IRPS5401M [INFINEON]

IRPS5401是一个完整的电源管理单元,可为处理器,FPGA和其他多轨电源系统提供5个输出电压。四个高效可配置开关稳压器和一个拉/灌线性稳压器提供所需的典型电压轨,如核心电压,存储器电压和I / O电压。  ;
IRPS5401M
型号: IRPS5401M
厂家: Infineon    Infineon
描述:

IRPS5401是一个完整的电源管理单元,可为处理器,FPGA和其他多轨电源系统提供5个输出电压。四个高效可配置开关稳压器和一个拉/灌线性稳压器提供所需的典型电压轨,如核心电压,存储器电压和I / O电压。  

开关 存储 稳压器
文件: 总62页 (文件大小:1673K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IRPS5401 PMIC Datasheet  
IRPS5401 PMIC  
Flexible Power Management Unit  
Features  
Full power system including 5 integrated outputs  
4A, 4A, 2A and 2A Switching Regulators  
500mA Source/Sink Linear regulator  
Single rail operation 5.5V to 12V  
Output Range from 0.25V to 5.1V for outputs A-D and 0.5V to 3.6V for LDO  
Allows combining outputs and/or the use of an external IR MOSFETPower Stage to increase output  
current to as high as 50A  
Emulated current mode control without external compensation  
Differential voltage sensing on Switcher A for higher accuracy  
I2C / PMBus with integrated level shifter  
Advanced Sequencing control  
Extensive PMBus command set of 74 commands  
Integrated current sensing and full telemetry including voltage, current, temperature and faults  
Rated for -40°C to +125°C TJ operation  
Pb-Free, RoHS6, 7x7mm, 56-pin, 0.4mm pitch QFN  
Potential applications  
High density ASIC, FPGA & CPU multi-rail systems  
Embedded Computing systems  
Communications and Storage systems  
Description  
The IRPS5401 is a complete power management unit delivering up to 5 output voltages to processors, FPGA’s  
and other multi-rail power systems. Four high efficiency configurable switching regulators and a Source/Sink  
Linear regulator provide the typical rails required such as core voltage, memory voltage and I/O voltages.  
Integrated, accurate current, voltage and temperature sensing allows telemetry and fault reporting through the  
I2C/PMBus.  
The IRPS5401 switching regulators utilize fixed frequency emulated current mode control, and thus no external  
compensation is required.  
The IRPS5401 is highly flexible. Switchers A and B deliver 2A each. Switchers C and D, deliver 4A each and can  
also be combined to deliver 8A. Further, Switcher A can be configured to use an external IR MOSFETPower  
Stage to deliver up to 50A or more.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1 of 61  
V 2.8  
2022-07-06  
 
 
 
IRPS5401 PMIC  
Flexible Power Management Unit  
Table of contents  
Table of contents  
Features ........................................................................................................................................ 1  
Potential applications..................................................................................................................... 1  
Description .................................................................................................................................... 1  
Table of contents............................................................................................................................ 2  
1
2
3
4
5
6
7
8
Ordering Information ............................................................................................................. 4  
Application Circuit.................................................................................................................. 6  
Pinout Diagram...................................................................................................................... 7  
Pin Function .......................................................................................................................... 8  
Block Diagram ......................................................................................................................11  
Absolute Maximum Ratings ....................................................................................................12  
Electrical Specifications.........................................................................................................13  
Typical Application Diagrams .................................................................................................20  
9
9.1  
9.2  
9.3  
9.4  
9.5  
9.6  
9.7  
Description...........................................................................................................................24  
One-time Programmable (OTP) Memory .............................................................................................24  
MTP pin (pin 54).....................................................................................................................................24  
Device Power-up and Initialization.......................................................................................................25  
Addressing the IRPS5401 ......................................................................................................................26  
Switching Frequency.............................................................................................................................27  
Synchronizing to an External Clock......................................................................................................28  
Switcher A in External Powerstage Mode.............................................................................................28  
Digital Controller & PWM.......................................................................................................................29  
Diode Emulation / Discontinuous Mode Operation/AOT.....................................................................30  
Output Voltage Sensing, Telemetry and Faults ...................................................................................30  
Output Over Voltage Protection (OVP) .................................................................................................31  
Output Under Voltage Protection (UVP)...............................................................................................32  
Current Sensing, Telemetry and Faults ................................................................................................33  
Over-current Protection (OCP) .............................................................................................................34  
Input Voltage Sensing, Telemetry and Faults ......................................................................................35  
Die Temperature Sensing, Telemetry and Faults.................................................................................36  
Power Sequencing and Global Faults...................................................................................................36  
Sleep ......................................................................................................................................................38  
Combined Switcher C and D Operation................................................................................................38  
Linear Regulator....................................................................................................................................38  
LDO Monitoring and Faults ...................................................................................................................39  
Output Voltage Reporting, Output Overvoltage Protection and Undervoltage Protection...............39  
Input Voltage Reporting, Input UVLO and Input Overvoltage Protection...........................................39  
Over Current Protection........................................................................................................................39  
I2C Security............................................................................................................................................40  
Password Protection.............................................................................................................................41  
Pin Protection........................................................................................................................................41  
9.8  
9.9  
9.10  
9.11  
9.12  
9.13  
9.14  
9.15  
9.16  
9.17  
9.18  
9.19  
9.20  
9.21  
9.22  
9.23  
9.24  
9.25  
9.26  
9.27  
10  
Layout Guidelines .................................................................................................................43  
10.1  
Sample layout........................................................................................................................................44  
11  
11.1  
Typical Performance .............................................................................................................47  
Typical thermal performance at max output power............................................................................48  
12  
PMBUS Commands ................................................................................................................49  
Datasheet  
2 of 61  
V 2.8  
2022-07-06  
 
IRPS5401 PMIC  
Flexible Power Management Unit  
Table of contents  
13  
Marking Information .............................................................................................................55  
14  
Package Information .............................................................................................................56  
PCB Pad Size..........................................................................................................................................57  
PCB Pad Spacing ...................................................................................................................................58  
Solder Paste Stencil Pad Size................................................................................................................59  
Solder Paste Stencil Pad Spacing.........................................................................................................60  
14.1  
14.2  
14.3  
14.4  
15  
Environmental Qualifications .................................................................................................61  
Datasheet  
3 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Ordering Information  
1
Ordering Information  
Table 1  
Ordering Information  
Package type  
Base part  
number  
Standard pack Orderable part number  
Description  
IRPS5401M QFN 7 mm x 7 mm Tape and Reel IRPS5401MTRPBF  
IRPS5401M QFN 7 mm x 7 mm Tape and Reel IRPS5401MXI03TRP  
Unprogrammed  
Pre-programmed per  
Table 2  
IRPS5401M QFN 7 mm x 7 mm Tape and Reel IRPS5401MXI04TRPXUMA1  
Pre-programmed per  
Table 3  
Table 2  
Config  
IRPS5401MXI03TRP Loop Configurations  
R_MTP  
A (bold =  
B
C
D
LDO  
R_ADDR external PS)  
(supplied from)  
1
8.87kΩ  
10kΩ  
1.8V/0.5A  
1.2V/1.2A  
1.8V/0.5A  
0.85V/16A  
0.85V/25A  
3.3V/1.4A  
0.72V/9A  
0.72V/15A  
1.8V/1A  
1.8V/1.4A  
0.85V/0.6A  
5V/1.5A  
0.85V/0.6A  
3.3V/1.5A  
3.3V/3.3A  
1.8V/1A  
0.85V/3.7A  
0.85V/4A  
0.85V/2A  
1.8V/4A  
1.2V (B)  
2
1.8V (C)  
3
11kΩ  
1.8V (C)  
4
2.32kΩ  
2.87kΩ  
3.48kΩ  
4.12kΩ  
4.75kΩ  
5.49kΩ  
6.19kΩ  
6.98kΩ  
7.87kΩ  
1.2V/1.5A  
1.2V/1.5A  
1.8V/1A  
1.2V (D or external)  
1.2V (D or external)  
0.85V (A)  
5
1.8V/1A  
1.8V/4A  
6
0.9V/3A  
1.2V/3A  
7
3.3V/2A  
0.85V/7A  
0.85V/7A  
1.8V/4A  
1.2V (B)  
8
3.3V/2A  
1.2V (B)  
9
1.2V/1.5A  
1.2V/1.5A  
1.2V/1.5A  
1.2V/1.2A  
2.5V/1.5A  
1.2V/2A  
1.8V/2A  
1.8V/2A  
1.8V (D)  
10  
11  
12  
0.9V/2A  
1.8V/2.5A  
0.85V/4A  
0.85V/4A  
0.85V (C)  
0.72V/9A  
0.72V/20A  
1.2V (D or external)  
1.2V (D or external)  
Datasheet  
4 of 61  
V 2.8  
2022-07-06  
 
