IRFSL4610TRR [INFINEON]

Power Field-Effect Transistor, 73A I(D), 100V, 0.014ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-262AA, TO-262, 3 PIN;
IRFSL4610TRR
型号: IRFSL4610TRR
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor, 73A I(D), 100V, 0.014ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-262AA, TO-262, 3 PIN

开关 脉冲 晶体管
文件: 总12页 (文件大小:347K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96906C  
IRFB4610  
IRFS4610  
IRFSL4610  
HEXFET® Power MOSFET  
Applications  
D
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l High Speed Power Switching  
VDSS  
100V  
11m  
RDS(on) typ.  
l Hard Switched and High Frequency Circuits  
G
14m  
73A  
max.  
ID  
S
Benefits  
l Improved Gate, Avalanche and Dynamic dV/dt  
Ruggedness  
l Fully Characterized Capacitance and Avalanche  
SOA  
l Enhanced body diode dV/dt and dI/dt Capability  
G D S  
G D S  
G D S  
D2Pak  
IRFS4610  
TO-262  
IRFSL4610  
TO-220AB  
IRFB4610  
Absolute Maximum Ratings  
Symbol  
ID @ TC = 25°C  
Parameter  
Continuous Drain Current, VGS @ 10V  
Max.  
73  
Units  
A
Continuous Drain Current, VGS @ 10V  
52  
ID @ TC = 100°C  
IDM  
290  
190  
Pulsed Drain Current  
PD @TC = 25°C  
Maximum Power Dissipation  
Linear Derating Factor  
W
1.3  
W/°C  
V
± 20  
VGS  
Gate-to-Source Voltage  
7.6  
Peak Diode Recovery  
dV/dt  
TJ  
V/ns  
°C  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
300  
10lb in (1.1N m)  
Mounting torque, 6-32 or M3 screw  
Avalanche Characteristics  
Single Pulse Avalanche Energy  
EAS (Thermally limited)  
370  
mJ  
A
Avalanche Current  
IAR  
See Fig. 14, 15, 16a, 16b,  
Repetitive Avalanche Energy  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.77  
–––  
62  
Units  
Rθ  
Rθ  
Rθ  
Rθ  
Junction-to-Case  
JC  
CS  
JA  
JA  
Case-to-Sink, Flat Greased Surface , TO-220  
0.50  
–––  
°C/W  
Junction-to-Ambient, TO-220  
Junction-to-Ambient (PCB Mount) , D2Pak  
–––  
40  
www.irf.com  
1
01/23/06  
IRFB4610/IRFS4610/IRFSL4610  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Min. Typ. Max. Units  
100 ––– –––  
––– 0.085 ––– V/°C Reference to 25°C, ID = 1mA  
Conditions  
VGS = 0V, ID = 250µA  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
V
V
/ T  
J
(BR)DSS  
RDS(on)  
VGS(th)  
IDSS  
–––  
2.0  
11  
14  
4.0  
20  
VGS = 10V, ID = 44A  
m
–––  
V
VDS = VGS, ID = 100µA  
Drain-to-Source Leakage Current  
––– –––  
µA VDS = 100V, VGS = 0V  
VDS = 100V, VGS = 0V, TJ = 125°C  
nA VGS = 20V  
––– ––– 250  
––– ––– 200  
––– ––– -200  
IGSS  
RG  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Gate Input Resistance  
VGS = -20V  
–––  
1.5  
–––  
f = 1MHz, open drain  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
Conditions  
VDS = 50V, ID = 44A  
nC ID = 44A  
DS = 80V  
73  
––– –––  
S
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
90  
20  
36  
18  
87  
53  
70  
140  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs  
Qgd  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Rise Time  
V
VGS = 10V  
ns VDD = 65V  
ID = 44A  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
R = 5.6  
G
VGS = 10V  
pF VGS = 0V  
VDS = 50V  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 3550 –––  
––– 260 –––  
––– 150 –––  
––– 330 –––  
––– 380 –––  
Output Capacitance  
Reverse Transfer Capacitance  
ƒ = 1.0MHz  
Coss eff. (ER)  
VGS = 0V, VDS = 0V to 80V , See Fig.11  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
Coss eff. (TR)  
VGS = 0V, VDS = 0V to 80V , See Fig. 5  
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
D
IS  
Continuous Source Current  
––– –––  
A
MOSFET symbol  
73  
(Body Diode)  
showing the  
G
ISM  
Pulsed Source Current  
––– ––– 290  
integral reverse  
S
(Body Diode)  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
––– –––  
1.3  
53  
V
TJ = 25°C, IS = 44A, VGS = 0V  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 85V,  
