IRFB4020 [INFINEON]

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. ;
IRFB4020
型号: IRFB4020
厂家: Infineon    Infineon
描述:

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 

文件: 总9页 (文件大小:648K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97195  
IRFB4020PbF  
Key Parameters  
DIGITAL AUDIO MOSFET  
Features  
Key parameters optimized for Class-D audio  
amplifier applications  
VDS  
200  
V
m
RDS(ON) typ. @ 10V  
Qg typ.  
80  
18  
Low RDSON for improved efficiency  
Low QG and QSW for better THD and improved  
efficiency  
nC  
nC  
Qsw typ.  
RG(int) typ.  
TJ max  
6.7  
3.2  
175  
°C  
Low QRR for better THD and lower EMI  
175°C operating junction temperature for  
ruggedness  
D
Can deliver up to 300W per channel into 8load in  
half-bridge configuration amplifier  
G
S
TO-220AB  
Description  
This Digital Audio MOSFET is specifically designed for Class-D audio amplifier applications. This MOSFET utilizes  
thelatestprocessingtechniquestoachievelowon-resistancepersiliconarea.Furthermore,Gatecharge,body-diode  
reverse recovery and internal Gate resistance are optimized to improve key Class-D audio amplifier performance  
factors such as efficiency, THD and EMI. Additional features of this MOSFET are 175°C operating junction  
temperature and repetitive avalanche capability. These features combine to make this MOSFET a highly efficient,  
robust and reliable device for ClassD audio amplifier applications.  
Absolute Maximum Ratings  
Parameter  
Drain-to-Source Voltage  
Max.  
200  
±20  
18  
Units  
V
VDS  
VGS  
Gate-to-Source Voltage  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
A
13  
52  
Power Dissipation  
PD @TC = 25°C  
PD @TC = 100°C  
100  
52  
W
Power Dissipation  
Linear Derating Factor  
Operating Junction and  
Storage Temperature Range  
0.70  
-55 to + 175  
W/°C  
°C  
TJ  
TSTG  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
300  
10lb in (1.1N m)  
Mounting torque, 6-32 or M3 screw  
Thermal Resistance  
Parameter  
Typ.  
Max.  
1.43  
–––  
62  
Units  
Junction-to-Case  
RθJC  
–––  
0.50  
–––  
Rθ  
Case-to-Sink, Flat, Greased Surface  
Junction-to-Ambient  
°C/W  
CS  
RθJA  
Notes  through are on page 2  
www.irf.com  
1
03/03/06  
IRFB4020PbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
VGS = 0V, ID = 250µA  
V/°C Reference to 25°C, ID = 1mA  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
200  
–––  
–––  
3.0  
–––  
0.23  
80  
–––  
–––  
100  
4.9  
V
V
/ T  
J
∆Β  
DSS  
m
RDS(on)  
VGS(th)  
VGS = 10V, ID = 11A  
–––  
-13  
–––  
–––  
–––  
–––  
–––  
18  
V
VDS = VGS, ID = 100µA  
VGS(th)/TJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
24  
––– mV/°C  
20  
250  
100  
-100  
–––  
29  
µA  
nA  
S
VDS = 200V, VGS = 0V  
VDS = 200V, VGS = 0V, TJ = 125°C  
VGS = 20V  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
VGS = -20V  
DS = 50V, ID = 11A  
gfs  
V
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
RG(int)  
td(on)  
tr  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
4.5  
1.4  
5.3  
6.8  
6.7  
3.2  
7.8  
12  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 100V  
nC VGS = 10V  
ID = 11A  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Internal Gate Resistance  
Turn-On Delay Time  
See Fig. 6 and 18  
VDD = 100V, VGS = 10V  
Rise Time  
ID = 11A  
td(off)  
tf  
Turn-Off Delay Time  
16  
ns RG = 2.4Ω  
Fall Time  
6.3  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 1200 –––  
VGS = 0V  
pF VDS = 50V  
ƒ = 1.0MHz,  
Output Capacitance  
–––  
–––  
–––  
–––  
91  
20  
–––  
–––  
–––  
–––  
Reverse Transfer Capacitance  
Effective Output Capacitance  
Internal Drain Inductance  
See Fig.5  
Coss eff.  
110  
4.5  
VGS = 0V, VDS = 0V to 160V  
Between lead,  
LD  
D
S
nH 6mm (0.25in.)  
G
LS  
Internal Source Inductance  
–––  
7.5  
–––  
from package  
and center of die contact  
Avalanche Characteristics  
Parameter  
Single Pulse Avalanche Energy  
Avalanche Current  
Typ.  
Max.  
Units  
mJ  
A
EAS  
IAR  
–––  
94  
See Fig. 14, 15, 16a, 16b  
Repetitive Avalanche Energy  
EAR  
mJ  
Diode Characteristics  
Parameter  
Continuous Source Current  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
IS @ TC = 25°C  
ISM  
–––  
–––  
18  
(Body Diode)  
Pulsed Source Current  
A
showing the  
integral reverse  
–––  
–––  
52  
(Body Diode)  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
82  
1.3  
120  
420  
V
TJ = 25°C, IS = 11A, VGS = 0V  
ns TJ = 25°C, IF = 11A  
di/dt = 100A/µs  
nC  
Qrr  
280  
Notes:  
 Repetitive rating; pulse width limited by max. junction temperature.  
‚ Starting TJ = 25°C, L = 1.62mH, RG = 25, IAS = 11A.  
ƒ Pulse width 400µs; duty cycle 2%.  
„ R is measured at TJ of approximately 90°C.  
Limited by Tjmax. See Figs. 14, 15, 17a, 17b for repetitive  
avalanche information.  
θ
2
www.irf.com  
IRFB4020PbF  
100  
10  
1
100  
10  
VGS  
15V  
12V  
VGS  
15V  
12V  
TOP  
TOP  
10V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
BOTTOM  
