IRL7472L1 [INFINEON]

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. ;
IRL7472L1
型号: IRL7472L1
厂家: Infineon    Infineon
描述:

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 

文件: 总12页 (文件大小:527K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
StrongIRFET™  
IRL7472L1TRPbF  
DirectFETN-Channel Power MOSFET  
Application  
Brushed Motor drive applications  
BLDC Motor drive applications  
Battery powered circuits  
Half-bridge and full-bridge topologies  
Synchronous rectifier applications  
Resonant mode power supplies  
OR-ing and redundant power switches  
DC/DC and AC/DC converters  
DC/AC Inverters  
VDSS  
40V  
RDS(on) typ.  
0.34m  
max  
@ VGS = 10V  
0.45m  
0.52m  
0.70m  
375A  
RDS(on) typ.  
max  
@ VGS = 4.5V  
ID (Package Limited)  
Benefits  
Optimized for Logic Level Drive  
Improved Gate, Avalanche and Dynamic dv/dt Ruggedness  
Fully Characterized Capacitance and Avalanche SOA  
Enhanced body diode dv/dt and di/dt Capability  
Lead-Free, RoHS Compliant  
S
S
S
S
S
S
D
D
S
G
S
L8  
Standard Pack  
Base part number  
Package Type  
Orderable Part Number  
IRL7472L1TRPbF  
Form  
Quantity  
4000  
IRL7472L1PbF  
Direct FET Large Can (L8)  
Tape and Reel  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
700  
600  
500  
400  
300  
200  
100  
0
I
= 195A  
D
Limited by package  
T
= 125°C  
= 25°C  
J
T
J
2
4
6
8
10 12 14 16 18 20  
25  
50  
75  
100  
125  
150  
175  
T
, Case Temperature (°C)  
C
V
Gate -to -Source Voltage (V)  
GS,  
Fig 2. Maximum Drain Current vs. Case Temperature  
Fig 1. Typical On-Resistance vs. Gate Voltage  
1
2016-10-14  
IRL7472L1TRPbF  
Absolute Maximum Ratings  
Symbol  
Parameter  
Max.  
645  
456  
68  
Units  
ID @ TC = 25°C  
Continuous Drain Current, VGS @ 10V (Silicon Limited)   
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited)   
ID @ TA = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited)   
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited)  
A
375  
1500  
IDM  
Pulsed Drain Current   
Maximum Power Dissipation  
Maximum Power Dissipation  
Linear Derating Factor  
A
PD @TC = 25°C  
PD @TA = 25°C  
341  
W
3.8  
0.025  
W/°C  
V
Gate-to-Source Voltage  
Operating Junction and  
± 20  
VGS  
TJ  
-55 to + 175  
°C  
Storage Temperature Range  
TSTG  
Avalanche Characteristics  
EAS (Thermally limited)  
308  
765  
Single Pulse Avalanche Energy   
Single Pulse Avalanche Energy   
Avalanche Current   
mJ  
EAS (Thermally limited)  
IAR  
A
mJ  
See Fig.15,16, 23a, 23b  
EAR  
Repetitive Avalanche Energy   
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
12.5  
20  
Max.  
40  
Units  
Junction-to-Ambient   
RJA  
Junction-to-Ambient   
Junction-to-Ambient   
Junction-to-Case   
Junction-to-PCB Mounted  
–––  
–––  
0.44  
–––  
RJA  
°C/W  
RJA  
RJC  
RJA-PCB  
–––  
1.0  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Min. Typ. Max. Units  
Conditions  
VGS = 0V, ID = 250µA  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
40  
––– –––  
V
–––  
30 ––– mV/°C Reference to 25°C, ID = 5.0mA  
V(BR)DSS/TJ  
RDS(on)  
––– 0.34 0.45  
––– 0.52 0.70  
VGS = 10V, ID = 195A  
m  
V
GS = 4.5V, ID = 98A  
VGS(th)  
IDSS  
Gate Threshold Voltage  
1.0  
1.7 2.5  
V
VDS = VGS, ID = 250µA  
––– ––– 1.0  
––– ––– 150  
––– ––– 100  
––– ––– -100  
––– 1.0 –––  
VDS = 40V, VGS = 0V  
Drain-to-Source Leakage Current  
µA  
VDS = 40V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
VGS = 20V  
GS = -20V  
nA  
V
RG  
Notes:  
Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
