IRF7823PBF [INFINEON]

Power MOSFET Selection for Non-Isolated DC/DC Converters; 功率MOSFET选择的非隔离式DC / DC转换器
IRF7823PBF
型号: IRF7823PBF
厂家: Infineon    Infineon
描述:

Power MOSFET Selection for Non-Isolated DC/DC Converters
功率MOSFET选择的非隔离式DC / DC转换器

晶体 转换器 晶体管 功率场效应晶体管 开关 脉冲 光电二极管
文件: 总10页 (文件大小:669K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97050  
IRF7823PbF  
HEXFET® Power MOSFET  
Applications  
VDSS  
30V  
RDS(on) max  
Qg  
9.1nC  
l High Frequency Point-of-Load  
Synchronous Buck Converter for  
Applications in Networking &  
Computing Systems  
8.7m @V = 10V  
:
GS  
A
l Optimized for Control FET applications  
A
1
2
3
4
8
S
S
S
G
D
7
D
Benefits  
l Very Low RDS(on) at 4.5V VGS  
l Low Gate Charge  
6
D
5
D
SO-8  
l Fully Characterized Avalanche Voltage  
and Current  
Top View  
l 100% Tested for RG  
Absolute Maximum Ratings  
Parameter  
Max.  
30  
Units  
V
VDS  
Drain-to-Source Voltage  
V
Gate-to-Source Voltage  
± 20  
13  
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
@ TA = 25°C  
D
D
@ TA = 70°C  
11  
A
100  
2.5  
1.6  
DM  
Power Dissipation  
P
P
@TA = 25°C  
@TA = 70°C  
W
D
D
Power Dissipation  
Linear Derating Factor  
Operating Junction and  
0.02  
-55 to + 150  
W/°C  
°C  
T
J
T
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Junction-to-Drain Lead  
Junction-to-Ambient  
Typ.  
–––  
Max.  
20  
Units  
°C/W  
Rθ  
Rθ  
JL  
–––  
50  
JA  
Notes  through are on page 10  
www.irf.com  
1
10/06/05  
IRF7823PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
30 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
BVDSS  
V
∆ΒVDSS/TJ  
RDS(on)  
Breakdown Voltage Temp. Coefficient ––– 0.024 ––– V/°C Reference to 25°C, ID = 1mA  
Static Drain-to-Source On-Resistance  
–––  
–––  
1.35  
–––  
–––  
–––  
–––  
–––  
27  
6.9  
9.3  
8.7  
VGS = 10V, ID = 13A  
VGS = 4.5V, ID = 10A  
mΩ  
11.9  
2.35  
VGS(th)  
VGS(th)  
IDSS  
Gate Threshold Voltage  
1.8  
V
V
DS = VGS, ID = 25µA  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
-5.1  
–––  
–––  
–––  
––– mV/°C  
1.0  
150  
100  
µA  
nA  
S
V
V
V
DS = 24V, VGS = 0V  
DS = 24V, VGS = 0V, TJ = 125°C  
GS = 20V  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
––– -100  
VGS = -20V  
gfs  
Qg  
–––  
9.1  
2.7  
0.84  
3.2  
2.4  
4.0  
5.8  
2.0  
7.2  
8.2  
10  
–––  
14  
VDS = 15V, ID = 10A  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
Rg  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
–––  
–––  
–––  
–––  
–––  
–––  
3.0  
VDS = 15V  
nC VGS = 4.5V  
ID = 10A  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
See Fig. 17 & 18  
Output Charge  
nC VDS = 16V, VGS = 0V  
Gate Resistance  
Turn-On Delay Time  
Rise Time  
td(on)  
tr  
td(off)  
tf  
–––  
–––  
–––  
–––  
VDD = 16V, VGS = 4.5V  
ID = 10A  
Turn-Off Delay Time  
Fall Time  
ns Clamped Inductive Load  
See Fig. 15  
2.7  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
––– 1110 –––  
VGS = 0V  
–––  
–––  
240  
110  
–––  
–––  
pF VDS = 15V  
ƒ = 1.0MHz  
Avalanche Characteristics  
Parameter  
Typ.  
–––  
–––  
Max.  
230  
10  
Units  
mJ  
Single Pulse Avalanche Energy  
EAS  
IAR  
Avalanche Current  
A
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
IS  
D
S
Continuous Source Current  
–––  
–––  
3.1  
(Body Diode)  
Pulsed Source Current  
A
showing the  
integral reverse  
G
ISM  
–––  
–––  
100  
(Body Diode)  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
–––  
–––  
–––  
–––  
7.8  
9.0  
1.0  
12  
14  
V
T = 25°C, I = 10A, V = 0V  
J S GS  
Reverse Recovery Time  
Reverse Recovery Charge  
Forward Turn-On Time  
ns T = 25°C, I = 10A, VDD = 15V  
J F  
Qrr  
ton  
di/dt = 500A/µs  
See Fig. 16  
nC  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
2
www.irf.com  
IRF7823PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
5.0V  
4.5V  
3.5V  
3.0V  
2.7V  
2.5V  
2.3V  
5.0V  
4.5V  
3.5V  
3.0V  
2.7V  
2.5V  
2.3V  
BOTTOM  
BOTTOM  
1
2.3V  
1
0.1  
0.01  
2.3V  
60µs PULSE WIDTH  