IRPS5401 PMIC  
Flexible Power Management Unit  
Ordering Information  
Table 3  
Config  
IRPS5401MXI04TRPAUMA1 Loop Configurations  
R_MTP  
A (bold =  
B
C
D
LDO  
R_ADDR external PS)  
(supplied from)  
1
2
3
Not  
used  
Not  
used  
Not  
used  
0.85V/ 15A  
3.3V/10A  
1.8V/2A  
0.9V/0.5A  
(external 2.5V)  
4
5
2.32kΩ  
1.2V/5A  
5V/2.1A  
1.13V/1A  
1.8V/3A  
2.87kΩ  
0.85V/0.5A (external  
2.5V)  
0.85V/15A  
3.3V/10A  
1.8V/2A  
2.5V/2A  
3.3V/0.5A (optional)  
6
7
3.48kΩ  
4.12kΩ  
0.85V/7A  
1.2V/6A  
0.85V/0.5A  
(external 2.5V)  
1.2V/6A  
2.5V/0.5A  
1.8V/5A  
1.8V/0.5A  
(external 2.5V)  
8
4.75kΩ  
Datasheet  
5 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Application Circuit  
2
Application Circuit  
6-12V  
BOOT_A  
BOOT_C  
VOUT_C  
VOUT_A  
VOUT_B  
PHASE_A  
BOOT_B  
PHASE_C  
2A  
2A  
4A  
BOOT_D  
VOUT_D  
PHASE_B  
1.8V  
PHASE_D  
VIN_LDO  
4A  
1.2V to 5.5V  
5V  
500mA  
VO_LDO  
VDDIO  
SLEEP#  
PG  
5
5
1.8V – 5V  
ALERT#  
CLK  
I2C /  
PMBus  
EN  
SYNC_IN  
DATA  
ADDR_PROT  
MTP  
GND  
Figure 1  
IRPS5401 Basic application circuit  
Figure 2  
System efficiency with VO= 2.5V, FSW=800kHz, Tj=45°C  
Datasheet  
6 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Pinout Diagram  
3
Pinout Diagram  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
EN_A  
FB_A  
1
2
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
VIN_D  
RTN_A  
VIN_A  
3
4
BOOT_D  
BOOT_A  
5
6
PHASE_D  
PHASE_A  
PHASE_B  
IRPS5401  
56 Pin7x7 Pin QFN  
0.4 mm Pitch  
7
8
9
PHASE_C  
BOOT_C  
BOOT_B  
VIN_B  
10  
11  
12  
13  
14  
FB_B  
PG_B  
VIN_C  
57 GND  
SLEEP#  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Figure 3  
Pinout diagram 7mm x 7mm QFN (Top View)  
Datasheet  
7 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Pin Function  
4
Pin Function  
Table 4  
PIN Function  
PIN  
Description  
If not used  
#
Name  
VIN_D  
TYP  
P [I]  
1,2,3  
Input supply voltage pins for Switcher D. Decouple locally by  
connecting a ceramic capacitor from this pin to GND.  
Short To  
GND  
4
BOOT_D  
A [B]  
Supply input for Switcher D high side FET gate drive. Connect  
a 0.1uF MLCC between this pin and PHASE_ D pins. An  
internal diode is connected between VDRV and this pin  
Open  
5,6,7  
PHASE_D  
PHASE_C  
P [O]  
P [O]  
Switch node of Switcher D. Connect directly to the output  
inductor.  
Open  
Open  
8,9,  
10  
Switch node of Switcher C. Connect directly to the output  
inductor.  
11  
BOOT_C  
A [B]  
Supply input for Switcher C high side FET gate drive. Connect  
a 0.1uF MLCC between this pin and PHASE_C pins. An internal Open  
diode is connected between VDRV and this pin  
12,  
13,14  
15  
VIN_C  
FB_C  
P [I]  
A [I]  
Input supply voltage pins for Switcher C. Decouple locally by  
connecting a ceramic capacitor from this pin to GND.  
Short To  
GND  
Switcher C feedback input. Connect directly to VOUT_C for  
output voltages less than 2.55V. Connect to VOUT_C with a  
2:1 resistor divider for output voltages greater than 2.55V.  
Open  
Open  
16  
17  
PG_D  
D [O]  
D [O]  
Open drain power good output indicating Switcher D is  
powered up  
ALERT#  
I2C/PMBus Alert line. This alert signal can indicate one or  
more faults, allowing the system bus manager to poll the  
device and identify the root cause. All faults or customer  
selected faults such as overcurrent or over-temperature may  
be specifically masked to this pin.  
Open  
18  
19  
20  
CLK  
D [B]  
D [B]  
P [I]  
I2C/PMBus Clock Line. Pull up to VDDIO with 10K  
I2C/PMBus Data Line. Pull up to VDDIO with 10K  
n/a  
n/a  
DATA  
VDDIO  
Pull-up signal voltage for I2C communications. Connect to the  
same I/O rail used by the I2C master.  
n/a  
21  
22  
1V8  
A [O]  
P [I]  
1.8V reference used by the device for internal analog and  
digital control. Decouple using a 1.0uF X7R type ceramic  
capacitor  
n/a  
VIN_LDO  
Input to the linear regulator. See linear regulator section for  
specific requirements. This voltage can range from 1.2V to  
5.5V, with restrictions on overall power dissipation  
Short To  
GND  
23  
24  
25  
VO_LDO  
FB_L  
A[O]  
A [I]  
D[I]  
LDO output  
Open  
Open  
LDO feedback input  
PG_L  
Open drain power good output indicating LDO is powered up.  
Pull up to 5V with 10K  
Open  
Open  
26  
PG_A  
D[I]  
Open drain power good output indicating switcher A is  
powered up. Pull up to 5V with 10K  
Datasheet  
8 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Pin Function  
PIN  
Description  
If not used  
#
Name  
PG_C  
TYP  
D[I]  
27  
28  
Open drain power good output indicating switcher C is  
powered up. Pull up to 5V with 10K  
Open  
EN_L  
D[I]  
D[I]  
LDO enable input control. Active High, external termination  
required, do not leave floating. LVTTL threshold levels. ‘ON’  
threshold is 2.1V minimum  
Short To  
GND  
29  
SLEEP#  
Active low signal to place the device in a low power mode  
LVTTL threshold levels. ‘SLEEP ENABLED’ threshold is 0.8V  
maximum  
Short to  
VCC  
30  
31  
PG_B  
FB_B  
D[I]  
A [I]  
Open drain power good output indicating switcher B is  
powered up. Pull up to 5V with 10K  
Open  
Open  
Switcher B feedback input. Connect directly to VOUT_B for  
output voltages less than 2.55V. Connect to VOUT_B with a  
2:1 resistor divider for output voltages greater than 2.55V.  
32  
33  
VIN_B  
P [I]  
Input supply voltage pin for Switcher B. Decouple locally by  
connecting a ceramic capacitor from this pin to GND.  
Short To  
GND  
BOOT_B  
A [B]  
Supply input for Switcher B high side FET gate drive. Connect  
a 0.1uF MLCC between this pin and PHASE_ B pins. An  
internal diode is connected between VDRV and this pin  
Open  
34,35 PHASE_B  
36,37 PHASE_A  
P [O]  
P [O]  
A [B]  
Switch node of Switcher B. Connect directly to the output  
inductor.  
Open  
Open  
Switch node of Switcher A. Connect directly to the output  
inductor.  
38  
BOOT_A  
Supply input for Switcher A high side FET gate drive. Connect  
a 0.1uF MLCC between this pin and PHASE_A pins. An internal Open  
diode is connected between VDRV and this pin  
39  
40  
41  
VIN_A  
RTN_A  
FB_A  
P [I]  
A [I]  
A [I]  
Input supply voltage pin for Switcher A. Decouple locally by  
connecting a ceramic capacitor from this pin to GND.  
Short To  
GND  
Differential feedback return signal for Switcher A. This can be Short  
connected remotely to the return location of VOUT_A.  
together  
Differential feedback positive signal for Switcher A. Connect  
directly to VOUT_A for output voltages less than 2.55V.  
Connect to VOUT_A with a 2:1 resistor divider for output  
voltages greater than 2.55V.  
Short  
together  
42  
43  
EN_A  
D [I]  
Switcher A enable input control; external termination  
required, do not leave floating. LVTTL threshold levels. ‘ON’  
threshold is 2.1V minimum  
Short To  
GND  
PWM_A  
A [O]  
PWM signal for Switcher A to be used when Switcher A is  
configured for use with an external IR MOSFETPower  
Stage. This PWM pin is a 5V PWM. This pin is used to drive a  
5V capable external power stage such as an IR355x power  
stage and is a tri-state or tri-level signal. A resistor and zener  
clamp must be used when paired with a 3.3V only power stage  
(see figure 11). Leave floating if this pin is not used  
Open  
44  
EN_B  
D [I]  
Switcher B enable input control; external termination  
required, do not leave floating. LVTTL threshold levels. ‘ON’  
Short To  
GND  
Datasheet  
9 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Pin Function  
PIN  
Description  
If not used  
#
Name  
TYP  
A[I]  
threshold is 2.1V minimum  
45  
46  
47  
ISEN_A-  
Negative (return) sense point for Switcher A external IOUT  
sense.  
Short  
together  
ISEN_A+  
VDRV  
A[I]  
Positive sense point for Switcher A external IOUT sense.  
Short  
together  
A [O]  
5V drive voltage used to power the internal MOSFET drivers.  
Use a 2.2Ω, 2.2uF filter from VCC to insure noise from this  
switching node is not injected into the VCC pin. See the  
application section. Terminate decoupling cap to GND (pin 57)  
n/a  
48  
VCC  
A [O]  
5V source used by the device to power internal analog and  
digital control. When VCC is self-generated by the device (from  
VSUPPLY), do not load this pin with any load other than VDRV. n/a  
Decouple using a 2.2uF X7R type ceramic capacitor.  
Terminate decoupling cap to AGND (pin 50)  
49  
VSUPPLY  
A [I]  
D[I]  
Input voltage for internal LDO for internally generated VCC  
Short to  
VCC  
50  
51  
AGND  
EN_C  
Ground reference for the analog and digital control.  
n/a  
Switcher C enable input control; external termination  
required, do not leave floating. LVTTL threshold levels. ‘ON’  
threshold is 2.1V minimum  
Short To  
GND  
52  
53  
SYNC_CLK  
EN_D  
D[I]  
External Synchronization pin. LVTTL threshold levels. ‘HIGH’  
threshold is 2.1V minimum, ‘LOW’ is 0.8V maximum  
Short to  
GND  
D [I]  
Switcher D enable input control; external termination  
required, do not leave floating. LVTTL threshold levels. ‘ON’  
threshold is 2.1V minimum  
Short to  
GND  
54  
MTP  
A [I]  
A resistor placed to ground on this pin selects which of 15 MTP  
banks of memory are used. By allowing up to 15 MTP  
memory banks, a user can use up to 15 identical IRPS5401  
devices on a single board using just one customer-  
configuration file. If this pin is above 2V when POR occurs, the  
device will not load OTP and the I2C address will be 0Ah.  
Decouple with 0.01uF cap.  
n/a  
n/a  
55  
ADDR_PROT  
Use a resistor on this pin to set the I2C and/or PMBus Address  
offset for the device If the I2C register R/W protect security  
function is used and ‘PIN’ protect is enabled, this pin must be  
asserted high to disable the R/W protection. Decouple with  
0.01uF cap.  
56  
57  
FB_D  
GND  
A [I]  
Switcher D feedback input. Connect directly to VOUT_D for  
output voltages less than 2.55V. Connect to VOUT_D with a  
2:1 resistor divider for output voltages greater than 2.55V.  
Open  
n/a  
Ground. The large metal pad on the bottom must be  
connected to Ground.  
Datasheet  
10 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Block Diagram  
5
Block Diagram  
VIN  
VIN  
SWITCHER C – 4A  
SWITCHER A – 2A  
5-12V  
5-12V  
VDRV  
VDRV  
BOOT  
BOOT  
VOUT_A  
VOUT_C  
PHASE  
PHASE  
PWM_A  
5V  
5V  
GND  
Internal Current Sense  
GND  
FB  
Internal Current Sense  
IS+  
IS-  
External DCR Current Sense  
VIN  
SWITCHER D – 4A  
5-12V  
VDRV  
BOOT  
FB_A  
RTN_A  
VOUT_D  
VIN  
PHASE  
SWITCHER B – 2A  
5-12V  
VDRV  
5V  
BOOT  
VOUT_B  
GND  
PHASE  
Internal Current Sense  
5V  
FB  
VDRV  
VSUPPLY  
VCC  
Reference  
Circuit  
GND  
1.8V  
Internal Current Sense  
FB_B  
FB/REF  
VIN_LDO  
1.8V  
5V  
VDDIO  
CLK  
Margin Control  
ΔV  
I2C Interface  
+
VO_LDO  
15%  
DATA  
w variable Ref.  
ALERT  
_
ADDR_PROT  
GND  
5
5
0.5V Ref  
EN  
PG  
Sequencing &  
Ramp Control  
Tracking/Non-Tracking LDO  
Timing & Phase  
CLK  
SYNC_CLK  
ØA 0Ø°  
ØB - 180°  
ØC - 90°  
ØD - 270°  
Registers and  
MTP Memory  
MTP  
PLL &  
Phase Block  
Figure 4  
IRPS5401 Block Diagram  
Datasheet  
11 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Absolute Maximum Ratings  
6
Absolute Maximum Ratings  
Stresses beyond these listed under “Absolute Maximum Ratings” may cause permanent damage to the device.  
These are stress ratings only and functional operation of the device at these or any other conditions beyond  
those indicated in the operational sections of the specifications are not implied.  
Table 5  
Voltage Ratings  
Vin [A_B_C_D], VSUPPLY  
VCC, VDRIVE  
-0.3V to 16V  
-0.3V to 6V  
VDDIO  
-0.3 to 5.5V  
1V8  
-0.3V to 2V  
BOOT [A_B_C_D]  
BOOT [A_B_C_D] <10ns transient  
SW [A_B_C_D]  
-0.3V to 22V  
-0.3V to 24V  
-0.3V to 16V  
SW [A_B_C_D] <10ns transient  
BOOT to SW [A_B_C_D]  
Input / Output Pins  
GND to AGND  
-4V to 18V  
-0.3V to VCC +0.3V (Note2)  
-0.3V to VCC +0.3V (Note1)  
-0.3V to +0.3V  
Table 6  
Thermal Information  
Junction to Ambient Thermal Resistance ƟJA  
Junction to PCB Thermal Resistance ƟJ-PCB  
Maximum Storage Temperature Range  
13.5°C/W  
3°C/W  
-55°C To 150°C  
-40°C To 125°C (Note 3)  
300°C  
Maximum Junction Operating Temperature Range  
Maximum Lead Temperature (Soldering 10s)  
Note:  
1. Voltages referenced to GND unless otherwise specified  
2. Must not exceed 6V  
3. Cold temperature performance is verified via correlation using statistical quality control. Not tested in  
production.  
Datasheet  
12 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Electrical Specifications  
7
Electrical Specifications  
RECOMMENDED OPERATING CONDITIONS FOR RELIABLE OPERATION WITH MARGIN  
Table 7  
Recommended Operating Ambient Temperature Range*  
VIN [A to D]  
-40°C to 85°C  
1.2V to 14V (with external VCC)  
VSUPPLY (for Internal VCC)  
External VCC and VDRIVE Voltage Range  
VDDIO  
6V to 14V  
4.5V to 5.5V  
3.3V  
SWA and SWB Output Load  
SWC and SWD Output Load  
Combined SWC+SWD Output Load  
0A to 2A  
0A to 4A  
0A to 8A  
Note:  
Note:  
The electrical characteristics table lists the spread of values verified within the recommended  
