MA12070 [INFINEON]

2x80W 超高效全集成式音频功放 IC,带模拟输入;
MA12070
型号: MA12070
厂家: Infineon    Infineon
描述:

2x80W 超高效全集成式音频功放 IC,带模拟输入

文件: 总86页 (文件大小:1751K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MA12070  
Filterless and High-Efficiency +4V to +26V  
Audio Amplifier with Analog Input  
Description  
Features  
The MA12070 is a super-efficient audio power amplifier  
based on proprietary multi-level switching technology.  
It supports a 4-26V supply voltage range, allowing it to  
be used in many different applications.  
Proprietary Multi-level Switching Technology  
3-level and 5-level modulation  
Low EMI emission  
Filterless amplification  
Multi-level switching enables very low power loss  
during operation. In addition, it allows the amplifier to  
be used in filterless configurations at full rated power  
in a wide range of audio products.  
Digital Power Management Algorithm  
High Power Efficiency (PMP4)  
<160mW Idle power dissipation (26V PVDD,  
all channels switching)  
The MA12070 features an embedded digital power  
management scheme. The power management  
algorithm dynamically adjusts switching frequency and  
modulation to optimize power loss and EMI across the  
output power range.  
>80% Efficiency at 2W power (1kHz sine, 8Ω)  
>91% Efficiency at Full Power (1kHz sine, 8Ω)  
Audio Performance (PMP2)  
>110dB DNR (A-w, rel. to 1% THD+N power  
level)  
A 4th order feedback loop ensures low distortion and a  
high PSRR.  
45µV output integrated noise (A-w)  
0.004% THD+N at high output levels  
The MA12070 operates from a single power stage  
supply voltage (PVDD) and a +5V system supply voltage  
(DVDD, AVDD).  
4th Order Feedback Error Control  
High suppression of supply disturbance  
HD audio quality  
Highly flexible output stage configurations are offered,  
ranging from four single-ended outputs to a single  
parallel-BTL output.  
Supply Voltages: +4V to +26V (PVDD) and +5V  
(A/DVDD)  
Selectable Gain (20dB/26dB)  
The MA12070 features protection against DC, short-  
2x30W continuous output power (RL = 8Ω at 22V,  
PMP4, 10% THD+N level, without heatsink)  
circuits,  
over-temperature  
and  
under-voltage  
situations.  
2×80W peak output power (26V PVDD, RL = 4Ω,  
10% THD+N level)  
Flexible “Power Mode Profiles” allow the user to utilize  
the multi-level switching technique for very low power  
loss or very high audio performance.  
2.0, 2.1, 4.0, 1.0 Output Stage Configurations  
Protection  
Under-voltage-lockout  
Device configuration is controlled through an I2C  
interface as well as dedicated control pins.  
Over-temperature warning/error  
Short-circuit/overload protection  
Power stage pin-to-pin short-circuit  
Error-reporting through serial interface (I2C)  
DC protection  
Applications  
Battery Operated Speakers  
Wireless and Docking Speakers  
Soundbars  
I2C control (four selectable addresses)  
Heatsink free operation with EPAD-down package  
Package  
Multiroom Systems  
64-pin QFN Package with exposed thermal pad  
(EPAD) and Lead-free Soldering  
Home Theater Systems  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1 of 86  
V 1.0  
2018-07-17  
1 Ordering Information  
Table 1-1  
Moisture  
Sensitivity Level  
Part Number  
MA12070QFN  
Package  
Description  
Quad Flat No-leads package, EPAD-down (exposed thermal pad on  
bottom side)  
QFN-64  
Level 3  
2 Known Issues and Limitations  
Please refer to the “MA12070 / MA12070P Known Issues and Limitations” document for descriptions of issues and limitations relating  
to device operation and performance.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 2 of 86  
V 1.0  
2018-07-17  
3 Typical Application Block Diagram  
Figure 3-1 Typical application block diagram  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 3 of 86  
V 1.0  
2018-07-17  
4 Pin Description  
4.1 Pinout MA12070QFN  
Figure 4-1 Pinout MA12070QFN  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 4 of 86  
V 1.0  
2018-07-17  
4.2 Pin Function  
Table 4-1  
Pin No.  
Name  
Type1  
Description  
1
2
PVSS  
PVSS  
P
P
Power ground for internal power amplifiers  
Power ground for internal power amplifiers  
3
CF0AN  
OUT0A  
OUT0A  
CF0AP  
PVDD  
PVDD  
CF0BP  
OUT0B  
OUT0B  
CF0BN  
PVSS  
P
Connect to external flying capacitor negative terminal for amplifier channel 0A  
Audio power output 0A  
4
O
O
P
5
Audio power output 0A  
6
Connect to external flying capacitor positive terminal for amplifier channel 0A  
Power supply for internal power amplifiers  
7
P
8
P
Power supply for internal power amplifiers  
9
P
Connect to external flying capacitor positive terminal for amplifier channel 0B  
Audio power output 0B  
10  
11  
12  
13  
14  
15  
16  
17  
18  
O
O
P
Audio power output 0B  
Connect to external flying capacitor negative terminal for amplifier channel 0B  
Power ground for internal power amplifiers  
P
PVSS  
P
Power ground for internal power amplifiers  
/CLIP  
O
O
P
Audio clipping indicator (open drain output), pulled low when clipping occurs  
Error indicator (open drain output), pulled low when an error occurs  
Power supply for internal analog circuitry  
/ERROR  
AVDD  
CMSE  
O
Decoupling pin for internally generated common-mode voltage in SE configuration.  
Should be externally decoupled to AVSS. Can be left floating for 2 x BTL and PBTL  
configurations.  
19  
20  
AVSS  
CREF  
P
Ground for internal analog circuitry  
O
Decoupling pin for internally generated analog reference voltage. Should be externally  
decoupled to AVSS.  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
IN0A  
IN0B  
IN1A  
IN1B  
AVSS  
DVSS  
SCL  
I
I
Analog audio input 0A  
Analog audio input 0B  
I
Analog audio input 1A  
I
Analog audio input 1B  
P
P
IO  
I
Ground for internal analog circuitry  
Ground for internal digital circuitry  
I2C bus serial clock  
AD0  
I2C device address select 0 (see “MCU/Serial control interface” section)  
I2C device address select 1 (see “MCU/Serial control interface” section)  
I2C bus serial data  
AD1  
I
SDA  
IO  
I
CLKM/S  
Clock master/slave mode select. When pulled low the device is in clock slave mode.  
When pulled high the device is in master mode.  
32  
33  
CLKIO  
IO  
I
Clock input when in clock slave mode (CLKM/S is pulled low) or clock output when in  
master mode (CLKM/S is pulled high)  
/ENABLE  
When pulled high, the device is reset and kept in an inactive state with minimum power  
consumption.  
34  
35  
36  
37  
38  
/MUTE  
PVSS  
I
Mute audio output when pulled low  
P
P
P
O
Power ground for internal power amplifiers  
Power ground for internal power amplifiers  
Connect to external flying capacitor negative terminal for amplifier channel 1B  
Audio power output 1B  
PVSS  
CF1BN  
OUT1B  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 5 of 86  
V 1.0  
2018-07-17  
Pin No.  
39  
Name  
OUT1B  
CF1BP  
PVDD  
PVDD  
CF1AP  
OUT1A  
OUT1A  
CF1AN  
PVSS  
Type1  
Description  
O
P
P
P
P
O
O
P
P
P
P
I
Audio power output 1B  
40  
Connect to external flying capacitor positive terminal for amplifier channel 1B  
Power supply for power amplifiers  
41  
42  
Power supply for power amplifiers  
43  
Connect to external flying capacitor positive terminal for amplifier channel 1A  
Audio power output 1A  
44  
45  
Audio power output 1A  
46  
Connect to external flying capacitor negative terminal for amplifier channel 1A  
Power ground for internal power amplifiers  
Power ground for internal power amplifiers  
Internally connected to DVDD  
47  
48  
PVSS  
49  
NC  
50  
MSEL1  
MSEL0  
CGD1N  
SE/BTL/PBTL configuration select 1  
51  
I
SE/BTL/PBTL configuration select 0  
52  
P
Connect to external decoupling capacitor negative terminal for internal gate driver  
power supply 1  
53  
54  
CGD1P  
VGDC  
P
P
Connect to external decoupling capacitor positive terminal for internal gate driver power  
supply 1  
Internally generated virtual ground voltage for digital core. Should be decoupled to  
DVDD.  
55  
56  
57  
DVDD  
CDC  
P
P
P
Power supply for internal digital circuitry and charge pumps  
Connect to external decoupling capacitor for digital core internal power supply  
CFDCP  
Connect to external flying capacitor positive terminal for internal digital core power  
supply  
58  
CFDCN  
P
Connect to external flying capacitor negative terminal for internal digital core power  
supply  
59  
60  
DVSS  
P
P
Power ground for internal digital circuitry  
CGD0P  
Connect to external decoupling capacitor positive terminal for internal gate driver power  
supply 0  
61  
62  
63  
64  
CGD0N  
CFGDP  
CFGDN  
NC  
P
P
P
P
Connect to external decoupling capacitor negative terminal for internal gate driver  
power supply 0  
Connect to external flying capacitor negative terminal for internal gate driver power  
supplies  
Connect to external flying capacitor positive terminal for internal gate driver power  
supplies  
Internally connected to DVDD  
Type1: P = Power; I = Input; O = Output; IO = Input or Output  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 6 of 86  
V 1.0  
2018-07-17  
5 Absolute Maximum Ratings  
Table 5-1  
Parameter  
Value  
Unit  
Power Supplies  
Power stage supply voltage, PVDD  
System supply voltage, DVDD, AVDD  
Input / Output  
-0.5 to +27.5  
-0.5 to +6.0  
V
V
Analog: IN0A, IN0B, IN1A, IN1B  
-0.5 to +6.0  
-0.5 to +6.0  
-0.5 to +6.0  
-0.5 to +6.0  
25  
V
V
Logic: /ENABLE, /MUTE, /ERROR, /CLIP, MSEL0, MSEL1  
Clock: CLKIO, CLKM/S  
V
Interface: SCL, SDA, AD0, AD1  
Output current, Logic and Interface  
V
mA  
Thermal Conditions  
-40 to +85  
-40 to +150  
-65 to +150  
23  
°C  
°C  
Ambient temperature range, TA  
Junction temperature range, TJ  
Storage temperature range  
°C  
Thermal resistance, Junction-to-Ambient  
Thermal resistance, Junction-to-EPAD  
Lead soldering temperature, 10s  
°C/W  
°C/W  
°C  
2.3  
+300  
Electrostatic Discharge (ESD)  
Human body model (HBM)  
Charged device model (CDM)  
± 2000  
± 1000  
V
V
PLEASE NOTE:  
Device usage beyond the above stated ratings may cause permanent damage to the device. Permanent usage at the above stated ratings may limit  
device lifetime and result in reduced reliability. This is a stress rating only; functional operation of the device at these or any other conditions above  
those indicated in the operational section of this specification is not implied.  
See “Recommended Operation Conditions” for continuous functional ratings.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 7 of 86  
V 1.0  
2018-07-17  
6 Recommended Operating Conditions  
Table 6-1  
Symbol  
PVDD  
DVDD  
AVDD  
VIH  
Parameter  
Min  
4
Typ  
Max  
26  
Unit  
V
Power Stage Power Supply  
Digital Power Supply  
4.75  
4.75  
2
5
5
5.25  
5.25  
V
Analog Power Supply  
V
High Level for Logic, Clock, Interface  
Low Level for Logic, Clock, Interface  
DC Offset Level for Analog Inputs  
Audio Signal Level for Analog Inputs  
Minimum Load in Bridge-Tied Load Mode  
Minimum Load in Parallel Bridge-Tied Load Mode  
Minimum Load in Single Ended Mode  
V
VIL  
0.8  
3.8  
V
VIN_dc  
1.2  
2.5  
1.8  
4
V
VIN_ac  
Vpp  
RL (BTL)  
RL (PBTL)  
RL (SE)  
3.2  
1.6  
2.4  
2
3
Minimum required equivalent load inductance per  
output pin for short circuit protection  
LLeq  
0.5  
0
µH  
°C  
TA  
Ambient temperature range  
+25  
+85  
Note: Minimum Load resistance was measured in Filterless output condition.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 8 of 86  
V 1.0  
2018-07-17  
7 Electrical and Audio Characteristics  
Table 7-1  
Power Mode Profile = 0; VDD (Analog & Digital) = +5V; PVDD = +26V; TA = 0°C to +85°C. Typical values are at TA = +25°C  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Output Power per channel (peak),  
Without heatsink, see Note 1  
THD+N = 10%, RL = 8Ω, f = 1kHz  
45  
W
POUT (BTL)  
THD+N = 10%, RL = 4Ω, f = 1kHz  
THD+N = 1%, RL = 8Ω, f = 1kHz  
THD+N = 1%, RL = 4Ω, f = 1kHz  
80  
35  
60  
W
W
W
Output Power per channel  
(continuous) Without heatsink,  
see Note 2  
RL = 8Ω, f = 1kHz, PVDD = +22V  
30  
W
Output Power (peak), see Note 1  
THD+N = 10%, RL = 2Ω, f = 1kHz  
THD+N = 1%, RL = 2Ω, f= 1kHz  
THD+N = 10%, RL = 4Ω, f = 1kHz  
THD+N = 10%, RL = 3Ω, f = 1kHz  
THD+N = 1%, RL = 4Ω, f = 1kHz  
THD+N = 1%, RL = 3Ω, f = 1kHz  
160  
120  
20  
W
W
POUT (PBTL)  
POUT (SE)  
Output Power per channel (peak),  
see Note 1  
W
25  
W
15  
W
20  
W
TENABLE  
TMUTE  
Shutdown/Full Operation Timing  
Mute/Unmute Timing  
NENABLE = 1  
NMUTE = 1  
0
1
ms  
ms  
kΩ  
kΩ  
mV  
dB  
dB  
0 and 0  
1
0.3  
High gain mode  
Low gain mode  
Low gain  
14  
21  
Input Impedance per output  
channel  
RIN  
Output Offset Voltage  
±60  
VOS  
PSRR  
CMRR  
Ron  
Power Supply Rejection Ratio  
Common-Mode Rejection Ratio  
Resistance, switch on  
± 100mVpp ripple voltage  
1kHz common-mode input  
70  
94  
0.10  
618  
316  
158  
0.15  
672  
336  
168  
0.20  
726  
356  
178  
Power Mode A  
Power Mode B & C  
Power Mode D  
kHz  
kHz  
kHz  
MHz  
dB  
dB  
A
Power MOSFET Switching  
Frequency, see Note 3  
fSW  
Clock Output Frequency  
Gain  
2.7151 2.8224 2.9296  
fCLK_IO  
AV  
Low gain  
High gain  
19  
25  
8
19.5  
25.2  
21  
27  
Maximum Output Current  
Crosstalk  
IOUT  
XTalk  
BTL, POUT = 1W, f=1kHz, Ch1 & 2  
-112  
dB  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 9 of 86  
V 1.0  
2018-07-17  
Note 1: The thermal design of the target application will significantly impact the ability to achieve the peak output power levels for extended time.  
See “Thermal Characteristics and Test Signals” section for thermal optimization recommendations.  
Note 2: Continuous power measurements were performed on the MA12070/MA12070P proprietary Amplifier EVK without heatsinking at 25⁰C  
ambient temperature in Power Mode Profile 4.  
Note 3: Power MOSFET switching frequency depends on which properties are assigned to the individual power modes of the device. Detailed  
