IMC302A-F048 [INFINEON]

High performance motor control IC series with an additional microcontroller;
IMC302A-F048
型号: IMC302A-F048
厂家: Infineon    Infineon
描述:

High performance motor control IC series with an additional microcontroller

文件: 总41页 (文件大小:1716K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IMC301A / IMC302A  
iMOTION™ IMC300A Data Sheet  
High performance motor control IC series with an additional  
microcontroller  
Features  
Dual core computation Motion Control Engine (MCE) and ARM® Cortex®-M0 based user application  
controller (MCU)  
Motion Control Engine (MCE)  
MCE offers a ready-to-use solution with easy configuration for variable speed motor control  
Space Vector PWM with sinusoidal commutation and integrated protection features  
Current sensing via single or leg shunt configuration  
Sensorless and / or Hall sensor (analog / digital) based operation  
Integrated and / or external temperature sensor  
Optional boost or totem pole PFC control  
Integrated Script language for additional MCE and I/O control.  
High speed communication interface (JCOM) between MCE and ARM® core processor  
Parameter programming and debug support with MCEWizard and MCEDesigner  
User Application Controller (MCU)  
CPU Subsystem  
32-bit Arm® Cortex®-M0 core for user application control  
48/96 MHz core/peripherals clock  
Nested Vectored Interrupt Controller (NVIC)  
Event Request Unit (ERU) for event interconnections  
MATH Co-processor: 24-bit trigonometric calculation (CORDIC), 32-bit division unit  
On-Chip Memories  
8 Kbyte ROM  
16 Kbyte SRAM (with parity)  
128 Kbyte FLASH memory (with ECC)  
Supply, Reset and Clock  
3.3 V to 5.5 V supply with power on reset and brownout detector  
On-chip clock monitor  
Internal slow and fast oscillators  
External crystal oscillator support (32 kHz and 4 to 20 MHz)  
System Control  
Window watchdog  
Real Time Clock (RTC) modue  
Pseudo random number generator  
[Publish Date]  
www.infineon.com/iMOTION  
Please read the Important Notice and Warnings at the end of this document  
Revision 1.2  
2020-10-20  
 
IMC301A/302A Datasheet  
Block Diagram Reference  
Communication Peripherals  
Universal Serial Interface Channels (USIC), usable as UART, double-SPI, IIC, IIS and LIN interfaces  
MultiCAN+, Full-CAN/Basic-CAN with 2 nodes, 32 message objects (up to 1 MBaud)  
Analog Frontend Peripherals  
12-bit ADC converter with adjustable gain, up to 1 MS/s and up to 7 analog inputs  
0 V to 5.5 V input voltage range  
2 fast analog comparators  
DAC with one-bit sigma-delta generator, external low-pass filter and up to 7 outputs  
Temperature sensor  
High Speed Timers  
2x Capture Compare Unit with 4 timer channels each (CCU4)  
Clock up to 96 MHz  
Up to 8 capture inputs  
Up to 8 PWM outputs (center/edge aligned)  
Input/Output Lines With Individual Bit Controllability  
Tri-stated in input mode  
Push/pull or open drain output mode  
Configurable pad hysteresis  
Debug System  
4 breakpoints, 2 watchpoints  
ARM serial wire debug (SWD), single-pin debug (SPD) interfaces  
Independent operation of the MCE  
Potential Applications  
Air-conditioners  
Refrigerators  
Product Validation  
Industrial  
Ordering Information  
Package  
LQFP-48  
LQFP-64  
LQFP-48  
LQFP-64  
Application  
Product Type  
IMC301A-F048  
IMC301A-F064  
IMC302A-F048  
IMC302A-F064  
Single motor  
Single motor + PFC (boost, totem pole)  
2
Revision 1.2  
2020-10-20  
 
 
 
IMC301A/302A Datasheet  
Block Diagram Reference  
Description  
iMOTIONIMC300 is a family of highly integrated ICs for the control of variable speed motor control system with an  
additional user programmable microcontroller. By integrating the required hardware, software and user program to  
perform control of a permanent magnet synchronous motor (PMSM) it offers a high flexibility of motor control system  
at the lowest system and development cost.  
3
Revision 1.2  
2020-10-20  
 
IMC301A/302A Datasheet  
Block Diagram Reference  
Table of Contents  
Features ........................................................................................................................................ 1  
Potential Applications..................................................................................................................... 2  
Product Validation.......................................................................................................................... 2  
Ordering Information...................................................................................................................... 2  
Description .................................................................................................................................... 3  
Table of Contents ........................................................................................................................... 4  
About this document....................................................................................................................... 5  
1
2
Block Diagram Reference ........................................................................................................ 6  
Pin Configuration ................................................................................................................... 7  
Pin Configuration IMC301A / IMC302A....................................................................................................7  
Pin Configuration Drawing IMC301A.....................................................................................................10  
Pin Configuration Drawing IMC302A.....................................................................................................12  
3
4
Functional Description...........................................................................................................14  
Application Schematics for IMC301A with Single Shunt Current Sensing ..........................................14  
Application Schematics for IMC302A with Single Shunt Current Sensing ..........................................15  
Application Schematics for IMC302A with Leg Shunt Current Sensing...............................................16  
Electrical characteristics and parameters ................................................................................17  
General Parameters ..............................................................................................................................17  
Parameter Interpretation ................................................................................................................17  
Absolute Maximum Ratings .............................................................................................................17  
Pin Reliability in Overload................................................................................................................18  
Operating Conditions.......................................................................................................................20  
Input / Output Characteristics.........................................................................................................21  
Analog to Digital Converter (ADC)....................................................................................................23  
Power Supply Current......................................................................................................................24  
Flash Memory Parameters ...............................................................................................................24  
AC Parameters.......................................................................................................................................25  
Testing Waveforms...........................................................................................................................25  
Power-Up and Supply Threshold Characteristics...........................................................................26  
On-Chip Oscillator Characteristics ..................................................................................................28  
Motor Control Parameters ....................................................................................................................29  
PWM Characteristics ........................................................................................................................29  
Current Sensing Characteristics ......................................................................................................29  
Fault Timing .....................................................................................................................................30  
Analog Hall Sensing Characteristics................................................................................................30  
Power Factor Correction (PFC) parameters .........................................................................................31  
Boost PFC characteristics ................................................................................................................31  
Totem Pole PFC characteristics.......................................................................................................31  
PFC current sensing characteristics ................................................................................................31  
PFC Fault timing...............................................................................................................................31  
Control Interface Parameters (MCE).....................................................................................................32  
UART Interface..................................................................................................................................32  
Over Temperature Input ..................................................................................................................32  
Pulse Output.....................................................................................................................................33  
4.1.1  
4.1.2  
4.1.3  
4.1.4  
4.1.5  
4.1.6  
4.1.7  
4.1.8  
4.2.1  
4.2.2  
4.2.3  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.4.1  
4.4.2  
4.4.3  
4.4.4  
4.5.1  
4.5.2  
4.5.3  
4
Revision 1.2  
2020-10-20  
 