BOTTOM  
5.0V  
1
0.1  
0.01  
5.0V  
60µs PULSE WIDTH  
Tj = 175°C  
60µs PULSE WIDTH  
Tj = 25°C  
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 2. Typical Output Characteristics  
Fig 1. Typical Output Characteristics  
3.5  
100  
10  
1
I
= 11A  
V
= 25V  
D
DS  
V
= 10V  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
GS  
60µs PULSE WIDTH  
T
= 175°C  
J
T
= 25°C  
J
0.1  
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
2
3
4
5
6
7
8
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance vs. Temperature  
12.0  
10000  
1000  
100  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 11A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
= C  
10.0  
rss  
oss  
gd  
V
V
V
= 160V  
= 100V  
= 40V  
DS  
DS  
DS  
= C + C  
ds  
gd  
C
iss  
8.0  
6.0  
4.0  
2.0  
0.0  
C
oss  
C
rss  
10  
0
5
10  
15  
20  
1
10  
100  
1000  
Q , Total Gate Charge (nC)  
V
, Drain-to-Source Voltage (V)  
G
DS  
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage  
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage  
www.irf.com  
3
IRFB4020PbF  
100  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
10  
1
1
T
= 25°C  
J
100µsec  
0.1  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
1msec  
0.01  
0.001  
DC  
V
= 0V  
10msec  
GS  
0.1  
0.2  
0.4  
SD  
0.6  
0.8  
1.0  
1.2  
1
10  
100  
1000  
V
, Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 7. Typical Source-Drain Diode Forward Voltage  
Fig 8. Maximum Safe Operating Area  
20  
18  
16  
14  
12  
10  
8
5.0  
4.0  
3.0  
2.0  
1.0  
I
= 100µA  
D
6
4
2
0
25  
50  
T
75  
100  
125  
150  
175  
-75 -50 -25  
0
25 50 75 100 125 150175 200  
, Junction Temperature (°C)  
T , Temperature ( °C )  
J
J
Fig 9. Maximum Drain Current vs. Junction Temperature  
Fig 10. Threshold Voltage vs. Temperature  
10  
1
D = 0.50  
0.20  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.10  
0.05  
0.0283  
0.3659  
0.7264  
0.3093  
0.000007  
0.000140  
0.001376  
0.007391  
τ
τ
J τJ  
τ
0.1  
0.01  
Cτ  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
0.02  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
4
www.irf.com  
IRFB4020PbF  
300  
275  
250  
225  
200  
175  
150  
125  
100  
75  
400  
300  
200  
100  
0
I
I
= 11A  
D
D
TOP  
1.6A  
2.4A  
BOTTOM 11A  
T
= 125°C  
J
T
= 25°C  
J
50  
5
6
7
8
9
10 11 12 13 14 15 16  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
V
Gate -to -Source Voltage (V)  
GS,  
Fig 13. Maximum Avalanche Energy vs. Drain Current  
Fig 12. On-Resistance vs. Gate Voltage  
1000  
Duty Cycle = Single Pulse  
100  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming Tj = 25°C due to  
avalanche losses  
0.01  
10  
1
0.05  
0.10  
0.1  
0.01  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current Vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 17a, 17b.  
100  
TOP  
BOTTOM 1.0% Duty Cycle  
= 11A  
Single Pulse  
I
80  
60  
40  
20  
0
D
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
EAS (AR) = PD (ave)·tav  
www.irf.com  
5
IRFB4020PbF  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
GS  
0.01  
t
p
I
AS  
Fig 16b. Unclamped Inductive Waveforms  
Fig 16a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 17a. Switching Time Test Circuit  
Fig 17b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
Vgs(th)  
0
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 18a. Gate Charge Test Circuit  
Fig 18b Gate Charge Waveform  
6
www.irf.com  
IRFB4020PbF  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220AB Part Marking Information  
Note: "P" in assembly line  
position indicates "Lead-Free"  
TO-220AB packages are not recommended for Surface Mount Application.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 03/06  
www.irf.com  
7
Note: For the most current drawings please refer to the IR website at:  
http://www.irf.com/package/  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on the product, technology,  
event be regarded as a guarantee of conditions or delivery terms and conditions and prices please  
characteristics (“Beschaffenheitsgarantie”) .  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement  
of intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may  
contain dangerous substances. For information on  
the types in question please contact your nearest  
Infineon Technologies office.  
In addition, any information given in this document  
is subject to customers compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and  
standards concerning customers products and any  
use of the product of Infineon Technologies in  
customers applications.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized  
representatives  
of  
Infineon  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of  
the product or any consequences of the use thereof  
can reasonably be expected to result in personal  
injury.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customers technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY