1 0 0 1 1  
Idle  
1 0 0 0 0 0 0 1 Address  
Idle  
Data  
Data  
Data  
CR3  
CR2  
CR1  
Idle  
Idle  
DD  
7 6 5 4 3 2 1 0 Bit  
1 0 0 0 0 0 0 1  
7 6 5 4 3 2 1 0  
DU  
Address  
Idle  
Idle  
SOP-Read 4 Bytes  
1
1 0 1 0 0  
Idle  
1 0 0 0 0 0 0 1 Address  
Idle  
Data  
Data  
Data  
Data  
CR4  
CR3  
CR2  
CR1  
Idle  
Idle  
Idle  
Semiconductor Group  
22  
1997-07-01  
PEB 2265  
Programming the IOM®-2 – SICOFI®-2  
3.2.5  
XOP - Read Commands  
DD  
7 6 5 4 3 2 1 0 Bit  
1 0 0 0 0 0 0 1  
7 6 5 4 3 2 1 0  
DU  
Address  
Idle  
Idle  
XOP-Read 1 Byte  
1
1 1 0 0 1  
Idle  
1 0 0 0 0 0 0 1 Address  
Data XR1  
Idle  
DD  
7 6 5 4 3 2 1 0 Bit  
1 0 0 0 0 0 0 1  
7 6 5 4 3 2 1 0 DU  
Address  
Idle  
XOP-Read 2 Bytes  
1
1 1 0 1 0  
Idle  
Idle  
1 0 0 0 0 0 0 1 Address  
Idle  
Data  
Data  
XR2  
XR1  
Idle  
DD  
7 6 5 4 3 2 1 0 Bit  
1 0 0 0 0 0 0 1  
7 6 5 4 3 2 1 0  
DU  
Address  
Idle  
Idle  
XOP-Read 3 Bytes  
1
1 1 0 1 1  
Idle  
1 0 0 0 0 0 0 1 Address  
Idle  
Data  
Data  
Data  
XR3  
XR2  
XR1  
Idle  
Idle  
Semiconductor Group  
23  
1997-07-01  
PEB 2265  
Programming the IOM®-2 – SICOFI®-2  
3.2.6  
COP - Read Commands  
DD  
7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0  
DU  
Address  
1 0 0 0 0 0 0 1  
0 1  
Idle  
COP-Read 4 bytes  
1
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
1 0 0 0 0 0 0 1 Address  
Data  
Data  
Data  
Data  
Coeff.4  
Coeff.3  
Coeff.2  
Coeff.1  
DD  
7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0  
DU  
Address  
1 0 0 0 0 0 0 1  
Idle  
Idle  
COP-Read 8 Bytes  
1
0 0  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
1 0 0 0 0 0 0 1 Address  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Coeff.8  
Coeff.7  
Coeff.6  
Coeff.5  
Coeff.4  
Coeff.3  
Coeff.2  
Coeff.1  
Semiconductor Group  
24  
1997-07-01  
PEB 2265  
Programming the IOM®-2 – SICOFI®-2  
3.2.7  
Example for a Mixed Command  
DD  
7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0  
DU  
Address  
1 0 0 0 0 0 0 1  
Idle  
SOP-Write 4 Bytes  
CR4  
0
1 0 1 0 0  
Data  
Idle  
Idle  
CR3  
Data  
Idle  
CR2  
Data  
Idle  
CR1  
Data  
Idle  
XOP-Write 2 Bytes  
XR2  
0
0
1 1 0 1 0  
Data  
Idle  
Idle  
XR1  
Data  
Idle  
COP-Write 4 Bytes  
Coeff. 4  
0 1  
Idle  
Data  
Idle  
Coeff. 3  
Data  
Idle  
Coeff. 2  
Data  
Idle  
Coeff. 1  
Data  
Idle  
SOP-Read 3 Bytes  
1
1 0 0 1 1  
Idle  
Idle  
1 0 0 0 0 0 0 1 Address  
Idle  
Data  
Data  
Data  
Idle  
CR3  
CR2  
CR1  
Idle  
Idle  
Address  
1 0 0 0 0 0 0 1  
COP-Read 4 Bytes  
1
0 1  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
1 0 0 0 0 0 0 1 Address  
Data  
Data  
Data  
Data  
Idle  
Coeff.4  
Coeff.3  
Coeff.2  
Coeff.1  
Address  
1 0 0 0 0 0 0 1  
XOP-Read 1 Byte  
1
1 1 0 0 1  
Idle  
Idle  
1 0 0 0 0 0 0 1 Address  
Data XR1  
Idle  
Semiconductor Group  
25  
1997-07-01  
PEB 2265  
Programming the IOM®-2 – SICOFI®-2  
3.3  
SOP Command  
To modify or evaluate the IOM-2 – SICOFI-2IOM-2 – SICOFI-2 status, the contents of  
up to four configuration registers CR1, CR2, CR3 and CR4 may be transferred to or from  
the IOM-2 – SICOFI-2. This is started by a SOP-Command (status operation command).  
Bit  
7
6
5
4
1
3
0
2
1
0
AD  
RW  
PWRUP  
LSEL2  
LSEL1  
LSEL0  
AD  
Address Information  
AD = 0  
IOM-2 – SICOFI-2 channel 1 is addressed with  
this cmd.  
AD = 1  
IOM-2 – SICOFI-2 channel 2 is addressed with  
this cmd.  
RW  
Read/Write Information: Enables reading from the IOM-2 – SICOFI-2  
or writing information to the IOM-2 – SICOFI-2  
RW = 0  
RW = 1  
Write to IOM-2 – SICOFI-2  
Read from IOM-2 – SICOFI-2  
PWRUP  
LSEL  
Power Up / Power Down  
PWRUP = 1  
sets the assigned channel (see bit AD) of  
IOM-2 – SICOFI-2 to power-up (operating mode)  
resets the assigned channel of  
PWRUP = 0  
IOM-2 – SICOFI-2 to power-down (standby mode)  
Length select information (see also programming procedure)  
This field identifies the number of subsequent data bytes  
LSEL = 000  
LSEL = 001  
LSEL = 010  
LSEL = 011  
LSEL = 100  
0 bytes of data are following  
1 byte of data is following (CR1)  
2 bytes of data are following (CR2, CR1)  
3 bytes of data are following (CR3, CR2, CR1)  
4 bytes of data are following (CR4, CR3, CR2, CR1)  
All other codes are reserved for future use!  
It is possible to program each configuration register separately, just by putting only one  
byte into the FIFO of the upstream master device (e.g. EPIC), and aborting after  
transmission of one (or n) byte.  
Semiconductor Group  
26  
1997-07-01  
PEB 2265  
Programming the IOM®-2 – SICOFI®-2  
3.3.1  
CR1 Configuration Register 1  
Configuration register CR1 defines the basic IOM-2 – SICOFI-2 settings, which are:  
enabling/disabling the programmable digital filters and tone generators.  
Bit  
7
6
5
4
3
2
1
0
TH  
IM/R1  
FRX  
FRR  
AX  
AR  
ETG2  
ETG1  
TH  
Enable TH- (Trans Hybrid Balancing) Filter  
TH = 0:  
TH = 1:  
TH-filter disabled  
TH-filter enabled  
IM/R1  
FRX  
FRR  
AX  
Enable IM-(Impedance Matching) Filter and R1-Filter  
IM/R1 = 0:  
IM/R1 = 1:  
IM-filter and R1-filter disabled  
IM-filter and R1-filter enabled  
Enable FRX (Frequency Response Transmit)-Filter  
FRX = 0:  
FRX = 1:  
FRX-filter disabled  
FRX-filter enabled  
Enable FRR (Frequency Response Receive)-Filter  
FRR = 0:  
FRR = 1:  
FRR-filter disabled  
FRR-filter enabled  
Enable AX-(Amplification/Attenuation Transmit) Filter  
AX = 0:  
AX = 1:  
AX-filter disabled  
AX-filter enabled  
AR  
Enable AR-(Amplification/Attenuation Receive) Filter  
AR = 0:  
AR-filter disabled  
AR = 1:  
AR-filter enabled  
ETG2  
ETG1  
Enable programmable tone generator 21)  
ETG2 = 0:  
ETG2 = 1:  
programmable tone generator 2 is disabled  
programmable tone generator 2 is enabled  
Enable programmable tone generator 1  
ETG1 = 0:  
ETG1 = 1:  
programmable tone generator 1 is disabled  
programmable tone generator 1 is enabled  
1)  
Tone generator 2 is not available if Level Metering Function is enabled!  
Semiconductor Group  
27  
1997-07-01  
PEB 2265  
Programming the IOM®-2 – SICOFI®-2  
3.3.2  
CR2 Configuration Register 2  
Bit  
7
6
5
4
3
2
1
0
TH-Sel  
LM  
LMR  
LAW  
LIN  
PTG2  
PTG1  
TH-Sel  
LM  
2 bit field to select one of two programmed TH-filter coefficient sets  
TH-Sel = 0 0: TH-filter coefficient set 1 is selected  
TH-Sel = 0 1: TH-filter coefficient set 2 is selected  
Level Metering function1)  
LM = 0:  
LM = 1:  
level metering function is disabled  
level metering function is enabled  
LMR  
LAW  
LIN  
Result of Level Metering function (this bit can not be written)  
LMR = 0:  
LMR = 1:  
level detected was lower than the reference  
level detected was higher than the reference  
PCM - law selection  
LAW = 0:  
LAW = 1:  
A-Law is selected  
µ-Law (µ255 PCM) is selected  
Linear mode selection  
LIN = 0:  
LIN = 1:  
PCM-mode is selected  
linear mode is selected2)  
PTG2  
PTG1  
User programmed frequency or fixed frequency is selected  
PTG2 = 0:  
PTG2 = 1:  
fixed frequency for tone generator 2 is selected (1 kHz)  
programmed frequency for tone generator 2 is selected  
User programmed frequency or fixed frequency is selected  
PTG1 = 0:  
PTG1 = 1:  
fixed frequency for tone generator 1 is selected (1 kHz)  
programmed frequency for tone generator 1 is selected  
1)  
Explanation of the level metering function:  
A signal fed to A/µ-Law compression via AX- and HPX-filters (from a digital loop, or externally via VIN), is  