operating conditions. Typical values represent the median values, which are related to 25°C.  
*For operation below 0°C, a delay of 60ms between applying power and output ramp up is  
required. See more details in 9.3  
Table 8  
Electrical Characteristics  
Parameter  
Symbol  
Conditions  
Min.  
Typ.  
Max.  
Unit  
UVLO Turn-on  
Threshold  
4.2  
4.5  
V
UVLO Turn-off  
Threshold  
3.6  
3.9  
40  
25  
10  
V
All outputs disabled  
(low power disabled)  
All outputs disabled  
(low power enabled)  
SLEEP# = low  
Supply Current  
Supply Current  
IVCC  
IVCC  
IVCC  
45  
30  
25  
mA  
mA  
uA  
Supply Current  
(Sleep Mode Enabled)  
VDRV  
UVLO Turn-on  
Threshold  
4.2  
3.9  
15  
4.5  
V
UVLO Turn-off  
Threshold  
3.6  
V
All outputs Enabled, fsw  
=800kHz  
Supply Current  
Ivdrv  
mA  
Internal Supply VCC  
LDO  
Input Voltage  
Output Voltage (on Vcc  
pin)  
6
-
14  
V
V
Ta=25°C, 6.0V<VSUPPLY<14V,  
0mA<Iout<50mA  
Vcc  
4.6  
4.85  
5.1  
Datasheet  
13 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Electrical Specifications  
Parameter  
Symbol  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Output Current  
Ioutmax  
-
75  
mA  
VDDIO  
Input Voltage1  
Input High Voltage  
Input Low Voltage  
Input Leakage  
I2C termination voltage  
% of VDDIO  
1.62  
60  
-
-
-
-
-
5.5  
-
V
%
%
µA  
% of VDDIO  
30  
1
Vpad = 0 to 5.5V  
-1  
Reference Voltage  
(DAC) [A to D]  
Range  
0.25  
-0.8  
2.55  
0.8  
V
Resolution  
Accuracy  
(0°C to 85°C junction  
temperature)  
5
-
mV  
VID = 1.0 to 2.55V  
%
VID = 0.5V to 0.995V  
VID = 0.25V to 0.495V  
-8  
-
-
8
mV  
mV  
-10  
10  
Accuracy1  
VID = 1.0 to 2.55V  
-1.5  
-
1.5  
%
(-40°C to 125°C junction  
temperature)  
VID = 0.5V to 0.995V  
VID = 0.25V to 0.495V  
-15  
-20  
-
-
15  
20  
mV  
mV  
Oscillator & PWM  
Generator  
Internal Oscillator1  
-
48  
-
-
3
MHz  
%
0°C to 85°C junction  
temperature  
Frequency Accuracy  
-3  
Frequency Accuracy  
PWM Frequency Range1  
PWM Resolution1  
-40°C to 125°C  
-6.25  
200  
-
+6.25  
%
-
2000 kHz  
2.6  
-
ns  
Digital Inputs – TTL  
ADDR_PROT,  
EN_x  
Input High Voltage  
Input Low Voltage  
Input Leakage  
2.1  
-
-
-
-
-
0.8  
1
V
V
Vpad = 0 to 5.5V  
Vpad = 0 to 5.5V  
-1  
µA  
Digital Inputs – TTL  
Input High Voltage  
Input Low Voltage  
Input Leakage  
SLEEP#  
SYNC  
2.1  
-
-
-
-
-
V
0.8  
10  
V
-10  
µA  
External Sync  
Frequency range  
Voltage Range  
200  
0
1000 kHz  
5
Vdc  
V
Input High voltage  
Datasheet  
2.1  
14 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Electrical Specifications  
Parameter  
Symbol  
Conditions  
Min.  
Typ.  
Max.  
0.8  
±5  
Unit  
V
Input Low Voltage  
Input Leakage current  
Sync pin capacitance  
Vpad = 0 to 5.5V  
Vpad = 0 to 5.5V  
µA  
pF  
10  
Synchronization Range  
(From OTP setting)  
0°C to 85°C  
-6.25  
+6.25  
%
Synchronization Range  
(From OTP setting)  
-40°C to 125°C  
-3  
+3  
55  
%
%
Sync signal Duty Cycle  
45  
50  
Remote Voltage Sense FB [A to D],  
Inputs  
RTN_A  
FB_x Input Current  
RTN_A Input Current  
VOUT = 0.25V to 2.55V  
RTN_A = ±100mV  
-35  
-
-
90  
-
µA  
µA  
V
-50  
Differential Input  
Voltage Range1  
0
2.55  
RTN_A Input CM  
-100  
-
100  
mV  
Voltage1  
Remote Current Sense ISEN_A+/ISEN_A  
Inputs  
-
Common Mode Voltage  
Range1  
-0.1  
-10  
-
-
Vcc-1  
60  
V
Differential Voltage  
Range1  
mV  
Analog Address/Level  
Inputs  
ADDR_PROT,  
MTP  
Output Current1  
Vpad = 0 to 1.2V  
96  
100  
104  
µA  
Open-Drain Outputs  
PG_x, DATA,  
ALERT#  
Output Low Voltage  
Output Leakage  
PWM I/O  
4mA  
-
-
-
-
0.3  
±5  
V
Vpad = 0 to 5.5V  
µA  
PWM_A  
Output Low Voltage  
I = -4mA  
-
-
0.4  
V
VCC-  
0.45V  
I = +4mA  
Output High Voltage  
Tri-State Leakage  
I2C/PMBus  
-
-
-
V
Vpad = 0 to Vcc  
-
±1  
µA  
Bus Speed1  
Normal  
Fast  
-
-
-
100  
400  
-
-
-
kHz  
kHz  
kHz  
Maximum  
1000  
Datasheet  
15 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Electrical Specifications  
Telemetry Reporting -  
Switching Outputs [A  
to D]  
0.97,  
1.9,  
3.8,  
Iout, Iin, Vin and  
Temperature Filter  
Rate1  
Selectable  
(Selected Frequency applies  
to all parameters for all  
loops)  
-
-
7.7,  
-
-
Hz  
15.5,  
31, 63,  
126  
Iout, Iin, Vin,  
Temperature Update  
Rate1  
25  
kHz  
Vin Reporting Range1  
0
-2  
-5  
-
-
17.5  
2
V
Vin Reporting Accuracy  
(-2 to 2%)  
VIN = 12V  
VIN = 5V  
-
%
%
mV  
V
Vin Reporting Accuracy  
-
31.25  
-
5
Vin Reporting  
-
Resolution1  
Vout Reporting Range1  
With 2:1 scaling  
-
5.1  
Vout Reporting  
Accuracy1  
READ_VOUT reports DAC  
setting  
0.5  
%
User Selectable  
per output  
through  
VOUT_MODE  
command.  
Actual  
resolution is  
5mV/10mV  
depending on  
VOUT_SCALING  
0.244  
1.953  
3.906  
Vout Reporting  
Resolution1  
-
-
mV  
Iout Reporting Gain  
Accuracy1  
Iread=Iout(1±gain_error)±I_o  
s*full scale  
gain_error  
I_os  
-5  
5
%
Iout Reporting Offset  
Accuracy1  
full Scale = 2A for A/B  
and 4A for C/D  
-2.5  
2.5  
%
Iout Reporting  
Resolution1  
-
-
-
-
15.625  
7.8125  
31.25  
31.25  
0.25  
-
-
-
-
mA  
mA  
mW  
mW  
Iin Reporting  
Resolution1  
P_in Reporting  
Resolution1  
P_out Reporting  
Resolution1  
Temperature Reporting  
Resolution1  
°C  
%
Temperature Reporting  
-2  
2
Datasheet  
16 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Electrical Specifications  
Accuracy1  
Telemetry Reporting -  
Switching Output A  
with External IR  
MOSFETPower Stage  
Iout Reporting  
Resolution1  
-
-6  
-
125  
-
6
-
mA  
%
Iout Reporting  
Accuracy1  
At 100% full load. Assumes ±  
5% accurate external source  
Iin Reporting  
Resolution1  
62.5  
250  
250  
mA  
mW  
mW  
P_in Reporting  
Resolution1  
-
-
P_out Reporting  
-
-
Resolution1  
Telemetry Reporting -  
LDO  
Vin Reporting Range1  
0
-
-
8
-
V
Vin Reporting  
Resolution1  
7.812  
mV  
Vin Reporting Accuracy  
Vout Reporting Range1  
-2  
0
-
2
4
%
V
Vout is measured  
-
Vout Reporting  
Resolution1  
0.244  
1.953  
3.906  
-
User Selectable through  
VOUT_MODE command.  
-
-
mV  
Vout Reporting Accuracy  
Iout Reporting Range1  
-2  
0
2
%
A
-
0.72  
Iout Reporting  
-
-10  
-
0.976  
-
10  
-
mA  
%
Resolution1  
Iout Reporting Accuracy1  
At 500mA  
P_in Reporting  
15.625  
15.625  
mW  
Resolution1  
P_out Reporting  
Resolution1  
-
-
mW  
Datasheet  
17 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Electrical Specifications  
Fault Protection -  
Switchers [A to D]  
OVP Threshold During  
Start-up (until output  
reaches 1V)  
OVP Threshold During  
Start-up (until output  
reaches 1V)  
1.2  
2.4  
1.35  
2.75  
1.5  
3.0  
V
V
OVP and UVP Operating  
Relative to VID, 1:1 scaling  
Relative to VID, 2:1 scaling  
50  
-
-
400  
-
mV  
mV  
mV  
Threshold1  
Range:  
Resolution:  
50  
OVP and UVP Operating  
100  
800  
Threshold1  
Range:  
Resolution:  
OVP and UVP delay1  
OVP and UVP threshold  
-
-
100  
-
-
mV  
ns  
After exceeding threshold  
For thresholds > 200mV  
150  
-20  
0
20  
%
A
Tolerance1  
OC WARN and FAULT  
Range2  
Switcher A and B  
-
4
OC WARN and FAULT  
Switcher C and D  
0
-
-
8
15.97  
-
A
Range2  
OC WARN and FAULT  
Range2  
OC WARN and FAULT  
Resolution  
Switcher C in C+D mode  
0
A
-
31.25  
mA  
OC FAULT Threshold  
Tolerance  
(0°C to 85°C junction  
temperature)  
At 3A for A and B, 6A for C and  
D, at 12A for C+D  
-10  
-20  
+10  
+20  
%
%
OC FAULT Threshold  
Tolerance1  
At 3A for A and B, 6A for C and  
D, at 12A for C+D  
(-40°C to 125°C junction  
temperature)  
OT WARN and FAULT  
0
-
255  
-
°C  
°C  
Range1  
OT WARN and FAULT  
Resolution1  
1
Fault Protection -  
Switcher A with  
External IR MOSFET™  
Power Stage  
OC WARN and FAULT  
Range2  
0
-
-
255  
A
OC WARN and FAULT  
Resolution  
0.25  
62  
-
-
A
External ISENSE Filter  
Bandwidth  
-
kHz  
Datasheet  
18 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Electrical Specifications  
Fault Protection - LDO  
Read Only, % of VOUT as set  
in ldo_target_register - Non  
tracking OR  
OV FAULT  
-
125  
-
%
measured VIN/2 - Tracking  
OV WARN  
-
-
112.5  
75  
-
%
%
%
A
UV FAULT  
-
UV WARN  
-
87.5  
0.72  
-
-
OC FAULT  
Read Only  
-
-
0.72  
-
OC WARN Range  
OC WARN Resolution  
0
-
A
3.9  
mA  
MOSFET - Switcher A  
and B  
High Side Switch  
Resistance  
Tj = 20°C, BOOT-PHASE = 5V  
Tj = 20°C, VDRV = 5V  
-
-
150  
45  
-
-
mΩ  
mΩ  
Low Side Switch  
Resistance  
MOSFET – Switcher C  
and D  
High Side Switch  
Resistance  
Tj = 20°C, BOOT-PHASE = 5V  
Tj = 20°C, VDRV = 5V  
-
-
85  
25  
-
-
mΩ  
mΩ  
Low Side Switch  
Resistance  
LDO  
Input Voltage  
Vin_ldo  
1.2  
0.5  
-
-
5.5  
3.6  
0.5  
0.5  
510  
515  
V
Output Voltage  
Dropout Voltage  
Output Current  
Reference Voltage  
Vout_ldo  
Vdropout_ldo  
Iout_ldo  
-
-
V
Iout=0.5A, Tj=125°C  
V
-
-
A
Vref_ldo  
Ta = 25°C  
490  
485  
500  
500  
mV  
mV  
-40°C<Tj < 85°C  
Timing Information  
Automatic  
Time from POR to end of  
configuration loaded from  
NVM to working registers  
Configuration from  
-
1
-
ms  
MTP1  
Isense AMP Automatic  
Trim Time1  
-
-
-
1
3
-
-
-
ms  
µs  
µs  
Delay from Enable high  
to ramp start1  
Low power mode disabled  
Low power mode enabled  
Delay from Enable high  
to ramp start1  
600  
1. Verified by design  
2. Actual OC limit (MAX sustained load the VR can handle) is a function of inductor ISAT and system thermal  
solution. SW A and B limited to 2A max DC load. SW C and D limited to 4A max DC load  
Datasheet  
19 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Typical Application Diagrams  
8
Typical Application Diagrams  
Vin  
PWM_A NC  
BOOT_A  
VDRV  
VOUT_A  
Vcc  
PHASE_A  
2A Max  
1.8V  
RTN_A  
FB_A  
Route sense lines  
differentially  
Vin  
VSUPPLY  
Divider optional; only  
required for 2:1 scaling  
ISEN_A+ NC  
ISEN_A- NC  
5.5V Max  
VIN_LDO  
VO_LDO  
3.6V, 0.5A Max  
BOOT_B  
VOUT_B  
FB_L  
PG_L  
EN_L  
PHASE_B  
2A Max  
IRPS5401  
PG_A  
EN_A  
PG_B  
EN_B  
PG_C  
EN_C  
PG_D  
EN_D  
FB_B  
Divider optional; only  
required for 2:1 scaling  
BOOT_C  
VOUT_C  
PHASE_C  
4A Max  
VDDIO  
1.6V – 5V, I2C  
pull up voltage  
I2C or SMBus  
Terminate to VDDIO  
with 4.7K  
ALERT#  
CLK  
FB_C  
Divider optional; only  
required for 2:1 scaling  
DATA  
ADDR_PROT  
BOOT_D  
VOUT_D  
SYNC_CLK  
SLEEP#  
PHASE_D  
4A Max  
Active Low, pull up to Vcc  
MTP  
FB_D  
Divider optional; only  
required for 2:1 scaling  
GND  
Figure 5  
IRPS5401 in 5 output configuration with Vcc from internal LDO  
Datasheet  
20 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Typical Application Diagrams  
Vin  
PHASE_A  
BOOT_A  
NC  
NC  
VDRV  
P5V  
Vcc  
Vin  
VSUPPLY  
IR3555 Boot  
P5V  
Vcc  
VOUT_A  
PWM  
PWM_A  
Switch  
IOUT  
ISEN_A+  
TOUT  
GND  
REFIN  
To SMC  
To IR3555 REFIN  
1.8V  
ISEN_A-  
To 1.8V Reference  
FB_A  
Route sense lines differentially  
5.5V  
MAX  
RTN_A  
VIN_LDO  
3.6V, 0.5A Max  
VO_LDO  
BOOT_B  
VOUT_B  
FB_L  
PG_L  
EN_L  
PHASE_B  
2A Max  
IRPS5401  
PG_A  
EN_A  
PG_B  
EN_B  
PG_C  
EN_C  
PG_D  
EN_D  
FB_B  
Divider optional; only  
required for 2:1 scaling  
BOOT_C  
VOUT_C  
PHASE_C  
4A Max  
VDDIO  
1.6V – 5V, I2C  
pull up voltage  
I2C or SMBus  
Terminate to  
VDDIO with 4.7K  
ALERT#  
CLK  
FB_C  
Divider optional; only  
required for 2:1 scaling  
DATA  
ADDR_PROT  
BOOT_D  
VOUT_D  
SYNC_CLK  
SLEEP#  
PHASE_D  
4A Max  
Active Low, pull up to Vcc  
MTP  
FB_D  
Divider optional; only  
required for 2:1 scaling  
GND  
Figure 6  
IRPS5401 using external IR MOSFETPower Stage for high Current Output  
Datasheet  
21 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Typical Application Diagrams  
Vin  
PHASE_A  
BOOT_A  
NC  
NC  
VDRV  
P5V  
Vcc  
Vin  
VSUPPLY  
IR3555 Boot  
P5V  
Vcc  
VOUT_A  
PWM  
PWM_A  
Switch  
IOUT  
ISEN_A+  
TOUT  
GND  
REFIN  
To SMC  
To IR3555 REFIN  
1.8V  
ISEN_A-  
To 1.8V Reference  
FB_A  
Route sense lines differentially  
RTN_A  
5.5V Max  
VIN_LDO  
3.6V, 0.5A Max  
VO_LDO  
BOOT_B  
VOUT_B  
FB_L  
PG_L  
EN_L  
PHASE_B  
2A Max  
IRPS5401  
PG_A  
EN_A  
PG_B  
EN_B  
PG_C  
EN_C  
PG_D  
FB_B  
Divider optional; only  
required for 2:1 scaling  
BOOT_C  
NC  
VOUT_C  
PHASE_C  
NC EN_D  
VDDIO  
4A Max  
1.0V – 5V, I2C  
pull up voltage  
I2C or SMBus  
Terminate to  
VDDIO with 4.7K  
ALERT#  
CLK  
FB_C  
DATA  
ADDR_PROT  
BOOT_D  
SYNC_CLK  
SLEEP#  
PHASE_D  
4A Max  
Active Low, pull up to Vcc  
MTP  
FB_D NC  
GND  
Figure 7  
IRPS5401 using Switcher C and Switcher D in parallel for higher current applications  
Datasheet  
22 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Typical Application Diagrams  
TYPICAL OPERATING CHARACTERISTICS  
VCC=5V, -40°C to 125°C  
Typical DAC Error at 0.5V  
Typical DAC Error at 2.5V  
3.0  
10  
8
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
6
4
2
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Typical ICC in Low Power Mode  
Typical ICC  
39  
38  
37  
36  
35  
34  
25  
25  
24  
24  
23  
23  
22  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Sync FET Rdson  
Control FET Rdson  
70  
60  
50  
40  
30  
20  
10  
0
250  
200  
150  
100  
50  
A&B  
C&D  
A&B  
C&D  