TC measured with thermocouple mounted to top (Drain) of part.  
Used double sided cooling , mounting pad with large heatsink.  
Mounted to a PCB with small clip  
heatsink (still air)  
Mounted on minimum footprint full size  
board with metalized back and with  
small clip heatsink (still air)  
Surface mounted on 1 in. square Cu  
board (still air).  
2
2016-10-14  
IRL7472L1TRPbF  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
Conditions  
DS = 10V, ID = 195A  
gfs  
Qg  
232 ––– –––  
––– 220 330  
S
V
ID = 195A  
Qgs  
Qgd  
Qsync  
td(on)  
tr  
td(off)  
tf  
Ciss  
Coss  
Crss  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
Rise Time  
Turn-Off Delay Time  
Fall Time  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
–––  
–––  
95  
87  
–––  
–––  
VDS = 20V  
nC  
VGS = 4.5V   
ID = 195A, VDS =0V, VGS = 4.5V  
VDD = 20V  
ID = 30A  
RG = 2.7  
––– 133 –––  
––– 68 –––  
––– 176 –––  
––– 174 –––  
––– 137 –––  
––– 20082 –––  
––– 2436 –––  
––– 1594 –––  
ns  
VGS = 4.5V   
VGS = 0V  
VDS = 25V  
ƒ = 10kHz  
pF  
C
C
oss eff. (ER) Effective Output Capacitance (Energy Related) ––– 2855 –––  
oss eff. (TR) Effective Output Capacitance (Time Related) ––– 3544 –––  
VGS = 0V, VDS = 0V to 32V   
VGS = 0V, VDS = 0V to 32V   
Diode Characteristics  
Symbol Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
Continuous Source Current  
(Body Diode)  
Pulsed Source Current  
(Body Diode)   
MOSFET symbol  
showing the  
integral reverse  
p-n junction diode.  
D
––– –––  
341  
A
G
ISM  
––– –––  
––– –––  
1500  
1.2  
S
VSD  
Diode Forward Voltage  
V
TJ= 25°C, IS =195A, VGS = 0V  
dv/dt  
Peak Diode Recovery   
TJ =175°C, IS =195A,  
VDS = 40V  
––– 1.3  
–––  
V/ns  
trr  
Reverse Recovery Time  
–––  
–––  
––– 103  
––– 114  
––– 3.1  
57  
58  
–––  
–––  
–––  
–––  
–––  
TJ = 25° C VR = 34V,  
ns  
IF = 195A  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
di/dt = 100A/µs   
Qrr  
IRRM  
Reverse Recovery Charge  
Reverse Recovery Current  
nC  
A
Notes:  
Package limit current based on source connection technology  
Repetitive rating; pulse width limited by max. junction temperature.  
Limited by TJmax, starting TJ = 25°C, L = 0.016mH, RG = 50, IAS = 195A, VGS =10V.  
ISD 195A, di/dt 984A/µs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400µs; duty cycle 2%.  
Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS  
.
Coss eff. (ER) is a fixed capacitance that gives the  
Ris measured at TJ approximately 90°C.  
same energy as Coss while VDS is rising from 0 to 80% VDSS.  
Limited by TJmax, starting TJ = 25°C, L = 1.0mH, RG = 50, IAS = 39A, VGS =10V.  
Silicon limit current based on maximum allowable junction temperature TJmax.  
3
2016-10-14  
IRL7472L1TRPbF  
10000  
1000  
100  
10  
10000  
1000  
100  
10  
VGS  
15V  
10V  
6.0V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
VGS  
15V  
10V  
6.0V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
TOP  
TOP  
BOTTOM  
BOTTOM  
3.0V  
3.0V  
60µs PULSE WIDTH  
Tj = 175°C  
60µs PULSE WIDTH  
Tj = 25°C  
1
1
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 3. Typical Output Characteristics  
Fig 4. Typical Output Characteristics  
10000  
1000  
100  
10  
2.0  
1.7  
1.4  
1.1  
0.8  
0.5  
I
= 195A  
= 10V  
D
V
GS  
T
= 175°C  
T
= 25°C  
J
J
V
= 10V  
DS  
60µs PULSE WIDTH  
1.0  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 6. Normalized On-Resistance vs. Temperature  
Fig 5. Typical Transfer Characteristics  
100000  
10000  
1000  
14  