rectified, and the power is measured. If the power exceeds a certain value, loaded to XR4, bit LMR is set to  
‘1’. The power of the incoming signal can be adjusted by AX-filters.  
During Linear operation only one 16 bit voice channel, is available per time slot. Depending on the address bit  
(AD) the voice-data of channel 1 or 2 is transmitted. The other voice channel is not available during this time.  
2)  
Semiconductor Group  
28  
1997-07-01  
PEB 2265  
Programming the IOM®-2 – SICOFI®-2  
3.3.3  
CR3 Configuration Register 3  
Bit  
7
6
5
4
0
3
2
1
0
COT/R  
IDR  
Version  
COT/R  
Selection of Cut Off Transmit/Receive Paths  
0 0 0:  
0 0 1:  
Normal Operation  
COT_16K  
Cut Off Transmit Path at 16 kHz  
(input of TH-Filter)  
0 1 0:  
COT_PCM Cut Off Transmit Path at 8 kHz  
(input of compression)  
(output is zero for µ-law and linear mode,  
1 LSB for A-law)  
1 0 1:  
1 1 0:  
COR_PFI  
Cut Off Receive Path at 4 MHz  
(POFI-output)  
COR_64K Cut Off Receive Path at 64 kHz  
(IM-filter input)  
IDR  
Initialize Data RAM  
IDR = 0:  
IDR = 1:  
Normal operation is selected  
Contents of Data RAM is set to 0  
(used for production test purposes)  
Version  
The Version number shows the actual design version of  
IOM-2-SICOFI-2 (100 for PEB 2265 V1.1)  
Semiconductor Group  
29  
1997-07-01  
PEB 2265  
Programming the IOM®-2 – SICOFI®-2  
Figure 8  
CUT OFF‘s’ and Loops  
Semiconductor Group  
30  
1997-07-01  
PEB 2265  
Programming the IOM®-2 – SICOFI®-2  
3.3.4  
CR4 Configuration Register 4  
Bit  
7
6
5
4
3
2
1
0
Test-Loops  
AGX  
AGR  
D-HPX D-HPR  
Test-Loops  
4 bit field for selection of Analog and Digital Loop Backs  
0 0 0 0:  
0 0 0 1:  
0 0 1 1:  
0 1 0 0:  
0 1 0 1:  
no loop back is selected (normal operation)  
ALB-PFI analog loop back via PREFI-POFI is selected  
ALB-4M analog loop back via 4 MHz is selected  
ALB-PCM analog loop back via 8 kHz (PCM) is selected  
ALB-8K  
analog loop back via 8 kHz (linear) is  
selected  
1 0 0 0:  
1 0 0 1:  
1 1 0 0:  
1 1 0 1:  
1 1 1 1:  
DLB-ANA digital loop back via analog port is selected  
DLB-4M digital loop back via 4 MHz is selected  
DLB-128K digital loop back via 128 kHz is selected  
DLB-64K digital loop back via 64 kHz is selected  
DLB-PCM digital loop back via PCM-registers is  
selected  
AGX  
Analog gain in transmit direction  
AGX = 0:  
AGX = 1:  
analog gain is disabled  
analog gain is enabled (6,02dB amplification)  
AGR  
Analog gain in receive direction  
AGR = 0:  
AGR = 1:  
analog gain is disabled  
analog gain is enabled (6,02dB attenuation)  
D-HPX  
D-HPR  
Disable highpass in transmit direction  
D-HPX = 0: transmit high pass is enabled  
D-HPX = 1: transmit high pass is disabled 1)  
Disable highpass in receive direction  
D-HPR = 0: receive high pass is enabled  
D-HPR = 1: receive high pass is disabled 2)  
1)  
In this case the transmit-path signal is attenuated 0.06 dB  
In this case the receive-path signal is attenuated 0.12 dB  
2)  
Semiconductor Group  
31  
1997-07-01  
PEB 2265  
Programming the IOM®-2 – SICOFI®-2  
3.4  
COP Command  
With a COP Command coefficients for the programmable filters can be written to the  
IOM-2 – SICOFI-2 Coefficient RAM or read from the Coefficient RAM via the IOM-2  
interface for verification  
Bit  
7
6
5
4
0
3
2
1
0
AD  
RW  
RST  
CODE3 CODE2 CODE1 CODE0  
AD  
Address  
AD = 0  
AD = 1  
IOM-2 – SICOFI-2 channel 1 is addressed  
IOM-2 – SICOFI-2 channel 2 is addressed  
RW  
Read/Write  
RW = 0  
Subsequent data is written to the IOM-2 – SICOFI-2  
Read data from IOM-2 – SICOFI-2  
RW = 1  
RST  
CODE  
Reset  
RST = 1  
Reset IOM-2 – SICOFI-2  
(same as RESET-Pin, valid for all two channels)  
includes number of following bytes and filter-address  
0 0 0 0 TH-Filter coefficients (part 1)  
0 0 0 1 TH-Filter coefficients (part 2)  
0 0 1 0 TH-Filter coefficients (part3)  
0 1 0 0 IM-Filter coefficients (part1)  
0 1 0 1 IM-Filter coefficients (part2)  
0 1 1 0 FRX-Filter coefficients  
0 1 1 1 FRR-Filter coefficients  
1 0 0 0 AX-Filter coefficients  
(followed by 8 bytes of data)  
(followed by 8 bytes of data)  
(followed by 8 bytes of data)  
(followed by 8 bytes of data)  
(followed by 8 bytes of data)  
(followed by 8 bytes of data)  
(followed by 8 bytes of data)  
(followed by 4 bytes of data)  
(followed by 4 bytes of data)  
(followed by 4 bytes of data)  
(followed by 4 bytes of data)  
1 0 0 1 AR-Filter coefficients  
1 1 0 0 TG1-Filter coefficients  
1 1 0 1 TG2-Filter coefficients  
Semiconductor Group  
32  
1997-07-01  
PEB 2265  
Programming the IOM®-2 – SICOFI®-2  
How to Program the Filter Coefficients  
TH-Filter:  
Two sets of TH-filter coefficients can be loaded to the IOM-2 –  
SICOFI-2.Each of the two sets can be selected for any of the two  
IOM-2 – SICOFI-2 channels, by setting the value of TH-SEL in  
configuration register CR2. Coefficient set 1 is loaded to the  
IOM-2-SICOFI-2 via channel 1, set 2 is loaded via channel 2.  
AX, AR, IM, FRX,  
FRR-Filter:  
An individual coefficient set is available for each of the two channels  
Tone-Generators: An individual coefficient set is available for each of the two channels  
An independent set of coefficients is available for all the two channels, for all the filters  
and Tone-Generators.  
Two sets of TH-filter coefficients can be loaded to the IOM-2 – SICOFI-2. Each of the  
two sets can be selected for any of the two IOM-2 – SICOFI-2 channels, by setting the  
value of TH-SEL in configuration register CR2. Coefficients set #1 is loaded to the  
IOM-2-SICOFI-2 via channel 1, set #2 is loaded via channel 2 and so on.  
Note: After RESET coefficient set #1 is used for all of the two channels, as all bits in  
configuration register CR2 are set to ‘0'.  
PEB 2265, IOM2-SICOFI® 2  
channel 1  
channel 2  
general registers  
IM part1 Filter  
IM part2 Filter  
FRX-Filter  
FRR-Filter  
AX-Filter  
IM part1 Filter  
IM part2 Filter  
FRX-Filter  
FRR-Filter  
AX-Filter  
chan. 2  
chan. 1  
TH part1  
TH part1  
TH part2  
TH part2  
AR-Filter  
TG1, TG2  
AR-Filter  
TG1, TG2  
channel registers  
Figure 9  
Semiconductor Group  
33  
1997-07-01  
PEB 2265  
Programming the IOM®-2 – SICOFI®-2  
3.5  
XOP Command  
With the XOP command, the IOM-2 – SICOFI-2 C/I channel in the selected time slot1) is  
configured and evaluated.  
Bit  
7
0
6
5
0
4
1
3
1
2
1
0
RW  
LSEL2  
LSEL1  
LSEL0  
RW  
Read / Write Information: Enables reading from the IOM-2 – SICOFI-2  
or writing information to the IOM-2 – SICOFI-2  
RW = 0  
RW = 1  
Write to IOM-2 – SICOFI-2  
Read from IOM-2 – SICOFI-2  
LSEL  
Length select information, for setting the number of subsequent  
data bytes  
LSEL = 000 0 bytes of data are following  
LSEL = 001 1 byte of data is following (XR1)  
LSEL = 010 2 bytes of data are following (XR2, XR1)  
LSEL = 011 3 bytes of data are following (XR3, XR2, XR1)  
LSEL = 100 4 bytes of data are following (XR4, XR3, XR2, XR1)  
3.5.1  
XR1 Extended Register2)  
Bit  
7
6
5
4
3
2
1
0
SB2_1  
SB2_0 SI2_01) SI2_01) SB1_1  
SB1_0 SI1_01) SI1_01)  
1)  
Bits SI1_0 and SI2_0 have special meaning depending on contents of XR2 (see page 35).  
SB2_1  
SB2_0  
SI2_0  
SB1_1  
SB1_0  
SI1_0  
status of pin SB2_1 is transferred to the upstream master device  
status of pin SB2_0 is transferred to the upstream master device  
status of pin SI2_0 is transferred to the upstream master device  
status of pin SB1_1 is transferred to the upstream master device  
status of pin SB1_0 is transferred to the upstream master device  
