OPTIGA TRUST M SLS32AIA [INFINEON]

OPTIGA™ Trust M是一款高端安全解决方案,为物联网设备接入云端提供了一个可信任锚,从而为每一台物联网设备赋予唯一身份。这种预个性化交钥匙解决方案具备安全功能的易于集成与实现快速接入云服务所需的高性能。;
OPTIGA TRUST M SLS32AIA
型号: OPTIGA TRUST M SLS32AIA
厂家: Infineon    Infineon
描述:

OPTIGA™ Trust M是一款高端安全解决方案,为物联网设备接入云端提供了一个可信任锚,从而为每一台物联网设备赋予唯一身份。这种预个性化交钥匙解决方案具备安全功能的易于集成与实现快速接入云服务所需的高性能。

文件: 总38页 (文件大小:870K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SLS 32AIA010MH/S/K/L  
OPTIGA™ Trust M  
Key Features  
High-end security controller  
Common Criteria Certified EAL6+ (high) hardware  
Turnkey solution  
Up to 10kB user memory  
PG-USON-10-2,-4 package (3 x 3 mm)  
Standard & Extended temperature ranges  
I2C interface with Shielded Connection (encrypted communicatio
Cryptographic support:  
o
o
o
o
ECC : NIST curves up to P-521, Brainpool r1 curve up to 512,  
RSA® up to 2048,  
AES key up to 256 , HMAC up to SHA512,  
TLS v1.2 PRF and HKDF up to SHA512  
OPTIGA™ Trust M Software Framework on Github - https://github.com/Infineon/optiga-trust-m  
Crypto ToolBox commands for SHA-256, ECC and RSA® Feature, AES, HMAC and Key derivation  
Configurable device security monitor, 4 Monotonic up counters  
Protected(integrity and confidentiality) update of data, key and metadata objects  
Hibernate for zero power consumption1  
Lifetime for Industrial Automation and Infrastructure is 20 years and 15 years for other Application Profiles  
Benefits  
Protection of IP and data  
Protection of business case and corporate image  
Safeguarding of quality and safety  
Applications  
Industrial control and building automation  
Consumer electronics and Smart Home  
Drones  
About this document  
Scope and purpose  
This Datasheet provides information to enable integration of a security device, and includes package,  
connectivity and technical data.  
Intended audience  
This Datasheet is intended for device integrators and board manufacturers.  
1 Leakage current < 2.5µA only  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
1
Revision 3.40  
2022-06-21  
 
OPTIGA™ Trust M  
Table of Contents  
Table of Contents  
About this document....................................................................................................................... 1  
Table of Contents ........................................................................................................................... 2  
1
Introduction .......................................................................................................................... 3  
Broad range of benefits...........................................................................................................................3  
Enhanced security...................................................................................................................................3  
Fast and easy integration........................................................................................................................3  
Applications.............................................................................................................................................3  
Device Features .......................................................................................................................................3  
1.1  
1.2  
1.3  
1.4  
1.5  
2
System Block Diagram ............................................................................................................ 7  
3
Interface and Schematics........................................................................................................ 9  
3.1  
System Integration Schematics with Hibernation support...................................................................9  
4
4.1  
4.2  
Description of packages .........................................................................................................12  
PG-USON-10-2,-4 ...................................................................................................................................12  
Production sample marking pattern ....................................................................................................13  
5
5.1  
5.1.1  
5.1.2  
5.1.3  
Technical Data ......................................................................................................................15  
I2C Interface Characteristics.................................................................................................................15  
I2C Standard/Fast Mode Interface Characteristics .........................................................................15  
I2C Fast Mode Plus Interface Characteristics ..................................................................................16  
Electrical Characteristics .................................................................................................................17  
5.1.3.1  
5.1.3.2  
5.1.4  
5.1.4.1  
5.1.4.2  
DC Electrical Characteristics.......................................................................................................17  
AC Electrical Characteristics.......................................................................................................17  
Start-Up of I2C Interface ..................................................................................................................18  
Startup after Power-On ..............................................................................................................18  
Startup for Warm Resets.............................................................................................................19  
6
6.1  
6.2  
OPTIGA™ Trust M External Interface ........................................................................................21  
Commands ............................................................................................................................................21  
Crypto Performance..............................................................................................................................22  
7
7.1  
7.2  
Security Monitor ...................................................................................................................24  
Security Events......................................................................................................................................24  
Security Policy.......................................................................................................................................24  
8
RoHS Compliance..................................................................................................................25  
9
Appendix A Infineon I2C Protocol Registry Map ......................................................................26  
9.1  
Infineon I2C Protocol Variations...........................................................................................................28  
10  
10.1  
10.1.1  
10.1.2  
10.1.3  
Appendix B - OPTIGA™ Trust M Command/Response I2C Sample Logs .........................................30  
Sequence of commands to read Coprocessor UID from OPTIGA™ Trust M ........................................30  
Check the status [I2C_STATE]..........................................................................................................30  
Issue OpenApplication command ...................................................................................................30  
Read Coprocessor UID .....................................................................................................................31  
11  
Appendix C Power Management ...........................................................................................32  
Hibernation............................................................................................................................................32  
Software adaption for Hibernate circuit with single MOSFET........................................................32  
Low Power Sleep Mode .........................................................................................................................35  
11.1  
11.1.1  
11.2  
Revision history.............................................................................................................................37  
Datasheet  
2
Revision 3.40  
2022-06-21  
 