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Datasheet  
23 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Description  
9
Description  
The IRPS5401 is a digitally configurable flexible power management unit, with an I2C/PMBus interface. It can  
support up to 5 rails, with 4 independent switching regulators and one linear regulator.  
The switching frequency is programmable from 200 kHz to 2MHz and provides the capability of optimizing the  
design in terms of size and performance.  
The IRPS5401 switchers provide precisely regulated output voltages programmable from 0.25V to 2.55V without  
a resistor divider and up to 5.1V with a resistor divider.  
The IRPS5401 can operate with an internal bias supply (LDO), typically 5.0V. This allows operation with a single  
supply by connecting the input of the LDO (VSUPPLY) to the bus voltage (Vin_x). A 1uF capacitor should be used  
at the VSUPPLY pin for decoupling purposes. The output of this LDO is brought out at the Vcc pin and must be  
bypassed to the analog ground (pin 50) with a 1.0uF decoupling capacitor. An additional voltage, VDRV,  
required by the internal driver circuitry is derived by using a 2 ohm-1uF filter from the Vcc pin to the VDRV pin.  
Note that the 1uF at the VDRV pin must be bypassed to the system power ground (pin 57). The Vcc pin may also  
be connected to the VSUPPLY pin, and an external Vcc supply between 4.5V and 5.5V may be used, allowing for  
an extended operating bus voltage (Vin_x) range from 1.2V to 14V.  
The device utilizes the on-resistance of the low side MOSFET (synchronous MOSFET) as the current sense  
element. This method enhances the converter’s efficiency and reduces cost by eliminating the need for external  
current sense resistors.  
9.1  
One-time Programmable (OTP) Memory  
The IRPS5401 has 64K of OTP non-volatile memory. The OTP design is based on a patented split-channel non-  
volatile anti-fuse memory cell. The OTP memory has a data retention rating of 20 years and an operating  
temperature range of -40°C to 150°C (-55°C to 150°C storage rating)  
This memory space is divided up into 26 OTP segments that can be programmed 1 time. The memory space is  
therefore referred to as Multiple-times Programmable (MTP). This allows the user to; a) change the  
configuration registers and re-program the MTP up to 26 times or b) save up to 15 configuration files during  
initial programing and use the MTP pin to choose which file to load at start up. If option b is used, the  
remaining unused MTP segments are available for the user to make additional changes to the configuration file  
and save to MTP using the PowIRCenter GUI device programmer utility.  
9.2  
MTP pin (pin 54)  
The table below shows the MTP segment that will be selected with a given resistor value connected to the MTP  
pin. The resistor must be connected to the AGND pin and bypassed with a 10nF X7R type multi-layer ceramic  
capacitor.  
Datasheet  
24 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Description  
Table 9  
MTP pin Resistor  
MTP Segment selected  
*0.845kΩ  
*1.30kΩ  
*1.78kΩ  
2.32kΩ  
2.87kΩ  
3.48kΩ  
4.12kΩ  
4.75kΩ  
5.49kΩ  
6.19kΩ  
6.98kΩ  
7.87kΩ  
8.87kΩ  
10.00kΩ  
11.00kΩ  
+0  
+1  
+2  
+3  
+4  
+5  
+6  
+7  
+8  
+9  
+10  
+11  
+12  
+13  
+14  
Note:  
Note:  
Do not use these values for applications with ambient temperatures <0°C  
The number of segments that the user chooses to program with multiple configuration files is set  
by a configuration register called max_prog. The max_prog register value needs to be set to the  
number of configuration files that will be programmed. For example, if the user programs  
segments +0, +1, and +2, then the max_prog register needs to have a value of 3. For applications  
with junction temperatures below 0°C, segments +0, +1, and +2 are not available.  
9.3  
Device Power-up and Initialization  
During the power-up sequence, when VIN is brought up, the internal LDO converts it to a regulated 5.0V at VCC.  
There is another LDO which further converts this down to 1.8V to supply the internal digital circuitry. An under-  
voltage lockout circuit monitors the voltage of the VCC pin and the P1V8 pin, and holds the POR low until these  
voltages exceed their thresholds and the internal 48 MHz oscillator is stable. When the device comes out of  
reset, it initializes an MTP load cycle, where the contents of the MTP are loaded into the working registers. Once  
the registers are loaded from MTP, the designer can use I2C/PMBus to re-configure the registers to suit the  
specific VR design requirements if desired, irrespective of the status of the enable pins.  
Datasheet  
25 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Description  
**60 ms if Tamb < 0° C  
2 ms  
Vsupply=VIN_x  
VCC  
P1V8  
POR  
Trims done, MTP loaded  
and address offset resistor read  
En_x  
Vout  
Figure 8  
Power up sequence  
In the default configuration, power conversion for a given loop is enabled only when the corresponding En_x  
pin voltage is asserted high, the Vin_x bus voltage exceeds its under voltage threshold (as stored in the MTP  
registers and commanded by the PMBus commands VIN_ON and VIN_OFF), the contents of the MTP have been  
fully loaded into the working registers and the device address has been read. IRPS5401 provides additional  
options to enable the device power conversion through software and these options may be configured to  
override the default by using the I2C interface or PMBus.  
Note:  
The VDDIO pin voltage must remain stable after device POR. Cycling the VDDIO voltage after a  
device POR will cause a timing violation of the I2C bus protocol and may result in I2C and PMBus  
communication issues  
Note:  
**For Internal Switchers only (Switcher A, B, C, and D), a 60ms delay is required for applications  
that operate with an ambient temperature less than 0°C. The delay can also be accomplished by  
delaying the EN pin, using the PMBus TON_DELAY command, or a combination of both. This delay  
does not apply to the LDO output or Switcher A if Switcher A is configured in External Switcher  
mode  
9.4  
Addressing the IRPS5401  
The IRPS5401 has two 7-bit registers that are used to set the base I2C address and base PMBus address of the  
device, as follows.  
Table 10  
Register  
Description  
Default  
10h  
i2c_device_address  
The chip I2C address. An address of 0 will disable I2C communication  
pmb_device_address The chip PMBus address. An address of 0 will disable PMBus  
communication.  
40h  
Setting another bit, i2c_take_addr_from_ext, to 1, will allow the user to offset the base address of the device  
using a resistor from ADDR_PROT to AGND. In such a case, the table below provides the resistor values needed  
to realize up to 15 offsets from the base address. For applications with junction temperatures below 0°C,  
address offsets of +0, +1, and +2 are not available.  
Datasheet  
26 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Description  
Table 11  
ADDR_PROT Resistor  
I2C Address Offset  
*0.845kΩ  
*1.30kΩ  
*1.78kΩ  
2.32kΩ  
2.87kΩ  
3.48kΩ  
4.12kΩ  
4.75kΩ  
5.49kΩ  
6.19kΩ  
6.98kΩ  
7.87kΩ  
8.87kΩ  
10.00kΩ  
11.00kΩ  
12.10kΩ  
+0  
+1  
+2  
+3  
+4  
+5  
+6  
+7  
+8  
+9  
+10  
+11  
+12  
+13  
+14  
+15  
Note:  
Do not use these values for applications with ambient temperatures <0°C  
Another bit i2c_pmb_addr_lock, if set, allows the user to lock the I2C and PMBus addresses.  
9.5  
Switching Frequency  
The switching frequency (fsw) setting of the IRPS5401 is stored in MTP and can be configured by using the  
PMBus command FREQUENCY_SWITCH.  
The IRPS5401 with will ACK any FREQUENCY_SWITCH command from 200 kHz to 2MHz in increments of 1kHz  
(increments of 2kHz with commands above 1MHz). Internally the command is decoded and the actual FSW is  
set to the nearest value that can be supported with a 48MHz internal clock. For example, 500 kHz can be  
supported with ninety-six (96) 48 MHz clocks. So if you ask for 500 kHz, you get exactly 500 kHz. But if you  
wanted 450 kHz, the number of clocks required is 106.6667 (48/0.45). In this case, the frequency would be set  
to one hundred and seven (107) 48MHz clocks or 448.6 kHz. Fractional values of 0.5 and above are rounded up  
to the next whole number.  
Because of the enforced phase relationship between the four switching regulators, the switching frequency for  
all four switching regulators is determined by the FREQUENCY_SWITCH command sent to Switcher C.  
FREQUENCY_SWITCH commands sent to Switchers A, B, and D will be ACK’d and ignored. A  
FREQUENCY_SWITCH read command sent to Switchers A, B, or D will respond with the value that the user  
wrote into the device but the actual switching frequency for Switcher B and D will be the switching frequency of  
Switcher C. The switching frequency of Switcher A will be the switching of Switcher C if the  
FREQUENCY_SWITCH value for Switcher A is the same as or greater than Switcher C. The switching frequency  
of Switcher A will be one half of the switching frequency of Switcher C if the FREQUENCY_SWITCH value for  
Switcher A is less than Switcher C. The switching frequency of Switcher A will be ½ of Switcher C even when  
synced to an external CLK. This frequency relationship between Switcher A and Switcher C is the same with  
Datasheet  
27 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Description  
Switcher A using internal mode or external power stage mode. Switcher A will have the same switching  
frequency as Switcher C if Switcher C frequency is less than 400 kHz.  
Even when running off an internal clock, all four switchers exhibit fixed phase relationships with one another,  
with Switcher A leading Switcher C by 900  
which in turn leads loop B by 90o. Finally loop D lags loop B by 900. Thus loops A and B are out of phase by 1800  
as are loops C and D.  
Figure 9  
Switcher phase relationship  
9.6  
Synchronizing to an External Clock  
IRPS5401 implements a frequency lock loop which forces all four switcher loops to operate at the same  
frequency as an external synchronization clock. The four switchers still maintain the same phase relationships  
with each other as they do when running from an internal clock. Switcher A shows a small phase offset (~80ns)  
from the sync clock.  
If the sync clock is within ± 6.25% of the programmed frequency, the device will phase and frequency lock to  
the incoming sync clock.  
If the sync clock is more than ± 12.5% away from the programmed frequency, the device will lose sync and  
will relax gradually to the programmed frequency.  
Once the device is in sync, it will have a ± 10 ns uncertainty or jitter with respect to the sync clock.  
It takes about 110us for the circuit to lock to the Sync clock.  
9.7  
Switcher A in External Powerstage Mode  
Switchers B, C and D can only be operated in internal power stage mode, and their PWM signals are not brought  
out to a pin. However, using an MTP register bit, sw_a_use_internal_driver, Switcher A can be configured to  
operate in either internal power stage mode (sw_a_use_internal_driver=1) or in external power stage mode  
(sw_a_use_internal_driver = 0). In the external power stage mode, the PWM output of Switcher A is brought out  
to the PWM_A pin and can be connected to the PWM input pin of industry standard tri-state type drivers or  
Infineon power stage devices. The logic of operation for the tri-state drivers is depicted in the figure below.  
Note that the PWM_A output is tri-stated whenever the Switcher A is disabled, the shut-down ramp has  
completed or before the soft-start ramp is initiated.  
Datasheet  
28 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Description  
Figure 10  
PWM_A tri-state details  
PWM_A is a 5V PWM signal. A 3V zener clamp must be used to limit the power stage PWM pin voltage when the  
IRPS5401 is paired with an external power stage that does not support 5V PWM input. A series resistance of 402  
must used to limit the zener current.  
Figure 11  
Zener clamp details when using power stages that only support 3.3V PWM input  
9.8  
Digital Controller & PWM  
For the switcher loops A, B, C and D, the IRPS5401 uses a proprietary emulated current mode control scheme,  
which makes it possible to use PI control to stabilize the loop for all types of inductors and capacitors, including  
MLCC. The digitized error voltage from the high-speed voltage error ADC is processed by a digital compensator,  
the proportional (Kp) and Integral (Ki) coefficients, which are programmable. The output of the compensator is  
then compared with an emulated current signal to generate the PWM signal, with a resolution of 2.6ns to avoid  
limit cycling. As a close realization to a Type II analog compensator, the control engine also implements a low  
pass, programmable single pole (Kpole) filter. This defaults to 1.1MHz and in general, it should not be necessary  
to change the location of this pole over a wide range of applications.  
Ordinarily, a power stage using low ESR capacitors such as MLCCs requires the use of Type III compensation or  