status of pin SI1 _0 is transferred to the upstream master device  
1)  
IOM-2 time slot TS0, TS2, TS4 or TS6, by pin-strapping the pins TSS0 and TSS1  
Register XR1 can only be read.  
2)  
Semiconductor Group  
34  
1997-07-01  
PEB 2265  
Programming the IOM®-2 – SICOFI®-2  
3.5.2  
XR2 Extended Register 2  
Register XR2 configures the data-upstream command/indication channel.  
Bit  
7
6
5
4
3
2
1
0
N
T
Upstream Update Interval N  
To restrict the rate of upstream C/I-bit changes, deglitching (persistence checking) of the  
status information from the SLIC may be applied. New status information will be  
transmitted upstream, after it has been stable for N milliseconds. N is programmable in  
the range of 1 to 15 ms in steps of 1 ms, with N = 0 the deglitching is disabled.  
Field N  
Update Interval Time  
Deglitching is disabled  
Upstream transmission after 1 ms  
Upstream transmission after 2 ms  
.
0
0
0
.
0
0
0
.
0
0
1
.
0
1
0
.
.
.
.
.
.
1
1
1
1
1
1
0
1
Upstream transmission after 14 ms  
Upstream transmission after 15 ms  
Detector Select Sampling Interval T  
SLICs with multiplexed loop- and ground-key-status, which have a single status output  
pin for carrying the loop- and ground-keystatus information, need a special detector  
select input.  
Field T  
Time Interval T between Detector selected High States  
0
0
0
.
0
0
0
.
0
0
1
.
0
1
0
.
Detector select output LGKM0 is program. To 0 permanently  
Time interval T is 1 ms  
Time interval T is 2 ms  
.
.
.
.
.
.
1
1
1
1
1
1
0
1
Time interval T is 14 ms  
Detector select output LGKM0 is program. to 1 permanently  
LGKM0 is detector select output for channel 1 and 2.  
Semiconductor Group  
35  
1997-07-01  
PEB 2265  
Programming the IOM®-2 – SICOFI®-2  
SLICs with Multiplexed Loop / Ground Key Detect  
IOM2-SICOFI-2 (channel 1 and 2)  
XR1  
0
Loop/GND Key  
input from SLIC  
SI1_0  
1
SB1_0  
SB1_1  
2
3
SLIC #1  
SLIC detector  
select control  
T
LGKM0  
Data  
Upstream  
programmable T  
4
5
6
7
Loop/GND Key  
input from SLIC  
SI2_0  
SB2_0  
SB2_1  
SLIC #2  
Figure 10  
IOM-2 – SICOFI-2 pin LGKM0 is a detector select output. This command output pin are  
normally set to logical ‘0’, such that the SLIC outputs loop status, which is passed to  
XR1-bits 0 and 4 via indication pins SI1_0 and SI2_0.  
Every T milliseconds, the detector select output change to logical ‘1’ for a time of 125 µs  
(period FSC). During this time the ground key status is read from the SLIC and  
transferred upstream using XR1 - bits 1 and 5 via indication pins SIx_0 and SIy_0.  
The time interval T is programmable from 1 ms to 14 ms in 1ms steps. It is possible to  
program the output to be permanently logical ‘0’ or ‘1’.  
Semiconductor Group  
36  
1997-07-01  
PEB 2265  
Programming the IOM®-2 – SICOFI®-2  
3.5.3  
XR3 Extended Register 3  
This register controls the direction of the programmable C/I pins.  
Bit  
7
6
5
0
4
0
3
2
1
0
0
0
PSB2_1 PSB2_0  
PSB1_1 PSB1_0  
PSB2_1  
PSB2_0  
PSB1_1  
PSB1_0  
Programmable bi-directional C/I pin SB2_1 is programmed  
PSB2_1 = 0: pin SB2_1 is indication input  
PSB2_1 = 1: pin SB2_1 is command output  
Programmable bi-directional C/I pin SB2_0 is programmed  
PSB2_0 = 0: pin SB2_0 is indication input  
PSB2_0 = 1: pin SB2_0 is command output  
Programmable bi-directional C/I pin SB1_1 is programmed  
PSB1_1 = 0: pin SB1_1 is indication input  
PSB1_1 = 1: pin SB1_1 is command output  
Programmable bi-directional C/I pin SB1_0 is programmed  
PSB1_0 = 0: pin SB1_0 is indication input  
PSB1_0 = 1: pin SB1_0 is command output  
3.5.4  
XR4 Extended Register 4  
This register holds the offset value for the level metering function. It is only available via  
the first used time slot.  
Bit  
7
6
5
4
3
2
1
0
OF7  
OF6  
OF5  
OF4  
OF3  
OF2  
OF1  
OF0  
3.6  
SLIC Interface  
The signaling connection between IOM-2 – SICOFI-2 and a SLIC is performed by the  
IOM-2 – SICOFI-2 command/indication pins. Data received from the downstream C/I  
byte are inverted and transferred to command output pins (SB, SO). Data on input pins  
(SI, SB) are inverted and transferred to the upstream C/I-byte.  
Semiconductor Group  
37  
1997-07-01  
PEB 2265  
Programming the IOM®-2 – SICOFI®-2  
3.7  
IOM®-2 Interface Command/Indication Byte  
The IOM-2 – SICOFI-2 offers a 8 pin parallel command/indication SLIC interface per  
channel.  
Indication Input Pins  
SIx_0, SIx_1 SIx_2  
Command Output Pins  
Program. Command/Indication Pins  
SOx_0, SOx_1, SOx_2  
SBx_0, SBx_1 (with x: 1 … 4)  
Data present at SIx_0, SIx_1, SIx_2 and SBx_0, SBx_1 (if programmed as input) are  
sampled, inverted and transferred upstream. Data received downstream from  
IOM-2-interface are latched, inverted and fed to SOx_0, SOx_1, SOx_2 and SBx_0,  
SBx_1 (if output).  
Data-Downstream C/I Channel Byte Format (receive)  
The IOM-2 channel contains 6 bits (for two voice channels) in both directions for analog  
devices like the IOM-2 – SICOFI-2. As the IOM-2 – SICOFI-2 has up to five command  
output pins per channel (depending on XR3) it is not possible to send commands to all  
pins at a time. So C/I-channel bit 5 is used as an address bit to select the channel for the  
command data on C/I-channel bits 4 … 0.  
General Case:  
Bit  
5
4
3
2
1
0
AD  
SBx_1  
SBx_0  
SOx_2  
SOx_1  
SOx_0  
Example for IOM-2 – SICOFI-2 channels 1 and 2 (IOM-2 time slot 0):  
Bit  
5
1
4
3
2
1
0
SB1_11)  
SB1_01)  
SO1_2  
SO1_1  
SO1_0  
1)  
If SBx_y is programmed as command output.  
Bit  
5
0
4
3
2
1
0
SB2_11)  
SB2_01)  
SO2_2  
SO2_1  
SO2_0  
Semiconductor Group  
38  
1997-07-01  
PEB 2265  
Programming the IOM®-2 – SICOFI®-2  
Data Upstream C/I Channel Byte Format (transmit)  
As the C/I-channel holds only 6 bits for two voice channels and the IOM-2 – SICOFI-2  
has up to five indication pins per voice channel, only pins SI1_1 and SI1_2 for voice  
channel 1, and pins SI2_1 and SI2_2 for voice channel 2 are fed directly to the  
C/I-channel. Any change at one of the other indication pins (SIx_0, SBx_0 and SBx_1)  
will generate an interrupt per channel, which is transmitted upstream immediately  
(C/I-channel bits 2 and 5). Data on those pins is fed to register XR1 and can be evaluated  
with a XOP-read command.  
IOM R -2 - SICOFI R -2 (2 Channels, 1 Time-Slot)  
SB2_1  
SB2_0  
SI2_0  
SI2_2  
SI2_1  
SB1_1  
SB1_0  
SI1_0  
SI1_2  
SI1_1  
"0" on Change  
"0" on Change  
"0" on Change  
"0" on Change  
"0" on Change  
"0" on Change  
C/I5  
INT2  
C/I4  
C/I3  
C/I2  
INT1  
C/I1  
C/I0  
SI2_2  
SI2_1  
SI1_2  
SI1_1  
XR1(7)  
SB2_1  
XR1(6) XR1(5,4)  
SB2_0 SI2_0  
XR1(3)  
SB1_1  
XR1(2) XR1(1,0)  
SB1_0 SI1_0  
Channel 2  
Channel 1  
If an interrupt occurs in one channel, changes in the neighboring channel will also generate an interrupt.  
ITD09991  
Figure 11  
Semiconductor Group  
39  
1997-07-01  
PEB 2265  
Programming the IOM®-2 – SICOFI®-2  
Figure 12  
Data Flow  
Semiconductor Group  
40  
1997-07-01  
PEB 2265  
Programming the IOM®-2 – SICOFI®-2  
3.8  
Operating Modes  
Figure 13  
3.8.1  
RESET (Basic setting mode)  
Upon initial application of VDD or resetting pin RESET to ‘1’ during operation, or by  
software-reset (see COP command), the IOM-2 – SICOFI-2 enters a basic setting  
mode. Basic setting means, that the IOM-2 – SICOFI-2 configuration registers CR1q …  
CR4 and XR1 … XR3 are initialized to ‘0’ for all channels.  
All programmable filters are disabled, A-law is chosen, all programmable  