IMC301A/302A Datasheet  
Block Diagram Reference  
4.5.4  
LED Output .......................................................................................................................................33  
5
6
Quality Declaration ...............................................................................................................34  
Device and Package Specification ...........................................................................................35  
SBSL and Chip-IDs.................................................................................................................................35  
Package Drawings .................................................................................................................................36  
PG-LQFP-48-11 .................................................................................................................................36  
PG-LQFP-64-29 .................................................................................................................................37  
Thermal Characteristics........................................................................................................................38  
Part Marking ..........................................................................................................................................39  
6.2.1  
6.2.2  
Revision history.............................................................................................................................40  
About this document  
Scope and purpose  
This Datasheet describes the mechanical, electrical and functional characteristics of the iMOTION™ IMC300  
series of motor control ICs. If no specific device is given the characteristics are valid for all devices within the  
iMOTION™ IMC300 series. For a detailed description of the functionality and configuration options please refer  
to the device hardware reference manual and the relevant MCE software reference manual.  
Intended audience  
The Datasheet is targeting developers implementing a variable speed drive system.  
5
Revision 1.2  
2020-10-20  
IMC301A/302A Datasheet  
Block Diagram Reference  
1
Block Diagram Reference  
The block diagram below gives an overview on the available functional units in the iMOTION™ IMC300 family.  
Not all units are required in all applications and some modules might share pins in smaller packages. Please  
refer to the pin configuration for individual packages and the application schematics examples given in the  
following sections.  
Figure 1  
Block Diagram  
6
Revision 1.2  
2020-10-20  
IMC301A/302A Datasheet  
Pin Configuration  
2
Pin Configuration  
The following tables show the pin configurations for each individual device from the IMC300 series in the  
available packages.  
The pin type is specified as follows:  
P power and ground pins  
I - digital input  
O - digital output  
IO digital input or output  
AIN - analog input  
AO analog output  
Each of the IMC300 cores has control over a different set of pins. The MCE core pins are labeled by system  
function which can be a single fixed function or multiple function options that are selected according to the  
MCE software configuration. The MCE functions and configuration options are described in the MCE software  
reference manual.  
The user application core (MCU) pins are labeled by port number (Pn.m) and have peripheral I/O functions  
selected according to the user software. The peripheral I/O function selection and configuration options are  
described in the IMC30xA hardware reference manual.  
Pins that do not have any signal assigned are reserved for future use. These pins should be left unconnected  
and neither be connected to ground nor to the positive supply.  
Note:  
The reference voltage for motor current trip protection is generated by an internal DAC, therefore  
pins like REFU, REFV, and REFW only require a blocking capacitor.  
Pin Configuration IMC301A / IMC302A  
Table 1  
Signal  
Supply Pins  
VDD  
Pin List  
IMC301A IMC301A IMC302A IMC302A Description  
Type  
-F064  
-F048  
-F064  
-F048  
24, 25,  
35, 50  
21, 28,  
38  
24, 25,  
35, 50  
21, 28,  
38  
Supply Voltage  
Ground  
P
P
VSS  
23, 49  
20, 37  
23, 49  
20, 37  
Motor control (MCE)  
PWMUL  
PWMUH  
PWMVL  
PWMVH  
PWMWL  
PWMWH  
GK  
O
O
O
O
O
O
I
29  
30  
31  
32  
33  
34  
36  
14  
22  
23  
24  
25  
26  
27  
29  
11  
29  
30  
31  
32  
33  
34  
36  
14  
22  
23  
24  
25  
26  
27  
29  
11  
PWM output phase U low side  
PWM output phase U high side  
PWM output phase V low side  
PWM output phase V high side  
PWM output phase W low side  
PWM output phase W high side  
Motor gate kill input  
VDC  
AIN  
DC bus voltage sensing input  
7
Revision 1.2  
2020-10-20  
IMC301A/302A Datasheet  
Pin Configuration  
Current sense input single shunt /  
phase U  
ISS/IU  
AIN  
18  
15  
18  
15  
IV  
AIN  
AIN  
AO  
15  
11  
17  
16  
10  
12  
8
15  
11  
17  
16  
10  
12  
8
Current sense input phase V  
Current sense input phase W  
Itrip phase U reference output  
Itrip phase V reference output  
Itrip phase W reference output  
IW  
REFU  
REFV  
REFW  
14  
13  
7
14  
13  
7
AIN  
AIN  
Hall sensor inputs (MCE)  
AHALL1+  
AHALL1-  
AHALL2+  
AHALL2-  
HALL1  
AIN  
AIN  
AIN  
AIN  
IO  
10  
11  
16  
15  
26  
27  
28  
7
10  
11  
16  
15  
26  
27  
28  
7
Analog Hall sensor input 1+  
Analog Hall sensor input 1-  
Analog Hall sensor input 2+  
Analog Hall sensor input 2-  
Digital Hall sensor input 1  
Digital Hall sensor input 2  
Digital Hall sensor input 3  
8
8
13  
12  
-
13  
12  
-
HALL2  
IO  
-
-
HALL3  
IO  
-
-
Power Factor Correction (MCE)  
PFCG0  
O
-
-
-
44  
43  
33  
32  
PFC gate drive 0 output  
PFC gate drive 1 (totem pole PFC)  
output  
PFCG1  
O
-
IPFC  
AIN  
AIN  
AIN  
AIN  
AIN  
-
-
-
-
-
-
-
-
-
-
12  
21  
22  
20  
19  
9
PFC current sensing input  
PFC Itrip reference input  
PFC Itrip current sensing input  
AC voltage sensing input 1  
AC voltage sensing input 2  
IPFCREF  
IPFCTRIP  
VAC1  
18  
19  
17  
16  
VAC2  
Interface (MCE)  
PGOUT  
NTC  
O
42  
13  
41  
31  
10  
30  
42  
13  
41  
31  
10  
30  
Pulse output  
AIN  
O
External thermistor input  
Status LED  
LED  
Communication (MCE)  
RXD0  
I
45  
46  
35  
36  
45  
46  
35  
36  
MCE UART0 receive input  
TXD0  
O
MCE UART0 transmit output  
Scripting (MCE)  
AIN1  
AIN  
AIN  
AIN  
AIN  
AIN  
AIN  
AIN  
AIN  
IO  
10  
11  
12  
13  
16  
17  
19  
20  
-
7
10  
11  
-
7
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
AIN2  
8
8
AIN3  
9
-
AIN4  
10  
13  
14  
16  
17  
32  
33  
13  
16  
17  
-
10  
13  
14  
-
AIN7  
AIN8  
AIN10  
AIN11  
GPIO2  
GPIO3  
Analog input  
-
-
Analog input  
-
-
User configurable I/O, digital  
User configurable I/O, digital  
IO  
-
-
-
8
Revision 1.2  
2020-10-20  
IMC301A/302A Datasheet  
Pin Configuration  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
GPIO10  
GPIO11  
GPIO12  
GPIO13  
GPIO14  
GPIO15  
GPIO16  
GPIO17  
MCU  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
-
34  
18  
19  
-
-
34  
-
User configurable I/O, digital  
User configurable I/O, digital  
User configurable I/O, digital  
User configurable I/O, digital  
User configurable I/O, digital  
User configurable I/O, digital  
User configurable I/O, digital  
User configurable I/O, digital  
User configurable I/O, digital  
User configurable I/O, digital  
User configurable I/O, digital  
User configurable I/O, digital  
User configurable I/O, digital  
User configurable I/O, digital  
-
-
-
-
-
21  
22  
26  
27  
28  
37  
38  
39  
40  
43  
44  
-
-
-
-
-
-
26  
27  
28  
37  
38  
39  
40  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
P0.8  
IO  
IO  
IO  
IO  
IO  
IO  
51  
52  
53  
54  
55  
56  
39  
40  
41  
42  
43  
44  
51  
52  
53  
54  
55  
56  
39  
40  
41  
42  
43  
44  
Programmable I/O  
Programmable I/O  
Programmable I/O  
Programmable I/O  
Programmable I/O  
Programmable I/O  
P0.9  
P0.10  
P0.11  
P0.12  
P0.13  
Programmable I/O, or MCU SWD  
debug interface data input / output  
P0.14/SWDIO  
IO  
I
57  
58  
45  
46  
57  
58  
45  
46  
Programmable I/O, or MCU SWD  
debug interface clock input  
P0.15/SWDCLK  
P1.0  
P1.1  
IO  
IO  
48  
47  
-
-
48  
47  
-
-
Programmable I/O  
Programmable I/O  
Programmable I/O, or MCU UART0  
receive input, or analog input  
P2.0  
P2.1  
IO/AIN  
IO/AIN  
3
4
2
3
3
4
2
3
Programmable I/O, or MCU UART0  
transmit output, or analog input  
P2.2  
P2.6  
P2.8  
P2.10  
P2.11  
P4.0  
P4.1  
P4.2  
P4.3  
I/AIN  
I/AIN  
I/AIN  
IO/AIN  
IO/AIN  
IO  
5
4
5
-
5
4
5
-
Digital input, or analog input  
Digital input , or analog input  
Digital input, or analog input  
Programmable I/O, or analog input  
Programmable I/O, or analog input  
Programmable I/O  
6
6
7
7
8
-
8
-
9
6
-
9
6
-
59  
60  
61  
62  
59  
60  
61  
62  
IO  
47  
48  
1
47  
48  
1
Programmable I/O  
IO  
Programmable I/O  
IO  
Programmable I/O  
Programmable I/O, or MCU UART1  
receive input  
P4.4  
IO  
63  
-
63  
-
9
Revision 1.2  
2020-10-20  
IMC301A/302A Datasheet  
Pin Configuration  
Programmable I/O, or MCU UART1  
transmit output  
P4.5  
IO  
64  
-
64  
-
P4.6  
P4.7  
IO  
IO  
1
2
-
-
1
2
-
-
Programmable I/O  
Programmable I/O  
Pin Configuration Drawing IMC301A  
48 47 46 45 44 43 42 41 40 39 38 37  
P4.3  
P2.0  
P2.1  
P2.2  
P2.6  
P2.11  
1
2
3
4
5
6
7
8
9
TXD0  
RXD0  
36  
35  
34  
33  
32  
31  
30  
GPIO4  
GPIO3  
GPIO2  
IMC301A-F048  
PGOUT  
(Top View)  
REFW/AHALL1+/AIN1  
IW/AHALL1-/AIN2  
AIN3  
LED  
GK  
29  
28  
VDD  
10  
27  
26  
NTC/AIN4  
PWMWH  
PWMWL  
PWMVH  
11  
12  
VDC  
25  
23 24  
IV/AHALL2-  
17  
21  
13 14 15 16  
18 19  
20  
22  
Figure 2  
IMC301-F048  
10  
2020-10-20  
Revision 1.2  
IMC301A/302A Datasheet  
Pin Configuration  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
2
P4.6  
P1.0  
48  
P4.7  
P2.0  
P2.1  
47  
46  
P1.1  
3
TXD0  
4
45  
44  
43  
42  
41  
40  
39  
38  
RXD0  
5
GPIO17  
P2.2  
P2.6  
6
GPIO16  
(Top View)  
7
P2.8  
PGOUT  
LED  
8
P2.10  
IMC301A-F064  
GPIO15  
GPIO14  
9
P2.11  
10  
11  
12  
13  
14  
15  
16  
REFW/AHALL1+/AIN1  
IW/AHALL1-/AIN2  
AIN3  
GPIO13  
GPIO12  
GK  
37  
36  
NTC/AIN4  
35  
34  
VDC  
VDD  
PWMWH  
PWMWL  
IV/AHALL2-  
33  
REFV/AHALL2+/AIN7  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Figure 3  
IMC301A-F064  
11  
Revision 1.2  
2020-10-20  
IMC301A/302A Datasheet  
Pin Configuration  
Pin Configuration Drawing IMC302A  
48 47 46 45 44 43 42 41 40 39 38 37  
P4.3  
1
2
3
4
5
6
7
8
9
TXD0  
36  
P2.0  
RXD0  
35  
34  
33  
32  
31  
30  
P2.1  
GPIO4  
PFCG0  
PFCG1  
PGOUT  
LED  
P2.2  
P2.6  
IMC302A-F048  
P2.11  
(Top View)  
REFW/AHALL1+/AIN1  
IW/AHALL1-/AIN2  
IPFC  
GK  
29  
28  
VDD  
10  
27  
26  
NTC/AIN4  
PWMWH  
PWMWL  
PWMVH  
11  
12  
VDC  
25  
23 24  
IV/AHALL2-  
17  
21  
13 14 15 16  
18 19  
20  
22  
Figure 4  
IMC302A-F048  
12  
Revision 1.2  
2020-10-20  
IMC301A/302A Datasheet  
Pin Configuration  
64 63 62 61 60 59 58 57 56 55 54 53 52 51  
50 49  
48  
P4.6  
P4.7  
1
2
3
4
5
6
7
8
P1.0  
P1.1  
TXD0  
47  
46  
P2.0  
P2.1  
45  
44  
43  
42  
41  
40  
39  
38  
RXD0  
PFCG0  
P2.2  
P2.6  
PFCG1  
(Top View)  
P2.8  
PGOUT  
LED  
P2.10  
IMC302A-F064  
GPIO15  
GPIO14  
P2.11  
9
10  
11  
12  
13  
14  
REFW/AHALL1+/AIN1  
IW/AHALL1-/AIN2  
GPIO13  
GPIO12  
GK  
IPFC  
NTC/AIN4  
VDC  
37  
36  
35  
34  
33  
VDD  
15  
16  
PWMWH  
PWMWL  
IV/AHALL2-  
REFV/AHALL2+/AIN7  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Figure 5  
IMC302A-F064  
13  
Revision 1.2  
2020-10-20  
IMC301A/302A Datasheet  
Functional Description  
3
Functional Description  
The IMC300 architecture is based on the combination of the Motion Control Engine (MCE) for Hall sensor based  
or sensorless motor control and PFC regulation and an additional microcontroller (MCU) based on an Arm®  
Cortex®-M0 core.  
The MCE contains an embedded motor control algorithm with fast angle sensing at startup and enables low  
and ultra-high speed operation, and offers either single shunt current sensing or leg shunt current sensing. PFC  
control supports two topologies, namely a single stage boost mode PFC and a totem-pole PFC with 50 kHz fast  
switching application to minimize the inductor size. Users can configure the motor and PFC parameters for  
each specific motors and store into the onboard Flash memory. The MCE also contains the UL 607310-1  
software safety certified library and modules.  
The MCU is based on an Arm® Cortex®-M0 core and provides 128 Kbyte of flash and 16 Kbyte of RAM memory.  
The peripheral set is targeting communicaton and system application tasks.  
Both units MCE and MCU run largely independantly up to the fact that the MCU can be debuged while the  
motor is still running. Communication between the two units is using a fast serial interface called JCOM.  
Application Schematics for IMC301A with Single Shunt Current Sensing  
Figure 6 shows the application schematics diagram for a single motor control system with single shunt current  
sensing configuration.  
ARM M0  
Motion Control Engine  
~
Class B Safety  
FOC Block  
Module  
CPU  
PFC PWM  
Script Languare  
JCOM  
Interrupt Control  
Debug System  
PWMUH  
PWMUL  
PWMVH  
PWMVL  
PWMWH  
PWMWL  
Motion Control  
Sequencer  
Space Vector  
PWM  
Debug Tool  
6
Current Sense  
Logic  
Fault Handling  
MPU  
RAM  
Program  
RAM  
USIC  
PFC and  
Motor OC Trip  
Handling  
GK  
Digital  
filter  
3 phase  
Gate Driver  
Communication  
Interfaces  
Data  
RAM  
USIC  
CAN  
CCU  
Math  
Accelerator  
OC Trip  
Reference  
DAC  
REFU  
Flash  
Memory  
Flash  
Memory  
VDD  
Temperature  
sensing  
ISS/IU  
Boot  
Loader  
Secure  
Loader  
12bit  
A/D with  
Gain  
Programmable IO  
& Analog input  
GPIO  
Ports  
VDD  
Stage  
Analog  
inputs  
VDC  
NTC  
Temperature  
sensing  
Motor  
Clock monitoring  
96 MHz 32 kHz  
Clock monitoring  
96 MHz 32 kHz  
Watchdog  
Timer  
Watchdog  
Timer  
Optional  
Position  
Feedback  
Oscillator Oscillator  
Oscillator Oscillator  
Oscillator Watchdog  
Oscillator Watchdog  
Hall sensor  
Interface  
RESET  
RESET  
VDD  
Voltage  
supervision  
Voltage  
supervision  
3.3V 5.0V  
GPIO  
Ports  
3.3V 5.0V  
Figure 6  
IMC301A Application Schematics Diagram (Single Shunt Current Sensing)  
14  
Revision 1.2  
2020-10-20  
 