information on this can be found in “Power Mode Management” section.  
Table 7-2  
VDD (Analog & Digital) = +5V; PVDD = +26V; Typical values are at TA = +25°C; Output Configuration: BTL  
Symbol  
η
Parameter  
Conditions  
Min  
Typ  
90  
90  
89  
91  
Max  
Unit  
%
Efficiency  
POUT = 2×40W, 8Ω , PMP = 0  
POUT = 2×40W, 8Ω , PMP = 1  
POUT = 2×40W, 8Ω , PMP = 2  
POUT = 2×40W, 8Ω , PMP = 4  
%
%
%
POUT = 2×80W, 4Ω , PMP = 0  
POUT = 2×80W, 4Ω , PMP = 1  
POUT = 2×80W, 4Ω , PMP = 2  
POUT = 2×80W, 4Ω , PMP = 4  
87  
87  
86  
88  
%
%
%
%
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 10 of 86  
V 1.0  
2018-07-17  
Table 7-3  
Power Mode Profile = 0; VDD (Analog & Digital) = +5V; PVDD = +26V; TA = 0°C to +85°C. Typical values are at TA = +25°C.  
Symbol  
Ishutdown  
Iidle,mute  
Parameter  
Conditions  
Min Typ  
Max Unit  
Current Consumption, PVDD  
Shutdown  
10  
4
35  
6
180  
12  
µA  
mA  
mA  
mA  
%
Current Consumption, PVDD  
Current Consumption, PVDD  
Current Consumption, DVDD+AVDD  
Idle, mute  
Idle, unmute, inputs grounded  
Idle, unmute, inputs grounded  
1kHz, POUT = 1W, RL = 4Ω  
4
7
14  
Iidle,unmute  
IDVDD+AVDD  
25  
30  
37  
0.008  
0.011  
108  
105  
60  
THD+N  
DNR  
Total Harmonic Distortion + Noise  
Dynamic Range1  
1kHz, POUT = 20W, RL = 4Ω  
20-20kHz, A-weighted, Gain = low  
20-20kHz, A-weighted, Gain = high  
20-20kHz, A-weighted, Gain = low  
20-20kHz, A-weighted, Gain = high  
%
dB  
dB  
30  
60  
105  
115  
µVrms  
µVrms  
Vnoise  
Output integrated noise level  
85  
Table 7-4  
Power Mode Profile = 2; VDD (Analog & Digital) = +5V; PVDD = +26V; TA = 0°C to +85°C. Typical values are at TA = +25°C.  
Symbol  
Ishutdown  
Iidle,mute  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Current Consumption, PVDD  
Shutdown  
10  
35  
180  
12  
µA  
mA  
mA  
mA  
%
Current Consumption, PVDD  
Current Consumption, PVDD  
Idle, mute  
4
4
6
9
Idle, unmute, inputs grounded  
18  
Iidle,unmute  
IDVDD+AVDD  
Current Consumption, DVDD+AVDD Idle, unmute, inputs grounded  
28  
33  
40  
1kHz, POUT = 1W, RL = 4Ω  
Total Harmonic Distortion + Noise  
0.008  
0.014  
110  
107  
45  
THD+N  
DNR  
1kHz, POUT = 20W, RL = 4Ω  
%
20-20kHz, A-weighted, Gain = low  
Dynamic Range1  
dB  
20-20kHz, A-weighted, Gain = high  
dB  
20-20kHz, A-weighted, Gain = low  
Output integrated noise level  
30  
60  
80  
µVrms  
Vnoise  
20-20kHz, A-weighted, Gain = high  
75  
100 µVrms  
Dynamic Range1: Output power at THD+N < 1% reference to noise floor at -60dBFS signal.  
NOTE: MA12070 gives users the freedom to choose Power Mode Profiles (PMP) independently. As noted in the specifications table, the choice in  
power mode profiles gives a trade-off between power efficiency and audio performance as an individual set of performance characteristics. See  
“Power Mode Profiles” section for more details.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 11 of 86  
V 1.0  
2018-07-17  
8 Functional description  
Multi-level modulation  
The power stage of the MA12070 is a true multi-level switching topology. Each half-bridge is capable of delivering a  
PWM output with three voltage levels, rather than the conventional two. The three-level half-bridges are each driven  
with a two-phase PWM signal, so that the switching frequency seen at the PWM output is twice that of the individual  
power MOSFET switching frequency.  
For very low EMI in BTL configuration, the two half-bridges are operated in a complementary fashion (i.e. with 240⁰  
phase shift), which removes common-mode PWM output content. This configuration is ideal for driving long speaker  
cables without an output filter. Differentially, this modulation method drives the filter/load assembly with three PWM  
levels.  
For reduced power loss in the BTL configuration, the half-bridges can also be driven in a quadrature phase shifted  
fashion (i.e. with 90⁰ phase shift). This provides a total of five PWM levels at the load, along with a quadrupling of  
MOSFET switching frequency with respect to the differential PWM switching frequency. With this modulation scheme,  
the MOSFET switching frequency can therefore be lowered, in order to decrease switching losses. The five-level  
modulation scheme produces a common-mode voltage on the load wires, but with less high-frequency content  
compared to conventional two-level BD modulation.  
The multi-level switching topology of the MA12070 makes filterless operation viable, since the modulation schemes  
ensure little or no idle losses in the speaker magnetic system.  
For applications with stringent EMC requirements or long speaker cables, the MA12070 can operate with a very small  
and inexpensive EMI/EMC output filter. This is enabled by the multiple PWM output levels and the frequency  
multiplication seen on the PWM switching nodes. Notably, with the multi-level modulation of the MA12070, there is no  
tradeoff between idle power loss and inductor cost/size, which is due to the absence of inductor ripple current under  
idle conditions in all configurations. Due to the high filter cutoff frequency, non-linearities of LC components have less  
impact on audio performance than with a conventional amplifier. Therefore, the MA12070 can operate with inexpensive  
iron-powder cored inductors and ceramic (X7R) filter capacitors with no significant audio performance penalty.  
Very low power consumption  
The MA12070 achieves very low power loss under idle and near-idle operating conditions. This is due to the zero idle  
ripple property of the multi-level PWM scheme, in combination with the programmable automatic reduction of  
switching frequency at low modulation index levels; resulting in a state-of-the-art power efficiency at low and medium  
output power levels.  
For high output power levels, power efficiency is determined primarily by the on-resistance (Rdson) of the output power  
MOSFETs. With music and music-like (e.g. pink noise) output signals with high crest factor, the reduced near-idle losses  
of the MA12070 contribute to reducing power losses compared to a conventional amplifier with the same Rdson. In most  
applications, this allows the MA12070 to run at high power levels without a heatsink.  
Power Mode Management  
The MA12070 is equipped with an intelligent power management algorithm which applies automatic power mode  
selection during audio playback. In this state, the amplifier will seamlessly transition between three different power  
modes depending on the audio level in order to achieve optimal performance in terms of power loss, audio performance  
and EMI. Figure 8-1 shows an illustration of the basic power mode management. Alternatively, it is possible to manually  
select the desired power mode for the MA12070 via the serial interface.  
In both manual and automatic power mode selection, the power mode can be configured and set on-the-fly during  
audio playback, with no audible artifacts. This makes it possible to optimize the target application to achieve the best  
possible operating performance at all audio power levels.  
During automatic power mode selection, the MA12070 can transition between power modes at programmable audio  
level thresholds. The thresholds can be set via the serial control interface, by addressing the associated registers.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 12 of 86  
V 1.0  
2018-07-17  
Power mode  
change  
Power mode  
change  
1
2
3
Power mode  
Audio level  
Low to  
moderate  
Medium  
High  
Max  
Figure 8-1 Illustration of automatic power mode selection ranges.  
To allow easy use of the power mode management, “Power Mode Profiles” have been defined. The “Power Mode  
Profiles” address the appropriate power modes for a variety of applications.  
Power Modes Profiles  
The MA12070 provides 5 different power mode profiles for operating the internal power amplifiers. The power mode  
profiles give the user freedom to choose optimal settings of the amplifier for the intended application.  
The available power modes profiles are referred to as 0, 1, 2, 3 and 4 and can be set by programming the according  
register (see). The power mode profile selection affects various parameters such as switching frequency, modulation  
scheme and loop-gain, thus providing flexibility in design tradeoffs such as audio performance, power loss and EMI.  
Table 8-1 shows the characteristics of the power mode profiles.  
Table 8-1 Power Mode Profile characteristics  
Property  
Profile 0  
Profile 1  
Profile 2  
Profile 3  
Profile 4  
PM switch seq.  
D↔D↔C  
B↔B↔B  
B↔B↔A  
D↔B↔A  
D↔D↔D  
Idle loss  
Very low  
Good  
Low  
Good  
Best  
Low  
Good  
Best  
Very low  
Normal  
Very low  
Best  
Full scale  
efficiency  
THD+N  
Good  
Good/Best  
Good  
Common-mode  
content, idle  
Only DC  
Only DC  
Only DC  
Only DC  
Only DC  
Only DC  
Only DC  
Only DC  
DC + Sidebands  
around 600kHz,  
1.8MHz, 3.0MHz,  
etc.  
DC + sidebands  
around 300kHz,  
900kHz, 1.5MHz,  
etc.  
Common-mode  
content, full-scale  
audio  
Differential  
content low-to-  
mid-power  
Audio + sidebands Audio + sidebands Audio + sidebands Audio + sidebands Audio + sidebands  
around multiples  
of 1.2MHz  
around multiples  
of 1.2MHz  
around multiples  
of 1.2MHz  
around multiples  
of 600kHz  
around multiples  
of 600kHz  
Differential  
content mid-to-  
high power  
Audio + sidebands Audio + sidebands Audio + sidebands Audio + sidebands Audio + sidebands  
around multiples  
of 600kHz  
around multiples  
of 1.2MHz  
around multiples  
of 1.2MHz  
around multiples  
of 1.2MHz  
around multiples  
of 600kHz  
Filterfree:  
optimized audio  
performance,  
active speaker  
applications  
Filterfree:  
optimized audio  
performance,  
default  
LC filter: high  
efficiency, high  
audio perform-  
ance, good EMI,  
low ripple loss  
Filterfree:  
optimized  
efficiency, active  
speaker  
Filterfree:  
optimized  
efficiency, default  
applications  
Application  
applications  
applications  
Note: There is a programmable “Profile 5” which allows the user to set up a custom profile.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 13 of 86  
V 1.0  
2018-07-17  
The first row of Table 8-1 shows that each Power Mode Profile follows a certain Power Mode transition sequence. This  
means that each Power Mode within every Power Mode Profile will have its specific set of properties (A,B, C or D). The  
exact details of each assigned set of properties is reflected in Table 8-2.  
Table 8-2 Set of properties assigned to Power Modes in the selectable Power Mode Profiles  
Property  
A
B
C
D
FET switching  
frequency, fFET  
600kHz  
300kHz  
300kHz  
150kHz  
Modulation scheme  
3-level  
5-level  
3-level  
5-level  
Switching frequency  
seen at load, fSW  
1.2MHz (2 x fFET  
)
1.2MHz (4 x fFET  
)
600kHz (2 x fFET  
)
600kHz (4 x fFET)  
Idle loss  
Full scale efficiency  
Open-loop gain  
THD+N  
Reduced  
Normal  
High  
Low  
Good  
High  
Best  
Low  
Good  
Low  
Very low  
Best  
Low  
Best  
Good  
Good  
Common-mode  
content, idle  
Only DC  
Only DC  
Only DC  
Only DC  
Common-mode  
content, full-scale  
audio  
DC + sidebands around  
600kHz, 1.8MHz,  
3.0MHz, etc.  
DC + sidebands around  
300kHz, 900kHz,  
1.5MHz, etc.  
Only DC  
Only DC  
Audio + sidebands  
around multiples of  
1.2MHz  
Audio + sidebands  
around multiples of  
1.2MHz  
Audio + sidebands  
around multiples of  
600kHz  
Audio + sidebands  
around multiples of  
600kHz  
Differential content  
Next to the pre-defined Power Mode Profiles it is also possible to define a custom profile which will be available under  
Power Mode Profile 5. This profile can be configured using the “custom power mode profile” register (address 30). See  
“Register Map” section for more details.  
The MA12070 employs feedback of the output PWM signals in order to compensate for noise and other non-idealities  
in the power processing path. A fourth-order analog feedback loop is used, which typically provides a loop gain of 60dB  
to suppress errors in the audio band. For the typical high efficiency application this results in low THD (Total Harmonic  
Distortion) at all audio frequencies, as well as excellent immunity (in excess of 75dB) to power supply borne  
interferences.  
Maximum achievable loop-gain is typically set by the PWM frequency stability criteria. Inherent frequency multiplication  
of the multilevel topology therefore allows for a much more aggressive loop-filter (and therefore better THD and noise  
properties) because of a higher effective PWM switching frequency seen at the output. See “Profile 0 and Profile 2” in  
Table 8-1 for high-fidelity Power Mode Profiles.  
For the lowest switching frequencies, the proprietary loop filter architecture seamlessly reduces feedback bandwidth  
to ensure loop stability. In most applications (e.g. filterless applications), no further special attention is required to  
ensure loop stability. In applications with very stringent EMI requirements, an LC filter can be used. In these cases  
attention to loop stability is required since an un-damped LC filter effectively represents a short-circuit to ground at the  
resonance frequency. In extreme cases, this can cause instability of the analog feedback loops. In order to avoid this, an  
LC filter should use an inductor with more than 10mDC resistance, and a series R-C circuit should be used to limit the  
Q of the LC circuit to around 5.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 14 of 86  
V 1.0  
2018-07-17  
Power Supplies  
The MA12070 generates internal supply voltages and uses external capacitors for this purpose and for decoupling.  
Gate driver supplies  
The MA12070 utilizes a floating supply voltage for the gate driver circuitry generated internally by a charge pump. The  
gate driver power supply voltage is approximately 6V to 9V higher than PVDD. For PVDD voltages of 24V and higher it is  