command/indication pins are inputs. The two tone generators as well as any testmodes  
are disabled. There is no persistence checking. Receive signaling registers are cleared.  
DU-pin is in high impedance state, the analog outputs and the signaling outputs are  
forced to ground.  
Semiconductor Group  
41  
1997-07-01  
PEB 2265  
Programming the IOM®-2 – SICOFI®-2  
Table 6  
CR1 … CR4  
XR1 … XR4  
Coefficient RAM  
Command Stack  
DD-input  
00H  
00H  
Not defined  
Cleared  
Ignored  
DU-output  
VOUT1,2  
High impedance  
GNDA1,2  
Input  
SBx_y  
SOx_y  
GNDD  
If any voltage is applied to any input-pin before initial application of VDD, the  
IOM-2 – SICOFI-2 may not enter the basic setting mode. In this case it is necessary to  
reset the IOM-2 – SICOFI-2 or to initialize the IOM-2 – SICOFI-2 configuration registers  
to ‘0’. The IOM-2 – SICOFI-2 leaves this mode automatically with the beginning of the  
next 8-kHz frame (RESET-pin is released).  
3.8.2  
Standby Mode  
After releasing the RESET-pin, (RESET-state), beginning with the next 8 kHz frame, the  
IOM-2 – SICOFI-2 will enter the Standby mode. The IOM-2 – SICOFI-2 is forced to  
standby mode with the PWRUP bit set to ‘0’ in the SOP command (POWERDOWN). The  
two channels must be programmed separately. During standby mode the serial  
IOM-2 – SICOFI-2 IOM-2 interface is ready to receive and transmit commands and data.  
Received voice data on DD-pin will be ignored. IOM-2 – SICOFI-2 configuration  
registers and coefficient RAM can be loaded and read back in this mode. Data  
downstream C/I-channel data is fed to appropriate command pins. Data on indication  
pins is transmitted data upstream.  
Table 7  
IOM-2 Voice Channels  
VOUT1, 2  
‘11111111’ (idle)  
GNDA1, 2  
3.8.3  
Operating Mode  
The operating mode for any of the two channels is entered upon recognition of a PWRUP  
bit set to ‘1’ in a SOP command for the specific channel.  
Semiconductor Group  
42  
1997-07-01  
PEB 2265  
Programming the IOM®-2 – SICOFI®-2  
3.9  
Programmable Filters  
Based on an advanced digital filter concept, the PEB 2265 provides excellent  
transmission performance and high flexibility. The new filter concept leads to a maximum  
independence between the different filter blocks.  
3.9.1  
Impedance Matching Filter  
• Realization by 3 different loops  
– 4 MHz: Multiplication by a constant  
– 128 kHz: Wave Digital Filter (IIR)  
improves low frequency response)  
– 64 kHz: FIR-Filter  
(12 bit)  
(60 bit)  
(48 bit)  
(for fine-tuning)  
• Improved stability behavior of feedback loops  
• Real part of termination impedance positive under all conditions  
• Improved overflow performance for transients  
• Return loss better 30 dB  
3.9.2  
Transhybrid Balancing (TH) Filter  
2 loops at 16 kHz  
• New concept:  
• Flexible realization allows optimization of wide impedance range  
• Consists of a fixed and a programmable part  
– 2nd order Wave Digital Filter (IIR)  
(improves low frequency response)  
– 7-TAP FIR-Filter  
(106 bit)  
(84 bit)  
(for fine-tuning)  
• Trans-Hybrid-Loss better 30 dB (typically better 40 dB, device only)  
• Adaptation to different lines by:  
– Easy selection between two different downloaded coefficient sets  
3.9.3  
Filters for Frequency Response Correction  
• For line equalization and compensation of attenuation distortion  
• Improvement of Group-Delay-Distortion by using minimum phase filters  
(instead of linear phase filters)  
• FRR filter for correction of receive path distortion  
– 5 TAP programmable FIR filter operating at 8 kHz  
• FRX filter for correction of transmit path distortion  
– 5 TAP programmable FIR filter operating at 8 kHz  
• Frequency response better 0.1 dB  
(60 bit)  
(60 bit)  
Semiconductor Group  
43  
1997-07-01  
PEB 2265  
Programming the IOM®-2 – SICOFI®-2  
3.9.4  
Amplification/Attenuation -Filters AX1, AX2, AR1, AR2  
• Improved level adjustment for transmit and receive  
• Two separate filters at each direction for  
– Improved trans-hybrid balancing  
– Optimal adjustment of digital dynamic range  
– Gain adjustments independent of TH-filter  
3.9.5  
Amplification/Attenuation Receive (AR1, AR2)-Filter  
Step size for AR-Filter range 3 14 dB: step size 0.02 0.05 dB  
range 14 24 dB:step size 0.5 dB  
3.9.6  
Amplification/Attenuation Transmit (AX1, AX2)-Filter  
Step size for AX-Filter range 3 14 dB: step size 0.02 … 0.05 dB  
range 14 24 dB: step size 0.5 dB  
Semiconductor Group  
44  
1997-07-01  
PEB 2265  
QSICOS Software  
4
QSICOS Software  
The QSICOS-software has been developed to help to obtain an optimized set of  
coefficients both quickly and easily. The QSICOS program runs on any PC with at least  
575 Kbytes of memory. This also requires MS-DOS Version 5.0 or higher, as well as  
extended memory.  
RD/dB  
Country-Spec  
Calculation-Controlfile  
Simulation  
(PSPICE)  
f/Hz  
Automatic K-Param Extraction  
Line  
Interface  
Line  
Interface  
QSICOS  
SICOFI  
Coefficients  
File  
K-Parameter  
Interface-  
File  
K11=(Zin-Zg)/(Zin+Zg)  
K12=2*V1/V3  
Software for  
Filter-Coefficients-Optimization  
Line  
Interface  
Line  
Interface  
K21=V2/Vg  
K22=V2/V3  
Figure 14  
4.1  
QSICOS Supports  
• Calculation of coefficients for the  
– Impedance Filter (IM) for return loss calculation  
– FRR and FRX-Filters for frequency response in receive and transmit path  
– AR1, AR2 and AX1, AX2-Filter for level adjustment in receive and transmit path  
– Trans-Hybrid Balancing Filter (TH) and  
– two programmable tone generators (TG 1 and TG 2)  
Simulation of the PEB 2265 and SLIC system with fixed filter coefficients allows  
simulations of tolerances which may be caused e.g. by discrete external components.  
Graphical output of transfer functions to the screen for  
– Return Loss  
– Frequency responses in receive and transmit path  
– Transhybrid Loss  
Calculation of the PEB 2265 and SLIC system stability. The IM-Filter of the  
PEB 2265 adjust the total system impedance by making a feedback loop. Because  
the line is also a part of the total system, a very robust method has to used to avoid  
oscillations and to ensure system stability. The input impedance of the PEB 2265 and  
SLIC combination is calculated. If the real part of the system input impedance is  
positive, the total system stability can be guaranteed.  
Semiconductor Group  
45  
1997-07-01  
PEB 2265  
Transmission Characteristics  
5
Transmission Characteristics  
The proper adjustment of the programmable filters (transhybrid balancing, impedance  
matching, frequency-response correction) needs a complete knowledge of the  
IOM-2 – SICOFI-2’s analog environment, and it is suggested to use the  
QSICOS-program for calculating the propriate coefficients. Unless otherwise stated, the  
transmission characteristics are guaranteed within the test conditions.  
Test Conditions  
TA = 0 °C to 70 °C; VDD = 5 V ± 5 %; GNDA1 … 4 = GNDD = 0 V  
1)  
RL ) > 20 k; CL < 20 pF; H(IM) = H(TH) = 0; H(R1) = H(FRX) = H(FRR) = 1;  
HPR and HPX enabled;  
AR2) = AR1 + AR2 =  
0 to – 13 dB for sine-wave-, and  
0 to – 11 dB for CCITT-noise-measurements  
0 to 13 dB for sine-wave-, and  
AX3) = AX1 + AX2 =  
0 to 11 dB for CCITT-noise-measurements  
f = 1014 Hz; 0 dBm0; A-Law or µ-Law;  
AGX = 0 dB, 6.02 dB, AGR = 0 dB, 6.02 dB;  
In Transmit direction for µ-law an additional gain of 1.94 dB is implemented  
automatically, in the companding block (CMP). This additional gain has to be considered  
at all gain calculations, and reduces possible AX-gain.  