IF = 44A  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
–––  
35  
42  
44  
65  
2.1  
ns  
63  
di/dt = 100A/µs  
Qrr  
66  
nC  
98  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
–––  
A
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Repetitive rating; pulse width limited by max. junction  
temperature.  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.39mH  
RG = 25, IAS = 44A, VGS =10V. Part not recommended for use  
above this value.  
Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
† Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
.
‡ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
mended footprint and soldering techniques refer to application note #AN-994.  
ˆ Rθ is measured at TJ approximately 90°C  
ƒ ISD 44A, di/dt 660A/µs, VDD V(BR)DSS, TJ 175°C.  
„ Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRFB4610/IRFS4610/IRFSL4610  
1000  
100  
10  
1000  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
100  
4.5V  
4.5V  
60µs PULSE WIDTH  
Tj = 25°C  
60µs PULSE WIDTH  
Tj = 25°C  
1
10  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000.0  
100.0  
10.0  
1.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 73A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
= 25V  
J
V
DS  
60µs PULSE WIDTH  
0.1  
2.0  
3.0  
V
4.0  
5.0  
6.0  
7.0  
8.0  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
, Gate-to-Source Voltage (V)  
GS  
T
, Junction Temperature (°C)  
J
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
6000  
5000  
4000  
3000  
2000  
1000  
0
20  
V
= 0V,  
f = 1 MHZ  
GS  
I = 44A  
D
C
= C + C , C SHORTED  
iss  
gs  
gd ds  
V
= 80V  
DS  
C
= C  
rss  
gd  
16  
12  
8
VDS= 50V  
VDS= 20V  
C
= C + C  
oss  
ds  
gd  
Ciss  
4
Coss  
Crss  
0
0
20  
40  
60  
80  
100 120 140  
1
10  
100  
Q
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRFB4610/IRFS4610/IRFSL4610  
1000.0  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
100.0  
100µsec  
T
= 175°C  
J
10.0  
1.0  
1msec  
T
= 25°C  
J
10msec  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
, Source-to-Drain Voltage (V)  
DC  
0.1  
0.1  
1
10  
100  
1000  
V
, Drain-toSource Voltage (V)  
V
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
80  
60  
40  
20  
0
125  
120  
115  
110  
105  
100  
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
T
, Junction Temperature (°C)  
T
, Junction Temperature (°C)  
J
J
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
1600  
2.0  
1.5  
1.0  
0.5  
0.0  
I
D
TOP  
4.6A  
6.3A  
44A  
1200  
800  
400  
0
BOTTOM  
25  
50  
75  
100  
125  
150  
175  
0
20  
40  
60  
80  
100  
Starting T , Junction Temperature (°C)  
V
Drain-to-Source Voltage (V)  
J
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent  
4
www.irf.com  
IRFB4610/IRFS4610/IRFSL4610  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
0.02  
0.01  
R1  
R1  
R2  
R2  
Ri (°C/W) τi (sec)  
0.4367 0.001016  
τ
J τJ  
τ
τ
0.01  
Cτ  
1 τ1  
Ci= τi/Ri  
τ
2τ2  
0.3337 0.009383  
0.001  
0.0001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
100  
10  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
Duty Cycle = Single Pulse  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming∆Τ j = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
400  
300  
200  
100  
0
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long as neither Tjmax nor  
Iav (max) is exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1% Duty Cycle  
= 44A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
25  
50  
75  
100  
125  
150  
175  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Starting T , Junction Temperature (°C)  
J
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRFB4610/IRFS4610/IRFSL4610  
16  
12  
8
5.0  
I
I
I
= 1.0A  
D
D
D
= 1.0mA  
= 250µA  
4.0  
3.0  
2.0  
1.0  
ID = 100µA  
I
= 29A  
F
4
V
= 85V  
R
T
= 125°C  
= 25°C  
J
J
T
0
100 200 300 400 500 600 700 800 900 1000  