O
PTIGA™ Trust M  
Introduction  
1
Introduction  
As embedded systems (e.g. IoT devices) are increasingly gaining the attention of attackers, Infineon offers the  
OPTIGA™ Trust M as a turnkey security solution for industrial automation systems, smart homes, consumer  
devices and medical devices. This high-end security controller comes with full system integration support for  
easy and cost-effective deployment of high-end security for your assets.  
1.1  
Broad range of benefits  
Integrated into your device, the OPTIGA™ Trust M supports protection of your brand and business case,  
differentiates your product from your competitors, and adds value to your product, making it stronger against  
cyberattacks.  
1.2  
Enhanced security  
The OPTIGA™ Trust M is based on an advanced security controller with built-in tamper proof NVM for secure  
storage and Symmetric/Asymmetric crypto engines to support ECC NIST curves up to P-521, ECC Brainpool curve  
up to P-512, RSA® up to 2048, AES key up to 256, HMAC up to SHA512, HKDF up to SHA512 and SHA-256. This new  
security technology greatly enhances your overall system security.  
1.3  
Fast and easy integration  
The turnkey setup with full system integration and all key/certificate material preprogrammed reduces your  
efforts for design, integration and deployment to a minimum. As a turnkey solution, the OPTIGA™ Trust M comes  
with preprogrammed OS/Application code locked and with host-side modules to integrate with host micro  
controller software. The temperature range of −40°C to +105°C combined with a standardized I2C interface and  
the small PG-USON-10-2,-4 footprints will facilitate onboarding in your existing ecosystem. Almost 30 years in a  
market-leading position with nearly 20 billion security controllers shipped worldwide are the results of Infineon's  
strong expertise and its commitment to make security a success factor for you.  
1.4  
Applications  
The OPTIGA™ Trust M covers a broad range of use cases necessary for many types of applications that include  
the following:  
a) Network node protection using Mutual Authentication such as TLS or DTLS  
b) Protect the Authenticity, Integrity and Confidentiality of your product, data and IP  
c) Secure Communication  
d) Datastore Protection  
e) Lifecycle Management  
f) Platform Integrity Protection  
g) Secure Updates  
1.5  
Device Features  
The OPTIGA™ Trust M comes with up to 10kB of user memory that can be used to store X.509 certificates and  
data. OPTIGA™ Trust M is based on Common Criteria (CC) Certified EAL6+ (high) hardware enabling it to prevent  
physical attacks on the device itself and providing high assurance that the keys or arbitrary data stored cannot  
be accessed by an unauthorized entity. The CC certificate can be found at www.bsi.bund.de by searching for BSI-  
Datasheet  
3
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
Introduction  
DSZ-CC-0961 (Hardware Identifier IFX_CCI_00000Bh) and referring to the latest CC certificate. OPTIGA™ Trust M  
supports a highspeed I2C communication interface of up to 1MHz (FM+).  
Table 1  
Products for V1  
Temperature range  
Sales Code  
Package  
PG-USON- Embedded security XMC4800 IoT Connectivity  
Extended Temperature 10-2,-4 solution for Kit connected to the  
Range (ETR) connected devices OPTIGA™ Trust  
to  
OPTIGA™ Trust M −25°C to +85°C  
Standard Temperature  
Description  
Evaluation Kit  
OPTIGA™ Trust M −40°C to +105°C  
SLS 32AIA010MH  
M
connect to the outside  
world  
PG-USON-  
10-2,-4  
SLS 32AIA010MS  
Range (STR)  
Table 2  
Products for V3  
Sales Code  
Temperature range  
Package  
Description  
Evaluation Kit  
OPTIGA™ Trust M −40°C to +105°C  
Extended Temperature 10-2,-4  
Range (ETR)  
OPTIGA™ Trust M −25°C to +85°C  
SLS 32AIA010MK  
Standard Temperature  
Range (STR)  
PG-USON- Embedded security XMC4800 IoT Connectivity  
solution for Kit connected to the  
connected devices OPTIGA™ Trust  
to  
SLS 32AIA010ML  
M
connect to the outside  
world.  
PG-USON-  
10-2,-4  
Infineon and its distribution partners offer a wide range of customization options (e.g. X.509 certificate  
generation and key provisioning) for the security chip. For details on offered solutions (like OPTIGA™ Trust M  
Express), selection guide and orders, please see the following page:  
https://www.infineon.com/cms/en/product/security-smart-card-solutions/optiga-embedded-security-  
solutions/optiga-trust/optiga-trust-m-sls32aia/  
Datasheet  
4
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
Introduction  
Table 3  
Features  
Features  
Supported  
Curve/Algorithm  
ToolBox commands  
V1  
V3  
ECC NIST P256/384  
ECC NIST P521,  
Sign, Verify, Key generation,  
and ECDH(E)  
ECC  
Sign, Verify, Key generation,  
and ECDH(E)  
ECC Brainpool  
P256/384/512 r1  
RSA® 1024/2048  
Sign, Verify, Key generation,  
Encrypt and Decrypt  
RSA®  
TLS v1.2 PRF SHA 256  
TLS PRF using SHA 256  
TLS v1.2 PRF SHA 384/512  
TLS PRF using SHA  
256/384/512  
Key Derivation  
AES  
HKDF SHA-256/384/512  
Key size - 128/192/256  
(ECB, CBC, CBC-MAC,  
CMAC)  
HKDF using SHA256/384/512  
Key generation, Encrypt and  
Decrypt  
TRNG, DRNG, Pre-Master  
secret for RSA® Key  
exchange  
Generate random  
Random  
generation  
HMAC with  
SHA256/384/512  
HMAC generation and  
Verification  
HMAC  
Hash  
SHA 256  
Hash generation  
ECC NIST P256/384  
RSA® 1024/2048  
Signature scheme as  
ECDSA FIPS 186-3/RSA SSA  
PKCS#1 v1.5 without  
hashing  
Secure data object update  
Protected data  
(object) update  
(Integrity)  
ECC NIST P521,  
ECC Brainpool  
Secure data object update  
P256/384/512 r1  
Signature scheme as  
ECDSA FIPS 186-3/RSA SSA  
PKCS#1 v1.5 without  
hashing  
ECC NIST P256/384/521  
ECC Brainpool  
P256/384/512 r1  
Secure data/key object update  
and metadata update for  
Data/key object  
Protected  
Data/key/metadata  
update (Integrity  
and/or  
RSA® 1024/2048  
Signature scheme as  
ECDSA FIPS 186-3/RSA SSA  
PKCS#1 v1.5 without  
hashing  
confidentiality)  
Datasheet  
5
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
Introduction  
Table 4  
Abbreviation  
AES  
Abbreviations  
Definition  
Advanced Encryption Standard  
Application Programming Interface  
Brainpool  
API  
BP  
CA  
Certification Authority  
CC  
Common Criteria  
DRNG  
DTLS  
EAL  
Deterministic Random Number Generator  
Datagram Transport Layer Security  
Evaluation Assurance Level  
Electronic Code Book  
ECB  
ECC  
Elliptic Curve Cryptography  
Elliptic Curve Diffie Hellman  
Elliptic Curve Digital Signature Algorithm  
Extended Temperature Range  
Cipher block chaining  
ECDH  
ECDSA  
ETR  
CBC  
CBC-MAC  
CMAC  
HKDF  
I2C  
Cipher block chaining message authentication code  
Cipher-based message authentication code  
Hash-based key derivation function  
Inter-Integrated Circuit  
IETF  
IFX  
Internet Engineering Task Force  
Infineon  
IOT  
Internet of Things  
IP  
Intellectual Property  
NIST  
OS  
National Institute of Standards and Technology  
Operating System  
PAL  
Platform Abstraction Layer  
Public Key Infrastructure  
PKI  
RFC  
Request For Comments  
SHA  
Secure Hash Algorithm  
SKU  
Stock Keeping Unit  
STR  
Standard Temperature Range  
Transport Layer Security  
TLS  
TRNG  
USB  
HMAC  
True Random Number Generator  
Universal Serial Bus  
Hash based Message Authentication Code  
Datasheet  
6
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
System Block Diagram  
2
System Block Diagram  
The following figure depicts the system block diagram for OPTIGA™ Trust M.  
OPTIGA ꢀTrust M  
Local Host  
Arbitrary Data Objects  
Monotonic Counters  
Application  
(4.5 kB)  
(4)  
OPTIGA ꢀTrust M Host Library  
X.509 certificates  
(2 slots)  
Trust Anchors  
(3 slots)  
CRYPT  
UTIL  
I2C interface  
CMD  
ECC keys (4 slots)  
AES key* ( 1 slot )  
RSA keys (2 slots)  
Shielded  
Connection  
COMMS  
Platform Binding  
Secret (1 slot )  
Crypto Functions  
Platform Abstraction Layer (PAL)  
*It is applicable only for V3  
Infineon source code  
User implemented  
Preloaded by Infineon  
Could be preloaded  
Figure 1  
System Block Diagram  
The System Block Diagram is explained below for each layer.  
1. Local Host  
o
Local Host Application This is the target application which utilizes OPTIGA™ Trust M for its  
security needs  
o
OPTIGA™ Trust M Host Library  
CRYPT Provides APIs to perform cryptographic functionalities. Any TLS stack can be  
integrated on Local Host as part of 3rd party Crypto Library to offload crypto operations  
to OPTIGA™ Trust M.  
UTIL Provides APIs such as read/write, protected update of data, metadata, key objects  
and open/close application (e.g. Hibernate)  
CMD Provides APIs to send and receive commands (Section 6) to and from OPTIGA™  
Trust M  
COMMS Provides wrapper APIs for communication (optional encrypted communication  
using Shielded Connection) with OPTIGA™ Trust M which internally uses Infineon I2C  
Protocol (IFX I2C)  
o
PAL A layer that abstracts platform specific drivers (e.g. I2C, Timer, GPIO, platform crypto library  
etc.)  
2. OPTIGA™ Trust M  
o
Arbitrary Data Objects The target application can store up to 4.5kB (~4600 bytes) of data into  
OPTIGA™ Trust M. The data could be additional Trust Anchors, certificates and shared secret.  
o
Monotonic Counters - Provides 4 monotonic counting data objects (up counters). These can be  
used as general purpose counter or as linked counter to other objects.  
For more information, please refer to Solution Reference Manual document available as part of  
the package.  
o
o
X.509 Up to 4 X.509 based Certificates can be stored  
Keys Up to 4 ECC , 2 RSA and 1 AES based keys can be stored  
Datasheet  
7
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
System Block Diagram  
o
o
Secret 1 Platform binding secret can be stored  
Trust Anchors 3 slots, for Mutual Authentication (TLS/DTLS) and Firmware Updates can be  
stored  
o
Crypto Functions - OPTIGA™ Trust M provides cryptographic functions that can be invoked via  
local host  
Note:  
Unique AES key, ECC/RSA private keys and X.509 Certificates During production at Infineon fab,  
unique asymmetric keys (private and public) are generated and symmetric key/shared secrets are  
provisioned. The public key is signed by customer specific CA and the resulting X.509 certificate  
issued is securely stored in the OPTIGA™ Trust M. Special measures are taken to prevent the  
leakage and modification of private key/shared secret material at the Common Criteria Certified  
production site  
Datasheet  
8
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
Interface and Schematics  
3
Interface and Schematics  
The following figure illustrates how to integrate OPTIGA™ Trust M with your local host.  
Figure 2  
System Integration Schematic Diagram  
Note: The OPTIGA™ Trust M can be integrated with IFX I2C reset option as soft reset (IFX_I2C_SOFT_RESET), or  
hardware reset. Value of the pullup resistors depend on the target application circuit and the target I2C  
frequency.  
3.1  
System Integration Schematics with Hibernation support  
The following figure illustrates how to integrate OPTIGA™ Trust M with hibernation, with local host GPIO used as  
VCC.  
Figure 3  
System Integration Schematic Diagram with Hiberntion GPIO as VCC  
Note: The Host GPIO pin must have sufficient current to drive the supply current, as per Table 11.  
Value of the pullup resistors depend on the target application circuit and the target I2C frequency.  
Datasheet  
9
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
Interface and Schematics  
If the host GPIO doesn’t supply sufficient current to OPTIGA, additional MOSFET switching circuitry is needed to  
control the power supply (VCC). The below circuit diagrams depicts the options to control the power supply (VCC)  
using GPIO from Host with the switching logic.  
The following figure illustrates how to integrate OPTIGA™ Trust M with hibernation, with local host GPIO using  
single MOSFET to switch the VCC.  
Figure 4  
System Integration Schematic Diagram with Hibernation - GPIO controlled VCC(Single  
MOSFET switch)  
Note:  
Due to the single P channel MOSFET (FDN304P) behavior, GPIO must be connected and drive the  
pin to LOW to enable the VCC supply to OPTIGA™ Trust M. This adaption must be done in the optiga  
host library (ifx_i2c.c), refer 11.1.1 for details. Value of the pullup resistors depend on the target  
application circuit and the target I2C frequency.  
The following figure illustrates how to integrate OPTIGA™ Trust M with hibernation, with local host using two  
MOSFET to switch the VCC.  
Figure 5  
System Integration Schematic Diagram with Hibernation - GPIO controlled VCC(Dual  
MOSFET switch)  
Datasheet  
10  
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
Interface and Schematics  
Note:  
Value of the pullup resistors depend on the target application circuit and the target I2C frequency.  
If GPIO pin is connected, set the GPIO pin to HIGH to enable the VCC to OPTIGA™ Trust M.  
Datasheet  
11  
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
Description of packages  
4
Description of packages  
This chapter provides information on the package types and how the interfaces of each product are assigned to  
the package pins. For further information on compliance of the packages with European Parliament Directives,  
see “RoHS Compliance” on Page 25.  
For details and recommendations regarding the assembly of packages on PCBs, please see the following:  
http://www.infineon.com/cms/en/product/technology/packages/  
4.1  
PG-USON-10-2,-4  
The package dimensions (in mm) of the controller in PG-USON-10-2,-4 packages are given below.  
Figure 6  
PG-USON-10-2,-4 Package Outline  
Datasheet  
12  
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
Description of packages  
The following figure shows the PG-USON-10-2,-4 in top view:  
Figure 7  
PG-USON-10-2,-4 top view  
4.2  
Production sample marking pattern  
The following figure describes the productive sample marking pattern on PG-USON-10-2,-4.  
Figure 8  
PG-USON-10-2,-4 sample marking pattern  
The black dot indicates pin 01 for the chip. The following Table 5 describes the sample marking pattern:  
Table 5  
Marking table for PG-USON-10-2,-4 packages  
Description  
Indicator  
LOT CODE  
ZZ  
Defined and inserted during fabrication  
Indicates the Certifying Authority Serial Number / SKU#, e.g. "00" would  
mean "SKU#00"  
H/E  
H = "Halogen-free", E = "Engineering samples"  
This indicator is followed by "YYWW", where YY is the "Year" and WW is  
the "Work Week" of the production. This is inserted during fabrication.  
Engineering samples have "E YYWW" and productive samples have "H  
YYWW"  
Datasheet  
13  
Revision 3.40  
2022-06-21  
 