IMC301A/302A Datasheet  
Functional Description  
Application Schematics for IMC302A with Single Shunt Current Sensing  
Figure 7 shows the application schematics diagram for an air-conditioner outdoor unit system with single shunt  
current sensing and a boost mode PFC configuration. Hall sensor feedback options support applications  
requiring high torque during start-up.  
~
ARM M0  
VDD  
Motion Control Engine  
Class B Safety  
FOC Block  
Module  
CPU  
PFCG0  
PFCGK  
PFC PWM  
Script Languare  
JCOM  
Interrupt Control  
Debug System  
PWMUH  
PWMUL  
PWMVH  
PWMVL  
PWMWH  
PWMWL  
Motion Control  
Sequencer  
Space Vector  
PWM  
Gate Driver  
Debug Tool  
6
Current Sense  
Logic  
Fault Handling  
MPU  
RAM  
Program  
RAM  
USIC  
PFC and  
Motor OC Trip  
Handling  
GK  
Digital  
filter  
3 phase  
Gate Driver  
Communication  
Interfaces  
IPCREF  
Data  
RAM  
USIC  
CAN  
CCU  
Math  
Accelerator  
OC Trip  
Reference  
DAC  
REFU  
ISS/IU  
Flash  
Memory  
Flash  
Memory  
VDD  
Temperature  
sensing  
Boot  
Loader  
Secure  
Loader  
12bit  
A/D with  
Gain  
Programmable IO  
& Analog input  
GPIO  
Ports  
VAC1  
VAC2  
IPFC  
VDC  
VDD  
Stage  
Analog  
inputs  
NTC  
Temperature  
sensing  
Motor  
Clock monitoring  
96 MHz 32 kHz  
Clock monitoring  
96 MHz 32 kHz  
Watchdog  
Timer  
Watchdog  
Timer  
Optional  
Position  
Oscillator Oscillator  
Oscillator Oscillator  
Oscillator Watchdog  
Oscillator Watchdog  
Feedback  
Hall sensor  
Interface  
RESET  
RESET  
VDD  
Voltage  
supervision  
Voltage  
supervision  
3.3V 5.0V  
GPIO  
Ports  
3.3V 5.0V  
Figure 7  
IMC302A Application Schematics Diagram (Single Shunt Current Sensing)  
15  
Revision 1.2  
2020-10-20  
 
