PEB20324 [INFINEON]

ICs for Communications; 集成电路通信
PEB20324
型号: PEB20324
厂家: Infineon    Infineon
描述:

ICs for Communications
集成电路通信

微控制器和处理器 串行IO控制器 通信控制器 外围集成电路 光电二极管 数据传输 PC 时钟
文件: 总63页 (文件大小:677K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICs for Communications  
Multichannel Network Interface Controller for HDLC + Extensions  
MUNICH128X  
PEB 20324 Version 2.2  
Hardware Reference Manual 04.99  
DS 1  
PEB 20324, PEF 20324  
Revision History:  
Current Version: 04.99  
Previous Version:  
Product Overview 12/97 DS3  
Page  
Page  
Subjects (major changes since last revision)  
(in previous (in current  
Version)  
Version)  
Chapter 5 Updated.  
Chapter 6  
Tables 1...8 Tables 2-1 Pin Description Tables updated.  
...2-8  
For questions on technology, delivery and prices please contact the Infineon Technologies Offices  
in Germany or the Infineon Technologies Companies and Representatives worldwide:  
see our webpage at http://www.infineon.com  
ABM®, AOP®, ARCOFI®, ARCOFI®-BA, ARCOFI®-SP, DigiTape®, EPIC®-1, EPIC®-S, ELIC®, FALC®54, FALC®56,  
FALC®-E1, FALC®-LH, IDEC®, IOM®, IOM®-1, IOM®-2, IPAT®-2, ISAC®-P, ISAC®-S, ISAC®-S TE, ISAC®-P TE,  
ITAC®, IWE®, MUSAC®-A, OCTAT®-P, QUAT®-S, SICAT®, SICOFI®, SICOFI®-2, SICOFI®-4, SICOFI®-4µC,  
SLICOFI® are registered trademarks of Siemens AG.  
ACE, ASM, ASP, POTSWIRE, QuadFALC, SCOUTare trademarks of Infineon Technologies AG..  
Edition 04.99  
Published by Infineon Technologies AG i. Gr.,  
SC,  
Balanstraße 73,  
81541 München  
© Infineon Technologies AG i.Gr. 1999.  
All Rights Reserved.  
Attention please!  
As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for  
applications, processes and circuits implemented within components or assemblies.  
The information describes the type of component and shall not be considered as assured characteristics.  
Terms of delivery and rights to change design reserved.  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies AG is an approved CECC manufacturer.  
Packing  
Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales  
office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport.  
For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice  
you for any costs incurred.  
Components used in life-support devices or systems must be expressly authorized for such purpose!  
Critical components1 of the Infineon Technologies AG, may only be used in life-support devices or systems2 with  
the express written approval of the Infineon Technologies AG.  
1 A critical component is a component used in a life-support device or system whose failure can reasonably be  
expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that  
device or system.  
2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or  
maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be en-  
dangered.  
PEB 20324  
PEF 20324  
Preface  
The MUNICH128X is a 128-channel WAN Protocol Controller which provides four  
independent 24/32-channel HDLC controllers, each with a dedicated 64-channel DMA  
Controller and a Serial PCM Interface Controller. The device is offered in a 160-  
pin MQFP package, making it ideal for high-port-density applications.  
Organization of this Document  
This Hardware Reference Manual is divided into 7 chapters. It is organized as follows:  
• Chapter 1, Introduction  
Gives a general description of the product and its family, lists the key features, and  
presents some typical applications.  
• Chapter 2, Pin Description  
Lists pin locations with associated signals, categorizes signals according to function,  
and describes signals.  
• Chapter 3, Functional IC Description  
Gives a general functional overview of the MUNICH128X.  
• Chapter 4, Electrical Characteristics  
Gives a detailed description of all electrical DC and AC characteristics and provides  
timing diagrams and values for all interfaces.  
• Chapter 5, Test Modes  
Gives a detailed description of the JTAG boundary scan interface.  
• Chapter 6, Package Outline  
Related Documentation  
MUNICH128X Version 2.2  
Prpgrammer’s Reference Manual 03.99 DS1  
Hardware Reference Manual  
3
04.99  
PEB 20324  
PEF 20324  
Table of Contents  
Page  
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Differences to the MUNICH32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
1.1  
1.2  
1.3  
1.4  
2
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
2.1  
Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
System Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
3.1  
3.2  
3.3  
3.4  
4
Operational Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
4.1  
Operational Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
5
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.6.1  
5.6.1.1  
5.6.1.2  
5.6.1.3  
5.6.2  
5.6.3  
5.6.4  
5.6.5  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Important Electrical Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Thermal Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
PCI Bus Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
PCI Read Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
PCI Write Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
PCI Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
De-multiplexed Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
PCM Serial Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
System Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
JTAG-Boundary Scan Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
6
Test Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
6.1  
Boundary Scan Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
7
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Hardware Reference Manual  
4
04.99  
PEB 20324  
PEF 20324  
List of Figures  
Page  
Figure 1-1  
Figure 1-2  
Figure 1-3  
Figure 1-4  
Figure 2-1  
Figure 3-1  
Figure 3-1  
Figure 3-2  
Figure 5-1  
Figure 5-2  
Figure 5-1  
Figure 5-2  
Figure 5-3  
Figure 5-4  
Figure 5-5  
Figure 5-6  
Figure 5-7  
Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
System Integration of the MUNICH128X in PCI-Based System . . . . . .12  
System Integration of the MUNICH128X in De-multiplexed System . . .13  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
System Integration of the MUNICH128X in PCI-Based System . . . . . .34  
System Integration of the MUNICH128X in De-multiplexed System . . .35  
Power-up and Power-down scenarios . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Power-Failure scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Input/Output Waveform for AC Tests. . . . . . . . . . . . . . . . . . . . . . . . . . .43  
PCI Output Timing Measurement Waveforms . . . . . . . . . . . . . . . . . . . .44  
PCI Input Timing Measurement Waveforms . . . . . . . . . . . . . . . . . . . . .44  
PCI Read Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
PCI Write Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
PCI Clock Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Master Single READ Transaction followed by a Master Single  
WRITE Transaction in De-multiplexed Bus Configuration . . . . . . . . . . .51  
Master Burst WRITE/READ Access in De-multiplexed Bus  
Figure 5-8  
Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
PCM Serial Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Figure 5-9  
Figure 5-10 System Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Figure 5-11 JTAG-Boundary Scan Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Figure 6-1  
Block Diagram of Test Access Port and Boundary Scan. . . . . . . . . . . .57  
Hardware Reference Manual  
5
04.99  
PEB 20324  
PEF 20324  
List of Tables  
Page  
Table 2-1  
Table 2-2  
Table 2-3  
Table 2-4  
Table 2-5  
Table 2-6  
Pin Descriptions by Functional Block: Port 0 Serial Interface . . . . . . . 17  
Pin Descriptions by Functional Block: Port 1 Serial Interface . . . . . . . 18  
Pin Descriptions by Functional Block: Port 2 Serial Interface . . . . . . . 19  
Pin Descriptions by Functional Block: Port 3 Serial Interface . . . . . . . 20  
Pin Descriptions by Functional Block: PCI Interface . . . . . . . . . . . . . . 21  
Pin Descriptions by Functional Block:  
DEMUX Interface (additional signals to PCI Interface) . . . . . . . . . . . . 25  
Pin Descriptions by Functional Block: Power Supply. . . . . . . . . . . . . . 26  
Pin Descriptions by Functional Block: Test Interface. . . . . . . . . . . . . . 27  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Thermal Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Non-PCI Interface Pins  
Table 2-7  
Table 2-8  
Table 5-1  
Table 5-2  
Table 5-3  
TA = 0 to + 70×C; VDD5 = 5 V ± 5%, VDD3 = 3.3 V ± 0.3 V,  
VSS = 0 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Non-PCI Interface Pins  
Table 5-4  
TA = 25×C; VDD5 = 5 V ± 5%, VDD3 = 3.3 V ± 0.3 V, VSS = 0 V . . . 42  
PCI Input and Output Measurement Conditions . . . . . . . . . . . . . . . . . 44  
Number of Wait States Inserted by the MUNICH128X as Initiator. . . . 48  
Number of Wait States Inserted by the MUNICH128X as Slave . . . . . 48  
PCI Clock Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
PCI Interface Signal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Additional De-multiplexed Interface Signal Characteristics . . . . . . . . . 52  
PCM Serial Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
System Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
JTAG-Boundary Scan Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Boundary Scan Sequence in MUNICH128X . . . . . . . . . . . . . . . . . . . . 58  
Boundary Scan Test Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 5-5  
Table 5-6  
Table 5-7  
Table 5-8  
Table 5-9  
Table 5-10  
Table 5-11  
Table 5-12  
Table 5-13  
Table 6-1  
Table 6-2  
Hardware Reference Manual  
6
04.99  
PEB 20324  
PEF 20324  
Introduction  
1
Introduction  
The MUNICH128X is a 128-channel WAN Protocol Controller which provides four  
independent 24/32-channel HDLC controllers, each with a dedicated 64-channel DMA  
Controller and a Serial PCM Interface Controller. The device is offered in a 160-  
pin MQFP package, making it ideal for high-port-density applications.  
The MUNICH128X provides capability for up to 128 full duplex serial PCM channels. The  
chip performs layer 2 HDLC formatting/deformatting or V.110 or X.30 protocols up to  
a data rate of 38.4 kbit/s (V.110) or 64 kbit/s (HDLC). The MUNICH128X also performs  
transparent transmission for DMI modes 0, 1, and 2. Processed data is transferred to  
host memory via the PCI interface or de-multiplexed bus interface.  
The MUNICH128X is compatible with the LAPD ISDN (Integrated Services Digital  
Network) protocol specified by CCITT, as well as with HDLC, SDLC, LAPB and DMI  
protocols. It provides rate adaptation for time slot transmission from 64 kbit/s down to  
8 kbit/s and the concatenation of time slots, supporting the ISDN H0, H11, H12  
superchannels.  
PCM  
PCM  
PCM  
PCM  
Serial  
Interface  
Serial  
Interface  
Serial  
Interface  
Serial  
Interface  
Protocol  
Controller  
Protocol  
Controller  
Protocol  
Controller  
Protocol  
Controller  
DMA  
Controller  
DMA  
Controller  
DMA  
Controller  
DMA  
Controller  
PCI Interface/DEMUX BUS  
Address/Data  
Control  
ITB10007  
Figure 1-1  
Simplified Block Diagram  
Hardware Reference Manual  
7
04.99  
Multichannel Network Interface Controller for HDLC +  
Extensions  
MUNICH128X  
PEB 20324  
CMOS  
Version 2.2  
1.1  
Features  
Four independent 24/32-channel HDLC PCM  
Controllers with common PCI interface.  
Each of them provides:  
• Dedicated 1024 byte Tx Buffer  
• Dedicated 1024 byte Rx Buffer  
P-MQFP-160-1  
• Dedicated Serial PCM Interface Controller  
– T1 rates: 1.536, 1.544, 3.088, 6.176 Mbit/s  
– E1 rates: 2.048, 4.096, 8.192 Mbit/s  
• Dedicated 64-channel DMA Controller  
– Supports linked-list buffer processing  
– 16-DWord Tx DMA FIFO  
– 16-DWord Rx DMA FIFO  
– 4-DWord burst of Rx descriptors  
– 3-DWord burst of Tx descriptors  
– n-DWord burst of configuration blocks  
(n is unlimited according the MUNICH128X, but internal port arbitration may lead to  
a lower typical burst size of 4 or 8 DWords)  
• Dynamic Programmable Channel Allocation  
– Compatible with T1/DS1 24-channel and CEPT 32-channel PCM byte format  
– Concatenation of any, not necessarily consecutive, time slots to superchannels  
independently for receive and transmit direction  
– Support of H0, H11, H12 ISDN-channels  
– Subchanneling on each time slot possible  
Type  
Package  
PEB 20324  
PEF 20324  
P-MQFP-160-1  
P-MQFP-160-1  
Hardware Reference Manual  
8
04.99  
PEB 20324  
PEF 20324  
Introduction  
Bit Processor Functions (adjustable for each channel)  
– HDLC Protocol  
– Automatic flag detection  
– Shared opening and closing flag  
– Detection of interframe-time-fill change, generation of  
interframe-time-fill ‘1’s or flags  
– Zero bit insertion  
– Flag stuffing and flag adjustment for rate adaption  
– CRC generation and checking (16 or 32 bits)  
– Transparent CRC option per channel and/or per message  
– Error detection (abort, long frame, CRC error, 2 categories  
of short frames, non-octet frame content)  
– ABORT/IDLE flag generation  
– V.110/X.30 Protocol  
– Automatic synchronization in receive direction, automatic generation of  
the synchronization pattern in transmit direction  
– E/S/X bits freely programmable in transmit direction, may be changed  
during transmission; changes monitored and reported in receive direction  
– Generation/detection of loss of synchronism  
– Bit framing with network data rates from 600 bit/s up to 38.4 Kbit/s  
– Transparent Mode A  
– Slot synchronous transparent transmission/reception without frame structure  
– Flag generation, flag stuffing, flag extraction, flag generation  
in the abort case with programmable flag  
– Synchronized data transfer for fractional T1/PRI channels  
– Transparent Mode B  
– Transparent transmission/reception in frames delimited by 00H flags  
– Shared opening and closing flag  
– Flag stuffing, flag detection, flag generation in the abort case  
– Error detection (non octet frame content, short frame, long frame)  
– Transparent Mode R  
– Transparent transmission/reception with GSM 08.60 frame structure  
– Automatic 0000H flag generation/detection  
– Support of 40, 391/2, 401/2 octet frames  
– Error detection (non octet frame contents, short frame, long frame)  
– Protocol Independent  
– Channel inversion (data, flags, IDLE code)  
– Format conventions as in CCITT Q.921 § 2.8  
– Data over- and underflow detected  
Hardware Reference Manual  
9
04.99  
PEB 20324  
PEF 20324  
Introduction  
• 32 Bit / 33 MHz PCI 2.1 Interface  
• 32 Bit / 33 MHz De-multiplexed Bus Interface Option  
0.5 µm, 3.3 V-Optimized Technology  
• 3.3 V I/O Capability with 5.0 V Input Tolerance  
• 160-pin MQFP Package  
Hardware Reference Manual  
10  
04.99  
PEB 20324  
PEF 20324  
Introduction  
1.2  
Logic Symbol  
JTAG Test  
Interface  
AD(31:0)  
TxD0  
RxD0  
TSP0  
RSP0  
TXDEN0  
TxCLK0  
RxCLK0  
C/BE(3:0)  
PAR  
FRAME  
IRDY  
TRDY  
STOP  
IDSEL  
DEVSEL  
PERR  
SERR  
REQ  
PCI  
BUS  
Serial  
Channel 0  
(PCM0)  
MUNICH128X  
PEB 20324  
PEF 20324  
Serial  
Channel 1  
(PCM1)  
GNT  
CLK  
RST  
INTA  
Serial  
Channel 2  
(PCM2)  
Serial  
Channel 3  
(PCM3)  
A(27:2)  
(de-multiplexed address bus)  
DPCI(1:0) W/R  
Control and Address Bus Extension  
for De-multiplexed Bus Interface  
Figure 1-2  
Logic Symbol  
Hardware Reference Manual  
11  
04.99  
PEB 20324  
PEF 20324  
Introduction  
1.3  
Typical Applications  
The MUNICH128X provides protocol processing and host memory buffer management  
for four independent T1/E1 PRI ports. As such, the MUNICH128X fits into a system  
between the framer or LIU/framer devices (e.g., the Siemens FALC®54/FALC®54-LH  
transceiver) and the host bus (e.g. PCI Bus), as illustrated in Figure 1-3.  
The MUNICH128X provides four independent Serial PCM ports which connect directly  
into the framer devices. In PCI based systems a dedicated microcontroller or PCI bridge  
chip is necessary to configure the framer or LIU/framer devices.  
Additionally, the MUNICH128X provides a PCI 2.1 interface which connects directly to  
the system PCI bus. Optionally, this bus can be configured in De-multiplexed Mode.  
T1/E1/PRI  
T1/E1/PRI  
T1/E1/PRI  
T1/E1/PRI  
FALC R 54 /  
FALC R -LH  
Transceiver  
FALC R 54 /  
FALC R -LH  
Transceiver  
FALC R 54 /  
FALC R -LH  
Transceiver  
FALC R 54 /  
FALC R -LH  
Transceiver  
Dedicated  
CPU  
MUNICH128X  
PCI BUS  
PCI Bridge  
Chip  
Host  
Memory  
Processor  
ITS10009  
Figure 1-3  
System Integration of the MUNICH128X in PCI-Based System  
Hardware Reference Manual  
12  
04.99  
 
