IRFB7430 [INFINEON]

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. ;
IRFB7430
型号: IRFB7430
厂家: Infineon    Infineon
描述:

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 

文件: 总11页 (文件大小:258K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
StrongIRFETTM  
IRFB7430PbF  
Applications  
HEXFET® Power MOSFET  
l Brushed Motor drive applications  
l BLDC Motor drive applications  
l Battery powered circuits  
l Half-bridge and full-bridge topologies  
l Synchronous rectifier applications  
l Resonant mode power supplies  
l OR-ing and redundant power switches  
l DC/DC and AC/DC converters  
l DC/AC Inverters  
D
S
VDSS  
40V  
RDS(on) typ.  
max.  
1.0mΩ  
1.3mΩ  
G
ID  
409A  
(Silicon Limited)  
ID  
195A  
(Package Limited)  
D
Benefits  
S
D
l Improved Gate, Avalanche and Dynamic dV/dt  
Ruggedness  
G
l Fully Characterized Capacitance and Avalanche  
SOA  
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
TO-220AB  
IRFB7430PbF  
G
Gate  
D
S
l RoHS Compliant, Halogen-Free*  
Drain  
Source  
Ordering Information  
Base Part Number  
Package Type  
Standard Pack  
Form  
Tube  
Complete Part Number  
Quantity  
IRFB7430PbF  
TO-220  
50  
IRFB7430PbF  
500  
400  
300  
200  
100  
0
6.0  
4.0  
2.0  
0.0  
I
= 100A  
D
Limited By Package  
T
= 125°C  
J
T
= 25°C  
J
25  
50  
75  
100  
125  
150  
175  
4
6
8
10  
12 14 16  
18 20  
T
, Case Temperature (°C)  
C
V
Gate -to -Source Voltage (V)  
GS,  
Fig 2. Maximum Drain Current vs. Case Temperature  
Submit Datasheet Feedback February 19, 2015  
Fig 1. Typical On-Resistance vs. Gate Voltage  
www.irf.com © 2015 International Rectifier  
1
IRFB7430PbF  
Absolute Maximum Ratings  
Symbol  
Parameter  
Max.  
409  
289  
195  
1524  
375  
Units  
A
ID @ TC = 25°C  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)  
Pulsed Drain Current  
PD @TC = 25°C  
W
Maximum Power Dissipation  
2.5  
± 20  
Linear Derating Factor  
Gate-to-Source Voltage  
W/°C  
V
VGS  
TJ  
-55 to + 175  
Operating Junction and  
TSTG  
°C  
Storage Temperature Range  
300  
Soldering Temperature, for 10 seconds (1.6mm from case)  
Mounting torque, 6-32 or M3 screw  
10lbf in (1.1N m)  
Avalanche Characteristics  
EAS (Thermally limited)  
Single Pulse Avalanche Energy  
760  
1452  
mJ  
EAS (Thermally limited)  
IAR  
Single Pulse Avalanche Energy  
Avalanche Current  
See Fig. 14, 15, 22a, 22b  
A
Repetitive Avalanche Energy  
EAR  
mJ  
Thermal Resistance  
Symbol  
RθJC  
RθCS  
Parameter  
Typ.  
–––  
0.50  
–––  
Max.  
0.40  
–––  
62  
Units  
Junction-to-Case  
°C/W  
Case-to-Sink, Flat Greased Surface  
Junction-to-Ambient  
RθJA  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Min.  
Typ.  
Max.  
Units  
Conditions  
VGS = 0V, ID = 250μA  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
40  
–––  
–––  
V
V / T  
(BR)DSS Δ  
––– 0.014 –––  
V/°C Reference to 25°C, ID = 1.0mA  
Δ
J
m
Ω
–––  
–––  
1.0  
1.2  
1.3  
VGS = 10V, ID = 100A  
RDS(on)  
–––  
VGS = 6.0V, ID = 50A  
VDS = VGS, ID = 250μA  
VDS = 40V, VGS = 0V  
VDS = 40V, VGS = 0V, TJ = 125°C  
VGS = 20V  
VGS(th)  
IDSS  
Gate Threshold Voltage  
2.2  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
2.1  
3.9  
1.0  
V
Drain-to-Source Leakage Current  
μA  
nA  
Ω
150  
100  
-100  
–––  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
V
GS = -20V  
RG  
Notes:  
 Calculated continuous current based on maximum allowable junction  
Pulse width 400μs; duty cycle 2%.  
temperature. Bond wire current limit is 195A. Note that current  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
limitations arising from heating of the device leads may occur with  
someleadmountingarrangements.(RefertoAN-1140)  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
as Coss while VDS is rising from 0 to 80% VDSS  
.
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
ˆ Rθ is measured at TJ approximately 90°C..  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.15mH  
RG = 50Ω, IAS = 100A, VGS =10V.  
‰ Limited by TJmax, starting TJ = 25°C, L = 1mH, RG = 50Ω, IAS = 54A,  
VGS =10V.  
„ ISD 100A, di/dt 990A/μs, VDD V(BR)DSS, TJ 175°C.  
*
Halogen -Free since April 30, 2014  
2
www.irf.com © 2015 International Rectifier  
Submit Datasheet Feedback  
February 2, 2015  
IRFB7430PbF  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol Parameter  
Forward Transconductance  
Min.  
150  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Typ.  
–––  
300  
77  
Max.  
–––  
460  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Units  
S
Conditions  
gfs  
Qg  