IMC301A/302A Datasheet  
Functional Description  
Application Schematics for IMC302A with Leg Shunt Current Sensing  
Figure 8 shows the application schematics diagram for an air-conditioner outdoor unit system with leg shunt  
current sensing and a boost mode PFC configuration.  
~
ARM M0  
VDD  
Motion Control Engine  
Class B Safety  
FOC Block  
Module  
CPU  
PFCG0  
PFCGK  
PFC PWM  
Script Languare  
JCOM  
Interrupt Control  
Debug System  
PWMUH  
PWMUL  
PWMVH  
PWMVL  
PWMWH  
PWMWL  
Motion Control  
Sequencer  
Space Vector  
PWM  
Gate Driver  
Debug Tool  
6
Current Sense  
Logic  
Fault Handling  
MPU  
RAM  
Program  
RAM  
USIC  
PFC and  
Motor OC Trip  
Handling  
GK  
Digital  
filter  
3 phase  
Gate Driver  
Communication  
Interfaces  
IPCREF  
Data  
RAM  
USIC  
CAN  
CCU  
Math  
Accelerator  
VDD  
OC Trip  
Reference  
DAC  
REFU  
REFW  
REFV  
Flash  
Memory  
Flash  
Memory  
Temperature  
sensing  
VDD  
ISS/IU  
IV  
Boot  
Loader  
Secure  
Loader  
12bit  
A/D with  
Gain  
Programmable IO  
& Analog input  
GPIO  
Ports  
IW  
VAC1  
VAC2  
IPFC  
VDC  
VDD  
VDD  
Stage  
Analog  
inputs  
NTC  
Temperature  
sensing  
Motor  
Clock monitoring  
96 MHz 32 kHz  
Clock monitoring  
96 MHz 32 kHz  
Watchdog  
Timer  
Watchdog  
Timer  
Optional  
Position  
Oscillator Oscillator  
Oscillator Oscillator  
Oscillator Watchdog  
Oscillator Watchdog  
Feedback  
Hall sensor  
Interface  
RESET  
RESET  
VDD  
Voltage  
supervision  
Voltage  
supervision  
3.3V 5.0V  
GPIO  
Ports  
3.3V 5.0V  
Figure 8  
IMC302A Application Schematics Diagram (Leg Shunt Current Sensing)  
16  
Revision 1.2  
2020-10-20  
 
IMC301A/302A Datasheet  
Electrical characteristics and parameters  
4
Electrical characteristics and parameters  
General Parameters  
4.1.1  
Parameter Interpretation  
The parameters listed in this section represent partly the characteristics of the IMC300 and partly its  
requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they  
are indicated by the abbreviations in the “Symbol” column:  
CC  
Such parameters indicate Controller Characteristics, which are distinctive feature of the IMC300 and must  
be regarded for a system design.  
SR  
Such parameters indicate System Requirements, which must be provided by the application system in  
which the IMC300 is designed in.  
4.1.2  
Absolute Maximum Ratings  
Stresses above the values listed under Absolute Maximum Ratings may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at these or any other conditions above  
those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum  
rating conditions may affect device reliability.  
Table 2  
Absolute Maximum Rating Parameters  
Parameter  
Symbol  
Values  
Unit  
Note or Test  
Condition  
Min. Typ.  
Max.  
Ambient temperature  
Junction temperature  
Storage temperature  
TA SR  
TJ SR  
-40  
105  
115  
125  
6
°C  
°C  
°C  
V
-40  
-40  
-0.3  
TST SR  
Voltage on power supply pin with  
VDD SR  
respect to VSS  
Voltage on pins with respect to  
VIN SR  
-0.3  
-5  
VDDP + 0.3  
V
VSS  
Input current on any pin during  
overload condition  
IIN  
SR  
5
mA  
mA  
Absolute maximum sum of all input  
currents during overload condition  
25  
ΣIIN SR  
17  
Revision 1.2  
2020-10-20  
 