PEB 20324  
PEF 20324  
Introduction  
T1/E1/PRI  
T1/E1/PRI  
T1/E1/PRI  
T1/E1/PRI  
FALC R 54 /  
FALC R -LH  
Transceiver  
FALC R 54 /  
FALC R -LH  
Transceiver  
FALC R 54 /  
FALC R -LH  
Transceiver  
FALC R 54 /  
FALC R -LH  
Transceiver  
MUNICH128X  
Glue Logic  
De-multiplexed BUS  
Processor  
Host  
Memory  
ITS10010  
Figure 1-4  
System Integration of the MUNICH128X in De-multiplexed System  
Hardware Reference Manual  
13  
04.99  
PEB 20324  
PEF 20324  
Introduction  
1.4  
Differences to the MUNICH32  
• 128-channel capability  
• Symmetrical Rx and Tx Buffer Descriptor formats for faster switching  
• Improved Tx idle channel polling process for significantly reducing bus occupancy of  
idle Tx channels  
• Dedicated 1024 byte Tx Buffer  
• Dedicated 1024 byte Rx Buffer  
• Burst capability also on transmit and receive data sections (8 DWORDs)  
• Additional PCM modes supported: 3.088 MBit/s, 6.176 MBit/s, 8.192 MBit/s  
• 32 Bit / 33 MHz PCI 2.1 master/slave interface;  
this interface can be configured in De-mux mode  
• Separate Rx and Tx Status Queues in host memory  
(the MUNICH128X provides one set for each of the four HDLC Controllers)  
• Slave access to on-chip registers  
• Time Slot-shift capability:  
– Programmable from -4 clock edges to +3 clock edges  
relative to the synchronization pulse  
– Programmable to sample Tx and/or Rx data at either falling or rising edge of clock  
• Software initiated action request (via the Command Register)  
• Tx End-of-Packet transmitted-on-wire interrupt capability for each channel  
• Tx packet size increased to 64 Kbytes (HDLC mode)  
• Rx packet size 8 Kbyte limit interrupt disable  
• Tx data TRISTATETM control line  
• Synchronized data transfer in TMA mode  
for complete transparency when using fractional T1/PRI  
• Little/Big Endian data formats  
Hardware Reference Manual  
14  
04.99  
PEB 20324  
PEF 20324  
Pin Descriptions  
2
Pin Descriptions  
2.1  
Pin Diagram  
(top view)  
P-MQFP-160-1  
V
V
V
V
V
V
V
V
120  
121  
117  
114  
111  
108  
105  
102  
99  
96  
93  
90  
87  
84  
81  
80  
TDI  
DPCI0  
DPCI1  
A27  
W/R  
A2  
VSS  
VDD3  
124  
127  
130  
133  
136  
139  
142  
145  
148  
151  
154  
157  
77  
74  
71  
68  
65  
62  
59  
56  
53  
50  
47  
44  
41  
A26  
A3  
A25  
A4  
VDD3  
A5  
VSS  
A24  
A23  
A22  
A21  
A6  
VSS  
VDD3  
A7  
A8  
A20  
A9  
VDD3  
A10  
A11  
VSS  
VDD3  
VSS  
VDD3  
VSS  
VDD3  
VSS  
A19  
A18  
A17  
A16  
A12  
A13  
A14  
A15  
MUNICH128X  
RST  
VDD3  
VSS  
CLK  
INTA  
VSS  
VDD3  
GNT  
REQ  
AD31  
AD0  
AD1  
AD2  
AD3  
VSS  
AD30  
VDD3  
VSS  
AD29  
AD28  
AD27  
AD26  
VDD3  
AD4  
AD5  
AD6  
AD25  
AD7  
VDD3  
VSS  
VDD3  
VSS  
AD24  
C/BE3  
C/BE0  
AD8  
160  
1
4
7
10  
13  
16  
19  
22  
25  
28  
31  
34  
37  
40  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
ITP10331  
Figure 2-1  
Pin Configuration  
Hardware Reference Manual  
15  
04.99  
PEB 20324  
PEF 20324  
Pin Descriptions  
Pin descriptions in Tables 2-1 to 2-8 are grouped by functional block, as shown by the  
heading for that group. Pin types are indicated by abbreviations:  
Signal Type Definitions:  
The following signal type definitions are partly taken from the PCI Specification  
Revision 2.1:  
I
Input is a standard input-only signal.  
O
Totem Pole Output is a standard active driver.  
Tri-State or I/O is a bi-directional, tri-state input/output pin.  
t/s, I/O  
s/t/s  
Sustained Tri-State is an active low tri-state signal owned and driven  
by one and only one agent at a time. (For further information refer to  
the PCI Specification Revision 2.1)  
o/d  
Open Drain allows multiple devices to share as a wire-OR. A pull-up  
is required to sustain the inactive state until another agent drives it,  
and must be provided by the central resource.  
Signal Name Conventions:  
NC  
Not Connected Pin  
Such pins are not bonded with the silicon. Although any potential at  
these pins will not impact the device it is recommended to leave them  
unconnected. NC pins might be used for additional functionality in later  
versions of the device. Leaving them unconnected will guarentee  
hardware compatibility to later device versions.  
Reserved  
Reserved pins are for vendor specific use only and should be connected  
as recommended to guarantee normal operation.  
Note: The signal type definition specifies the functional usage of a pin. This does not  
reflect necessarily the implementation of a pin, e.g. a pin defined of signal type  
‘Input’ may be implemented with a bidirectional pad.  
Note: All unused input or I/O pins without internal Pull-Up/Down resistor must be  
connected to a defined level either connected to VDD3 /VSS or to a Pull-Up/Down  
resistor (<= 10k).  
Hardware Reference Manual  
16  
04.99  
PEB 20324  
PEF 20324  
Pin Descriptions  
Table 2-1  
Pin No.  
114  
Pin Descriptions by Functional Block: Port 0 Serial Interface  
Symbol  
Type Description  
RxCLK0  
I
Receive Clock 0  
The clock input pin used for sampling the data on  
RxD0. The MUNICH128X supports the following PCM  
clock rates; programmed via the MODE1 register:  
T1: 1.536 MHz, 1.544 MHz, 3.088 MHz, 6.176 MHz;  
E1: 2.048 MHz, 4.096 MHz, 8.192 MHz.  
112  
113  
RxD0  
RSP0  
I
I
Receive Data 0  
The data input pin which is sampled using RxCLK0.  
Receive Synchronization Pulse 0  
The input pin used for Rx PCM frame synchronization;  
the synchronization pulse marks the first bit in the  
PCM frame.  
108  
110  
TxCLK0  
TxD0  
I
Transmit Clock 0  
The clock input used for clocking out the data on  
TxD0. In most applications, the signal that drives this  
pin is externally connected to RxCLK0.  
O
Transmit Data 0  
Provides the data which is clocked out of the  
MUNICH128X by TxCLK0; data is push-pull for active  
bits in the PCM frame and TRISTATE for inactive  
bits.  
109  
111  
TSP0  
I
Transmit Synchronization Pulse 0  
The input pin used for Tx PCM frame synchronization;  
the synchronization pulse marks the last bit in the  
PCM frame.  
TxDEN0  
O
Transmit Data Enable 0  
An active low output signal which specifies data on the  
TxD0 output pin is valid.  
Hardware Reference Manual  
17  
04.99  
PEB 20324  
PEF 20324  
Pin Descriptions  
Table 2-2  
Pin No.  
107  
Pin Descriptions by Functional Block: Port 1 Serial Interface  
Symbol  
Type Description  
RxCLK1  
I
Receive Clock 1  
The clock input pin used for sampling the data on  
RxD1 The MUNICH128X supports the following PCM  
clock rates, programmed via the MODE1 register:  
T1: 1.536 MHz, 1.544 MHz, 3.088 MHz, 6.176 MHz;  
E1: 2.048 MHz, 4.096 MHz, 8.192 MHz.  
105  
106  
RxD1  
RSP1  
I
I
Receive Data 1  
The data input pin which is sampled using RxCLK1.  
Receive Synchronization Pulse 1  
The input pin used for Rx PCM frame synchronization;  
the synchronization pulse marks the first bit in the  
PCM frame.  
97  
99  
TxCLK1  
TxD1  
I
Transmit Clock 1  
The clock input used for clocking out the data on  
TxD1. In most applications, the signal that drives this  
pin is externally connected to RxCLK1.  
O
Transmit Data 1  
Provides the data which is clocked out of the  
MUNICH128X by TxCLK1; data is push-pull for active  
bits in the PCM frame and TRISTATE for inactive  
bits.  
98  
TSP1  
I
Transmit Synchronization Pulse 1  
The input pin used for Tx PCM frame synchronization;  
the synchronization pulse marks the last bit in the  
PCM frame.  
100  
TxDEN1  
O
Transmit Data Enable 1  
An active low output signal which specifies data on the  
TxD1 output pin is valid.  
Hardware Reference Manual  
18  
04.99  
PEB 20324  
PEF 20324  
Pin Descriptions  
Table 2-3  
Pin No.  
96  
Pin Descriptions by Functional Block: Port 2 Serial Interface  
Symbol  
Type Description  
RxCLK2  
I
Receive Clock 2  
The clock input pin used for sampling the data on  
RxD2. The MUNICH128X supports the following PCM  
clock rates, programmed via the MODE1 register:  
T1: 1.536 MHz, 1.544 MHz, 3.088 MHz, 6.176 MHz;  
E1: 2.048 MHz, 4.096 MHz, 8.192 MHz.  
94  
95  
RxD2  
RSP2  
I
I
Receive Data 2  
The data input pin which is sampled using RxCLK2.  
Receive Synchronization Pulse 2  
The input pin used for Rx PCM frame synchronization;  
the synchronization pulse marks the first bit in the  
PCM frame.  
90  
92  
TxCLK2  
TxD2  
I
Transmit Clock 2  
The clock input used for clocking out the data on  
TxD2. In most applications, the signal that drives this  
pin is externally connected to RxCLK2.  
O
Transmit Data 2  
Provides the data which is clocked out of the  
MUNICH128X by TxCLK2; data is push-pull for active  
bits in the PCM frame and TRISTATE for inactive  
bits.  
91  
93  
TSP2  
I
Transmit Synchronization Pulse 2  
The input pin used for Tx PCM frame synchronization;  
the synchronization pulse marks the last bit in the  
PCM frame.  
TxDEN2  
O
Transmit Data Enable 2  
An active low output signal which specifies data on the  
TxD2 output pin is valid.  
Hardware Reference Manual  
19  
04.99  
PEB 20324  
PEF 20324  
Pin Descriptions  
Table 2-4  
Pin No.  
89  
Pin Descriptions by Functional Block: Port 3 Serial Interface  
Symbol  
Type Description  
RxCLK3  
I
Receive Clock 3  
The clock input pin used for sampling the data on  
RxD3. The MUNICH128X supports the following PCM  
clock rates, programmed via the MODE1 register:  
T1: 1.536 MHz, 1.544 MHz, 3.088 MHz, 6.176 MHz;  
E1: 2.048 MHz, 4.096 MHz, 8.192 MHz.  
85  
86  
RxD3  
RSP3  
I
I
Receive Data 3  
The data input pin which is sampled using RxCLK3.  
Receive Synchronization Pulse 3  
The input pin used for Rx PCM frame synchronization;  
the synchronization pulse marks the first bit in the  
PCM frame.  
81  
83  
TxCLK3  
TxD3  
I
Transmit Clock 3  
The clock input used for clocking out the data on  
TxD3. In most applications, the signal that drives this  
pin is externally connected to RxCLK3.  
O
Transmit Data 3  
Provides the data which is clocked out of the  
MUNICH128X by TxCLK3; data is push-pull for active  
bits in the PCM frame and TRISTATE for inactive  
bits.  
82  
84  
TSP3  
I
Transmit Synchronization Pulse 3  
The input pin used for Tx PCM frame synchronization;  
the synch. pulse marks the last bit in the PCM frame.  
TxDEN3  
O
Transmit Data Enable 3  
An active low output signal which specifies data on the  
TxD3 output pin is valid.  
Hardware Reference Manual  
20  
04.99  
PEB 20324  
PEF 20324  
Pin Descriptions  
Table 2-5  
Pin No.  
Pin Descriptions by Functional Block: PCI Interface  
Symbol Type Description  
AD(31:0) t/s Address/Data Bus  
2, 5…8,  
11…13, 30,  
33…36,  
39…41,  
45…48,  
51…54,  
148, 149,  
152…156,  
159  
A bus transaction consists of an address phase  
followed by one or more data phases.  
When MUNICH128X is Master, AD(31:0) are outputs  
in the address phase of a transaction. During the data  
phases, AD(31:0) remain outputs for write  
transactions, and become inputs for read  
transactions.  
When MUNICH128X is Slave, AD(31:0) are inputs in  
the address phase of a transaction. During the data  
phases, AD(31:0) remain inputs for write transactions,  
and become outputs for read transactions.  
AD(31:0) is sampled on the rising edge of CLK.  
14, 29, 42, C/BE(3:0) t/s  
160  
Command/Byte Enable  
During the address phase of a transaction, C/BE(3:0)  
define the bus command. During the data phase, C/  
BE(3:0) are used as Byte Enables. The Byte Enables  
are valid for the entire data phase and determine  
which byte lanes carry meaningful data. C/BE0  
applies to byte 0 (lsb) and C/BE3 applies to byte 3  
(msb).  
When MUNICH128X is Master, C/BE(3:0) are  
outputs.  
When MUNICH128X is Slave, C/BE(3:0) are inputs.  
C/BE(3:0) is sampled on the rising edge of CLK.  
28  
PAR  
t/s  
Parity  
PAR is even parity across AD(31:0) and C/BE(3:0).  
PAR is stable and valid one clock after the address  
phase. PAR has the same timing as AD(31:0) but  
delayed by one clock.  
When MUNICH128X is Master, PAR is output during  
address phase and write data phases.  
When MUNICH128X is Slave, PAR is output during  
read data phases. Parity errors detected by the  
MUNICH128X are indicated on PERR output. PAR is  
sampled on the rising edge of CLK.  
Hardware Reference Manual  
21  
04.99  
PEB 20324  
PEF 20324  
Pin Descriptions  
Table 2-5  
Pin No.  
19  
Pin Descriptions by Functional Block: PCI Interface (cont’d)  
Symbol  
Type Description  
FRAME  
s/t/s Frame  
FRAME indicates the beginning and end of an access.  
FRAME is asserted to indicate a bus transaction is  
beginning. While FRAME is asserted, data transfers  
continue. When FRAME is deasserted, the  
transaction is in the final phase.  
When MUNICH128X is Master, FRAME is an output.  
When MUNICH128X is Slave, FRAME is an input.  
FRAME is sampled on the rising edge of CLK.  
20  
IRDY  
s/t/s Initiator Ready  
IRDY indicates the bus master’s ability to complete the  
current data phase of the transaction. It is used in  
conjunction with TRDY. A data phase is completed on  
any clock where both IRDY and TRDY are sampled  
asserted. During a write, IRDY indicates that valid  
data is present on AD(31:0). During a read, it indicates  
the master is prepared to accept data. Wait cycles are  
inserted until both IRDY and TRDY are asserted  
together.  
When MUNICH128X is Master, IRDY is an output.  
When MUNICH128X is Slave, IRDY is an input.  
IRDY is sampled on the rising edge of CLK.  
21  
TRDY  
s/t/s Target Ready  
TRDY indicates a slave’s ability to complete the  
current data phase of the transaction. During a read,  
TRDY indicates that valid data is present on AD(31:0).  
During a write, it indicates the target is prepared to  
accept data.  
When MUNICH128X is Master, TRDY is an input.  
When MUNICH128X is Slave, TRDY is an output.  
TRDY is sampled on the rising edge of CLK.  
23  
STOP  
s/t/s STOP  
STOP is used by a slave to request the current master  
to stop the current bus transaction.  
When MUNICH128X is Master, STOP is an input.  
When MUNICH128X is Slave, STOP is an output.  
STOP is sampled on the rising edge of CLK.  
Hardware Reference Manual  
22  
04.99  
PEB 20324  
PEF 20324  
Pin Descriptions  
Table 2-5  
Pin No.  
1
Pin Descriptions by Functional Block: PCI Interface (cont’d)  
Symbol  
Type Description  
Initialization Device Select  
IDSEL  
I
When MUNICH128X is slave in a transaction, if IDSEL  
is active in the address phase and C/BE(3:0) indicates  
a Config read or write, the MUNICH128X assumes a  
read or write to a configuration register. In response,  
the MUNICH128X asserts DEVSEL during the  
subsequent CLK cycle.  
IDSEL is sampled on the rising edge of CLK.  
22  
DEVSEL s/t/s Device Select  
When activated by a slave, it indicates to the current  
bus master that the slave has decoded its address as  
the target of the current transaction. If no bus slave  
activates DEVSEL within six bus CLK cycles, the  
master should abort the transaction.  
When MUNICH128X is Master, DEVSEL is input. If  
DEVSEL is not activated within six clock cycles after  
an address is output on AD(31:0), the MUNICH128X  
aborts the transaction and generates an INTA.  
When MUNICH128X is Slave, DEVSEL is output.  
26  
PERR  
s/t/s Parity Error  
When activated, indicates a parity error over the  
AD(31:0) and C/BE(3:0) signals (compared to the  
PAR input). It has a delay of one CLK cycle with  
respect to AD and C/BE(3:0) (i.e., it is valid for the  
cycle immediately following the corresponding PAR  
cycle).  
PERR is asserted relative to the rising edge of CLK.  
27  
SERR  
REQ  
o/d  
t/s  
System Error  
The MUNICH128X asserts this signal to indicate a  
fatal system error.  
SERR is sampled on the rising edge of CLK.  
147  
Request  
Used by the MUNICH128X to request control of the  
PCI.  
REQ is sampled on the rising edge of CLK.  
Hardware Reference Manual  
23  
04.99  
PEB 20324  
PEF 20324  
Pin Descriptions  
Table 2-5  
Pin No.  
146  
Pin Descriptions by Functional Block: PCI Interface (cont’d)  
Symbol  
Type Description  
GNT  
t/s  
Grant  
This signal is asserted by the arbiter to grant control of  
the PCI to the MUNICH128X in response to a bus  
request via REQ. After GNT is asserted, the  
MUNICH128X will begin a bus transaction only after  
the current bus Master has deasserted the FRAME  
signal.  
GNT is sampled on the rising edge of CLK.  
145  
CLK  
I
I
Clock  
Provides timing for all PCI transactions. Most PCI  
signals are sampled or output relative to the rising  
edge of CLK. The maximum CLK frequency is  
33 MHz.  
142  
57  
RST  
Reset  
An active RST signal brings all PCI registers,  
sequencers and signals into a consistent state. All PCI  
output signals are driven to their initial state.  
INTA  
O (o/ Interrupt Request  
d) When an interrupt status is active and unmasked, the  
MUNICH128X activates this open-drain output.  
Examples of interrupt sources are transmission/  
reception error, completion of transmit or receive  
packets etc. The MUNICH128X deactivates INTA  
when the global interrupt status register STAT is read.  
INTA is activated/deactivated asynchronous to the  
CLK.  
Hardware Reference Manual  
24  
04.99  
PEB 20324  
PEF 20324  
Pin Descriptions  
Table 2-6  
Pin Descriptions by Functional Block:  
DEMUX Interface (additional signals to PCI Interface)  
Pin No.  
Symbol  
Type Description  
PCI/De-multiplexed Mode select  
122, 123  
DPCI(1:0) I  
DPCI(1:0) = 002 : PCI Mode  
DPCI(1:0) = 012 : reserved  
DPCI(1:0) = 102 : PCI/De-multiplexed Mode  
DPCI(1:0) = 112 : reserved  
Pins DPCI(1:0) should be connected to VDD3/VSS to  
achieve the appropriate mode selection.  
58…61,  
A(27:2)  
I/O  
DEMUX Address Bus  
66…70,  
These pins provide the address bus for the De-  
multiplexed Interface, when DPCI(1:0) = 102.  
73…76, 79,  
124…126,  
129…133,  
138…141  
Note:  
Pin 124 ’A27’ provides a buffered PCI clock output  
signal if configured in PCI operation mode  
(DPCI(1:0) = ’00’).  
80  
W/R  
I/O  
Write/Read  
This signal distinguishes write and read operations in  
the De-multiplexed mode. It is tristate when the  
MUNICH128X is in PCI mode.  
A Pull-Up resistor to VDD3 is recommended if De-  
multiplexed mode is not used.  
Hardware Reference Manual  
25  
04.99  
PEB 20324  
PEF 20324  
Pin Descriptions  
Table 2-7  
Pin No.  
Pin Descriptions by Functional Block: Power Supply  
Symbol  
Type Description  
Ground (0 V)  
4, 10, 18,  
25, 32, 38,  
44, 50, 56,  
63, 65, 72,  
78, 88, 101,  
104, 118,  
128, 135,  
137, 144,  
151, 158  
VSS  
-
-
-
All pins must have the same reference level.  
3, 9, 17, 24, VDD3  
31, 37, 43,  
49, 55, 62,  
64, 71, 77,  
87, 102,  
103, 117,  
127, 134,  
136, 143,  
150, 157  
Supply Voltage (3.3 V ± 0.3 V)  
All pins must have the same reference level.  
15, 16  
VDD5  
Supply Voltage  
These pins MUST be connected to 5 V supply.  
The MUNICH128X uses 3.3 V I/O pads that always  
require additional 5 V supply.  
The 5 V power supply allows the MUNICH128X I/O  
pads to provide 5 V input tolerance.  
Hardware Reference Manual  
26  
04.99  
PEB 20324  
PEF 20324  
Pin Descriptions  
Table 2-8  
Pin No.  
115  
Pin Descriptions by Functional Block: Test Interface  
Symbol  
Type Description  
TCK  
I
I
I
JTAG Test Clock  
A Pull-Up resistor to VDD3 is recommended if  
boundary scan unit is not used.  
116  
121  
TMS  
TDI  
JTAG Test Mode Select  
A Pull-Up resistor to VDD3 is recommended if  
boundary scan unit is not used.  
JTAG Test Data Input  
A Pull-Up resistor to VDD3 is recommended if  
boundary scan unit is not used.  
120  
119  
TDO  
O
I
JTAG Test Data Output  
TRST  
JTAG Reset  
TRST should be connected to VSS if boundary  
scan unit is not used.  
Hardware Reference Manual  
27  
04.99  
PEB 20324  
PEF 20324  
Functional Description  
3
Functional Description  
3.1  
Functional Overview  
The MUNICH128X provides four independent “cores” as well as global functional blocks  
(see Figure 3-1).  
3.2  
Block Diagram  
PCM - BUS  
PCM - BUS  
CORE  
CORE  
Serial  
PCM/IF  
Serial  
PCM/IF  
24/32  
Channel  
24/32  
Channel  
64 Channel  
64 Channel  
I-BUS  
Internal  
PCI/DEMUX Interface  
Address/Data  
Control  
ITB10008  
Figure 3-1  
Block Diagram  
Hardware Reference Manual  
28  
04.99  
 