Tj = 150°C  
60µs PULSE WIDTH  
Tj = 25°C  
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
2.0  
I
= 13A  
D
V
= 10V  
GS  
100  
10  
1
1.5  
1.0  
0.5  
T
= 25°C  
J
T
= 150°C  
J
V
= 15V  
DS  
60µs PULSE WIDTH  
0.1  
1
2
3
4
5
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
T
J
, Junction Temperature (°C)  
V
, Gate-to-Source Voltage (V)  
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
vs. Temperature  
www.irf.com  
3
IRF7823PbF  
10000  
12.0  
10.0  
8.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 10A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
= C  
rss  
oss  
gd  
V
V
= 24V  
= 15V  
DS  
DS  
= C + C  
ds  
gd  
C
iss  
1000  
100  
10  
6.0  
C
oss  
C
rss  
4.0  
2.0  
0.0  
1
10  
, Drain-to-Source Voltage (V)  
100  
0
2
4
6
8
10 12 14 16 18 20  
V
Q , Total Gate Charge (nC)  
DS  
G
Fig 6. Typical Gate Charge vs.  
Fig 5. Typical Capacitance vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000  
100  
10  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100µsec  
1msec  
T
= 150°C  
J
T
= 25°C  
J
10msec  
1
1
0.1  
0.01  
T
= 25°C  
A
Tj = 150°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.2  
0.4  
SD  
0.6  
0.8  
1.0  
1.2  
0
1
10  
100  
V
, Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF7823PbF  
14  
12  
10  
8
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 50µA  
D
6
4
2
0
25  
50  
75  
100  
125  
150  
-75 -50 -25  
0
25 50 75 100 125 150  
T
, Ambient Temperature (°C)  
T
, Temperature ( °C )  
A
J
Fig 10. Threshold Voltage vs. Temperature  
Fig 9. Maximum Drain Current vs.  
Case Temperature  
100  
10  
D = 0.50  
0.20  
0.10  
0.05  
0.02  
0.01  
1
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W)  
τ
i (sec)  
7.520 0.013427  
τ
τ
J τJ  
τ
AτA  
0.1  
1 τ1  
τ
τ
2 τ2  
3 τ3  
25.573  
16.913  
1.1097  
36.9  
Ci= τi/Ri  
Ci= τi/Ri  
0.01  
0.001  
0.0001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthja + Ta  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  
www.irf.com  
5
IRF7823PbF  
30  
25  
20  
15  
10  
1000  
800  
600  
400  
200  
0
I
= 13A  
I
D
D
TOP  
0.82A  
1.1A  
BOTTOM 10A  
T
= 125°C  
J
T
= 25°C  
5
0
J
2
4
6
8
10  
25  
50  
75  
100  
125  
150  
Starting T , Junction Temperature (°C)  
J
V
Gate -to -Source Voltage (V)  
GS,  
Fig 13. Maximum Avalanche Energy  
Fig 12. On-Resistance vs. Gate Voltage  
vs. Drain Current  
LD  
VDS  
15V  
VDD  
DRIVER  
+
L
V
DS  
D.U.T  
D.U.T  
AS  
R
VGS  
G
V
DD  
-
I
A
Pulse Width < 1µs  
Duty Factor < 0.1%  
V
2
GS  
0.01  
t
p
Fig 15a. Switching Time Test Circuit  
Fig 14a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
VDS  
t
90%  
p
10%  
VGS  
td(on)  
td(off)  
tf  
tr  
I
AS  
Fig 15b. Switching Time Waveforms  
Fig 14b. Unclamped Inductive Waveforms  
6
www.irf.com  
IRF7823PbF  
Driver Gate Drive  
P.W.  
P.W.  
D =  
Period  
D.U.T  
Period  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
Current Regulator  
Id  
Vds  
Same Type as D.U.T.  
Vgs  
50KΩ  
.2µF  
.3µF  
12V  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
Qgs1  
Qgs2  
Qgd  
Qgodr  
G
D
Current Sampling Resistors  
Fig 18. Gate Charge Waveform  
Fig 17. Gate Charge Test Circuit  
www.irf.com  
7
IRF7823PbF  
Power MOSFET Selection for Non-Isolated DC/DC Converters  
Synchronous FET  
Control FET  
The power loss equation for Q2 is approximated  
by;  
Special attention has been given to the power losses  
in the switching elements of the circuit - Q1 and Q2.  
Power losses in the high side switch Q1, also called  
the Control FET, are impacted by the Rds(on) of the  
MOSFET, but these conduction losses are only about  
one half of the total losses.  
P = P  
+ P + P*  
loss  
conduction  
drive  
output  
P = Irms 2 × Rds(on)  
loss ( )  
Power losses in the control switch Q1 are given  
by;  
+ Q × V × f  
(
)
g
g
Qoss  
Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput  
+
×V × f + Q × V × f  
(
)
in  
rr  
in  
2  
This can be expanded and approximated by;  