A 0dBm044)) signal is equivalent to 1.095 [1.0906] Vrms. A +3.14 [3.17] dBm0 signal is  
equivalent to 1.57 Vrms which corresponds to the overload point of 2.223 V  
(A-law,[µ-law]).  
When the gain in the receive path is set at 0 dB, an 1014 Hz PCM sinewave input with  
a level 0dBm0 will correspond to a voltage of 1.095 Vrms at A-Law (1,0906 V µ-Law) at  
the analog output.  
When the gain in the transmit path is set at 0 dB, an 1014Hz sine wave signal with a  
voltage of 1.095 Vrms A-Law (1.0906 V µ-Law) will correspond to a level of 0 dBm0 at  
the PCM output.  
1)  
RL,Cl forms the load on VOUT  
Consider, in a complete System,  
2)  
AR = AR1 + AR2 + FRR + R1 = 0 to 13 dB (11 dB for CCITT-noise-measurement)  
Consider, in a complete System,  
3)  
AX = AX1 + AX2 + FRX = 0 to 13 dB (11 dB for CCITT-noise-measurement) for A-Law,  
0 to 11 dB (9 dB for CCITT-noise-measurement) for µ-Law  
The absolute power level in decibels referred to the PCM interface levels.  
4)  
Semiconductor Group  
46  
1997-07-01  
PEB 2265  
Transmission Characteristics  
Table 8  
Parameter  
Symbol  
Limit Values  
typ. max.  
Unit  
min  
Gain absolute (AGX = AGR = 0)  
TA = 25 °C; VDD = 5 V  
TA = 0 70 °C; VDD = 5 V ± 5 %  
G
– 0.15 ±± 0.10 + 0.15 dB  
– 0.25 + 0.25 dB  
Gain absolute (AGX = 6.02 dB,  
AGR = 6.02 dB)  
TA = 25 °C; VDD = 5 V  
TA = 0 70 °C; VDD = 5 V ± 5 %  
– 0.15 ±± 0.10 + 0.15 dB  
– 0.25 + 0.25 dB  
Harmonic distortion, 0 dBm0;  
HD  
– 50  
– 44  
dB  
f = 1000 Hz; 2nd, 3rd order  
Intermodulation1) R2  
IMD  
IMD  
– 46  
– 56  
dB  
dB  
R3  
Crosstalk 0 dBm0; f = 200 Hz to 3400 Hz  
CT  
– 85  
– 80  
dB  
any combination of direction and channel  
Idle channel noise,  
Transmit, A-law, psophometric VIN = 0 V  
Transmit, µ-law, C-message VIN = 0 V  
Receive, A-law, psophometric idle code + 0 NRP  
NTP  
NTC  
– 67.4 dBm0p  
17.5 dBmc  
– 78.0 dBm0p  
12.0 dBmc  
– 85  
5
Receive, µ-law, C-message idle code + 0  
NRC  
1)  
Using equal-level, 4-tone method (EIA) at a composite level of 13 dBm0 with frequencies in the range between  
300 Hz and 3400 Hz.  
Semiconductor Group  
47  
1997-07-01  
PEB 2265  
Transmission Characteristics  
5.1  
Frequency Response  
5.1.1  
Receive: reference frequency 1 kHz, input signal level 0 dBm0  
ITD10002  
2
dB  
1
0.65 dB  
0.125 dB  
-0.125 dB  
0
-1  
0
0.2  
0.3  
1
2
kHz  
f
3
3.2 3.4  
Figure 15  
5.1.2  
Transmit: reference frequency 1 kHz, input signal level 0 dBm0  
ITD10001  
2
dB  
1
0.65 dB  
0.125 dB  
-0.125 dB  
0
-1  
0
0.2  
1
2
kHz  
f
3
3.2 3.4  
0.1 0.3  
Figure 16  
Semiconductor Group  
48  
1997-07-01  
PEB 2265  
Transmission Characteristics  
5.2  
Group Delay  
Maximum delays when the IOM-2 – SICOFI-2 is operating with H(TH) = H(IM) = 0 and  
H(FRR) = H(FRX) = 1 including delay through A/D- and D/A converters. Specific filter  
programming may cause additional group delays.  
Group Delay deviations stay within the limits in the figures below.  
5.2.1  
Group Delay absolute values: Input signal level 0 dBm0  
Table 9  
Parameter  
Symbol  
Limit Values  
typ. max.  
Unit  
Reference  
min.  
Transmit delay  
Receive delay  
DXA  
DRA  
300  
250  
µs  
µs  
5.2.2  
Group Delay Distortion transmit: Input signal level 0 dBm0  
ITD09999  
500  
µs  
tG  
400  
300  
200  
150  
100  
85  
0.6  
0.5  
2.6 2.8  
2.5  
0
0
1.0  
1.5  
2.0  
3.0 kHz 3.5  
f
Figure 17  
Semiconductor Group  
49  
1997-07-01  
PEB 2265  
Transmission Characteristics  
5.2.3  
Group Delay Distortion receive: Input signal level 0dBm01)  
.
ITD09999  
500  
µs  
tG  
400  
300  
200  
150  
100  
85  
0.6  
0.5  
2.6 2.8  
2.5  
0
0
1.0  
1.5  
2.0  
3.0 kHz 3.5  
f
Figure 18  
5.3  
Out-of-Band Signals at Analog Input  
With an 0 dBm0 out-of-band sine wave signal with frequency f (<<100 Hz or 3,4 kHz to  
100 kHz) applied to the analog input, the level of any resulting frequency component at  
the digital output will stay at least X dB below a 0 dBm0, 1 kHz sine wave reference  
signal at the analog input.2)  
1)  
HPR is switched on: reference point is at tGmin  
HPR is switched off: reference point is at 1.5 kHz  
Poles at 12 kHz ± 150 Hz and 16 kHz ± 150 Hz are be provided  
2)  
Semiconductor Group  
50  
1997-07-01  
PEB 2265  
Transmission Characteristics  
ITD09998  
40  
dB  
35  
32  
30  
25  
20  
15  
10  
0
0
0.06 0.1  
3.4  
4
4.6  
6
10  
18 kHz 100  
f
Figure 19  
4000 F  
3.4 … 4.0 kHz: X = 14 sin π × ---------------------- 1  
1200  
4000 F  
4.0 … 4.6 kHz: X = 18 sin π × ---------------------- –  
1200  
7
--  
9
5.4  
Out-of-Band Signals at Analog Output  
With a 0 dBm0 sine wave with frequency f (300 Hz to 3.99 kHz) applied to the digital  
input, the level of any resulting out-of-band signal at the analog output will stay at least  
X dB below a 0 dBm0, 1 kHz sine wave reference signal at the analog output.  
ITD09997  
60  
dB  
57  
50  
40  
35  
30  
28  
20  
15  
10  
0
0
0.06 0.1  
3.4  
4
4.6  
6
8
10  
10.55  
16 18 kHz 100  
f
Figure 20  
4000 F  
X = 14 sin π × ---------------------- 1  
3.4 … 4.6 kHz:  
1200  
Semiconductor Group  
51  
1997-07-01  
PEB 2265  
Transmission Characteristics  
5.5  
Out of Band Idle Channel Noise at Analog Output  
With an idle code applied to the digital input, the level of any resulting out-of-band power  
spectral density (measured with 3 kHz bandwidth) at the analog output, will be not  
greater than the limit curve shown in the figure below.  
ITD09996  
-40  
dBm0  
-50  
-55  
-60  
-70  
-78  
-80  
-90  
-100  
101  
102  
103  
kHz  
104  
f
Figure 21  
5.6  
Overload Compression  
µ-law, transmit: measured with sine wave f = 1014 Hz.  
ITD09995  
10  
dBm0  
8
7
6
5
4
3
2
1
0.25  
-0.25  
0
-1  
0
1
2
3
4
5
6
7
dBm0  
9
Fundamental Input Power  
Figure 22  
Semiconductor Group  
52  
1997-07-01  
PEB 2265  
Transmission Characteristics  
5.7  
Gain Tracking (receive or transmit)  
The gain deviations stay within the limits in the figures below  
Gain Tracking:  
(measured with sine wave f = 1014 Hz, reference level is 0 dBm0)  
ITD09994  
2
dB  
1.4  
G  
1
0.5  
0.25  
0
-0.25  
-0.5  
-1  
-1.4  
3
-2  
-70  
-60 -55 -50  
-40  
-37  
-30  
-20  
-10  
0 dBm0 10  
Input Level  
Figure 23  
5.8  
Total Distortion  
The signal to distortion ratio exceeds the limits in the following figure.  
5.8.1  
Total Distortion Measured with Sine Wave  
Receive or Transmit:  
measured with sine wave f = 1014 Hz. (C-message  
weighted for µ-law, psophometricaly weighted for A-law)  
Figure 24  
Semiconductor Group  
53  
1997-07-01  
PEB 2265  
Transmission Characteristics  
5.8.2  
Total Distortion Measured with Noise According to CCITT  
Receive  
Figure 25  
Transmit  
Figure 26  
Semiconductor Group  
54  
1997-07-01  
PEB 2265  
Transmission Characteristics  
5.9  
Single Frequency Distortion  
An input signal with its frequency swept between 0.3 to 3 kHz for the receive path, or 0  
to 12 kHz for the transmit path, any generated output signal with other frequency than  
the input frequency will stay 28 dB below the maximum input level of 0 dBm0.  
Table 10  
Receive  
Transmit  
Max. Input Level  
0 dBm0  
Frequency  
300 Hz to 3.4 kHz  
Max. Input Level  
Frequency  
0 dBm0  
0 to 12 kHz  
5.10  
Transhybrid Loss  
The quality of Transhybrid-Balancing is very sensitive to deviations in gain and group  
delay - deviations inherent to the IOM-2 – SICOFI-2 A/D- and D/A-converters as well as  
to all external components used on a line card (SLIC, OP’ s etc.)  