recommended to add decoupling capacitors (1uF & 100nF) from CGD0N & CGD1N to GND for improved power supply  
robustness. Table 8-3 shows the required external charge pump and decoupling capacitors.  
Table 8-3 Gate driver supply capacitors  
Name  
CGD0  
Purpose  
Connection  
CGD0P, CGD0N  
CGD1P, CGD1N  
CFGDP, CFGDN  
CGD0N, GND  
CGD1N, GND  
Type  
Value  
1uF  
Decoupling of gate driver supply voltage 0  
Decoupling of gate driver supply voltage 1  
Charge pump flying capacitor  
16V, high capacity, low precision  
16V, high capacity, low precision  
50V, high capacity, low precision  
50V, high capacity, low precision  
50V, high capacity, low precision  
CGD1  
1uF  
CFGD  
100nF  
CGD0N  
CGD1N  
Decoupling of gate driver supply voltage 0  
Decoupling of gate driver supply voltage 1  
1uF, 100nF  
1uF, 100nF  
Digital core supply  
The digital control unit in the MA12070 uses a supply voltage generated internally by a charge pump and a voltage  
regulator for highest efficiency. Table 8-4 lists the external capacitors required and describes their function and  
connection.  
Table 8-4 Digital supply capacitors  
Name Purpose  
Connection  
CDC, GND  
Type  
Value  
1uF  
CDC  
Charge pump output voltage decoupling to GND  
>=6.3V, high capacity, low precision  
>=6.3V, high capacity, low precision  
>=6.3V, high capacity, low precision  
CFDC  
CGDC  
Charge pump flying capacitor  
CFDCP, CFDCN  
VGDC, DVDD  
1uF  
Decoupling of digital core virtual ground voltage  
on the VGDC pin. The voltage on the VGDC pin is  
approximately 1.8V below DVDD, i.e. about 3.2V  
1uF  
Flying capacitors  
The MA12070 power stage uses flying capacitors to generate a ½PVDD supply voltage to enable multi-level operation.  
Each output switch node OUTXX has a corresponding flying capacitor, with a positive and a negative terminal, CFXXP  
and CFXXN.  
The two flying capacitor terminals are to be considered high power switching nodes carrying voltages and currents  
similar to that on the OUTXX nodes. Care must be taken in the PCB design to reduce both the inductance and the  
resistance of these nodes. Table 8-5 lists the flying capacitors, incl. connection, type and value.  
Table 8-5 Flying capacitors  
Name  
CF0A  
Purpose  
Connection  
CF0AP, CF0AN  
CF0BP, CF0BN  
CF1AP, CF1AN  
CF1BP, CF1BN  
Type  
Value  
10uF  
10uF  
10uF  
10uF  
Half-bridge 0A flying capacitor  
Half-bridge 0B flying capacitor  
Half-bridge 1A flying capacitor  
Half-bridge 1B flying capacitor  
>=25V, high capacity, low precision  
>=25V, high capacity, low precision  
>=25V, high capacity, low precision  
>=25V, high capacity, low precision  
CF0B  
CF1A  
CF1B  
Care must be taken when choosing flying capacitors in applications where maximum output power is needed. The  
effective capacitance of poor ceramic capacitors can be greatly reduced when a DC bias voltage is applied. A  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 15 of 86  
V 1.0  
2018-07-17  
recommended part is the GRM21BZ71E106KE15L capacitor from Murata. Other parts may also be used as long as the  
effective capacitance is minimum 4.0 µF at 0.5*PVDD voltage.  
Protection  
The MA12070 integrates a range of protection features to protect the device and attached speakers from damage.  
Protection features include:  
Current protection on OUTXX nodes during operation.  
Pin-to-pin low impedance detection on OUTXX, CFXXP and CFXXN switching nodes. Prevents the device from  
starting to switch into a shorted output.  
On-chip temperature sensor for protection against device over-heating.  
Undervoltage supply monitors on AVDD, DVDD, VGDC and PVDD.  
DC protection, preventing DC to be present on the amplifier outputs.  
Over-current protection on OUTXX nodes  
During switching operation the output stage monitors the forward current flow in all output switches that are turned  
on. This is done to limit the maximum power dissipated in the switches and prevent damage to the device and the  
speaker load. The current in the output stage can exceed unwanted levels if:  
The speaker load impedance drops to a low value while the device is powered from a high PVDD supply.  
A failure occurs on the speaker terminals causing a low impedance short.  
The speaker is damaged and thereby exhibiting a low impedance.  
Over-current protection and short-circuit protection use a latching mechanism. If an over current or a short-circuit  
condition occurs, it will shut down the power stage and report the error on the /ERROR pin. By default the device will  
restart. Current limiting will not occur for currents below the OCETHR level, see Table 7-1.  
Current protection against speaker terminal shorts requires an equivalent load inductance LLeq on each of the output  
OUTXX pins (see Table 6-1). Load inductance from loudspeaker cables and, if used, ferrite beads (EMC filter) will typically  
be sufficient.  
Temperature protection  
An on-chip temperature sensor effectively safeguards the device against a thermally induced failure due to overloading  
and/or insufficient cooling.  
A high junction temperature initially causes a temperature warning, TW. This can be detected by reading the error  
register (address 124, bit 4) via I2C. If the temperature continues to rise the device will reach the temperature error (TE)  
level and set the TE bit in the error register (address 124, bit 5). This will cause the device to stop all switching activity.  
The device will restart after sufficient cooling down of the system. Both TW and TE will report the error on the /ERROR  
pin.  
Table 8-6 High-Temperature Warning and Error Signaling Levels  
Symbol  
TETHR,SET  
TETHR,CLR  
TWTHR,SET  
TWTHR,CLR  
Parameter  
Test Conditions  
Temperature rising  
Temperature falling  
Temperature rising  
Temperature falling  
Typical Value  
Unit  
°C  
High-Temperature Error (TE) Set Threshold  
High-Temperature Error (TE) Clear Threshold  
High-Temperature Warning (TW) Set Threshold  
High-Temperature Warning (TW) Clear Threshold  
150  
135  
125  
105  
°C  
°C  
°C  
Power supply monitors  
The MA12070 features integrated PVDD, DVDD and AVDD under-voltage lockout. Table 8-7 shows typical limits for the  
supply monitors.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 16 of 86  
V 1.0  
2018-07-17  
Table 8-7 Under-voltage lockout levels.  
Parameter  
Test Conditions  
DVDD Rising  
DVDD Falling  
AVDD Rising  
AVDD Falling  
PVDD Rising  
PVDD Falling  
Typical Value  
Unit  
V
UVPDVDD  
UVPAVDD  
UVPPVDD  
DVDD under-voltage error threshold  
AVDD under-voltage error threshold  
PVDD under-voltage error threshold  
4.2  
4.0  
4.2  
4.0  
4.3  
4.1  
V
V
V
V
V
DC protection  
The MA12070 incorporates a circuit, detecting whether a DC is present on the amplifier output terminals driving the  
loudspeaker. In case of an unexpected DC being present on any of the amplifier outputs, the power stage will be shut  
down to protect the loudspeaker from harmful DC content. Furthermore, a failure is reported on the /ERROR pin and in  
the error register readable by the device serial interface. The power stage can be restarted by resetting the device by  
cycling the /ENABLE pin or toggle the eh_clear bit (bit 2, address 45) to clear the error register. DC protection is default  
on. It can be disabled by clearing bit 2 of Eh_dcShdn (address 0x26).  
For the DC protection circuit to trigger, the DC value of an output pin must be staying above 0.63*PVDD or below  
0.37*PVDD for more than 700ms.  
Clock system  
The MA12070 incorporates a clock system consisting of an input clock divider and PLL, a low-jitter low-TC oscillator  
(2.8224 MHz) and control logic.  
The input clock frequency is auto-detected by the input clock divider and the corresponding divider ratio is selected as  
a function of the input frequency and the internal oscillator frequency. The correct PLL reference clock is generated  
from this. The internal PLL divider ratio is also selected as a function of the master clock base frequency (2.8224 or 3.072  
MHz).  
The MA12070 accepts input master clock frequencies that are 1, 2, 4 or 8 times the base frequency.  
This clock system automatically handles clock errors and master clock frequency changes without requiring an external  
system controller, thereby significantly reducing the overall system complexity.  
The MA12070 can operate in two clock modes:  
1. Master-mode (CLKM/S=1): In this mode the MA12070 uses the internal oscillator as a reference for the internal  
PLL. The internal master clock is accessible via the CLKIO pin and can be distributed to other MA12070 ICs  
operating in slave-mode.  
2. Slave-mode (CLKM/S=0): In this clock mode, the input master clock (via the CLKIO pin) provides the reference  
for the internal PLL through the input clock divider circuit. In slave-mode the MA12070 accepts input master  
clock frequencies in the range specified above.  
Clock synchronization  
In the situation where multiple MA12070 devices are going to be used in one system it is advisable to use one MA12070  
in master mode and the other MA12070 devices in slave mode. This way the mutual PWM switching frequencies are  
synchronized which minimizes cross-coupling between devices that could cause inter-modulated audio-in-band tones.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 17 of 86  
V 1.0  
2018-07-17  
MCU/Serial control interface  
The I2C serial control interface of the MA12070 allows an I2C master to read and/or modify a wide range of device  
parameters.  
The I2C interface consists of four physical pins, SDA, SCL, AD0 and AD1. I2C decoder logic handles transaction protocol  
and read/write access to the device register bank. SDA and SCL are standard bidirectional I2C slave pins for data and  
clock, respectively. Both SDA and SCL must be pulled-up to a digital I/O (3.3V - 5V) with a 5k resistor on each pin and  
operated in standard I2C mode up to 100 kbps transmission rate. Pins AD0 and AD1 are used to configure the 7-bit I2C  
address of the device. The I2C address is decoded according to Table 8-8.  
Table 8-8 I2C address decoding  
I2C device address  
AD1 pin  
AD0 pin  
7-bit I2C address  
0b0100000  
0x20  
0x21  
0x22  
0x23  
0
0
1
1
0
1
0
1
0b0100001  
0b0100010  
0b0100011  
The I2C interface enables read/write operations to the device register bank. The register bank is organized as a 128  
entry, byte wide memory, holding device configuration and status registers. The address space from 0 to 80 holds  
read/write registers and the address space from 96 to 127 are read only. The complete address map and description of  
each register is presented in “Register Map” section. Figure 8-2 shows the block schematic of the I2C interface between:  
I2C bus and MA12070 (serial interface controller and the register bank).  
Digital I/O  
DVDD  
I2C bus  
Read/Write  
Read only  
SDA  
SCL  
AD0  
AD1  
Serial interface  
controller  
Register bank  
Figure 8-2. I2C bus interface and register bank  
I2C write operation  
Each I2C transaction is initiated from a master by sending an I2C start condition followed by the 7-bit I2C device address  
and cleared read/write bit. The device address and read/write bit is signaled on the SDA bus by pulling the bus to ground  
indicating a ‘0’ or releasing the bus to indicate a ‘1’. The I2C SDA input is sampled by the device on the rising edge of the  
SCL bus.  
If the transmitted I2C address matches the configured address of the device, the device will acknowledge the request  
by pulling the SDA bus to ground. The master samples the acknowledged bit from the device on the next rising edge of  
SCL. The I2C initialization as described is shown in the waveform in Figure 8-3.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 18 of 86  
V 1.0  
2018-07-17  
Figure 8-3. I2C init addressing sequence  
To complete the device register write operation, the master must continue transmitting the address and at least one  
data byte. The device continues to acknowledge each byte received on the 9th SCL rising edge. Each additional data  
written to the device is written to the next address in the register bank.  
The write transaction is terminated when the master sends a stop signal to the device. The stop signal consists of a rising  
edge on SDA during SCL kept high. Figure 8-4 shows a single write operation.  
Figure 8-4 I2C write operation  
I2C read operation  
To read data from the device register bank, the read transaction is started by sending a write command to the I2C  
address with the R/W bit cleared, followed by the device address to read from. See Figure 8-5.  
Figure 8-5 I2C read transaction, register bank to be read from is written to the device  
The device will acknowledge the two bytes. Then data can be fetched from the device by sending a repeated start,  
followed by an I2C read command consisting of a byte with the device I2C address and the R/W bit set.  
The device will acknowledge the read request and start to drive the SDA bus with the bits from the requested register  
bank address. See Figure 8-6.  
Figure 8-6 I2C read transaction last part.  
The read transaction continues until the master does not acknowledge the 9th bit of the data read byte transaction and  
sends a stop signal. The stop condition is defined as a rising edge of SDA while SCL is high. Timing requirements are  
reflected in Table 8-9.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 19 of 86  
V 1.0  
2018-07-17  
Table 8-9 I2C timing requirements.  
Parameter  
Min  
Typ Max Unit  
Clock frequency1  
SDA and SCL rise time  
SDA and SCL fall time  
SCL clock high  
0
100  
400  
1
kHz  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
1
1
1
SCL clock low  
Data, setup  
300  
10  
1
Data, hold  
Min stop to start condition  
NOTE1: Pull up resistance is equal to 2.2kΩ for 400kHz.  
/CLIP pin and soft-clipping  
The /CLIP pin changes from a HIGH state to LOW state when audio output is close to clipping. A system microcontroller  