-75 -50 -25  
0
J
25 50 75 100 125 150 175  
, Temperature ( °C )  
di / dt - (A / µs)  
f
T
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage Vs. Temperature  
16  
300  
12  
8
200  
100  
I
= 29A  
= 85V  
I
= 44A  
= 85V  
F
F
4
0
V
V
R
R
T
= 125°C  
= 25°C  
T
= 125°C  
= 25°C  
J
J
T
T
J
J
0
100 200 300 400 500 600 700 800 900 1000  
100 200 300 400 500 600 700 800 900 1000  
di / dt - (A / µs)  
f
di / dt - (A / µs)  
f
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
300  
200  
100  
0
I
= 44A  
= 85V  
F
V
T
R
= 125°C  
= 25°C  
J
T
J
100 200 300 400 500 600 700 800 900 1000  
di / dt - (A / µs)  
f
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFB4610/IRFS4610/IRFSL4610  
Driver Gate Drive  
P.W.  
Period  
D.U.T  
Period  
D =  
P.W.  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
-
+
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
Vgs(th)  
0
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
www.irf.com  
7
IRFB4610/IRFS4610/IRFSL4610  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220AB Part Marking Information  
EXAMPLE: THIS IS AN IRF1010  
LOT CODE 1789  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW 19, 2000  
IN THE ASSEMBLYLINE "C"  
DATE CODE  
YEAR 0 = 2000  
WEEK 19  
Note: "P" in assembly line position  
indicates "L ead - F ree"  
ASSEMBLY  
LOT CODE  
LINE C  
TO-220AB packages are not recommended for Surface Mount Application.  
8
www.irf.com  
IRFB4610/IRFS4610/IRFSL4610  
TO-262 Package Outline  
Dimensions are shown in millimeters (inches)  
TO-262 Part Marking Information  
EXAMPLE: THIS IS AN IRL3103L  
LOT CODE 1789  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW 19, 1997  
IN THE ASSEMBLYLINE "C"  
DATE CODE  
YEAR 7 = 1997  
WEEK 19  
ASSEMBLY  
LOT CODE  
LINE C  
OR  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
DATE CODE  
P = DE S IGNAT E S L E AD-F R E E  
PRODUCT (OPTIONAL)  
YEAR 7 = 1997  
ASSEMBLY  
LOT CODE  
WE E K 19  
A = ASSEMBLYSITE CODE  
www.irf.com  
9
IRFB4610/IRFS4610/IRFSL4610  
D2Pak (TO-263AB) Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak (TO-263AB) Part Marking Information  
THIS IS AN IRF530S WITH  
LOT CODE 8024  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW 02, 2000  
IN THE ASSEMBLY LINE "L"  
F530S  
DATE CODE  
YEAR 0 = 2000  
WE E K 02  
AS S E MB L Y  
LOT CODE  
LINE L  
OR  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
F530S  
DATE CODE  
P = DE S IGNAT E S L E AD - F R E E  
PRODUCT (OPTIONAL)  
AS S E MB L Y  
LOT CODE  
YEAR 0 = 2000  
WE E K 02  
A = AS S E MB L Y S IT E CODE  
10  
www.irf.com  
IRFB4610/IRFS4610/IRFSL4610  
D2Pak (TO-263AB) Tape & Reel Information  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
1.85 (.073)  
11.60 (.457)  
11.40 (.449)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
TRL  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
26.40 (1.039)  
24.40 (.961)  
4
3
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 01/06  
www.irf.com  
11  
Note: For the most current drawings please refer to the IR website at:  
http://www.irf.com/package/  

相关型号:

IRFSL4615PBF

HEXFET Power MOSFET
INFINEON

IRFSL4620PBF

HEXFET Power MOSFET
INFINEON

IRFSL4710

Power MOSFET(Vdss=100v, Rds(on)max=0.014ohm, Id=75A)
INFINEON

IRFSL4710PBF

HEXFET㈢ Power MOSFET
INFINEON

IRFSL52N15D

Power MOSFET(Vdss=150V, Rds(on)max=0.032ohm, Id=50A)
INFINEON

IRFSL52N15DPBF

HEXFET Power MOSFET
INFINEON

IRFSL5615PBF

DIGITAL AUDIO MOSFET
INFINEON

IRFSL5620PBF

DIGITAL AUDIO MOSFET
INFINEON

IRFSL59N10D

Power MOSFET(Vdss=100V, Rds(on)max=0.025ohm, Id=59A)
INFINEON

IRFSL59N10DPBF

HEXFET Power MOSFET
INFINEON

IRFSL7430PBF

Power Field-Effect Transistor
INFINEON

IRFSL7437

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. End-applications include cordless power and gardening tools, light electric vehicles and e-bikes demanding a high level of ruggedness and energy efficiency.
INFINEON