O
PTIGA™ Trust M  
Description of packages  
Indicator  
12345  
Description  
Convention: T&#$@  
where:  
The letter "T" indicates the OPTIGA Trust family  
& indicates the product is a Trust M controller  
# indicates the controller is a STR (S) variant  
$ specifies the OPTIGA™ Trust M release version number  
@ specifies the software version  
Example: "TMS10" means 'OPTIGA™ Trust M', 'STR variant', 'release  
version 1', 'software version 0'  
The contacts and their functionality are given in the Table 6 below.  
Table 6  
Pin  
01  
Contact definitions and functions of PG-USON-10-2,-4 packages  
Type  
Function  
GND  
Supply voltage (Ground)  
NC  
I/O  
NC  
NC  
NC  
NC  
I/O  
IN  
Not connected / Do not connect externally  
Serial Data Line (SDA)  
02  
03  
Not connected / Do not connect externally  
Not connected / Do not connect externally  
Not connected / Do not connect externally  
Not connected / Do not connect externally  
Serial Clock Line (SCL)  
04  
05  
06  
07  
08  
Active Low Reset (RST)  
09  
PWR  
Supply voltage (VCC)  
10  
Datasheet  
14  
Revision 3.40  
2022-06-21  
 
O
PTIGA™ Trust M  
Technical Data  
5
Technical Data  
This section summarizes the technical data of the product. It provides the operational characteristics as well as  
the electrical DC and AC characteristics.  
5.1  
I2C Interface Characteristics  
Table 7  
I2C Operation Supply and Input Voltages  
Parameter  
Symbol  
Values  
Unit Note or Test  
Condition  
Min.  
Typ.  
Max.  
Supply voltage  
VCC_I2C  
VIN_I2C  
1.62  
5.5  
V
SDA, SCL input  
voltage  
−0.3  
VCC_I2C + 0.5 or  
5.51  
V
VCC_I2C  
is  
in  
the  
operational  
range  
supply  
−0.3  
5.5  
V
VCC_I2C is switched off  
1) Whichever is lower  
5.1.1  
I2C Standard/Fast Mode Interface Characteristics  
For operation of the I2C interface, the electrical characteristics are compliant with the I2C bus specification Rev. 4  
for "standard-mode" (fSCL up to 100 kHz) and "fast-mode" (fSCL up to 400 kHz), with certain deviations as stated in  
the table below.  
Note:  
TA as given for the operating temperature range of the controller unless otherwise stated.  
Table 8  
I2C Standard Mode Interface Characteristics  
Parameter  
Symbol  
Values  
Unit  
Note or Test Condition  
Min.  
Typ.  
Max.  
fSCL  
0
100  
kHz  
SCL clock frequency  
Input low-level  
VIL  
−0.3  
0.3 * VCC_I2C  
0.4  
V
V
VOL1  
0
Sink current 3 mA;  
VCC_I2C 2.7 V  
Sink current 2 mA;  
VCC_I2C < 2.7 V  
Low-level output  
voltage  
IOL  
tOF  
3
2
mA  
ns  
VOL = 0.4 V; VCC_I2C 2.7 V  
VOL = 0.4 V; VCC_I2C < 2.7 V  
Low-level output  
current  
Cb 400 pF; VCC_I2C 2.7 V  
Cb 200 pF; VCC_I2C < 2.7 V  
Output fall time from  
VIHmin to VILmax (at device  
pin)  
250  
Cb  
VCC_I2C 2.7 V  
VCC_I2C < 2.7 V  
Capacitive load for  
each bus line  
400  
200  
pF  
Datasheet  
15  
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
Technical Data  
Table 9  
I2C Fast Mode Interface Characteristics  
Parameter  
Symbol  
Values  
Unit  
Note or Test Condition  
Min.  
Typ.  
Max.  
fSCL  
VIL  
0
400  
kHz  
V
SCL clock frequency  
Input low-level  
−0.3  
0.3 * VCC_I2C  
0.4  
VOL1  
0
V
Sink current 3 mA;  
VCC_I2C 2.7 V  
Sink current 2 mA;  
Low-level output  
voltage  
VCC_I2C < 2.7 V  
IOL  
tOF  
3
2
mA  
ns  
VOL = 0.4 V; VCC_I2C 2.7 V  
VOL = 0.4 V; VCC_I2C < 2.7 V  
Low-level output  
current  
20 *  
Cb 400 pF; VCC_I2C 2.7 V  
Cb 200 pF; VCC_I2C < 2.7 V  
Output fall time from  
VIHmin to VILmax (at device  
pin)  
250  
VCC_I2C  
/
5.5 V1  
Cb  
152  
VCC_I2C 2.7 V  
VCC_I2C < 2.7 V  
Capacitive load for  
each bus line  
400  
200  
pF  
1) A min. capacitive load is necessary to reach tOF  
2) A min. capacitive load is necessary to reach tfmin  
5.1.2  
I2C Fast Mode Plus Interface Characteristics  
For operation of the I2C interface, the electrical characteristics are compliant with the I2C bus specification Rev. 4  
for "fast mode plus" (fSCL up to 1 MHz), with certain deviations as stated in the table below.  
Note:  
TA as given for the operating temperature range of the controller unless otherwise stated.  
Table 10  
I2C Fast Mode Plus Interface Characteristics  
Parameter  
Symbol  
Values  
Unit  
Note or Test Condition  
Min.  
Typ.  
Max.  
fSCL  
VIL  
0
1000  
kHz  
V
SCL clock frequency  
Input low-level  
−0.3  
0.3 * VCC_I2C  
0.4  
VOL1  
0
V
Sink current 3 mA;  
VCC_I2C 2.7 V  
Sink current 2 mA;  
VCC_I2C < 2.7 V  
Low-level output  
voltage  
IOL  
tOF  
3
2
mA  
ns  
VOL = 0.4 V; VCC_I2C 2.7 V  
VOL = 0.4 V; VCC_I2C < 2.7 V  
Low-level output  
current  
20 *  
Cb 150 pF  
Output fall time from  
VIHmin to VILmax (at device  
pin)  
120  
VCC_I2C  
/
5.5 V1  
Cb  
151  
Capacitive load for  
each bus line  
150  
pF  
1) A min. capacitive load is necessary to reach tOF  
Datasheet  
16  
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
Technical Data  
5.1.3  
Electrical Characteristics  
Note:  
TA as given for the operating temperature range of the controller unless otherwise stated. All  
currents flowing into the controller are considered positive.  
5.1.3.1  
DC Electrical Characteristics  
TA as given for the controller’s operating ambient temperature range unless otherwise stated.  
All currents flowing into the controller are considered positive.  
Table 11  
Electrical Characteristics  
Symbol  
Parameter  
Values  
Unit  
Note or Test Condition  
Min.  
1.62  
1.62  
Typ.  
Max.  
5.5  
5.5  
Supply voltage  
Supply current1  
VCC  
VCC_I2C  
V
V
Overall functional range  
Supply voltage range for  
operation of I2C  
ICCAVG  
14.0  
70  
mA  
While running a typical  
authentication profile  
TA = 25°C; VCC = 5.0 V  
TA = 25°C; VCC_I2C = 3.3 V;  
I2C ready for operation  
(no bus activity), all  
other inputs at VCC, no  
other interface activity  
IIL = −50 μA to +20 μA  
IIL = −50 μA to +20 μA  
Vcc = 0 V, GND = 0 V, RST =  
0 V, SCL= 3.3 V and SCL =  
3.3 V  
Supply current, in  
sleep mode  
ICCS3  
100  
A  
RST input low voltage VIL  
RST input high voltage VIH  
Hibernate current  
−0.3  
0.7 * VCC  
0.3 * VCC  
VCC + 0.3  
V
V
µA  
< 2.5  
1) Supply current can be limited from 6mA to 15mA by software commands.  
5.1.3.2  
AC Electrical Characteristics  
TA as given for the controller’s operating ambient temperature range unless otherwise stated.  
All currents flowing into the controller are considered positive.  
Table 12  
AC Characteristics  
Symbol  
Parameter  
Values  
Unit  
Note or Test Condition  
Min.  
Typ.  
Max.  
VCC rampup time  
tVCCR  
1
1000  
s  
400 mV to 90% of VCC  
target voltage ramp  
The VCC ramp is depicted in Figure 9. 90% of the target supply voltage must be reached within tVCCR after it has  
exceeded 400 mV. Moreover, its variation must be kept within a ±10% range.  
Datasheet  
17  
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
Technical Data  
VCC  
110%  
target supply voltage range  
90%  
400 mV  
t
tVCCR  
Figure 9  
Vcc Rampup  
5.1.4  
Start-Up of I2C Interface  
There are 2 variants possible for performing the startup procedure:  
Startup after power-on  
Startup for warm resets  
5.1.4.1  
Startup after Power-On  
The activation of the I2C interface after power-on needs the following reset procedure.  
VCC is powered up and the state of the SDA and SCL line are set to high level during power-up  
The first transmission may start at the earliest tSTARTUP after power-up of the device  
The following figure shows the startup timing of the I2C interface for this case.  
tVCCR  
VCC  
0.4 V  
tSTARTUP  
SCL  
RST  
SDA  
trans- mission 1  
trans- mission n  
Bus-Idle  
Power-up  
Start-up  
Figure 10  
Startup of I2C Interface after Power-On  
Datasheet  
18  
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
Technical Data  
Table 13  
Startup of I2C Interface After Power-On  
Parameter  
Symbol  
Values  
Unit  
Note or Test Condition  
Min.  
Typ.  
Max.  
Startup time  
tSTARTUP  
15  
ms  
5.1.4.2  
Startup for Warm Resets  
When using the reset signal for triggering a warm reset after power-on, the activation of the I2C interface needs  
the following reset procedure  
VCC remains powered up.  
The terminal stops I2C communication. SDA and SCL lines are set to high level before RST is set to low level.  
After its falling edge, RST has to be kept at low level for at least t1. At the latest t2 after the falling edge of RST,  
the terminal must set RST to high level.  
The first transmission may start at the earliest tSTARTUP after the rising edge of RST  
The following figure shows the timing for this startup case.  
Figure 11  
Startup of I2C Interface for Warm Resets  
Note:  
If NVM programming was requested prior to the reset, tSTARTUP will be extended from a typical value  
of 15 ms to a maximum of 20 ms.  
Datasheet  
19  
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
Technical Data  
Table 14  
Startup of I2C Interface for Warm Resets1  
Parameter  
Symbol  
Values  
Unit  
Note or Test Condition  
Min.  
15  
Typ.  
Max.  
1
Startup time  
Rise time  
tSTARTUP  
tR  
ms  
s  
From 10% to 90% of  
signal amplitude  
From 10% to 90% of  
signal amplitude  
Fall time  
tF  
t1  
1
s  
Reset detection  
Reset low  
10  
10  
s  
s  
2500  
1) Reset triggered by software (without power off/on cycle)  
Datasheet  
20  
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
OPTIGA™ Trust M External Interface  
6
OPTIGA™ Trust M External Interface  
6.1  
Commands  
This section provides short description of the commands exposed by the OPTIGA™ Trust M secuirty chip and  
mapping of these commands w.r.t Use Cases.  
Table 15  
Command table  
Command Name  
Description  
Command to launch an application  
Command to close/hibernate an application  
Command to get (read) a data object  
Command to set (write) a data object  
V1  
V3  
OpenApplication  
CloseApplication  
GetDataObject  
SetDataObject  
SetObjectProtected Command to set (write) data protected (integrity protection)  
SetObjectProtected Command to set (write) data/key objects and its metadata  
protected (integrity protection, confidentiality)  
GetRandom  
CalcHash  
CalcSign  
VerifySign  
CalcSSec  
Command to generate a random stream  
Command to calculate a Hash  
Command to calculate a signature  
Command to verify a signature  
Command to execute a Diffie-Hellmann key agreement  
Command to derive keys  
Command to generate public/private key pairs  
Command to encrypt (Asymmetric) a message  
Command to decrypt (Asymmetric) a message  
Command to encrypt (Symmetric) a message  
Command to decrypt (Symmetric) a message  
Command to generate a symmetric key  
DeriveKey  
GenKeyPair  
EncryptAsym  
DecryptAsym  
EncryptSym  
DecryptSym  
GenSymKey  
Table 16  
Mapping of commands with Use cases  
Use Case  
OPTIGA™ Trust M commands used  
GetRandom, CalcHash, CalcSign, VerifySign, CalcSSec, DeriveKey,  
GenKeyPair, EncryptAsym and DecryptAsym  
GetDataObject and SetDataObject  
Secure Communication with (D)TLS  
Datastore (user memory ~ 4.5kB)  
Symmetric key attestation, Security EncryptSym and DecryptSym1  
Tokens  
Secure Firmware Update  
VerifySign and DeriveKey  
Secure update of Trust Anchors and SetObjectProtected command  
Keys2 on Security Chip  
1 EncryptSym and DecryptSym is supported only in v3  
2 Secure key update is supported only in v3  
Datasheet  
21  
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
OPTIGA™ Trust M External Interface  
6.2  
Crypto Performance  
The performance metrics for various schemes are provided by the Table 18 below. If not particularly mentioned,  
the performance is measured @ OPTIGA™ Trust M I/O interface with:  
I2C FM (400KHz)  
Without power limitation  
@ 25°C  
VCC = 3.3V  
RSA Signature scheme: RSA SSA PKCS#1 v1.5 without hashing  
ECDSA Signature scheme: ECDSA FIPS 186-3 without hashing  
Encryption/Decryption scheme: RSAES PKCS#1 v1.5  
Hash scheme: SHA256  
Key Derivation scheme: TLS v1.2 PRF SHA256, HKDF SHA256  
RSA Key size: 2048 bits  
ECC Key size: 256 bits (NIST P-256)  
AES Key size: 128 bits  
Table 17  
Scheme  
Crypto performance for V1  
Algorithm  
Performance in Performance with Notes  
ms1  
Shielded  
Connection in ms1  
ECC NIST P 256  
No data hashing  
2048 bit exponentical  
No data hashing  
ECC NIST P 256 provided by  
external world  
ECDSA  
RSA  
~ 60  
~ 65  
Calculate signature  
~ 310  
~ 315  
ECDSA  
~ 85  
~ 90  
No data hashing  
Verify signature  
2048  
bit  
exponentical  
RSA  
ECC  
~ 45  
~ 60  
~ 55  
~ 65  
provided by external world  
No data hashing  
Diffie-Hellman  
key agreement  
Based on ephemeral key pair  
ECC  
RSA  
RSA  
RSA  
~ 75  
~ 80  
~ 2910  
~ 45  
Generate 256 bit ECC key pair  
Generate 2048 bit RSA key pair  
Encrypt 127 bytes  
Key pair generation  
~ 29002  
~ 30  
Encryption  
Decryption  
~ 310  
~ 320  
Decrypt 127 bytes  
To derive a key of 40 bytes  
Shared secret (32 bytes) from  
session context and  
The input key derivation data  
size is 48 bytes  
PRF as per  
TLS v1.2  
Key derivation  
~ 50  
~ 55  
Hash calculation  
SHA256  
~ 12 Kbyte/s  
~ 11 Kbyte/s  
In blocks of 1280 bytes  
1Minimum Execution of the entire sequence in milli seconds, except the External World timings  
2RSA key pair generation performance is not predictable and typically have a variation in performance. This could be significantly higher  
or lower as the one specified in the table which is an average value over collected samples.  
Datasheet  
22  
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
OPTIGA™ Trust M External Interface  
Table 18  
Scheme  
Crypto performance for V3  
Algorithm  
Performance Performance with Notes  
in ms1  
Shielded  
Connection in ms1  
ECC NIST P 256  
No data hashing  
2048 bit exponentical  
No data hashing  
ECC NIST P 256 provided by  
external world  
ECDSA  
RSA  
~ 65  
~ 70  
Calculate  
signature  
~ 310  
~ 320  
ECDSA  
~ 85  
~ 40  
~ 95  
~ 50  
No data hashing  
Verify signature  
2048  
bit  
exponentical  
RSA  
provided by external world  
No data hashing  
Diffie-Hellman  
key agreement  
ECDH  
ECC  
~ 60  
~ 55  
~ 65  
~ 60  
Based on ephemeral key pair  
Generate 256 bit ECC key pair in  
session  
Generate 2048 bit RSA key pair  
Encrypt 127 bytes  
Decrypt 127 bytes  
Encrypt 256 bytes, ECB mode  
Decrypt 256 bytes, ECB mode  
Key pair  
generation  
2
RSA  
RSA  
RSA  
AES-128  
AES-128  
~ 2900  
~ 40  
~ 315  
~ 28  
~ 2910  
~ 50  
~ 325  
~ 35  
Encryption  
Decryption  
Encryption  
Decryption  
~ 35  
~ 42  
To derive a key of 40 bytes  
Shared secret (32 bytes)  
from session context and  
The input key derivation  
data size is 48 bytes  
Key derivation  
PRF as per TLS v1.2 ~ 50  
~ 55  
Using a pre-shared secret from  
a data object  
Using a pre-shared secret from  
a data object and 128 bytes of  
input data  
Key derivation  
HMAC  
HKDF with SHA256 ~ 130  
HMAC with SHA256 ~ 90  
~ 135  
~ 95  
Hash calculation SHA256  
~ 15 Kbyte/s  
~ 14 Kbyte/s  
In blocks of 1280 bytes  
1 Minimum Execution of the entire sequence in milli seconds, except the External World timings  
2 RSA key pair generation performance is not predictable and typically have a variation in performance. This could be significantly higher  
or lower as the one specified in the table which is an average value over collected samples.  
Datasheet  
23  
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
Security Monitor  
7
Security Monitor  
The Security Monitor is a central component which enforces the security policy of the OPTIGA™ Trust M. It  
consumes security events sent by security aware parts of the OPTIGA™ Trust M embedded SW and takes actions  
accordingly as specified in Security Policy below.  
7.1  
Security Events  
The events below actively influence the security monitor.  
Table 19  
Event  
Security Events  
Description  
Decryption Failure  
This event occurs in case a decryption and/or integrity check of provided data  
lead to a failure during protected update  
Key Derivation  
This event occurs in case the DeriveKey command gets applied on a persistent  
data object (not volatile data object as session context). In that case the  
persistent data object gets used as pre-shared secret.  
Private Key Use  
Secret Key Use  
This event occurs in case the internal services are going to use an OPTIGA™ Trust  
M hosted private key.  
This event occurs in case the internal services are going to use a OPTIGA™ hosted  
secret (symmetric) key (once per respective command), except temporary keys  
from session context are used.  
Suspect System Behavior This event occurs in case the embedded software detects inconsistencies with  
the expected behavior of the system. Those inconsistencies might be redundant  
information which doesn’t fit to their counterpart.  
7.2  
Security Policy  
Security Monitor judges the notified security events regarding the number of occurrence over time and in case  
those violate the permitted usage profile of the system takes actions to throttle down the performance and thus  
the possible frequency of attacks.  
The permitted usage profile is defined as:  
1. tmax is set to 5 seconds (± 5%)  
2. A Suspect System Behavior event is never permitted and will cause setting the Security Event Counter (SEC)  
to its maximum (= 255).  
3. One protected operation (refer to Table 19) events per tmax period.  
In other words it must not allow more than one out of the protected operations per tmax period (worst case, ref to  
bullet 3. above). This condition must be stable, at least after 500 uninterrupted executions of protected  
operations.  
For more information, please refer to Solution Reference Manual document available as part of the package.  
Datasheet  
24  
Revision 3.40  
2022-06-21  
 