PID control, but, in the IRPS5401, the emulated current mode modulator provides another pole-zero pair,  
unburdening the compensator and allowing a simple PI compensator to stabilize even such demanding  
applications.  
The compensator transfer function is defined as  
Ki  
(Kp )   
1
s
s
1  
p1  
Where, ωp1 is the pole typically positioned to filter noise and ripple, and programmable through the register  
Kpole1[3:0]  
Kp is the proportional coefficient, programmable through the register kp[5:0]  
Datasheet  
29 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Description  
And Ki is the integral coefficient programmable through the register ki[5:0].  
9.9  
Diode Emulation / Discontinuous Mode Operation/AOT  
Under very light loads, efficiency can become dominated by MOSFET switching losses. Using the manufacturer  
specific PMBus command MFR_FCCM, it is possible to enhance the light load efficiency by allowing the  
controller to work in an adaptive on time (AOT) or diode emulation mode.  
Table 12  
MTP Register  
diode_emu_thresh  
diode_emu_pw  
Function  
Default  
Sets the error voltage at which an on-time pulse is started in 2mV  
steps  
0h  
Sets the duration of the on-time pulse  
4h  
0h  
Reduces the calculated low-side FET on-time in 62.5ns steps. Useful  
for compensating for DrMOS or other drivers’ tri-state delay for a  
better prediction of the zero-crossing  
de_off_time_adjust  
Error threshold to go from discontinuous conduction mode to  
continuous conduction mode; 4 mV resolution. If Vout drops by this  
amount, the control will be handed to PWM and diode-emulation is  
ended.  
1h  
le_th  
Total current threshold below which it is assumed that the inductor  
current has a negative component.  
00h  
Inductor_ni_thresh  
When the current reading drops below ni_thresh, the controller determines that the inductor current has a  
negative component, and if MFR_FCCM=0, will allow AOT mode operation. Internal circuitry determines, using  
diode_emu_pw and the read values of Vinx and Voutx, when the inductor current declines to zero on a cycle by  
cycle basis and shuts off the low-side MOSFET at the appropriate time in each cycle. This reduces conduction  
losses and also lowers the switching frequency resulting in improved efficiency because the inductor and low-  
side MOSFET are not sinking power from the output capacitors at light loads.  
In AOT mode, if Vout drops below a certain threshold (le_th) due to applying a fast transient load, the operation  
is switched to continuous current mode (CCM) instantly.  
Industry standard tri-state drivers typically have slow tri-state entry times, which allows negative current  
to build up reducing efficiency and causing ringing.  
The off_time_adjust variable allows the designer to compensate for the tri-state delay by reducing the low-side  
FET on-time by an equivalent amount.  
9.10  
Output Voltage Sensing, Telemetry and Faults  
The IRPS5401 provides true differential remote sensing for the Switcher A output. The FB_A and RTN_A pins are  
connected to the load sense pins of the Switcher A output voltage to provide true differential remote voltage  
sensing with high common-mode rejection. This allows Switcher A (in external power stage mode) to provide  
excellent regulation even in high current applications. Switcher loops B, C and D have single ended feedback  
connections for sensing and regulation. Each loop has a high bandwidth error amplifier that generates the  
error voltage between this remote sense voltage and the target voltage. The error voltage is digitized by a fast,  
high-precision ADC. This digitized error is used for Vout under voltage fault and warning detection as well as for  
Vout overvoltage fault warning detection. Vout is reported using the READ_VOUT PMBus command. The  
reported Vout is the DAC reference value and not the actual measure output voltage.  
Datasheet  
30 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Description  
As shown in the figure below, the Vsen and Vrtn inputs have a 20kΩ pull-up to an internal 1V rail. This causes  
some current flow in the Vsen and Vrtn lines so external impedance should be kept to a minimum to avoid  
creating an offset in the sensed output voltage.  
1V  
20K  
20K  
FB_A  
+
-
RTN_A  
RTN_B,C,D  
terminated to GND  
internally  
Figure 12  
Output Voltage Sensing impedance  
9.11  
Output Over Voltage Protection (OVP)  
If the output voltage exceeds a user-programmable (through PMBUS) threshold, the IRPS5401 detects an  
output over-voltage fault and latches on the low-side MOSFET to limit the output voltage rise  
It should be noted, however, that although the overvoltage threshold is programmable to any value using the  
PMBus command, VOUT_OV_FAULT_LIMIT, internally it is translated into an offset from the commanded or  
reference voltage, with a resolution of 50 mV (100 mV if a 2:1 divider is used) and with a minimum value of 50  
mV (100 mV if a 2:1 divider is used) and maximum value of 400 mV (800 mV if a 2:1 divider is used).  
Under OVP conditions, depending on the setting of the VOUT_OV_FAULT_RESPONSE, the converter can be  
configured to keep regulating or to go into a latched shutdown, where the high side FET or Control FET is  
turned off and low side FET or Sync FET is turned on. Note however that there is an MTP register,  
vpu_high_release_en, that allows the low side FET operation to be configured in one of two ways: a) remain  
latched on indefinitely or b) remain latched on until the output voltage falls below 200mV at which time the  
low-side FET is released. This release mode can reduce or prevent undershoot of the output voltage.  
During soft-start, OVP is triggered at the fixed soft-start level. This level can be chosen, using an MTP register,  
from two different values of 1.35V or 2.75V respectively. If a 2:1 divider is used, these values automatically scale  
to 2.7V and 5.5V respectively. In fact, it is this value which limits the maximum output voltage the IRPS5401 can  
support to 5.5V.  
Note that in the FET release mode, if the output voltage rises above the fixed OVP level, the low side MOSFET’s  
will again be turned on until Vout drops below the release threshold level.  
The user can cycle out of a latched over voltage fault by cycling En_x, VCC or the PMBus Operation command.  
The other output are unaffected by the OVP event unless global_fault_en=1  
Note:  
An OCP event may cause the VOUT_OV_WARN bit in the STATUS_VOUT register to falsely assert  
Datasheet  
31 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Description  
Figure 13  
OVP with vpu_high_release_en=1  
Figure 14  
OVP with vpu_high_release_en=0  
9.12  
Output Under Voltage Protection (UVP)  
The IRPS5401 detects an output under-voltage condition if the sensed voltage is below the user-programmable  
(through PMBus) UVP threshold. Upon detecting of an output under-voltage condition, the IRPS5401 can be  
configured using the PMBus command, VOUT_UV_FAULT_RESPONSE to keep regulating or to go into a latched  
shutdown.  
It should be noted, however, that although the undervoltage threshold is programmable to any value using the  
PMBus command, VOUT_UV_FAULT_LIMIT, internally the UV threshold depends upon the setting of a register  
bit, vout_uv_by_adc, which can be set to either 0 (Vout undervoltage mechanism is through an analog  
comparator) or to 1 (Vout undervoltage mechanism is through the hign speed error ADC saturation).  
If the Vout undervoltage mechanism by comparator is selected, the VOUT_UV_FAULT_LIMIT is translated into  
an offset from the commanded or reference voltage, with a resolution of 50 mV (100 mV if a 2:1 divider is used)  
and with a minimum value of 50 mV (100 mV if a 2:1 divider is used) and maximum value of 400 mV (800 mV if a  
2:1 divider is used).  
On the other hand, if the ADC saturation mechanism is selected, the undervoltage threshold is implicitly 250 mV  
(500 mV if a 2:1 divider is used) below the commanded or reference value.  
The user can cycle out of a latched under voltage fault by cycling Enable, VCC or the PMBus Operation  
command.  
Datasheet  
32 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Description  
9.13  
Current Sensing, Telemetry and Faults  
The IRPS5401 has two different current sense mechanisms; a) Sync FET Rdson current sensing in internal  
powerstage mode and b) DCR, shunt current sensing, or Rdson sense in external powerstage mode.  
Current sensing for Switchers B, C and D is always across the Rdson of the Sync FET. Current sensing for  
Switcher A is also across the Sync FET Rdson if in internal powerstage mode. A proprietary patented scheme  
allows reconstruction of the average inductor current from the voltage sensed across the Sync FET Rdson. It  
should be noted here that in internal powerstage mode it is this reconstructed average inductor current that is  
digitized by the monitor ADC and used for output current reporting. However, in this mode, the overcurrent  
protection mechanism relies on an analog comparator and does not depend on the ADC or on the output  
current reporting.  
If Switcher A is operated in external powerstage mode, the current is sensed through the drop across a  
precision current shunt, the drop across the inductor DCR, or the IOUT signal of an Infineon Rdson power stage  
like the IR3555 and is fed to a differential current sense amplifer at the ISEN_A+ and ISEN_A- pins of the  
IRPS5401.  
For DCR sensing, a suitable resistor-capacitor network of Rsen and Csen is connected across the inductor as  
shown in the figure below. The time constant of this RC network is set to be equal to the inductor time constant  
(L/DCR) such that the voltage across the capacitor Csen is equal to the voltage across the inductor DCR. A 100K  
NTC thermistor is also recommended across Csen to compensate for the positive temperature coefficient of  
inductor DCR  
L_out  
DCR  
V
out  
Csen  
NTC  
Rsen  
I IL_out  
ISEN_A+  
ISEN_A-  
+
-
Figure 15  
DCR Current Sensing  
The recommended value for Csen is a 220nF NPO type capacitor.  
ꢀꢁꢂꢃ = (ꢄ_ꢅꢆꢇ) ⁄ (ꢈꢉꢀ ∗ ꢉꢁꢂꢃ)  
For example, if L_out is a 1uH, 2mΩ inductor, then Rsen would be set to 5kΩ (with Csen = 0.1uF)  
These components must be placed close to the IRPS5401 pins.  
For Rdson current sense, the signal from the power stage IOUT pin is reporting IOUT with a gain of 5mV/A. This  
signal should be attenuated with a 5:1 divider so that the input to the ISENSE amp is 1mV/A. For noise  
immunity reasons, the differential ISENSE signal is offset above GND by connecting the ISEN_A- pin to a  
reference voltage. This is usually the 1.8V reference provided by the internal 1.8V LDO  
Datasheet  
33 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Description  
P5V  
12V  
Vcc  
Vin  
BOOT  
PWM  
PWM  
L_out  
I IL_out  
R1  
IR3555  
Switch  
10K  
ISEN_A+  
ISEN_A-  
IOUT  
+
-
2.49K  
R2  
REFIN  
To 1.8V Reference  
Figure 16  
Rdson Current Sensing  
The output of this differential current sense amplifier, the gain of which is programmable through an MTP  
register d2a_ecs_gain [2:0], is digitized by the monitor ADC. The output code of the ADC is then converted using  
the MTP register ecs_scale [7:0] into output current (in Amps), which is reported on the bus and also used for  
overcurrent fault detection.  
Current is reported using the READ_IOUT PMBus command.  
Note:  
Switcher outputs that are in the ‘OFF’ state will falsely report an output current if the user sends a  
READ_IOUT command to an output that is ‘OFF’. This false output current will cause the  
IOUT_OC_WARN bit to assert in the STATUS_IOUT register. The user will need to send the  
CLEAR_FAULTS command after the output has been enabled.  
9.14  
Over-current Protection (OCP)  
In internal powerstage mode, the over current (OC) protection is implemented by sensing current through the  
RDS(on) of the Synchronous MOSFET (Sync FET). This method enhances the converter’s efficiency, reduces cost by  
eliminating a current sense resistor and eliminates any layout related noise issues. The current limit scheme in  
the IRPS5401 uses an internal temperature compensated current source that has the same temperature  
coefficient as the RDS(on) of the Sync FET. As a result, the over-current trip threshold remains almost constant  
over temperature. Moreover, the IRPS5401 also incorporates Vgs compensation that limits the OCP variation  
with changes in VCC voltage.  
The OCP circuit samples the current at the center point of the Sync FET conduction time, and trips the analog  
overcurrent comparator if it is more than the overcurrent protection setting as dictated by the PMBus  
command IOUT_OC_FAULT_LIMIT. Although the PMBus comand will allow setting the OC threshold up to a  
maximum of 15.97A (for internal driver), the internal circuitry saturates the current limit at 4A for Switchers A  
and B with the 2A internal power stages and to 8A for Switchers C and D with the 4A power stages. Moreover,  
the threshold set by the PMBus command is rounded to the closest higher 250 mA for the 2A power stages and  
to the closest higher 500 mA for the 4A power stages.  