IMC301A/302A Datasheet  
Electrical characteristics and parameters  
4.1.3  
Pin Reliability in Overload  
When receiving signals from higher voltage devices, low-voltage devices experience overload currents and  
voltages that go beyond their own IO power supplies specification.  
Table 3 defines overload conditions that will not cause any negative reliability impact if all the following  
conditions are met:  
full operation life-time is not exceeded  
Operating Conditions are met for  
-
-
pad supply levels (VDDP)  
temperature  
If a pin current is outside of the Operating Conditions but within the overload conditions, then the parameters  
of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most  
cases but with relaxed parameters.  
Note:  
An overload condition on one or more pins does not require a reset.  
Note:  
A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient  
to handle failure situations like short to battery.  
Table 3  
Overload Parameters  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or Test  
Condition  
Min.  
-3  
Max.  
Input current on analog port pins  
during overload condition  
IOVA SR  
IOV SR  
IOVS SR  
3
5
mA  
mA  
mA  
Input current on any port pin during  
overload condition  
-5  
Absolute sum of all input circuit  
currents during overload condition  
25  
Figure 9 shows the path of the input currents during overload via the ESD protection structures. The diodes  
against VDDP and ground are a simplified representation of these ESD protection structures.  
18  
Revision 1.2  
2020-10-20  
 
IMC301A/302A Datasheet  
Electrical characteristics and parameters  
VDDP  
VDDP  
Pn.y  
IOVx  
GND  
ESD  
GND  
Pad  
Figure 9  
Input Overload Current via ESD structures  
Table 4 and Table 5 list input voltages that can be reached under overload conditions. Note that the absolute  
maximum input voltages as defined in the Absolute Maximum Ratings must not be exceeded during overload.  
Table 4  
PN-Junction Characterisitics for Positive Overload  
Pad Type  
IOV = 5 mA  
Standard, High-current,  
AN/DIG_IN  
VIN = VDD +(0.3 ... 0.5) V  
VAIN = VDD + 0.5 V  
VAREF = VDD + 0.5 V  
Table 5  
PN-Junction Characterisitics for Negative Overload  
Pad Type  
IOV = 5 mA  
Standard, High-current,  
AN/DIG_IN  
VIN = VSS - (0.3 … 0.5) V  
VAIN = VSS - 0.5 V  
VAREF = VSS - 0.5 V  
19  
Revision 1.2  
2020-10-20  
 