O
PTIGA™ Trust M  
RoHS Compliance  
8
RoHS Compliance  
On January 27, 2003 the European Parliament and the council adopted the directives:  
2002/95/EC on the Restriction of the use of certain Hazardous Substances in electrical and electronic  
equipment ("RoHS")  
2002/96/EC on Waste Electrical and Electrical and Electronic Equipment ("WEEE")  
Some of these restricted (lead) or recycling-relevant (brominated flame retardants) substances are currently  
found in the terminations (e.g. lead finish, bumps, balls) and substrate materials or mold compounds.  
The European Union has finalized the Directives. It is the member states' task to convert these Directives into  
national laws. Most national laws are available, some member states have extended timelines for  
implementation. The laws arising from these Directives have come into force in 2006 or 2007.  
The electro and electronic industry has to eliminate lead and other hazardous materials from their products. In  
addition, discussions are on-going with regard to the separate recycling of ceratin materials, e.g. plastic  
containing brominated flame retardants.  
Infineon Technologies is fully committed to giving its customers maximum support in their efforts to convert to  
lead-free and halogen-free1 products. For this reason, Infineon Technologies’ "Green Products" are  
ROHS-compliant.  
Since all hazardous substances have been removed, Infineon Technologies calls its lead-free and halogen-free  
semiconductor packages "green." Details on Infineon Technologies’ definition and upper limits for the restricted  
materials can be found here.  
The assembly process of our high-technology semiconductor chips is an integral part of our quality strategy.  
Accordingly, we will accurately evaluate and test alternative materials in order to replace lead and halogen so  
that we end up with the same or higher quality standards for our products.  
The use of lead-free solders for board assembly results in higher process temperatures and increased  
requirements for the heat resistivity of semiconductor packages. This issue is addressed by Infineon  
Technologies by a new classification of the Moisture Sensitivity Level (MSL). In a first step the existing products  
have been classified according to the new requirements.  
1Any material used by Infineon Technologies is PBB and PBDE-free. Plastic containing brominated flame retardants, as mentioned in the  
WEEE directive, will be replaced if technically/economically beneficial.  
Datasheet  
25  
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
Appendix A Infineon I2C Protocol Registry Map  
9
Appendix A – Infineon I2C Protocol Registry Map  
OPTIGA™ Trust M supports IFX I2C v2.01 and is implemented as I2C slave, which uses different address locations  
for status, control and data communication registers. These registers with description are outlined below in the  
following table.  
Table 20  
IFX I2C Registry Map Table  
Register  
Address  
Name  
Size in Bytes  
Description  
Master  
Access  
0x80  
DATA  
DATA_REG_LEN This is the location where data shall be read from or Read /  
written to the I2C slave Write  
2
This register holds the maximum data register (Addr Read /  
0x81  
DATA_REG_LEN  
0x80) length. The allowed values are 0x0010 up to  
0xFFFF. After writing the new data register length it  
becomes effective with the next I2C master access.  
However, in case the slave could not accept the new  
length it indicates its maximum possible length  
within this register. Therefore it is recommended to  
read the value back after writing it to be sure the I2C  
slave did accept the new value.  
Write  
Note: the value of MAX_PACKET_SIZE is derived  
from this value or vice versa (MAX_PACKET_SIZE=  
DATA_REG_LEN-5)  
0x82  
I2C_STATE  
4
Bits 31:24 of this register provides the I2C state in  
regards to the supported features (e.g. clock  
stretching …) and whether the device is busy  
executing a command and/or ready to return a  
response etc.  
Read only  
Bits 15:0 defining the length of the response data  
block at the physical layer.  
0x83  
0x84  
BASE_ADDR  
2
4
This register holds the I2C base address as specified Write only  
by Table 21. Default value is 0x30. After writing a  
different address the new address become effective  
with the next I2C master access. In case the bit 15 is  
set in addition to the new address (bit 6:0) it  
becomes the new default address at reset  
(persistent storage).  
MAX_SCL_FREQU  
This register holds the maximum clock frequency in  
KHz supported by the I2C slave. The value gets  
adjusted to the register I2C_Mode setting.  
Fast Mode (Fm): The allowed values are 50 up to  
400.  
Read  
Fast Mode (Fm+): The allowed values are 50 up to  
1000.  
GUARD_TIME1  
TRANS_TIMEOUT5  
0x85  
0x86  
4
4
For details refer to Table 24  
For details refer to Table 24  
Read only  
Read only  
1 In case the register returns 0xFFFFFFFF the register is not supported and the default values specified in Table ‘List of protocol  
variations’ shall be applied.  
Datasheet  
26  
Revision 3.40  
2022-06-21  
 