can at this instance decrease volume level or, if possible, increase power stage voltage in order to avoid clipping. The  
associated modulation index for both channel 0 and channel 1 can be read out by reading address 98 and address 102  
respectively. Note that /CLIP pin is an open-drain output which means that it should be pulled-up through a pull-up  
resistor to the digital I/O DVDD of the system.  
To minimize possible audible artifacts from sticky clipping or ringing around the clipping region, it is possible to enable  
a soft-clipping scheme. This clipping scheme prevents the amplifier to sticky clip and minimizes ringing which  
subsequently minimizes possible audible artifacts apart from normal clipping audibility. The soft-clipping scheme can  
be enabled by setting bit 7 of address 10.  
/ERROR pin and error handling  
The /ERROR pin changes from a HIGH state to a LOW state when one of the associated error sources is triggered. A  
system microcontroller can at this instance read out the error registers (address 45 and 109). According to the type of  
error or warning the right measures can be taken. The errors will be shown in the error register (address 124) which  
shows the live status of the error sources. Another register error_acc (address 109) will contain all the errors  
accumulated over time. The error_acc register can be cleared by toggling the eh_clear bit (bit 2, address 45).  
Table 8-10 shows the content of the error vector which is mapped to both the error register and the accumulated error  
register. A more detailed explanation can be found in “Register Map” section.  
Table 8-10 Error vector  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
dc_prot  
pps  
ote  
otw  
uvp  
pll  
ocp  
fcov  
Note that the /ERROR pin has an open-drain output and should be pulled up to the interface I/O rail.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 20 of 86  
V 1.0  
2018-07-17  
9 Application Information  
Input/Output Configurations  
The MA12070 is highly flexible regarding configuration of the four power amplifier channels. MA12070 can be set to  
four different output configurations. By setting the configuration pins MSEL0 and MSEL1 according to Table 9-1, the  
device is configured to one of the four different configurations. Each configuration is individually described in the  
following sections.  
Table 9-1 Signal configuration  
MSEL0 pin  
MSEL1 pin Configuration  
0
0
1
1
0
1
0
1
1 channel parallel bridge tied load (PBTL)  
2 channels single ended load (SE) and 1 channel bridge tied load (BTL)  
2 channels bridge tied load (BTL)  
4 channels single ended load (SE)  
Bridge Tied Load (BTL) Configuration  
In BTL configuration, two input- and output terminals are used per channel as shown in Figure 9-1 and Figure 9-2. This  
configuration will enable the full potential of multi-level technology where the speaker load will experience up to 5  
levels. This enables low near-idle power consumption and beneficial noise properties. Figure 9-1 shows a Bridge Tied  
Load (BTL) configuration (2 audio channels) with symmetrical audio sources having a differential output signal. In  
default recommended configuration external AC-coupling capacitors are used to allow the MA12070 to self-bias the  
DC voltage on the input terminals. Alternatively, the input can be driven without the AC-coupling capacitors. In this  
case the common-mode offset voltage should be selected to ensure that the voltage on the input terminals at full-  
scale audio levels are within the recommended range (see Table 6-1).  
Audio sources  
Cin  
IN0A  
IN0B  
IN1A  
OUT0A  
OUT0B  
OUT1A  
OUT1B  
Rs  
Rs  
½V0(t)  
½V0(t)  
Cin  
Cin  
Cin  
Rs  
Rs  
½V1(t)  
½V1(t)  
IN1B  
5V  
EMC filter  
depending on  
application  
Figure 9-1 Bridge tied load (BTL) configuration, with symmetrical audio sources  
Figure 9-2 shows a Bridge Tied Load (BTL) configuration (2 audio channels) with single ended audio sources. Note that  
the drive impedance of the two input terminals are matched to achieve optimum audio performance.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 21 of 86  
V 1.0  
2018-07-17  
Audio sources  
V0(t)  
Cin  
Cin  
Cin  
Cin  
IN0A  
IN0B  
IN1A  
OUT0A  
OUT0B  
OUT1A  
OUT1B  
Rs  
Rs  
V1(t)  
Rs  
Rs  
IN1B  
5V  
EMC filter  
depending on  
application  
Figure 9-2 Bridge tied load (BTL) configuration, with single ended audio sources  
Single Ended (SE) Configuration  
In single ended (SE) configuration, the MA12070 is able to drive one loudspeaker per output power stage, i.e. up to four  
loudspeakers. The output is biased to half the power supply voltage, ½ PVDD. One of the solutions to drive a speaker in  
this configuration is to use AC-coupling capacitors (Cout) in series with the load, as shown in Figure 9-3. The value of the  
capacitors depends on the load resistance and the desired audio bandwidth.  
Table 9-2 shows examples of AC-coupling capacitor values. The DC voltage across the capacitors at the output is  
approximately ½PVDD. However, significant AC-voltage swing might occur at low frequencies, which must be accounted  
for in the voltage rating of the capacitors.  
Audio sources  
V0A(t)  
Cin  
Cin  
Cin  
Cin  
Cout  
Cout  
Cout  
Cout  
+
+
+
+
IN0A  
IN0B  
IN1A  
OUT0A  
OUT0B  
OUT1A  
Rs  
Rs  
Rs  
Rs  
V0B(t)  
V1A(t)  
V1B(t)  
IN1B  
5V  
OUT1B  
5V  
EMC filter  
depending on  
application  
Figure 9-3 Four channel, single ended (SE) configuration  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 22 of 86  
V 1.0  
2018-07-17  
Table 9-2 Typical values for the output AC-coupling capacitor, Cout  
Load Resistance  
Output AC-coupling  
capacitor, Cout  
220µF  
-3dB frequency  
8Ω  
8Ω  
4Ω  
90Hz  
20Hz  
24Hz  
1000µF  
2200µF  
Combined SE and BTL Configuration  
A combination of SE and BTL configuration can be used as shown in Figure 9-4. In this configuration two half-bridges are  
combined to run in BTL configuration and the two remaining half-bridges are configured to run in SE configuration.  
Audio sources  
V0(t)  
Cin  
IN0A  
IN0B  
IN1A  
IN1B  
OUT0A  
OUT0B  
OUT1A  
Rs  
Rs  
Cin  
Cin  
Cin  
V1A(t)  
V1B(t)  
Cout  
+
+
Rs  
Rs  
Cout  
OUT1B  
5V  
EMC filter  
depending on  
application  
Figure 9-4 Combined Bridge tied load (BTL) and single ended (SE) configuration, with SE audio sources  
Parallel Bridge Tied Load (PBTL)  
For providing additional power the MA12070 can be configured for mono operation using a parallel BTL mode (PBTL),  
as shown in Figure 9-5. In this fashion the two BTL output stages are combined to be able to deliver twice the current.  
This makes high output power sub-woofer application possible. Note: Input pins IN1A and IN1B are unused and can be  
left floating.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 23 of 86  
V 1.0  
2018-07-17  
Figure 9-5 Parallel Bridge Tied Load (PBTL) configuration  
Regardless the application, it is recommended to use AC-coupling capacitors, Cin, at the analog audio input terminals  
INXX to allow the internal biasing circuitry to set a suitable DC bias operating voltage on the input terminals. The value  
of the capacitors depends on the configuration, see Table 9-3. Ceramic capacitors are recommended, e.g. of type X5R.  
Table 9-3 Recommended values for input ac-coupling capacitors, Cin  
Input Impedance  
MA12070  
Configuration  
Recommended minimum  
AC-coupling capacitor, Cin  
2.2µF  
Gain drop at  
20Hz  
9.2kΩ  
High gain mode  
Low gain mode  
-0.6dB  
15.3kΩ  
1µF  
-1dB  
EMC output filter Considerations  
The proprietary 5-level modulation significantly reduces EMC emissions, and the amplifiers can pass the Radiated  
Emission test with speaker cables lengths up to 80 cm with just a small ferrite filter. For cables longer than 80 cm it is  
recommended to use a LC-filter.  
For more information regarding filter type, components and measurements, see the document “Applications note –  
EMC Output Filter Recommendations” at the Infineon homepage.  
Audio Performance Measurements  
In a typical audio application the outputs of the MA12070 will be connected directly to the speaker loads. However, for  
audio performance evaluation it can be beneficial to configure the circuit board with an LC filter. This is due to the fact  
that many audio analyzers do not handle PWM signals at their inputs well.  
When using an audio analyzer configured with an external and/or internal measurement filter the use of an LC filter is  
not necessary. However, be sure to verify the audio analyzer’s input limits before connecting it to a filterless amplifier  
output.  
When using an LC filter, the design depends on the specific load. L and C values should therefore be optimized for this.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 24 of 86  
V 1.0  
2018-07-17  
Thermal Characteristics and Test signals  
Performing audio measurements by use of an audio analyzer is typically very helpful during the evaluation of an  
amplifier. However, using an audio analyzer can be misleading when evaluating thermal performance.  
Audio analyzers typically generate full tone, continuous sine wave signals as the input signal for the amplifier. While this  
is required to perform many audio measurements, it is also the worst-case thermal scenario for the device. Using full-  
scale continuous sine waves for thermal evaluation or testing will lead to an overly conservative and more costly thermal  
design which will be unnecessary in almost all real audio applications.  
Actual audio content, such as music, has much lower RMS values compared to its maximum peak output power than a  
full-scale continuous sine wave. This results in significantly less heat dissipation from the device when amplifying actual  
audio. For thermal evaluation it is therefore recommended to use actual music signals during tests. Alternatively, a pink  
noise signal can be used to emulate a music signal.  
It is not uncommon for an amplifier solution to have limited thermal performance, potentially resulting in thermal  
protection shutdown, when amplifying full-scale continuous sine wave signals.  
Start-up procedure  
It is recommended to follow the start-up procedure as described below:  
1) Make sure the all hardware pins are configured correctly: e.g. BTL, Slave Clock mode.  
2) Keep the device in disable and mute: /ENABLE = 1; /MUTE = 0.  
3) Bring up 5V VDD supply and PVDD supply (it does not matter if VDD or PVDD comes up first, provided that  
the device is held in disable).  
4) Wait for VDD and PVDD to be stable.  
5) Enable device: /ENABLE = 0.  
6) Program applicable initialization to registers.  
7) Unmute device: /MUTE = 1.  
8) The device is now in normal operation state.  
Shut-down / power-down procedure  
It is recommended to follow the start-up procedure as described below:  
1) The device is in normal operation state.  
2) Mute device: /MUTE = 0.  
3) Disable device: /ENABLE = 1.  
4) The device is now power-down state.  
5) Bring down 5V VDD supply and PVDD supply.  
6) The device is now in shut-down state.  
Recommended PCB Design for MA12070QFN (EPAD-down package)  
The QFN package with exposed thermal pad at the bottom side is thermally sufficient for most applications. However,  
in order to remove heat from the package care should be taken in designing the PCB.  
The PCB footprint for the device should include a thermal relief pad underneath the device with a size of 6 x 6 mm. This  
thermal relief pad must be centered so the device can be soldered easily. It is recommended to use a PCB design with  
two or more layers of copper for good thermal performance. Using multiple layers enables a design with a large area of  
copper connected to the EPAD.  
To achieve best thermal performance it is also important to design the surrounding connections in such a way that  
avoids cutting up the copper area into many sections.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 25 of 86  
V 1.0  
2018-07-17  
Figure 9-6 shows a PCB design using 26 via connections directly underneath the chip between the top and bottom layers.  
These should be placed on a grid each with a 0.65 mm plated through hole. These connections ensure good thermal  
transfer from the top side EPAD to a large section of ground connected copper area on the bottom side of the PCB.  
Figure 9-6 Example of 2-layer PCB layout, top and bottom layers  
It is recommended to use a PCB made from glass/epoxy laminate (e.g. FR-4) material. This type of material works well  
with PCB designs that require thermal relief as it can endure high temperatures for a long duration of time.  
PCB copper thickness is recommended to be a minimum of 35μ (1 oz) and the PCB must be made to the IPC 6012C, Class  
2 standard.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 26 of 86  
V 1.0  
2018-07-17  
10 Typical Characteristics (PVDD = +26V, Load = 4Ω + 22µH)  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
100  
10  
PVDD = +26V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +26V  
Gain = 20dB  
Load = 4Ω + 22µH  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
100Hz  
1kHz  
6kHz  
100Hz  
1kHz  
6kHz  
0.001  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 10-1 THD+N vs Output Power for PMP0  
Figure 10-2 THD+N vs Output Power for PMP1  
100  
10  
100  
10  
PVDD = +26V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +26V  
Gain = 20dB  
Load = 4Ω + 22µH  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
100Hz  
1kHz  
6kHz  
100Hz  
1kHz  
6kHz  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 10-3 THD+N vs Output Power for PMP2  
Figure 10-4 THD+N vs Output Power for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 27 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
100  
10  
1W  
1W  
PVDD = +26V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +26V  
Gain = 20dB  
Load = 4Ω + 22µH  
5W  
5W  
10W  
