NGC1081 [INFINEON]

NFC tag-side controller for smart sensing applications;
NGC1081
型号: NGC1081
厂家: Infineon    Infineon
描述:

NFC tag-side controller for smart sensing applications

文件: 总32页 (文件大小:368K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NGC1081  
Features  
NGC1081 is an IC, suitable and optimized for NFC communication controlled actuation and  
sensing. It contains a NFC transceiver, an actuation interface, a sensing unit, a microcontroller  
and wired communication interfaces. NGC1081 is available in a 32-pin package.  
The chip can operate in two different power supply modes:  
• active supply mode:  
- The chip is supplied by an external 3V power supply source (e.g. battery).  
• passive supply mode:  
- The chip is harvesting energy from the external NFC RF field. No additional external supply  
source is required. Of course, operation of the chip requires the presence of the NFC field in this  
use case. The chip can charge external capacitors, in order to store harvested energy. External  
storing capacitors can be used to store the required amount of energy to initiate an actuation  
action (e.g. to drive a motor).  
Main product features are:  
• contact-less communication interface NFC  
- PICC according to ISO/ IEC 14443 Type A  
- data rate 106 kBit/s  
- initialization and anti-collision protocol processed in firmware  
- proprietary and customizable application protocol optimized for end custom applications  
• Integrated microcontroller  
- 32-bit ARM Cortex-M0 CPU operating at clock frequency of 28 MHz  
- nested vector interrupt controller with 18 interrupts  
- integrated system tick timer (SysTick)  
- MicroDMA with 8 DMA channels  
- 16 kByte integrated ROM containing start-up code and system development kit sofꢀare library  
- 16 kByte integrated SRAM  
- 60 kByte integrated non volatile flash memory  
- Serial Wire Debug interface  
- multilayer AHB-Lite on chip interconnect  
• Digital Peripherals  
- Up to 16 programmable and configurable General Purpose Input/ Outputs (GPIO)  
- System Timer Unit containing six independent timer channels and PWM generator  
- watchdog timer  
- arithmetic divide operation hardware accelerator  
- full duplex capable UART transceiver with Rx/ Tx FIFOs  
- SPI master/ slave transceiver with Rx/ Tx FIFOs  
- AES accelerator  
- I²C master/ slave transceiver  
- Real Time Clock  
• Actuation interface  
- integrated H-Bridge driver capable to direct drive a motor up to peak current of 250 mA  
- ability to control an external H-bridge driver IC by applying gate drive control signals to GPIO  
• Sensing Interface  
- Analog to Digital Converter (12-Bit SAR) with four different Input channels  
- Digital to Analog Converter (10-Bit)  
- Comparator  
- Current to Voltage Converter  
Datasheet  
www.infineon.com  
Please read the sections "Important notice" and "Warnings" at the end of this document  
Rev. 1.0  
20223-02-16  
NGC1081  
Potential applications  
- integrated high precision temperature sensor  
-
• embedded Security  
- embedded AES hardware accelerator  
- True Random Number Generator (TRNG)  
• Power Management  
- Ultra Low Power power saving Mode available  
- chip supply for almost all parts of the chip is switched off, except a small always-on power  
domain  
- entering power saving mode and configuring wake up sources is controlled by embedded  
sofꢀare  
- chip can wake up by either detecting an external NFC RF field, expiration of an internal wake  
Up Timer or an external trigger event on a dedicated pin  
- sofꢀare controlled CPU idle mode  
- CPU clock control by sofꢀare  
- dedicated and sofꢀare controlled switchable LDOs for sensing unit and flash memory  
• Clock Generation  
- integrated 28 MHz oscillator for internal system clock generation  
- integrated ultra low power 32 kHz oscillator for "always on" standby clock generation  
- integrated oscillator pads to support external 32 kHz crystal  
• Power Supply modes  
- passive supply Mode  
- energy is harvested from the external NFC RF field and the power supply of the chip is  
derived from the harvested energy  
- no external supply source apart from the NFC RF field required  
- active supply mode  
- the chip is supplied by an external supply source and operational, if no NFC field is applied  
• Product qualified according to JEDEC Standard  
Potential applications  
Potential applications and application use cases of NGC1081 are applications, which require  
embedded control together with a contact less communication interface, an actuation interface/  
driver, a sensing and measurement interface and optional passive supply mode operation based  
on RF field energy harvesting.  
That might be:  
• NFC configured and controlled environmental sensing and data logging  
• NFC configured thermostats  
• NFC activated smart lock  
• Health Care Passive Sensor  
An example application diagram for lock application in passive supply mode is given:  
Datasheet  
2
Rev. 1.0  
20223-02-16  
NGC1081  
Potential applications  
Thermostat Example  
Datasheet  
3
Rev. 1.0  
20223-02-16  
NGC1081  
Table of contents  
Table of contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
NGC1081 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
NGC1081 General Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
1
2
3
NGC1081 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
NGC1081 Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
NGC1081 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
NGC1081 Real Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
NGC1081 Sensing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
NGC1081 Near Field Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