V
C
= 0V,  
f = 10 KHZ  
GS  
I
= 195A  
= C + C , C SHORTED  
D
iss  
gs  
gd ds  
C
= C  
12  
10  
8
rss  
gd  
V
V
= 32V  
= 20V  
DS  
DS  
C
= C + C  
oss  
ds  
gd  
C
iss  
C
oss  
6
C
rss  
4
2
0
1
10  
100  
0
60 120 180 240 300 360 420 480 540 600  
, Total Gate Charge (nC)  
V
, Drain-to-Source Voltage (V)  
DS  
Q
G
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage  
4
2016-10-14  
IRL7472L1TRPbF  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
1000  
100  
10  
100µsec  
T
= 175°C  
T
= 25°C  
J
J
1msec  
Limited by Package  
10msec  
DC  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
1.4  
GS  
1.0  
0.1  
0.2  
0.4  
V
0.6  
0.8  
1.0  
1.2  
1.6  
0.1  
1
10  
, Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
SD  
DS  
Fig 10. Maximum Safe Operating Area  
Fig 9. Typical Source-Drain Diode Forward Voltage  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
50  
Id = 5.0mA  
49  
48  
47  
46  
45  
44  
43  
42  
41  
-5  
0
5
10 15 20 25 30 35 40  
-60  
-20  
20  
60  
100  
140  
180  
T
, Temperature ( °C )  
J
V
Drain-to-Source Voltage (V)  
DS,  
Fig 11. Drain-to-Source Breakdown Voltage  
Fig 12. Typical Coss Stored Energy  
1.8  
Vgs = 3.5V  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Vgs = 4.0V  
Vgs = 4.5V  
Vgs = 5.5V  
Vgs = 6.0V  
Vgs = 8.0V  
Vgs = 10V  
0
20 40 60 80 100 120 140 160 180 200  
, Drain Current (A)  
I
D
Fig 13. Typical On-Resistance vs. Drain Current  
5
2016-10-14  
IRL7472L1TRPbF  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
0.02  
0.01  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 125°C and  
Tstart =25°C (Single Pulse)  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming  j = 25°C and  
Tstart = 125°C.  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Avalanche Current vs. Pulse Width  
350  
300  
250  
200  
150  
100  
50  
TOP  
Single Pulse  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 )  
1.Avalanche failures assumption:  
BOTTOM 1.0% Duty Cycle  
= 195A  
I
D
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for every  
part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not  
exceeded.  
3. Equation below based on circuit and waveforms shown in Figures  
23a, 23b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage  
increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax  
(assumed as 25°C in Figure 14, 15).  
0
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
25  
50  
75  
100  
125  
150  
175  
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC  
I
av = 2T/ [1.3·BV·Zth]  
Fig 16. Maximum Avalanche Energy vs. Temperature  
EAS (AR) = PD (ave)· av  
t
6
2016-10-14  
IRL7472L1TRPbF  
20  
18  
16  
14  
12  
10  
8
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
I
= 117A  
= 34V  
F
V
R
T = 25°C  
J
T = 125°C  
J
I
I
I
= 250µA  
= 1.0mA  
= 1.0A  
D
D
D
6
4
2
100  
200  
300  
400  
500  
600  
-60 -40 -20 0 20 40 60 80 100120140160180  
, Temperature ( °C )  
di /dt (A/µs)  
T
F
J
Fig 17. Threshold Voltage vs. Temperature  
Fig 18. Typical Recovery Current vs. dif/dt  
20  
18  
16  
14  
12  
10  
8
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
I
= 195A  
= 34V  
F
I
= 117A  
= 34V  
V
F
R
V
T = 25°C  
R
J
T = 25°C  
T = 125°C  
J
J
T = 125°C  
J
6
4
2
100  
200  
300  
400  
500  
600  
100  
200  
300  
400  
500  
600  
di /dt (A/µs)  
F
di /dt (A/µs)  
F
Fig 20. Typical Stored Charge vs. dif/dt  
Fig 19. Typical Recovery Current vs. dif/dt  
1000  
I
F
= 195A  
= 34V  
900  
V
R
800  
700  
600  