Measurement of IOM-2 – SICOFI-2 transhybrid-loss: A 0 dBm0 sine wave signal and a  
frequency in the range between 300 - 3400 Hz is applied to the digital input. The  
resulting analog output signal at pin VOUT is directly connected to VIN, e.g. with the  
IOM-2 – SICOFI-2 testmode “Digital Loop Back via Analog Port”. The programmable  
filters FRR, AR, FRX, AX and IM are disabled, the balancing filter TH is enabled with  
coefficients optimized for this configuration (VOUT = VIN).  
The resulting echo measured at the digital output is at least X dB below the level of the  
digital input signal as shown in the table below (Filter coefficients will be provided).  
Table 11  
Parameter  
Symbol  
Limit  
Unit Test Condition  
Values  
min. typ.  
Trans Hybrid Loss at 300 Hz THL300  
Trans Hybrid Loss at 500 Hz THL500  
27  
33  
40  
45  
40  
35  
35  
dB  
dB  
dB  
dB  
dB  
TA = 25 °C; VDD = 5 V  
TA = 25 °C; VDD = 5 V  
TA = 25 °C; VDD = 5 V  
TA = 25 °C; VDD = 5 V  
TA = 25 °C; VDD = 5 V  
Trans Hybrid Loss at 2500 Hz THL2500 29  
Trans Hybrid Loss at 3000 Hz THL3000 27  
Trans Hybrid Loss at 3400 Hz THL3400 27  
The listed values for THL correspond to a typical variation of the signal amplitude and  
-delay in the analog blocks.  
amplitude = typ. ± 0.15 dB  
delay  
= typ. ± 0.5 µs  
Semiconductor Group  
55  
1997-07-01  
PEB 2265  
Electrical Characteristics  
6
Electrical Characteristics  
Absolute Maximum Ratings  
6.1  
Table 12  
Parameter  
Symbol  
Limit Values  
Unit Test  
Condition  
min.  
0.3  
0.6  
max.  
7.0  
VDD referred to GNDD  
V
V
GNDA to GNDD  
0.6  
Analog input and output voltage  
referred to VDD = 5 V;  
referred to GNDA = 0 V  
5.3  
0.3  
0.3  
5.3  
V
V
All digital input voltages  
referred to GNDD = 0 V;  
(VDD = 5 V)  
referred to VDD = 5 V;  
(GNDD = 0 V)  
0.3  
5.3  
5.3  
0.3  
V
V
DC input and output current at  
any input or output pin (free from  
latch -up)  
10  
mA  
Storage temperature  
TSTG  
60  
10  
125  
80  
1
°C  
°C  
W
Ambient temperature under bias TA  
Power dissipation (package) PD  
Semiconductor Group  
56  
1997-07-01  
PEB 2265  
Electrical Characteristics  
6.2  
Operating Range  
TA = 0 to 70 °C; VDD = 5 V ± 5 %; GNDD = 0 V; GNDA = 0 V  
Table 13  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
min. typ. max.  
VDD supply current  
standby  
operating (2 channels)  
IDD  
1.2  
27  
2
40  
mA  
mA  
Power supply rejection  
Ripple: 0 to 150 kHz,  
70 mVrms  
PSRR  
of either supply/direction  
30  
dB  
Measured:  
300 Hz to 3.4 kHz  
Measured: at f:  
3.4 to 150 kHz  
receive VDD guaranteed  
receive VDD target value  
14  
30  
dB  
dB  
Power dissipation standby PDS  
15  
75  
20  
mW  
Power dissipation  
operating  
PDo1  
110 mW 1 channel operating  
Power dissipation  
operating  
PDo2  
100 140 mW 2 channels operating  
6.3  
Digital Interface  
TA = 0 to 70 °C; VDD = 5 V ± 5 %; GNDD = 0 V; GNDA = 0 V  
All input-pins, with exception of the RESET-pin, have a TTL-input characteristic.  
Table 14  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min.  
max.  
Low-input voltage  
High-input voltage  
Low-output voltage  
VIL  
0.3  
0.8  
V
V
VIH  
VOL  
2.0  
0.45  
0.45  
V
V
IO = 5 mA  
Low-output voltage DU pin VOL  
IO = 7 mA,  
RL = 1 kΩ  
High-output voltage  
Input leakage current  
VOH  
IIL  
4.4  
V
I0 = 5 mA  
± 1  
µA  
0.3 VIN VDD  
Semiconductor Group  
57  
1997-07-01  
PEB 2265  
Electrical Characteristics  
6.4  
Analog Interface  
TA = 0 to 70 °C; VDD = 5 V ± 5 %; GNDD = 0 V; GNDA = 0 V  
Table 15  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min.  
typ.  
max.  
Analog input resistance  
RI  
160  
270  
480  
10  
kΩ  
Analog output resistance RO  
W
Analog output load  
RL  
CL  
20  
kΩ  
pF  
20  
Input leakage current  
IIL  
± 0.1  
± 1.0 µA  
0 VIN VDD  
Input voltage range (AC) VIR  
±±  
V
2.223.  
6.5  
RESET Timing  
To reset the IOM-2 – SICOFI-2 to basic setting mode, positive pulses applied to pin RS  
have to be higher than 2.4 V (CMOS-Schmitt-Trigger Input) and longer than 3 µs.  
Signals shorter than 1 µs will be ignored.  
Semiconductor Group  
58  
1997-07-01  
PEB 2265  
Electrical Characteristics  
6.6  
IOM®-2 Interface Timing  
6.6.1  
4-MHz Operation Mode (Mode = 1)  
t DCLh  
t DCL  
90%  
10%  
DCL  
FSC  
t FSC  
t FSC_S  
t FSC_H  
t DD_S  
t DD_H  
DD  
DU  
t dDUhz  
tdDU  
High  
Imp.  
ITD03389  
Figure 27  
Switching Characteristics  
Table 16  
Parameter  
Symbol  
Limit Values  
Unit  
min.  
typ.  
max.  
Period DCL ‘fast’ mode 1)  
DCL duty cycle  
tDCL  
1/4096  
kHz  
%
40  
60  
Period FSC 1)  
tFSC  
125  
µs  
ns  
ns  
ns  
ns  
ns  
FSC setup time  
tFSC_S  
tFSC_H  
tDD_S  
tDD_H  
tdDU  
70  
40  
20  
50  
tDCLh  
FSC hold time  
DD data in setup time  
DD data in hold time  
DU data out delay 2)  
150  
320  
1)  
DCL = 4096 kHz: tFSC = 512 × tDCL  
Depending on Pull-up resistor used in application (typical 1 k), DU is a “open drain” - line  
2)  
Semiconductor Group  
59  
1997-07-01  
PEB 2265  
Electrical Characteristics  
6.6.2  
2-MHz Operation Mode (Mode = 0)  
t DCL  
t DCLh  
DCL  
t FSC  
t FSC_S  
t FSC_H  
FSC  
DD  
t DD_S t DD_H  
tdDU  
tdDUhz  
High Imp.  
DU  
ITD09993  
Figure 28  
Switching Characteristics  
Table 17  
Parameter  
Symbol  
Limit Values  
Unit  
min.  
typ.  
max.  
Period DCL “slow” mode1)  
DCL duty cycle  
tDCL  
1/2048  
kHz  
%
40  
60  
Period FSC1)  
tFSC  
125  
µs  
ns  
ns  
ns  
ns  
ns  
FSC setup time  
tFSC_S  
tFSC_H  
tDD_S  
tDD_H  
tdDU  
70  
40  
20  
50  
tDCLh  
FSC hold time  
DD data in setup time  
DD data in hold time  
DU data out delay2)  
150  
175  
1)  
DCL = 2048 kHz: tFSC = 256 × tDCL  
Depending on pull up resistor used in application (typical 1 k), DU is a “open drain” - line.  
2)  
Semiconductor Group  
60  
1997-07-01  
PEB 2265  
Electrical Characteristics  
6.7  
IOM®-2 Command/Indication Interface Timing  
4-MHz Operation Mode (Mode = 1)  
6.7.1  
Figure 29  
Semiconductor Group  
61  
1997-07-01  
PEB 2265  
Electrical Characteristics  
6.7.2  
2-MHz Operation Mode (Mode = 0)  
Figure 30  
Switching Characteristics  
Table 18  
Parameter  
Symbol  
Limit Values  
Unit  
min.  
typ.  
150  
150  
150  
max.  
Command out delay  
tdCout  
tdCZ  
250  
250  
250  
ns  
ns  
ns  
ns  
ns  
Command out high impedance  
Command out active  
tdCA  
tlin_s  
tlin_h  
Indication in setup time  
Indication in hold time  
50  
100  
Semiconductor Group  
62  
1997-07-01  
PEB 2265  
Electrical Characteristics  
6.8  
Detector Select Timing  
Figure 31  
6.8.1  
Switching Characteristics  
Table 19  
Parameter  
Symbol  
Limit Values  
Unit  
min.  
typ.  
max.  
Detector select high time  
Detector select repeat  
Indication in setup time  
Indication in hold time  
tLGKMh  
tLGKM  
tlin_s  
125  
µs  
ms  
ns  
ns  
1 14  
50  
tlin_h  
100  
Semiconductor Group  
63  
1997-07-01  
PEB 2265  
Appendix  
7
Appendix  
7.1  
7.1.1  
IOM®-2 Interface Monitor Transfer Protocol  
Monitor Channel Operation  
The Monitor Channel is used for the transfer of maintenance information between two  
functional blocks. Using two monitor control bits (MR and MX) per direction, the data are  
transferred in a complete handshake procedure. The MR and MX bits in the fourth octet  
(C/I channel) of the IOM-2 frame are used for the handshake procedure of the monitor  
channel.  
The monitor channel transmission operates on a pseudo-asynchronous basis:  
– Data transfer (bits) on the bus is synchronized to Frame Sync FSC  