 
O
PTIGA™ Trust M  
Appendix A Infineon I2C Protocol Registry Map  
Register  
Address  
Name  
Size in Bytes  
Description  
Master  
Access  
0x88  
SOFT_RESET  
I2C_MODE  
2
2
Writing to this register will cause a device reset. This Write only  
feature is optional  
0x89  
This register holds the current I2C Mode as defined  
by Table 22. The default mode is SM & FM (011B).  
Read /  
Write  
Table 21  
Definition of BASE_ADDR  
Fields  
Bits  
Value  
Description  
DEF_ADDR  
15  
0
1
Volatile address setting by bit 6:0, lost after reset.  
Persistent address setting by bit 6:0, becoming default after reset.  
BASE_ADDR  
6:0  
0x00-0x7F I²C base address specified by Table 20  
15  
DEF_ADDR  
7
14  
6
13  
5
12  
4
11  
10  
2
9
1
8
0
RFU  
3
RFU  
BASE_ADDR  
15  
DEF_MODE  
7
14  
6
13  
12  
4
11  
RFU  
3
10  
2
9
8
0
5
1
RFU  
Mode  
Table 22  
Definition of I2C_MODE  
Fields  
Bits  
Value  
Description  
DEF_MODE  
15  
0
1
Volatile mode setting by bit 2:0, lost after reset.  
Persistent mode setting by bit 2:0, becoming  
default after reset. This bit is always read as 0.  
MODE2  
2:0  
001  
010  
Sm  
Fm  
011  
100  
SM & Fm (fab out default)  
Fm+  
other values  
not valid; writing will be ignored  
1 In case the register returns 0xFFFFFFFF the register and its functionality is not supported  
2 This mode defines the adherence of the bus signals to the electrical characteristics according standard I2C bus specification  
Datasheet  
27  
Revision 3.40  
2022-06-21  
 