500  
400  
300  
200  
100  
T = 25°C  
J
T = 125°C  
J
100  
200  
300  
400  
500  
600  
di /dt (A/µs)  
F
Fig 21. Typical Stored Charge vs. dif/dt  
7
2016-10-14  
IRL7472L1TRPbF  
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs  
V
(BR)DSS  
t
p
15V  
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
20V  
I
0.01  
t
AS  
p
Fig 23a. Unclamped Inductive Test Circuit  
Fig 23b. Unclamped Inductive Waveforms  
Fig 24a. Switching Time Test Circuit  
Fig 24b. Switching Time Waveforms  
Id  
Vds  
Vgs  
VDD  
Vgs(th)  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 25b. Gate Charge Waveform  
Fig 25a. Gate Charge Test Circuit  
8
2016-10-14  
IRL7472L1TRPbF  
DirectFET™ Board Footprint, L8 Outline  
(Large Size Can, 8-Source Pads)  
Please see DirectFET™ application note AN-1035 for all details regarding the assembly of DirectFET™.  
This includes all recommendations for stencil and substrate designs.  
G = GATE  
D = DRAIN  
S = SOURCE  
D
D
D
D
D
D
S
S
S
S
S
S
S
S
G
Note: For the most current drawing please refer to website at http://www.irf.com/package/  
9
2016-10-14  
IRL7472L1TRPbF  
DirectFET™ Outline Dimension, L8 Outline  
(Large Size Can, 8-Source Pads)  
Please see DirectFET™ application note AN-1035 for all details regarding the assembly of DirectFET™.  
This includes all recommendations for stencil and substrate designs.  
DIMENSIONS  
METRIC  
IMPERIAL  
CODE MIN MAX  
MIN  
MAX  
0.360  
0.280  
0.236  
0.026  
0.024  
0.048  
0.040  
0.030  
0.017  
0.057  
0.104  
0.215  
0.029  
0.007  
0.003  
A
B
C
D
E
F
9.05 9.15  
6.85 7.10  
5.90 6.00  
0.55 0.65  
0.58 0.62  
1.18 1.22  
0.98 1.02  
0.73 0.77  
0.38 0.42  
1.35 1.45  
2.55 2.65  
5.35 5.45  
0.68 0.74  
0.09 0.17  
0.02 0.08  
0.356  
0.270  
0.232  
0.022  
0.023  
0.046  
0.039  
0.029  
0.015  
0.053  
0.100  
0.211  
0.027  
0.003  
0.001  
G
H
J
K
L
L1  
M
P
R
DirectFETPart Marking  
GATE MARKING  
LOGO  
+
PART NUMBER  
BATCH NUMBER  
DATE CODE  
Line above the last character of  
the date code indicates "Lead-Free"  
Note: For the most current drawing please refer to website at http://www.irf.com/package/  
10  
2016-10-14  
IRL7472L1TRPbF  
DirectFETTape & Reel Dimension (Showing component orientation).  
LOADED TAPE FEED DIRECTION  
+
NOTE: Controlling dimensions in mm  
Std reel quantity is 4000 parts. Order as IRF7472L1TRPBF).  
DIMENSIONS  
METRIC  
REEL DIMENSIONS  
IMPERIAL  
STANDARD OPTION (QTY 4000)  
METRIC  
IMPERIAL  
NOTE: CONTROLLING  
DIMENSIONS IN MM  
CODE  
MIN  
MAX  
0.476  
0.161  
0.642  
0.299  
0.291  
0.398  
N.C  
MIN  
MAX  
12.10  
4.10  
A
B
C
D
E
F
4.69  
11.90  
3.90  
15.90  
7.40  
7.20  
9.90  
1.50  
1.50  
CODE  
MIN  
12.992  
0.795  
0.504  
0.059  
3.900  
N.C  
MAX  
N.C  
MIN  
MAX  
N.C  
0.154  
0.623  
0.291  
0.283  
0.390  
0.059  
0.059  
A
B
C
D
E
F
330.00  
20.20  
12.80  
1.50  
16.30  
7.60  
N.C  
N.C  
13.20  
N.C  
0.520  
N.C  
7.40  
10.10  
N.C  
99.00  
N.C  
3.940  
0.880  
0.720  
0.760  
100.00  
22.40  
18.40  
19.40  
G
H
1.60  
0.063  
G
H
0.650  
0.630  
16.40  
15.90  
Note: For the most current drawing please refer to website at http://www.irf.com/package/  
Qualification Information  
Industrial *  
(per JEDEC JESD47Fguidelines)  
Qualification Level  
MSL1  
DirectFET (Large -Can)  
Moisture Sensitivity Level  
RoHS Compliant  
(per JEDEC J-STD-020D†)  
Yes  
† Applicable version of JEDEC standard at the time of product release.  
* Industrial qualification standards except autoclave test conditions.  
11  