PEB 20324  
PEF 20324  
Functional Description  
3.3  
Functional Blocks  
Each core consists of dedicated circuitry: Serial PCM Interface Controller, Configuration  
and State RAM (CSR), 24/32-channel HDLC Controller with internal Transmit and  
Receive Buffers, 64-Channel DMA Controller, and Register Set.  
3.3.1  
Serial PCM Interface Controller  
This block controls both Parallel–to-Serial (Tx) and Serial-to-Parallel (Rx) conversion  
and PCM timing. Additionally, this block controls the multiplexing of channels through the  
HDLC controller, as well as switching for the test loops.  
3.3.2  
Configuration and State RAM (CSR)  
This block contains internal RAM which maintains the state of each channel. The  
Multiplex Control Block of the Serial PCM Interface Controller handles the switching of  
the CSR information into and out of the 24/32-channel HDLC Controller.  
3.3.3  
24/32-channel HDLC Controller  
The HDLC Controller performs protocol processing for each channel independently,  
based on the CSR information for each channel.  
Hardware Reference Manual  
29  
04.99  
PEB 20324  
PEF 20324  
Functional Description  
3.3.3.1  
Tx Block  
Transmit Buffer (TB)  
The Tx Block of the HDLC Controller contains a 1024 byte buffer (TB) which may be  
allocated to all 32 channels of one cove equally (i.e., 2-DWords per channel) or may be  
allocated based on superchannel considerations (e.g., 8–DWords per channel for  
8 channels).  
HDLC Protocol  
Bit stuffing, flag generation, flag stuffing and adjustment, and CRC generation (either 16-  
bit or 32-bit) are performed.  
V.110 and V.30 Protocol  
Bit framing from 600 bit/s to 38.4 Kbit/s, automatic generation of the synchronization  
pattern, generation of loss of synchronization, programmable E/SX bits (including during  
run-time) are performed.  
Transparent Mode A  
This mode supports slot synchronous, transparent transmission without frame structure.  
It provides flag generation, flag stuffing, flag generation in the abort case with  
programmable flag, and synchronized data transfer for fractional T1/E1 PRI applications.  
Transparent Mode B  
This mode supports transparent transmission in frames delimited by 00H flags, shared  
closing and opening flag, flag stuffing and flag generation in the abort case.  
Transparent Mode R  
This mode supports transparent transmission with GSM 08.60 frame structure with  
automatic 0000H flag generation and support of 40, 39.5, and 40.5 octet frames.  
Protocol Independence  
Channel inversion (data, flags, idle code) follows the format conventions as in CCITT  
Q.921.  
Hardware Reference Manual  
30  
04.99  
PEB 20324  
PEF 20324  
Functional Description  
3.3.3.2  
Rx Block  
Receive Buffer (RB)  
The Rx Block of the HDLC Controller contains a 1024 byte buffer (RB) which is allocated  
to channels via requests from the protocol controller, as determined by the received data  
for each channel.  
HDLC Protocol  
Flag detection (supports multiple flags between packets or a single flag shared as a  
closing flag and an opening flag between packets), abort character detection, idle code  
detection, zero-bit detection and deletion, packet length count, and CRC checking (either  
16-bit or 32-bit) are performed.  
V.110 and V.30 Protocol  
Bit framing from 600 bit/s to 38.4 Kbit/s, automatic synchronization of the  
synchronization pattern, detection of loss of synchronization, programmable E/SX bits  
(including during run–time) are performed.  
Transparent Mode A  
Mode A supports slot synchronous transparent reception without frame structure. It  
provides flag detection, flag extraction and synchronized data transfer for fractional T1/  
E1 PRI applications.  
Transparent Mode B  
This mode supports transparent reception in frames delimited by 00H flags. Sharing  
closing flag and opening flag, and flag detection.  
Transparent Mode R  
This mode supports transparent reception with GSM 08.60 frame structure with  
automatic 0000H flag detection. Support of 40, 39.5, and 40.5 octet frames, and error  
detection (non–octet frame contents, short frame, long frame).  
Protocol Independence  
Channel inversion (data, flags, idle code) follows the format conventions as in CCITT  
Q.921, data overflow and underflow detection.  
Hardware Reference Manual  
31  
04.99  
PEB 20324  
PEF 20324  
Functional Description  
3.3.3.3  
64-channel DMA Controller Block  
This block controls memory address calculation, buffer management (including linked-  
lists) and interrupt processing. The 24/32-channel HDLC Controller has a dedicated  
DMA channel for each channel and direction. During run-time, the DMA Controller  
performs operations with host memory primarily as a bus master. This block provides  
32 input and 32 output channels.  
3.3.3.4  
Register Set  
This block provides configuration and control of the Serial PCM Interface Controller, the  
HDLC Controller and the DMA Controller. Also, a shared status register STAT provides  
status and interrupt information associated with each of the four cores.  
Hardware Reference Manual  
32  
04.99  
PEB 20324  
PEF 20324  
Functional Description  
3.4  
Global Functional Blocks  
The MUNICH128X provides global functional blocks for the Internal Bus, Arbiter, and  
32 Bit / 33 MHz PCI 2.1 Interface as well as De-multiplexed Bus Interface Controller.  
3.4.1  
Internal Bus  
This block of the MUNICH128X interfaces the Bus Interface Controller to the four DMA  
Controllers. This is a 33 MHz, 32 Bit demultiplexed bus that operates in a synchronous,  
non–burst manner for data transfers and operates in a synchronous burst manner for  
descriptor transfers.  
3.4.2  
Arbiter  
The Arbiter provides access control of the Internal Bus. A “round-robin” Arbiter is used  
which provides “fairness” for the four master DMA controllers.  
3.4.3  
32 Bit / 33 MHz Bus Interface Controller  
The MUNICH128X may be configured either for 32 Bit / 33 MHz PCI bus operation or for  
a 32 Bit / 33 MHz De-multiplexed bus interface. The MUNICH128X input pins DPCI(1:0)  
are used to select the desired configuration.  
The De-multiplexed bus interface is a synchronous interface very similar to the PCI  
interface with the following exceptions:  
1. The W/R input/output signal replaces the function of the PCI command nibble of the  
C/BE(3:0) bit field.  
2. Note, that in DEMUX mode as in PCI mode the MUNICH128X provides only the first  
address of a Master burst read or write transaction. If burst transactions are not  
supported by the local bus environment, burst capability can be disabled by bit DBE  
in the global configuration register (CONF).  
Hardware Reference Manual  
33  
04.99  
PEB 20324  
PEF 20324  
Functional Description  
3.5  
System Integration  
The MUNICH128X provides protocol processing and host memory buffer management  
for four independent T1/E1 PRI ports. As such, the MUNICH128X fits into a system  
between the framer or LIU/framer devices (e.g., the Siemens FALC®54/FALC®54-LH  
transceiver) and the host bus (e.g. PCI Bus), as illustrated in Figure 3-1.  
The MUNICH128X provides four independent Serial PCM ports which connect directly  
into the framer devices. In PCI based systems a dedicated microcontroller or PCI bridge  
chip is necessary to configure the framer or LIU/framer devices.  
Additionally, the MUNICH128X provides a PCI 2.1 interface which connects directly to  
the system PCI bus. Optionally, this bus can be configured in De-multiplexed Mode.  
T1/E1/PRI  
T1/E1/PRI  
T1/E1/PRI  
T1/E1/PRI  
FALC R 54 /  
FALC R -LH  
Transceiver  
FALC R 54 /  
FALC R -LH  
Transceiver  
FALC R 54 /  
FALC R -LH  
Transceiver  
FALC R 54 /  
FALC R -LH  
Transceiver  
Dedicated  
CPU  
MUNICH128X  
PCI BUS  
PCI Bridge  
Chip  
Host  
Memory  
Processor  
ITS10009  
Figure 3-1  
System Integration of the MUNICH128X in PCI-Based System  
Hardware Reference Manual  
34  
04.99  
 