– Data flow (bytes) are asynchronously controlled by the handshake procedure.  
For example: Data is placed onto the DD-monitor-channel by the monitor-transmitter of  
the master device (DD-MX-Bit is activated i.e. set to ‘0’). This data transfer will be  
repeated within each frame (125 µs rate) until it is acknowledged by the  
IOM-2 – SICOFI-2 monitor-receiver by setting the DU-MR-bit to ‘0’, which is checked by  
the monitor-transmitter of the master device. Thus, the data rate is not 8 kbyte/s.  
Figure 32  
Semiconductor Group  
64  
1997-07-01  
PEB 2265  
Appendix  
7.1.2  
Monitor Handshake Procedure  
The monitor channel works in 3 states  
– idle state:  
A pair of inactive (set to ‘1’) MR- and MX-bits during two or more  
consecutive frames: End of Message (EOM)  
– sending state: MX-bit is activated (set to ‘0’) by the monitor-transmitter, together  
with data-bytes (can be changed) on the monitor-channel  
– acknowledging: MR-bit is set to active (set to ‘0’) by the monitor-receiver, together  
with a data-byte remaining in the monitor-channel.  
A start of transmission is initiated by a monitor-transmitter in sending out an active  
MX-bit together with the first byte of data (the address of the receiver) to be transmitted  
in the monitor-channel.  
This state remains until the addressed monitor-receiver acknowledges the received data  
by sending out an active MR-bit, which means that the data-transmission is repeated  
each 125 µs frame (minimum is one repetition). During this time the monitor-transmitter  
evaluates the MR-bit.  
Flow control, means in the form of transmission delay, can only take place when the  
transmitters MX and the receivers MR bit are in active state.  
Since the receiver is able to receive the monitor data at least twice (in two consecutive  
frames), it is able to check for data errors. If two different bytes are received the receiver  
will wait for the receipt of two identical successive bytes (last look function).  
A collision resolution mechanism (check if another device is trying to send data during  
the same time) is implemented in the transmitter. This is done by looking for the inactive  
(‘1’) phase of the MX-bit and making a per bit collision check on the transmitted monitor  
data (check if transmitted ‘1’s are on DU/DD-line; DU/DD-line are open-drain lines).  
Any abort leads to a reset of the IOM-2 – SICOFI-2 command stack, the device is ready  
to receive new commands.  
To obtain a maximum speed data transfer, the transmitter anticipates the falling edge of  
the receivers acknowledgment.  
Due to the inherent programming structure, duplex operation is not possible. It is not  
allowed to send any data to the IOM-2 – SICOFI-2, while transmission is active.  
Semiconductor Group  
65  
1997-07-01  
PEB 2265  
Appendix  
7.1.3  
State Diagram of the IOM®-2 – SICOFI®-2 Monitor Transmitter  
MR + MXR  
MXR  
Initial  
State  
MR MXR  
.
Idle  
MX = 1  
Wait  
MX = 1  
Abort  
MX = 1  
MR MXR  
.
MR RQT  
MR  
.
MR  
MR RQT  
1st Byte  
MX = 0  
.
EOM  
MX = 1  
MR RQT  
.
MR  
nth Byte ACK  
MX = 1  
MR RQT  
MR  
.
MR RQT  
.
Wait for ACK  
MX = 0  
CLS/ABT  
Any State  
ITD02458  
Figure 33  
MR …  
MR - bit received on DD - line  
MX …  
MX - bit calculated and expected on DU - line  
MX - bit sampled on DU - line  
Collision within the monitor data byte on DU - line  
Request for transmission form internal source  
Abort request/indication  
MXR …  
CLS …  
RQT …  
ABT …  
. …  
logical AND  
logical OR  
+ …  
Semiconductor Group  
66  
1997-07-01  
PEB 2265  
Appendix  
7.1.4  
State Diagram of the IOM®-2 – SICOFI®-2 Monitor Receiver  
Idle  
MR = 1  
MX LL  
.
MX  
MX  
Initial  
State  
1st Byte REC  
MR = 0  
Abort  
MR = 1  
MX  
ABT  
MX  
MX  
MX  
MX  
Any  
State  
Byte Valid  
MR = 0  
MX LL  
.
Wait for LL  
MR = 0  
MX  
MX  
MX  
.
LL  
MX  
.
LL  
MX LL  
.
nth Byte REC  
MR = 1  
Wait for LL  
MR = 0  
New Byte  
MR = 1  
MX LL  
.
ITD02459  
Figure 34  
MR …  
MX …  
LL …  
ABT …  
. …  
MR - bit calculated and transmitted on DU - line  
MX - bit received data downstream (DD - line)  
Last lock of monitor byte received on DD - line  
Abort indication to internal source  
logical AND  
+ …  
logical OR  
Semiconductor Group  
67  
1997-07-01  
PEB 2265  
Appendix  
7.2  
Monitor Channel Data Structure  
The monitor channel is used for the transfer of maintenance information between two  
functional blocks. By use of two monitor control bits (MR and MX) per direction, the data  
are transferred in a complete handshake procedure.  
7.2.1  
Address Byte  
Messages to and from the IOM-2 – SICOFI-2 are started with the following Monitor byte:  
Bit  
7
1
6
0
5
0
4
0
3
0
2
0
1
0
0
1
Thus providing information for two voice channels, the IOM-2 – SICOFI-2 is one device  
on one IOM-2 time slot. Monitor data for a specific voice channel is selected by the  
IOM-2 – SICOFI-2 specific command (SOP or COP).  
7.2.2  
Identification Command  
In order to be able to unambiguously identify different devices by software, a two byte  
identification command is defined for analog lines IOM-2 devices.  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Each device will then respond with its specific identification code. For the  
IOM-2 – SICOFI-2 this two byte identification code is:  
1
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
Each byte is transferred at least twice (in two consecutive frames).  
Semiconductor Group  
68  
1997-07-01  
PEB 2265  
Appendix  
7.3  
IOM®-2 Interface Programming Procedure  
Example for a typical IOM-2 interface programming procedure, consisting of  
identification request and answer, a SOP Write command with three byte following, and  
SOP Read to verify the programming.  
Table 20  
Frame  
Data Down  
MR/MX  
Data Up  
MR/MX  
Monitor  
Monitor  
1
11111111  
IDRQT. 1st byte  
IDRQT. 1st byte  
IDRQT. 2nd byte  
IDRQT. 2nd byte  
11111111  
11111111  
11111111  
11111111  
11111111  
11111111  
Address  
11  
10  
10  
11  
10  
11  
11  
01  
01  
11  
01  
10  
10  
11  
10  
11  
10  
11  
10  
11  
10  
11  
10  
11  
11  
11111111  
11111111  
11111111  
11111111  
11111111  
11111111  
IDANS. 1st byte 10  
IDANS. 1st byte 10  
IDANS. 2nd byte 11  
IDANS. 2nd byte 10  
11  
11  
01  
01  
11  
01  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
11111111  
11111111  
11111111  
11111111  
11111111  
11111111  
11111111  
11111111  
11111111  
11111111  
11111111  
11111111  
11111111  
11111111  
Address  
11  
11  
01  
01  
11  
01  
11  
01  
11  
01  
11  
01  
11  
01  
10  
Address  
SOP Write  
SOP Write  
CR3  
CR3  
CR2  
CR2  
CR1  
CR1  
SOP Read  
SOP Read  
11111111  
11111111  
Semiconductor Group  
69  
1997-07-01  
PEB 2265  
Appendix  
Table 20 (cont’d)  
Frame  
Data Down  
MR/MX  
Data Up  
MR/MX  
Monitor  
Monitor  
Address  
CR3  
26  
27  
28  
29  
30  
31  
32  
33  
11111111  
11111111  
11111111  
11111111  
11111111  
11111111  
11111111  
11111111  
01  
01  
11  
01  
11  
01  
11  
01  
10  
11  
10  
11  
10  
11  
10  
11  
CR3  
CR2  
CR2  
CR1  
CR1  
11111111  
IDRQT … identification request (80H, 00H)  
IDANS … answer to identification request (80H, 82H)  
Address … IOM-2 – SICOFI-2 specific address byte (81H)  
CRx …  
Data for/from configuration register x.  
Semiconductor Group  
70  
1997-07-01  
PEB 2265  
Test Features  
8
Test Features  
Boundary Scan  
General  
8.1  
8.1.1  
The IOM-2 – SICOFI-2 provides fully IEEE Std. 1149.1 compatible boundary scan  