NGC1081 H-Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
NGC1081 System Timer Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
NGC1081 Security Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
NGC1081 General Purpose Inputs/Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
NGC1081 SPI Controller Peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
NGC1081 UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
NGC1081 I²C Peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
3.10  
3.11  
3.12  
4
5
NGC1081 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
NGC1081 Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Datasheet  
4
Rev. 1.0  
20223-02-16  
NGC1081  
1 NGC1081 Pin Description  
1
NGC1081 Pin Description  
This section provides the pin description of NGC1081.  
Table 1  
Name  
NGC1081 Pin Description  
Pin at  
Characteristic  
Direction  
Comment  
QFN-32  
LA  
LB  
18  
analog  
Input (internally load  
modulated)  
NFC Antenna Pin LA  
NFC Antenna Pin LB  
19  
analog  
Input (internally load  
modulated)  
M_A  
4
analog  
analog  
Supply  
Ground  
Supply  
In/Output  
In/Output  
Input  
Motor A (driven by H-Bridge)  
Motor B (driven by H-Bridge)  
external Supply (3.0V … 3.3V)  
Ground Net  
M_B  
5
VCC  
21  
3
GND  
Input  
VCC_HB  
6
Input/Output  
Supply of H-Bridge output drivers  
- in passive supply mode to  
be connected to external energy  
storage element (capacitor); the  
energy is to be stored is harvested  
from the RF field  
- in active supply mode to be  
connected to the external supply  
(3.0 … 3.3V)  
-if H-Bridge output driver is not used  
in application then:  
in passive supply mode it  
should kept open or connect  
to an external capacitor  
(recommendation 1nF)  
in active supply mode connect it  
to the external supply or GND  
VCC_CB  
20  
22  
Supply  
Input  
in active mode connect to external  
supply (3.0V … 3.3V)  
- in passive mode connect to  
external capacitor (recommendation  
2.2 uF)  
Wake_UP  
analog  
input/Output  
Input/Output  
external Wake-Up  
- if not used in target application,  
then connect to GND  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
17  
14  
10  
8
2.5V LVCMOS  
General Purpose Input/Outputs  
with:  
programmable direction and  
output value  
1
(table continues...)  
Datasheet  
5
Rev. 1.0  
20223-02-16  
NGC1081  
1 NGC1081 Pin Description  
Table 1  
(continued) NGC1081 Pin Description  
Name  
Pin at  
QFN-32  
Characteristic  
Direction  
Comment  
GPIO5  
GPIO6  
31  
28  
configurable internal Pull Up/  
Pull Down Resistors  
programmable alternate  
functions  
OSC-A  
OSC-B  
11  
12  
2.5V LVCMOS  
Input/Output  
32-kHz Oscillator pins, to be  
connected to external crystal or  
single ended clock signal at OSC-A  
AN_OUT  
23  
analog  
analog  
Output  
Input  
Digital to Analog Converter output  
voltage of Sensing Unit  
AN_IN0  
AN_IN1  
AN_IN2  
AN_IN3  
GPIO7  
27  
26  
25  
24  
16  
15  
13  
9
Analog to Digital Converter input  
voltages of sensing unit  
2.5V LVCMOS  
Input/Output  
programmable direction and  
output value  
configurable internal Pull Up/  
Pull Down Resistors  
programmable alternate  
functions  
GPIO8  
GPIO9  
GPIO10  
GPIO11  
GPIO12  
GPIO13  
GPIO14  
GPIO15  
7
2
32  
30  
29  
Datasheet  
6
Rev. 1.0  
20223-02-16  
NGC1081  
2 NGC1081 General Architecture  
2
NGC1081 General Architecture  
The general architecture is illustrated by the following block diagram:  
CPU Subsystem  
Cortex M0 CPU  
incl. NVIC, WIC, DAP  
Reset- and Clock  
Generation Unit  
uDMA  
*to/from uDMA  
32kHz  
(CRGU)  
Chrystal  
PMU_DIG  
Event Bus  
Control Unit  
AHB Bus Matrix  
NVM  
Module  
Event Bus  
Monitor  
RAM Shell  
Event Bus  
DMA/IRQ  
Request  
RAM Shell  
Data RAM2  
Data RAM1  
HB  
Control  
HB  
AHB2APB  
HW Divider  
AES Security  
ROM Shell  
Sensing  
Unit  
(ADC,  
DAC,  
I2V)  
Watchdog  
Timer  
ADC  
Control  
Data/Code  
ROM  
NFC Antenna  
System  
Timer  
DAC  
Control  
UART  
NFC AFE/ DFE CLUART  
SSP  
(SPI)  
Int. (NFC)  
Supply  
RFID  
CRC  
Ext.  
Supply  
GPIO  
SCU  
Analog to ADC  
PMU_ANA  
(e.g. temp sensor)  
Ext.  
Storage (cap)  
I²C  
IO Control  
*to/from uDMA  
Standby  
STB_SCU  
RTC  
Digital GPIO‘s  
Timer  
Figure 2  
NGC1081 Block Diagram  
Datasheet  
7
Rev. 1.0  
20223-02-16  
NGC1081  
3 NGC1081 Functional Description  
3
NGC1081 Functional Description  
Topics  
NGC1081 Clock Generation  
NGC1081 Real Time Clock  
NGC1081 Sensing Unit  
NGC1081 Near Field Communication  
NGC1081 H-Bridge  
NGC1081 System Timer Unit  
NGC1081 Security Support  
NGC1081 General Purpose Inputs/Outputs  
NGC1081 SPI Controller Peripheral  
NGC1081 UART  
NGC1081 I²C Peripheral  
ARM Cortex M0 CPU  
Details of the ARM Cortex-M0 CPU can be derived from the ARM Cortex-M0 technical reference manual.  
The Cortex-M0 is configured with the following parameters:  
Nested Interrupt Controller NVIC with 18 IRQ lines plus NMI  
System Timer Option (Systick) enabled  
Fast (Single Cycle) Multiplier  
Support of Wake Up Controller with 20 Wake-Up Sources (18 IRQ's + NMI + RX Event)  
Reset of all registers enabled  
Debugging Option Enabled  
-
-
Serial Wire Debug Interface (SWD)  
Support of one hardware break point comparator  
Furthermore NGC1081 integrates a direct memory access controller (DMA). Details of the DMA controller can be  
derived from the technical reference manual of the "ARM PrimeCell DMA Controller (PL230)". In NGC1081 product the  
DMA controller is configured to serve ten independent DMA channels.  
CPU Address Map  
The CPU address space is used in NGC1081 as follows:  
Datasheet  
8
Rev. 1.0  
20223-02-16  
NGC1081  
3 NGC1081 Functional Description  
0x00000000  
ROM  