PEB 20324  
PEF 20324  
Functional Description  
T1/E1/PRI  
T1/E1/PRI  
T1/E1/PRI  
T1/E1/PRI  
FALC R 54 /  
FALC R -LH  
Transceiver  
FALC R 54 /  
FALC R -LH  
Transceiver  
FALC R 54 /  
FALC R -LH  
Transceiver  
FALC R 54 /  
FALC R -LH  
Transceiver  
MUNICH128X  
Glue Logic  
De-multiplexed BUS  
Processor  
Host  
Memory  
ITS10010  
Figure 3-2  
System Integration of the MUNICH128X in De-multiplexed System  
Hardware Reference Manual  
35  
04.99  
PEB 20324  
PEF 20324  
Operational Description  
4
Operational Description  
4.1  
Operational Overview  
The MUNICH128X is a “channelized” WAN protocol controller that performs protocol  
processing on up to 128 full duplex serial PCM channels. It performs HDLC-based layer  
2 protocol formatting and deformatting, as well as rate adaptation, for each of the  
128 channels independently.  
The MUNICH128X provides dedicated registers for each of the four HDLC controllers,  
with each set similar to the “core” registers of the MUNICH32X. Software developed for  
the “core” of the MUNICH32X requires minimal modification to run optimally on the  
MUNICH128X. The architecture of the register sets allows any number of HDLC  
controllers within an MUNICH128X device to operate with host software images that  
differ only in their offset from the PCI base address and their pointers into host memory.  
Host software sets the operating mode, rate adaptation method and time slot assignment  
of each channel by configuring “blocks” (CCBs) within host memory.  
During “run-time” the MUNICH128X performs all data and descriptor transfers as a bus  
master. Additionally, host software may access any register of a particular HDLC  
Controller within the MUNICH128X, with the device acting as a bus slave.  
The MUNICH128X provides a single Status Register, which maintains information of all  
interrupt events for the controller.  
Hardware Reference Manual  
36  
04.99  
PEB 20324  
PEF 20324  
Electrical Characteristics  
5
Electrical Characteristics  
5.1  
Important Electrical Requirements  
VDD3 = 3.3 V ± 0.3 V  
VDD5 = 5.0 V ± 0.25 V  
VDD3 max = 3.6 V  
VDD5 max = 5.25 V  
During all MUNICH128X power-up and power-down situations the difference  
|VDD5 VDD3| may not exceed 3.6V. The absolute maximums of VDD5 and VDD3 should  
never be exceeded.  
Figure 5-1 shows that both VDD3 and VDD5 can take on any time sequence not exceeding  
a voltage difference of 3.6V, for up to 50 milliseconds at power-up and power-  
down.Within 50 milliseconds of power-up the voltages must be within their respective  
absolute voltage limits. At power-down, within 50 milliseconds of either voltage going  
outside its operational range, the voltage difference should not exceed 3.6V and both  
voltages must be returned below 0.1V:  
power up  
power down  
U/V  
VDD5limit  
VDD5limit  
5V  
+/- 0.25V  
VDD3limit  
VDD3limit  
3.3V  
+/- 0.3V  
0.1V  
t/ms  
0
50  
N
N+50  
Within the grey boxes any shape of VDD3 and VDD5 signal is allowed with the requirements that the absolute  
limits of each signal are not exceeded, the slew rate recommendation for VDD3 is met to guarantee proper  
boundary scan reset and the voltage difference does not exceed 3.6V.  
Outside the grey boxes the voltages provided to VDD3 and VDD5 should be inside the normal operation range.  
In this power-up example VDD5 is enabled after VDD3 reached its minimum operation value which is a typical  
implementation.  
For power-down VDD5 is switched off before VDD3  
.
Figure 5-1  
Power-up and Power-down scenarios  
Hardware Reference Manual  
37  
04.99  
 