In external power stage mode, an over current fault is flagged when the digital reading of the output current  
exceeds IOUT_OC_FAULT_LIMIT.  
Additionally, through the PMBus command IOUT_OC_FAULT_RESPONSE, the user can choose between 3 types  
of responses to an overcurrent fault.  
Datasheet  
34 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Description  
Table 13  
OCP Response Mode  
Immediate shutdown and then latch off  
Immediate shutdown and retry 6 times before latching off, 22ms period  
Immediate shutdown and retry indefinitely, 22ms period  
The user can cycle out of a latched over current fault by cycling En_x, VCC, VINx, or the PMBus OPERATION  
command (with correct ON_OFF_CONFIG setting).  
Additionally, in both the internal and external power stage modes, an over current warning is flagged if the  
digital reading of the output current exceeds IOUT_OC_WARN_LIMIT.  
9.15  
Input Voltage Sensing, Telemetry and Faults  
For the switchers, the input voltage is fed through a 14:1 divider to a monitor ADC. The digitized voltage is  
reported over the PMBus using the READ_VIN command. It is also used to implement an input under voltage  
lockout threshold, an input voltage warning threshold and an input voltage over voltage threshold through the  
following PMBus commands.  
Table 14  
Function  
PMBus Command  
Default  
UVLO  
UVLO  
VIN_ON  
F001h  
F000h  
E000h  
E200h  
VIN_OFF  
Under voltage warning  
Overvoltage fault  
VIN_UV_WARN_LIMIT  
VIN_OV_FAULT_LIMIT  
Additionally, through the PMBus command VIN_OV_FAULT_RESPONSE, the user can choose between 2 types of  
responses.  
Table 15  
VIN OV Response Mode  
Ignore  
Immediate shutdown and then latch off  
The user can cycle out of a latched VIN Overvoltage fault by cycling En_x, VCC, or the PMBus Operation  
command.  
Datasheet  
35 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Description  
9.16  
Die Temperature Sensing, Telemetry and Faults  
The IRPS5401 uses on-die temperature sensing for accurate temperature reporting and over temperature  
detection. Also, to account for temperature gradients across the die, temperature sensing is actually done by  
two separate sense circuits at different locations on the die. So, Switchers A and B share one temperature  
sensor, while Switchers C and D as well as the LDO share another temperature sensor. Therefore, the  
READ_TEMPERATURE PMBus command reports the same temperature on Switchers A and B. Also, Switchers C  
and D as well as the LDO report the same temperature. The reporting resolution is 0.250°C.  
PMBus commands OT_FAULT_LIMIT and OT_WARN_LIMIT allow the user to set the over temperature fault and  
warning thresholds respectively.  
Additionally, through the PMBus command OT_ _FAULT_RESPONSE, the user can choose between 3 types of  
responses to an over temperature fault, i.e., when the digital reading of the temperature exceeds  
OT_FAULT_LIMIT.  
Table 16  
OT Response Mode  
Ignore  
Immediate shutdown and then latch off  
Auto restart if fault condition disappears  
The user can cycle out of a latched over temperature fault by cycling En_x, VCC or the PMBus Operation  
command.  
9.17  
Power Sequencing and Global Faults  
The IRPS5401 provides flexibility in sequencing the startup and shutdown of the five outputs via the following  
PMBus commands:  
Table 17  
Output  
Sequencing Function  
Startup  
PMBus command  
TON_DELAY  
Default  
Switchers A,B,C and D  
F800h  
F004h  
F800h  
F004h  
F800h  
TON_RISE  
Shutdown  
Startup  
TOFF_DELAY  
TOFF_FALL  
TON_DELAY  
LDO  
The figure below shows the four outputs starting up and shutting down with each output delayed 0.5ms from  
the previous.  
Datasheet  
36 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Description  
Figure 17  
VO sequencing  
An extra level of flexibility in sequencing the different outputs is provided by the Global Faults feature in  
IRPS5401. This is a useful feature that forces all 5 rails to shut down in response to a fault that shuts down any  
one of the rails. This is enabled by setting an MTP register bit global_fault_en. The figure below shows the  
response of all the IRPS5401 outputs in response to a shutdown of Switcher A by an output over voltage fault  
when global_fault_en=1, enabling global fault shutdown and global_fault_en=0, disabling global fault  
shutdown.  
Figure 18  
Global_fault_en=1  
Figure 19  
Global_fault_en=0  
Datasheet  
37 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Description  
9.18  
Sleep  
The IRPS5401 has an input pin, SLEEP#, which can be pulled low to act as a master disable for all the rails if MTP  
register bit, por_sleep_mode_en, is set. In fact, pulling this pin low will put the device into an ultra-low power  
state with <10 uA quiescent current. It will cause the 1.8V to go low, disable all communication and force a  
power-on reset, so that the contents of all the volatile registers are lost and restored to their reset values. If this  
pin is pulled high again, the device has to go through a POR cycle again requiring a full MTP load.  
9.19  
Combined Switcher C and D Operation  
Switchers C and D may be combined into a single output and operated in parallel to support load currents up to  
8A. In order to do this an MTP register bit, combine_outputs_c_d, must be set to 1. In this mode Switcher C and  
D SW pin output are 180° out of phase. Switcher C takes over the error voltage sensing and the control loop and  
the internal PWM_C signal is used for the internal power stages of both loops C and D. The table below  
summarizes the modification to the reporting, fault and warning thresholds as a result of combining Switchers  
C and D. Any PMBus command to Switcher D will be NACK’d  
Table 18  
PMBus Command  
to Switcher C  
READ_IOUT  
Response  
Will report the total Switcher C+D output current  
READ_VIN  
Will report the Switcher C input voltage (VIN_D and VIN_C  
must be connected to the same input)  
READ_IIN  
Will report the total input current for Switcher C+D  
Will set the Switcher C and D FAULT value to ½ this value  
Will set the Switcher C and D WARN value to ½ this value  
Will be applied to Switcher C  
IOUT_OC_FAULT_LIMIT  
IOUT_OC_WARN_LIMIT  
VIN_ON  
VIN_OFF  
(VIN_D and VIN_C must be connected to the same input)  
Will be applied to the total Switcher C+D output current  
IOUT_CAL_OFFSET  
9.20  
Linear Regulator  
The IRPS5401 also has a linear regulator (LDO) in addition to the four switchers. This regulator can accept a  
wide input voltage range from 1.2V to 5.5V and provide output voltages from 0.5V to 3.3V, delivering up to 0.5A  
of continuous current with a low dropout voltage of 0.6V. Moreover, the regulator can be configured using an  
MTP register bit ldo_track_config. To operate in source-only mode, set ldo_track_config to 0. To operate in  
tracking mode, set ldo_track_config to 1. The tracking mode of operation makes it ideal for use in memory  
termination tracking applications (Vtt). The LDO also supports a manufacturer specific PMBus command,  
MFR_LDO_MARGIN, to allow margining the output voltage ±15%.  
The reference voltage for the LDO is nominally 0.5V and hence a resistor divider is needed from Vo_LDO to FB_L  
to generate output voltages higher than 0.5V. In tracking mode, the reference is an internal 2:1 divider to  
Vin_LDO. It should be noted here that for the LDO, the VOUT_OV_FAULT_LIMIT, VOUT_UV_FAULT_LIMIT,  
OUT_OV_WARN_LIMIT and VOUT_UV_WARN_LIMIT PMBus commands are Read-Only, and they report the  
corresponding thresholds calculated internally based on either 1/2Vin_LDO (tracking mode) or on the contents  
of an MTP register ldo_target_vout [7:0] (non-tracking mode).  
Datasheet  
38 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Description  
9.21  
LDO Monitoring and Faults  
Unlike the switcher loops, fault detection for all LDO faults except overcurrent fault relies on digital monitoring  
and digital comparison.  
9.22  
Output Voltage Reporting, Output Overvoltage Protection and  
Undervoltage Protection  
The output voltage is fed through an internal 3.2:1 divider to a 10-bit monitor ADC. The digitized voltaged is  
then reported on the PMBus using the READ_VOUT command. It is this MTP register that is used to “tell” the  
device what the target output voltage is based on the 0.5V reference and the feedback divider. This register has  
a resolution of 1/64V.  
The various output voltage fault and warning thresholds are shown in the table below:  
Table 19  
Non-Tracking  
125% target voltage  
75% target voltage  
112.5% target voltage  
87.5% target voltage  
Tracking  
OV Fault limit  
UV Fault limit  
OV Warn limit  
UV Warn limit  
125% (Vin_LDO/2)  
75% (Vin_LDO/2)  
112.5% (Vin_LDO/2)  
87.5% (Vin_LDO/2)  
The responses to both the overvoltage and undervoltage faults can be programmed to either ignore or to  
shutdown, similar to the switchers.  
9.23  
Input Voltage Reporting, Input UVLO and Input Overvoltage Protection  
The input voltage is fed through an internal 6.4:1 divider to a 10-bit monitor ADC. The digitized voltaged is then  
reported on the PMBus using the READ_VIN command. It is also used to implement an input under voltage  
lockout threshold, an input under voltage warning threshold and an input over voltage threshold through the  
following PMBus commands  
Table 20  
Function  
PMBus Command  
Default  
UVLO  
VIN_ON  
D808h  
D800h  
C800h  
CAC0h  
VIN_OFF  
Under voltage Warning  
Overvoltage fault  
VIN_UV_WARN_LIMIT  
VIN_OV_FAULT_LIMIT  
Additionally, through the PMBus command VIN_OV_FAULT_RESPONSE, the user can choose to ignore a VIN  
over voltage fault or to shut down in response to it.  
The user can cycle out of a latched VIN over voltage fault by cycling Enable, VCC or the PMBus Operation  
command.  
9.24  
Over Current Protection  
The PMBus command IOUT_OC_FAULT_LIMIT is implemented as Read_Only for the LDO, and it reads 0.72A.  
Thus, the LDO has a fixed overcurrent limit of 0.72A. An internal analog control loop limits the current to this  
threshold and hence causes the output voltage to drop. When the output voltage drops below the UV fault limit  
Datasheet  
39 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Description  
of the LDO, it flags a UV fault (rather than an over current fault), but still responds based on the setting of  
IOUT_OC_FAULT_RESPONSE (constant current limiting or shutdown).  
Further, if IOUT_OC_FAULT_RESPONSE is configured for a constant current response; an additional MTP bit,  
ldo_foldback_enable, can be configured to allow for a current limit foldback response when the UV fault limit is  
exceeded. The ldo_foldback_enable configuration with constant current response will further reduce the  
overcurrent limit of 0.72A to ~1/4 of this value, or ~0.18A, after the UV fault limit is exceeded.  
The output current can be read on the PMBus using the READ_IOUT command.  
9.25  
I2C Security  
The IRPS5401 provides robust and flexible security options to meet a wide variety of customer applications.  
A combination of hardware pin and software password prevents accidental overwrites, discourages hackers,  
and secures custom configurations and operating data.  
The following MTP registers can be used to set the Read and Write Security Zones.  
Table 21  
Register  
Description  
Default  
Write_protect_section  
Choose among 3 options 1) No protection or Open zone 2)  
Protect only configuration registers or No Configuration zone 3) or Open zone  
Protect all registers or Secure zone  
No protection  
Read_protect_section  
Choose among 4 options 1) No protection or Open zone 2)  
Protect only configuration registers or No Configuration zone 3) or Open zone  
Telemetry zone 4) Protect all registers or Secure zone  
No protection  
The tables below describe the access levels in each of these security zones.  
Table 22  
Read Security Zones  
Zone  
Locked  
Unlocked  
Open  
All  
All  
All  
All  
All  
No Configuration  
Telemetry  
Debug & Telemetry  
Telemetry  
Secure  
None  
Table 23  
Write security zones  
Zone  
Locked  
Unlocked  
Open  
All  
All  
All  
All  
No Configuration  
Secure  
Debug & Telemetry  
None  
Further, the following protection modes or methods are available.  
Datasheet  
40 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Description  
Table 24  
Read or Write Unlock Options  
Password Only  
Pin Only  
Pin & Password  
Lock Forever  
9.26  
Password Protection  
The system designer can set any 16-bit password (other than 00h) and this is stored in MTP in the register  
usr_password[15:0]. To unlock, a user must write the correct password into a “Password Try” register called  
usr_try_password[15:0] which is a volatile read/write register. To lock, write an incorrect password into the  
“Password Try” register. After a certain number of incorrect tries, the IC will lock up to prevent unauthorized  
access.  
The following pseudo-code illustrates how to change a password:  
#first unlock the IC  
Write old password to R/W Try register  
#now write new password into MTP  
Write new password to the MTP Password register  