0x00004000  
0x00010000  
reserved  
NVM  
NFC  
0x2000C000  
0x00020000  
0x00022000  
Divide Unit  
0x2000C400  
RAM  
….  
AES Unit  
0x2000C800  
0x20000000  
0x20002000  
0x2000A000  
reserved  
RAM  
reserved  
Event Bus Monitor  
0x20010400  
Event Bus IRQ Unit  
0x20010800  
AHB Peripherals  
Event Bus DMA Unit  
0x20010C00  
0x20010000  
Watchdog Timer  
0x20011000  
UART  
AHB/ APB Peripherals  
….  
0x20012000  
0x20019000  
SPI  
0x20013000  
NVM Control  
0x20015000  
0x40000000  
0x40000400  
0x40000C00  
H-Bridge Control  
Sensing Unit  
System Control Unit  
0x20016000  
AHB Peripherals  
….  
DMA  
0x20017000  
I²C  
0x20017400  
System Control Unit  
0x20017800  
0x20017C00  
0x20018C00  
(Standby Power Domain)  
Standby Timer  
System Timer  
reserved  
Figure 3  
Interrupts  
NGC1081 Address Map  
In NGC1081 eighteen IRQs plus non mask-able interrupt are available. Following IRQ sources are assigned to the  
interrupts:  
Interrupt  
NMI  
IRQ Source  
Event Bus Interrupt Request/NMI  
NFC frame data available  
Event Bus Interrupt Request  
Event Bus Interrupt Request  
Event Bus Interrupt Request  
Event Bus Interrupt Request  
Event Bus Interrupt Request  
Event Bus Interrupt Request  
Event Bus Interrupt Request  
Event Bus Interrupt Request  
IRQ0  
IRQ1  
IRQ2  
IRQ3  
IRQ4  
IRQ5  
IRQ6  
IRQ7  
IRQ8  
Datasheet  
9
Rev. 1.0  
20223-02-16  
NGC1081  
3 NGC1081 Functional Description  
Interrupt  
IRQ9  
IRQ Source  
Event Switch Matrix  
Event Switch Matrix  
Event Switch Matrix  
Event Switch Matrix  
Event Switch Matrix  
Event Switch Matrix  
Watchdog Timer Unit  
Loss of NFC field  
NVM busy  
IRQ10  
IRQ11  
IRQ12  
IRQ13  
IRQ14  
IRQ15  
IRQ16  
IRQ17  
The event bus related interrupts have flexible IRQ sources, which are defined by the application run time sofꢀare.  
3.1  
NGC1081 Clock Generation  
Basically NGC1081 includes two major clock domains:  
A fast clock domain of 28 MHz: This clock is applied to the core supply domain. It is the CPU and peripheral clock.  
The fast clock is switched off during power save mode. In operating mode the fast clock is gated in CPU sleep  
mode.  
The standby clock domain of 32 kHz: This clock is applied to the standby "always on" power domain  
Furthermore a clock is extracted from the NFC carrier, in case an NFC RF field is present. This clock of 13.56 MHz is  
used in the physical layer of the NFC transceiver and the related PHY layer digital logic.  
The fast clock is generated on chip by an integrated clock oscillator. This clock oscillator is switched off in power save  
mode.  
The standby clock can be sourced either by from an integrated oscillator or from an external crystal (connected to  
oscillator pins OSC_A and OSC_B). The nominal frequency of the crystal shall be 32.768 kHz. The integrated oscillator  
fits to a standard quartz with a load capacitive of 12.5 pF. The internal integrated 32 kHz oscillator does not reach  
the accuracy of a external quartz. The internal is measured during production test and trimmed to reach as close as  
possible the frequency of 32.768 kHz. The measured frequency of the trimmed integrated oscillator is finally stored  
in the non Volatile memory as a chip specific device parameter. The real time clock hardware is using this device  
parameter into account, when counting seconds. Hence a reasonable accuracy of real time clock sourced by internal  
oscillator can be achieved, which is sufficient for most application cases.  
The fast clock oscillator is also measured and trimmed during manufacturing test. It will be trimmed as close as  
possible to a frequency of 28 MHz. The measured value of trimming is finally as well stored into the non volatile  
memory as a device parameter and can be used by hardware and firmware to for example to adjust baud rate  
generators of integrated UART or SPI.  
Datasheet  
10  
Rev. 1.0  
20223-02-16  
NGC1081  
3 NGC1081 Functional Description  
Controlled  
By Software (Execution of WFI Instruction)  
Core Supply Domain  
CPU  
Peripherals  
Main  
Oscillator  
27.12MHz  
Divide  
/
1,2,4,8  
Gate  
Controlled  
By Software  
Configuration  
Slow  
Oscillator  
32.768kHz  
Standby Power Domain  
RTC  
OSC_A  
OSC_B  
PMU  
Standby Timer  
chrystal  
External  
Clock  
32,768kHz  
Controlled by Software Configuration  
(Default: Internal Oscillator)  
Figure 4  
NGC1081 clock generation overview  
I
3.2  
NGC1081 Power Management  
NGC1081 power management controls the power supply mode selection, the power on start-up and the power modes  
control.  
NGC1081 can be supplied in two different supply modes:  
active supply mode:  
-
in active supply mode an external supply voltage of has to be provided at pin VCC. The internal power  
management detects the presence of a supply voltage at pin VCC at power on and controls the proper  
start-up and operation.  
passive supply mode:  
-
In passive supply mode no external supply source is required. The device is supplied by the energy of the RF  
field of NFC. The NFC receiver is harvesting the required energy from the field and the power management is  
controlling a proper start-up and operation  
The device has different internal supply domains. Supply domains are internally separated from each other and  
are controlled by the power management. The purpose of separation of power supply domains are application  
dependent power saving and supply noise protection.  
core supply domain  
-
This is a digital supply domain, which supplies the major part of digital logic and memories, including the  
CPU  
Datasheet  
11  
Rev. 1.0  
20223-02-16  
NGC1081  
3 NGC1081 Functional Description  
standby supply domain  
-
This is a supply domain, which supplies a small part of the chip. It is an "always on" power domain, which  
includes the power management unit . Since it is responsible for power mode and status control and wake  
up , it needs to be permanently "on". Beside the power management it contains a wake up timer and a real  
time clock counter.  
NVM supply domain  
This is a separate supply domain, which supplies the non volatile memory  
I/O supply domain  
This supply domain supplies the digital I/Os.  
H-Bridge Driver Supply domain  
-
-
-
This is a separate supply domain, which supplies the switching transistors of the H-Bridge. It is sourced  
by the external pin VCC_HB. In active supply mode an external supply source has to be connected to  
pin VCC_HB. In passive supply mode, an external storage capacitor has to be connected to pin VCC_HB.  
In passive supply mode this external storage capacitor will be charged by the power management in a  
controlled way with harvested energy from the external RF-field  
NFC Transceiver Power Domain  
There is a small part of the NFC transceiver, which is sourced by the external RF field  
Sensing Unit Supply domain  
-
-
This is a supply domain, which supplies the analog parts of the sensing unit. A separate voltage regulator  
generates a precise reference voltage for the analog to digital and digital to analog converter  
The device integrates internal voltage regulators, which produce a stable output voltage in order to supply the  
domain specific circuitry. The internal voltage regulators are controlled by the power management and sourced  
by external supply at pin VCC in active supply mode or by supply harvested from RF field in passive mode. The  
pin VCC_CB is buffering the regulator input voltage by for example external capacitor. This is especially required in  
passive mode , when the RF field is low caused by NFC carrier modulation.  
All chip internal supply domains, except the H-Bridge driver supply domain, are sourced by a dedicated internal  
voltage regulators.  
The following figure gives an overview about the assignment of functions to power supply domains:  
Datasheet  
12  
Rev. 1.0  
20223-02-16  
NGC1081  
3 NGC1081 Functional Description  
CPU Subsystem  
Cortex M0 CPU  
incl. NVIC, WIC, DAP  
Reset- and Clock  
Generation Unit  
(CRGU)  
uDMA  
*to/from uDMA  
Power Management  
Unit (digital)  
Event Bus  
Control Unit  
AHB Bus Matrix  
NVM  
Module  
Event Bus  
Monitor  
RAM Shell  
Event Bus  
DMA/IRQ  
Request  
RAM Shell  
Data RAM2  
HB  
Control  
HB  
Data RAM1  
AHB2APB  
Watchdog  
Timer  
System  
Timer  
HW Divider  
AES Security  
Sensing  
Unit  
(ADC,  
DAC,  
I2V)  
ROM Shell  
ADC  
Control  
Data/Code  
ROM  
NFC Antenna  
DAC  
Control  
UART  
RFID  
UART  
NFC AFE/ DFE  
SSP  
(SPI)  
Chip Core Power Domain  
Chip Standby „Always On“  
Powe Domain  
NFC Power Domain  
H-Bridge Driver Domain  
Int. (NFC)  
Supply  
Power  
RFID  
CRC  
Ext.  
Supply  
GPIO  
SCU  
Management  
Unit (analog)  
Ext.  
NVM Power Domain  
Storage (cap)  
I²C  
Sensing Unit Power Domain  
IO Control  
*to/from uDMA  
Standby  
STB_SCU  
RTC  
Digital GPIO‘s  
Timer  
Figure 5  
NGC1081 Power Domains  
The device is operating in two supply modes:  
operating mode  
power save mode  
In power saving modes major parts of the device is switched off.  
Table 2 Power Mode  
Power Save Mode  
Operation Mode  
Standby Power Domain  
Core Power Domain  
NFC Power Domain  
ON  
ON  
ON  
OFF  
ON, if NFC field is present. Otherwise ON, if NFC field is present. Otherwise  
OFF  
OFF  
OFF  
OFF  
I/O Power Domain  
NVM Power Domain  
ON  
Power State controlled by CPU.  
(Default: ON)  
(table continues...)  
Datasheet  
13  
Rev. 1.0  
20223-02-16  
NGC1081  
3 NGC1081 Functional Description  
Table 2  
(continued) Power Mode  
Power Save Mode  
Operation Mode  
H-Bridge Power Domain  
Main Clock Oscillator  
Standby Clock Oscillator  
Sensing Unit Domain  
OFF  
OFF  
ON  
ON  
ON  
ON  
OFF  
Power State controlled by CPU  
(Default: OFF)  
Afer applying external supply (or RF field in passive mode) the device will enter the operation mode. The CPU  
sofꢀare can request a transition into power save mode to the power management. The power management will  
serve this request and perform the transition into power save mode. The CPU sofꢀare will configure and enable  
the desired wake up condition(s) to leave the power save mode and to re-enter operating mode. Possible wake up  
conditions are:  
presence detection of a NFC field  
Valid logical level on the pin WAKE_UP present. The polarity of the desired wake up level can be configured by  
CPU.  
Standby Timer Expired. The standby timer unit can be enabled, to trigger a wake up event afer a configured  
number of slow oscillator clock ticks are counted. The counting of slow clock ticks will start afer power save  
mode is entered  
In operating mode the system can enter a sleep mode state. The sleep mode will be entered, if the CPU is executing  
a WFI (Wait For Interrupt) or WFE (Wait for Event) instruction. The sleep mode is lef, if an interrupt occurs. In sleep  
mode the clock of the CPU and memories is gated. Functional peripheral clocks are available. The clock gating of the  
CPU and memories provides a significant power save measure in operating mode. The fast clock of the system can be  
scaled as well by CPU sofꢀare.  
Power on reset  
Power_Saving_Mode_por  
Operating Mode  
sleep  
Full Operating mode  
~sleep  
Sleep mode  
Power_saving_mode Request  
Power Saving Mode  
wake up condition true  
Figure 6  
Power Management States  
Datasheet  
14  
Rev. 1.0  
20223-02-16  
NGC1081  
3 NGC1081 Functional Description  
3.3  
NGC1081 Real Time Clock  