PEB 20324  
PEF 20324  
Electrical Characteristics  
Similar criteria also apply to power down in case of power failure situations:  
power failure:  
DD5break down  
power failure:  
DD3break down  
V
V
U/V  
U/V  
VDD5limit  
VDD3limit  
VDD5limit  
VDD3limit  
5V  
+/- 0.25V  
5V  
+/- 0.25V  
3.3V  
+/- 0.3V  
3.3V  
+/- 0.3V  
0.1V  
0.1V  
t/ms  
t/ms  
0
N
50  
0
N
N+15  
Within the grey boxes any shape of VDD3 and VDD5 signal is allowed with the requirements that the absolute  
limits of each signal are not exceeded and the specified voltage differences are not exceeded.  
a. In case of VDD5 break-down the 3.6V difference is not exceeded anyway. The voltages must return below  
0.1V within 50 milliseconds.  
b. In case of VDD3 break-down the maximum voltage difference must not exceed 4.5 V for a maximum of 15  
milliseconds.The voltages must return below 0.1V within 50 milliseconds.  
This scenario is allowed for 2000 power failure cycles.  
Figure 5-2  
Power-Failure scenarios  
Hardware Reference Manual  
38  
04.99  
PEB 20324  
PEF 20324  
Electrical Characteristics  
5.2  
Absolute Maximum Ratings  
Table 5-1  
Absolute Maximum Ratings  
Parameter  
Symbol  
Limit Values  
max.  
Unit  
min.  
Ambient temperature under bias  
TA  
°C  
PEB  
PEF  
0
-40  
70  
85  
Junction temperature under bias  
Storage temperature  
TJ  
125  
°C  
°C  
V
Tstg  
– 65  
125  
Voltage at any pin with respect to ground VS  
– 0.4  
VDD5 + 0.4  
ESD robustness1)  
VESD,HBM  
1000  
V
HBM: 1.5 k, 100 pF  
1)  
According to MIL-Std 883D, method 3015.7 and ESD Ass. Standard EOS/ESD-5.1-1993.  
The RF Pins 20, 21, 26, 29, 32, 33, 34 and 35 are not protected against voltage stress > 300 V (versus VS or  
GND). The high frequency performance prohibits the use of adequate protective structures.  
Note: Stresses above those listed here may cause permanent damage to the device.  
Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
5.3  
Thermal Package Characteristics  
Thermal Package Characteristics  
Table 5-2  
Parameter  
Symbol  
Value  
Unit  
Thermal Package Resistance Junction to Ambient  
Airflow:  
Ambient Temperature:  
TA=+25°C  
without airflow  
θJA(0,25) 29  
°C/W  
Hardware Reference Manual  
39  
04.99  
 