 
IMC301A/302A Datasheet  
Electrical characteristics and parameters  
4.1.4  
Operating Conditions  
The following operating conditions must not be exceeded in order to ensure correct operation and reliability of  
the IMC30xA. All parameters specified in the following tables refer to these operating conditions, unless noted  
otherwise.  
Table 6  
Operating Conditions Parameters  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or Test  
Condition  
Min.  
-40  
Max.  
105  
Ambient Temperature  
Junction temperature  
Digital supply voltage1)  
TA SR  
TJ SR  
°C  
°C  
V
-40  
3.0  
115  
5.5  
3.3  
All VDD pins need to  
be connected on the  
circuit board.  
VDDP SR  
Short circuit current of digital ISC  
SR  
-5  
5
mA  
mA  
mA  
outputs2)  
Absolute sum of short circuit  
currents of the device2)  
ΣISC_D SR  
ΣISC_D SR  
25  
25  
For MCE peripheral  
pins  
Absolute sum of short circuit  
currents of the device3)  
For MCU peripheral  
pins  
1 See also the Supply Monitoring thresholds Power-Up and Supply Threshold Characteristics.  
2 Applicable for digital outputs.  
3 See also section "Pin Reliability in Overload" for overload current definitions.  
20  
Revision 1.2  
2020-10-20  
IMC301A/302A Datasheet  
Electrical characteristics and parameters  
4.1.5  
Input / Output Characteristics  
The table below provides the characteristics of the input/output pins of the IMC300.  
Note:  
These parameters are not subject to production test, but verified by design and/or characterization.  
Note:  
Unless otherwise stated, input DC and AC characteristics, including peripheral timings, assume that  
the input pads operate with the standard hysteresis.  
Table 7  
Input / Output Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Max.  
Unit  
Test Conditions  
Min.  
Output low voltage on port pins  
VOLP  
CC  
CC  
1.0  
0.4  
1.0  
V
V
V
IOL = 11 mA (5 V)  
IOL = 7 mA (3.3 V)  
IOL = 5 mA (5 V)  
IOL = 3.5 mA (3.3 V)  
Output low voltage on PWM  
outputs  
VOLP1  
IOL = 50 mA (5 V)  
IOL = 25 mA (3.3 V)  
0.32  
0.4  
V
V
V
IOL = 10 mA (5 V)  
IOL = 5 mA (3.3 V)  
Output high voltage on port pins VOHP  
CC  
CC  
VDDP - 1.0  
IOH = -10 mA (5 V)  
IOH = -7 mA (3.3 V)  
VDDP - 0.4  
V
IOH = -4.5 mA (5 V)  
IOH = -2.5 mA (3.3 V)  
Output high voltage on PWM  
outputs  
VOHP1  
VDDP - 0.32 –  
V
IOH = -6 mA (5 V)  
IOH = -8 mA (3.3 V)  
IOH = -4 mA (3.3 V)  
50 pF @ 5 V  
VDDP - 1.0  
V
VDDP - 0.4  
V
Rise/fall time on PWM outputs1)  
Rise/fall time on standard pad  
tHCPR,  
tHCPF  
CC  
CC  
CC  
9
ns  
ns  
ns  
ns  
pF  
12  
12  
15  
10  
50 pF @ 3.3 V  
50 pF @ 5 V  
tR, tF  
50 pF @ 3.3 V.  
Pin capacitance  
CIO  
(digital inputs/outputs)  
1 Rise/Fall time parameters are taken with 10% - 90% of power supply.  
21  
Revision 1.2  
2020-10-20  
IMC301A/302A Datasheet  
Electrical characteristics and parameters  
Table 7  
Input / Output Characteristics (Operating conditions apply) (continued)  
Parameter  
Symbol  
Values  
Max.  
Unit  
Test Conditions  
Min.  
Pull-up/-down resistor on port  
pins  
RPUP  
CC  
CC  
20  
50  
kΩ  
VIN = VSSP  
(if enabled in software)  
Input leakage current 1)  
IOZP  
-1  
1
µA  
0 < VIN < VDDP  
TA 105°C  
,
Maximum current per pin  
standard pin  
IMP  
SR  
SR  
SR  
-10  
-10  
11  
mA  
mA  
mA  
Maximum current per PWM  
outputs pins  
IMP1A  
50  
Maximum current into VDDP / out  
of VSS  
260  
IMVDD  
/
IMVSS  
1 An additional error current (IINJ) will flow if an overload current flows through an adjacent pin.  
22  
Revision 1.2  
2020-10-20  
IMC301A/302A Datasheet  
Electrical characteristics and parameters  
4.1.6  
Analog to Digital Converter (ADC)  
The following table shows the Analog to Digital Converter (ADC) characteristics. This specification applies to all  
analog input as given in the pin configuration list.  
Note:  
These parameters are not subject to production test, but verified by design and/or characterization.  
Table 8  
ADC Characteristics (Operating conditions apply)1)  
Parameter  
Symbol  
Values  
Unit  
Note or Test  
Condition  
Min.  
3.0  
VSSP- 0.05 –  
Typ.  
Max.  
5.5  
Supply voltage range  
Analog input voltage range  
Conversion time  
VDD SR  
VAIN SR  
V
VDDP+ 0.05 V  
1.0  
1.6  
10  
μs  
tC12 CC  
Total capacitance of an analog  
input  
CAINT CC  
pF  
Total capacitance of the  
reference input  
CAREFT CC  
10  
pF  
Sample time  
RMS noise  
DNL error  
INL error  
200  
1.5  
ns  
tsample CC  
ENRMS CC  
LSB12  
LSB12  
LSB12  
%
EADNL CC  
EAINL CC  
±2.0  
±4.0  
±0.5  
±8.0  
Gain error  
Offset error  
VDD = 3.3V  
EAGAIN CC  
EAOFF CC  
mV  
1 All parameters are defined for the full supply voltage range if not stated otherwise.  
23  
Revision 1.2  
2020-10-20  
IMC301A/302A Datasheet  
Electrical characteristics and parameters  
4.1.7  
Power Supply Current  
The total power supply current defined below consists of a leakage and a switching component.  
Application relevant values are typically lower than those given in the following tables, and depend on the  
customer's system operating conditions (e.g. thermal connection or used application configurations).  
Note:  
These parameters are not subject to production test, but verified by design and/or characterization.  
Table 9  
Power Supply parameter table; VDDP = 5V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or Test  
Condition  
Min.  
Max.  
40  
Active mode current  
motor control only  
IDDPWM CC  
IDDPFC CC  
15  
19  
mA  
mA  
MCE clock 48MHz  
MPU clock  
1 48Mhz  
Active mode current  
motor control plus PFC  
40  
IMC302A only  
Both cores  
Deep Sleep mode current1)  
0.54  
6
mA  
IDDPDS CC  
Wake-up time from Sleep to  
Active mode  
tSSA CC  
cycles  
Wake-up time from Deep Sleep  
to Active mode  
tDSA CC  
290  
μsec  
4.1.8  
Flash Memory Parameters  
Note:  
These parameters are not subject to production test, but verified by design and/or characterization.  
Table 10  
Flash Memory Parameters  
Parameter  
Symbol  
Values  
Min. Typ.  
10  
Unit  
Note or Test Condition  
Max.  
Data Retention Time  
Erase Cycles2)  
tRET CC  
years  
cycles  
cycles  
Max. 100 erase / program  
cycles  
NECYC CC  
5x104  
2x106  
Sum of page and sector  
erase cycles  
Total Erase Cycles  
NTECYC CC  
1 CPU in sleep, peripherals clock disabled, Flash is powered down and code executed from RAM after wakeup.  
2 Sum of page erase and sector erase cycles a page sees.  
24  
Revision 1.2  
2020-10-20  
IMC301A/302A Datasheet  
Electrical characteristics and parameters  
AC Parameters  
4.2.1  
Testing Waveforms  
VDDP  
90%  
90%  
10%  
10%  
VSS  
tR  
tF  
Figure 10  
Rise/Fall Time Parameters  
VDDP  
VDDP /2  
VDDP /2  
Test Points  
V
SS  
Figure 11  
Testing Waveform, Output Delay  
+0.1
-0.1 V  
OH -0.1 V  
OL +0.1 V  
VLOAD  
V
Timing  
Reference  
Points  
VLOAD  
V
Figure 12  
Testing Waveform, Output High Impedance  
25  
Revision 1.2  
2020-10-20  
IMC301A/302A Datasheet  
Electrical characteristics and parameters  
4.2.2  
Power-Up and Supply Threshold Characteristics  
This chapter provides the characteristics of the supply threshold in IMC300.  
The guard band between the lowest valid operating voltage and the brownout reset threshold provides a  
margin for noise immunity and hysteresis. The electrical parameters may be violated while VDDP is outside its  
operating range.  
The brownout detection triggers a reset within the defined range. The prewarning detection can be used to  
trigger an early warning and issue corrective and/or fail-safe actions in case of a critical supply voltage drop.  
Note:  
These parameters are not subject to production test, but verified by design and/or characterization.  
Note:  
Operating Conditions apply.  
Table 11  
Power-Up and Supply Threshold Parameters  
Parameter  
Symbol  
Values  
Unit  
Note or Test Condition  
Min.  
Typ.  
Max.  
107  
VDDP ramp-up time  
VDDP slew rate  
tRAMPUP SR  
SVDDPOP SR  
SVDDP10 SR  
μs  
VDDP/  
SVDDPrise  
0
0.1  
10  
V/μs  
V/μs  
Slope during normal  
operation  
0
0
0
Slope during fast  
transient within +/-10%  
of VDDP  
Slope during power-on  
or restart after  
brownout event  
SVDDPrise SR  
SVDDPfall9) SR  
VDDPPW CC  
10  
V/μs  
V/μs  
0.25  
Slope during supply  
falling out of the +/-10%  
limits10)  
VDDP prewarning voltage  
2.1  
2.25  
3
2.4  
V
V
V
ANAVDEL.VDEL_SELECT  
= 00B  
2.85  
4.2  
3.15  
4.6  
ANAVDEL.VDEL_SELECT  
= 01B  
4.4  
ANAVDEL.VDEL_SELECT  
= 10B  
9
A capacitor of at least 100 nF has to be added between VDDP and VSSP to fulfill the requirement as stated  
for this parameter.  
Valid for a 100 nF buffer capacitor connected to supply pin where current from capacitor is forwarded only  
to the chip. A larger capacitor value has to be chosen if the power source sink a current.  
10  
26  
Revision 1.2  
2020-10-20  
IMC301A/302A Datasheet  
Electrical characteristics and parameters  
Table 11 Power-Up and Supply Threshold Parameters (continued)  
Parameter  
Symbol  
Values  
Unit  
Note or Test Condition  
Min.  
1.55  
Typ.  
Max.  
1.75  
VDDP brownout reset voltage VDDPBO CC  
1.62  
V
calibrated, before user  
code starts running  
VDDP voltage to ensure  
defined pad states  
VDDPPA CC  
tSSW CC  
1.0  
260  
-
V
Start-up time from  
poweron reset  
μs  
ms  
Time to the first user  
code instruction1)  
Start-up time to PWM on  
5.2  
360  
Time to PWM enabled  
tPWMON CC  
5.0V  
VDDPPW  
}
VDDP  
VDDPBO  
Figure 13  
Supply Threshold Parameters  
1
This values does not include the ramp-up time. During startup firmware execution, MCLK is running at 48  
MHz and the clocks to peripheral as specified in register CGATSTAT0 are gated.  
27  
Revision 1.2  
2020-10-20  
IMC301A/302A Datasheet  
Electrical characteristics and parameters  
4.2.3  
On-Chip Oscillator Characteristics  
Table 12 provides the characteristics of the 96 MHz digital controlled oscillator DCO1. The DCO1 is used as the  
time base for peripherals during normal operation. The MCE core clock always runs at 48 MHz. The MCU core  
clock starts up at 48MHz but can be reduced to 32MHz, 16MHz or 1 MHz after startup.  
Note:  
These parameters are not subject to production test, but verified by design and/or characterization.  
Table 12  
96 MHz DCO1 Characteristics  
Parameter  
Symbol  
Values  
Unit  
Test Conditions  
Min.  
Typ. Max.  
Nominal frequency  
fNOM CC  
ΔfLTX CC  
-
96  
-
MHz under nominal conditions1) after  
trimming  
Accuracy with  
-0.3  
-
+0.3  
%
with respect to fNOM (typ), TA from  
adjustment on XTAL  
as reference  
-40 °C to 105 °C  
Accuracy with  
ΔfLTTS CC  
-0.6  
-1.9  
-2.6  
-1.7  
-
+0.6  
+1.0  
+1.3  
3.4  
%
%
%
%
with respect to fNOM (typ), TA from  
0 °C to 105 °C  
adjustment algorithm  
2) based on  
-
with respect to fNOM (typ), TA from  
-25 °C to 105 °C  
temperature sensor  
-
with respect to fNOM (typ), TA from  
-40 °C to 105 °C  
Accuracy  
ΔfLT CC  
with respect to fNOM(typ), TA from  
0 °C to 85 °C  
-3.9  
4.0  
%
with respect to fNOM(typ), TA from  
-40 °C to 105 °C  
Table 13 provides the characteristics of the 32 kHz digital controlled oscillator DCO2. The DCO2 is only used  
internally as a secondary clock source for the internal watchdog and as a fallback in case of failure of DCO1.  
Table 13  
32 kHz DCO2 Characteristics  
Parameter  
Symbol  
Values  
Unit Test Conditions  
Min.  
Typ.  
Max.  
Nominal frequency  
fNOM CC  
32.5  
32.75 33  
kHz  
under nominal conditions1) after  
trimming  
1 The deviation is relative to the factory trimmed frequency at nominal VDDC and TA = + 25°C.  
2 MCE version newer or equal to V1.03.00, clock adjustement algorithm for improved accuracy enabled.  
28  
Revision 1.2  
2020-10-20  
 