The Real Time Clock (RTC) of NGC1081 is located within the standby supply domain. Afer the real time clock is started  
(or enabled), it starts to count seconds, which are accumulated within a 32-bit register. This register can be read by  
sofꢀare and the sofꢀare can easily calculate the number of minutes, hours, days, weeks, months and years, which  
have passed afer enabling the real time clock.  
The clock reference for the second tick is either derived from the external 32-kHz crystal or from the internal standby  
clock oscillator. The non volatile flash memory contains a parameter, which contains the number of clock ticks of the  
internal standby clock oscillator within one second. This parameter is chip specific and measured within production  
test of NGC1081 and will be used by sofꢀare during real time clock configuration.  
In general the use of an external 32-kHz crystal (grade 50 ppm or less) as clock reference will provide a higher  
accuracy of the real time clock, compared to the internal standby clock oscillator. Nevertheless the use of the internal  
clock oscillator as clock reference is a reasonable and "bill of material" optimized alternative for application cases,  
which do not require 50 ppm or less accuracy.  
Datasheet  
15  
Rev. 1.0  
20223-02-16  
NGC1081  
3 NGC1081 Functional Description  
3.4  
NGC1081 Sensing Unit  
The sensing unit is a flexible measurement interface.  
It provides following functions:  
Analog to Digital conversion (ADC):  
-
An 12-bit SAR ADC is integrated. The SAR ADC is connected to three Sample and Hold stages. Two of these  
sample and hold stages are sampling the four external analog voltages at pins AN_IN0, AN_IN1,AN_IN2,  
AN_IN3. The third sample and hold stage is sampling the temperature depending measurement voltage of  
the integrated temperature sensor  
-
-
-
The sample and hold stages are active sample and hold stages. This means, afer sampling is done, the  
sampled voltage keeps constant over time  
An analog multiplexing scheme connects the sampling input of the sample and hold stages to the desired  
analog voltage  
The ADC and the three sample and hold stages can individually be configured into an ultra low power  
consumption mode, if not used  
Digital to analog Conversion (DAC):  
-
-
-
-
A 10 bit Digital to Analog converter is integrated  
The digital to analog converter can be configured to an ultra low power consumption mode, if not used  
The output of the DAC is measurable on pin AN_OUT  
The output of the DAC is also the reference voltage of the comparator  
Comparator:  
-
The comparator compares the voltage level of a selectable analog input pin to the output voltage of the  
digital to analog converter  
-
-
-
The input of comparator can be selected between AN_IN0, AN_IN1, AN_IN2, AN_IN3  
The comparator can be configured to an ultra low power consumption mode, if not used  
Current to Voltage Converter:  
-
The current to voltage converter converts the current, which is flowing through the pin AN_IN0 into a  
corresponding voltage. This voltage can be converted by the analog to digital converter and represents the  
measurement result of the current  
-
-
The output of the current to voltage converter can be multiplexed to the sample and hold stages  
The current to voltage converter can be configured to an ultra low power mode, if it is not used  
Temperature Sensor:  
-
-
-
The sensing unit contains a temperature sensor  
The temperature sensor is connected to a dedicated sample and hold stage  
The temperature sensor can be configured to an ultra low power consumption mode, if it is not used  
The overview schematic of the sensing unit is given hereby:  
Datasheet  
16  
Rev. 1.0  
20223-02-16  
NGC1081  
3 NGC1081 Functional Description  
Current to  
Voltage  
Converter  
DAC  
AN_OUT  
AN_IN0  
comp_config_ain_sel  
sh0_config_i2v_sel  
Control  
Comparator  
CPU Bus  
sh0_config_ain_sel  
sh1_config_ain_sel  
Event Bus  
Sample and Hold 0  
AN_IN1  
AN_IN2  
Sample and Hold 1  
Temperature Sensor  
ADC  
AN_IN3  
sh1_config_i2v_sel  
Figure 7  
Sensing Unit Overview  
The System ROM Library contains the required driver functions to configure the sensing unit, to trigger a  
measurement and to return the result and status of measurement.  
Datasheet  
17  
Rev. 1.0  
20223-02-16  
NGC1081  
3 NGC1081 Functional Description  
3.5  
NGC1081 Near Field Communication  
NGC1081 supports Near Field Communication according to standard ISO/IEC 14443 Type A (PICC).  
A data Rate of 106 kBit/s is supported.  
The device includes a transceiver, which processes the physical layer and parts of link layer function of near field  
communication. The upper layers of communication are processed in sofꢀare. The NFC protocol stack is part of the  
ROM system library.  
The NFC communication link initialization and anti collision is fully compliant to the PICC initialization Type A  
procedure as defined in standard ISO-14443-3. NGC1081 is using a fixed unique RFID UID with length of 7 bytes.  
NGC-1081 is using proprietary protocol state with proprietary protocol commands.  
AC  
nAC  
out of field  
Power-OFF  
SELECT  
nSELECT  
HLTA  
in field  
Error  
AC  
nAC  
SELECT  
nSELECT  
HLTA  
HALT  
IDLE  
REQA  
WUPA  
nAC  
nSELECT  
HLTA  
REQA  
WUPA  
nAC  
nSELECT  
HLTA  
WUPA  
Error  
REQA  
WUPA  
Error  
Error  
READY*  
READY  
AC  
REQA  
WUPA  
AC  
REQA  
WUPA  
AC  
AC  
PROT_NAC  
SELECT  
nAC  
nAC  
SELECT  
SELECT  
nSELECT  
HLTA  
SELECT  
nSELECT  
HLTA  
PROT_NAC  
NAC protocol commands  
RATS  
Error  
Error  
ACTIVE*  
ACTIVE  
HLTA  
REQA  
WUPA  
DESELECT_NAC  
RATS  
READ *)  
READ *)  
PROT_NAC  
HLTA  
HLTA  
READ *) à a READ operation to an NFC Tag Type 2 is performed  
Figure 8  
NGC1081 PICC states  
The states and transition drawn in green are according to ISO14443-3. The transitions and states are drawn in black  
are proprietary. The transition into the proprietary protocol state is triggered in ACTIVE/ACTIVE* state as the standard  
requires.  
In protocol state PROT_NAC the NGC1081 is able to react on external requests. Following types of requests are  
possible:  
Read/Write Access to CPU address space  
A read/write request to CPU address space is only granted, if the access to the specific address is authorized.  
-
Datasheet  
18  
Rev. 1.0  
20223-02-16  
NGC1081  
3 NGC1081 Functional Description  
Message Request  
-
A message request will call a defined function of the ROM  
Call a CPU subprogram  
-
A call of subprogram request will call an application specific subprogram located in the NVM  
Far End Loop back Test  
NGC1081 will loop back received payload data of a loop back request frame  
-
In ACTIVE/ ACTIVE* state the NGC1081 accepts a NFC tag READ command. Using that command, a reserved area within  
the NVM can be read, which is considered to be compliant to an NFC tag type 2.  
Datasheet  
19  
Rev. 1.0  
20223-02-16  
NGC1081  
3 NGC1081 Functional Description  
3.6  
NGC1081 H-Bridge  
The H-Bridge provides an on chip interface to control an external actuation element, like an electrical motor. The  
H-Bridge driver is suitable to switch voltages up to 3.6V at a peak current of up to 250 mA.  
A simplified functional diagram describes the H-bridge driver function.  
VDD_HB  
CPU Bus  
High_Side2  
Low_Side2  
High_Side1  
M_B  
M_A  
Event Bus  
Control  
Low_Side1  
H-Bridge  
GND  
Figure 9  
H-Bridge simplified functional view  
Basically the H-bridge consists of 4 switching transistors, which are individually controlled by the CPU via the CPU  
bus or the event bus. An external load (e.g. a motor) will be connected to the pins M_A and M_B. In case the switches  
High_Side1 and Low_Side2 are closed and the other two switches are open, then a current will flow from VDD_HB via  
pin M_A to pinM_B to GND. In case High_side2 and Low_side1 are closed and the other two switches are open, the  
current will flow from pin M_B to pin M_A.  
The system ROM library contains driver functions to configure and control the H-bridge.  
3.7  
NGC1081 System Timer Unit  
The system timer unit consists of 6 independent programmable timer channels (16-bit).  
A timer can operate in :  
continuous mode  
single shot mode  
The timer per  
If a timer expires, an IRQ request could be generated or an event could be sent to the event bus.  
A timer can be started by CPU sofꢀare access or by receiving an timer start event on the event bus.  
System timer channels can be chained, in order to increase the timer length up to maximum 96 bit.  
The system ROM library contains the necessary functions to configure and control the system timer unit.  
3.8  
NGC1081 Security Support  
NGC1081 supports two security features by hardware:  
AES encryption and decryption  
True Random Number Generation  
The AES accelerator hardware supports encryption and decryption operations with key length of 128-bit. The  
accelerator hardware encrypts or decrypts a 128-bit data gram within 16 clock cycles.  
The True Random Number Generator generates a sequence of 128 random bits within 5 microseconds.  
Datasheet  
20  
Rev. 1.0  
20223-02-16  
NGC1081  
3 NGC1081 Functional Description  
The system ROM library contains security driver functions to calculate the result of a data encryption or decryption  
operations and to generate a random number.  
Datasheet  
21  
Rev. 1.0  
20223-02-16  
NGC1081  
3 NGC1081 Functional Description  
3.9  
NGC1081 General Purpose Inputs/Outputs  
General Purpose Input and Outputs are bidirectional input/output structures.  
The output state of a GPIO can be set by the Cortex-M0 CPU. The input state of a GPIO can be read by the Cortex-M0  
CPU.  
Beside to the CPU read/write access to the GPIO, alternate port functions can be enabled . An alternate port function  
connects the GPIO port to the input or output of an internal hardware peripheral (for example to connect a selected  
GPIO to the TxD of UART).  
A GPIO port consists of:  
input stage  
output driver  
internal Pull Up resistor  
internal Pull Down resistor  
The input stage can be enabled or disabled by CPU sofꢀare. In case of disabled input stage, the CPU will always  
read a logic HIGH level. The output driver can be enabled or disabled by CPU sofꢀare or controlled by an alternate  
function control signal, if an alternate function is selected. The internal pull up resistor can be enabled or disabled by  
CPU sofꢀare. The internal pull down resistor can be enabled or disabled by CPU sofꢀare. The output characteristic  
can be set by CPU sofꢀare to CMOS Push-Pull output or Open Drain output.  
The system ROM library contains the required functions to configure and control the GPIOs and to select alternate  
port functions.  
Table 3  
Alternate GPIO Functions GPIO0-7  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
Primary  
Output  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
Alternate  
Output 1  
SPI TxD  
UART TxD  
PWM Out  
IN0  
SPI Clock  
Out  
SPI Frame  
Sync Out  
Debugger  
Data  
Alternate  
Output 2  
UART TxD reserved  
reserved  
reserved  
IN4  
reserved  
reserved  
IN5  
reserved  
reserved  
IN6  
Alternate  
Output 3  
PWM Out  
IN1  
PWM Out  
IN2  
reserved  
IN3  
Primary  
Input  
IN7  
Alternate  
Input 1  
SPI RxD  
UART RxD  
reserved  
SPI CLKIN SPI Frame Debugger  
Sync In  
Data  
Alternate  
Input 2  
UART RxD  
reserved  
Debugger  
Clock  
Alternate  
Input 3  
reserved  
reserved  
reserved  
reserved  
reserved  