# password change complete, status is locked  
#Need to write new password to Try register to unlock  
9.27  
Pin Protection  
The ADDR_PROT pin is a dual function pin. When the IC is enabled, the resistor value is latched and stored for  
use in the I2C address offset function. Thereafter, the pin acts entirely as a PROTECT pin. If enabled, the  
PROTECT pin must be driven high to unlock and low to lock. Note, if the resistor address offset function is being  
used, care must be taken to allow the IC to read the resistor value before driving the pin high or low to set the  
security state otherwise an erroneous address offset value may be latched in.  
Datasheet  
41 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Description  
Recommended Circuit and Operating Parameters for Internal Switchers  
Table 25  
Min L_out for Min C_out for  
Input  
Voltage  
Output  
Voltage  
Switching 1Ap-p inductor  
Frequency  
ripple 1  
kHz  
800  
±3% AC  
regulation 2  
Kp 3  
Decimal  
35  
Ki 3  
Decimal  
42  
V
V
uH  
1.1  
1.6  
2
uF  
12  
0.5 to 1  
1 to 1.5  
1.5 to 2  
2 to 2.5  
2.5 to 3.3  
3.3 to 5  
0.5 to 1  
1 to 1.5  
1.5 to 2  
2 to 2.5  
2.5 to 3.3  
3.3 to 5  
0.5 to 1  
1 to 1.5  
1.5 to 2  
2 to 2.5  
2.5 to 3.3  
7 x 22uF  
6 x 22uF  
5 x 22uF  
4 x 22uF  
4 x 22uF  
3 x 22uF  
7 x 22uF  
6 x 22uF  
5 x 22uF  
4 x 22uF  
4 x 22uF  
3 x 22uF  
7 x 22uF  
6 x 22uF  
5 x 22uF  
4 x 22uF  
4 x 22uF  
36  
43  
38  
43  
2.5  
3
40  
44  
42  
46  
3.6  
1.1  
1.5  
2
42  
50  
9
5
36  
43  
37  
43  
38  
43  
2.2  
2.7  
2.7  
1
40  
44  
42  
46  
42  
50  
38  
44  
1.3  
1.5  
1.5  
1.5  
38  
45  
40  
48  
41  
50  
42  
53  
Note:  
1. 1A p-p = 25% of IMAX on the 4A rail, 50% of IMAX on the 2A rails  
2. With 1A load step, 5A/us slew rate  
3. Fco ~ 50kHz MIN, PWM jitter ~ 20% of pulse width MAX  
Datasheet  
42 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Layout Guidelines  
10  
Layout Guidelines  
1. The IRPS5401 can supply relatively large amounts of output current from four separate outputs. The ability  
of the part to dissipate the heat generated in the part is a concern and as such as much copper as possible  
should be dedicated on the top layer to GND, VIN, and SW to maximize cooling  
2. Place output inductors as close as possible to the SW nodes to minimize the length of the copper area of the  
SW node. This will help to minimize the parasitic capacitance and radiated emissions  
3. The PGND thermal pad (pin 57) must be connected to a dedicated GND plane with VIAS as shown.  
Additional internal GND layers should also be connected to the VIAS as well  
4. Make PCB patterns for VIN, SW, VOUT, and GND as broad as possible  
5. Decouple VIN with a minimum 1uF X7R type MLCC as close as possible to the VIN pin  
6. Decouple VCC to AGND pin with 1uF X7R MLCC  
7. Connect VCC to VDRV with 2Ω resistor and decouple VDRV to PGND with 1uF X7R MLCC  
8. Connect MTP and ADDR_PROT resistors to AGND  
9. Decouple MTP and ADDR_PROT pins with 10nF X7R MLCC to AGND  
10. There must be a single point contact from AGND to PGND  
11. Route sensitive nets away from SW nodes  
12. Place a GND plane on the layer 2, the layer directly underneath the top side components  
13. Do not allow switching current, including pulsing input currents, to be routed under the device  
14. Keep the switching current loops as small as possible  
15. If a scaling resistors divider is used, the lower resistor must be terminated to PGND  
16. If a 2:1 scaling resistor divider is used, the recommended value is 249Ω, 1%  
Datasheet  
43 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Layout Guidelines  
10.1  
Sample layout  
Figure 20  
LAYER 1-TOP SIDE COMPONENTS PLUS POWER PLANE  
Figure 21  
LAYER 2 – GROUND PLANE  
Figure 22  
LAYER 3 – Signal Layer  
Datasheet  
44 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Layout Guidelines  
Figure 23  
LAYER 4 – GrouND Plane  
Figure 24  
LAYER 5 – Power PLANE  
Figure 25  
LAYER 6 – Power PLANE  
Datasheet  
45 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Layout Guidelines  
Figure 26  
LAYER 7 – GROUND PLANE  
Figure 27  
LAYER 8 – Botton side comp plus POWER and GROUND PLANES  
Datasheet  
46 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Typical Performance  
11  
Typical Performance  
VIN=12V, VOUT=2.5V, IOUT=4A, TAMB=25°C  
20mVp-p  
250mVp-p  
10mV/div,  
Infinite persistence  
20MHz BW  
500mV/div,  
20MHz BW  
Figure 28  
Output ripple  
Figure 29  
Figure 31  
Figure 33  
Input ripple  
±3% deviation  
Vpeak = 13.6V  
Jitter = 11.2nsec  
50mV/div, 20usec/div  
1A Step, 2.5A/usec  
20MHz BW  
2V/div, 40nsec/div  
Infinite persistence  
500MHz BW Hardware limit  
Figure 30  
Transient response  
Switch node peak and jitter  
0msec delay,  
1msec rise  
PG_ON=2.4V  
200usec/div  
0msec delay,  
1msec fall  
PG_OFF=2.3V  
200usec/div  
PG  
PG  
VO  
VO  
ENABLE  
ENABLE  
Figure 32  
Enable start  
Enable shut down  
Datasheet  
47 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Typical Performance  
11.1  
Typical thermal performance at max output power  
VIN=12V, VOUT A, B, C, D=5V, IOUT A, B, C, D = 2A, 2A, 4A, and 4A, POUT = 60W, TAMB=25°C  
VIN=12V, VOUT=5V, FSW=800KHz  
95  
90  
85  
80  
75  
70  
65  
60  
55  
8
7
6
5
4
3
2
1
0
0
10  
20  
30  
40  
Output Power (W)  
50  
60  
70  
Figure 34  
Total System Efficiency and power dissipation from 0W to 60W out  
Total system power dissipation is 6.9W.  
IRPS5401 power dissipation is estimated  
at ~5.32W  
Figure 35  
Temperature rise at room temp, natural convection cooling, 60W out  
Figure 36  
PCB construction details (8 layers, 11.6 oz total Cu Thickness)  
Datasheet  
48 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
PMBUS Commands  
12  
PMBUS Commands  
Table 26  
PMBus commands (See UN0049 for more details)  
Default  
PMBUS  
PROTOCOL  
COMMAND  
CODE  
COMMAND  
DESCRIPTION  
Read/Write  
Byte  
Read/Write  
Byte  
N/A  
PAGE  
00h  
01h  
Allows access to each output via paging.  
Enables or disables the output and controls 00h  
margining.  
OPERATION  
Configures the combination of Enable pin  
and OPERATION command needed to turn  
the unit on and off.  
17h  
Read/Write  
Byte  
ON_OFF_CONFIG  
02h  
03h  
N/A  
N/A  
00h  
CLEAR FAULTS  
PAGE_PLUS_READ  
Send Byte  
Block Read 06h  
Read/Write  
Byte  
Clear contents of Fault registers  
Provides protection from accidental  
changes  
WRITE_PROTECT  
10h  
N/A  
N/A  
N/A  
N/A  
RESTORE_DEFAULT_ALL  
STORE_USER_ALL  
RESTORE_USER_ALL  
Send Byte  
Send Byte  
Send Byte  
12h  
15h  
16h  
Reloads the OTP  
Stores the user OTP section  
Reloads the user OTP section  
Returns 1010xxxx to indicate Packet Error  
Checking is supported and Maximum bus  
speed is 400kHz  
CAPABILITY  
Read Byte  
19h  
Set to prevent warning or fault conditions  
from asserting the SMBALERT# signal. Write  
command code for STATUS register to be  
masked in the low byte, the bit to be  
masked in the High byte.  
Sets the format for VOUT related  
commands. Linear mode, -8, -9, and -12  
exponents supported. No LDO support  
N/A  
18h  
Block  
Write/  
Block Read  
Process Call  
SMBALERT_MASK  
1Bh  
Read/Write  
Byte  
VOUT_MODE  
VOUT_COMMAND  
VOUT_TRIM  
20h  
21h  
22h  
24h  
Sets the voltage to which the device should 0000h  
set the output. Format according to  
VOUT_MODE. No LDO support  
Read/Write  
Word  
Applies a fixed offset to the output voltage  
command value. Format according to  
VOUT_MODE. No LDO support  
Sets an upper limit on the output voltage  
the unit can command. Format according  
to VOUT_MODE. No LDO support  
Sets the margin high voltage when  
commanded by OPERATION. Must be in  
format determined by VOUT_MODE. No  
LDO support  
Sets the margin low voltage when  
commanded by OPERATION. Must be in  
format determined by VOUT_MODE. No  
LDO support  
Sets the rate at which the output changes  
voltage due to VOUT_COMMAND or  
0000h  
0800h  
0000h  
Read/Write  
Word  
Read/Write  
Word  
VOUT_MAX  
Read/Write  
Word  
VOUT_MARGIN_HIGH  
VOUT_MARGIN_LOW  
25h  
0000h  
E808h  
Read/Write  
Word  
26h  
27h  
Read/Write  
Word  
VOUT_TRANSITION_RATE  
Datasheet  
49 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
PMBUS Commands  
Default  
PMBUS  
COMMAND  
CODE  
COMMAND  
PROTOCOL  
DESCRIPTION  
OPERATION commands.  
mV/s; Exp = -3. No LDO support  
Supports scale factor 1 and 0.5. No LDO  
support  
Sets the switching frequency in kHz. Exp =  
0, 1. No LDO support  
Read/Write  
Word  
Read/Write  
FREQUENCY_SWITCH  
Word  
E808h  
0320h  
VOUT_SCALE_LOOP  
29h  
33h  
Sets the value of the input voltage at which SW;F001h  
Read/Write  
VIN_ON  
Word  
35h  
36h  
the unit should begin power conversion.  
Exp = -2 for Switchers, -5 for LDO.  
Sets the value of the input voltage that the  
unit, once operation has started, should  
stop power conversion.  
LDO;D808  
h
SW;F000h  
LDO;D800  
h
Read/Write  
VIN_OFF  
Word  
Exp = -2 for Switchers, -5 for LDO  
Used to null out any offsets in the output  
current sensing circuitry. Exp = -10 for LDO, LDO:B000  
-6 for Internal, -3 for External  
Sets fault limit relative to VOUT…  
LDO=read only  
SW:D000h  
Read/Write  
IOUT_CAL_OFFSET  
Word  
39h  
40h  
41h  
h
Read/Write  
VOUT_OV_FAULT_LIMIT  
Word  
8000h  
Instructs the device on what action to take  
in response to an output over voltage fault.  
Only shutdown and ignore are supported.  
Sets the value of the output voltage,  
measured at the sense or output pins, that  
causes an output overvoltage warning.  
Format as determined by VOUT_MODE…  
LDO=read only  
Sets the value of the output voltage,  
measured at the sense or output pins, that  
causes an output voltage low warning.  
Format as determined by VOUT_MODE…  
LDO=read only  
Sets fault limit relative to VOUT…  
LDO=read only  
Instructs the device on what action to take  
in response to an output under voltage  
fault. Only shutdown and ignore are  
supported.  
00h  
VOUT_OV_FAULT_RESPON Read/Write  
SE  
Byte  
8000h  
Read/Write  
Word  
VOUT_OV_WARN_LIMIT  
42h  
43h  
0000h  
Read/Write  
Word  
VOUT_UV_WARN_LIMIT  
VOUT_UV_FAULT_LIMIT  
Read/Write  
Word  
0000h  
00h  
44h  
45h  
VOUT_UV_FAULT_RESPON Read/Write  
SE  
Byte  
Sets the value of the output current, in  
amperes, that causes the overcurrent  
detector to indicate an overcurrent fault  
condition. Set by writing this command in  
Linear format. Exp = -5 for internal and -2  
for external … LDO=read only  
SW:D900h  
LDO:C0B8  
h
Read/Write  
Word  
IOUT_OC_FAULT_LIMIT  
46h  
47h  
Instructs the device on what action to take  
SW:F8h  
in response to an output overcurrent fault. LDO:C0h  
Only C0h (latch off), F8h (hiccup forever),  
and F0h (hiccup 6 times then latch off) are  
supported…LDO supports C0h (latch off)  
and 00h (current limiting)  
IOUT_OC_FAULT_RESPONS Read/Write  
Byte  
E
Datasheet  
50 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
PMBUS Commands  
Default  
PMBUS  
COMMAND  
CODE  
COMMAND  
PROTOCOL  
DESCRIPTION  
Sets the value of the output current that  
SW:D900h  
causes an output over current warning. Set LDO:C0B8  
Read/Write  
IOUT_OC_WARN_LIMIT  
Word  
4Ah  
by writing this command in Linear format.  
Exp = -10 for LDO, -5 for internal and -2 for  
external.  
h
Sets the temperature in °C that would  
should indicate an over temperature fault.  
Linear format, Exp = 0.  
Instructs the device on what action to take  
in response to an over temperature fault.  
Only 80h (shutdown), 00h (ignore), and C0h  
(inhibit then restart) are supported.  
Sets the temperature in °C that would  
indicate an over temperature warning  
alarm. Linear format, Exp = 0.  
0080h  
00h  
Read/Write  
OT_FAULT_LIMIT  
Word  
4Fh  
50h  
Read/Write  
OT_FAULT_RESPONSE  
Byte  
0080h  
Read/Write  
OT_WARN_LIMIT  
Word  
51h  
55h  
Sets the value of the input voltage that  
causes an input overvoltage fault. Exp = -4  
for switchers, -7 for LDO  
SW:E200h  
LDO:CAC0  
h
Read/Write  
VIN_OV_FAULT_LIMIT  
Word  
Instructs the device on what action to take  
in response to an input overvoltage fault.  
Only 80h (shutdown) and 00h (ignore) are  
supported.  
00h  
Read/Write  
VIN_OV_FAULT_RESPONSE  
Byte  
56h  
Sets the value of the input voltage that  
causes an input voltage low warning. Exp = LDO:C800  
-4 for switchers, -7 for LDO  
SW:E000h  
Read/Write  
VIN_UV_WARN_LIMIT  
Word  
58h  
5Eh  
5Fh  
60h  
h
Sets the output voltage at which the  
POWER_GOOD signal will be asserted.  
Format according to VOUT_MODE.  
Sets the output voltage at which the  
POWER_GOOD signal will be de-asserted.  
Format according to VOUT_MODE.  
Sets the time, in milliseconds, from when a F800h  
start condition is received until the output  
voltage starts to rise. Exp = -1.  
0000h  
Read/Write  
POWER_GOOD_ON  
Word  
0000h  
Read/Write  
POWER_GOOD_OFF  
Word  
Read/Write  
TON_DELAY  
Word  
Sets the time, in milliseconds, from when  
the output starts to rise until the voltage  
has entered the regulation band.  
Exp = -2. No LDO support  
Sets an upper limit, in milliseconds, on how F004h  