 
IMC301A/302A Datasheet  
Electrical characteristics and parameters  
Short term frequency  
ΔfST CC  
ΔfLT CC  
-1  
1
%
%
%
with respect to fNOM(typ), at 25°C  
deviation (over VDDC  
)
Accuracy  
-1.7  
-3.9  
3.4  
4.0  
with respect to fNOM(typ), TA from  
0 °C to 85 °C  
with respect to fNOM(typ), TA from  
-40 °C to 105 °C  
Motor Control Parameters  
The following parameters are defined in the iMOTIONTM Motion Control Engine (MCE) software.  
4.3.1  
PWM Characteristics  
Table 14  
PWM Carrier Frequency Characteristics  
Parameter  
Symbol  
Values  
Unit  
Condition  
Min.  
Typ.  
Max.  
Motor PWM frequency  
fPWM  
5
16  
40  
kHz  
Ta=25 °C, VDD = nominal  
4.3.2  
Current Sensing Characteristics  
Table 15  
Motor Current Sensing Characteristics  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Condition  
Min.  
Max.  
Input range  
IPWM  
VSS-0.05  
-
VDD+0.05  
V
Ta=25 °C, VDD = nominal  
Configurable analog gain  
Itrip input range  
1/3/6/12  
IPWMTRIP VSS-0.05  
-
VDD+0.05  
V
Itrip offset Accuraccy  
REF Input capacitance  
±8  
-
-
mV  
pF  
CREFIU/V/W  
-
10  
External capacitance  
required on REFU,REFV,  
REFW  
29  
Revision 1.2  
2020-10-20  
IMC301A/302A Datasheet  
Electrical characteristics and parameters  
4.3.3  
Fault Timing  
Table 16  
Gatekill Timing  
Parameter  
Symbol  
Values  
Min. Typ.  
Unit  
Condition  
Max.  
GK pulse width  
twGK  
1
-
-
-
-
-
µs  
µs  
Ta = 25 °C, VDD = nominal  
GK input to PWM shutoff  
Motor Fault reset timing  
tGK  
1.3  
tRESET  
-
1.84  
ms  
fault reset command via UART to  
PWM reactivation  
Itrip to PWM shutoff  
Itrip to PWM shutoff  
tPWMOFF  
tPWMOFF  
-
-
1.0  
1.0  
-
-
µs  
µs  
single shunt configuration  
leg shunt configuration  
Figure 14  
Fault timing  
4.3.4  
Analog Hall Sensing Characteristics  
Table 17  
Analog Hall Input Characteristics  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Condition  
Min.  
Max.  
Input range  
VH  
VSS-0.05  
-
-
VDD+0.05  
V
Ta = 25 °C, VDD = nominal  
Comparator Offset  
Comparator Hysteresis  
VCMPOFF  
+/-3  
±15  
-
-
mV  
mV  
30  
2020-10-20  
Revision 1.2  
IMC301A/302A Datasheet  
Electrical characteristics and parameters  
Power Factor Correction (PFC) parameters  
The following parameters are defined in the iMOTIONTM Motion Control Engine (MCE) software.  
4.4.1  
Boost PFC characteristics  
Table 18  
PWM Carrier Frequency Characteristics  
Parameter  
Symbol  
Values  
Min. Typ. Max.  
20 50  
Unit  
Condition  
PFC PWM frequency  
fPFC  
-
kHz  
Motor PWM frequency within  
specified range  
4.4.2  
Totem Pole PFC characteristics  
Table 19  
PWM carrier frequency Characteristics  
Parameter  
Symbol  
Values  
Min. Typ. Max.  
20 50  
Unit  
Condition  
PFC PWM frequency  
fPFC  
-
kHz  
Motor PWM frequency within  
specified range  
4.4.3  
PFC current sensing characteristics  
Table 20  
PFC Current Sensing Characteristics  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Condition  
Min.  
Max.  
Input range  
IPFC  
VSS-0.05  
-
VDD+0.05  
V
Ta=25 °C, VDD=nominal  
Configurable analog gain  
Itrip input range  
Itrip offset  
1/3/6/12  
IPFCTRIP  
VSS-0.05  
-
-
VDD+0.05  
-
V
±3  
mV  
Input voltage difference >  
200mV  
REF Input capacitance  
CREFIPFC  
-
10  
pF  
External capacitor required on  
IPFCREF  
4.4.4  
PFC Fault timing  
Table 21  
PFC Fault Timing  
Symbol  
Parameter  
Values  
Unit  
Condition  
Min. Typ.  
Max.  
Itrip to PFCPWM shutoff  
Motor Fault reset timing  
tPFCOFF  
tRESET  
-
-
1.18  
1.0  
-
-
µs  
ms  
Fault reset command via UART to  
PWM reactivation  
31  
2020-10-20  
Revision 1.2  
IMC301A/302A Datasheet  
Electrical characteristics and parameters  
Control Interface Parameters (MCE)  
IMC300 series provides the following communication interfaces.  
Note:  
These parameters are not subject to production test, but verified by design and/or  
characterization.  
4.5.1  
UART Interface  
Table 22  
Electrical Characteristics  
Parameter  
Symbol  
Values  
Unit  
BPS  
Condition  
Min. Typ.  
1200 57600  
Max.  
UART baud rate  
UART mode  
-
-
-
-
-
8-N-1  
1/16  
Data-parity-stop bit  
UART sampling filter  
period  
TUARTFIL  
TBAUD  
TBAUD  
TXD  
Start Bit  
Data and Parity Bit  
Stop Bit  
RXD  
TUARTFIL  
Figure 15  
UART Timing  
4.5.2  
Over Temperature Input  
The over temperature input can be used to continuously monitor an external temperature sensor like an NTC.  
Specific type of NTC has to be used. Refer to the MCE Reference Manual for details.  
Table 23  
Over temperature input  
Symbol  
Parameter  
Values  
Min. Typ. Max.  
Unit  
Condition  
V
Over temperature input  
threshold  
VOT  
0.1  
1.0  
3.0  
VDD = 3.3V, configurable  
parameter e.g. via  
MCEDesigner, default =  
1.0V  
Over temperature to PWM tot  
-
1.0  
2.1  
ms  
shutdown  
32  
2020-10-20  
Revision 1.2  
IMC301A/302A Datasheet  
Electrical characteristics and parameters  
4.5.3  
Pulse Output  
The IMC300 series provide an optional PGOUT pin pulse output. The pulse frequency is proportional to motor  
revolution. Refer to the MCE software reference manual for details.  
Table 24  
Pulse Output  
Parameter  
Symbol  
Values  
Min. Typ. Max.  
Unit  
Condition  
PPR  
Pulse per revolution  
Pulse duty cycle  
PPR  
tPPR  
4
-
-
24  
-
50  
%
4.5.4  
LED Output  
The IMC300 series provide an output that can be connected to an LED to give a visual indication of the status of  
the motor drive.  
Table 25  
LED Output  
Parameter  
Symbol  
Values  
Min. Typ. Max.  
Unit  
Condition  
ms  
ms  
Hz  
%
Fault to LED delay  
tLEDFAULT  
tLEDRESET  
fLED  
-
53  
-
Fault reset to LED delay  
LED blinking frequency  
LED blinking duty cycle  
-
1.84  
-
1
5
1000  
95  
tLED  
33  
2020-10-20  
Revision 1.2  
IMC301A/302A Datasheet  
Quality Declaration  
5
Quality Declaration  
Table 26  
Quality Parameters  
Parameter  
Symbol  
Values  
Max.  
Unit  
Condition  
Conforming to  
Min.  
ESD susceptibility according  
to Human Body Model (HBM)  
VHBM SR  
VCDM SR  
-
2000  
V
ANSI/ESDA/JEDEC JS-001  
ESD susceptibility according  
to Charged Device Model  
(CDM) pins  
Conforming to  
ANSI/ESDA/JEDEC JS-002  
-
500  
V
Moisture sensitivity level  
Soldering temperature  
MSL CC  
TSDR SR  
-
-
3
-
JEDEC J-STD-020D  
260  
°C  
Profile according to JEDEC J-  
STD-020D  
34  
Revision 1.2  
2020-10-20  
IMC301A/302A Datasheet  
Device and Package Specification  
6
Device and Package Specification  
SBSL and Chip-IDs  
The table below gives the IDs for the individual devices in the IMC300 family. Depending upon the mode either  
the SBSL-ID (secure boot loader) or the Chip-ID should be used to identify the device.  
Both cores of the IMC300 family have a dedicated Chip-ID. The MCE core is programmed via a secure loader  
using the SBSL-IDs as given below.  
For details refer to the iMOTION™ Programming Manual.  
Table 27  
SBSL and Chip IDs  
Product Type  
Core  
Chip-ID  
SBSL-ID  
IMC301A-F048  
MCE  
0x1B010006  
0x026add3f080ad5abfb67af2271ea4973  
ARM® Cortex®-M0 0x13011006  
MCE 0x1B01000B  
ARM® Cortex®-M0 0x1301100B  
MCE 0x1B020006  
ARM® Cortex®-M0 0x13021006  
MCE 0x1B02000B  
ARM® Cortex®-M0 0x1302100B  
-
IMC301A-F064  
IMC302A-F048  
IMC302A-F064  
0x0207810c349410e8be51722b81520cf8  
-
0x024747b4b61060cf95f7b14a05b1decc  
-
0x0216ebe1d4cc0767684bacceefae29b2  
-
35  
2020-10-20  
Revision 1.2  
IMC301A/302A Datasheet  
Device and Package Specification  
Package Drawings  
6.2.1  
PG-LQFP-48-11  
Figure 16  
PG-LQFP-48-11  
36  
Revision 1.2  
2020-10-20  
IMC301A/302A Datasheet  
Device and Package Specification  
6.2.2  
PG-LQFP-64-29  
Figure 17  
PG-LQFP-64-29  
37  
Revision 1.2  
2020-10-20  
IMC301A/302A Datasheet  
Device and Package Specification  
Thermal Characteristics  
Table 28  
Package Thermal Characteristics  
Symbol  
Parameter  
Values  
Min. Max.  
Condition  
Unit  
RΘJA CC  
Thermal resistance Junction-  
Ambient1)  
-
-
66.7  
TBD  
K/W  
K/W  
PG-LQFP-64-26  
PG-LQFP-48-26  
Note:  
For electrical reasons, it is required to connect the exposed pad to the board ground VSSP,  
independent of EMC and thermal requirements.  
When operating the IMC300 in a system, the total heat generated in the chip must be dissipated to the ambient  
environment to prevent overheating and the resulting thermal damage. The maximum heat that can be  
dissipated depends on the package and its integration into the target board. The “Thermal resistance RΘJA”  
quantifies these parameters. The power dissipation must be limited so that the average junction temperature  
does not exceed 115°C. The difference between junction temperature and ambient temperature is determined  
by  
ΔT = (PINT + PIOSTAT + PIODYN) × RΘJA  
The internal power consumption is defined as  
PINT = VDD × IDDP (switching current and leakage current).  
The static external power consumption caused by the output drivers is defined as  
PIOSTAT = Σ((VDD - VOH) × IOH) + Σ(VOL × IOL)  
The dynamic external power consumption caused by the output drivers (PIODYN) depends on the capacitive  
load connected to the respective pins and their switching frequencies.  
If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must  
be taken to ensure proper system operation:  
Reduce VDD, if possible in the system  
Reduce the system frequency  
Reduce the number of output pins  
Reduce the load on active output drivers  
1
Device mounted on a 4-layer JEDEC board (JESD 51-5); exposed pad of VQFN soldered  
38  
Revision 1.2  
2020-10-20  
IMC301A/302A Datasheet  
Device and Package Specification  
Part Marking  
Manufacturer  
Part number  
I M C 3 0 2 A  
F 0 6 4  
X X X X X  
Lot number  
or -code  
Figure 18 Part Marking  
39  
Revision 1.2  
2020-10-20  
IMC301A/302A Datasheet  
Revision history  
Revision history  
Document  
version  
Date of release  
Description of changes  
1.2  
1.1  
2020-10-20  
2020-5-11  
Table 1 (Pin List) updated.  
Figure and table numbers updated.  
Table 1 (Pin List) updated.  
Pin configuration drawings updated.  
Added DCO accuracy with calibration.  
Increased max. motor PWM frequency up to 40 kHz.  
Application schematics drawings in section 3 updated.  
Section 5 (Quality Declaration) updated.  
Initial version  
1.0  
2019-12-12  
40  
Revision 1.2  
2020-10-20  
Trademarks of Infineon Technologies AG  
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,  
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,  
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,  
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,  
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™  
Trademarks updated November 2015  
Other Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on the product, technology,  
Edition 2020-10-20  
event be regarded as a guarantee of conditions or delivery terms and conditions and prices please  
Published by  
characteristics (“Beschaffenheitsgarantie”) .  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
Infineon Technologies AG  
81726 München, Germany  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement of  
intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2021 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about this  
document?  
In addition, any information given in this document  
is subject to customer’s compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and standards  
concerning customer’s products and any use of the  
product of Infineon Technologies in customer’s  
applications.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized  
representatives  
of  
Infineon  
Email: erratum@infineon.com  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of the  
product or any consequences of the use thereof can  
reasonably be expected to result in personal injury.  
Document reference  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