PEB 20324  
PEF 20324  
Electrical Characteristics  
5.4  
Operating Range  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min.  
max.  
Ambient temperature  
TA  
°C  
PEB  
PEF  
0
-40  
70  
85  
Supply voltage VDD3  
Supply voltage VDD5  
Ground  
VDD3  
VDD5  
VSS  
3.0  
4.75  
0
3.6  
5.25  
0
V
V
V
Note: In the operating range, the functions given in the circuit description are fulfilled.  
Hardware Reference Manual  
40  
04.99  
PEB 20324  
PEF 20324  
Electrical Characteristics  
5.5  
DC Characteristics  
a) Non-PCI Interface Pins  
Table 5-3  
Non-PCI Interface Pins  
TA = 0 to + 70°C; VDD5 = 5 V ± 5%, VDD3 = 3.3 V ± 0.3 V, VSS = 0 V  
Parameter  
Symbo  
l
Limit Values  
min. max.  
– 0.4 0.8  
Unit Test Condition  
L-input voltage  
H-input voltage  
L-output voltage  
VIL  
V
VIH  
VQL  
2.0  
VDD5 + 0.4 V  
0.45  
V
IQL = 7 mA  
(pin TXD)  
IQL = 2 mA  
(all others / non-PCI)  
H-output voltage  
VQH  
2.4  
V
IQH = – 400 µA  
Power  
supply  
current  
operational ICC3  
< 300  
< 5  
mA VDD3 = 3.3 V,  
VDD5 = 5.0 V,  
inputs at 0 V/VDD3  
powerdown ICC3  
(no clocks)  
mA  
,
,
,
no output loads  
operational ICC5  
< 1  
< 1  
mA VDD3 = 3.3 V,  
VDD5 = 5.0 V,  
inputs at 0 V/VDD3  
powerdown ICC5  
(no clocks)  
mA  
no output loads  
ICC3Peak  
ICC5Peak  
< 700  
< 10  
mA VDD3 = 3.3 V,  
Peak Power supply  
current during  
RAM initialization process  
VDD5 = 5.0 V,  
inputs at 0 V/VDD3  
no output loads,  
mA  
300 PCI clocks after  
power-up  
Input leakage current  
Output leakage current  
ILI  
ILQ  
10  
µA 0 V < VIN < VDD to 0 V  
0 V < VOUT < VDD to 0 V  
Note: The listed characteristics are ensured over the operating range of the integrated  
circuit. Typical characteristics specify mean values expected over the production  
spread. If not otherwise specified, typical characteristics apply at TA = 25 °C and  
the given supply voltage.  
Note: The electrical characteristics described in section 5.2 also apply here!  
Hardware Reference Manual  
41  
04.99  
PEB 20324  
PEF 20324  
Electrical Characteristics  
b) PCI Pins  
According to the PCI specification V2.1 from June 1, 1995  
(Chapter 4: Electrical Specification for 5 V signalling)  
Note: According the electrical characteristics all DEMUX Interface pins (DPCI(1:0),  
A(27:2), W/R) are treated as PCI Interface pins.  
5.6  
Capacitances  
a) Non-PCI Interface Pins  
Table 5-4  
Non-PCI Interface Pins  
TA = 25°C; VDD5 = 5 V ± 5%, VDD3 = 3.3 V ± 0.3 V, VSS = 0 V  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
min.  
max.  
5
Input capacitance  
CIN  
1
5
6
pF  
pF  
pF  
Output capacitance COUT  
10  
I/O-capacitance  
CIO  
15  
b) PCI Pins  
According to the PCI specification V2.1 from June 1, 1995  
(Chapter 4: Electrical Specification for 5 V signalling)  
Note: According the electrical characteristics all DEMUX Interface pins DPCI(1:0),  
A(27:2), W/R) are treated as PCI Interface pins.  
Hardware Reference Manual  
42  
04.99  
PEB 20324  
PEF 20324  
Electrical Characteristics  
5.7  
AC Characteristics  
a) Non-PCI Interface Pins  
TA = 0 to + 70°C; VDD5 = 5 V ± 5%; VDD3 = 3.3 V ± 0.3 V  
Inputs are driven to 2.4 V for a logical “1” and to 0.4 V for a logical “0”. Timing  
measurements are made at 2.0 V for a logical “1” and at 0.8 V for a logical “0”.  
The AC testing input/output waveforms are shown below.  
2.4  
2.0  
0.8  
2.0  
0.8  
Device  
Under  
Test  
Test Points  
CLoad = 50 pF  
0.45  
ITS09800  
Figure 5-1  
Input/Output Waveform for AC Tests  
b) PCI Pins  
According to the PCI specification V2.1 from June 1, 1995  
(Chapter 4: Electrical Specification for 5 V signalling)  
Note: According the electrical characteristics all DEMUX Interface pins DPCI(1:0),  
A(27:2), W/R) are treated as PCI Interface pins.  
Hardware Reference Manual  
43  
04.99  
PEB 20324  
PEF 20324  
Electrical Characteristics  
5.7.1  
PCI Bus Interface Timing  
The AC testing input/output waveforms are shown in figures 5-2 and 5-3 below.  
Vth  
Vtest  
Clock  
Vtl  
t val  
Device  
Under  
Test  
Vtest  
toff  
Output Delay  
CLoad = 50 pF  
ton  
TRI-STATE  
Output  
Vtest  
Vtest  
ITS09801  
Figure 5-2  
PCI Output Timing Measurement Waveforms  
Figure 5-3  
PCI Input Timing Measurement Waveforms  
PCI Input and Output Measurement Conditions  
Table 5-5  
Symbol  
Vth  
Value  
2.4  
Unit  
V
Vtl  
0.4  
V
Vtest  
1.5  
V
Vmax  
2.0  
V
The timings below show the basic read and write transaction between an initiator  
(Master) and a target (Slave) device. The MUNICH128X is able to work both as master  
and slave.  
Hardware Reference Manual  
44  
04.99  
 