VDS = 10V, ID = 100A  
Total Gate Charge  
nC  
ID = 100A  
VDS =20V  
VGS = 10V  
Qgs  
Qgd  
Qsync  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
98  
202  
32  
ns  
VDD = 20V  
ID = 30A  
Rise Time  
105  
160  
100  
td(off)  
tf  
Turn-Off Delay Time  
R = 2.7  
Ω
G
Fall Time  
VGS = 10V  
VGS = 0V  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 14240 –––  
––– 2130 –––  
––– 1460 –––  
––– 2605 –––  
––– 2920 –––  
pF  
Output Capacitance  
VDS = 25V  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
ƒ = 1.0 MHz  
Coss eff. (ER)  
oss eff. (TR)  
VGS = 0V, VDS = 0V to 32V  
VGS = 0V, VDS = 0V to 32V  
C
Diode Characteristics  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Units  
Conditions  
394  
D
S
IS  
Continuous Source Current  
–––  
–––  
A
MOSFET symbol  
(Body Diode)  
showing the  
G
ISM  
Pulsed Source Current  
–––  
––– 1576  
A
V
integral reverse  
(Body Diode)  
p-n junction diode.  
VSD  
dv/dt  
trr  
Diode Forward Voltage  
Peak Diode Recovery  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
0.86  
2.7  
52  
1.2  
–––  
–––  
–––  
–––  
–––  
–––  
TJ = 25°C, IS = 100A, VGS = 0V  
V/ns TJ = 175°C, IS = 100A, VDS = 40V  
Reverse Recovery Time  
Reverse Recovery Charge  
Reverse Recovery Current  
ns  
nC  
A
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 34V,  
52  
IF = 100A  
di/dt = 100A/μs  
Qrr  
97  
97  
IRRM  
2.3  
3
www.irf.com © 2015 International Rectifier  
Submit Datasheet Feedback  
February 2, 2015  
IRFB7430PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
4.8V  
4.5V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
4.8V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
4.5V  
60μs PULSE WIDTH  
60μs PULSE WIDTH  
Tj = 175°C  
Tj = 25°C  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 3. Typical Output Characteristics  
Fig 4. Typical Output Characteristics  
1000  
2.0  
I
= 100A  
= 10V  
D
V
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
GS  
100  
10  
T
= 25°C  
J
T = 175°C  
J
V
= 25V  
DS  
60μs PULSE WIDTH  
1.0  
2
3
4
5
6
7
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 6. Normalized On-Resistance vs. Temperature  
Fig 5. Typical Transfer Characteristics  
100000  
10000  
1000  
14.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 100A  
D
C
C
C
+ C , C  
SHORTED  
ds  
iss  
gs  
gd  
12.0  
= C  
rss  
oss  
gd  
= C + C  
V
V
= 32V  
= 20V  
DS  
DS  
ds  
gd  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
C
iss  
C
C
oss  
rss  
1
10  
, Drain-to-Source Voltage (V)  
100  
0
50 100 150 200 250 300 350 400  
V
DS  
Q , Total Gate Charge (nC)  
G
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage  
Submit Datasheet Feedback February 2, 2015  
4
www.irf.com © 2015 International Rectifier  
IRFB7430PbF  
1000  
100  
10  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
= 175°C  
J
100μsec  
1msec  
10msec  
Limited by package  
T
= 25°C  
J
1
1
DC  
10  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
0.1  
1
100  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
V
, Drain-toSource Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 10. Maximum Safe Operating Area  
Fig 9. Typical Source-Drain Diode  
Forward Voltage  
2.5  
47  
46  
45  
44  
43  
42  
41  
40  
Id = 1.0mA  
V
= 0V to 32V  
DS  
2.0  
1.5  
1.0  
0.5  
0.0  
0
5
10 15 20 25 30 35 40 45  
Drain-to-Source Voltage (V)  
-60 -40 -20 0 20 40 60 80 100120140160180  
, Temperature ( °C )  
T
J
V
DS,  
Fig 11. Drain-to-Source Breakdown Voltage  
Fig 12. Typical COSS Stored Energy  
6.0  
V
V
V
V
V
= 5.5V  
= 6.0V  
= 7.0V  
= 8.0V  
=10V  
GS  
GS  
GS  
GS  
GS  
4.0  
2.0  
0.0  
0
200  
400  
600  
800 1000 1200  
I
, Drain Current (A)  
D
Fig 13. Typical On-Resistance vs. Drain Current  
www.irf.com © 2015 International Rectifier Submit Datasheet Feedback  
5
February 2, 2015  
IRFB7430PbF  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
0.02  
0.01  
0.01  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔTj = 150°C and  
Tstart =25°C (Single Pulse)  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔΤ j = 25°C and  
Tstart = 150°C.  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
800  
700  
600  
500  
400  
300  
200  
100  
0
TOP  
BOTTOM 1.0% Duty Cycle  
= 100A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
25  
50  
75  
100  
125  
150  
175  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 16. Maximum Avalanche Energy vs. Temperature  
6
www.irf.com © 2015 International Rectifier  
Submit Datasheet Feedback  
February 2, 2015  