IMC302A-F064

High performance motor control IC series with an additional microcontroller
INFINEON

IMC41CTS

IM Series Signal Relays
TE

IMC9-65601L-25:D

Standard SRAM, 1MX1, 25ns, CMOS, CDIP28,
TEMIC

IMC9-65601L-25SHXXX:D

Standard SRAM, 1MX1, 25ns, CMOS, CDIP28,
TEMIC

IMC9-65601L-30

Standard SRAM, 1MX1, 30ns, CMOS, CDIP28,
TEMIC

IMC9-65601L-30SHXXX

Standard SRAM, 1MX1, 30ns, CMOS, CDIP28,
TEMIC

IMC9-65601L-35:D

Standard SRAM, 1MX1, 35ns, CMOS, CDIP28,
TEMIC

IMC9-65601L-35SHXXX

Standard SRAM, 1MX1, 35ns, CMOS, CDIP28,
TEMIC

IMC9-65601L-35SHXXX:D

Standard SRAM, 1MX1, 35ns, CMOS, CDIP28,
TEMIC

IMC9-65601L-45:D

Standard SRAM, 1MX1, 45ns, CMOS, CDIP28,
TEMIC

IMC9-65601L-45SHXXX

Standard SRAM, 1MX1, 45ns, CMOS, CDIP28,
TEMIC

IMC9-65601L-45SHXXX:D

Standard SRAM, 1MX1, 45ns, CMOS, CDIP28,
TEMIC