 
PEB 20324  
PEF 20324  
Electrical Characteristics  
As a master the MUNICH128X reads/writes data from/to host memory using DMA and  
burst. The slave mode is used by an CPU to access the MUNICH128X PCI Configuration  
Space and the on-chip registers.  
5.7.1.1 PCI Read Transaction  
The transaction starts with an address phase which occurs during the first cycle when  
FRAME is activated (clock 2 in figure 5-4). During this phase the bus master (initiator)  
outputs a valid address on AD(31:0) and a valid bus command on C/BE(3:0). The first  
clock of the first data phase is clock 3. During the data phase C/BE indicate which byte  
lanes on AD(31:0) are involved in the current data phase.  
The first data phase on a read transaction requires a turn-around cycle. In figure 5-4 the  
address is valid on clock 2 and then the master stops driving AD. The target drives the  
AD lines following the turnaround when DEVSEL is asserted. (TRDY cannot be driven  
until DEVSEL is asserted.) The earliest the target can provide valid data is clock 4. Once  
enabled, the AD output buffers of the target stay enabled through the end of the  
transaction.  
A data phase may consist of a data transfer and wait cycles. A data phase completes  
when data is transferred, which occurs when both IRDY and TRDY are asserted. When  
either is deasserted a wait cycle is inserted. In the example below, data is successfully  
transferred on clocks 4, 6 and 8, and wait cycles are inserted on clocks 3, 5 and 7. The  
first data phase completes in the minimum time for a read transaction. The second data  
phase is extended on clock 5 because TRDY is deasserted. The last data phase is  
extended because IRDY is deasserted on clock 7.  
The Master knows at clock 7 that the next data phase is the last. However, the master is  
not ready to complete the last transfer, so IRDY is deasserted on clock 7, and FRAME  
stays asserted. Only when IRDY is asserted can FRAME be deasserted, which occurs  
on clock 8.  
Hardware Reference Manual  
45  
04.99  
PEB 20324  
PEF 20324  
Electrical Characteristics  
CLK  
1
2
3
4
5
6
7
8
9
FRAME  
AD  
Address  
Data 1  
Data 2  
Data 3  
C/BE  
Bus CMD  
BE’s  
IRDY  
TRDY  
DEVSEL  
Address  
Phase  
Data  
Phase  
Data  
Phase  
Data  
Phase  
Bus Transaction  
ITD07575  
Figure 5-4  
PCI Read Transaction  
Hardware Reference Manual  
46  
04.99  
PEB 20324  
PEF 20324  
Electrical Characteristics  
5.7.1.2 PCI Write Transaction  
The transaction starts when FRAME is activated (clock 2 in figure 5-5). A write  
transaction is similar to a read transaction except no turnaround cycle is required  
following the address phase. In the example, the first and second data phases complete  
with zero wait cycles. The third data phase has three wait cycles inserted by the target.  
Both initiator and target insert a wait cycle on clock 5. In the case where the initiator  
inserts a wait cycle (clock 5), the data is held on the bus, but the byte enables are  
withdrawn. The last data phase is characterized by IRDY being asserted while the  
FRAME signal is deasserted. This data phase is completed when TRDY goes active  
(clock 8).  
CLK  
1
2
3
4
5
6
7
8
9
FRAME  
AD  
Address  
Data 1  
BE’s-1  
Data 2  
BE’s-2  
Data 3  
C/BE  
Bus CMD  
BE’s-3  
IRDY  
TRDY  
DEVSEL  
Address  
Phase  
Data  
Phase  
Data  
Phase  
Data  
Phase  
Bus Transaction  
ITD07576  
Figure 5-5  
PCI Write Transaction  
Hardware Reference Manual  
47  
04.99  
 
PEB 20324  
PEF 20324  
Electrical Characteristics  
5.7.1.3 PCI Timing Characteristics  
When the MUNICH128X operates as a PCI Master (initiator) and it either reads or writes  
a burst – as controlled by the on-chip DMA controller – it does not deactivate IRDY  
between consecutive data. In other words, no wait states are inserted by the  
MUNICH128X as a transaction initiator. The numbers of wait states, inserted by the  
MUNICH128X as initiator are listed in table 5-6.  
Table 5-6  
Number of Wait States Inserted by the MUNICH128X as Initiator  
Number of Wait States  
Transaction  
1st Data Cycle  
2nd and Subsequent Data Cycles  
Memory read burst  
Memory write burst  
0
0
0
0
0
0
Fast Back-to-back burst;  
1st transaction  
Fast Back-to-back burst;  
2nd and subsequent  
transactions  
1
0
When the MUNICH128X operates as a PCI Slave (target), it inserts wait cycles by  
deactivating TRDY. The numbers of wait states, typically inserted by the MUNICH128X  
are listed in table 5-6:  
Table 5-7  
Number of Wait States Inserted by the MUNICH128X as Slave  
Number of Wait States  
Transaction  
Configuration read  
Configuration write  
Register read  
Register write  
LBI read  
2
0
3
0
3
0
LBI write  
The number of wait states inserted by the MUNICH128X as target is not critical because  
accesses to the MUNICH128X are usually kept to a minimum in a system.  
Hardware Reference Manual  
48  
04.99  
 
PEB 20324  
PEF 20324  
Electrical Characteristics  
t H  
t L  
2.4 V  
2.0 V  
Voltage (V)  
1.5 V  
2 Vpp min  
0.8 V  
0.4 V  
T
ITD07577  
Figure 5-6  
PCI Clock Specification  
Table 5-8  
PCI Clock Characteristics  
Symbol  
Parameter  
Limit Values  
Unit  
min.  
30  
11  
11  
1
typ.  
max.  
CLK cycle time  
ns  
T
tH  
tL  
CLK high time  
ns  
CLK low time  
ns  
CLK slew rate (see note)  
4
V/ns  
Note: Rise and fall times are specified in terms of the edge rate measured in V/ns. This  
slew rate must be met across the minimum peak-to-peak portion of the clock  
waveform as shown in figure 5-6.  
Hardware Reference Manual  
49  
04.99  
 
PEB 20324  
PEF 20324  
Electrical Characteristics  
Table 5-9  
PCI Interface Signal Characteristics  
Limit Values  
Parameter  
Unit  
Remarks  
min.  
typ.  
max.  
CLK to signal valid delay  
bussed signals  
(2)  
11  
ns  
ns  
Notes 1, 2  
Notes 1, 2  
CLK to signal valid delay  
point-to-point  
(2)  
2
12  
Float to active delay  
Active to float delay  
(3)  
20  
ns  
ns  
ns  
Input setup time to CLK  
bussed signals  
7
Note 2  
Note 2  
Input setup time to CLK  
point-to-point  
10  
0
ns  
ns  
Input hold time from CLK  
Note 1Minimum times are measured with 0 pF equivalent load; maximum times are  
measured with 50 pF equivalent load.  
Note 2REQ and GNT are point-to-point signals. All other signals are bussed  
GNT setup (min) time: 10ns  
Hardware Reference Manual  
50  
04.99  
PEB 20324  
PEF 20324  
Electrical Characteristics  
5.7.2  
De-multiplexed Bus Interface  
CLK  
FRAME  
D (31 : 0)  
A (31 : 2)  
BE (3 : 0)  
W/R  
Address  
Data  
Address  
Data  
don´t care  
don´t care  
Address  
Address  
BE (3 : 0)  
BE (3 : 0)  
READ Access  
WRITE Access  
TRDY  
ITT10451  
Figure 5-7  
Master Single READ Transaction followed by a Master Single WRITE  
Transaction in De-multiplexed Bus Configuration  
CLK  
FRAME  
D (31 : 0)  
A (31 : 2)  
BE (3 : 0)  
W/R  
Address  
Data 1  
Data 2  
Data 3  
Data 4  
don´t care  
Address  
BE (3 : 0)  
BE (3 : 0) BE (3 : 0) BE (3 : 0)  
WRITE/READ Access  
TRDY  
ITT10452  
Figure 5-8  
Master Burst WRITE/READ Access in De-multiplexed Bus  
Configuration  
The timing provided in Table 5-7 and Table 5-8 can also be applied to the de-multiplexed  
bus interface.  
Hardware Reference Manual  
51  
04.99  
 
