IRFR3806PBF [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRFR3806PBF
型号: IRFR3806PBF
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

晶体 晶体管 开关 脉冲
文件: 总10页 (文件大小:507K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97313  
IRFR3806PbF  
IRFU3806PbF  
Applications  
l High Efficiency Synchronous Rectification in  
SMPS  
HEXFET® Power MOSFET  
l Uninterruptible Power Supply  
l High Speed Power Switching  
l Hard Switched and High Frequency Circuits  
D
S
VDSS  
RDS(on) typ.  
max.  
60V  
12.6m  
15.8m  
43A  
G
Benefits  
ID  
l Improved Gate, Avalanche and Dynamic  
dv/dt Ruggedness  
l Fully Characterized Capacitance and  
Avalanche SOA  
D
l Enhanced body diode dV/dt and dI/dt  
Capability  
S
S
D
G
G
D-Pak  
IRFR3806PbF  
I-Pak  
IRFU3806PbF  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
Parameter  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current c  
Max.  
43  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
31  
A
170  
PD @TC = 25°C  
71  
W
Maximum Power Dissipation  
Linear Derating Factor  
0.47  
W/°C  
V
VGS  
20  
24  
Gate-to-Source Voltage  
Peak Diode Recovery e  
dv/dt  
TJ  
V/ns  
°C  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
300  
Avalanche Characteristics  
Single Pulse Avalanche Energy d  
EAS (Thermally limited)  
73  
25  
mJ  
A
Avalanche Current c  
IAR  
Repetitive Avalanche Energy f  
EAR  
7.1  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
Max.  
2.12  
–––  
62  
Units  
RθJC  
–––  
0.50  
–––  
Junction-to-Case j  
RθCS  
RθJA  
°C/W  
Case-to-Sink, Flat Greased Surface  
Junction-to-Ambient ij  
www.irf.com  
1
03/04/08  
IRFR/U3806PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
60 ––– –––  
––– 0.075 ––– V/°C Reference to 25°C, ID = 5mAc  
Conditions  
VGS = 0V, ID = 250µA  
V
V(BR)DSS/TJ  
RDS(on)  
––– 12.6 15.8  
VGS = 10V, ID = 25A f  
mΩ  
V
VGS(th)  
2.0  
–––  
4.0  
20  
V
V
V
DS = VGS, ID = 50µA  
IDSS  
Drain-to-Source Leakage Current  
––– –––  
µA  
DS = 60V, VGS = 0V  
––– ––– 250  
––– ––– 100  
––– ––– -100  
DS = 48V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
nA VGS = 20V  
GS = -20V  
V
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
Conditions  
VDS = 10V, ID = 25A  
nC ID = 25A  
DS = 30V  
41  
––– –––  
S
Qg  
–––  
–––  
–––  
22  
5.0  
6.3  
30  
Qgs  
Qgd  
Qsync  
Gate-to-Source Charge  
–––  
–––  
V
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
VGS = 10V f  
––– 28.3 –––  
ID = 25A, VDS =0V, VGS = 10V  
RG(int)  
td(on)  
–––  
–––  
–––  
–––  
–––  
Internal Gate Resistance  
Turn-On Delay Time  
Rise Time  
0.79 –––  
6.3  
40  
49  
47  
–––  
–––  
–––  
–––  
ns VDD = 39V  
ID = 25A  
tr  
td(off)  
Turn-Off Delay Time  
Fall Time  
RG = 20Ω  
VGS = 10V f  
tf  
Ciss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
––– 1150 –––  
––– 130 –––  
V
GS = 0V  
Coss  
VDS = 50V  
Crss  
–––  
67  
–––  
pF ƒ = 1.0MHz  
Coss eff. (ER)  
Coss eff. (TR)  
––– 190 –––  
––– 230 –––  
V
GS = 0V, VDS = 0V to 60V h  
Effective Output Capacitance (Energy Related)  
h
VGS = 0V, VDS = 0V to 60V g  
Effective Output Capacitance (Time Related)  
g
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
D
S
Continuous Source Current  
––– –––  
A
MOSFET symbol  
43  
(Body Diode)  
Pulsed Source Current  
(Body Diode)ꢀc  
showing the  
integral reverse  
G
ISM  
––– ––– 170  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
33  
V
TJ = 25°C, IS = 25A, VGS = 0V f  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 51V,  
–––  
–––  
–––  
–––  
–––  
22  
26  
17  
24  
1.4  
ns  
IF = 25A  
di/dt = 100A/µs f  
39  
Qrr  
Reverse Recovery Charge  
26  
nC  
36  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
–––  
A
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Repetitive rating; pulse width limited by max. junction  
temperature.  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.23mH  
RG = 25, IAS = 25A, VGS =10V. Part not recommended for  
use above this value.  
ƒ ISD 25A, di/dt 1580A/µs, VDD V(BR)DSS, TJ 175°C.  
„ Pulse width 400µs; duty cycle 2%.  
Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
† Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
.
‡ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
mended footprint and soldering techniques refer to application note #AN-994.  
ˆ Rθ is measured at TJ approximately 90°C.  
2
www.irf.com  
IRFR/U3806PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
4.5V  
60µs PULSE WIDTH  
Tj = 175°C  
60µs PULSE WIDTH  
Tj = 25°C  
1
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 25A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
J
1
V
= 25V  
DS  
60µs PULSE WIDTH  
0.1  
2
3
4
5
6
7
8
9
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
12.0  
10000  
1000  
100  
V
C
= 0V,  
f = 1 MHZ  
GS  
I = 25A  
D
= C + C , C SHORTED  
iss  
gs gd ds  
V
V
V
= 48V  
= 30V  
= 12V  
C
= C  
DS  
DS  
DS  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
rss  
gd  
C
= C + C  
oss  
ds  
C
gd  
iss  
C
oss  
C
rss  
10  
0
5
10  
15  
20  
25  
1
10  
, Drain-to-Source Voltage (V)  
100  
Q
, Total Gate Charge (nC)  
V
G
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRFR/U3806PbF  
1000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100  
100µsec  
1msec  
T
= 175°C  
J
10  
1
T
= 25°C  
J
10msec  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
DC  
V
= 0V  
GS  
0.1  
0.1  
0.0  
0.5  
1.0  
1.5  
2.0  
1
10  
100  
V
, Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode Forward Voltage  
80  
75  
70  
65  
60  
45  
40  
35  
30  
25  
20  
15  
10  
5
Id = 5mA  
0
-60 -40 -20  
0
T
20 40 60 80 100120140160180  
, Temperature ( °C )  
25  
50  
75  
100  
125  
150  
175  
T
, Case Temperature (°C)  
J
C
Fig 10. Drain-to-Source Breakdown Voltage  
Fig 9. Maximum Drain Current vs. Case Temperature  
0.4  
300  
I
D
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0.0  
TOP  
2.8A  
5.1A  
250  
200  
150  
100  
50  
BOTTOM 25A  
0
-10  
0
10 20 30 40 50 60 70  
Drain-to-Source Voltage (V)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
V
DS,  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
Fig 11. Typical COSS Stored Energy  
4
www.irf.com  
IRFR/U3806PbF  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
0.1  
τ
0.02  
0.01  
JτJ  
τ
τ
Cτ  
0.6086 0.00026  
0.9926 0.001228  
0.5203 0.00812  
τ
1τ1  
τ
2 τ2  
3τ3  
Ci= τi/Ri  
0.01  
τ /  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
100  
10  
1
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
0.01  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming  
Tstart = 150°C.  
j = 25°C and  
∆Τ  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
80  
60  
40  
20  
0
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1.0% Duty Cycle  
= 25A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
Starting T , Junction Temperature (°C)  
EAS (AR) = PD (ave)·tav  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRFR/U3806PbF  
4.0  
3.5  
3.0  
14  
12  
10  
8
I = 17A  
F
V
= 51V  
R
T = 25°C  
J
T = 125°C  
J
2.5  
2.0  
1.5  
1.0  
I
I
I
I
= 50µA  
= 250µA  
= 1.0mA  
= 1.0A  
D
D
D
D
6
4
2
0
-75 -50 -25  
0
25 50 75 100 125 150 175 200  
, Temperature ( °C )  
0
200  
400  
600  
800  
1000  
T
di /dt (A/µs)  
J
F
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
14  
260  
I = 25A  
I = 17A  
F
F
12  
10  
8
V
= 51V  
V
= 51V  
R
R
210  
160  
110  
60  
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
6
4
2
0
10  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
di /dt (A/µs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
260  
I = 25A  
F
V
= 51V  
R
210  
160  
110  
60  
T = 25°C  
J
T = 125°C  
J
10  
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFR/U3806PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
R
G
V
DD  
-
I
A
AS  
V
2
GS  
0.01Ω  
t
p
I
AS  
Fig 21b. Unclamped Inductive Waveforms  
Fig 21a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 22a. Switching Time Test Circuit  
Fig 22b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
Vgs(th)  
0
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 23a. Gate Charge Test Circuit  
Fig 23b. Gate Charge Waveform  
www.irf.com  
7
IRFR/U3806PbF  
D-Pak (TO-252AA) Package Outline  
Dimensions are shown in millimeters (inches)  
D-Pak (TO-252AA) Part Marking Information  
25  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
8
www.irf.com  
IRFR/U3806PbF  
I-Pak (TO-251AA) Package Outline  
Dimensions are shown in millimeters (inches)  
I-Pak (TO-251AA) Part Marking Information  
25  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com  
9
IRFR/U3806PbF  
D-Pak (TO-252AA) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TR  
TRL  
TRR  
16.3 ( .641 )  
15.7 ( .619 )  
16.3 ( .641 )  
15.7 ( .619 )  
12.1 ( .476 )  
11.9 ( .469 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
FEED DIRECTION  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
13 INCH  
16 mm  
NOTES :  
1. OUTLINE CONFORMS TO EIA-481.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 03/08  
www.irf.com  
10  