support consisting of:  
– a complete boundary scan (digital pins)  
– a test access port controller (TAP)  
– four dedicated pins (TCK, TMS, TDI, TDO)  
– a 32 bit ICODE register  
All IOM-2 – SICOFI-2 digital pins expect power supply VDD D and ground GNDD are  
included in the boundary scan. Depending on the pin functionality one, two or three  
boundary cells are provided.  
Table 21  
Pin Type  
Number of Boundary  
Scan Cells  
Usage  
Input  
Output  
I/O  
1
2
3
Input  
Output, enable  
Input, output, enable  
When the TAP controller is in the appropriate mode, data is shifted into/out of the  
boundary scan via the pins TDI/TDO controlled by the clock applied to pin TCK.  
The IOM-2 – SICOFI-2 pins are included in the following sequence in the boundary  
scan:  
Table 22  
Pin Number  
Pin Name  
MODE  
TSS1  
Type  
57  
59  
60  
61  
62  
63  
64  
1
I
I
TSS0  
I
N.U.I.  
I
N.U.I.  
I
N.U.I.  
I
N.U.IO.  
N.U.IO.  
I/O  
I/O  
Semiconductor Group  
71  
1997-07-01  
PEB 2265  
Test Features  
Table 22 (cont’d)  
Pin Number  
Pin Name  
N.C.  
Type  
2
O
O
O
O
O
O
I/O  
I/O  
I
3
N.C.  
4
N.C.  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
45  
46  
47  
48  
N.C.  
N.C.  
N.C.  
N.U.IO.  
N.U.IO.  
N.U.I.  
N.U.I.  
N.U.I.  
N.C.  
I
I
O
I
RESET  
DD  
I
DU  
O (open drain)  
DCL  
I
FSC  
I
LGKM0  
SI1_2  
SI1_1  
SI1_0  
SB1_1  
SB1_0  
SO1_2  
SO1_1  
SO1_0  
SO2_0  
SO2_1  
SO2_2  
SB2_0  
O
I
I
I
I/O  
I/O  
O
O
O
O
O
O
I/O  
Semiconductor Group  
72  
1997-07-01  
PEB 2265  
Test Features  
Table 22 (cont’d)  
Pin Number  
Pin Name  
SB2_1  
SI2_0  
Type  
49  
50  
51  
52  
I/O  
I
I
I
SI2_1  
SI2_0  
8.1.2  
The TAP-Controller  
The Test Access Port (TAP) controller implements the state machine defined in the  
JTAG standard IEEE Std. 1149.1. Transitions on pin TMS (Test Mode Select) cause the  
TAP controller to perform a state change. According to the standard definition five  
instructions are executable:  
Figure 35  
Semiconductor Group  
73  
1997-07-01  
PEB 2265  
Test Features  
Table 23  
Code  
0000  
0001  
0010  
0011  
0100  
0101  
1000  
0111  
11xx  
Instruction  
EXTEST  
Function  
External testing  
INTEST  
Internal testing  
SAMPLE/PRELOAD  
ICODE  
Snap-shot testing  
Reading ID code  
Configuration for Level Metering  
Wait for result  
Tap_Test 1  
Tap_Test 2  
Tap_Test 5  
Tap_Test 4  
BYPASS  
Serial testdata output (Level Metering Results)  
Switch off Test  
Bypass operation  
EXTEST  
INTEST  
Is used to examine the board interconnections.  
Supports internal chip testing (is the default value of the instruction  
register)  
SAMPLE/PRELOAD Provides a snap-shot of the pin level during normal operation, or is  
used to preload the boundary scan with a test vector  
ICODE  
The 32 bit identification register is serially read out via TDO. It  
contains a version number (4 bit), a device code (16 bit) and the  
manufacture code (11 bit). The LSB is fixed to ‘1’.  
For the IOM-2 – SICOFI-2 V1.1 the Code is: ‘0011 0000 0000 0001  
0101 0000 1000 001 1’  
TAP_TEST1  
39 bit field for selecting operation  
(Level Metering Offset, Loops, Tone Generator …)  
TAP_TEST2  
TAP_TEST5  
Wait for Level Metering result ready (should be > t.b.d. mS)  
Level Metering Data output (1 bit result of Level Metering per  
channel)  
TAP_TEST4  
BYPASS  
Level Metering Operation is switched off  
a bit entering TDI is shifted to TDO after one TCK clock cycle  
Semiconductor Group  
74  
1997-07-01  
PEB 2265  
Test Features  
8.2  
Level Metering Function  
The Level Metering Function is a functional selftest (available per channel), which allows  
selftest of the chip (digital, or digital and analogue), and also selftest of the board  
(including the SLIC).  
An external or internally generated sine-wave signal is fed to the receive path. After  
switching a loop (internal or external via the SLIC) to the transmit-path the return level is  
measured and compared to a programmable offset value. The result of this operation  
(greater or smaller than offset) can be read out via the IOM-2 interface (bit LMR in  
configuration register CR2).  
There is a single-8-bit Offset-Register available for both two channels. This offset  
register can be accessed as XR4 with a XOP-Command (Field LSEL = 100)  
This register contains the 2’s complement offset value for the level metering function  
Bit  
7
6
5
4
3
2
1
0
OF7  
OF6  
OF5  
OF4  
OF3  
OF2  
OF1  
OF0  
Block Diagram  
Offset  
Config.Register  
Sign  
ABS  
x
A - B  
LMR  
LM  
Transmit Path  
DS2 AX2*  
ADC  
DSI  
AGX  
FRX*  
HPX  
AX1*  
CMP  
PCMOUT  
VIN  
*programmable  
IM1*  
IM2*  
TH*  
TG1,2  
US2  
EXP  
AGR  
DAC  
FRR*  
AR1*  
HPR*  
R1*  
US1  
+
PCMIN  
AR2*  
VOUT  
Receive Path  
iom36.wmf  
Figure 36  
(For further information, an Application Note describing the calculation of the offset value  
and the sensitivity, is available).  
Semiconductor Group  
75  
1997-07-01  
PEB 2265  
Test Features  
8.3  
Programming the IOM®-2 – SICOFI®-2 Tone Generators  
Two independent Tone Generators are available per channel. When one or both  
tone-generators are switched on, the voice signal is switched off automatically for the  
selected voice channel. To make the generated signal sufficient for DTMF, a  
programmable bandpass-filter is included. The default frequency for both tone  
generators is 1000 Hz.  
The QSICOS-program contains a program for generating coefficients for variable  
frequencies.  
Byte sequences for programming both the tone generators and the bandpass-filters:  
Table 24  
Frequency Command  
Byte 1  
0A  
Byte 2  
33  
Byte 3  
5A  
5A  
5B  
5C  
52  
Byte 4  
2C  
C3  
32  
697 Hz  
770 Hz  
852 Hz  
941 Hz  
1209 Hz  
1336 Hz  
1477 Hz  
800 Hz  
950 Hz  
1008 Hz  
0C/0D1)  
0C/0D1)  
0C/0D1)  
0C/0D1)  
0C/0D1)  
0C/0D1)  
0C/0D1)  
0C/0D1)  
0C/0D1)  
0C/0D1)  
0C/0D1)  
12  
33  
13  
3C  
1B  
1D  
32  
CC  
B3  
32  
EC  
AA  
12  
1D  
AC  
D6  
F0  
52  
22  
51  
D2  
C0  
C0  
70  
5A  
5C  
57  
1C  
1A  
AE  
80  
2000 Hz  
1)  
00  
50  
09  
0C is used for programming Tone Generator 1, in channel 1.  
0D is used for programming Tone Generator 2, in channel 1.  
The resulting signal amplitude can be set by transmitting the AR1 and AR2 filters. By  
switching a “digital loop” the generated sine-wave signal can be fed to the transmit path.  
Semiconductor Group  
76  
1997-07-01  
PEB 2265  
Package Outlines  
9
Package Outlines  
P-MQFP-64-1-2 (SMD)  
(Plastic Metric Quad Flat Package)  
Sorts of Packing  
Package outlines for tubes, trays etc. are contained in our  
Data Book “Package Information”  
Dimensions in mm  
1997-07-01  
SMD = Surface Mounted Device  
Semiconductor Group  
77  

相关型号:

PEB2265H

PCM Codec, A/MU-Law, 2-Func, CMOS, PQFP64,
INFINEON

PEB2265HV1.1

Two Channel Codec Filter with IOM®-2 Interface (IOM®-2 - SICOFI®-2)
INFINEON

PEB2266-H

A-Law/u-Law CODEC
ETC

PEB22710

Telecom Circuit, 1-Func, PDSO20, PLASTIC, DSO-20
INFINEON

PEB22711

Telecom Circuit, 1-Func, PQFP44, MQFP-44
INFINEON

PEB22711HV1.1

Telecom Circuit, 1-Func, PQFP44,
INFINEON

PEB22712

Telecom Circuit, 1-Func, PQFP144, PLASTIC, TQFP-144
INFINEON

PEB22713

Telecom Circuit, 1-Func, PQFP44, MQFP-44
INFINEON

PEB22716

Global Enhanced Multiport Integrated ADSL Transceiver
INFINEON

PEB22720

GEMINAX ADSL Transceiver Chipset
INFINEON

PEB22810

Telecom Circuit, 1-Func, PDSO20, PLASTIC, DSO-20
INFINEON

PEB22811HV13

ETHERNET OVER VDSL CHIPSET
INFINEON