IRFB7430PbF  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
12  
10  
8
I = 60A  
F
V
= 34V  
R
T = 25°C  
J
T = 125°C  
J
6
I
I
I
= 250μA  
= 1.0mA  
= 1.0A  
D
D
D
4
2
0
-75 -50 -25  
0
25 50 75 100 125 150 175  
0
200  
400  
600  
800  
1000  
T , Temperature ( °C )  
di /dt (A/μs)  
J
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig 17. Threshold Voltage vs. Temperature  
12  
300  
I = 100A  
F
I = 60A  
F
V
= 34V  
V
= 34V  
R
10  
8
R
250  
200  
150  
100  
50  
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
6
4
2
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
di /dt (A/μs)  
F
F
Fig. 19 - Typical Recovery Current vs. dif/dt  
Fig. 20 - Typical Stored Charge vs. dif/dt  
260  
I = 100A  
F
V
= 34V  
R
220  
180  
140  
100  
60  
T = 25°C  
J
T = 125°C  
J
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
F
Fig. 21 - Typical Stored Charge vs. dif/dt  
7
www.irf.com © 2015 International Rectifier Submit Datasheet Feedback  
February 2, 2015  
IRFB7430PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
ƒ
-
*
=10V  
V
GS  
CircuitLayoutConsiderations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dtcontrolledbyRG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
InductorCurrent  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
VGS  
Ω
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
PulseWidth ≤ 1 µs  
Duty Factor≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2μF  
12V  
.3μF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
www.irf.com © 2015 International Rectifier  
Fig 24b. Gate Charge Waveform  
Submit Datasheet Feedback February 2, 2015  
8
IRFB7430PbF  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220AB Part Marking Information  
TO-220AB packages are not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
9
www.irf.com © 2015 International Rectifier  
Submit Datasheet Feedback  
February 2, 2015  
IRFB7430PbF  
Qualification information  
Qualification level  
Industrial  
(per JEDEC JESD47F††guidelines)  
Moisture Sensitivity Level  
RoHS compliant  
TO-220  
Not applicable  
Yes  
†
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/  
†† Applicable version of JEDEC standard at the time of product release.  
Revision History  
Date  
Comment  
Updated data sheet with new IR corporate template.  
Updated package outline and part marking on page 9.  
Added bullet point in the Benefits "RoHS Compliant, Halogen -Free" on page 1.  
Updated EAS (L =1mH) = 1452mJ on page 2  
4/22/2014  
2/19/2015  
Ω
Updated note 9 “Limited by TJmax, starting T = 25°C, L = 1mH, RG = 50 , IAS = 54A, VGS =10V”. on page 2  
J
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA  
To contact International Rectifier, please visit http://www.irf.com/whoto-call/  
10  
www.irf.com © 2015 International Rectifier  
Submit Datasheet Feedback  
February 2, 2015  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on the product, technology,  
event be regarded as a guarantee of conditions or delivery terms and conditions and prices please  
characteristics (“Beschaffenheitsgarantie”) .  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement  
of intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may  
contain dangerous substances. For information on  
the types in question please contact your nearest  
Infineon Technologies office.  
In addition, any information given in this document  
is subject to customers compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and  
standards concerning customers products and any  
use of the product of Infineon Technologies in  
customers applications.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized  
representatives  
of  
Infineon  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of  
the product or any consequences of the use thereof  
can reasonably be expected to result in personal  
injury.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customers technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

IRFB7430PBF

HEXFETPower MOSFET
INFINEON

IRFB7434

N-Channel MOSFET Transistor
ISC

IRFB7434

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFB7434PBF

Brushed Motor drive applications
INFINEON

IRFB7437PBF

HEXFETPower MOSFET
INFINEON

IRFB7440

N-Channel MOSFET Transistor
ISC

IRFB7440

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFB7440GPBF

Power Field-Effect Transistor
INFINEON

IRFB7440PBF

Brushed Motor drive applications
INFINEON

IRFB7446

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFB7446GPBF

Power Field-Effect Transistor
INFINEON

IRFB7446PBF

HEXFETPower MOSFET
INFINEON