 
PEB 20324  
PEF 20324  
Electrical Characteristics  
Table 5-10 Additional De-multiplexed Interface Signal Characteristics  
Parameter  
Limit Values  
typ. max.  
Unit  
Remarks  
min.  
CLK to address bus signal  
valid delay  
12  
ns  
ns  
ns  
ns  
ns  
ns  
CLK to W/R signal valid  
delay  
12  
Address bus Input setup  
time to CLK  
8
Address bus Input hold time 0  
to CLK  
W/R signal Input setup time 8  
to CLK  
W/R signal Input hold time  
to CLK  
0
Note: The PCI parity signal PAR is not generated in de-multiplexed mode. It is driven  
active low by the MUNICH128X.  
Hardware Reference Manual  
52  
04.99  
PEB 20324  
PEF 20324  
Electrical Characteristics  
5.7.3  
PCM Serial Interface Timing  
37  
39  
RSP  
43  
42  
RxCLK  
38  
40  
41  
RxD  
44  
46  
TSP  
50  
49  
TxCLK  
TxD  
45  
47  
51  
48  
TDTRI  
ITT10012  
Figure 5-9  
PCM Serial Interface Timing  
Hardware Reference Manual  
53  
04.99  
PEB 20324  
PEF 20324  
Electrical Characteristics  
Table 5-11 PCM Serial Interface Timing  
No.  
Parameter  
Limit Values  
max.  
Unit  
min.  
10  
5
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
Receive strobe guard time  
Receive strobe setup  
Receive strobe hold  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5
Receive data setup  
5
Receive data hold  
5
Receive clock high width  
Receive clock low width  
Transmit strobe guard time  
Transmit strobe setup  
Transmit strobe hold  
30  
30  
20  
5
5
Transmit data delay  
25  
25  
Transmit clock to high impedance  
Transmit clock high width  
Transmit clock low width  
Transmit tristate delay  
30  
30  
25  
Note: The frequency on the serial line must be smaller or equal to  
th  
1/8 of the frequency on the µP bus for 1.536 MHz, 1.544 MHz, 2.048 MHz  
th  
1/4 of the frequency on the µP bus for 4.096 MHz.  
Note: For complete internal or complete external loop t42 and t49 must be greater or  
equal to 3 times T.  
Hardware Reference Manual  
54  
04.99  
PEB 20324  
PEF 20324  
Electrical Characteristics  
5.7.4  
System Interface Timing  
RES  
57  
ITD10332  
Figure 5-10 System Interface Timing  
Table 5-12 System Interface Timing  
No. Parameter  
Limit Values  
max.  
Unit  
min.  
4 CLK cycles  
57  
RESET pulse width  
Hardware Reference Manual  
55  
04.99  
PEB 20324  
PEF 20324  
Electrical Characteristics  
5.7.5  
JTAG-Boundary Scan Timing  
58  
59  
60  
TCK  
TMS  
61  
63  
62  
64  
TDI  
65  
TDO  
ITD09802  
Figure 5-11 JTAG-Boundary Scan Timing  
Table 5-13 JTAG-Boundary Scan Timing  
No. Parameter  
Limit Values  
Unit  
min.  
166  
80  
max.  
58 TCK period  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
59 TCK high time  
60 TCK low time  
61 TMS setup time  
62 TMS hold time  
63 TDI setup time  
64 TDI hold time  
65 TDO valid delay  
80  
30  
10  
30  
30  
60  
Hardware Reference Manual  
56  
04.99  
PEB 20324  
PEF 20324  
Test Modes  
6
Test Modes  
6.1  
Boundary Scan Unit  
In the MUNICH128X a Test Access Port (TAP) controller is implemented. The essential  
part of the TAP is a finite state machine (16 states) controlling the different operational  
modes of the boundary scan. Both, TAP controller and boundary scan, meet the  
requirements given by the JTAG standard: IEEE 1149.1. Figure 6-1 gives an overview.  
Test Access Port  
TCK  
Pins  
CLOCK  
Clock Generation  
1
2
CLOCK  
.
.
.
TRST  
TMS  
Reset  
TAP Controller  
Control  
Bus  
Test  
Control  
- Finite State Machine  
- Instruction Register (3 bit)  
- Test Signal Generator  
6
TDI  
.
.
.
Data in  
ID Data out  
TDO  
Enable  
SS Data  
out  
n
Data out  
Figure 6-1  
Block Diagram of Test Access Port and Boundary Scan  
If no boundary scan operation is planned TRST has to be connected with VSS. TMS and  
TDI do not need to be connected since pull-up transistors ensure high input levels in this  
case. Nevertheless it would be a good practice to put the unused inputs to defined levels.  
In this case, if the JTAG is not used:  
TMS = TCK = ’1’ is recommended.  
Test handling (boundary scan operation) is performed via the pins TCK (Test Clock),  
TMS (Test Mode Select), TDI (Test Data Input) and TDO (Test Data Output) when the  
TAP controller is not in its reset state, i.e. TRST is connected to VDD or it remains  
unconnected due to its internal pull-up. Test data at TDI are loaded with a 4-MHz clock  
Hardware Reference Manual  
57  
04.99  
 
PEB 20324  
PEF 20324  
Test Modes  
signal connected to TCK. ‘1’ or ‘0’ on TMS causes a transition from one controller state  
to another; constant ’1’ on TMS leads to normal operation of the chip.  
Table 6-1  
Boundary Scan Sequence in MUNICH128X  
TDI ->  
Seq. Pin  
No.  
I/O  
Number of  
Boundary Scan Cells  
Constant Value  
In, Out, Enable  
1
DPCI0  
I
1
1
3
3
3
3
3
3
3
3
3
3
3
3
3
1
3
3
3
3
3
3
3
3
3
0
2
DPCI1  
A27  
I
0
3
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
011  
000  
000  
100  
000  
001  
000  
010  
000  
110  
000  
000  
000  
0
4
A26  
5
A25  
6
A24  
7
A23  
8
A22  
9
A21  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
A20  
A19  
A18  
A17  
A16  
RST  
CLK  
GNT  
REQ  
AD31  
AD30  
AD29  
AD28  
AD27  
AD26  
AD25  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
000  
000  
000  
000  
000  
000  
000  
000  
000  
Hardware Reference Manual  
58  
04.99  
 
PEB 20324  
PEF 20324  
Test Modes  
Seq. Pin  
No.  
I/O  
Number of  
Boundary Scan Cells  
Constant Value  
In, Out, Enable  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
AD24  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
000  
C/BE3  
IDSEL  
AD23  
AD22  
AD21  
AD20  
AD19  
AD18  
AD17  
AD16  
C/BE2  
FRAME  
IRDY  
TRDY  
DEVSEL  
STOP  
PERR  
SERR  
PAR  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
C/BE1  
AD15  
AD14  
AD13  
AD12  
AD11  
AD10  
AD9  
000  
000  
000  
000  
000  
000  
000  
000  
AD8  
000  
C/BE0  
000  
Hardware Reference Manual  
59  
04.99  
PEB 20324  
PEF 20324  
Test Modes  
Seq. Pin  
No.  
I/O  
Number of  
Boundary Scan Cells  
Constant Value  
In, Out, Enable  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
0
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
AD7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
1
1
3
3
1
1
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
INTA  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
WR  
TCLK3  
TSP3  
TD3  
TDEN3  
RD3  
RSP3  
I
0
I/O  
I/O  
I
000  
000  
0
I
0
Hardware Reference Manual  
60  
04.99  
PEB 20324  
PEF 20324  
Test Modes  
Seq. Pin  
No.  
I/O  
Number of  
Boundary Scan Cells  
Constant Value  
In, Out, Enable  
86  
RCLK3  
I
1
1
1
3
3
1
1
1
1
1
3
3
1
1
1
1
1
3
3
1
1
1
0
87  
TCLK2  
TSP2  
TD2  
I
0
88  
I
0
89  
I/O  
000  
000  
0
90  
TDEN2  
RD2  
I/O  
91  
I
92  
RSP2  
RCLK2  
TCLK1  
TSP1  
TD1  
I
0
93  
I
0
94  
I
0
95  
I
0
96  
I/O  
000  
000  
0
97  
TDEN1  
RD1  
I/O  
98  
I
99  
RSP1  
RCLK1  
TCLK0  
TSP0  
TD0  
I
0
100  
101  
102  
103  
104  
105  
106  
107  
I
0
I
0
I
0
I/O  
000  
000  
0
TDEN0  
RD0  
I/O  
I
I
I
RSP0  
RCLK0  
-> TDO  
0
0
An input pin (I) uses one boundary scan cell (data in), an output pin (O) uses two cells  
(data out, enable) and an I/O-pin (I/O) uses three cells (data in, data out, enable). Note  
that some output and input pins of the MUNICH128X are tested as I/O pins in boundary  
scan, hence using three cells. The boundary scan unit of the MUNICH128X contains a  
total of n = 275 scan cells.  
The right column of Table 6-1 gives the initialization values of the cells.  
Hardware Reference Manual  
61  
04.99  
PEB 20324  
PEF 20324  
Test Modes  
The desired test mode is selected by serially loading a 3-bit instruction code into the  
instruction register via TDI (LSB first); see Table 6-2.  
Table 6-2  
Boundary Scan Test Modes  
Instruction (Bit 2 … 0)  
Test Mode  
000  
001  
EXTEST (external testing)  
INTEST (internal testing)  
010  
011  
111  
others  
SAMPLE/PRELOAD (snap-shot testing)  
IDCODE (reading ID code)  
BYPASS (bypass operation)  
handled like BYPASS  
EXTEST is used to examine the interconnection of the devices on the board. In this test  
mode at first all input pins capture the current level on the corresponding external  
interconnection line, whereas all output pins are held at constant values (‘0’ or ‘1’,  
according to Table 6-1). Then the contents of the boundary scan is shifted to TDO. At  
the same time the next scan vector is loaded from TDI. Subsequently all output pins are  
updated according to the new boundary scan contents and all input pins again capture  
the current external level afterwards, and so on.  
INTEST supports internal testing of the chip, i.e. the output pins capture the current level  
on the corresponding internal line whereas all input pins are held on constant values (‘0’  
or ‘1’, according to Table 6-1). The resulting boundary scan vector is shifted to TDO.  
The next test vector is serially loaded via TDI. Then all input pins are updated for the  
following test cycle.  
Note: In capture IR-state the code ‘001’ is automatically loaded into the instruction  
register, i.e. if INTEST is wanted the shift IR-state does not need to be passed.  
SAMPLE/PRELOAD is a test mode which provides a snap-shot of pin levels during  
normal operation.  
IDCODE: A 32-bit identification register is serially read out via TDO. It contains the  
version number (4 bits), the device code (16 bits) and the manufacturer code (11 bits).  
The LSB is fixed to ‘1’.  
TDI ->  
0011 0000 0000 0100 0100  
0000 1000 001 1 -> TDO  
Note: Since in test logic reset state the code ‘011’ is automatically loaded into the  
instruction register, the ID code can easily be read out in shift DR state which is  
reached by TMS = 0, 1, 0, 0.  
BYPASS: A bit entering TDI is shifted to TDO after one TCK clock cycle.  
Hardware Reference Manual  
62  
04.99  
 
PEB 20324  
PEF 20324  
Package Outlines  
7
Package Outlines  
P-MQFP-160-1  
(Plastic Metric Quad Flat Package)  
Sorts of Packing  
Package outlines for tubes, trays etc. are contained in our  
Data Book “Package Information”.  
Dimensions in mm  
SMD = Surface Mounted Device  
Hardware Reference Manual  
63  
04.99  

相关型号:

PEB2035

ICs for Communications (Advanced CMOS Frame Aligner)
INFINEON

PEB2035-C

Framer/Formatter
ETC

PEB2035-N

ICs for Communications (Advanced CMOS Frame Aligner)
INFINEON

PEB2035-P

ICs for Communications (Advanced CMOS Frame Aligner)
INFINEON

PEB2035A3N

Framer, CMOS, PQCC44,
INFINEON

PEB2035A3P

Framer, CMOS, PDIP40,
INFINEON

PEB2035N-VB1

Framer, CMOS, PQCC44,
INFINEON

PEB2035P-VB1

Framer, CMOS, PDIP40,
INFINEON

PEB2040

Telecom Switching Circuit
ETC

PEB2041N

Telecom Switching Circuit
ETC

PEB2041P

Telecom Switching Circuit
ETC

PEB2045

Memory Time Switch CMOS (MTSC)
INFINEON