O
PTIGA™ Trust M  
Appendix A Infineon I2C Protocol Registry Map  
31  
BUSY  
30  
RESP_RDY  
22  
29  
28  
27  
SOFT_RESET CONT_READ REP_START CLK_STRETCHING  
19 18 17 16  
26  
25  
24  
RFU  
23  
21  
20  
PRESENT_LAYER  
RFU  
15-0  
Length of data block to be read  
Table 23  
Definition of I2C_STATE  
Field  
Bit(s)  
Value  
Description  
BUSY  
31  
0
1
Device is not busy  
Device is busy executing a command  
RESP_RDY  
30  
0
1
Device is not ready to return a response  
Device is ready to return a response  
SOFT_RESET  
27  
26  
25  
24  
23  
0
1
SOFT_RESET not supported  
SOFT_RESET supported  
CONT_READ  
0
1
Continue Read not supported  
Continue Read supported  
REP_START  
0
1
Repeated start not supported  
Repeated start supported  
CLK_STRETCHING  
PRESENT_LAYER  
0
1
Clock stretching not supported  
Clock stretching supported  
0
1
Presentation Layer not supported  
Presentation Layer supported  
9.1  
Infineon I2C Protocol Variations  
To fit best to application specific requirements the protocol might be tailored by specifying a couple of  
parameters which is described in the following table.  
Table 24  
List of Protocol Variations  
Default Value Description  
Parameter  
MAX_PACKET_SIZE  
0x110  
Maximum packet size accepted by the receiver. The protocol  
limits this value to 0xFFFF, but there might be project specific  
requirements to reduce the transport buffers size for the sake  
of less RAM footprint in the communication stack. If shortened,  
it could be statically defined or negotiated at the physical layer.  
Window size of the sliding windows algorithm. The value could  
be 1 up to 2.  
Maximum number of network channels. The value could be 1 up  
to 16. One indicates the OSI Layer 3 is not used and the CHAN  
field of the PCTR must be set to 0000.  
WIN_SIZE  
1
1
MAX_NET_CHAN  
CHAINING  
TRUE  
10 ms  
Chaining on the transport layer is supported (TRUE) or not  
(FALSE)  
(Re) transmission timeout specifies the number of milliseconds  
to be elapsed until the transmitter considers a frame  
TRANS_TIMEOUT  
Datasheet  
28  
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
Appendix A Infineon I2C Protocol Registry Map  
Parameter  
Default Value Description  
transmission is lost and retransmits the non-acknowledged  
frame. The Timer gets started as soon as the complete frame is  
transmitted. The value could be 1 up to 1000. However, the  
higher the number, the longer it takes to recover from a frame  
transmission error.  
Note: The acknowledge timeout on the receiver side must be  
shorter than the retransmission timeout to avoid unnecessary  
frame repetitions.  
TRANS_REPEAT  
BASE_ADDR  
3
Number of transmissions to be repeated until the transmitter  
considers the connection is lost and starts a re-synchronization  
with the receiver. The value could be 1 up to 4.  
I2C (base) address. This address could be statically defined or  
dynamically negotiated by the physical layer.  
0x30  
MAX_SCL_FREQU  
GUARD_TIME  
1000 kHz  
50 µs  
Maximum SCL clock frequency in kHz.  
Minimum time to be elapsed at the I2C master measured from  
read data (STOP condition) until the next write data (Start  
condition) is allowed to happen.  
Note 1: For two consecutive accesses on the same device  
GUARD_TIME re-specifies the value of tBUF as specified by [I2Cbus].  
Note 2: Even if another I2C address is accessed in between  
GUARD_TIME has to be respected for two consecutive accesses on  
the same device.  
SOFT_RESET  
1
1
Any write attempt to the SOFT_RESET register will trigger a  
warm reset (reset w/o power cycle). This register is optional and  
its presence is indicated by the I2C_STATE register’s  
“SOFT_RESET” flag.  
This flag at the I2C_STATE register indicates the optional  
availability of the presentation layer, which is providing  
confidentiality and integrity protection of payloads (APDUs)  
transferred across the I2C interface. The presentation layer is  
used as part of Shielded Connection.  
PRESENT_LAYER  
Datasheet  
29  
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
Appendix B - OPTIGA™ Trust M Command/Response I2C Sample Logs  
10  
Appendix B - OPTIGA™ Trust M Command/Response I2C Sample  
Logs  
The default I2C slave address for the OPTIGA™ Trust M is 0x30 [I2C_ADDR]. All the values in this section are  
specified in decimal form unless stated otherwise.  
10.1  
Sequence of commands to read Coprocessor UID from OPTIGA™ Trust M  
Pre-requisites  
1. Ensure that the security device is powered up  
2. The OPTIGA™ Trust M will not acknowledge the slave address sent by a host if it is either busy or in idle  
state. Hence the host must retry or repeat the transaction until it is successful or timed out for 100  
milliseconds (extreme case).  
3. The specified guard time must be applied between each attempt of write / read operation by the Host  
I2C driver.  
4. The log information for OPTIGA™ Trust M commands specified in below Tables contains the [IFX I2C]  
protocol information which comprises sequence numbers and checksum of the transactions.  
a. A sequence of commands must be strict for the OPTIGA™ Trust M (e.g. OpenApplication  
followed by GetDataObject to read a Coprocessor UID)  
b. A checksum in the data depends on the data received or sent via write/read operations. So any  
data change in the transaction is reflected in the check sum. Otherwise the write data  
transaction will not be accepted/acknowledged by the OPTIGA™ Trust M.  
5. The logs specified below are without the presentation layer (used for the Shielded Connection) of [IFX  
I2C]  
10.1.1  
Check the status [I2C_STATE]  
This is a very basic register read operation which ensures the behavior of the read/write operations of the local  
host I2C driver.  
Table 25  
Check I2C_STATE Register of OPTIGA™ Trust M  
I2C_ADDR Transaction Type  
Data [values in hexadecimal]  
30  
30  
Write [ 01 Bytes ]  
Read [ 04 Bytes ]  
82  
08 80 00 00  
10.1.2  
Issue OpenApplication command  
Before issuing any application specific command; e.g. read Coprocessor UID using GetDataObject, it is a must to  
send the OpenApplication command to initialize the application on the OPTIGA™ Trust M as shown below.  
Table 26  
OpenApplication on OPTIGA™ Trust M  
Transaction Type Data [values in hexadecimal]  
I2C_ADDR  
Step 1: Send OpenApplication command to initiate the application context on the OPTIGA™ Trust M  
30  
Write [ 27 Bytes ]  
80 03 00 15 00 70 00 00 10 D2 76 00 00 04 47 65 6E 41 75 74 68 41  
70 70 6C 04 1A  
Step 2: Read the I2C_STATE register [Repeat this step until the read contains the data as specified below]  
Datasheet  
30  
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
Appendix B - OPTIGA™ Trust M Command/Response I2C Sample Logs  
I2C_ADDR  
Transaction Type  
Write [ 01 Bytes ]  
Read [ 04 Bytes ]  
Data [values in hexadecimal]  
30  
30  
82  
C8 80 00 05  
Step 3: Read the DATA register [Acknowledgment from OPTIGA™ Trust M for the last data transacation]  
30  
30  
Write [ 01 Bytes ]  
Read [ 05 Bytes ]  
80  
80 00 00 0C EC  
Step 4: Read the I2C_STATE register [Repeat this step until the read contains the data as specified below]  
30  
30  
Write [ 01 Bytes ]  
Read [ 04 Bytes ]  
82  
48 80 00 0A  
Step 5: Read the DATA register which contains the response for the command issued  
30  
30  
Write [ 01 Bytes ]  
Read [ 10 Bytes ]  
80  
00 00 05 00 00 00 00 00 14 87  
Step 6: Send an acknowlegment for the data read  
30  
Write [ 06 Bytes ]  
80 80 00 00 0C EC  
10.1.3  
Read Coprocessor UID  
The Coprocessor UID contains the OPTIGA™ Trust M unique ID and the build information details. The  
GetDataObject command is used to read the Coprocessor UID information.  
Table 27  
Read Coprocessor UID  
I2C_ADDR  
Transaction Type Data [values in hexadecimal]  
Step 1: Send the GetDataObject command to read the Coprocessor UID  
30 Write [ 17 Bytes ]  
Step 2: Read the I2C_STATE register [Repeat this step until the read contains the data as specified below].  
80 04 00 0B 00 01 00 00 06 E0 C2 00 00 00 64 F0 9F  
30  
30  
Write [ 01 Bytes ]  
Read [ 04 Bytes ]  
82  
48 80 00 25  
Step 3: Read the DATA register which contains the response for the command issued.  
30  
30  
Write [ 01 Bytes ]  
Read [ 37 Bytes ]  
80  
05 00 20 00 00 00 00 1B CD XX XX XX XX XX XX XX XX XX XX XX XX XX XX  
XX XX XX XX XX XX XX XX XX XX YY YY ZZ ZZ  
Notes:  
a. XX is the unique ID part of the co-processor UID  
b. “YY YY” is the OPTIGA™ Trust M build number in BCD  
(Binary Coded Decimal) format  
c. ZZ ZZ is the checksum of the transaction  
Step 4: Send an acknowlegment for the data read  
30  
Write [ 06 Bytes ]  
80 81 00 00 56 30  
Datasheet  
31  
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
Appendix C Power Management  
11  
Appendix C – Power Management  
When operating, the power consumption of OPTIGA™ Trust M is limited to meet the requirements regarding the  