Table 4  
Alternate GPIO Functions GPIO8-15  
GPIO8  
GPIO9  
GPIO10  
GPIO11  
GPIO12  
GPIO13  
GPIO14  
GPIO15  
Primary  
Output  
OUT8  
OUT9  
OUT10  
OUT11  
OUT12  
OUT13  
OUT14  
GPIO15  
(table continues...)  
Datasheet  
22  
Rev. 1.0  
20223-02-16  
NGC1081  
3 NGC1081 Functional Description  
Table 4  
(continued) Alternate GPIO Functions GPIO8-15  
GPIO8  
GPIO9  
GPIO10  
GPIO11  
GPIO12  
GPIO13  
GPIO14  
GPIO15  
Alternate  
Output 1  
Trigger  
Timer 0  
Trigger  
Timer 1  
Trigger  
Timer 2  
Trigger  
Timer 3  
I²C Data  
Out  
I²C Clock  
Out  
Trigger  
Timer 4  
Trigger  
Timer 5  
Alternate  
Output 2  
reserved  
reserved  
IN8  
reserved  
reserved  
IN9  
reserved  
reserved  
IN10  
Alternate  
Output 3  
reserved  
IN11  
PWM Out  
IN14  
PWM Out  
IN15  
Primary  
Input  
IN12  
IN13  
Alternate  
Input 1  
I²C Data In I²C Clock In  
Alternate  
Input 2  
Alternate  
Input 3  
reserved  
reserved  
reserved  
3.10  
NGC1081 SPI Controller Peripheral  
The SPI controller peripheral provides compatibility to following interface types :  
Motorola SPI  
Texas instruments serial synchronous interface (SSI)  
National Semiconductor micro-wire interface  
It can operate in master or in slave mode.  
It contains a receive FIFO buffer and a transmit FIFO buffer, of eight entries of 16 bit width.  
When operating in SPI mode, frame sizes of 4 to 16 bit are supported. It provides a full duplex synchronous data  
transfer utilizing 4 wires. Clock polarity and clock phase are programmable.  
The SPI signals can be mapped to general purpose IOs using alternate input and output functions.  
3.11  
NGC1081 UART  
The product contains an UART transceiver peripheral.  
Following features are included:  
full duplex capable UART  
Separate 32x8 transmit and 32x12 receive First-In, First-Out memory buffers (FIFOs) to reduce CPU interrupts.  
Programmable baud rate generator  
Programmable line characteristics:  
-
-
-
one or two STOP bits  
support of 5, 6, 7 or 8 data bits  
even, odd, stick, or no-parity bit generation and detection  
Start-bit, stop-bit and parity-bit are added prior to transmission within the transceiver in transmit direction and  
processed and removed in receive direction.  
The UART ports can be mapped to general purpose IOs using alternate input and output functions.  
Datasheet  
23  
Rev. 1.0  
20223-02-16  
NGC1081  
3 NGC1081 Functional Description  
The product does not support the modem control functions like CTS, RTS et .  
3.12  
NGC1081 I²C Peripheral  
The device includes an I²C peripheral, which is offloading the processor from processing the I²C protocol.  
Major product features are:  
master or slave operation  
Support of multi master systems  
Support of 10-bit addressing  
Support of speeds up to 400 Kbit/s  
Own address and General Call address detection  
Arbitration and clock synchronization  
Datasheet  
24  
Rev. 1.0  
20223-02-16  
NGC1081  
4 NGC1081 Electrical Characteristics  
4
NGC1081 Electrical Characteristics  
Table 5  
Absolute Maximum Ratings  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or test  
condition  
Min.  
Max.  
3.6  
Input peak voltage between  
LA-LB  
VInpeak  
VPeak  
A/m  
Absolute Maximum Field  
Strength for indefinite  
exposure without damage.  
The chip functionality can be  
affected.  
Habsmax  
10  
Absolute Maximum Field  
Strength for exposure for up to  
10 seconds without damage.  
The chip is not guaranteed to  
function  
Habsmax12  
12  
A/m  
Conditions:  
Tjoperating = 110°C  
Input peak voltage at VCC,  
VCC_HB, VCC_CB  
VCC, VCC_HB, VCC_CB  
0
3.6  
2
V
electrostatic discharge voltage VESD_HB  
Human Body model  
kV  
ANSI/ESDA/JEDEC  
JS-001  
electrostatic discharge voltage VESD_CDM  
charged device model  
500  
125  
V
ANSI/ESDA/JEDEC  
JS-002  
Storage Temperature  
TStorage  
-40  
°C  
Table 6  
static characteristics  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or test  
condition  
Min.  
Max.  
The static parameters are valid for the Ambient Temperature range TA of -25°C to 85°C.  
Supply Pins  
Supply Voltage  
Supply Current  
VCC, VCC_HB, VCC_CB  
ICC  
2.8  
3.0  
3.3  
5
V
mA  
uA  
average value and  
operating mode  
dependent, CPU  
running at 27  
MHz, NVM access  
enabled  
Power Down Mode Supply  
Current  
ICC_PD  
30  
Chip is in Power  
Down Mode and  
wait for Wake  
Up Event, RTC  
and Standby Timer  
active  
(table continues...)  
Datasheet  
25  
Rev. 1.0  
20223-02-16  
NGC1081  
4 NGC1081 Electrical Characteristics  
Table 6  
(continued) static characteristics  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or test  
condition  
Min.  
Max.  
GPIO Pins  
HIGH Level input Voltage  
LOW Level input Voltage  
HIGH Level Output Voltage  
Low Level Output Voltage  
Pull-Up Resistance  
Pull-Down Resistance  
Wake-Up Pin  
VIH  
1.75  
3.6  
V
V
VIL  
0
0.7  
VOH  
VOL  
RPU  
RPD  
2.2  
V
load 1mA  
load 1mA  
0.2  
V
200  
200  
kOhm  
kOhm  
Wake Up Threshold HIGH Level VWU_HIGH  
Wake Up Threshold Low Level VWU_LOW  
Antenna Pins  
2
V
V
0.4  
Resonance Capacitance  
between terminals LA and LB  
CChip  
23.5  
pF  
Table 7  
NVM characteristics  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or test  
condition  
Min.  
Max.  
The NVM are valid for the Ambient Temperature range TA of -25°C to 85°C.  
Program/ Erase Cycles  
NC  
500k  
Every Page, T  
=27°C  
Data Retention afer 100 cycles DR  
15  
a
Table 8  
Dynamic characteristics  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or test  
condition  
Min.  
Max.  
The Dynamic characteristics are valid for the Ambient Temperature range TA of -25°C to 85°C.  
GPIO Pins  
Rise Time (output)  
tR  
2
7
ns  
capacitive load of  
50pF  