2016-10-14  
IRL7472L1TRPbF  
Revision History  
Date  
Comments  
 Changed datasheet with Infineon logo - all pages.  
 Changed max Rdson @ 10V/4.5V from “0.59m/0.97m" to “0.45m" / 0.7m" - on pages 1 & 2.  
 Changed ID @ TC 25C/100C from “564A/399A” to “645A/456A” - on pages 1 & 2.  
 Changed ID @ TA 25C from “59A” to “68A” - on pages 1 & 2.  
 Changed Fig.2 -on page 2.  
08/09/2016  
10/14/2016  
 Corrected Outline Dimension, L8 Outline on page 10.  
Trademarks of Infineon Technologies AG  
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™,  
CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™,  
GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™,  
OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID  
FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™  
Trademarks updated November 2015  
Other Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
Edition 2016-04-19  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
For further information on the product, technology,  
delivery terms and conditions and prices please  
contact your nearest Infineon Technologies oice  
(www.infineon.com).  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaenheitsgarantie”) .  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement  
of intellectual property rights of any third party.  
Please note that this product is not qualified  
according to the AEC Q100 or AEC Q101 documents  
of the Automotive Electronics Council.  
© 2016 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about this  
document?  
Email: erratum@infineon.com  
WARNINGS  
Due to technical requirements products may  
In addition, any information given in this contain dangerous substances. For information on  
document is subject to customer’s compliance the types in question please contact your nearest  
with its obligations stated in this document and Infineon Technologies oice.  
any applicable legal requirements, norms and  
standards concerning customer’s products and  
Except as otherwise explicitly approved by Infineon  
any use of the product of Infineon Technologies in  
Technologies in a written document signed by  
customer’s applications.  
Document reference  
ifx1  
authorized  
representatives  
of  
Infineon  
Technologies, Infineon Technologies’ products  
may not be used in any applications where a  
failure of the product or any consequences of the  
use thereof can reasonably be expected to result in  
personal injury.  
The data contained in this document is exclusively  
intended for technically trained sta. It is the  
responsibility  
of  
customer’s  
technical  
departments to evaluate the suitability of the  
product for the intended application and the  
completeness of the product information given in  
this document with respect to such application.  
12  
2016-10-14  

相关型号:

IRL7472L1PBF

DirectFET® N-Channel Power MOSFET
INFINEON

IRL7472L1PBF_15

Brushed Motor drive applications
INFINEON

IRL7472L1TRPbF

DirectFET® N-Channel Power MOSFET
INFINEON

IRL7486M

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRL7486MPBF

Brushed Motor drive applications
INFINEON

IRL7486MPBF_15

Brushed Motor drive applications
INFINEON

IRL7486MTRPBF

Power Field-Effect Transistor, 209A I(D), 40V, 0.00125ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET
INFINEON

IRL7833

HEXFETPower MOSFET
INFINEON

IRL7833L

HEXFETPower MOSFET
INFINEON

IRL7833LPBF

HEXFET㈢Power MOSFET
INFINEON

IRL7833PBF

HEXFET㈢Power MOSFET
INFINEON

IRL7833S

HEXFETPower MOSFET
INFINEON