power limitation set by the Host. The power limitation is implemented by utilizing the current limitation feature  
of the underlying hardware device in steps of 1mA from 6mA to 15 mA with a precision of ±5%.  
11.1  
Hibernation  
This maximizes power saving (zero power consumption1), while the I2C bus stays connected. In this case  
OPTIGA™ Trust M saves the application context before power-off (switching off VCC) and restores it after power-  
up. After power-up the application continues seamlessly from the state before hibernate.  
11.1.1  
Software adaption for Hibernate circuit with single MOSFET  
Update the ifx_i2c.c file functions with the following change.  
(1) Call pal_gpio_set_low (p_ifx_i2c_context->p_slave_vdd_pin), to set the Vdd pin to High,  
(2) Call pal_gpio_set_high (p_ifx_i2c_context->p_slave_vdd_pin), to set the Vdd pin to Low.  
001  
002  
003  
004  
005  
006  
007  
008  
009  
010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
_STATIC_H optiga_lib_status_t ifx_i2c_init  
(ifx_i2c_context_t * p_ifx_i2c_context)  
{
optiga_lib_status_t api_status = IFX_I2C_STACK_ERROR;  
if (((uint8_t)IFX_I2C_WARM_RESET ==  
p_ifx_i2c_context->reset_type) ||  
((uint8_t)IFX_I2C_COLD_RESET ==  
p_ifx_i2c_context->reset_type))  
{
switch (p_ifx_i2c_context->reset_state)  
{
case IFX_I2C_STATE_RESET_PIN_LOW:  
{
// Setting the Vdd & Reset pin to low  
if ((uint8_t)IFX_I2C_COLD_RESET ==  
p_ifx_i2c_context->reset_type)  
{
// Set the Host GPIO as high to set Vdd to  
low  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
pal_gpio_set_high  
(p_ifx_i2c_context->p_slave_vdd_pin);  
}
// Setting the Reset pin to low  
pal_gpio_set_low  
(p_ifx_i2c_context->p_slave_reset_pin);  
p_ifx_i2c_context->reset_state =  
IFX_I2C_STATE_RESET_PIN_HIGH;  
pal_os_event_register_callback_oneshot  
(p_ifx_i2c_context->pal_os_event_ctx,  
(register_callback)ifx_i2c_init,  
(void * )p_ifx_i2c_context,  
1 Leakage current < 2.5µA only  
Datasheet  
32  
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
Appendix C Power Management  
032  
033  
034  
RESET_LOW_TIME_MSEC);  
api_status = IFX_I2C_STACK_SUCCESS;  
break;  
035  
036  
037  
038  
039  
040  
041  
042  
}
case IFX_I2C_STATE_RESET_PIN_HIGH:  
{
// Setting the Vdd & Reset pin to high  
if ((uint8_t)IFX_I2C_COLD_RESET ==  
p_ifx_i2c_context->reset_type)  
{
// Set the Host GPIO as low to set Vdd to  
high  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  
054  
055  
056  
057  
058  
059  
060  
061  
062  
063  
064  
065  
066  
067  
068  
069  
070  
071  
072  
073  
074  
075  
076  
077  
078  
079  
080  
081  
082  
083  
pal_gpio_set_low  
(p_ifx_i2c_context->p_slave_vdd_pin);  
}
// Setting the Reset pin to high  
pal_gpio_set_high  
(p_ifx_i2c_context->p_slave_reset_pin);  
p_ifx_i2c_context->reset_state =  
IFX_I2C_STATE_RESET_INIT;  
pal_os_event_register_callback_oneshot  
(p_ifx_i2c_context->pal_os_event_ctx,  
(register_callback)ifx_i2c_init,  
(void * )p_ifx_i2c_context,  
STARTUP_TIME_MSEC);  
api_status = IFX_I2C_STACK_SUCCESS;  
break;  
}
case IFX_I2C_STATE_RESET_INIT:  
{
//Frequency and frame size negotiation  
#ifndef OPTIGA_COMMS_SHIELDED_CONNECTION  
api_status = ifx_i2c_tl_init  
(p_ifx_i2c_context,  
ifx_i2c_tl_event_handler);  
#else  
api_status = ifx_i2c_prl_init  
(p_ifx_i2c_context,  
ifx_i2c_tl_event_handler);  
#endif  
break;  
}
default:  
break;  
}
}
//soft reset  
else  
{
p_ifx_i2c_context->pl.request_soft_reset =  
(uint8_t)TRUE;  
#ifndef OPTIGA_COMMS_SHIELDED_CONNECTION  
api_status = ifx_i2c_tl_init(p_ifx_i2c_context,  
Datasheet  
33  
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
Appendix C Power Management  
084  
ifx_i2c_tl_event_handler);  
085  
086  
087  
#else  
api_status = ifx_i2c_prl_init(p_ifx_i2c_context,  
ifx_i2c_tl_event_handler);  
088  
#endif  
089  
090  
091  
092  
}
if (api_status != IFX_I2C_STACK_SUCCESS)  
{
ifx_i2c_tl_event_handler(p_ifx_i2c_context,  
api_status,  
093  
094  
095  
096  
0, 0);  
}
return (api_status);  
}
097  
098  
099  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
optiga_lib_status_t ifx_i2c_close(ifx_i2c_context_t * p_ctx)  
{
optiga_lib_status_t api_status =  
(int32_t)IFX_I2C_STACK_ERROR;  
// Proceed, if not busy and in idle state  
if (IFX_I2C_STATUS_BUSY != p_ctx->status)  
{
api_status = IFX_I2C_STACK_SUCCESS;  
#ifdef OPTIGA_COMMS_SHIELDED_CONNECTION  
p_ctx->close_state = IFX_I2C_STACK_ERROR;  
p_ctx->state = IFX_I2C_STATE_UNINIT;  
api_status = ifx_i2c_prl_close  
(p_ctx, ifx_i2c_prl_close_event_handler);  
if (IFX_I2C_STACK_ERROR == api_status)  
{
pal_i2c_deinit(p_ctx->p_pal_i2c_ctx);  
// Also power off the device  
// Set the Host GPIO as high to set Vdd to low  
pal_gpio_set_high(p_ctx->p_slave_vdd_pin);  
pal_gpio_set_low(p_ctx->p_slave_reset_pin);  
p_ctx->status = IFX_I2C_STATUS_NOT_BUSY;  
}
#else  
ifx_i2c_tl_event_handler  
(p_ctx, IFX_I2C_STACK_SUCCESS, NULL, 0);  
// Close I2C master  
pal_i2c_deinit(p_ctx->p_pal_i2c_ctx);  
// Also power off the device  
// Set the Host GPIO as high to set Vdd to low  
pal_gpio_set_high(p_ctx->p_slave_vdd_pin);  
pal_gpio_set_low(p_ctx->p_slave_reset_pin);  
p_ctx->state = IFX_I2C_STATE_UNINIT;  
p_ctx->status = IFX_I2C_STATUS_NOT_BUSY;  
#endif  
}
return (api_status);  
}
Datasheet  
34  
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
Appendix C Power Management  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
_STATIC_H void ifx_i2c_prl_close_event_handler  
(ifx_i2c_context_t * p_ctx,  
optiga_lib_status_t event,  
const uint8_t * p_data,  
uint16_t data_len)  
{
p_ctx->status = IFX_I2C_STATUS_NOT_BUSY;  
switch (p_ctx->state)  
{
case IFX_I2C_STATE_UNINIT:  
{
pal_i2c_deinit(p_ctx->p_pal_i2c_ctx);  
// Also power off the device  
// Set the Host GPIO as high to set Vdd to low  
pal_gpio_set_high(p_ctx->p_slave_vdd_pin);  
pal_gpio_set_low(p_ctx->p_slave_reset_pin);  
break;  
}
default:  
break;  
}
if (NULL != p_ctx->upper_layer_event_handler)  
{
p_ctx->upper_layer_event_handler  
(p_ctx->p_upper_layer_ctx, event);  
}
}
11.2  
Low Power Sleep Mode  
The OPTIGA™ Trust M automatically enters a low-power mode after a configurable delay. Once it has entered  
Sleep mode, the OPTIGA™ Trust M resumes normal operation as soon as its address is detected on the I2C bus.  
In case no command is sent to the OPTIGA™ Trust M it behaves as shown in Figure 12.  
1. As soon as the OPTIGA™ Trust M is idle it starts to count down the “delay to sleep” time (tSDY).  
2. In case this time elapses the device enters the “go to sleep” procedure.  
3. The “go to sleep” procedure waits until all idle tasks are finished (e.g. counting down the SEC). In case all  
idle tasks are finished and no command is pending, the OPTIGA™ Trust M enters sleep mode.  
Datasheet  
35  
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
Appendix C Power Management  
tSDY  
VCC  
1
IO  
2
3
operational  
idle  
Power State  
undefined  
sleep  
Figure 12  
Go-to-Sleep Diagram  
Datasheet  
36  
Revision 3.40  
2022-06-21  
O
PTIGA™ Trust M  
Revision history  
Revision history  
Document version Date of release Description of changes  
3.40  
3.30  
2022-06-21  
2021-08-17  
Section 1.5 updated, Section 6 removed  
Section 6.4, 6.5 and12 updated for pal_ifx_i2c_context structure  
changes and ifx_i2c_init bug fix.  
3.20  
3.15  
2020-10-20  
2020-10-12  
Fixed internal review comments and released for Production  
Section 3.1 Hibernate circuit diagram updated for single MOSFET  
option and direct GPIO as power option.  
3.10  
3.00  
0.70  
2020-09-24  
2020-06-29  
2020-05-27  
Release to Production release  
Fixed internal review comments  
Initial version update for ES Release  
Datasheet  
37  
Revision 3.40  
2022-06-21  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on the product, technology,  
Edition 2022-06-21  
Published by  
event be regarded as a guarantee of conditions or delivery terms and conditions and prices please  
characteristics (“Beschaffenheitsgarantie”) .  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
Infineon Technologies AG  
81726 Munich, Germany  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement of  
intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2022 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about this  
document?  
In addition, any information given in this document  
is subject to customer’s compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and standards  
concerning customer’s products and any use of the  
product of Infineon Technologies in customer’s  
applications.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized  
representatives  
of  
Infineon  
Email:  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of the  
product or any consequences of the use thereof can  
reasonably be expected to result in personal injury.  
CSSCustomerService@infineon.com  
Document reference  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