10W  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 10-5 THD+N vs Frequency for PMP0  
Figure 10-6 THD+N vs Frequency for PMP1  
100  
10  
100  
10  
1W  
1W  
PVDD = +26V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +26V  
Gain = 20dB  
Load = 4Ω + 22µH  
5W  
5W  
10W  
10W  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
20  
200  
2000  
20000  
20  
200  
Frequency (Hz)  
Figure 10-8 THD+N vs Frequency for PMP4  
2000  
20000  
Frequency (Hz)  
Figure 10-7 THD+N vs Frequency for PMP2  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 28 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = +26V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +26V  
Gain = 20dB  
Load = 4Ω + 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
Output Power (W)  
Output Power (W)  
Figure 10-9 PMP0 Efficiency (VDD + PVDD) vs Output Power  
100  
Figure 10-10 PMP1 Efficiency (VDD + PVDD) vs Output Power  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = +26V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +26V  
Gain = 20dB  
Load = 4Ω + 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
Output Power (W)  
Output Power (W)  
Figure 10-11 PMP2 Efficiency (VDD + PVDD) vs Output Power  
Figure 10-12 PMP4 Efficiency (VDD + PVDD) vs Output Power  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 29 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
1
100  
10  
1
PVDD = +26V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +26V  
Gain = 20dB  
Load = 4Ω + 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0.1  
0.1  
0.0001 0.001 0.01  
0.1  
1
10  
100  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 10-13 Input Power vs Output Power for PMP0  
Figure 10-14 Input Power vs Output Power for PMP1  
100  
10  
1
100  
10  
1
PVDD = +26V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +26V  
Gain = 20dB  
Load = 4Ω + 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0.1  
0.1  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 10-15 Input Power vs Output Power for PMP2  
Figure 10-16 Input Power vs Output Power for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 30 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
10  
1
10  
1
PVDD = +26V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +26V  
Gain = 20dB  
Load = 4Ω + 22µH  
0.1  
0.1  
0.01  
0.01  
0.001  
PMP2  
PMP4  
PMP0  
PMP1  
0.001  
0.0001 0.001 0.01  
0.1  
1
10  
100 1000  
0.0001 0.001 0.01  
0.1  
1
10  
100 1000  
Output Power (W)  
Output Power (W)  
Figure 10-18 PVDD Current vs Output Power for PMP2 & PMP4  
Figure 10-17 PVDD Current vs Output Power for PMP0 & PMP1  
10  
10  
Gain = 20dB  
Load = 4Ω + 22µH  
Gain = 20dB  
Load = 4Ω + 22µH  
9
9
8
7
6
5
4
3
2
8
7
6
5
4
3
2
PMP0  
PMP1  
PMP2  
PMP4  
1
0
1
0
4
6
8
10 12 14 16 18 20 22 24 26  
4
6
8
10 12 14 16 18 20 22 24 26  
PVDD (V)  
PVDD (V)  
Figure 10-19 PVDD Idle Current vs PVDD for PMP0 & PMP1  
Figure 10-20 PVDD Idle Current vs PVDD for PMP2 & PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 31 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Gain = 20dB  
Load = 4Ω + 22µH  
Gain = 20dB  
Load = 4Ω + 22µH  
1% THD+N  
1% THD+N  
10% THD+N  
10% THD+N  
4
6
8
10 12 14 16 18 20 22 24 26  
4
6
8
10 12 14 16 18 20 22 24 26  
PVDD (V)  
PVDD (V)  
Figure 10-21 Output Power vs PVDD Voltage for PMP0  
Figure 10-22 Output Power vs PVDD Voltage for PMP1  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Gain = 20dB  
Load = 4Ω + 22µH  
Gain = 20dB  
Load = 4Ω + 22µH  
1% THD+N  
1% THD+N  
10% THD+N  
10% THD+N  
4
6
8
10 12 14 16 18 20 22 24 26  
4
6
8
10 12 14 16 18 20 22 24 26  
PVDD (V)  
PVDD (V)  
Figure 10-23 Output Power vs PVDD Voltage for PMP2  
Figure 10-24 Output Power vs PVDD Voltage for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 32 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
20  
19.9  
19.8  
19.7  
19.6  
19.5  
19.4  
19.3  
19.2  
19.1  
19  
20  
19.9  
19.8  
19.7  
19.6  
19.5  
19.4  
19.3  
19.2  
19.1  
19  
1W  
1W  
PVDD = +26V  
Load = 4Ω + 22µH  
PVDD = +26V  
Load = 4Ω + 22µH  
5W  
5W  
10W  
10W  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 10-25 Low Gain vs Frequency for PMP0  
Figure 10-26 Low Gain vs Frequency for PMP1  
20  
19.9  
19.8  
19.7  
19.6  
19.5  
19.4  
19.3  
19.2  
19.1  
19  
20  
19.9  
19.8  
19.7  
19.6  
19.5  
19.4  
19.3  
19.2  
19.1  
19  
1W  
1W  
PVDD = +26V  
Load = 4Ω + 22µH  
PVDD = +26V  
Load = 4Ω + 22µH  
5W  
5W  
10W  
10W  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 10-27 Low Gain vs Frequency for PMP2  
Figure 10-28 Low Gain vs Frequency for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 33 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
26  
25.8  
25.6  
25.4  
25.2  
25  
26  
25.8  
25.6  
25.4  
25.2  
25  
1W  
1W  
PVDD = +26V  
Load = 4Ω + 22µH  
PVDD = +26V  
Load = 4Ω + 22µH  
5W  
5W  
10W  
10W  
24.8  
24.6  
24.4  
24.2  
24  
24.8  
24.6  
24.4  
24.2  
24  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 10-29 High Gain vs Frequency for PMP0  
Figure 10-30 High Gain vs Frequency for PMP1  
26  
25.8  
25.6  
25.4  
25.2  
25  
26  
25.8  
25.6  
25.4  
25.2  
25  
1W  
1W  
PVDD = +26V  
Load = 4Ω + 22µH  
PVDD = +26V  
Load = 4Ω + 22µH  
5W  
5W  
10W  
10W  
24.8  
24.6  
24.4  
24.2  
24  
24.8  
24.6  
24.4  
24.2  
24  
20  
200  
Frequency (Hz)  
Figure 10-32 High Gain vs Frequency for PMP4  
2000  
20000  
20  
200  
Frequency (Hz)  
Figure 10-31 High Gain vs Frequency for PMP2  
2000  
20000  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 34 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
0
-10  
0
-10  
Ch0 to Ch1  
Ch1 to Ch0  
Ch0 to Ch1  
Ch1 to Ch0  
PVDD = +26V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +26V  
Gain = 20dB  
Load = 4Ω + 22µH  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
200  
2,000  
20,000  
20  
200  
2,000  
20,000  
Frequency (Hz)  
Figure 10-33 Crosstalk vs Frequency for PMP0  
Frequency (Hz)  
Figure 10-34 Crosstalk vs Frequency for PMP1  
0
-10  
0
-10  
Ch0 to Ch1  
Ch0 to Ch1  
Ch1 to Ch0  
PVDD = +26V  
PVDD = +26V  
Gain = 20dB  
Load = 4Ω + 22µH  
Ch1 to Ch0  
Gain = 20dB  
-20  
-20  
Load = 4Ω + 22µH  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
200  
2,000  
20,000  
20  
200  
2,000  
20,000  
Frequency (Hz)  
Frequency (Hz)  
Figure 10-35 Crosstalk vs Frequency for PMP2  
Figure 10-36 Crosstalk vs Frequency for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 35 of 86  
V 1.0  
2018-07-17  
11 Typical Characteristics (PVDD = +26V, Load = 8Ω + 22µH)  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
100  
10  
PVDD = +26V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +26V  
Gain = 20dB  
Load = 8Ω + 22µH  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
100Hz  
1kHz  
6kHz  
100Hz  
1kHz  
6kHz  
0.001  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 11-1 THD+N vs Output Power for PMP0  
Figure 11-2 THD+N vs Output Power for PMP1  
100  
10  
100  
10  
PVDD = +26V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +26V  
Gain = 20dB  
Load = 8Ω + 22µH  
1
1
0.1  
0.1  
0.01  
0.01  
0.001  
100Hz  
1kHz  
6kHz  
100Hz  
1kHz  
6kHz  
0.001  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 11-3 THD+N vs Output Power for PMP2  
Figure 11-4 THD+N vs Output Power for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 36 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
100  
10  
1W  
1W  
PVDD = +26V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +26V  
Gain = 20dB  
Load = 8Ω + 22µH  
5W  
5W  
10W  
10W  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 11-5 THD+N vs Frequency for PMP0  
Figure 11-6 THD+N vs Frequency for PMP1  
100  
10  
100  
10  
1W  
1W  
PVDD = +26V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +26V  
Gain = 20dB  
Load = 8Ω + 22µH  
5W  
5W  
10W  
10W  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
20  
200  
Frequency (Hz)  
Figure 11-8 THD+N vs Frequency for PMP4  
2000  
20000  
20  
200  
Frequency (Hz)  
Figure 11-7 THD+N vs Frequency for PMP2  
2000  
20000  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 37 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = +26V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +26V  
Gain = 20dB  
Load = 8Ω + 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
Output Power (W)  
Output Power (W)  
Figure 11-9 PMP0 Efficiency (VDD+PVDD) vs Output Power  
100  
Figure 11-10 PMP1 Efficiency (VDD+PVDD) vs Output Power  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = +26V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +26V  
Gain = 20dB  
Load = 8Ω + 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
Output Power (W)  
Output Power (W)  
Figure 11-11 PMP2 Efficiency (VDD+PVDD) vs Output Power  
Figure 11-12 PMP4 Efficiency (VDD+PVDD) vs Output Power  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 38 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
1
100  
10  
1
PVDD = +26V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +26V  
Gain = 20dB  
Load = 8Ω + 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0.1  
0.1  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 11-13 Input Power vs Output Power for PMP0  
Figure 11-14 Input Power vs Output Power for PMP1  
100  
10  
1
100  
10  
1
PVDD = +26V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +26V  
Gain = 20dB  
Load = 8Ω + 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0.1  
0.1  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 11-15 Input Power vs Output Power for PMP2  
Figure 11-16 Input Power vs Output Power for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 39 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
10  
1
10  
1
PVDD = +26V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +26V  
Gain = 20dB  
Load = 8Ω + 22µH  
0.1  
0.1  
0.01  
0.001  
0.01  
PMP0  
PMP1  
PMP2  
PMP4  
0.001  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 11-18 PVDD Current vs Output Power for PMP2 & PMP4  
Figure 11-17 PVDD Current vs Output Power for PMP0 & PMP1  
10  
10  
Gain = 20dB  
Gain = 20dB  
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
Load = 8Ω + 22µH  
Load = 8Ω + 22µH  
PMP0  
PMP1  
PMP2  
PMP4  
4
6
8
10 12 14 16 18 20 22 24 26  
4
6
8
10 12 14 16 18 20 22 24 26  
PVDD (V)  
PVDD (V)  
Figure 11-19 PVDD Idle Current vs PVDD for PMP0 & PMP1  
Figure 11-20 PVDD Idle Current vs PVDD for PMP2 & PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 40 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
Gain = 20dB  
Load = 8Ω + 22µH  
Gain = 20dB  
Load = 8Ω + 22µH  
1% THD+N  
1% THD+N  
10% THD+N  
10% THD+N  
4
6
8
10 12 14 16 18 20 22 24 26  
4
6
8
10 12 14 16 18 20 22 24 26  
PVDD (V)  
PVDD (V)  
Figure 11-21 Output Power vs PVDD Voltage for PMP0  
Figure 11-22 Output Power vs PVDD Voltage for PMP1  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
Gain = 20dB  
Load = 8Ω + 22µH  
Gain = 20dB  
Load = 8Ω + 22µH  
1% THD+N  
1% THD+N  
10% THD+N  
10% THD+N  
4
6
8
10 12 14 16 18 20 22 24 26  
4
6
8
10 12 14 16 18 20 22 24 26  
PVDD (V)  
PVDD (V)  
Figure 11-23 Output Power vs PVDD Voltage for PMP2  
Figure 11-24 Output Power vs PVDD Voltage for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 41 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
20  
19.9  
19.8  
19.7  
19.6  
19.5  
19.4  
19.3  
19.2  
19.1  
19  
20  
19.9  
19.8  
19.7  
19.6  
19.5  
19.4  
19.3  
19.2  
19.1  
19  
1W  
1W  
PVDD = +26V  
Load = 8Ω + 22µH  
PVDD = +26V  
Load = 8Ω + 22µH  
5W  
5W  
10W  
10W  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 11-25 Low Gain vs Frequency for PMP0  
Figure 11-26 Low Gain vs Frequency for PMP1  
20  
19.9  
19.8  
19.7  
19.6  
19.5  
19.4  
19.3  
19.2  
19.1  
19  
20  
19.9  
19.8  
19.7  
19.6  
19.5  
19.4  
19.3  
19.2  
19.1  
19  
1W  
1W  
PVDD = +26V  
Load = 8Ω + 22µH  
PVDD = +26V  
Load = 8Ω + 22µH  
5W  
5W  
10W  
10W  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 11-27 Low Gain vs Frequency for PMP2  
Figure 11-28 Low Gain vs Frequency for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 42 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
26  
25.8  
25.6  
25.4  
25.2  
25  
26  
25.8  
25.6  
25.4  
25.2  
25  
1W  
1W  
PVDD = +26V  
Load = 8Ω + 22µH  
PVDD = +26V  
Load = 8Ω + 22µH  
5W  
5W  
10W  
10W  
24.8  
24.6  
24.4  
24.2  
24  
24.8  
24.6  
24.4  
24.2  
24  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 11-29 High Gain vs Frequency for PMP0  
Figure 11-30 High Gain vs Frequency for PMP1  
26  
25.8  
25.6  
25.4  
25.2  
25  
26  
25.8  
25.6  
25.4  
25.2  
25  
1W  
1W  
PVDD = +26V  
Load = 8Ω + 22µH  
PVDD = +26V  
Load = 8Ω + 22µH  
5W  
5W  
10W  
10W  
24.8  
24.6  
24.4  
24.2  
24  
24.8  
24.6  
24.4  
24.2  
24  
20  
200  
Frequency (Hz)  
Figure 11-31 High Gain vs Frequency for PMP2  
2000  
20000  
20  
200  
Frequency (Hz)  
Figure 11-32 High Gain vs Frequency for PMP4  
2000  
20000  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 43 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
0
-10  
0
-10  
Ch0 to Ch1  
Ch1 to Ch0  
Ch0 to Ch1  
Ch1 to Ch0  
PVDD = +26V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +26V  
Gain = 20dB  
Load = 8Ω + 22µH  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
200  
2,000  
20,000  
20  
200  
2,000  
20,000  
Frequency (Hz)  
Frequency (Hz)  
Figure 11-33 Crosstalk vs Frequency for PMP0  
Figure 11-33 Crosstalk vs Frequency for PMP1  
0
-10  
0
-10  
Ch0 to Ch1  
Ch0 to Ch1  
PVDD = +26V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +26V  
Gain = 20dB  
Load = 4Ω + 22µH  
Ch1 to Ch0  
Ch1 to Ch0  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
200  
2,000  
20,000  
20  
200  
2,000  
20,000  
Frequency (Hz)  
Frequency (Hz)  
Figure 11-35 Crosstalk vs Frequency for PMP2  
Figure 11-36 Crosstalk vs Frequency for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 44 of 86  
V 1.0  
2018-07-17  