相关型号:

IRFR3806TRLPBF

Power Field-Effect Transistor, 43A I(D), 60V, 0.0158ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, LEAD FREE, PLASTIC, DPAK-3
INFINEON

IRFR3806TRPBF

Power Field-Effect Transistor, 43A I(D), 60V, 0.0158ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, LEAD FREE, PLASTIC, DPAK-3
INFINEON

IRFR3806TRRPBF

Power Field-Effect Transistor, 43A I(D), 60V, 0.0158ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, LEAD FREE, PLASTIC, DPAK-3
INFINEON

IRFR3910

Power MOSFET(Vdss=100V, Rds=0.115ohm, Id=16A)
INFINEON

IRFR3910

Ultra Low On-Resistance
KERSEMI

IRFR3910HR

暂无描述
INFINEON

IRFR3910PBF

HEXFET Power MOSFET
INFINEON

IRFR3910PBF

Ultra Low On-Resistance
KERSEMI

IRFR3910TR

Ultra Low On-Resistance
INFINEON

IRFR3910TRHR

暂无描述
INFINEON

IRFR3910TRLPBF

Power Field-Effect Transistor, 16A I(D), 100V, 0.115ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, LEAD FREE, PLASTIC, DPAK-3
INFINEON

IRFR3910TRPBF

Ultra Low On-Resistance
INFINEON