OPTIGA TRUST X SLS 32AIA

OPTIGA™ Trust X减少了集成工作量且易于使用– 使得它成为缺少安全专家而又想快速进入市场的客户的理想选择。这款优异的安全解决方案提高了性能且降低了功率损耗。可用于非富集操作系统,也可以采用紧凑型封装。这种方案提供了新功能和商业模式,可以丰富服务内容,提高竞争力。
INFINEON

OPTIGA? TPM SLM 9670

The OPTIGA™ TPM SLM 9670 is a member of the OPTIGA™ TPM family. It addresses the requirements of industrial and other demanding applications where an extended temperature range, an extended lifetime and industrial-grade quality are key.
INFINEON

OPTIMIZING

Optimizing Output Configuration of Semtech Bipolar Pin Drivers (126k)
ETC

OPTION_REG

Digitally Enhanced Power Analog Controller with Integrated Synchronous Driver
MICROCHIP

OPTIR1.0NG305X100

IR FILTER 100X305
ETC

OPTIR1.0NG305X305

IR FILTER 305X305
ETC

OPTISTRIP

STRIPPER OPTICAL FIBRE
ETC

OPTL-3-MSL

TRIPLE OPTIC
DIALIGHT

OPTL-3-WSL

TRIPLE OPTIC
DIALIGHT

OPTO-0024

DISPLAY MODE: TN, POSITIVE , DISPLAY FORMAT: 16 CHARACTER X 2 LINE
MICRO-ELECTRO

OPTO-232C

4 Channels Modems
PURDY

OPTO-232SL

switchable modems
PURDY