Fall Time (output)  
tF  
2
7
ns  
capacitive load of  
50pF  
Wake Up Pin  
Input Slope Low to High  
tLH  
2
50  
ns  
(table continues...)  
Datasheet  
26  
Rev. 1.0  
20223-02-16  
NGC1081  
4 NGC1081 Electrical Characteristics  
Table 8  
(continued) Dynamic characteristics  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or test  
condition  
Min.  
Min.  
Max.  
50  
Input Slope High to Low  
tHL  
2
ns  
Table 9  
H-Bridge characteristics  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or test  
condition  
Max.  
The H_bridge characteristics are valid for the Ambient Temperature range TA of -25°C to 85°C.  
Current between M_A and M_B IHB  
250  
3.6  
mA  
V
Voltage at VCC_HB  
VDDHB  
3
VDDHB shall be  
smaller or equal to  
the voltage at pin  
VCC_CB. In passive  
supply mode this  
is guaranteed  
by chip internal  
control. In active  
supply mode pins  
VCC, VCC_HB,  
VCC_CB might  
be connected to  
the same supply  
source.  
Table 10  
Analog to Digital Converter characteristics  
Symbol  
Parameter  
Values  
Typ.  
The ADC parameters are valid for the Ambient Temperature range TA of -25°C to 85°C.  
Unit Note or test  
condition  
Min.  
Max.  
Input Voltage Range  
VAIN  
0
1.8  
V
Pins AN_IN0,  
AN_IN1, AN_IN2,  
AN_IN3  
Effective Number of Bits  
Conversion Time  
Sample Rate  
ENOB  
tconv  
10  
15  
us  
Fsample  
70k  
Sampl  
es/s  
Active Current  
IADC_ACTIVE  
100  
100  
uA  
average current  
consumption of  
analog supply  
domain of ADC  
during conversion  
Powerdown Current  
IADC_PD  
nA  
ADC in powerdown  
mode  
Datasheet  
27  
Rev. 1.0  
20223-02-16  
NGC1081  
4 NGC1081 Electrical Characteristics  
Table 11  
Digital to Analog Converter characteristics  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or test  
condition  
Min.  
Max.  
The DAC parameters are valid for the Ambient Temperature range TA of -25°C to 85°C.  
Analog Output Voltage Range VAOUT  
0
1.7  
V
Pin AN_OUT  
ENOB  
Effective Number of Bits  
10  
Bits  
us  
Conversion Time  
Load Capacitance  
Load Resistance  
tCONV_DAC  
CLOAD_DAC  
RLOAD_DAC  
INL  
100  
200  
pF  
1
kOhm  
lsb  
lsb  
mA  
nA  
Integrated Non Linearity  
Differential Non Linearity  
Source Current  
5
6
25  
DNL  
IDAC  
1.7  
Power Down Current  
Active Mode Current  
IDAC_PD  
IDAC_ACTIVE  
250  
100  
uA  
Excluding external  
output AN_OUT  
drive  
Table 12  
Comparator characteristics  
Symbol  
Parameter  
Values  
Typ.  
The comparator parameters are valid for the Ambient Temperature range TA of -25°C to 85°C.  
Unit Note or test  
condition  
Min.  
Max.  
Active Mode Current  
Power Down Current  
Reference Voltage range  
Input Voltage Range  
Settling Time  
ICOMP_ACTIVE  
ICOMP_PD  
100  
0.5  
1.7  
1.8  
200  
uA  
uA  
V
VREF_COMP  
VRANGE_COMP  
tSETTLE  
0
0
V
us  
Voltage at AN_IN*  
stable and  
reference of DAC is  
settled  
Table 13  
Current to Voltage converter characteristics  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or test  
condition  
Min.  
Max.  
The I2V parameters are valid for the Ambient Temperature range TA of -25°C to 85°C.  
Active Mode Current  
Power Down Current  
II2V_ACTIVE  
II2V_PD  
50  
1
uA  
uA  
uA  
0.5  
0.5  
Current Measurement  
Resolution  
RESI2V  
Maximum Input Current  
IMAX_I2V  
-0.5  
mA  
Pin AN_IN0  
Datasheet  
28  
Rev. 1.0  
20223-02-16  
NGC1081  
4 NGC1081 Electrical Characteristics  
Table 14  
Temperature Sensor characteristics  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or test  
condition  
Min.  
Max.  
The temperature sensor parameters are valid for the Ambient Temperature range TA of -20°C to 80°C.  
Active Mode Current  
Power Down Current  
Temperature Resolution  
Temperature Accuracy  
ITEMP_ACTIVE  
ITEMP_PD  
TTEMP_RES  
TTEMP_ACC1  
5
uA  
nA  
°C  
50  
0.1  
-0.3  
-0.4  
+0.3  
+0.4  
°C  
Temperature  
Range from 0°C to  
45°C  
Temperature Accuracy  
Measurement Time  
TTEMP_ACC2  
°C  
us  
Temperature  
Range from -20°C  
to 0°C and from  
45°C to 85°C  
tMEAS_TEMP  
50  
Datasheet  
29  
Rev. 1.0  
20223-02-16  
NGC1081  
5 NGC1081 Package Outline  
5
NGC1081 Package Outline  
NGC1081 is offered in PG-VQFN-32 package. The geometry is provided in the subsequent figure.  
Figure 10  
NGC1081 package drawing  
Datasheet  
30  
Rev. 1.0  
20223-02-16  
NGC1081  
Revision history  
Revision history  
Document  
version  
Date of  
release  
Description of changes  
1.0  
2023-02-16  
initial release  
Datasheet  
31  
Rev. 1.0  
20223-02-16  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
Edition 20223-02-16  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
Important notice  
Warnings  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer’s compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer’s products and any use of the product of  
Infineon Technologies in customer’s applications.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
Except as otherwise explicitly approved by Infineon  
Technologies in  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or  
any consequences of the use thereof can reasonably  
be expected to result in personal injury.  
a written document signed by  
©
2023 Infineon Technologies AG  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Document reference  
IFX-hay1676559722055  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to such  
application.  

相关型号:

NGC130

Optoelectronic
ETC

NGC136

Optoelectronic
ETC

NGC140

Optoelectronic
ETC

NGC143

Optoelectronic
ETC

NGC156

Optoelectronic
ETC

NGC230

Optoelectronic
ETC

NGC236

Optoelectronic
ETC

NGC240

Optoelectronic
ETC

NGC243

Optoelectronic
ETC

NGC256

Optoelectronic
ETC

NGC530

Optoelectronic
ETC

NGC536

Optoelectronic
ETC