12 Typical Characteristics (PVDD = +24V, Load = 4Ω + 22µH)  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
100  
10  
PVDD = +24V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +24V  
Gain = 20dB  
Load = 4Ω + 22µH  
1
1
0.1  
0.1  
0.01  
0.01  
100Hz  
1kHz  
6kHz  
100Hz  
1kHz  
6kHz  
0.001  
0.001  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 12-1 THD+N vs Output Power for PMP0  
Figure 12-2 THD+N vs Output Power for PMP1  
100  
10  
100  
10  
PVDD = +24V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +24V  
Gain = 20dB  
Load = 4Ω + 22µH  
1
1
0.1  
0.1  
0.01  
0.01  
100Hz  
1kHz  
6kHz  
100Hz  
1kHz  
6kHz  
0.001  
0.001  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 12-3 THD+N vs Output Power for PMP2  
Figure 12-4 THD+N vs Output Power for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 45 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
100  
10  
1W  
1W  
PVDD = +24V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +24V  
Gain = 20dB  
Load = 4Ω + 22µH  
5W  
5W  
10W  
10W  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 12-5 THD+N vs Frequency for PMP0  
Figure 12-6 THD+N vs Frequency for PMP1  
100  
10  
100  
10  
1W  
1W  
PVDD = +24V  
Gain = 20dB  
PVDD = +24V  
Gain = 20dB  
Load = 4Ω + 22µH  
5W  
5W  
Load = 4Ω + 22µH  
10W  
10W  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
20  
200  
Frequency (Hz)  
Figure 12-7 THD+N vs Frequency for PMP2  
2000  
20000  
20  
200  
Frequency (Hz)  
Figure 12-8 THD+N vs Frequency for PMP4  
2000  
20000  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 46 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = +24V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +24V  
Gain = 20dB  
Load = 4Ω + 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
Output Power (W)  
Output Power (W)  
Figure 12-9 PMP0 Efficiency (VDD + PVDD) vs Output Power  
100  
Figure 12-10 PMP1 Efficiency (VDD + PVDD) vs Output Power  
100  
90  
80  
70  
60  
50  
40  
30  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
20  
PVDD = +24V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +24V  
Gain = 20dB  
Load = 4Ω + 22µH  
Output Power  
Per Channel  
10  
0
Output Power  
Per Channel  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
Output Power (W)  
Output Power (W)  
Figure 12-11 PMP2 Efficiency (VDD + PVDD) vs Output Power  
Figure 12-12 PMP4 Efficiency (VDD + PVDD) vs Output Power  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 47 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
1
100  
10  
1
PVDD = +24V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +24V  
Gain = 20dB  
Load = 4Ω + 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0.1  
0.1  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 12-13 Input Power vs Output Power for PMP0  
Figure 12-14 Input Power vs Output Power for PMP1  
100  
10  
1
100  
10  
1
PVDD = +24V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +24V  
Gain = 20dB  
Load = 4Ω + 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0.1  
0.1  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 12-15 Input Power vs Output Power for PMP2  
Figure 12-16 Input Power vs Output Power for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 48 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
10  
1
10  
1
PVDD = +24V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +24V  
Gain = 20dB  
Load = 4Ω + 22µH  
0.1  
0.1  
0.01  
0.01  
PMP0  
PMP1  
0.001  
0.001  
0.0001 0.001 0.01  
0.1  
1
10  
100 1000  
0.0001 0.001 0.01  
0.1  
1
10  
100 1000  
Output Power (W)  
Output Power (W)  
Figure 12-17 PVDD Current vs Output Power for PMP0  
Figure 12-18 PVDD Current vs Output Power for PMP1  
10  
1
10  
1
PVDD = +24V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +24V  
Gain = 20dB  
Load = 4Ω + 22µH  
0.1  
0.1  
0.01  
0.001  
0.01  
PMP4  
PMP2  
0.001  
0.0001 0.001 0.01 0.1  
1
10  
100 1000  
0.0001 0.001 0.01  
0.1  
1
10  
100 1000  
Output Power (W)  
Output Power (W)  
Figure 12-19 PVDD Current vs Output Power for PMP2  
Figure 12-20 PVDD Current vs Output Power for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 49 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
20  
19.9  
19.8  
19.7  
19.6  
19.5  
19.4  
19.3  
19.2  
19.1  
19  
20  
19.9  
19.8  
19.7  
19.6  
19.5  
19.4  
19.3  
19.2  
19.1  
19  
1W  
1W  
PVDD = +24V  
Load = 4Ω + 22µH  
PVDD = +24V  
Load = 4Ω + 22µH  
5W  
5W  
10W  
10W  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 12-21 Low Gain vs Frequency for PMP0  
Figure 12-22 Low Gain vs Frequency for PMP1  
20  
19.9  
19.8  
19.7  
19.6  
19.5  
19.4  
19.3  
19.2  
19.1  
19  
20  
19.9  
19.8  
19.7  
19.6  
19.5  
19.4  
19.3  
19.2  
19.1  
19  
1W  
1W  
PVDD = +24V  
Load = 4Ω + 22µH  
PVDD = +24V  
Load = 4Ω + 22µH  
5W  
5W  
10W  
10W  
20  
200  
Frequency (Hz)  
Figure 12-24 Low Gain vs Frequency for PMP4  
2000  
20000  
20  
200  
Frequency (Hz)  
Figure 12-23 Low Gain vs Frequency for PMP2  
2000  
20000  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 50 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
26  
25.8  
25.6  
25.4  
25.2  
25  
26  
25.8  
25.6  
25.4  
25.2  
25  
1W  
1W  
PVDD = +24V  
Load = 4Ω + 22µH  
PVDD = +24V  
Load = 4Ω + 22µH  
5W  
5W  
10W  
10W  
24.8  
24.6  
24.4  
24.2  
24  
24.8  
24.6  
24.4  
24.2  
24  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 12-26 High Gain vs Frequency for PMP1  
Figure 12-25 High Gain vs Frequency for PMP0  
26  
26  
25.8  
25.6  
25.4  
25.2  
25  
1W  
1W  
PVDD = +24V  
Load = 4Ω + 22µH  
PVDD = +24V  
Load = 4Ω + 22µH  
25.8  
25.6  
25.4  
25.2  
25  
5W  
5W  
10W  
10W  
24.8  
24.6  
24.4  
24.2  
24  
24.8  
24.6  
24.4  
24.2  
24  
20  
200  
Frequency (Hz)  
Figure 12-27 High Gain vs Frequency for PMP2  
2000  
20000  
20  
200  
Frequency (Hz)  
Figure 12-28 High Gain vs Frequency for PMP4  
2000  
20000  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 51 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
0
-10  
0
-10  
Ch0 to Ch1  
Ch1 to Ch0  
Ch0 to Ch1  
Ch1 to Ch0  
PVDD = +24V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +24V  
Gain = 20dB  
Load = 4Ω + 22µH  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
200  
2,000  
20,000  
20  
200  
2,000  
20,000  
Frequency (Hz)  
Frequency (Hz)  
Figure 12-29 Crosstalk vs Frequency for PMP0  
Figure 12-30 Crosstalk vs Frequency for PMP1  
0
-10  
0
-10  
Ch0 to Ch1  
Ch0 to Ch1  
PVDD = +24V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +24V  
Gain = 20dB  
Load = 4Ω + 22µH  
Ch1 to Ch0  
Ch1 to Ch0  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
200  
2,000  
20,000  
20  
200  
2,000  
20,000  
Frequency (Hz)  
Frequency (Hz)  
Figure 12-31 Crosstalk vs Frequency for PMP2  
Figure 12-32 Crosstalk vs Frequency for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 52 of 86  
V 1.0  
2018-07-17  
13 Typical Characteristics (PVDD = +24V, Load = 8Ω + 22µH)  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
100  
10  
PVDD = +24V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +24V  
Gain = 20dB  
Load = 8Ω + 22µH  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
100Hz  
1kHz  
6kHz  
100Hz  
1kHz  
6kHz  
0.001  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 13-1 THD+N vs Output Power for PMP0  
Figure 13-2 THD+N vs Output Power for PMP1  
100  
10  
100  
10  
PVDD = +24V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +24V  
Gain = 20dB  
Load = 8Ω + 22µH  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
100Hz  
1kHz  
6kHz  
100Hz  
1kHz  
6kHz  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 13-3 THD+N vs Output Power for PMP2  
Figure 13-4 THD+N vs Output Power for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 53 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
100  
10  
1W  
1W  
PVDD = +24V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +24V  
Gain = 20dB  
Load = 8Ω + 22µH  
5W  
5W  
10W  
10W  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 13-5 THD+N vs Frequency for PMP0  
Figure 13-6 THD+N vs Frequency for PMP1  
100  
10  
100  
10  
1W  
1W  
PVDD = +24V  
Gain = 20dB  
PVDD = +24V  
Gain = 20dB  
5W  
5W  
Load = 8Ω + 22µH  
10W  
Load = 8Ω + 22µH  
10W  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
20  
200  
Frequency (Hz)  
Figure 13-7 THD+N vs Frequency for PMP2  
2000  
20000  
20  
200  
Frequency (Hz)  
Figure 13-8 THD+N vs Frequency for PMP4  
2000  
20000  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 54 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = +24V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +24V  
Gain = 20dB  
Load = 8Ω + 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Output Power (W)  
Output Power (W)  
Figure 13-9 PMP0 Efficiency (VDD+PVDD) vs Output Power  
100  
Figure 13-10 PMP1 Efficiency (VDD+PVDD) vs Output Power  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = +24V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +24V  
Gain = 20dB  
Load = 8Ω + 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Output Power (W)  
Output Power (W)  
Figure 13-11 PMP2 Efficiency (VDD+PVDD) vs Output Power  
Figure 13-12 PMP4 Efficiency (VDD+PVDD) vs Output Power  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 55 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
1
100  
10  
1
PVDD = +24V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +24V  
Gain = 20dB  
Load = 8Ω + 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0.1  
0.1  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 13-13 Input Power vs Output Power for PMP0  
Figure 13-14 Input Power vs Output Power for PMP1  
100  
10  
1
100  
10  
1
PVDD = +24V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +24V  
Gain = 20dB  
Load = 8Ω + 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0.1  
0.1  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 13-15 Input Power vs Output Power for PMP2  
Figure 13-16 Input Power vs Output Power for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 56 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
10  
1
10  
1
PVDD = +24V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +24V  
Gain = 20dB  
Load = 8Ω + 22µH  
0.1  
0.1  
0.01  
0.01  
0.001  
PMP1  
PMP0  
0.001  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 13-17 PVDD Current vs Output Power for PMP0  
Figure 13-18 PVDD Current vs Output Power for PMP1  
10  
1
10  
1
PVDD = +24V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +24V  
Gain = 20dB  
Load = 8Ω + 22µH  
0.1  
0.1  
0.01  
0.01  
0.001  
PMP4  
PMP2  
0.001  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 13-19 PVDD Current vs Output Power for PMP2  
Figure 13-20 PVDD Current vs Output Power for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 57 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
20  
20  
1W  
1W  
PVDD = +24V  
Load = 8Ω + 22µH  
PVDD = +24V  
Load = 8Ω + 22µH  
5W  
19.9  
19.8  
19.7  
19.6  
19.5  
19.4  
19.3  
19.2  
19.1  
19  
5W  
19.9  
19.8  
19.7  
19.6  
19.5  
19.4  
19.3  
19.2  
19.1  
19  
10W  
10W  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 13-21 Low Gain vs Frequency for PMP0  
Figure 13-22 Low Gain vs Frequency for PMP1  
20  
19.9  
19.8  
19.7  
19.6  
19.5  
19.4  
19.3  
19.2  
19.1  
19  
20  
19.9  
19.8  
19.7  
19.6  
19.5  
19.4  
19.3  
19.2  
19.1  
19  
1W  
1W  
PVDD = +24V  
Load = 8Ω + 22µH  
PVDD = +24V  
Load = 8Ω + 22µH  
5W  
5W  
10W  
10W  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 13-23 Low Gain vs Frequency for PMP2  
Figure 13-24 Low Gain vs Frequency for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 58 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
26  
25.8  
25.6  
25.4  
25.2  
25  
26  
25.8  
25.6  
25.4  
25.2  
25  
1W  
1W  
PVDD = +24V  
Load = 8Ω + 22µH  
PVDD = +24V  
Load = 8Ω + 22µH  
5W  
5W  
10W  
10W  
24.8  
24.6  
24.4  
24.2  
24  
24.8  
24.6  
24.4  
24.2  
24  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 13-25 High Gain vs Frequency for PMP0  
Figure 13-26 High Gain vs Frequency for PMP1  
26  
25.8  
25.6  
25.4  
25.2  
25  
26  
25.8  
25.6  
25.4  
25.2  
25  
1W  
1W  
PVDD = +24V  
Load = 8Ω + 22µH  
PVDD = +24V  
Load = 8Ω + 22µH  
5W  
5W  
10W  
10W  
24.8  
24.6  
24.4  
24.2  
24  
24.8  
24.6  
24.4  
24.2  
24  
20  
200  
Frequency (Hz)  
Figure 13-28 High Gain vs Frequency for PMP4  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Figure 13-27 High Gain vs Frequency for PMP2  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 59 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
0
-10  
0
-10  
Ch0 to Ch1  
Ch1 to Ch0  
Ch0 to Ch1  
Ch1 to Ch0  
PVDD = +24V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +24V  
Gain = 20dB  
Load = 8Ω + 22µH  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
200  
2,000  
20,000  
20  
200  
2,000  
20,000  
Frequency (Hz)  
Frequency (Hz)  
Figure 13-29 Crosstalk vs Frequency for PMP0  
Figure 13-30 Crosstalk vs Frequency for PMP1  
0
-10  
0
-10  
Ch0 to Ch1  
Ch0 to Ch1  
PVDD = +24V  
PVDD = +24V  
Gain = 20dB  
Load = 8Ω + 22µH  
Gain = 20dB  
Ch1 to Ch0  
Ch1 to Ch0  
-20  
-20  
Load = 8Ω + 22µH  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
200  
Frequency (Hz)  
Figure 13-31 Crosstalk vs Frequency for PMP2  
2,000  
20,000  
20  
200  
2,000  
20,000  
Frequency (Hz)  
Figure 13-32 Crosstalk vs Frequency for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 60 of 86  
V 1.0  
2018-07-17  
14 Typical Characteristics (PVDD = +21V, Load = 4Ω + 22µH)  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
100  
10  
PVDD = +21V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +21V  
Gain = 20dB  
Load = 4Ω + 22µH  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
100Hz  
1kHz  
6kHz  
100Hz  
1kHz  
6kHz  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 14-1 THD+N vs Output Power for PMP0  
Figure 14-2 THD+N vs Output Power for PMP1  