long the unit can attempt to power up the  
output without reaching the output under  
voltage fault limit. Exp = -2.  
F004h  
Read/Write  
TON_RISE  
Word  
61h  
62h  
Read/Write  
TON_MAX_FAULT_LIMIT  
Word  
Instructs the device on what action to take  
in response to a TON_MAX fault. Only 80h  
(shutdown) and 00h (ignore) are  
supported.  
Sets the time, in milliseconds, from when a F800h  
stop condition is received until the unit  
00h  
TON_MAX_FAULT_RESPON Read/Write  
63h  
64h  
SE  
Byte  
Read/Write  
Word  
TOFF_DELAY  
starts ramping down to 0V. Exp = -1. No  
Datasheet  
51 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
PMBUS Commands  
Default  
PMBUS  
COMMAND  
CODE  
COMMAND  
PROTOCOL  
DESCRIPTION  
LDO support  
Sets the time, in milliseconds, for the  
output to ramp to 0V. Exp = -2. No LDO  
support  
Returns 1 byte where the bit meanings are: N/A  
Bit <7> Reserved  
Bit <6> Output off (due to fault or enable)  
Bit <5> Output over-voltage fault  
Bit <4> Output over-current fault  
Bit <3> Input Under-voltage fault  
Bit <2> Temperature fault  
F004h  
Read/Write  
TOFF_FALL  
Word  
65h  
78h  
Read/Write  
STATUS_BYTE  
Byte  
Bit <1> Communication/Memory/Logic  
fault  
Bit <0>: None of the above  
Returns 2 bytes where the Low byte is the  
same as the STATUS_BYTE data. The High  
byte has bit meanings are:  
Bit <7> Output high or low fault  
Bit <6> Output over-current fault  
Bit <5> Input under-voltage fault  
Bit <4> MFR_SPECIFIC  
N/A  
Read/Write  
STATUS_WORD  
Word  
79h  
7Ah  
Bit <3> POWER_GOOD#  
Bit <2:0> Reserved  
Bit <7> Output Over voltage Fault  
Bit <6> Output Over voltage Warning  
Bit <5> Output Under voltage Warning  
Bit <4> Output Under voltage Fault  
Bit <3> VOUT_MAX Warning  
Bit <2> TON_MAX_FAULT  
Bit <1> Reserved  
N/A  
Read/Write  
STATUS_VOUT  
Byte  
Bit <0> Reserved  
Bit <7> Output Over current Fault  
Bit <6> Reserved  
Bit <5> Output Over current Warning  
Bit <4:0> Reserved  
Bit <7> Input Overvoltage Fault  
Bit <6> Reserved  
Bit <5> Input Under voltage Warning  
Bit <4> Reserved  
N/A  
N/A  
Read/Write  
STATUS_IOUT  
Byte  
7Bh  
7Ch  
Read/Write  
STATUS_INPUT  
Byte  
Bit <3> Unit Off For Insufficient Input  
Voltage  
Bit <2:0> Reserved  
Bit <7> Over Temperature Fault  
Bit <6> Over Temperature Warning  
Bit <5:0> Reserved  
Returns 1 byte where the bit meanings are: N/A  
Bit <7> Invalid or unsupported command  
Bit <6> Invalid or unsupported data or send  
too may bytes  
N/A  
Read/Write  
STATUS_TEMPERATURE  
Byte  
7Dh  
7Eh  
Read/Write  
STATUS_CML  
Byte  
Datasheet  
52 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
PMBUS Commands  
Default  
PMBUS  
COMMAND  
CODE  
COMMAND  
PROTOCOL  
DESCRIPTION  
Bit <5> PEC fault  
Bit <4:2> Reserved  
Bit <1> Other communication fault not  
listed here  
Bit <0> Reserved  
Returns the input voltage in Volts. Exp = -5  
for Switchers and -7 for LDO  
Returns the input current in Amperes. Exp = N/A  
-7 for Internal, and -4 for External  
Returns the output voltage in the format  
set by VOUT_MODE  
N/A  
READ_VIN  
READ_IIN  
Read Word  
Read Word  
Read Word  
88h  
89h  
8Bh  
N/A  
READ_VOUT  
Returns the output current in Amperes.  
Exp = -10 for LDO, -6 for Internal, and -3 for  
External  
Returns the addressed loop temperature in N/A  
°C. Switcher A and B have a common  
sensor, Switcher C, D and LDO have a  
common sensor. Exp = -2  
N/A  
READ_IOUT  
Read Word  
Read Word  
8Ch  
8Dh  
READ_TEMPERATURE_1  
Returns the output power in Watts. Exp = -  
6 for LDO, -5 for Internal, and -2 for External  
Returns the input power in Watts. Exp = -6  
for LDO, -5 for Internal, and -2 for External  
Reports PMBus Part I rev 1.1 & PMBus Part  
II rev 1.2  
N/A  
READ_POUT  
READ_PIN  
Read Word  
Read Word  
Read Byte  
96h  
97h  
98h  
N/A  
22h  
PMBUS_REVISION  
Block  
004952h  
The MFR_ID is set to IR (ASCII 52 49) unless  
programmed different in the USER registers  
of the controller.  
Read/Write  
Byte count  
= 3  
MFR_ID  
99h  
9Ah  
9Bh  
Block  
00000052  
h
Read/Write  
byte count  
= 4  
MFR_MODEL  
MFR_REVISION  
Block  
00000002  
h
Read/Write  
byte count  
= 4  
Block Read  
byte count  
= 1  
Block Read  
byte count  
= 1  
Custom  
MFR  
protocol  
Read/Write  
Byte  
Returns a 1 byte code with the following  
values:  
52h = IRPS5401  
N/A  
N/A  
N/A  
N/A  
IC_DEVICE_ID  
ADh  
AEh  
D0h  
IC_DEVICE_REV  
The IC revision that is stored inside the IC  
MFR_REG_ACCESS  
MFR_I2C_ADDRESS  
Read/Write I2C registers  
Reads I2C address  
D6h  
B8h  
Read/Write  
Word  
Sets delay from PG threshold crossed to PG 0000h  
assertion.  
MFR_TPGDLY  
Datasheet  
53 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
PMBUS Commands  
Default  
PMBUS  
COMMAND  
CODE  
COMMAND  
PROTOCOL  
DESCRIPTION  
Exp = 0  
Write a 1 to force continuous current mode 01h  
(CCM) and disable constant on time (COT)  
mode at light load. No LDO support  
Read/Write  
MFR_FCCM  
Byte  
B9h  
DBh  
Reads maximum VOUT recorded since the  
last read. Reading the register  
automatically clears the value. Resolution  
set by VOUT_MODE  
N/A  
MFR_VOUT_PEAK  
MFR_IOUT_PEAK  
Read Word  
Read Word  
Reads maximum IOUT recorded since the  
last read. Reading the register  
automatically clears the value.  
Exp = -10 for LDO, -6 for Internal, and -3 for  
External  
N/A  
DCh  
Reads maximum temp recorded since the  
last read. Reading the register  
automatically clears the value.  
Exp = 0, -2 for LDO  
N/A  
00h  
MFR_TEMPERATURE_PEAK Read Word  
DDh  
DEh  
Read/Write  
MFR_LDO_MARGINING  
Byte  
Allows margining of the LDO output ± 15%  
Note:  
1. If a low to high to low transaction occurs on the DIO line while the CLK is low after the a START or RESTART  
and before the first CLK pulse occurs, the transaction will be NAK’d  
2. The MFR_LDO_MARGIN command is readable and writeable but cannot be saved in the configuration file  
3. The MFR_TPGDLY command is readable and writeable but cannot be saved in the configuration file  
4. To avoid inadvertently setting the MFR_LDO_MARGIN and MFR_TPGDLY commands to non-0 values, the LDO  
VOUT_MODE command must be set to -8, the LDO POWER_GOOD_ON command must be set to 0.109V (or 0V),  
and the LDO POWER_GOOD_OFF command must be set to 0.063V (or 0V)  
5. To avoid inadvertently masking LDO STATUS_INPUT register bits 5, 6, and 7 and LDO STATUS_TEMPURATURE  
bits 7 and 6, the LDO VIN_UV_WARN_LIMIT command must be set to a value no larger than 0.49V  
Table 27 PMBus Commands Saved to MTP  
OPERATION  
VOUT_COMMAND  
VOUT_MIN  
VIN_OFF  
ON_OFF_CONFIG  
VOUT_MAX  
WRITE_PROTECT  
VOUT_TRANSITION_RATE  
POWER_MODE  
VOUT_MODE  
VOUT_SCALE_LOOP  
FREQUENCY_SWITCH  
IOUT_CAL_GAIN  
VOUT_OV_FAULT_LIMIT  
VOUT_OV_FAULT_RESPONSE  
VOUT_UV_FAULT_LIMIT  
OT_FAULT_RESPONSE  
IOUT_CAL_OFFSET  
VOUT_UV_WARN_LIMIT  
OT_FAULT_LIMIT  
TON_DELAY  
VIN_ON  
VOUT_OV_WARN_LIMIT  
VIN_UV_WARN_LIMIT IOUT_OC_WARN_LIMIT  
OT_WARN_LIMIT VIN_OV_FAULT_LIMIT  
IIN_OC_WARN_LIMIT POWER_GOOD_ON  
VIN_OV_FAULT_RESPONSE  
TON_MAX_FAULT_RESPONSE  
IOUT_OC_FAULT_RESPONSE  
RESET_TRANSITION_RATE  
STATUS_TEMPERATURE (Mask)  
STATUS_MFR_SPECIFIC (Mask)  
POWER_GOOD_OFF  
TON_RISE  
TON_MAX_FAULT_LIMIT TOFF_DELAY  
TOFF_FALL  
VOUT_RESET  
POUT_OP_WARN_LIMIT PIN_OP_WARN_LIMIT  
STATUS_INPUT (Mask)  
STATUS_CML (Mask)  
STATUS_VOUT (Mask)  
STATUS_IOUT (Mask)  
Datasheet  
54 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Marking Information  
13  
Marking Information  
Figure 37  
Package Marking  
Datasheet  
55 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Package Information  
14  
Package Information  
Figure 38  
Package information  
Datasheet  
56 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Package Information  
14.1  
PCB Pad Size  
Figure 39  
PCB PAD Size  
Datasheet  
57 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Package Information  
14.2  
PCB Pad Spacing  
Figure 40  
PCB PAD Spacing  
Datasheet  
58 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Package Information  
14.3  
Solder Paste Stencil Pad Size  
Figure 41  
Solder paste stencil pad size  
Datasheet  
59 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Package Information  
14.4  
Solder Paste Stencil Pad Spacing  
Figure 42  
Solder paste stencil pad spacing  
Datasheet  
60 of 61  
V 2.8  
2022-07-06  
IRPS5401 PMIC  
Flexible Power Management Unit  
Environmental Qualifications  
15  
Environmental Qualifications  
Qualification Level  
Industrial  
Moisture Sensitivity Level  
Human Body Model  
7mm x 7mm PQFN  
JEDEC Level 2 @ 260°C  
Class 1B  
(JS-001-2014)  
Charged Device Model  
(JESD22-C101F)  
500V to <1000V  
Class C3  
>1000V  
ESD  
RoHS2 Compliant  
Yes (6/6)  
Datasheet  
61 of 61  
V 2.8  
2022-07-06  
IRPS5401  
IRPS5401  
RevisionꢀHistory  
IRPS5401  
Revision:ꢀ2022-07-11,ꢀRev.ꢀ2.8  
Previous Revision  
Revision Date  
Subjects (major changes since last revision)  
2.0  
2.1  
2.2  
2.3  
2.4  
Release of final version  
2018-08-11  
2018-10-27  
2018-12-21  
2019-05-09  
Correct PWM_A output HI Value  
Update pin descriptions  
Change LDO reference tolerance to 3%  
Add VDDIO note to section 9.3 Table 26; update reset value for command 5Eh, 5Fh,  
62h Table 26; add reset values to command 99h, 9Ah and 9Bh to agree with PMBUS  
command document  
2019-10-08  
2020-10-12  
2021-01-14  
2.5  
2.6  
Add Table 27 to show PMBUS commands that are saved to OTP Add VDDIO info ABS  
MAX table, Table 5 and recommended table, Table 7 Update VDDIO voltage in FIG1  
(application circuit) from 1V-5V to 1.8V-5V  
Add cold start delay requirement note to section 9.3 and update FIGURE 8. This change  
is only describing the operation of the controller. It is not a change in form fit or function.  
Fix Table 8 formatting, some categories were not BOLDed  
2.7  
2.8  
Update note in section 9.3 to specify internal switchers only  
2021-07-20  
2022-07-11  
update OPN in Table 1 from IRPS5401MXI04TRPAUMA to  
IRPS5401MXI04TRPXUMA11  
Trademarks  
Allꢀreferencedꢀproductꢀorꢀserviceꢀnamesꢀandꢀtrademarksꢀareꢀtheꢀpropertyꢀofꢀtheirꢀrespectiveꢀowners.  
WeꢀListenꢀtoꢀYourꢀComments  
Anyꢀinformationꢀwithinꢀthisꢀdocumentꢀthatꢀyouꢀfeelꢀisꢀwrong,ꢀunclearꢀorꢀmissingꢀatꢀall?ꢀYourꢀfeedbackꢀwillꢀhelpꢀusꢀtoꢀcontinuously  
improveꢀtheꢀqualityꢀofꢀthisꢀdocument.ꢀPleaseꢀsendꢀyourꢀproposalꢀ(includingꢀaꢀreferenceꢀtoꢀthisꢀdocument)ꢀto:  
erratum@infineon.com  
Publishedꢀby  
InfineonꢀTechnologiesꢀAG  
81726ꢀMünchen,ꢀGermany  
©ꢀ2022ꢀInfineonꢀTechnologiesꢀAG  
AllꢀRightsꢀReserved.  
LegalꢀDisclaimer  
Theꢀinformationꢀgivenꢀinꢀthisꢀdocumentꢀshallꢀinꢀnoꢀeventꢀbeꢀregardedꢀasꢀaꢀguaranteeꢀofꢀconditionsꢀorꢀcharacteristicsꢀ  
(“Beschaffenheitsgarantie”)ꢀ.  
Withꢀrespectꢀtoꢀanyꢀexamples,ꢀhintsꢀorꢀanyꢀtypicalꢀvaluesꢀstatedꢀhereinꢀand/orꢀanyꢀinformationꢀregardingꢀtheꢀapplicationꢀofꢀthe  
product,ꢀInfineonꢀTechnologiesꢀherebyꢀdisclaimsꢀanyꢀandꢀallꢀwarrantiesꢀandꢀliabilitiesꢀofꢀanyꢀkind,ꢀincludingꢀwithoutꢀlimitation  
warrantiesꢀofꢀnon-infringementꢀofꢀintellectualꢀpropertyꢀrightsꢀofꢀanyꢀthirdꢀparty.  
Inꢀaddition,ꢀanyꢀinformationꢀgivenꢀinꢀthisꢀdocumentꢀisꢀsubjectꢀtoꢀcustomer’sꢀcomplianceꢀwithꢀitsꢀobligationsꢀstatedꢀinꢀthis  
documentꢀandꢀanyꢀapplicableꢀlegalꢀrequirements,ꢀnormsꢀandꢀstandardsꢀconcerningꢀcustomer’sꢀproductsꢀandꢀanyꢀuseꢀofꢀthe  
productꢀofꢀInfineonꢀTechnologiesꢀinꢀcustomer’sꢀapplications.  
Theꢀdataꢀcontainedꢀinꢀthisꢀdocumentꢀisꢀexclusivelyꢀintendedꢀforꢀtechnicallyꢀtrainedꢀstaff.ꢀItꢀisꢀtheꢀresponsibilityꢀofꢀcustomer’s  
technicalꢀdepartmentsꢀtoꢀevaluateꢀtheꢀsuitabilityꢀofꢀtheꢀproductꢀforꢀtheꢀintendedꢀapplicationꢀandꢀtheꢀcompletenessꢀofꢀtheꢀproduct  
informationꢀgivenꢀinꢀthisꢀdocumentꢀwithꢀrespectꢀtoꢀsuchꢀapplication.  
Information  
Forꢀfurtherꢀinformationꢀonꢀtechnology,ꢀdeliveryꢀtermsꢀandꢀconditionsꢀandꢀpricesꢀpleaseꢀcontactꢀyourꢀnearestꢀInfineon  
TechnologiesꢀOfficeꢀ(www.infineon.com).  
Warnings  
Dueꢀtoꢀtechnicalꢀrequirements,ꢀcomponentsꢀmayꢀcontainꢀdangerousꢀsubstances.ꢀForꢀinformationꢀonꢀtheꢀtypesꢀinꢀquestion,  
pleaseꢀcontactꢀtheꢀnearestꢀInfineonꢀTechnologiesꢀOffice.  
TheꢀInfineonꢀTechnologiesꢀcomponentꢀdescribedꢀinꢀthisꢀDataꢀSheetꢀmayꢀbeꢀusedꢀinꢀlife-supportꢀdevicesꢀorꢀsystemsꢀand/or  
automotive,ꢀaviationꢀandꢀaerospaceꢀapplicationsꢀorꢀsystemsꢀonlyꢀwithꢀtheꢀexpressꢀwrittenꢀapprovalꢀofꢀInfineonꢀTechnologies,ꢀifꢀa  
62  
Rev.ꢀ2.8,ꢀꢀ2022-07-11  
failureꢀofꢀsuchꢀcomponentsꢀcanꢀreasonablyꢀbeꢀexpectedꢀtoꢀcauseꢀtheꢀfailureꢀofꢀthatꢀlife-support,ꢀautomotive,ꢀaviationꢀand  
aerospaceꢀdeviceꢀorꢀsystemꢀorꢀtoꢀaffectꢀtheꢀsafetyꢀorꢀeffectivenessꢀofꢀthatꢀdeviceꢀorꢀsystem.ꢀLifeꢀsupportꢀdevicesꢀorꢀsystemsꢀare  
intendedꢀtoꢀbeꢀimplantedꢀinꢀtheꢀhumanꢀbodyꢀorꢀtoꢀsupportꢀand/orꢀmaintainꢀandꢀsustainꢀand/orꢀprotectꢀhumanꢀlife.ꢀIfꢀtheyꢀfail,ꢀitꢀis  

相关型号:

IRPT1053A

Power Module for 1 hp Motor Drives
INFINEON

IRPT1053C

Power Module for 1 hp Motor Drives
INFINEON

IRPT1053CPBF

暂无描述
INFINEON

IRPT1053D

Power Module for 1 hp Motor Drives
INFINEON

IRPT1053E

Power Module for 1 hp Motor Drives
INFINEON

IRPT1057A

Power Module for 0.75 hp Motor Drives
INFINEON

IRPT1058

Integrated Power Stage for 0.75 hp Motor Drives
INFINEON

IRPT1058A

Power Module for 0.75 hp Motor Drives
INFINEON