*dissipated primarily in Q1.  
P
= I 2 × Rds(on)  
(
)
loss  
rms  
For the synchronous MOSFET Q2, Rds(on) is an im-  
portant characteristic; however, once again the im-  
portance of gate charge must not be overlooked since  
it impacts three critical areas. Under light load the  
MOSFET must still be turned on and off by the con-  
trol IC so the gate drive losses become much more  
significant. Secondly, the output charge Qoss and re-  
verse recovery charge Qrr both generate losses that  
are transfered to Q1 and increase the dissipation in  
that device. Thirdly, gate charge will impact the  
MOSFETs’ susceptibility to Cdv/dt turn on.  
Qgd  
ig  
Qgs2  
ig  
+ I ×  
× V × f + I ×  
× V × f  
in  
in  
+ Q × V × f  
(
)
g
g
Qoss  
+
×V × f  
in  
2
This simplified loss equation includes the terms Qgs2  
The drain of Q2 is connected to the switching node  
of the converter and therefore sees transitions be-  
tween ground and Vin. As Q1 turns on and off there is  
a rate of change of drain voltage dV/dt which is ca-  
pacitively coupled to the gate of Q2 and can induce  
a voltage spike on the gate that is sufficient to turn  
the MOSFET on, resulting in shoot-through current .  
The ratio of Qgd/Qgs1 must be minimized to reduce the  
potential for Cdv/dt turn on.  
and Qoss which are new to Power MOSFET data sheets.  
Qgs2 is a sub element of traditional gate-source  
charge that is included in all MOSFET data sheets.  
The importance of splitting this gate-source charge  
into two sub elements, Qgs1 and Qgs2, can be seen from  
Fig 16.  
Qgs2 indicates the charge that must be supplied by  
the gate driver between the time that the threshold  
voltage has been reached and the time the drain cur-  
rent rises to Idmax at which time the drain voltage be-  
gins to change. Minimizing Qgs2 is a critical factor in  
reducing switching losses in Q1.  
Qoss is the charge that must be supplied to the out-  
put capacitance of the MOSFET during every switch-  
ing cycle. Figure A shows how Qoss is formed by the  
parallel combination of the voltage dependant (non-  
linear) capacitance’s Cds and Cdg when multiplied by  
the power supply input buss voltage.  
Figure A: Qoss Characteristic  
8
www.irf.com  
IRF7823PbF  
SO-8 Package Outline (Dimensions are shown in millimeters (inches)  
SO-8 Part Marking  
(;$03/(ꢆꢀ7+,6ꢀ,6ꢀ$1ꢀ,5)ꢃꢄꢅꢄꢀꢁ026)(7ꢂ  
'$7(ꢀ&2'(ꢀꢁ<::ꢂ  
3ꢀ ꢀ'(6,*1$7(6ꢀ/($'ꢇ)5((  
352'8&7ꢀꢁ237,21$/ꢂ  
<ꢀ ꢀ/$67ꢀ',*,7ꢀ2)ꢀ7+(ꢀ<($5  
::ꢀ ꢀ:((.  
;;;;  
)ꢃꢄꢅꢄ  
,17(51$7,21$/  
5(&7,),(5  
/2*2  
$ꢀ ꢀ$66(0%/<ꢀ6,7(ꢀ&2'(  
/27ꢀ&2'(  
3$57ꢀ180%(5  
www.irf.com  
9
IRF7823PbF  
SO-8 Tape and Reel  
Dimensions are shown in millimeters (inches)  
TERMINAL NUMBER 1  
12.3 ( .484 )  
11.7 ( .461 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
NOTES:  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
330.00  
(12.992)  
MAX.  
14.40 ( .566 )  
12.40 ( .488 )  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
Notes:  
 Repetitive rating; pulse width limited by max. junction temperature.  
‚ Starting TJ = 25°C, L = 4.3mH, RG = 25, IAS = 10A.  
ƒ Pulse width 400µs; duty cycle 2%.  
„ When mounted on 1 inch square copper board.  
Rθ is measured at TJ approximately 90°C.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.10/05  
10  
www.irf.com  

相关型号:

IRF7828

HEXFET Power MOSFET for DC-DC Converters
INFINEON

IRF7828PBF

HEXFET㈢ Power MOSFET for DC-DC Converters
INFINEON

IRF7828TRPBF

暂无描述
INFINEON

IRF7831

HEXFETPower MOSFET
INFINEON

IRF7831PBF

HEXFET Power MOSFET ( VDSS = 30V , RDS(on)max = 3.6mヘ@VGS = 10V , Qg(typ.) = 40nC )
INFINEON

IRF7831PBF-1

Power Field-Effect Transistor
INFINEON

IRF7831TR

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

IRF7831TRPBF

High Frequency Point-of-Load Synchronous Buck Converter
INFINEON

IRF7831TRPBF-1

Power Field-Effect Transistor
INFINEON

IRF7831UPBF

HEXFET Power MOSFET
INFINEON

IRF7831UTRPBF

暂无描述
INFINEON

IRF7832

HEXFET Power MOSFET
INFINEON