100  
10  
100  
10  
PVDD = +21V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +21V  
Gain = 20dB  
Load = 4Ω + 22µH  
1
1
0.1  
0.1  
0.01  
0.01  
100Hz  
1kHz  
6kHz  
100Hz  
1kHz  
6kHz  
0.001  
0.001  
0.001  
0.01  
0.1  
Output Power (W)  
Figure 14-3 THD+N vs Output Power for PMP2  
1
10  
100  
0.001  
0.01  
0.1  
Output Power (W)  
Figure 14-4 THD+N vs Output Power for PMP4  
1
10  
100  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 61 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
100  
10  
1W  
1W  
PVDD = +21V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +21V  
Gain = 20dB  
Load = 4Ω + 22µH  
5W  
5W  
10W  
10W  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 14-5 THD+N vs Frequency for PMP0  
Figure 14-6 THD+N vs Frequency for PMP1  
100  
10  
100  
10  
1W  
1W  
PVDD = +21V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +21V  
Gain = 20dB  
Load = 4Ω + 22µH  
5W  
5W  
10W  
10W  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
20  
200  
Frequency (Hz)  
Figure 14-8 THD+N vs Frequency for PMP4  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Figure 14-7 THD+N vs Frequency for PMP2  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 62 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = +21V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +21V  
Gain = 20dB  
Load = 4Ω + 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0
10  
20  
Output Power (W)  
Figure 14-9 PMP0 Efficiency (VDD + PVDD) vs Output Power  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Output Power (W)  
Figure 14-10 PMP1 Efficiency (VDD + PVDD) vs Output Power  
100  
100  
90  
80  
70  
60  
50  
40  
30  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
20  
PVDD = +21V  
PVDD = +21V  
Gain = 20dB  
Load = 4Ω + 22µH  
Gain = 20dB  
Load = 4Ω + 22µH  
10  
0
Output Power  
Per Channel  
Output Power  
Per Channel  
0
10  
20  
Output Power (W)  
Figure 14-12 PMP4 Efficiency (VDD + PVDD) vs Output Power  
30  
40  
50  
60  
0
10  
20  
Output Power (W)  
Figure 14-11 PMP2 Efficiency (VDD + PVDD) vs Output Power  
30  
40  
50  
60  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 63 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
1
100  
10  
1
PVDD = +21V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +21V  
Gain = 20dB  
Load = 4Ω + 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0.1  
0.1  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 14-13 Input Power vs Output Power for PMP0  
Figure 14-14 Input Power vs Output Power for PMP1  
100  
10  
1
100  
10  
1
PVDD = +21V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +21V  
Gain = 20dB  
Load = 4Ω + 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0.1  
0.1  
0.0001 0.001  
0.01  
Output Power (W)  
Figure 14-15 Input Power vs Output Power for PMP2  
0.1  
1
10  
100  
0.0001 0.001  
0.01  
Output Power (W)  
Figure 14-16 Input Power vs Output Power for PMP4  
0.1  
1
10  
100  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 64 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
10  
1
10  
1
PVDD = +21V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +21V  
Gain = 20dB  
Load = 4Ω + 22µH  
0.1  
0.1  
0.01  
0.001  
0.01  
PMP1  
PMP0  
0.001  
0.0001 0.001 0.01  
0.1  
1
10  
100 1000  
0.0001 0.001 0.01  
0.1  
1
10  
100 1000  
Output Power (W)  
Output Power (W)  
Figure 14-17 PVDD Current vs Output Power for PMP0  
Figure 14-18 PVDD Current vs Output Power for PMP1  
10  
1
10  
1
PVDD = +21V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +21V  
Gain = 20dB  
Load = 4Ω + 22µH  
0.1  
0.1  
0.01  
0.01  
PMP4  
PMP2  
0.001  
0.001  
0.0001 0.001 0.01 0.1  
1
10  
100 1000  
0.0001 0.001 0.01  
0.1  
1
10  
100 1000  
Output Power (W)  
Output Power (W)  
Figure 14-19 PVDD Current vs Output Power for PMP2  
Figure 14-20 PVDD Current vs Output Power for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 65 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
20  
19.9  
19.8  
19.7  
19.6  
19.5  
19.4  
19.3  
19.2  
19.1  
19  
20  
19.9  
19.8  
19.7  
19.6  
19.5  
19.4  
19.3  
19.2  
19.1  
19  
1W  
1W  
PVDD = +21V  
Load = 4Ω + 22µH  
PVDD = +21V  
Load = 4Ω + 22µH  
5W  
5W  
10W  
10W  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 14-21 Low Gain vs Frequency for PMP0  
Figure 14-22 Low Gain vs Frequency for PMP1  
20  
19.9  
19.8  
19.7  
19.6  
19.5  
19.4  
19.3  
19.2  
19.1  
19  
20  
19.9  
19.8  
19.7  
19.6  
19.5  
19.4  
19.3  
19.2  
19.1  
19  
1W  
1W  
PVDD = +21V  
Load = 4Ω + 22µH  
PVDD = +21V  
Load = 4Ω + 22µH  
5W  
5W  
10W  
10W  
20  
200  
Frequency (Hz)  
Figure 14-23 Low Gain vs Frequency for PMP2  
2000  
20000  
20  
200  
Frequency (Hz)  
Figure 14-24 Low Gain vs Frequency for PMP4  
2000  
20000  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 66 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
26  
25.8  
25.6  
25.4  
25.2  
25  
26  
25.8  
25.6  
25.4  
25.2  
25  
1W  
1W  
PVDD = +21V  
Load = 4Ω + 22µH  
PVDD = +21V  
Load = 4Ω + 22µH  
5W  
5W  
10W  
10W  
24.8  
24.6  
24.4  
24.2  
24  
24.8  
24.6  
24.4  
24.2  
24  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 14-25 High Gain vs Frequency for PMP0  
Figure 14-26 High Gain vs Frequency for PMP1  
26  
25.8  
25.6  
25.4  
25.2  
25  
26  
25.8  
25.6  
25.4  
25.2  
25  
1W  
1W  
PVDD = +21V  
Load = 4Ω + 22µH  
PVDD = +21V  
Load = 4Ω + 22µH  
5W  
5W  
10W  
10W  
24.8  
24.6  
24.4  
24.2  
24  
24.8  
24.6  
24.4  
24.2  
24  
20  
200  
Frequency (Hz)  
Figure 14-27 High Gain vs Frequency for PMP2  
2000  
20000  
20  
200  
Frequency (Hz)  
Figure 14-28 High Gain vs Frequency for PMP4  
2000  
20000  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 67 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
0
-10  
0
-10  
Ch0 to Ch1  
Ch1 to Ch0  
Ch0 to Ch1  
Ch1 to Ch0  
PVDD = +21V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +21V  
Gain = 20dB  
Load = 4Ω + 22µH  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
200  
2,000  
20,000  
20  
200  
2,000  
20,000  
Frequency (Hz)  
Frequency (Hz)  
Figure 14-29 Crosstalk vs Frequency for PMP0  
Figure 14-30 Crosstalk vs Frequency for PMP1  
0
-10  
0
-10  
Ch0 to Ch1  
Ch0 to Ch1  
PVDD = +21V  
Gain = 20dB  
Load = 4Ω + 22µH  
PVDD = +21V  
Gain = 20dB  
Ch1 to Ch0  
Ch1 to Ch0  
-20  
-20  
Load = 4Ω + 22µH  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
200  
2,000  
20,000  
20  
200  
2,000  
20,000  
Frequency (Hz)  
Frequency (Hz)  
Figure 14-32 Crosstalk vs Frequency for PMP4  
Figure 14-31 Crosstalk vs Frequency for PMP2  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 68 of 86  
V 1.0  
2018-07-17  
15 Typical Characteristics (PVDD = +21V, Load = 8Ω + 22µH)  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
100  
10  
PVDD = +21V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +21V  
Gain = 20dB  
Load = 8Ω + 22µH  
1
1
0.1  
0.1  
0.01  
0.01  
100Hz  
1kHz  
6kHz  
100Hz  
1kHz  
6kHz  
0.001  
0.001  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 15-1 THD+N vs Output Power for PMP0  
Figure 15-2 THD+N vs Output Power for PMP1  
100  
10  
100  
10  
PVDD = +21V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +21V  
Gain = 20dB  
Load = 8Ω + 22µH  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
100Hz  
1kHz  
6kHz  
100Hz  
1kHz  
6kHz  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 15-3 THD+N vs Output Power for PMP2  
Figure 15-4 THD+N vs Output Power for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 69 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
100  
10  
1W  
1W  
PVDD = +21V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +21V  
Gain = 20dB  
Load = 8Ω + 22µH  
5W  
5W  
10W  
10W  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 15-5 THD+N vs Frequency for PMP0  
Figure 15-6 THD+N vs Frequency for PMP1  
100  
10  
100  
10  
1W  
1W  
PVDD = +21V  
Gain = 20dB  
PVDD = +21V  
Gain = 20dB  
Load = 8Ω + 22µH  
5W  
5W  
Load = 8Ω + 22µH  
10W  
10W  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
20  
200  
Frequency (Hz)  
Figure 15-7 THD+N vs Frequency for PMP2  
2000  
20000  
20  
200  
Frequency (Hz)  
Figure 15-8 THD+N vs Frequency for PMP4  
2000  
20000  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 70 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = +21V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +21V  
Gain = 20dB  
Load = 8Ω + 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
Output Power (W)  
Figure 15-10 PMP1 Efficiency (VDD+PVDD) vs Output Power  
15  
20  
25  
30  
35  
Output Power (W)  
Figure 15-9 PMP0 Efficiency (VDD+PVDD) vs Output Power  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = +21V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +21V  
Gain = 20dB  
Load = 8Ω + 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
Output Power (W)  
Output Power (W)  
Figure 15-11 PMP2 Efficiency (VDD+PVDD) vs Output Power  
Figure 15-12 PMP4 Efficiency (VDD+PVDD) vs Output Power  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 71 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
1
100  
10  
1
PVDD = +21V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +21V  
Gain = 20dB  
Load = 8Ω + 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0.1  
0.1  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 15-13 Input Power vs Output Power for PMP0  
Figure 15-14 Input Power vs Output Power for PMP1  
100  
10  
1
100  
10  
1
PVDD = +21V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +21V  
Gain = 20dB  
Load = 8Ω + 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0.1  
0.1  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 15-15 Input Power vs Output Power for PMP2  
Figure 15-16 Input Power vs Output Power for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 72 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
10  
1
10  
1
PVDD = +21V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +21V  
Gain = 20dB  
Load = 8Ω + 22µH  
0.1  
0.1  
0.01  
0.001  
0.01  
PMP0  
PMP1  
0.001  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 15-17 PVDD Current vs Output Power for PMP0  
Figure 15-18 PVDD Current vs Output Power for PMP1  
10  
1
10  
1
PVDD = +21V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +21V  
Gain = 20dB  
Load = 8Ω + 22µH  
0.1  
0.1  
0.01  
0.01  
PMP2  
PMP4  
0.001  
0.001  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 15-19 PVDD Current vs Output Power for PMP2  
Figure 15-20 PVDD Current vs Output Power for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 73 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
20  
19.9  
19.8  
19.7  
19.6  
19.5  
19.4  
19.3  
19.2  
19.1  
19  
20  
19.9  
19.8  
19.7  
19.6  
19.5  
19.4  
19.3  
19.2  
19.1  
19  
1W  
1W  
PVDD = +21V  
Load = 8Ω + 22µH  
PVDD = +21V  
Load = 8Ω + 22µH  
5W  
5W  
10W  
10W  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 15-21 Low Gain vs Frequency for PMP0  
Figure 15-22 Low Gain vs Frequency for PMP1  
20  
19.9  
19.8  
19.7  
19.6  
19.5  
19.4  
19.3  
19.2  
19.1  
19  
20  
19.9  
19.8  
19.7  
19.6  
19.5  
19.4  
19.3  
19.2  
19.1  
19  
1W  
1W  
PVDD = +21V  
Load = 8Ω + 22µH  
PVDD = +21V  
Load = 8Ω + 22µH  
5W  
5W  
10W  
10W  
20  
200  
2000  
20000  
20  
200  
Frequency (Hz)  
Figure 15-24 Low Gain vs Frequency for PMP4  
2000  
20000  
Frequency (Hz)  
Figure 15-23 Low Gain vs Frequency for PMP2  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 74 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
26  
25.8  
25.6  
25.4  
25.2  
25  
26  
25.8  
25.6  
25.4  
25.2  
25  
1W  
1W  
PVDD = +21V  
Load = 8Ω + 22µH  
PVDD = +21V  
Load = 8Ω + 22µH  
5W  
5W  
10W  
10W  
24.8  
24.6  
24.4  
24.2  
24  
24.8  
24.6  
24.4  
24.2  
24  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 15-25 High Gain vs Frequency for PMP0  
Figure 15-26 High Gain vs Frequency for PMP1  
26  
25.8  
25.6  
25.4  
25.2  
25  
26  
25.8  
25.6  
25.4  
25.2  
25  
1W  
1W  
PVDD = +21V  
Load = 8Ω + 22µH  
PVDD = +21V  
Load = 8Ω + 22µH  
5W  
5W  
10W  
10W  
24.8  
24.6  
24.4  
24.2  
24  
24.8  
24.6  
24.4  
24.2  
24  
20  
200  
Frequency (Hz)  
Figure 15-27 High Gain vs Frequency for PMP2  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Figure 15-28 High Gain vs Frequency for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 75 of 86  
V 1.0  
2018-07-17  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
0
-10  
0
-10  
Ch0 to Ch1  
Ch1 to Ch0  
Ch0 to Ch1  
Ch1 to Ch0  
PVDD = +21V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +21V  
Gain = 20dB  
Load = 8Ω + 22µH  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
200  
2,000  
20,000  
20  
200  
2,000  
20,000  
Frequency (Hz)  
Frequency (Hz)  
Figure 15-29 Crosstalk vs Frequency for PMP0  
Figure 15-30 Crosstalk vs Frequency for PMP1  
0
-10  
0
-10  
Ch0 to Ch1  
Ch0 to Ch1  
PVDD = +21V  
Gain = 20dB  
Load = 8Ω + 22µH  
PVDD = +21V  
Gain = 20dB  
Load = 8Ω + 22µH  
Ch1 to Ch0  
Ch1 to Ch0  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
200  
2,000  
20,000  
20  
200  
2,000  
20,000  
Frequency (Hz)  
Figure 15-31 Crosstalk vs Frequency for PMP2  
Frequency (Hz)  
Figure 15-32 Crosstalk vs Frequency for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 76 of 86  
V 1.0  
2018-07-17  
16 Register map  
For all register map:  
f “ : Don’t Care condition  
“ : Reserved bits configured during factory settings.  
Read / Write Access (Power Mode Settings):  
Default  
Address Address  
Value  
Description  
Name  
Bit(s)  
Value  
Function  
Select manual Power Mode control. Default  
the device will operate in automatic Power  
Mode control. This bit can be set to 1 if manual  
Power Mode control is required.  
manualPM  
6
- 0 1 1 - - - -  
Manual selected power mode. These two bits  
can be used selecting the Power Mode of the  
device when it is in manual Power Mode  
control.  
Power Mode  
Control  
- 0 1 1 - - - -  
0x00  
0x3D  
PM_man  
5:4  
- - 0 0 - - - -  
- - 0 1 - - - -  
- - 1 0 - - - -  
- - 1 1 - - - -  
Reserved  
Power Mode 1  
Power Mode 2  
Power Mode 3  
Threshold value for PM1=>PM2 change. This  
value will set the threshold for when automatic  
0 0 1 1 1 1 0 0 Power Mode changes from PM1 to PM2. It can  
be programmed from 0 - 255; this maps to 0  
output power – max output power.  
Threshold for  
Power Mode  
change  
0x01  
0x02  
0x03  
0x3C  
0x32  
0x5A  
Mthr_1to2  
Mthr_2to1  
Mthr_2to3  
7:0  
7:0  
7:0  
PM1=>PM2  
Threshold value for PM2=>PM1 change. This  
value will set the threshold for when automatic  
0 0 1 1 0 0 1 0 Power Mode changes from PM2 to PM1. It can  
be programmed from 0 - 255; this maps to 0  
Threshold for  
Power Mode  
change  
PM2=>PM1  
output power – max output power.  
Threshold value for PM2=>PM3 change. This  
value will set the threshold for when automatic  
0 1 0 1 1 0 1 0 Power Mode changes from PM2 to PM3. It can  
be programmed from 0 - 255; this maps to 0  
Threshold for  
Power Mode  
change  
PM2=>PM3  
output power – max output power.  
Threshold value for PM3=>PM2 change. This  
value will set the threshold for when automatic  
0 1 0 1 0 0 0 0 Power Mode changes from PM3 to PM2. It can  
be programmed from 0 - 255; this maps to 0  
Threshold for  
Power Mode  
change  
0x04  
0x0A  
0x50  
0xC  
Mthr_3to2  
7:0  
PM3=>PM2  
output power – max output power.  
Enables soft-clipping. High to enable. Low to  
Soft-clipping  
and over-  
current  
protection  
latching  
lf_clamp_en  
ocp_latch_en  
7
1
0 - - - - - 0 -  
disable.  
0 - - - - - 0 -  
High to use permanently latching OCP.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 77 of 86  
V 1.0  
2018-07-17  
Read / Write Access (Power Mode Profile Settings):  
Default  
Address Address  
Value  
Description  
Name  
Bit(s)  
Value  
Function  
Power Mode Profile select. With this register  
the user can selects the appropriate Power  
Mode Profile.  
f f f f f 0 0 0  
Select Power  
Mode Profile  
setting  
- - - - - 0 0 0  
- - - - - 0 0 1  
- - - - - 0 1 0  
- - - - - 0 1 1  
- - - - - 1 0 0  
f f 1 0 - - - -  
- - 0 0 - - - -  
- - 0 1 - - - -  
- - 1 0 - - - -  
- - 1 1 - - - -  
f f - - 1 1 - -  
- - - - 0 0 - -  
- - - - 0 1 - -  
- - - - 1 0 - -  
- - - - 1 1 - -  
f f - - - - 1 1  
- - - - - - 0 0  
- - - - - - 0 1  
- - - - - - 1 0  
- - - - - - 1 1  
Power Mode Profile 0  
0x1D  
0x00  
PMprofile  
2:0  
Power Mode Profile 1  
Power Mode Profile 2  
Power Mode Profile 3  
Power Mode Profile 4  
Custom profile PM3 content  
Assign scheme A to PM3  
Assign scheme B to PM3  
Assign scheme C to PM3  
Assign scheme D to PM3  
Custom profile PM2 content  
Assign scheme A to PM2  
Assign scheme B to PM2  
Assign scheme C to PM2  
Assign scheme D to PM2  
Custom profile PM1 content  
Assign scheme A to PM1  
Assign scheme B to PM1  
Assign scheme C to PM1  
Assign scheme D to PM1  
PM3_man  
PM2_man  
PM1_man  
5:4  
3:2  
Power Mode  
Profile  
configuration  
0x1E  
0x2F  
1:0  
7
Over-current  
protection  
latch clear  
Clears over current protection latch. A low to  
high toggle clears the current OCP latched  
condition.  
ocp_latch_cle  
ar  
0x20  
0x25  
0x1F  
0x10  
0 - - - - - - -  
- 0 0 - - - - -  
Audio input mode. Sets the input mode of the  
amplifier. This means the amplifier overall gain  
setting.  
Audio in  
mode  
audio_in_mo  
de  
6:5  
- 0 0 - - - - -  
- 0 1 - - - - -  
Audio in mode 0: 20dB gain  
Audio in mode 1: 26dB gain  
Enables or disables DC protection. High to  
enable. Low to disable.  
0x26  
0x27  
0x2D  
0x05  
0x08  
0x30  
DC protection  
Eh_dcShdn  
2
5
2
f f f f - 1 - -  
Audio in  
mode  
overwrite  
Enables audio in mode default overwrite. High  
0 0 0 0 - 0 - - to enable. Low to disable. Should enabled for  
address 0x25 to have effect.  
audio_in_mo  
de_ext  
Error handler  
clear  
Clears error handler. A low-to-high-to-low  
- - 0 - - 0 - -  
eh_clear  
toggle clears the error handler.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 78 of 86  
V 1.0  
2018-07-17  
Read Only Access (Monitor Channel 0 and Channel 1)  
Default  
Address Address  
Value  
Description  
Name  
Bit(s)  
Value  
Function  
Frequency mode monitor channel 0. Register  
- 0 0 0 f f 0 0 to read out in which frequency mode channel 0  
of the device is currently operating in.  
Monitor  
register  
channel 0  
(Frequency  
and Power  
Mode)  
dcu_mon0.fr  
eqMode  
6:4  
0x60  
0x00  
Power mode monitor channel 0. Monitor to  
read out in which Power Mode channel 0 of  
the device is currently operating in.  
dcu_mon0.P  
M_mon  
1:0  
- - - - f f 0 0  
dcu_mon0.m  
ute  
Channel 0 mute monitor. Monitor to read out  
if channel 0 is in mute or in unmute.  
5
4
3
2
1
f f 0 0 0 0 0 0  
f f 0 0 0 0 0 0  
f f 0 0 0 0 0 0  
f f 0 0 0 0 0 0  
f f 0 0 0 0 0 0  
dcu_mon0.vd  
d_ok  
Channel 0 VDD monitor. Monitor to read out if  
VDD for channel 0 is ok.  
dcu_mon0.pv  
dd_ok  
Channel 0 PVDD monitor. Monitor to read out  
if PVDD for channel 0 is ok.  
Monitor  
register  
dcu_mon0.Vc  
fly2_ok  
Channel 0 Cfly2 protection monitor. Monitor to  
read out if Cfly2 for channel 0 is ok.  
0x61  
0x00  
channel 0  
dcu_mon0.Vc  
fly1_ok  
Channel 0 Cfly1 protection monitor. Monitor to  
read out if Cfly1 for channel 0 is ok.  
Channel 0 over current protection monitor.  
f f 0 0 0 0 0 0 Monitor to read out if an over current  
protection event has occurred.  
OCP Monitor  
channel 0  
0
Monitor  
register  
channel 0  
(Modulation  
Index)  
Channel 0 modulation index monitor. Monitor  
to read out live modulation index. Modulation  
index from 0 to 1 maps on the 8-bits register  
from 0 to 255.  
dcu_mon0.M  
_mon  
0x62  
0x64  
0x00  
0x00  
7:0  
0 0 0 0 0 0 0 0  
Frequency mode monitor channel 1. Register  
- 0 0 0 f f 0 0 to read out in which frequency mode channel 1  
of the device is currently operating in.  
Monitor  
register  
channel 1  
(Frequency  
and Power  
Mode)  
dcu_mon1.fr  
eqMode  
6:4  
1:0  
Power mode monitor channel 1. Monitor to  
dcu_mon1.P  
M_mon  
- - - - f f 0 0  
read out in which Power Mode channel 1 of  
the device is currently operating in.  
dcu_mon1.m  
ute  
Channel 1 mute monitor. Monitor to read out  
if channel 1 is in mute or in unmute.  
5
4
3
2
1
f f 0 0 0 0 0 0  
f f 0 0 0 0 0 0  
f f 0 0 0 0 0 0  
f f 0 0 0 0 0 0  
f f 0 0 0 0 0 0  
dcu_mon1.vd  
d_ok  
Channel 1 VDD monitor. Monitor to read out if  
VDD for channel 1 is ok.  
dcu_mon1.pv  
dd_ok  
Channel 1 PVDD monitor. Monitor to read out  
if PVDD for channel 1 is ok.  
Monitor  
register  
0x65  
0x00  
dcu_mon1.Vc  
fly2_ok  
Channel 1 Cfly2 protection monitor. Monitor to  
read out if Cfly2 for channel 1 is ok.  
channel 1  
dcu_mon1.Vc  
fly1_ok  
Channel 1 Cfly1 protection monitor. Monitor to  
read out if Cfly1 for channel 1 is ok.  
Channel 1 over current protection monitor.  
f f 0 0 0 0 0 0 Monitor to read out if an over current  
protection event has occurred.  
OCP Monitor  
channel 1  
0
Monitor  
register  
channel 1  
(Modulation  
Index)  
Channel 1 modulation index monitor. Monitor  
to read out live modulation index. Modulation  
index from 0 to 1 maps on the 8-bits register  
from 0 to 255.  
dcu_mon1.M  
_mon  
0x66  
0x00  
7:0  
0 0 0 0 0 0 0 0  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 79 of 86  
V 1.0  
2018-07-17  
Read Only Access (Error Register Monitoring):  
Default  
Address Address  
Value  
Description  
Name  
Bit(s)  
Value  
Error monitor register. Gives the accumulated  
status of every potential error source. This  
register should be cleared by using the error  
handler clear register.  
All bits will be 0 in default/normal operation  
and 1 when triggered  
Error  
accumulated  
register  
Bit 0: flying capacitor over-voltage error  
Bit 1: over-current protection  
Bit 2: pll error  
0x6D  
0x00  
error_acc  
7:0  
0 0 0 0 0 0 0 0  
Bit 3: PVDD under-voltage protection  
Bit 4: over-temperature warning  
Bit 5: over-temperature error  
Bit 6: pin-to-pin low impedance protection  
Bit 7: DC protection  
MSEL[2:0] monitor register. Monitor to read  
out which output configuration the device is in:  
BTL, SE, BTL/SE or PBTL  
Monitor  
MSEL register  
0x75  
0x00  
msel_mon  
2:0  
f f f f f 0 0 0  
Error monitor register. Gives the live status of  
every potential error source.  
All bits will be 0 in default/normal operation  
and 1 when triggered  
Bit 0: flying capacitor over-voltage error  
Bit 1: over-current protection  
Bit 2: pll error  
0x7C  
0x00  
Error register  
error  
7:0  
0 0 0 0 0 0 0 0  
Bit 3: PVDD under-voltage protection  
Bit 4: over-temperature warning  
Bit 5: over-temperature error  
Bit 6: pin-to-pin low impedance protection  
Bit 7: DC protection  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 80 of 86  
V 1.0  
2018-07-17  
17 Package Information  
QFN pad-down 64-pin mechanical data  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 81 of 86  
V 1.0  
2018-07-17  
18 Tape and Reel Information  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 82 of 86  
V 1.0  
2018-07-17  
19 Revision History  
Doc. Rev.  
Date  
Comments  
V 1.0  
July 2018 Initial release in Infineon format  
Datasheet  
Please read the Important Notice and Warnings at the end of this document  
V 1.0  
www.infineon.com  
page 83 of 86  
2018-07-17  
20 Contents  
Description  
Applications  
Features  
1
1
1
1
Package  
1
2
3
4
Ordering Information  
2
2
3
4
Known Issues and Limitations  
Typical Application Block Diagram  
Pin Description  
4.1  
4.2  
Pinout MA12070QFN  
Pin Function  
4
5
5
6
7
8
Absolute Maximum Ratings  
7
8
Recommended Operating Conditions  
Electrical and Audio Characteristics  
Functional description  
9
12  
Multi-level modulation  
Very low power consumption  
Power Mode Management  
Power Modes Profiles  
Power Supplies  
12  
12  
12  
13  
15  
15  
15  
15  
16  
16  
16  
16  
17  
17  
17  
18  
18  
19  
20  
20  
Gate driver supplies  
Digital core supply  
Flying capacitors  
Protection  
Over-current protection on OUTXX nodes  
Temperature protection  
Power supply monitors  
DC protection  
Clock system  
Clock synchronization  
MCU/Serial control interface  
I2C write operation  
I2C read operation  
/CLIP pin and soft-clipping  
/ERROR pin and error handling  
9
Application Information  
21  
Input/Output Configurations  
21  
21  
22  
23  
23  
Bridge Tied Load (BTL) Configuration  
Single Ended (SE) Configuration  
Combined SE and BTL Configuration  
Parallel Bridge Tied Load (PBTL)  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 84 of 86  
V 1.0  
2018-07-17  
EMC output filter Considerations  
24  
24  
25  
25  
25  
25  
Audio Performance Measurements  
Thermal Characteristics and Test signals  
Start-up procedure  
Shut-down / power-down procedure  
Recommended PCB Design for MA12070QFN (EPAD-down package)  
10 Typical Characteristics (PVDD = +26V, Load = 4Ω + 22µH)  
11 Typical Characteristics (PVDD = +26V, Load = 8Ω + 22µH)  
12 Typical Characteristics (PVDD = +24V, Load = 4Ω + 22µH)  
13 Typical Characteristics (PVDD = +24V, Load = 8Ω + 22µH)  
14 Typical Characteristics (PVDD = +21V, Load = 4Ω + 22µH)  
15 Typical Characteristics (PVDD = +21V, Load = 8Ω + 22µH)  
16 Register map  
27  
36  
45  
53  
61  
69  
77  
Read / Write Access (Power Mode Settings):  
Read / Write Access (Power Mode Profile Settings):  
Read Only Access (Monitor Channel 0 and Channel 1)  
Read Only Access (Error Register Monitoring):  
77  
78  
79  
80  
17 Package Information  
18 Tape and Reel Information  
19 Revision History  
20 Contents  
81  
82  
83  
84  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 85 of 86  
V 1.0  
2018-07-17  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information contained in this application note is For further information on the product, technology,  
given as a hint for the implementation of the product delivery terms and conditions and prices please  
only and shall in no event be regarded as a contact your nearest Infineon Technologies office  
Published by  
description or warranty of a certain functionality,  
condition or quality of the product. Before  
implementation of the product, the recipient of this  
application note must verify any function and other  
technical information given herein in the real  
application. Infineon Technologies hereby disclaims  
any and all warranties and liabilities of any kind  
(including without limitation warranties of non-  
infringement of intellectual property rights of any  
third party) with respect to any and all information  
given in this application note.  
(www.infineon.com).  
Infineon Technologies AG  
81726 Munich, Germany  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2018 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about this  
document?  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized  
representatives  
of  
Infineon  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  
Email: erratum@infineon.com  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of the  
product or any consequences of the use thereof can  
reasonably be expected to result in personal injury.  
Document reference  

相关型号:

MA12070P

2x80W 超高功效全集成式音频功放 IC,带 I2S 数字输入
INFINEON

MA1209XD-2W

1W/2W, FIXED INPUT , ISOLA TED & REGULATED DUAL OUTPUT DC-DC CONVERTER
MICRODC

MA121

Silicon epitaxial planar type
PANASONIC

MA12101BAN

HIGH FREQUENCY CERAMIC CAPACITORS
MURATA

MA12101BBN

HIGH FREQUENCY CERAMIC CAPACITORS
MURATA

MA12101CAN

HIGH FREQUENCY CERAMIC CAPACITORS
MURATA

MA12101CBN

HIGH FREQUENCY CERAMIC CAPACITORS
MURATA

MA12101DAN

HIGH FREQUENCY CERAMIC CAPACITORS
MURATA

MA12101DBN

HIGH FREQUENCY CERAMIC CAPACITORS
MURATA

MA12101FAN

HIGH FREQUENCY CERAMIC CAPACITORS
MURATA

MA12101FBN

HIGH FREQUENCY CERAMIC CAPACITORS
MURATA

MA12101GAN

HIGH FREQUENCY CERAMIC CAPACITORS
MURATA